WO2019093825A1 - 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지 - Google Patents

음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지 Download PDF

Info

Publication number
WO2019093825A1
WO2019093825A1 PCT/KR2018/013650 KR2018013650W WO2019093825A1 WO 2019093825 A1 WO2019093825 A1 WO 2019093825A1 KR 2018013650 W KR2018013650 W KR 2018013650W WO 2019093825 A1 WO2019093825 A1 WO 2019093825A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
particle
electrode active
lif
Prior art date
Application number
PCT/KR2018/013650
Other languages
English (en)
French (fr)
Inventor
최정현
이용주
김은경
조래환
이수민
김동혁
박세미
오일근
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880072271.4A priority Critical patent/CN111373581B/zh
Priority to JP2020525920A priority patent/JP7045559B2/ja
Priority to EP18875085.5A priority patent/EP3694029A4/en
Priority to US16/762,696 priority patent/US20210175488A1/en
Publication of WO2019093825A1 publication Critical patent/WO2019093825A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material, a negative electrode including the negative electrode active material, and a secondary battery including the negative electrode, wherein the negative electrode active material includes a carbonaceous matrix including first and second particles,
  • the first particle comprises a silicon core; An oxide layer disposed on the silicon core and including SiOx (0 ⁇ x <2); And a coating layer covering at least a part of the surface of the oxide layer and containing LiF, wherein the second particle comprises graphene.
  • the secondary battery is composed of an anode, a cathode, an electrolyte, and a separator.
  • the negative electrode includes a negative electrode active material for inserting and desorbing lithium ions from the positive electrode, and the negative electrode active material may be a silicon based particle having a large discharge capacity.
  • the initial efficiency of the silicon-based particles such as SiO x (0? X ⁇ 2) is low and the volume is excessively changed during charging and discharging. Therefore, there arises a problem that the life of the battery is lowered.
  • Patent Document 1 Korean Patent Laid-Open Publication No. 10-2015-0112746
  • An object of the present invention is to provide a negative active material, a negative electrode including the negative active material, and a secondary battery including the negative electrode, in which the volume change and the side reaction with the electrolyte can be effectively controlled during the charging and discharging process of the secondary battery.
  • a carbonaceous matrix comprising a first particle and a second particle, wherein the first particle comprises: a silicon core; An oxide layer disposed on the silicon core and including SiOx (0 ⁇ x <2); And a coating layer covering at least a part of the surface of the oxide layer and containing LiF, wherein the second particle comprises graphene.
  • a negative electrode including the negative active material, and a secondary battery including the negative electrode.
  • the initial efficiency and the discharge capacity of the battery can be improved by the coating layer containing LiF, and the electrode thickness change rate can be small. Further, the graphene can smoothly composite the first particle and the second particle, thereby improving the capacity retention rate and reducing the rate of change in the electrode thickness.
  • FIG. 1 is a schematic view of a negative electrode active material of the present invention.
  • FIG 2 is a schematic view of a first particle included in the negative electrode active material according to the present invention.
  • an anode active material 100 includes a carbonaceous matrix 130 including first particles 110 and second particles 120,
  • the first particle 110 comprises a silicon core 111; Is disposed on the silicon core 111, oxide layer 112 containing SiO x (0 ⁇ x ⁇ 2); And a coating layer 113 covering at least a part of the surface of the oxide layer and containing LiF, and the second particles 120 may include graphene.
  • the silicon core may include Si, and may be specifically made of Si. Accordingly, the capacity of the secondary battery can be increased.
  • the average particle diameter (D 50 ) of the silicone core may be 40 nm to 400 nm, specifically 60 nm to 200 nm, and more specifically, 80 nm to 150 nm. When the above range is satisfied, the nano-sized silicon core is not easily broken at the time of charging / discharging the battery, and lithium insertion and desorption can be effectively performed.
  • the average particle diameter (D 50 ) can be defined as a particle diameter corresponding to 50% of the volume accumulation amount in the particle diameter distribution curve of the particles.
  • the average particle diameter (D 50 ) can be measured using, for example, a laser diffraction method. The laser diffraction method generally enables measurement of a particle diameter of several millimeters from a submicron region, resulting in high reproducibility and high degradability.
  • the oxide film layer may be disposed on the silicon core. Specifically, the oxide film layer may cover at least a part of the surface of the silicon core.
  • the oxide layer may include SiO x (0 ⁇ x? 2), and may specifically include SiO 2 . Accordingly, when the secondary battery is charged and discharged, the excessive volume change of the silicon core can be controlled.
  • the thickness of the oxide film layer may be 0.01 nm to 20 nm, specifically 0.05 nm to 15 nm, and more specifically 0.1 nm to 10 nm. If the above range is satisfied, an excess volume change of the silicon core can be effectively controlled while the capacity of the secondary battery is maintained.
  • the coating layer may cover at least a part of the surface of the oxide film layer. Specifically, the coating layer may be disposed so as to cover the entire surface of the oxide film layer, or may cover only a part of the surface.
  • the coating layer may include LiF, and may be specifically composed of LiF.
  • LiF of the coating layer serves as a kind of SEI film, so that a side reaction between the silicon core and the electrolyte can be prevented, the lithium ion conductivity can be improved, and the excessive volume expansion of the silicon core can be controlled.
  • the initial efficiency of the cathode can be improved.
  • LiF contained in the coating layer may be constituted of a crystalline phase and an amorphous phase by a heat treatment applied in the production of the negative electrode active material. At this time, the lithium ion conductivity can be improved by the interface between the crystalline phase and the amorphous phase.
  • the LiF may be contained in an amount of 0.05 wt% to 25 wt% based on the total weight of the negative electrode active material, specifically 0.1 wt% to 20 wt%, and more specifically, 0.5 wt% to 15 wt% have.
  • the side reaction reaction between the silicon core and the electrolytic solution can be effectively prevented, the lithium ion conductivity can be effectively improved, and the excessive volume expansion of the silicon core can be effectively controlled.
  • the initial efficiency of the cathode can be effectively improved.
  • the thickness of the coating layer may be 0.01 nm to 50 nm, specifically 0.05 nm to 15 nm, and more specifically 0.1 nm to 10 nm. When the above range is satisfied, the effect of the coating layer described above can be further improved.
  • the oxide layer may further include lithium silicate.
  • the lithium silicate can be formed when a suitable proportion of the oxide layer and the coating layer are heat-treated at a specific heat treatment temperature in the formation of the carbonaceous mattress. That is, the LiF may be a by-product formed by reacting the oxide layer with LiF. Since the initial nonvolatile capacity of the battery can be reduced by the lithium silicate, the initial efficiency of the battery can be improved.
  • the lithium silicate may include at least one of Li 2 SiO 3 , Li 4 SiO 4 , and Li 2 Si 2 O 5 , and may specifically include Li 2 SiO 3 .
  • the second particle may comprise graphene, and in particular, the second particle may comprise graphene. Since the graphene is included in the negative electrode active material, a conductive path in the active material layer can be secured. Further, as compared with general spherical graphite, since graphene is in a very thin plate-like shape, the first particle and the second particle can be coalesced with a higher density in the process of compounding the first particle and the second particle. Therefore, the energy density of the produced negative electrode can be improved, thinner electrodes can be manufactured, and battery resistance can be reduced. Further, the conductivity of the negative electrode can be improved by graphene, so that sufficient conductivity of the negative electrode can be secured even if the content of the conductive material is less than that in a general case.
  • graphene means a thin film carbonaceous structure having a thickness of 200 nm or less, specifically 10 nm to 200 nm, more specifically 10 nm to 80 nm.
  • the BET specific surface area value of the graphene may be from 50 m 2 / g to 3000 m 2 / g, specifically from 75 m 2 / g to 2000 m 2 / g, more specifically from 100 m 2 / g to 1000 m 2 / .
  • the first particles can be effectively disposed between the second particles, so that the composite of the first particles and the second particles can be facilitated.
  • the size of the graphene may be 0.1 ⁇ to 20 ⁇ , specifically 0.2 ⁇ to 15 ⁇ , and more specifically 0.5 ⁇ to 10 ⁇ .
  • the size of the particle formed by the combination of the first particle and the second particle can be made uniform.
  • the particles can be easily dispersed during the production of the negative electrode and aggregation between the particles can be suppressed.
  • the size of the graphene refers to the size of the graphene when viewed from a direction perpendicular to the plane with the graphen lying on a plane, and the longest Lt; / RTI >
  • the weight ratio of the first particle to the second particle may be 1: 9 to 9: 1, and may be 2: 8 to 8: 2, and more specifically, 4: 6 to 7: 3.
  • stability of the battery can be improved because the first particle and the second particle can be stably combined with the improvement of the capacity of the battery.
  • the negative active material may include a composite structure in which the first particles and the second particles are in contact with each other.
  • the carbonaceous matrix may be present in a form covering at least a part of the first particle and the second particle. Specifically, the carbonaceous matrix may exist in a form covering the entire first particle and the second particle .
  • the carbonaceous matrix may include at least one of amorphous carbon and crystalline carbon.
  • the crystalline carbon can further improve the conductivity of the negative electrode active material.
  • the crystalline carbon may include at least one selected from the group consisting of fluorene, carbon nanotube, and graphene.
  • the amorphous carbon can appropriately maintain the strength of the carbonaceous matrix and suppress the expansion of the silicon core.
  • the amorphous carbon may be a carbon-based material formed by using at least one carbide selected from the group consisting of tar, pitch, and other organic materials, or a hydrocarbon as a source of chemical vapor deposition.
  • the carbide of the other organic substance may be a carbide of an organic substance selected from the group consisting of sucrose, glucose, galactose, fructose, lactose, mannose, ribose, aldohexose or ketohexose carbides and combinations thereof.
  • the hydrocarbons may be substituted or unsubstituted aliphatic or alicyclic hydrocarbons, substituted or unsubstituted aromatic hydrocarbons.
  • the aliphatic or alicyclic hydrocarbons of the substituted or unsubstituted aliphatic or alicyclic hydrocarbon may be selected from the group consisting of methine, ethene, ethylene, acetylene, propene, butane, butene, pentene, isobutene or hexane.
  • the aromatic hydrocarbon of the substituted or unsubstituted aromatic hydrocarbon is selected from the group consisting of benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone, pyridine, Anthracene, phenanthrene, and the like.
  • the carbonaceous matrix may be included in an amount of 5 wt% to 50 wt% based on the total weight of the negative electrode active material, specifically 10 wt% to 45 wt%, more specifically 12 wt% to 40 wt% .
  • the conductive path can be effectively secured.
  • the carbonaceous matrix can effectively hold the bond between the first particle and the second particle, the volume expansion of the negative electrode active material can be effectively controlled.
  • the negative electrode active material according to another embodiment of the present invention is the same as the negative electrode active material of the above-described embodiment, but differs in that the second particles further include graphite graphite. We will focus on the differences.
  • the scratched graphite may be at least one selected from natural graphite, artificial graphite, natural graphite, or graphite-based particles produced by shattering artificial graphite.
  • the second particles further comprise the scratched graphite, the composite of the first particle and the second particle can be smoothly performed, so that the shape of the prepared negative electrode active material can be made uniform. Further, it is possible to manufacture a negative electrode active material having a more uniform size.
  • the BET specific surface area value of the flake graphite may be 1 m 2 / g to 200 m 2 / g, specifically 1.5 m 2 / g to 100 m 2 / g, more specifically 2 m 2 / g to 50 m 2 / g.
  • the first particles can be effectively disposed between the second particles, so that the composite of the first particles and the second particles can be made more smoothly.
  • the thickness of the scratched graphite may be 250 nm to 5 ⁇ , specifically 400 nm to 3 ⁇ , and more specifically, 500 nm to 2.5 ⁇ .
  • Another exemplary method of manufacturing the negative active material according to an embodiment of the present invention comprises the steps of: preparing a silicon oxide film core layer is arranged comprising a SiO x (0 ⁇ x ⁇ 2) to the surface; Forming a coating layer containing LiF on the oxide layer to form a first particle; And forming a carbonaceous matrix comprising particles in which the first particles and the second particles comprising graphene are complexed with each other.
  • the oxide film layer may be formed through heat treatment of the silicon core in oxygen or air, An oxide film layer may be formed on the silicon core.
  • the present invention is not limited thereto.
  • the coating layer may be formed by the following method.
  • the coating layer may be formed by milling a silicon core having the oxide film layer formed thereon together with LiF, and pulverizing and mixing the resultant. Alternatively, after the silicone core is dispersed in a solvent, lithium acetate and ammonium fluoride may be mixed together to form the coating layer. Alternatively, the coating layer may be formed by disposing LiF on the oxide film layer through sputtering. However, it is not necessarily limited to the above method.
  • the step of forming the carbonaceous matrix may include the following method.
  • the slurry is prepared by dispersing the first particles in a solvent to prepare a mixed solution, and then the second particles and an organic solution capable of being a pitch or carbon source are dispersed in the mixed solution. After the slurry is heat-treated and pulverized, the carbonaceous matrix can be formed, and at the same time, complexation can be achieved. Alternatively, the slurry may be subjected to spay drying and pulverized to form the carbonaceous matrix, and at the same time, complexation can be achieved. Alternatively, the first particle and the second particle alone may be mixed and heat-treated to form a secondary particle, followed by chemical vapor deposition (CVD) or organic material such as pitch mixed and carbonized to form carbon A vaginal matrix can be formed. However, it is not necessarily limited to the above method.
  • CVD chemical vapor deposition
  • the negative electrode according to another embodiment of the present invention may include a negative active material, wherein the negative active material is the same as the negative active material of the above-described embodiments.
  • the negative electrode may include a current collector and a negative electrode active material layer disposed on the current collector.
  • the negative electrode active material layer may include the negative electrode active material.
  • the negative electrode active material layer may further include a binder and / or a conductive material.
  • the current collector is not particularly limited as long as it has electrical conductivity without causing a chemical change in the battery.
  • the current collector may be made of copper, stainless steel, aluminum, nickel, titanium, sintered carbon, or a surface of aluminum or stainless steel surface treated with carbon, nickel, titanium or silver.
  • a transition metal that adsorbs carbon well such as copper or nickel can be used as a current collector.
  • the current collector may have a thickness of 6 to 20 ⁇ , but the thickness of the current collector is not limited thereto.
  • the binder may be selected from the group consisting of polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidenefluoride, polyacrylonitrile, polymethylmethacrylate, poly Polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), liquor, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, And may include at least any one selected from the group consisting of polyvinylidene fluoride (EPDM), styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid, and materials in which hydrogen thereof is substituted with Li, Na, Ca, And may include various copolymers thereof.
  • PVDF-co-HFP polyvinylidene fluoride-hexafluoropropylene cop
  • the conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon black such as carbon black, acetylene black, Ketjen black, channel black, panes black, lamp black, and thermal black; Conductive fibers such as carbon fiber and metal fiber; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • graphite such as natural graphite and artificial graphite
  • Carbon black such as carbon black, acetylene black, Ketjen black, channel black, panes black, lamp black, and thermal black
  • Conductive fibers such as carbon fiber and metal fiber
  • Conductive tubes such as carbon nanotubes
  • Metal powders such as fluorocarbon, aluminum and nickel powder
  • the secondary battery according to another embodiment of the present invention may include a cathode, an anode, a separator interposed between the anode and the cathode, and an electrolyte, and the cathode is the same as the cathode described above. Since the negative electrode has been described above, a detailed description thereof will be omitted.
  • the positive electrode may include a positive electrode collector and a positive electrode active material layer formed on the positive electrode collector and including the positive electrode active material.
  • the cathode current collector is not particularly limited as long as it has conductivity without causing a chemical change in the battery, and for example, a metal such as stainless steel, aluminum, nickel, titanium, sintered carbon, , Nickel, titanium, silver, or the like may be used.
  • the cathode current collector may have a thickness of 3 to 500 ⁇ , and fine unevenness may be formed on the surface of the current collector to increase the adhesive force of the cathode active material.
  • it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the cathode active material may be a commonly used cathode active material.
  • the cathode active material may be a layered compound such as lithium cobalt oxide (LiCoO 2 ) or lithium nickel oxide (LiNiO 2 ) or a compound substituted with one or more transition metals; Lithium iron oxides such as LiFe 3 O 4 ; Formula Li 1 + c1 Mn 2-c1 O 4 (0 ⁇ c1 ⁇ 0.33), LiMnO 3, the lithium manganese oxide such as LiMn 2 O 3, LiMnO 2; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , V 2 O 5 and Cu 2 V 2 O 7 ; Formula LiNi 1-c2 M c2 O 2 expressed as (where, M is at least one, satisfies 0.01 ⁇ c2 ⁇ 0.3 selected from the group consisting of Co, Mn, Al, Cu, Fe, Mg, B and Ga) ≪ / RTI &
  • the positive electrode active material layer may include a positive electrode conductive material and a positive electrode binder together with the above-described positive electrode active material.
  • the positive electrode conductive material is used for imparting conductivity to the electrode, and the positive electrode conductive material can be used without particular limitation as long as it has electron conductivity without causing chemical change.
  • Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; And polyphenylene derivatives. These may be used alone or in admixture of two or more.
  • the positive electrode binder improves adhesion between the positive electrode active material particles and adhesion between the positive electrode active material and the positive electrode collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose ), Starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, and various copolymers thereof.
  • PVDF polyvinylidene fluoride
  • PVDF-co-HFP vinylidene fluoride-hexafluoropropylene copolymer
  • PVDF-co-HFP polyvinyl
  • the separator separates the cathode and the anode and provides a passage for lithium ion.
  • the separator can be used without any particular limitation as long as it is used as a separator in a secondary battery.
  • the separator can be used with low resistance against electrolyte migration, .
  • porous polymer films such as porous polymer films made of polyolefin-based polymers such as ethylene homopolymers, propylene homopolymers, ethylene / butene copolymers, ethylene / hexene copolymers and ethylene / methacrylate copolymers, May be used.
  • a nonwoven fabric made of a conventional porous nonwoven fabric for example, glass fiber of high melting point, polyethylene terephthalate fiber, or the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used, and the separator may be selectively used as a single layer or a multilayer structure.
  • Examples of the electrolyte include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte that can be used in the production of a lithium secondary battery, but are not limited thereto.
  • the electrolyte may include a non-aqueous organic solvent and a metal salt.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylolactone, Tetrahydrofuran, tetrahydrofuran, tetrahydrofuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate
  • organic solvent examples include methyl acetate, phosphoric acid triester, trimethoxy methane, dioxolane derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, Propylenic organic solvents such as methylmethyl, ethylpropionate and
  • ethylene carbonate and propylene carbonate which are cyclic carbonates in the carbonate-based organic solvent, can be preferably used because they have high permittivity as a high viscosity organic solvent and dissociate the lithium salt well.
  • dimethyl carbonate and diethyl carbonate When the same low viscosity and low dielectric constant linear carbonate are mixed in an appropriate ratio, an electrolyte having a high electric conductivity can be prepared, and thus it can be used more preferably.
  • the metal salt may be a lithium salt, and the lithium salt may be soluble in the non-aqueous electrolyte.
  • the anion of the lithium salt include F - , Cl - , I - , NO 3 - , N ) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF - , (CF 3) 6 P - , CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2 ) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 At least one selected from the group consist
  • the electrolyte may contain, for example, a haloalkylene carbonate-based compound such as difluoroethylene carbonate or the like, pyridine, triethanolamine, or the like for the purpose of improving lifetime characteristics of the battery, Ethyl phosphite, triethanol amine, cyclic ether, ethylenediamine, glyme, hexametriamide, nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, At least one additive such as benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol
  • a battery module including the secondary battery as a unit cell and a battery pack including the same. Since the battery module and the battery pack include the secondary battery having a high capacity, high speed-rate characteristics, and a cycling characteristic, the battery module and the battery pack can be suitably used as a middle- or large-sized device selected from the group consisting of electric vehicles, hybrid electric vehicles, plug- As shown in FIG.
  • the dispersion was applied to a Mini Spray-Dryer (manufacturer: Buchi, Model: B-290 Mini Spray-Dryer) at an inlet temperature of 180 ° C, an aspirator of 95% and a feeding rate of 12 Lt; / RTI > Thereafter, 10 g of the spray-dried mixture (composite) was heat-treated at 950 ⁇ in a nitrogen atmosphere to prepare an anode active material.
  • LiF (corresponding to the coating layer of the present invention) in the prepared negative electrode active material was 1.3% by weight based on the total weight of the negative electrode active material.
  • the Li content was measured by ICP, the content of F was measured by ion chromatography, to be.
  • the prepared negative electrode active material, fine graphite as a conductive material, and polyacrylonitrile as a binder were mixed at a weight ratio of 7: 2: 1 to prepare 0.2 g of a mixture.
  • 3.1 g of N-methyl-2-pyrrolidone (NMP) as a solvent was added to the mixture to prepare an anode slurry.
  • the negative electrode slurry was applied to a copper (Cu) metal thin film as an anode current collector having a thickness of 20 ⁇ and dried.
  • the temperature of the circulated air was 80 ° C.
  • a negative electrode was prepared by roll pressing and drying in a vacuum oven at 130 DEG C for 12 hours.
  • the prepared negative electrode was cut into a circle of 1.7671 cm < 2 > and a lithium metal thin film was used as the positive electrode.
  • 0.5% by weight of vinylene carbonate dissolved in a mixed solution of methyl ethyl carbonate (EMC) and ethylene carbonate (EC) at a mixing volume ratio of 7: 3 was placed between the anode and the cathode through a separator of porous polyethylene, And an electrolytic solution in which 1 M LiPF 6 was dissolved was injected to prepare a lithium coin half-cell.
  • EMC methyl ethyl carbonate
  • EC ethylene carbonate
  • the dispersion was applied to a Mini Spray-Dryer (manufacturer: Buchi, Model: B-290 Mini Spray-Dryer) at an inlet temperature of 180 ° C, an aspirator of 95% and a feeding rate of 12 Lt; / RTI > Thereafter, 10 g of the spray-dried mixture (composite) was heat-treated at 950 ⁇ in a nitrogen atmosphere to prepare an anode active material.
  • LiF (corresponding to the coating layer of the present invention) in the prepared negative electrode active material was 16% by weight based on the total weight of the negative electrode active material. The Li content was measured by ICP, the content of F was measured by ion chromatography, to be.
  • a negative electrode and a secondary battery were produced in the same manner as in Example 1, except that the negative active material was used.
  • the dispersion was applied to a Mini Spray-Dryer (manufacturer: Buchi, Model: B-290 Mini Spray-Dryer) at an inlet temperature of 180 ° C, an aspirator of 95% and a feeding rate of 12 Lt; / RTI > Thereafter, 10 g of the spray-dried mixture (composite) was heat-treated at 950 ⁇ in a nitrogen atmosphere to prepare an anode active material.
  • LiF (corresponding to the coating layer of the present invention) in the prepared negative electrode active material was 0.3% by weight based on the total weight of the negative electrode active material.
  • the Li content was measured by ICP, the content of F was measured by ion chromatography, to be.
  • a negative electrode and a secondary battery were produced in the same manner as in Example 1, except that the negative active material was used.
  • the dispersion was applied to a Mini Spray-Dryer (manufacturer: Buchi, Model: B-290 Mini Spray-Dryer) at an inlet temperature of 180 ° C, an aspirator of 95% and a feeding rate of 12 Lt; / RTI > Thereafter, 10 g of the spray-dried mixture (composite) was heat-treated at 950 ⁇ in a nitrogen atmosphere to prepare an anode active material.
  • LiF (corresponding to the coating layer of the present invention) in the prepared negative electrode active material was 1.3% by weight based on the total weight of the negative electrode active material.
  • the Li content was measured by ICP, the content of F was measured by ion chromatography, to be.
  • a negative electrode and a secondary battery were produced in the same manner as in Example 1, except that the negative active material was used.
  • the dispersion was applied to a Mini Spray-Dryer (manufacturer: Buchi, Model: B-290 Mini Spray-Dryer) at an inlet temperature of 180 ° C, an aspirator of 95% and a feeding rate of 12 Lt; / RTI > Thereafter, 10 g of the spray-dried mixture (composite) was heat-treated at 950 ⁇ in a nitrogen atmosphere to prepare an anode active material.
  • LiF (corresponding to the coating layer of the present invention) in the prepared negative electrode active material was 0.8 wt% based on the total weight of the negative electrode active material. The Li content was measured by ICP, the content of F was measured by ion chromatography, to be.
  • An anode active material was prepared in the same manner as in Example 1, except that LiF was not added during slurry preparation in the production step of the negative active material of Example 1.
  • the dispersion was applied to a Mini Spray-Dryer (manufacturer: Buchi, Model: B-290 Mini Spray-Dryer) at an inlet temperature of 180 ° C, an aspirator of 95% and a feeding rate of 12 Lt; / RTI > Thereafter, 10 g of the spray-dried mixture (composite) was heat-treated at 950 ⁇ in a nitrogen atmosphere to prepare an anode active material.
  • LiF (corresponding to the coating layer of the present invention) in the prepared negative electrode active material was 1.3% by weight based on the total weight of the negative electrode active material.
  • the Li content was measured by ICP, the content of F was measured by ion chromatography, to be.
  • the dispersion was applied to a Mini Spray-Dryer (manufacturer: Buchi, Model: B-290 Mini Spray-Dryer) at an inlet temperature of 180 ° C, an aspirator of 95% and a feeding rate of 12 Lt; / RTI > Thereafter, 10 g of the spray-dried mixture (composite) was heat-treated at 950 ⁇ in a nitrogen atmosphere to prepare an anode active material.
  • LiF (corresponding to the coating layer of the present invention) in the prepared negative electrode active material was 1.3% by weight based on the total weight of the negative electrode active material.
  • the Li content was measured by ICP, the content of F was measured by ion chromatography, to be.
  • Test Example 1 Evaluation of Discharge Capacity, Initial Efficiency, Capacity Retention Rate, and Electrode Thickness Change Rate
  • the batteries of Examples 1 to 5 and Comparative Examples 1 to 3 were charged and discharged to evaluate the discharge capacity, the initial efficiency, the capacity retention rate and the rate of change of the electrode (cathode) thickness.
  • the first cycle and the second cycle were charged and discharged at 0.1 C, and charge and discharge were performed at 0.5 C from the third cycle to the 49th cycle.
  • the 50 cycles were terminated in the state of charging (state in which lithium was contained in the negative electrode), the battery was disassembled to measure the thickness, and the rate of electrode thickness change was calculated.
  • the discharge capacity (mAh / g) and the initial efficiency (%) were derived from the results of one charge / discharge cycle. Specifically, the initial efficiency (%) was derived by the following calculation.
  • the capacity retention rate and the electrode thickness change ratio were derived by the following calculation, respectively.
  • Capacity retention rate (%) (49 times discharge capacity / one time discharge capacity) x 100
  • Comparative Example 2 since the second particle contains only spherical natural graphite, the composite of the first particle and the second particle can not be stably formed, so that the capacity retention ratio and the electrode thickness change ratio are poor.
  • the second particle was poorer than Example 1 in terms of discharge capacity, initial efficiency, capacity retention rate, and electrode thickness change ratio as grains contained only graphite without graphite.
  • Example 1 satisfying an appropriate LiF content is superior both in terms of discharge capacity, initial efficiency, capacity retention rate, and electrode thickness change ratio, compared with Examples 2 and 3 containing LiF in a relatively small amount . Further, it can be seen that the capacity retention rate and the electrode thickness change ratio of Example 1 satisfying the appropriate first particle size are more preferable than that of Example 5 in which the size of the first particles including the silicon core is relatively large.

Abstract

제1 입자 및 제2 입자를 포함하는 탄소질 매트릭스를 포함하며, 상기 제1 입자는, 실리콘 코어; 상기 실리콘 코어 상에 배치되며 SiOx(0<x≤2)를 포함하는 산화막층; 및 상기 산화막층의 표면의 적어도 일부를 덮으며 LiF를 포함하는 코팅층을 포함하고, 상기 제2 입자는 그래핀을 포함하는 음극 활물질에 관한 것이다.

Description

음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
관련출원과의 상호인용
본 출원은 2017년 11월 09일자 출원된 한국 특허 출원 제10-2017-0148838호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지에 관한 것으로, 구체적으로 상기 음극 활물질은 제1 입자 및 제2 입자를 포함하는 탄소질 매트릭스를 포함하며, 상기 제1 입자는, 실리콘 코어; 상기 실리콘 코어 상에 배치되며 SiOx(0<x≤2)를 포함하는 산화막층; 및 상기 산화막층의 표면의 적어도 일부를 덮으며 LiF를 포함하는 코팅층을 포함하고, 상기 제2 입자는 그래핀을 포함하는 것을 특징으로 한다.
화석연료 사용의 급격한 증가로 인하여 대체 에너지나 청정에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학 반응을 이용한 발전, 축전 분야이다.
현재 이러한 전기화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차 전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다. 최근에는 휴대용 컴퓨터, 휴대용 전화기, 카메라 등의 휴대용 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차 전지 중 높은 에너지 밀도, 즉 고용량의 리튬 이차전지에 대해 많은 연구가 행해져 왔고, 또한 상용화되어 널리 사용되고 있다.
일반적으로 이차 전지는 양극, 음극, 전해질, 및 분리막으로 구성된다. 음극은 양극으로부터 나온 리튬 이온을 삽입하고 탈리시키는 음극 활물질을 포함하며, 상기 음극 활물질로는 방전 용량이 큰 실리콘계 입자가 사용될 수 있다. 다만, SiOx(0≤x<2)등의 실리콘계 입자는 초기 효율이 낮으며, 충방전 과정에서 부피가 지나치게 변화한다. 따라서, 전지의 수명이 저하되는 문제가 발생한다.
종래에는 이러한 문제를 해결하기 위해, 실리콘계 입자 표면에 코팅층을 형성하는 기술들이 이용되어 왔다. 예를 들어, 실리콘계 입자 표면에 탄소 코팅층을 형성시키는 기술이 이용되고 있다(대한민국 공개특허공보 제10-2015-0112746호).
그러나, 상기 탄소 코팅층 만으로는 실리콘계 입자의 지나친 부피 팽창이 쉽게 제어되지 않으며, 전해액과 실리콘계 입자의 부반응이 효과적으로 제어되지 않는다.
따라서, 이차 전지의 충방전 과정에서의 부피 변화 및 전해액과의 부반응이 효과적으로 제어될 수 있는 음극 활물질이 요구된다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 공개특허공보 제10-2015-0112746호
본 발명이 해결하고자 하는 일 과제는 이차 전지의 충방전 과정에서의 부피 변화 및 전해액과의 부반응이 효과적으로 제어될 수 있는 음극 활물질, 이를 포함하는 음극 및 상기 음극을 포함하는 이차 전지를 제공하는 것이다.
본 발명의 일 실시예에 따르면, 제1 입자 및 제2 입자를 포함하는 탄소질 매트릭스를 포함하며, 상기 제1 입자는, 실리콘 코어; 상기 실리콘 코어 상에 배치되며 SiOx(0<x≤2)를 포함하는 산화막층; 및 상기 산화막층의 표면의 적어도 일부를 덮으며 LiF를 포함하는 코팅층을 포함하고, 상기 제2 입자는 그래핀을 포함하는 음극 활물질이 제공된다.
본 발명의 다른 실시예에 따르면, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지가 제공된다.
본 발명의 일 실시예에 따른 음극 활물질에 따르면, LiF를 포함하는 코팅층에 의해 전지의 초기 효율 및 방전 용량이 개선될 수 있으며, 전극 두께 변화율이 작을 수 있다. 또한, 그래핀에 의해 제1 입자와 제2 입자의 복합화가 원활하게 이루어질 수 있어서, 용량 유지율 개선되고, 전극 두께 변화율이 더욱 작을 수 있다.
도 1은 본 발명의 음극 활물질의 모식도이다.
도 2는 본 발명에 따른 음극 활물질에 포함된 제1 입자의 모식도이다.
도 3은 실시예 1 및 비교예 1의 ToF-SIMS 결과 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 음극 활물질(100)은 제1 입자(110) 및 제2 입자(120)를 포함하는 탄소질 매트릭스(130)를 포함하며, 상기 제1 입자(110)는, 실리콘 코어(111); 상기 실리콘 코어(111) 상에 배치되며 SiOx(0<x≤2)를 포함하는 산화막층(112); 및 상기 산화막층의 표면의 적어도 일부를 덮으며 LiF를 포함하는 코팅층(113)을 포함하고, 상기 제2 입자(120)는 그래핀을 포함할 수 있다.
상기 실리콘 코어는 Si를 포함할 수 있으며, 구체적으로 Si로 이루어질 수 있다. 이에 따라, 이차 전지의 용량이 높아질 수 있다.
상기 실리콘 코어의 평균 입경(D50)은 40nm 내지 400nm일 수 있으며, 구체적으로 60nm 내지 200nm일 수 있고, 더욱 구체적으로 80nm 내지 150nm 일 수 있다. 상기 범위를 만족하는 경우, 전지 충방전 시에 나노 사이즈의 실리콘 코어가 쉽게 깨지지 않으며, 효과적으로 리튬 삽입과 탈리가 이루어질 수 있다. 본 명세서에서 평균 입경(D50)은 입자의 입경 분포 곡선에 있어서, 체적 누적량의 50%에 해당하는 입경으로 정의할 수 있다. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.
상기 산화막층은 상기 실리콘 코어 상에 배치될 수 있다. 구체적으로, 상기 산화막층은 상기 실리콘 코어의 표면의 적어도 일부를 덮을 수 있다.
상기 산화막층은 SiOx(0<x≤2)를 포함할 수 있으며, 구체적으로 SiO2를 포함할 수 있다. 이에 따라, 이차 전지의 충방전 시, 상기 실리콘 코어의 지나친 부피 변화가 제어될 수 있다.
상기 산화막층의 두께는 0.01nm 내지 20nm 일 수 있으며, 구체적으로 0.05nm 내지 15nm 일 수 있고, 더욱 구체적으로 0.1nm 내지 10nm 일 수 있다. 상기 범위를 만족하는 경우, 이차 전지의 용량이 유지되면서 상기 실리콘 코어의 지나친 부피 변화가 효과적으로 제어될 수 있다.
상기 코팅층은 상기 산화막층의 표면의 적어도 일부를 덮을 수 있다. 구체적으로, 상기 코팅층은 상기 산화막층의 표면의 전부를 덮도록 배치되거나, 상기 표면의 일부만을 덮도록 배치될 수 있다.
상기 코팅층은 LiF를 포함할 수 있으며, 구체적으로 LiF로 구성될 수 있다. 상기 코팅층의 LiF가 일종의 SEI 막 역할을 하여 실리콘 코어와 전해액의 부반응이 방지될 수 있으며, 리튬 이온 전도도가 개선될 수 있고, 실리콘 코어의 지나친 부피 팽창이 제어될 수 있다. 이에 따라, 음극의 초기 효율이 개선될 수 있다. 구체적으로, 이에 한정되는 것은 아니나, 상기 코팅층에 포함되는 LiF는 음극 활물질 제조 시 가해지는 열처리에 의해 결정질 상과 비정질 상으로 구성될 수 있다. 이 때, 결정질 상과 비정질 상 사이의 계면에 의해 상기 리튬 이온 전도도가 개선될 수 있다.
상기 LiF는 상기 음극 활물질 전체 중량을 기준으로 0.05중량% 내지 25중량%로 포함될 수 있으며, 구체적으로 0.1중량% 내지 20중량%로 포함될 수 있고, 더욱 구체적으로 0.5중량% 내지 15중량%로 포함될 수 있다. 상기 범위를 만족하는 경우, 실리콘 코어와 전해액의 부반응의 반응이 효과적으로 방지될 수 있으며, 리튬 이온 전도도가 효과적으로 개선될 수 있고, 실리콘 코어의 지나친 부피 팽창이 효과적으로 제어될 수 있다. 이에 따라, 음극의 초기 효율이 효과적으로 개선될 수 있다.
상기 코팅층의 두께는 0.01nm 내지 50nm일 수 있으며, 구체적으로 0.05nm 내지 15nm일 수 있고, 더욱 구체적으로 0.1nm 내지 10nm 일 수 있다. 상기 범위를 만족하는 경우, 상술한 코팅층의 효과가 더욱 개선될 수 있다.
상기 산화막층은 리튬 실리케이트를 더 포함할 수 있다. 상기 리튬 실리케이트는 탄소질 매트리스 형성 시, 적절한 비율의 산화막층과 코팅층이 특정 열처리 온도를 사용하여 열처리되는 경우 형성될 수 있다. 즉, 상기 LiF와 상기 산화막층이 반응하여 형성된 부산물일 수 있다. 상기 리튬 실리케이트에 의해 전지의 초기 비가역량이 줄어들 수 있으므로, 전지의 초기 효율이 개선될 수 있다. 상기 리튬 실리케이트는 Li2SiO3, Li4SiO4, 및 Li2Si2O5 중 적어도 어느 하나를 포함할 수 있으며, 구체적으로 Li2SiO3를 포함할 수 있다.
상기 제2 입자는 그래핀을 포함할 수 있으며, 구체적으로 제2 입자는 그래핀으로 이루어질 수도 있다. 상기 그래핀이 음극 활물질에 포함되므로, 활물질층 내 도전성 경로(path)가 확보될 수 있다. 나아가, 일반적인 구형 흑연과 비교할 때, 그래핀은 그 형상이 매우 얇은 판상이므로, 제1 입자와 제2 입자의 복합화 과정에서 제1 입자와 제2 입자가 좀 더 높은 밀도를 가지면서 뭉칠 수 있다. 따라서, 제조된 음극의 에너지 밀도가 향상될 수 있으며, 보다 얇은 전극의 제조가 가능하고, 전지 저항이 줄어들 수 있다. 또한, 그래핀에 의해 음극의 도전성이 개선될 수 있으므로, 도전재의 함량이 일반적인 경우보다 적더라도 충분한 음극의 도전성이 확보될 수 있다. 본 발명에서 그래핀이란 두께가 200nm 이하, 구체적으로 10nm 내지 200nm, 보다 구체적으로 10nm 내지 80nm인 박막 형태의 탄소질 구조체를 의미한다.
상기 그래핀의 BET 비표면적 값은 50m2/g 내지 3000m2/g 일 수 있으며, 구체적으로 75m2/g 내지 2000m2/g 일 수 있고, 더욱 구체적으로 100m2/g 내지 1000m2/g일 수 있다. 상기 범위를 만족하는 경우, 제1 입자가 제2 입자들 사이에 효과적으로 배치될 수 있으므로, 제1 입자와 제2 입자의 복합화가 용이할 수 있다.
상기 그래핀의 크기는 0.1㎛ 내지 20㎛일 수 있으며, 구체적으로 0.2㎛ 내지 15㎛일 수 있고, 더욱 구체적으로 0.5㎛ 내지 10㎛일 수 있다. 상기 범위를 만족하는 경우, 제1 입자와 제2 입자가 복합되어 형성된 입자의 크기가 균일해질 수 있다. 또한, 상기 범위를 만족할 시, 음극 제조 시 입자들의 분산이 용이하고 입자들간의 응집이 억제될 수 있다. 이 때, 상기 그래핀의 크기란, 상기 그래핀을 평면 상에 놓고 상기 평면에 수직인 방향에서 봤을 시, 상기 그래핀의 평면에서 어느 한 점에서 다른 한 점을 이은 선을 가정했을 때 가장 긴 길이를 나타낸다.
상기 제1 입자와 상기 제2 입자의 중량비는 1:9 내지 9:1일 수 있으며, 구체적으로 2:8 내지 8:2일 수 있고, 더욱 구체적으로 4:6 내지 7:3 일 수 있다. 상기 중량비를 만족하는 경우, 전지의 용량 개선과 동시에, 제1 입자와 제2 입자가 안정적으로 복합화될 수 있어서 전지의 안정성이 개선될 수 있다.
도 1을 참조하면, 상기 음극 활물질은 상기 제1 입자 및 상기 제2 입자가 서로 접하여 복합화된 구조를 포함할 수 있다.
상기 탄소질 매트릭스는 상기 제1 입자와 상기 제2 입자의 적어도 일부를 덮는 형태로 존재할 수 있으며, 구체적으로 상기 탄소질 매트릭스는 상기 제1 입자와 상기 제2 입자의 전부를 덮는 형태로 존재할 수 있다.
상기 탄소질 매트릭스는 비정질 탄소 및 결정질 탄소 중 적어도 어느 하나를 포함할 수 있다.
상기 결정질 탄소는 상기 음극 활물질의 도전성을 보다 향상시킬 수 있다. 상기 결정질 탄소는 플로렌, 탄소나노튜브 및 그래핀으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있다.
상기 비정질 탄소는 상기 탄소질 매트릭스의 강도를 적절하게 유지시켜, 상기 실리콘 코어의 팽창을 억제시킬 수 있다. 상기 비정질 탄소는 타르, 피치 및 기타 유기물로 이루어진 군에서 선택되는 적어도 어느 하나의 탄화물, 또는 탄화수소를 화학기상증착법의 소스로 이용하여 형성된 탄소계 물질일 수 있다.
상기 기타 유기물의 탄화물은 수크로오스, 글루코오스, 갈락토오스, 프록토오스, 락토오스, 마노스, 리보스, 알도헥소스 또는 케도헥소스의 탄화물 및 이들의 조합에서 선택되는 유기물의 탄화물일 수 있다.
상기 탄화수소는 치환 또는 비치환된 지방족 또는 지환식 탄화수소, 치환 또는 비치환된 방향족 탄화수소일 수 있다. 상기 치환 또는 비치환된 지방족 또는 지환식 탄화수소의 지방족 또는 지환식 탄화수소는 메테린, 에테린, 에틸렌, 아세틸렌, 프로페인, 뷰태인, 뷰텐, 펜테인, 아이소뷰테인 또는 헥세인 등일 수 있다. 상기 치환 또는 비치환된 방향족 탄화수소의 방향족 탄화수소는 벤젠, 톨루엔, 자일렌, 스티렌, 에틸벤젠, 다이페닐메테인, 나프탈렌, 페놀, 크레졸, 나이트로벤젠, 클로로벤젠, 인덴, 쿠마론, 파이리딘, 안트라센 또는 페난트렌 등을 들 수 있다.
상기 탄소질 매트릭스는 상기 음극 활물질 전체 중량을 기준으로 5중량% 내지 50중량%로 포함될 수 있으며, 구체적으로 10중량% 내지 45중량%로 포함될 수 있고, 더욱 구체적으로 12중량% 내지 40중량%로 포함될 수 있다. 상기 범위를 만족하는 경우, 도전성 경로가 효과적으로 확보될 수 있다. 동시에, 상기 탄소질 매트릭스가 제1 입자와 제2 입자의 결합이 효과적으로 유지시킬 수 있으므로, 음극 활물질의 부피 팽창이 효과적으로 제어될 수 있다.
본 발명의 다른 실시예에 따른 음극 활물질은, 상술한 실시예의 음극 활물질과 동일하나, 제2 입자가 인편상 흑연을 더 포함하는 점에서 차이가 있다. 이에, 차이점을 중심으로 설명하도록 한다.
상기 인편상 흑연은 천연흑연, 인조흑연, 천연흑연 또는 인조흑연을 파쇄하여 제조한 흑연계 입자 등에서 선택되는 적어도 어느 하나일 수 있다. 제2 입자가 상기 인편상 흑연을 더 포함할 경우, 제1 입자와 제2 입자의 복합화가 원활하게 이루어질 수 있어서, 제조된 음극 활물질의 형상이 일정해질 수 있다. 또한, 좀더 균일한 크기를 가지는 음극 활물질의 제조가 가능하다.
상기 인편상 흑연의 BET 비표면적 값은 1m2/g 내지 200m2/g 일 수 있으며, 구체적으로 1.5m2/g 내지 100m2/g 일 수 있고, 더욱 구체적으로 2m2/g 내지 50m2/g일 수 있다. 상기 범위를 만족하는 경우, 제1 입자가 제2 입자들 사이에 효과적으로 배치될 수 있으므로, 제1 입자와 제2 입자의 복합화가 더욱 원활하게 이루어질 수 있다.
상기 인편상 흑연의 두께는 250nm 내지 5㎛일 수 있으며, 구체적으로 400nm 내지 3㎛일 수 있고, 더욱 구체적으로 500nm 내지 2.5㎛일 수 있다.
본 발명의 또 다른 실시예에 따른 음극 활물질의 제조방법은 표면에 SiOx(0<x≤2)를 포함하는 산화막층이 배치된 실리콘 코어를 준비하는 단계; 상기 산화막층 상에 LiF를 포함하는 코팅층을 형성하여 제1 입자를 제조하는 단계; 및 상기 제1 입자와 그래핀을 포함하는 제2 입자가 복합화된 입자를 포함하는 탄소질 매트릭스를 형성하는 단계를 포함할 수 있다.
상기 표면에 SiOx(0<x≤2)를 포함하는 산화막층이 배치된 실리콘 코어를 준비하는 단계에 있어서, 상기 산화막층은 실리콘 코어를 산소 또는 공기 중에서 열처리하는 것을 통해 형성될 수 있거나, 밀링 공정을 통해 상기 실리콘 코어 상에 산화막층을 형성시킬 수도 있다. 그러나, 반드시 이에 한정되는 것은 아니다.
상기 산화막층 상에 LiF를 포함하는 코팅층을 형성하여 제1 입자를 제조하는 단계에 있어서, 상기 코팅층은 다음과 같은 방법에 의해 형성될 수 있다.
상기 산화막층이 표면에 형성된 실리콘 코어를 LiF와 함께 밀링하여 분쇄 및 혼합하는 방법으로 상기 코팅층을 형성할 수 있다. 이와 달리, 상기 실리콘 코어를 용매에 분산 시킨 후 리튬 아세테이트(lithium acetate)와 플루오르화암모늄(ammonium fluoride)를 함께 혼합하여 상기 코팅층을 형성할 수 있다. 이와 달리, LiF를 상기 산화막층 상에 스퍼터링(sputtering)을 통해 배치시켜서 상기 코팅층을 형성시킬 수 있다. 그러나, 반드시 위의 방식에 한정되는 것은 아니다.
상기 탄소질 매트릭스를 형성하는 단계는 다음과 같은 방법을 포함할 수 있다.
용매에 상기 제1 입자를 분산시켜 혼합 용액을 준비한 뒤, 상기 제2 입자, 그리고 피치 또는 탄소 소스가 될 수 있는 유기물 용액을 상기 혼합 용액에 분산시켜서 슬러리를 제조한다. 상기 슬러리를 열처리한 뒤, 분쇄하여 상기 탄소질 매트릭스가 형성될 수 있으며, 동시에 복합화가 달성될 수 있다. 또는 상기 슬러리를 스프레이 건조법(spay drying)을 거치게 한 뒤, 분쇄하여 상기 탄소질 매트릭스가 형성될 수 있으며, 동시에 복합화가 달성될 수 있다. 이와 달리, 제1 입자와 제2 입자만을 혼합하여 열처리시켜 2차 입자화 시킨 뒤, 화학적 기상 증착법(CVD)을 이용하거나 피치와 같은 유기 물질을 혼합한 후 탄화시켜, 상기 2차 입자 표면에 탄소질 매트릭스를 형성할 수 있다. 그러나, 반드시 위의 방식에 한정되는 것은 아니다.
본 발명의 또 다른 실시예에 따른 음극은 음극 활물질을 포함할 수 있으며, 여기서 상기 음극 활물질은 상술한 실시예들의 음극 활물질과 동일하다. 구체적으로, 상기 음극은 집전체 및 상기 집전체 상에 배치된 음극 활물질층을 포함할 수 있다. 상기 음극 활물질층은 상기 음극 활물질을 포함할 수 있다. 나아가, 상기 음극 활물질층은 바인더 및/또는 도전재를 더 포함할 수 있다.
상기 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 되고, 특별히 제한되는 것은 아니다. 예를 들어, 상기 집전체로는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 구체적으로는, 구리, 니켈과 같은 탄소를 잘 흡착하는 전이 금속을 집전체로 사용할 수 있다. 상기 집전체의 두께는 6㎛ 내지 20㎛일 수 있으나, 상기 집전체의 두께가 이에 제한되는 것은 아니다.
상기 바인더는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 물질로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 또한 이들의 다양한 공중합체를 포함할 수 있다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
본 발명의 또 다른 실시예에 따른 이차 전지는, 음극, 양극, 상기 양극 및 음극 사이에 개재된 분리막, 및 전해질을 포함할 수 있으며, 상기 음극은 상술한 음극과 동일하다. 상기 음극에 대해서는 상술하였으므로, 구체적인 설명은 생략한다.
상기 양극은 양극 집전체 및 상기 양극 집전체 상에 형성되며, 상기 양극활물질을 포함하는 양극활물질층을 포함할 수 있다.
상기 양극에 있어서, 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질은 통상적으로 사용되는 양극 활물질일 수 있다. 구체적으로, 상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; LiFe3O4 등의 리튬 철 산화물; 화학식 Li1+c1Mn2-c1O4 (0≤c1≤0.33), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-c2Mc2O2 (여기서, M은 Co, Mn, Al, Cu, Fe, Mg, B 및 Ga으로 이루어진 군에서 선택된 적어도 어느 하나이고, 0.01≤c2≤0.3를 만족한다)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-c3Mc3O2 (여기서, M은 Co, Ni, Fe, Cr, Zn 및 Ta 으로 이루어진 군에서 선택된 적어도 어느 하나이고, 0.01≤c3≤0.1를 만족한다) 또는 Li2Mn3MO8 (여기서, M은 Fe, Co, Ni, Cu 및 Zn으로 이루어진 군에서 선택된 적어도 어느 하나이다.)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다. 상기 양극은 Li-metal일 수도 있다.
상기 양극활물질층은 앞서 설명한 양극 활물질과 함께, 양극 도전재 및 양극 바인더를 포함할 수 있다.
이때, 상기 양극 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
또, 상기 양극 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
분리막으로는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
상기 전해질은 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 비수계 유기용매와 금속염을 포함할 수 있다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해질을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
상기 금속염은 리튬염을 사용할 수 있고, 상기 리튬염은 상기 비수 전해액에 용해되기 좋은 물질로서, 예를 들어, 상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다.
본 발명의 또 다른 실시예에 따르면, 상기 이차 전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지 팩을 제공한다. 상기 전지 모듈 및 전지 팩은 고용량, 높은 율속 특성 및 사이틀 특성을 갖는 상기 이차 전지를 포함하므로, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 중대형 디바이스의 전원으로 이용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 상기 실시예는 본 기재를 예시하는 것일 뿐 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.
실시예 및 비교예
실시예 1: 전지의 제조
(1) 음극 활물질의 제조
최대 입경(Dmax) 45㎛의 실리콘(Si) 10g과 LiF 0.2g을 이소프로판올 30g에 첨가하여 혼합 용액을 제조하였다. 이 후, 지르코니아 재질의 비즈(평균 입경: 0.3mm)를 이용하여, 1,200rpm의 비즈 회전속도로 30시간 동안 상기 혼합물을 분쇄하였다. 이 때, 생성된 실리콘의 평균 입경(D50)은 100nm였고, 상기 실리콘 표면에 형성된 SiO2의 두께는 10nm였으며, 상기 SiO2 상에 배치된 LiF의 두께는 0.01nm 내지 10nm였다.
이어서, 상기 혼합 용액에 비표면적이 500m2/g이고, 크기가 5㎛인 그래핀 1.54g과 고상 피치(pitch) 3.85g을 투입한 뒤, 분산시켜 슬러리를 제조하였다.
상기 슬러리와 에탄올/물(부피비=1:9)을 부피비 1:10으로 혼합하여 분무 건조용 분산액을 제조하였다. 상기 분산액을 입구 온도(Inlet temperature) 180℃, 아스피레이터(aspirator) 95%, 피딩 비율(feeding rate) 12조건 하에서 미니 스프레이-드라이어(제조사: Buchi, 모델명: B-290 미니 스프레이-드라이어)를 통해 분무 건조하였다. 이 후, 분무 건조된 혼합물(복합체) 10g을 질소 분위기 하에서 950℃로 열처리하여 음극 활물질을 제조하였다. 상기 제조된 음극 활물질 내에서 LiF(본 발명의 코팅층에 대응)는 상기 음극 활물질 전체 중량을 기준으로 1.3중량%였으며, Li함량을 ICP로, F의 함량을 이온 크로마토그래피로 측정 후 합하여 계산된 값이다.
(2) 음극의 제조
상기 제조된 음극 활물질, 도전재인 미립 흑연, 바인더인 폴리아크릴로니트릴(Polyacrylonitrile)을 7:2:1의 중량비로 혼합하여 혼합물 0.2g을 제조하였다. 상기 혼합물에 용매인 N-메틸-2-피롤리돈(NMP) 3.1g을 첨가하여 음극 슬러리를 제조하였다. 상기 음극 슬러리를 두께가 20㎛인 음극 집전체인 구리(Cu) 금속 박막에 도포, 건조하였다. 이때 순환되는 공기의 온도는 80℃였다. 이어서, 압연(roll press)하고 130℃의 진공 오븐에서 12시간 동안 건조하여 음극을 제조하였다.
(3) 이차 전지의 제조
제조된 음극을 1.7671㎠의 원형으로 절단한 리튬(Li) 금속 박막을 양극으로 하였다. 상기 양극과 음극 사이에 다공성 폴리에틸렌의 분리막을 개재하고, 메틸에틸카보네이트(EMC)와 에틸렌카보네이트(EC)의 혼합 부피비가 7:3인 혼합 용액에 0.5 중량%로 용해된 비닐렌 카보네이트를 용해시키고, 1M 농도의 LiPF6가 용해된 전해액을 주입하여, 리튬 코인 하프 셀(coin half-cell)을 제조하였다.
실시예 2: 전지의 제조
(1) 음극 활물질의 제조
최대 입경(Dmax) 45㎛의 실리콘(Si) 10g과 LiF 3.0g을 이소프로판올 30g에 첨가하여 혼합 용액을 제조하였다. 이 후, 지르코니아 재질의 비즈(평균 입경: 0.3mm)를 이용하여, 1,200rpm의 비즈 회전속도로 30시간 동안 상기 혼합물을 분쇄하였다. 이 때, 생성된 실리콘의 평균 입경(D50)은 100nm였고, 상기 실리콘 표면에 형성된 SiO2의 두께는 10nm였으며, 상기 SiO2 상에 배치된 LiF의 두께는 0.01nm 내지 30nm였다.
이어서, 상기 혼합 용액에 비표면적이 500m2/g이고, 크기가 5㎛인 그래핀 1.54g과 고상 피치(pitch) 3.85g을 투입한 뒤, 분산시켜 슬러리를 제조하였다.
상기 슬러리와 에탄올/물(부피비=1:9)을 부피비 1:10으로 혼합하여 분무 건조용 분산액을 제조하였다. 상기 분산액을 입구 온도(Inlet temperature) 180℃, 아스피레이터(aspirator) 95%, 피딩 비율(feeding rate) 12조건 하에서 미니 스프레이-드라이어(제조사: Buchi, 모델명: B-290 미니 스프레이-드라이어)를 통해 분무 건조하였다. 이 후, 분무 건조된 혼합물(복합체) 10g을 질소 분위기 하에서 950℃로 열처리하여 음극 활물질을 제조하였다. 상기 제조된 음극 활물질 내에서 LiF(본 발명의 코팅층에 대응)는 상기 음극 활물질 전체 중량을 기준으로 16중량%였으며, Li함량을 ICP로, F의 함량을 이온 크로마토그래피로 측정 후 합하여 계산된 값이다.
(2) 음극 및 이차 전지의 제조
상기 음극 활물질을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 음극 및 이차 전지를 제조하였다.
실시예 3: 전지의 제조
(1) 음극 활물질의 제조
최대 입경(Dmax) 45㎛의 실리콘(Si) 10g과 LiF 0.05g을 이소프로판올 30g에 첨가하여 혼합 용액을 제조하였다. 이 후, 지르코니아 재질의 비즈(평균 입경: 0.3mm)를 이용하여, 1,200rpm의 비즈 회전속도로 30시간 동안 상기 혼합물을 분쇄하였다. 이 때, 생성된 실리콘의 평균 입경(D50)은 100nm였고, 상기 실리콘 표면에 형성된 SiO2의 두께는 10nm였으며, 상기 SiO2 상에 배치된 LiF의 두께는 0.01nm 내지 10nm였다.
이어서, 상기 혼합 용액에 비표면적이 500m2/g이고, 크기가 5㎛인 그래핀 1.54g과 고상 피치(pitch) 3.85g을 투입한 뒤, 분산시켜 슬러리를 제조하였다.
상기 슬러리와 에탄올/물(부피비=1:9)을 부피비 1:10으로 혼합하여 분무 건조용 분산액을 제조하였다. 상기 분산액을 입구 온도(Inlet temperature) 180℃, 아스피레이터(aspirator) 95%, 피딩 비율(feeding rate) 12조건 하에서 미니 스프레이-드라이어(제조사: Buchi, 모델명: B-290 미니 스프레이-드라이어)를 통해 분무 건조하였다. 이 후, 분무 건조된 혼합물(복합체) 10g을 질소 분위기 하에서 950℃로 열처리하여 음극 활물질을 제조하였다. 상기 제조된 음극 활물질 내에서 LiF(본 발명의 코팅층에 대응)는 상기 음극 활물질 전체 중량을 기준으로 0.3중량%였으며, Li함량을 ICP로, F의 함량을 이온 크로마토그래피로 측정 후 합하여 계산된 값이다.
(2) 음극 및 이차 전지의 제조
상기 음극 활물질을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 음극 및 이차 전지를 제조하였다.
실시예 4: 전지의 제조
(1) 음극 활물질의 제조
최대 입경(Dmax) 45㎛의 실리콘(Si) 10g과 LiF 0.2g을 이소프로판올 30g에 첨가하여 혼합 용액을 제조하였다. 이 후, 지르코니아 재질의 비즈(평균 입경: 0.3mm)를 이용하여, 1,200rpm의 비즈 회전속도로 30시간 동안 상기 혼합물을 분쇄하였다. 이 때, 생성된 실리콘의 평균 입경(D50)은 100nm였고, 상기 실리콘 표면에 형성된 SiO2의 두께는 10nm였으며, 상기 SiO2 상에 배치된 LiF의 두께는 0.01nm 내지 10nm였다.
이어서, 상기 혼합 용액에 비표면적이 500m2/g이고, 크기가 5㎛인 그래핀 0.77g, 비표면적이 45m2/g이고 두께가 2㎛인 인편상 흑연 0.77g, 및 고상 피치(pitch) 3.85g을 투입한 뒤, 분산시켜 슬러리를 제조하였다.
상기 슬러리와 에탄올/물(부피비=1:9)을 부피비 1:10으로 혼합하여 분무 건조용 분산액을 제조하였다. 상기 분산액을 입구 온도(Inlet temperature) 180℃, 아스피레이터(aspirator) 95%, 피딩 비율(feeding rate) 12조건 하에서 미니 스프레이-드라이어(제조사: Buchi, 모델명: B-290 미니 스프레이-드라이어)를 통해 분무 건조하였다. 이 후, 분무 건조된 혼합물(복합체) 10g을 질소 분위기 하에서 950℃로 열처리하여 음극 활물질을 제조하였다. 상기 제조된 음극 활물질 내에서 LiF(본 발명의 코팅층에 대응)는 상기 음극 활물질 전체 중량을 기준으로 1.3중량%였으며, Li함량을 ICP로, F의 함량을 이온 크로마토그래피로 측정 후 합하여 계산된 값이다.
(2) 음극 및 이차 전지의 제조
상기 음극 활물질을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 음극 및 이차 전지를 제조하였다.
실시예 5: 전지의 제조
(1) 음극 활물질의 제조
최대 입경(Dmax) 45㎛의 실리콘(Si) 10g과 LiF 0.2g을 이소프로판올 30g에 첨가하여 혼합 용액을 제조하였다. 이 후, 지르코니아 재질의 비즈(평균 입경: 0.3mm)를 이용하여, 1,200rpm의 비즈 회전속도로 5시간 동안 상기 혼합물을 분쇄하였다. 이 때, 생성된 실리콘의 평균 입경(D50)은 430nm였고, 상기 실리콘 표면에 형성된 SiO2의 두께는 10nm였으며, 상기 SiO2 상에 배치된 LiF의 두께는 0.01nm 내지 10nm였다.
이어서, 상기 혼합 용액에 비표면적이 500m2/g이고, 크기가 5㎛인 그래핀 10g과 고상 피치(pitch) 5g을 투입한 뒤, 분산시켜 슬러리를 제조하였다.
상기 슬러리와 에탄올/물(부피비=1:9)을 부피비 1:10으로 혼합하여 분무 건조용 분산액을 제조하였다. 상기 분산액을 입구 온도(Inlet temperature) 180℃, 아스피레이터(aspirator) 95%, 피딩 비율(feeding rate) 12조건 하에서 미니 스프레이-드라이어(제조사: Buchi, 모델명: B-290 미니 스프레이-드라이어)를 통해 분무 건조하였다. 이 후, 분무 건조된 혼합물(복합체) 10g을 질소 분위기 하에서 950℃로 열처리하여 음극 활물질을 제조하였다. 상기 제조된 음극 활물질 내에서 LiF(본 발명의 코팅층에 대응)는 상기 음극 활물질 전체 중량을 기준으로 0.8중량%였으며, Li함량을 ICP로, F의 함량을 이온 크로마토그래피로 측정 후 합하여 계산된 값이다.
(2) 음극 및 이차 전지의 제조
상기 음극 활물질을 사용하여, 실시예 1과 동일한 방법으로 음극 및 이차 전지를 제조하였다.
비교예 1: 전지의 제조
(1) 음극 활물질의 제조
실시예 1의 음극 활물질의 제조 단계에서, 슬러리 제조 시 LiF를 첨가하지 않은 것을 제외하고는, 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
(2) 음극 및 이차 전지의 제조
상기 음극 활물질을 사용하여, 실시예 1과 동일한 방법으로 음극 및 이차 전지를 제조하였다.
비교예 2: 전지의 제조
(1) 음극 활물질의 제조
최대 입경(Dmax) 45㎛의 실리콘(Si) 10g과 LiF 0.2g을 이소프로판올 30g에 첨가하여 혼합 용액을 제조하였다. 이 후, 지르코니아 재질의 비즈(평균 입경: 0.3mm)를 이용하여, 1,200rpm의 비즈 회전속도로 30시간 동안 상기 혼합물을 분쇄하였다. 이 때, 생성된 실리콘의 평균 입경(D50)은 100nm였고, 상기 실리콘 표면에 형성된 SiO2의 두께는 10nm였으며, 상기 SiO2 상에 배치된 LiF의 두께는 0.01nm 내지 10nm였다.
이어서, 상기 혼합 용액에 비표면적이 50m2/g인 구형 흑연 1.54g과 고상 피치(pitch) 3.85g을 투입한 뒤, 분산시켜 슬러리를 제조하였다.
상기 슬러리와 에탄올/물(부피비=1:9)을 부피비 1:10으로 혼합하여 분무 건조용 분산액을 제조하였다. 상기 분산액을 입구 온도(Inlet temperature) 180℃, 아스피레이터(aspirator) 95%, 피딩 비율(feeding rate) 12조건 하에서 미니 스프레이-드라이어(제조사: Buchi, 모델명: B-290 미니 스프레이-드라이어)를 통해 분무 건조하였다. 이 후, 분무 건조된 혼합물(복합체) 10g을 질소 분위기 하에서 950℃로 열처리하여 음극 활물질을 제조하였다. 상기 제조된 음극 활물질 내에서 LiF(본 발명의 코팅층에 대응)는 상기 음극 활물질 전체 중량을 기준으로 1.3중량%였으며, Li함량을 ICP로, F의 함량을 이온 크로마토그래피로 측정 후 합하여 계산된 값이다.
(2) 음극 및 이차 전지의 제조
상기 음극 활물질을 사용하여, 실시예 1과 동일한 방법으로 음극 및 이차 전지를 제조하였다.
비교예 3: 전지의 제조
(1) 음극 활물질의 제조
최대 입경(Dmax) 45㎛의 실리콘(Si) 10g과 LiF 0.2g을 이소프로판올 30g에 첨가하여 혼합 용액을 제조하였다. 이 후, 지르코니아 재질의 비즈(평균 입경: 0.3mm)를 이용하여, 1,200rpm의 비즈 회전속도로 30시간 동안 상기 혼합물을 분쇄하였다. 이 때, 생성된 실리콘의 평균 입경(D50)은 100nm였고, 상기 실리콘 표면에 형성된 SiO2의 두께는 10nm였으며, 상기 SiO2 상에 배치된 LiF의 두께는 0.01nm 내지 10nm였다.
이어서, 상기 혼합 용액에 비표면적이 50m2/g인 인편상 흑연 1.54g과 고상 피치(pitch) 3.85g을 투입한 뒤, 분산시켜 슬러리를 제조하였다.
상기 슬러리와 에탄올/물(부피비=1:9)을 부피비 1:10으로 혼합하여 분무 건조용 분산액을 제조하였다. 상기 분산액을 입구 온도(Inlet temperature) 180℃, 아스피레이터(aspirator) 95%, 피딩 비율(feeding rate) 12조건 하에서 미니 스프레이-드라이어(제조사: Buchi, 모델명: B-290 미니 스프레이-드라이어)를 통해 분무 건조하였다. 이 후, 분무 건조된 혼합물(복합체) 10g을 질소 분위기 하에서 950℃로 열처리하여 음극 활물질을 제조하였다. 상기 제조된 음극 활물질 내에서 LiF(본 발명의 코팅층에 대응)는 상기 음극 활물질 전체 중량을 기준으로 1.3중량%였으며, Li함량을 ICP로, F의 함량을 이온 크로마토그래피로 측정 후 합하여 계산된 값이다.
(2) 음극 및 이차 전지의 제조
상기 음극 활물질을 사용하여, 실시예 1과 동일한 방법으로 음극 및 이차 전지를 제조하였다.
시험예 1: 방전 용량, 초기 효율, 용량 유지율 및 전극 두께 변화율의 평가
실시예 1 내지 5 및 비교예 1 내지 3의 전지에 대해 충·방전을 수행하여, 방전 용량, 초기 효율, 용량 유지율 및 전극(음극) 두께 변화율을 평가하였고, 이를 하기 표 1에 기재하였다.
한편, 1회 사이클과 2회 사이클은 0.1C로 충·방전하였고, 3회 사이클부터 49회 싸이클까지는 0.5C로 충·방전을 수행하였다. 50회 사이클은 충전(리튬이 음극에 들어있는 상태)상태에서 종료하고, 전지를 분해하여 두께를 측정한 후, 전극 두께 변화율을 계산하였다.
충전 조건: CC(정전류)/CV(정전압)(5mV/0.005C current cut-off)
방전 조건: CC(정전류) 조건 1.5V
1회 충방전 시의 결과를 통해, 방전 용량(mAh/g) 및 초기 효율(%)을 도출하였다. 구체적으로 초기 효율(%)은 다음과 같은 계산에 의해 도출되었다.
초기 효율(%) = (1회 방전 후 방전 용량 / 1회 충전 용량)×100
용량 유지율과 전극 두께 변화율은 각각 다음과 같은 계산에 의해 도출되었다.
용량 유지율(%) = (49회 방전 용량 / 1회 방전 용량)×100
전극 두께 변화율(%) = (최종 음극 두께 변화량 / 최초 음극 두께)×100
전지 방전 용량(mAh/g) 초기 효율(%) 용량 유지율(%) 전극 두께 변화율(%)
실시예 1 1750 83 53 160
실시예 2 1700 82 51 167
실시예 3 1650 82 51 166
실시예 4 1750 83 53 161
실시예 5 1750 83 49 169
비교예 1 1500 78 40 180
비교예 2 1300 80 38 190
비교예 3 1400 81 48 170
상기 표 1을 참조하면, 실시예 1 내지 5의 경우 비교예 1 내지 3에 비해 방전 용량, 초기 효율, 용량 유지율, 전극 두께 변화율 측면에서 모두 양호한 것을 알 수 있다. 비교예 1의 경우, 음극 활물질이 LiF를 포함하지 않으므로, 도전성 경로가 확보되지 않아 초기 효율과 방전 용량이 감소한 것으로 보인다. 더불어, 실시예 1의 경우, LiF와 SiO2로부터 형성된 리튬 실리케이트(Li2SiO3)가 음극 활물질 내에 존재할 수 있으므로, 상기 LiF 및 리튬 실리케이트가 존재하지 않는 비교예 1에 비해 초기 효율 및 방전 용량이 더욱 개선될 수 있는 것으로 보인다(도 3 참조). 한편, 비교예 2는 제2 입자가 구형화 천연흑연만을 포함함에 따라 제1 입자와 제2 입자의 복합화가 안정적으로 형성되지 않으므로, 용량 유지율과 전극 두께 변화율이 열악한 것을 알 수 있다. 비교예 3의 경우, 제2 입자가 그래핀 없이 인편상 흑연만을 포함함에 따라 방전 용량, 초기 효율, 용량 유지율, 전극 두께 변화율 측면에서 모두 실시예 1보다 열악하였다. 한편, 실시예들을 비교하면, 적절한 LiF 함량을 만족하는 실시예 1이 LiF를 상대적으로 적게 포함하거나 많게 포함하는 실시예 2 및 3보다 방전 용량, 초기 효율, 용량 유지율, 전극 두께 변화율 측면에서 모두 우수한 것을 알 수 있다. 또한, 실리콘 코어를 포함하는 제1 입자의 크기가 상대적으로 큰 실시예 5에 비해, 적절한 제1 입자 크기를 만족하는 실시예 1의 용량 유지율과 전극 두께 변화율이 더 바람직한 것을 알 수 있다.

Claims (15)

  1. 제1 입자 및 제2 입자를 포함하는 탄소질 매트릭스를 포함하며,
    상기 제1 입자는,
    실리콘 코어;
    상기 실리콘 코어 상에 배치되며 SiOx(0<x≤2)를 포함하는 산화막층; 및
    상기 산화막층의 표면의 적어도 일부를 덮으며 LiF를 포함하는 코팅층을 포함하고,
    상기 제2 입자는 그래핀을 포함하는 음극 활물질.
  2. 청구항 1에 있어서,
    상기 실리콘 코어의 평균 입경(D50)은 40nm 내지 400nm인 음극 활물질.
  3. 청구항 1에 있어서,
    상기 산화막층의 두께는 0.01nm 내지 20nm인 음극 활물질.
  4. 청구항 1에 있어서,
    상기 LiF는 상기 음극 활물질 전체 중량을 기준으로 0.05중량% 내지 25중량%로 포함되는 음극 활물질.
  5. 청구항 1에 있어서,
    상기 코팅층의 두께는 0.01nm 내지 50nm인 음극 활물질.
  6. 청구항 1에 있어서,
    상기 그래핀의 BET 비표면적 값은 50m2/g 내지 3000m2/g 인 음극 활물질.
  7. 청구항 1에 있어서,
    상기 그래핀의 크기는 0.1㎛ 내지 20㎛인 음극 활물질.
  8. 청구항 1에 있어서,
    상기 제1 입자와 상기 제2 입자의 중량비는 1:9 내지 9:1인 음극 활물질.
  9. 청구항 1에 있어서,
    상기 탄소질 매트릭스는 상기 음극 활물질 전체 중량을 기준으로 5중량% 내지 50중량%로 포함되는 음극 활물질.
  10. 청구항 1에 있어서,
    상기 산화막층이 리튬 실리케이트를 더 포함하는 음극 활물질.
  11. 청구항 10에 있어서,
    상기 리튬 실리케이트는 Li2SiO3, Li4SiO4, 및 Li2Si2O5 중 적어도 어느 하나를 포함하는 음극 활물질.
  12. 청구항 1에 있어서,
    상기 제1 입자 및 상기 제2 입자가 서로 접하여 복합화된 구조를 포함하는 음극 활물질.
  13. 청구항 1에 있어서,
    상기 제2 입자는 인편상 흑연을 더 포함하는 음극 활물질.
  14. 청구항 1 내지 13 중 어느 하나의 음극 활물질을 포함하는 음극.
  15. 청구항 14의 음극;
    양극;
    상기 양극과 상기 음극 사이에 개재된 분리막; 및
    전해질을 포함하는 이차 전지.
PCT/KR2018/013650 2017-11-09 2018-11-09 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지 WO2019093825A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880072271.4A CN111373581B (zh) 2017-11-09 2018-11-09 负极活性材料、包含所述负极活性材料的负极和包含所述负极的二次电池
JP2020525920A JP7045559B2 (ja) 2017-11-09 2018-11-09 負極活物質、前記負極活物質を含む負極、及び前記負極を含む二次電池
EP18875085.5A EP3694029A4 (en) 2017-11-09 2018-11-09 NEGATIVE ELECTRODE ACTIVE MATERIAL, NEGATIVE ELECTRODE WITH THE NEGATIVE ELECTRODE ACTIVE MATERIAL AND SECONDARY BATTERY WITH THE NEGATIVE ELECTRODE
US16/762,696 US20210175488A1 (en) 2017-11-09 2018-11-09 Negative electrode active material, negative electrode including the same, and secondary battery including the negative electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170148838A KR102245126B1 (ko) 2017-11-09 2017-11-09 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
KR10-2017-0148838 2017-11-09

Publications (1)

Publication Number Publication Date
WO2019093825A1 true WO2019093825A1 (ko) 2019-05-16

Family

ID=66438510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013650 WO2019093825A1 (ko) 2017-11-09 2018-11-09 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지

Country Status (6)

Country Link
US (1) US20210175488A1 (ko)
EP (1) EP3694029A4 (ko)
JP (1) JP7045559B2 (ko)
KR (1) KR102245126B1 (ko)
CN (1) CN111373581B (ko)
WO (1) WO2019093825A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220399538A1 (en) * 2019-11-11 2022-12-15 Showa Denko K.K. Composite material, manufacturing method therefor, negative electrode material for lithium-ion secondary battery, and the like
CN112952054B (zh) * 2019-12-11 2023-05-30 新疆硅基新材料创新中心有限公司 一种硅基负极材料及制备方法、负极、锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101342601B1 (ko) * 2011-06-30 2013-12-19 삼성에스디아이 주식회사 음극 활물질, 그 제조방법 및 이를 포함하는 리튬 전지
KR20140085822A (ko) * 2012-12-27 2014-07-08 주식회사 포스코 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 그리고 이를 포함하는 음극 및 리튬 이차 전지
KR20140089643A (ko) * 2013-01-03 2014-07-16 삼성전자주식회사 복합음극활물질, 이를 포함하는 음극 및 리튬전지, 및 이의 제조 방법
KR20140094676A (ko) * 2012-12-27 2014-07-31 삼성정밀화학 주식회사 이차전지용 음극활물질, 이차전지용 도전성 조성물, 이를 포함하는 음극재료, 이를 포함하는 음극구조체 및 이차전지, 및 이들의 제조방법
JP2015156328A (ja) * 2014-01-16 2015-08-27 信越化学工業株式会社 非水電解質二次電池用負極材及び負極活物質粒子の製造方法
KR20150112746A (ko) 2014-03-28 2015-10-07 주식회사 엘지화학 리튬 이차전지용 음극활물질 및 그 제조방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4171904B2 (ja) * 2003-08-05 2008-10-29 信越化学工業株式会社 リチウムイオン二次電池負極材及びその製造方法
US9093693B2 (en) 2009-01-13 2015-07-28 Samsung Electronics Co., Ltd. Process for producing nano graphene reinforced composite particles for lithium battery electrodes
CN102394294A (zh) * 2011-11-29 2012-03-28 上海交通大学 高度石墨化活性碳/过渡金属氧化物纳米复合材料的制法
JP5941437B2 (ja) * 2012-06-29 2016-06-29 Jfeケミカル株式会社 リチウムイオン二次電池負極用複合粒子及びその製造方法、リチウムイオン二次電池用負極並びにリチウムイオン二次電池
JP6092558B2 (ja) * 2012-09-27 2017-03-08 三洋電機株式会社 負極活物質の製造方法
CN103165862B (zh) * 2013-03-22 2015-10-21 浙江瓦力新能源科技有限公司 一种高性能锂离子电池负极材料及其制备方法
JP6124996B2 (ja) 2013-03-29 2017-05-10 三洋電機株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
KR101676085B1 (ko) * 2013-09-17 2016-11-14 주식회사 엘지화학 실리콘계 음극 활물질 및 이를 포함하는 리튬 이차전지
DE102014202156A1 (de) * 2014-02-06 2015-08-06 Wacker Chemie Ag Si/G/C-Komposite für Lithium-Ionen-Batterien
US10529984B2 (en) * 2014-07-15 2020-01-07 Shin-Etsu Chemical Co., Ltd. Negative electrode material for non-aqueous electrolyte secondary battery and method of producing negative electrode active material particles
JP6239476B2 (ja) * 2014-09-25 2017-11-29 信越化学工業株式会社 非水電解質二次電池用負極及び非水電解質二次電池
EP3133690A1 (en) 2015-07-20 2017-02-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Silicon-carbon composite particulate material
US10879531B2 (en) * 2015-10-26 2020-12-29 Lg Chem, Ltd. Negative electrode active particle and method for manufacturing the same
JP6921481B2 (ja) * 2016-03-17 2021-08-18 株式会社東芝 非水電解質電池用電極材料、非水電解質電池用電極、それを備えた非水電解質電池および電池パック、車両
KR102591512B1 (ko) * 2016-09-30 2023-10-23 삼성전자주식회사 음극 활물질 및 이를 채용한 리튬 이차 전지, 및 상기 음극 활물질의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101342601B1 (ko) * 2011-06-30 2013-12-19 삼성에스디아이 주식회사 음극 활물질, 그 제조방법 및 이를 포함하는 리튬 전지
KR20140085822A (ko) * 2012-12-27 2014-07-08 주식회사 포스코 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 그리고 이를 포함하는 음극 및 리튬 이차 전지
KR20140094676A (ko) * 2012-12-27 2014-07-31 삼성정밀화학 주식회사 이차전지용 음극활물질, 이차전지용 도전성 조성물, 이를 포함하는 음극재료, 이를 포함하는 음극구조체 및 이차전지, 및 이들의 제조방법
KR20140089643A (ko) * 2013-01-03 2014-07-16 삼성전자주식회사 복합음극활물질, 이를 포함하는 음극 및 리튬전지, 및 이의 제조 방법
JP2015156328A (ja) * 2014-01-16 2015-08-27 信越化学工業株式会社 非水電解質二次電池用負極材及び負極活物質粒子の製造方法
KR20150112746A (ko) 2014-03-28 2015-10-07 주식회사 엘지화학 리튬 이차전지용 음극활물질 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3694029A4

Also Published As

Publication number Publication date
KR102245126B1 (ko) 2021-04-28
US20210175488A1 (en) 2021-06-10
CN111373581A (zh) 2020-07-03
JP2021502676A (ja) 2021-01-28
EP3694029A4 (en) 2020-12-09
EP3694029A1 (en) 2020-08-12
CN111373581B (zh) 2022-07-08
KR20190052952A (ko) 2019-05-17
JP7045559B2 (ja) 2022-04-01

Similar Documents

Publication Publication Date Title
WO2019151774A1 (ko) 음극 활물질, 상기 음극 활물질의 제조 방법, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2018208111A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019078690A2 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019093820A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019093830A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2020262890A1 (ko) 음극 및 이를 포함하는 이차전지
WO2019103499A1 (ko) 리튬 이차전지용 음극 활물질, 및 이의 제조방법
WO2020101301A1 (ko) 음극 활물질 및 이의 제조 방법
WO2018221827A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2022055309A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019050216A2 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019093825A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2021125825A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2022045852A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2020138629A1 (ko) 복합 음극활물질, 이의 제조 방법, 및 이를 포함한 음극을 구비한 리튬 이차 전지
WO2019143214A1 (ko) 양극 및 상기 양극을 포함하는 이차 전지
WO2019088808A2 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지, 및 상기 음극 활물질의 제조 방법
WO2023090950A1 (ko) 양극 활물질층용 조성물 및 리튬이차전지
WO2023090948A1 (ko) 양극 활물질층용 조성물 및 리튬이차전지
WO2023059016A1 (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지
WO2023249443A1 (ko) 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
WO2023182852A1 (ko) 음극 조성물, 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
WO2023121257A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법
WO2023085691A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법
WO2023249445A1 (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875085

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525920

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018875085

Country of ref document: EP

Effective date: 20200505