WO2023090950A1 - 양극 활물질층용 조성물 및 리튬이차전지 - Google Patents

양극 활물질층용 조성물 및 리튬이차전지 Download PDF

Info

Publication number
WO2023090950A1
WO2023090950A1 PCT/KR2022/018340 KR2022018340W WO2023090950A1 WO 2023090950 A1 WO2023090950 A1 WO 2023090950A1 KR 2022018340 W KR2022018340 W KR 2022018340W WO 2023090950 A1 WO2023090950 A1 WO 2023090950A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
material layer
weight
secondary battery
parts
Prior art date
Application number
PCT/KR2022/018340
Other languages
English (en)
French (fr)
Inventor
김지은
이소라
임성민
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22896147.0A priority Critical patent/EP4336585A1/en
Priority to CN202280035555.2A priority patent/CN117321788A/zh
Priority to CA3222014A priority patent/CA3222014A1/en
Publication of WO2023090950A1 publication Critical patent/WO2023090950A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to a composition for a cathode active material layer and a lithium secondary battery.
  • lithium secondary batteries are in the limelight as a driving power source for electronic devices because they are lightweight and have high energy density. Accordingly, research and development efforts to improve the performance of lithium secondary batteries are being actively conducted.
  • a lithium secondary battery is an oxidation state when lithium ions are intercalated/deintercalated from the positive electrode and the negative electrode in a state in which an organic electrolyte or polymer electrolyte is charged between a positive electrode and a negative electrode made of an active material capable of intercalation and deintercalation of lithium ions. and electrical energy is produced by a reduction reaction.
  • Lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMnO 2 or LiMn 2 O 4 , etc.), lithium iron phosphate compound (LiFePO 4 ), etc. have been used as cathode active materials of lithium secondary batteries.
  • lithium cobalt oxide (LiCoO 2 ) has the advantage of high operating voltage and excellent capacity characteristics, and is widely used and applied as a positive electrode active material for high voltage.
  • due to the price increase and unstable supply of cobalt (Co) there is a limit to mass use as a power source in fields such as electric vehicles, and the need to develop a cathode active material that can replace it has emerged.
  • a nickel-cobalt-manganese-based lithium composite transition metal oxide (hereinafter simply referred to as 'NCM-based lithium composite transition metal oxide') in which a part of cobalt (Co) is substituted with nickel (Ni) and manganese (Mn) has been developed.
  • 'NCM-based lithium composite transition metal oxide' nickel-cobalt-manganese-based lithium composite transition metal oxide
  • Co cobalt
  • Ni nickel
  • Mn manganese
  • the present inventors intend to provide a composition for a cathode active material layer of a lithium secondary battery capable of improving battery performance, and a cathode, a lithium secondary battery, a battery module, and a battery pack including the same.
  • An exemplary embodiment of the present application includes a lithium complex transition metal compound in the form of a single particle, including nickel, cobalt, and manganese, containing 80 mol% or more and less than 100 mol% of nickel among metals other than lithium, cathode active material; and
  • composition for a lithium secondary battery positive active material layer comprising:
  • M is Ti, Zr, Mn or Ni, 5 ⁇ x ⁇ 7, 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.5, 0 ⁇ y + z + m ⁇ 1, 0 ⁇ m ⁇ 0.5 am.
  • a further exemplary embodiment of the present application is a positive electrode current collector; and a cathode active material layer provided on the cathode current collector and containing the composition according to the above-described embodiment.
  • a further embodiment of the present application is an anode; cathode; a separator provided between the anode and the cathode; And a lithium secondary battery comprising an electrolyte,
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer provided on the positive electrode current collector
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer provided on the negative electrode current collector
  • the cathode active material layer provides a lithium secondary battery comprising the composition according to the above-described embodiment.
  • the negative active material layer of the above-described embodiment includes 15 parts by weight or more of silicon-based oxide based on 100 parts by weight of the total negative active material.
  • a further embodiment of the present application provides a battery module including the above-described lithium secondary battery and a battery pack including the battery module.
  • the energy density of a lithium secondary battery designed in a limited space may be increased, high power performance may be improved, and battery cycle performance may be improved.
  • Figure 1 shows a 55 °C cycle graph of the batteries prepared in Examples 1 and 3 and Comparative Example 2.
  • a part of a layer or the like when a part of a layer or the like is said to be “on” or “on” another part, this includes not only the case of being “directly on” the other part, but also the case of another part in the middle. Conversely, when a part is said to be “directly on” another part, it means that there is no other part in between.
  • a reference part means to be located above or below the reference part, and to necessarily be located “on” or “on” in the opposite direction of gravity does not mean no.
  • a cathode active material including a lithium composite transition metal compound in the form of a single particle, including nickel, cobalt, and manganese, containing 80 mol% or more and less than 100 mol% of nickel among metals other than lithium;
  • composition for a lithium secondary battery positive active material layer comprising:
  • M is Ti, Zr, Mn or Ni, 5 ⁇ x ⁇ 7, 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.5, 0 ⁇ y + z + m ⁇ 1, 0 ⁇ m ⁇ 0.5 am.
  • a lithium secondary battery has a size required depending on its use, and accordingly, it must be designed within a limited space. Consumer demands for increased energy density and improved high-power performance are increasing, but when a cathode material with high capacity is used, the content of the anode material must be increased to meet the demand, so there is a limit to increasing battery efficiency within a limited space. . In addition, it is necessary to design a cathode material having an efficiency that matches the efficiency of the anode material according to the type of anode material.
  • the composition for a cathode active material layer according to the embodiment of the present invention may be useful when a silicon-based oxide is used as an anode active material.
  • silicon-based oxide when using silicon-based oxide as an anode active material, it is characterized in that a specific composition is used as a cathode material to match the efficiency of the anode active material.
  • a lithium composite transition metal oxide containing nickel, cobalt, and manganese is used as a cathode active material, but the content of nickel is 80 mol% or more and less than 100 mol% of metals other than lithium, and a single particle form is used.
  • a specific type of additive is used together.
  • Silicon-based oxide used as an anode active material has an efficiency, for example, a ratio of discharge capacity to charge capacity of the first cycle (charge 0.1C to 5mV, 0.005C cut-off, discharge 0.1C to 1.5V) usually 70% to 90%, It has a discharge capacity of 1,000 to 1,600 mAh/g.
  • silicon-based oxide can be used to increase energy density and implement high power of a battery due to its high capacity, but has low efficiency compared to graphite, so it is necessary to lower the efficiency of the positive electrode to match the efficiency of the negative electrode.
  • silicon-based oxide is used as an anode active material, and a high-capacity material having a relatively high nickel content is used as a cathode active material, but a single particle form is used, so that the anode efficiency can match the efficiency of the anode.
  • the present inventors confirmed that in the case of a lithium composite transition metal oxide having a high nickel content, the powder resistance of single particles is slightly higher than that of secondary particles, and by employing single particles as a cathode active material, the cathode efficiency is improved by using silicon-based oxide as an anode active material. It can be tailored to the cathode efficiency at the time of use.
  • the above-mentioned material of formula A is used as an additive.
  • the additive of Chemical Formula A can provide a lithium ion source or storage to compensate for the irreversible capacity loss of silicon-based oxide used as an anode active material, while having lower efficiency than general cathode active materials.
  • the material of Chemical Formula A has a high capacity and can be used by blending a relatively small amount. LiNiO 2 is vulnerable to exposure to moisture in the atmosphere, and may cause problems such as gas generation in the battery, poor thermal stability, and gelation, such as pvdf gelation, as by-products in the slurry increase.
  • the material of Formula A can play a role in matching the capacity and efficiency of the positive electrode with that of the negative electrode even with a relatively small amount, and can secure moisture stability and slurry stability compared to other materials such as LiNiO 2 .
  • the lithium composite transition metal compound including nickel, cobalt, and manganese and including 80 mol% or more and less than 100 mol% of nickel among metals other than lithium is 1 represented by Formula 1 below It may contain a species or a mixture of two or more species.
  • Q is any one or more elements selected from the group consisting of Na, K, Mg, Ca, Sr, Ni, Co, Ti, Al, Si, Sn, Mn, Cr, Fe, V and Zr, and 1 ⁇ a ⁇ 1.5, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.5, 0 ⁇ d ⁇ 0.1, 0 ⁇ b+c+d ⁇ 20, -0.1 ⁇ 1.0.
  • Li may be included in an amount corresponding to a, that is, 1 ⁇ a ⁇ 1.5. If a is less than 1, there is a risk of lowering the capacity, and if it exceeds 1.5, the particles are sintered in the firing process, making it difficult to manufacture the positive electrode active material. Considering the remarkableness of the capacity characteristics improvement effect of the positive electrode active material according to the Li content control and the balance of the sinterability during the preparation of the active material, the Li may be included in an amount of 1.1 ⁇ a ⁇ 1.2.
  • Ni may be included in an amount corresponding to 1-(b+c+d), for example, 0.8 ⁇ 1-(b+c+d) ⁇ 1.
  • the content of Ni in the lithium composite transition metal oxide of Chemical Formula 1 is 0.8 or more, an amount of Ni sufficient to contribute to charging and discharging is secured and high capacity can be promoted.
  • the content of Ni, 1-(b+c+d) may be 0.8, preferably 0.83 or more, and more preferably 0.85 or more.
  • the content of Ni, 1-(b+c+d) may be 0.99 or less or 0.96 or less.
  • Co may be included in an amount corresponding to b, that is, 0 ⁇ b ⁇ 0.5.
  • the content of Co in the lithium composite transition metal oxide of Chemical Formula 1 exceeds 0.5, there is a concern about cost increase.
  • the Co may be more specifically included in an amount of 0.05 ⁇ b ⁇ 0.2.
  • Mn may be included in an amount corresponding to c, that is, an amount of 0 ⁇ c ⁇ 0.5. If c in the lithium composite transition metal oxide of Formula 1 exceeds 0.5, there is a concern that the output characteristics and capacity characteristics of the battery may deteriorate, and the Mn may be included in an amount of 0.05 ⁇ c ⁇ 0.2 in more detail.
  • Q may be a doping element included in the crystal structure of the lithium composite transition metal oxide, and Q may be included in a content corresponding to d, that is, 0 ⁇ d ⁇ 0.1.
  • Q may be one or two or more selected from Na, K, Mg, Ca, Sr, Ni, Co, Ti, Al, Si, Sn, Mn, Cr, Fe, V, and Zr, and for example, Q may be Al .
  • the single particle is a term used to distinguish from conventional positive electrode active material particles in the form of secondary particles formed by aggregation of tens to hundreds of primary particles, and a single particle consisting of one primary particle and 10 primary particles. It is a concept including aggregate particles of the following primary particles.
  • the average particle diameter (D50) of the single particles may be 1 ⁇ m to 10 ⁇ m, preferably 2 ⁇ m to 7 ⁇ m, for example, 3 ⁇ m to 7 ⁇ m.
  • the particle strength may be excellent.
  • the cathode active material in the form of a single particle may have a particle strength of 100 MPa to 300 MPa when rolled with a force of 650 kgf/cm 2 .
  • the method of forming the lithium composite transition metal oxide in the form of a single particle is not particularly limited, but it can generally be formed by over-firing by raising the firing temperature, using additives such as grain growth promoters that help over-firing, or starting It can be manufactured by a method of changing a substance or the like.
  • the additive represented by Chemical Formula A is represented by the following Chemical Formula A:
  • M is Ti, Zr, Mn or Ni, 5 ⁇ x ⁇ 7, 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.5, 0 ⁇ y + z + m ⁇ 1, 0 ⁇ m ⁇ 0.5 am.
  • M may be Ti, Zr, Mn, or Ni, for example, Zr.
  • the additive represented by Formula A may be included in an amount of 0.3 to 10 parts by weight based on 100 parts by weight of the positive electrode active material.
  • the additive represented by Chemical Formula A may be included in an amount of 0.3 parts by weight or more, 0.4 parts by weight or more, or 0.5 parts by weight or more based on 100 parts by weight of the cathode active material.
  • the additive represented by Formula A is used in an amount of 10 parts by weight or less, 8 parts by weight or less, 6 parts by weight or less, 4 parts by weight or less, 2 parts by weight or less, 1 part by weight or less, or 0.8 parts by weight or less, based on 100 parts by weight of the positive electrode active material. can be included
  • the content of the additive represented by Chemical Formula A may be determined according to the capacity and efficiency of the active materials of the positive electrode and the negative electrode, and in particular, may be determined according to the content of the silicon-based oxide.
  • the composition for a positive electrode active material layer according to the above-described embodiment including the nickel, cobalt, and manganese, and including 80 mol% or more and less than 100 mol% of nickel among metals other than lithium,
  • the lithium composite transition metal compound in the form of a single particle may be 90 parts by weight to 100 parts by weight, for example 100 parts by weight, based on 100 parts by weight of the total positive electrode active material.
  • the composition for the positive electrode active material layer may further include a positive electrode active material in the form of secondary particles, but the content thereof may be 10 parts by weight or less based on 100 parts by weight of the positive electrode active material included in the positive electrode active material layer. there is. In this way, the aforementioned effects due to the presence of the positive electrode active material in the form of single particles can be maximized.
  • the components may be the same components as those exemplified in the above-described single particle positive electrode active material, but may mean an aggregated form of single particles.
  • the composition for a positive electrode active material layer according to the above-described exemplary embodiment may further include a positive electrode binder and a conductive material.
  • the positive electrode binder may serve to improve adhesion between positive electrode active material particles and adhesion between positive electrode active material particles and a positive electrode current collector.
  • the cathode binder those known in the art may be used, and non-limiting examples thereof include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), and polyvinyl Alcohol, polyacrylonitrile, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene -Propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof, and the like, and one of them alone or a mixture of two or more may be used. .
  • PVDF poly
  • the positive electrode binder may be included in an amount of 0.1 part by weight or more and 50 parts by weight or less based on 100 parts by weight of the composition for the positive electrode active material layer, for example, preferably 0.3 parts by weight or more and 35 parts by weight or less, more preferably 0.5 parts by weight or more and 20 parts by weight. may be included below.
  • the conductive material included in the composition for the positive electrode active material layer is used to impart conductivity to the electrode, and any conductive material that does not cause chemical change in the battery and has electronic conductivity can be used without particular limitation.
  • Specific examples include graphite such as natural graphite or artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, and carbon fiber; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskeys such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one of them alone or a mixture of two or more may be used.
  • the conductive material is a single-walled carbon nanotube (SWCNT); and multi-walled carbon nanotubes (MWCNTs).
  • the conductive material may be included in an amount of 0.1 part by weight or more and 2 parts by weight or less based on 100 parts by weight of the composition for the positive electrode active material layer, for example, preferably 0.3 parts by weight or more and 1.5 parts by weight or less, more preferably 0.5 parts by weight or more and 1.2 parts by weight or less. can be included as
  • the composition for the positive active material layer has a viscosity of 10,000 cps or less when stored for 3 days at 40° C. and 10% RH.
  • the viscosity may be the viscosity of the slurry when the positive electrode slurry is prepared with the composition for the positive electrode active material layer and then stored in an environment of 40° C. and 10% RH for 3 days.
  • the viscosity is a value measured at a Brookfield viscometer No. 64 spindle, 12 rpm, and the RH 10% means the humidity range.
  • the composition for the cathode active material layer may have a viscosity of 1,000 cps, 2,000 cps, 3,000 cps, or 4,000 cps when stored at 40° C. and 10% RH for 3 days.
  • the composition for the cathode active material layer may have a viscosity of 10,000 cps or less, 9,000 cps or less, 8,000 cps or less, or 7,000 cps or less when stored at 40° C. and 10% RH for 3 days.
  • the composition for the cathode active material layer includes the additive represented by Formula A
  • the composition for the cathode active material layer may satisfy the above range, and is advantageous in securing moisture stability and slurry stability.
  • LiNiO 2 is susceptible to exposure to moisture in the air and may cause gelation, such as pvdf gelation, as the by-products in the slurry increase, but the additive represented by Formula A is a relatively small amount It can also play a role in matching the capacity and efficiency of the positive electrode with that of the negative electrode, and can secure water stability compared to other materials such as LiNiO 2 and slurry stability by preventing gelation in the slurry.
  • It provides a lithium secondary battery positive electrode comprising a.
  • a further embodiment of the present application is an anode; cathode; a separator provided between the anode and the cathode; And a lithium secondary battery comprising an electrolyte,
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer provided on the positive electrode current collector
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer provided on the negative electrode current collector
  • the cathode active material layer provides a lithium secondary battery comprising the composition for a cathode active material layer according to the above-described embodiment.
  • the lithium secondary battery according to the above-described exemplary embodiment 15 parts by weight or more of the silicon-based oxide is included in 100 parts by weight of the negative electrode active material included in the negative electrode active material layer.
  • the silicon-based oxide may be included in an amount of 15 parts by weight or more and 70 parts by weight or less, preferably 15 parts by weight or more and 60 parts by weight or less.
  • 15 parts by weight or more, 15.5 parts by weight or more, 16 parts by weight or more, 16.5 parts by weight or more, or 17 parts by weight or more of the silicon-based oxide may be included in 100 parts by weight of the negative electrode active material included in the negative active material layer.
  • 70 parts by weight or less, 60 parts by weight or less, 30 parts by weight or less, 20 parts by weight or less, or less than 20 parts by weight of the silicon-based oxide may be included in 100 parts by weight of the negative electrode active material included in the negative active material layer.
  • the silicon-based oxide within the above range it is advantageous to implement high capacity and high output performance. For example, as the content of silicon oxide is increased, it is advantageous to implement high power, but since the thickness of the cathode may be reduced, it is necessary to design an appropriate thickness range for realization of fairness in a mass production line. By using the silicon-based oxide within the above range, it is possible to achieve high output performance and processability.
  • the silicon-based oxide included in the negative electrode active material layer may exist in a particulate state and may include SiO x (0 ⁇ x ⁇ 2).
  • the SiO x (0 ⁇ x ⁇ 2) may correspond to a matrix within the silicon-based oxide particle.
  • the SiO x (0 ⁇ x ⁇ 2) may include Si and SiO 2 , and the Si may form a phase. That is, the x corresponds to the number ratio of O to Si included in the SiO x (0 ⁇ x ⁇ 2).
  • the silicon-based oxide particle includes the SiO x (0 ⁇ x ⁇ 2), the discharge capacity of the secondary battery may be improved.
  • the silicon-based oxide may further include a metal or metal oxide.
  • the silicon-based oxide may further include at least one of Li and Mg or a compound phase thereof.
  • the Mg may exist in the form of an Mg compound.
  • the Mg compound phase may include, for example, at least one selected from the group consisting of Mg silicate, Mg silicide, and Mg oxide.
  • the Mg silicate may include at least one of Mg 2 SiO 4 and MgSiO 3 .
  • the Mg silicide may include Mg 2 Si.
  • the Mg oxide may include MgO.
  • the Li may exist as a Li compound.
  • the Li compound phase may exist in the form of at least one of lithium silicate, lithium silicide, and lithium oxide.
  • the Li compound phase may be lithium silicate, and may be represented by, for example, Li a Si b O c (2 ⁇ a ⁇ 4, 0 ⁇ b ⁇ 2, 2 ⁇ c ⁇ 5), more specifically Li 2 SiO 3 , At least one selected from the group consisting of Li 2 Si 2 O 5 , Li 3 SiO 3 , and Li 4 SiO 4 may be included.
  • the Mg compound and/or Li compound may be distributed on the surface and/or inside of the silicon-based compound particle in a doped form on the silicon-based oxide particle.
  • the Mg compound and/or Li compound may be distributed on and/or inside the silicon-based oxide particles to control the volume expansion/contraction of the silicon-based oxide particles to an appropriate level and to prevent damage to the active material. there is.
  • the Mg compound and/or the Li compound may be contained in order to increase the efficiency of the active material by lowering the ratio of the irreversible phase (eg, SiO 2 ) of the silicon-based oxide particles.
  • the content of the Mg element or Li element can be confirmed through ICP analysis.
  • ICP analysis a certain amount (about 0.01 g) of the anode active material is accurately fractionated, transferred to a platinum crucible, and completely decomposed on a hot plate by adding nitric acid, hydrofluoric acid, and sulfuric acid. Thereafter, using an induced plasma emission spectrometer (ICPAES, Perkin-Elmer 7300), a standard calibration curve is prepared by measuring the intensity of the standard solution prepared using the standard solution (5 mg / kg) at the intrinsic wavelength of Mg or Li element. .
  • ICPAES induced plasma emission spectrometer
  • the pretreated sample solution and the blank sample are introduced into the instrument, each intensity is measured to calculate the actual intensity, and after calculating the concentration of each component against the calibration curve prepared above, the total sum is converted to the theoretical value. It is possible to analyze the Mg element content of the prepared negative electrode active material.
  • the content of each of them may be 0.1 atm% to 20 atm% based on 100 atm% of Si element.
  • the silicon-based oxide particle may further include a carbon layer provided on at least a portion of a surface.
  • the carbon layer may cover the entire surface of the silicon-based oxide particle, or may cover only a portion thereof. Conductivity is imparted to the silicon-based oxide particles by the carbon layer, and volume change of the anode active material including the silicon-based oxide particles is effectively suppressed, thereby improving lifespan characteristics of the battery.
  • the carbon layer may include at least one of amorphous carbon and crystalline carbon.
  • the crystalline carbon may further improve conductivity of the silicon-based oxide particles.
  • the crystalline carbon may include at least one selected from the group consisting of florene, carbon nanotubes, and graphene.
  • the amorphous carbon can properly maintain the strength of the carbon layer and suppress the expansion of the silicon-based oxide particles.
  • the amorphous carbon may be a carbon-based material formed by using at least one carbide selected from the group consisting of tar, pitch, and other organic materials, or a hydrocarbon as a source of chemical vapor deposition.
  • the other organic carbide may be an organic carbide selected from carbides of sucrose, glucose, galactose, fructose, lactose, mannose, ribose, aldohexose or ketohexose, and combinations thereof.
  • the hydrocarbon may be a substituted or unsubstituted aliphatic or alicyclic hydrocarbon or a substituted or unsubstituted aromatic hydrocarbon.
  • the aliphatic or alicyclic hydrocarbon may be methane, ethane, ethylene, acetylene, propane, butane, butene, pentane, isobutane or hexane.
  • Aromatic hydrocarbons of the substituted or unsubstituted aromatic hydrocarbons include benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumaron, pyridine, Anthracene, phenanthrene, etc. are mentioned.
  • the carbon layer may be included in an amount of 1% to 50% by weight, specifically 5% to 45% by weight, more specifically 8% by weight based on 100% by weight of the total silicon-based oxide particles. to 40% by weight.
  • the conductivity of the anode active material is improved, and the change in volume of the anode active material is easily suppressed during charging and discharging of the battery, thereby improving lifespan characteristics of the battery.
  • the thickness of the carbon layer may be 1 nm to 500 nm, specifically 5 nm to 300 nm.
  • the volume change of the anode active material is easily suppressed, and the side reaction between the electrolyte and the anode active material is suppressed, thereby improving lifespan characteristics of the battery.
  • the silicon-based oxide particles may be prepared by a method including doping the silicon-based oxide particles with Mg and/or Li.
  • silicon-based oxide particles including Mg may use an in-situ doping method.
  • the step of preparing the silicon-based oxide particles containing Mg, the step of forming a mixed gas by vaporizing the powder and Mg mixed with Si powder and SiO 2 powder, respectively, and then mixing to form a mixed gas, and the mixed gas at 800 °C to 950 °C, it may be formed through the step of heat treatment in a vacuum state.
  • the step of preparing the silicon-based oxide particles containing Mg, Si powder and SiO 2 After mixing the mixed powder and Mg and vaporizing both of them to form a mixed gas; and heat-treating the mixed gas at 800 °C to 950 °C in a vacuum state.
  • the mixed powder of the Si powder and the SiO 2 powder may be vaporized by heat treatment at 1,000 °C to 1,800 °C or 1200 °C to 1500 °C, and the Mg powder may be vaporized by heat treatment at 500 °C to 1,200 °C or 600 °C to 800 °C.
  • Mg can be uniformly distributed in the silicon-based oxide particles.
  • the Mg compound phase may include the aforementioned Mg silicate, Mg silicide, Mg oxide, and the like.
  • the particle size of the silicon-based oxide particles containing Mg prepared by the above method may be adjusted by a pulverization method such as a mechanical milling method, if necessary.
  • silicon-based oxide particles containing Li may be performed by an ex-situ doping method.
  • distributing Li to the silicon-based oxide particles may include forming a carbon layer on the surface of the silicon-based oxide particles, and distributing Li to the silicon-based oxide particles on which the carbon layer is formed.
  • Forming the carbon layer on the surface of the silicon-based oxide particles may be performed by injecting a carbon-based raw material gas such as methane gas and performing heat treatment in a rotary tube furnace.
  • a carbon-based raw material gas such as methane gas
  • the silicon-based oxide particles are put into a rotary tube furnace, and the temperature is raised to 800 ° C to 1,150 ° C, or 900 ° C to 1,050 ° C at a rate of 3 to 10 ° C / min, or about 5 ° C / min
  • a carbon layer may be formed by raising the temperature to 950 °C to 1,000 °C and performing heat treatment for 30 minutes to 8 hours while rotating a rotary tubular furnace while flowing argon gas and a carbon-based material raw material gas.
  • the step of distributing Li to the silicon-based oxide particles on which the carbon layer is formed is a mixture of the silicon-based oxide particles on which the carbon layer is formed and lithium metal powder or a lithium precursor, such as LiOH or Li 2 O, and, if necessary, heat treatment at 400 ° C. to 1200 ° C. can be performed Alternatively, the above step may be performed using an electrochemical method.
  • silicon-based oxide particles containing both Mg and Li may be prepared by performing both the above-described in-situ doping of Mg and ex-situ doping of Li.
  • the method may include forming a carbon layer on at least a portion of the surface of the silicon oxide particle, and doping the silicon oxide particle on which the carbon layer is formed with Mg and Li.
  • the particle size of the silicon-based oxide particles may be adjusted by a pulverization method such as a mechanical milling method, if necessary.
  • Forming the carbon layer on the surface of the silicon-based oxide particles may be performed by, for example, injecting a carbon-based raw material gas such as methane gas and performing heat treatment in a rotary tube furnace.
  • a carbon-based raw material gas such as methane gas
  • the silicon-based oxide particles are put into a rotary tube furnace, and the temperature is raised to 800 ° C to 1,150 ° C, or 900 ° C to 1,050 ° C at a rate of 3 to 10 ° C / min, or about 5 ° C / min
  • a carbon layer may be formed by raising the temperature to 950 °C to 1,000 °C and performing heat treatment for 30 minutes to 8 hours while rotating a rotary tubular furnace while flowing argon gas and a carbon-based material raw material gas.
  • Doping the silicon-based oxide particles having the carbon layer with Li and Mg may include the silicon-based oxide particles having the carbon layer and a doping material such as magnesium metal powder or a magnesium precursor such as MgO; A mixture of lithium metal powder or a lithium precursor, such as LiOH or Li 2 O, and, if necessary, heat treatment at 400 °C to 1200 °C.
  • the above step may be performed using an electrochemical method.
  • the average particle diameter (D 50 ) of the silicon-based oxide particles may be 1 ⁇ m to 30 ⁇ m.
  • the average particle diameter (D 50 ) of the silicon-based oxide particles may be specifically 3 ⁇ m to 20 ⁇ m, and more specifically, 5 ⁇ m to 10 ⁇ m.
  • the average particle diameter (D 50 ) may be defined as a particle diameter corresponding to 50% of the cumulative volume in the particle diameter distribution curve of the particles.
  • the average particle diameter (D 50 ) may be measured using, for example, a laser diffraction method.
  • the laser diffraction method is generally capable of measuring particle diameters of several millimeters in the submicron region, and can obtain results with high reproducibility and high resolution.
  • the BET specific surface area of the silicon-based oxide particles may be 0.01 m 2 /g to 150 m 2 /g.
  • the BET specific surface area of the silicon-based oxide particles is preferably 0.1 to 100.0 m 2 /g, particularly preferably 0.2 m 2 /g to 80.0 m 2 /g, specifically 0.6 m 2 /g to 20 m 2 /g. And, more specifically, it may be 0.8 m 2 /g to 15 m 2 /g.
  • the BET surface area can be measured by the Brunauer-Emmett-Teller (BET) method.
  • BET Brunauer-Emmett-Teller
  • it can be measured by the BET 6-point method by the nitrogen gas adsorption distribution method using a porosimetry analyzer (Bell Japan Inc, Belsorp-II mini).
  • the silicon-based oxide particles may further include Si crystal grains.
  • the Si crystal grains may have a particle size of 1 nm to 15 nm.
  • the anode active material may further include a carbon-based active material.
  • the negative electrode active material may include a carbon-based active material, and specifically, the carbon-based active material may be graphite.
  • the graphite may be natural graphite, graphite graphite, or a mixture thereof.
  • the carbon-based active material may be included in an amount greater than 0 parts by weight and 85 parts by weight or less.
  • the negative active material layer may further include a negative electrode binder in addition to the silicon-based oxide and the carbon-based active material.
  • the negative electrode binder may serve to improve adhesion between negative electrode active material particles and adhesion between negative electrode active material particles and the negative electrode current collector.
  • the anode binder those known in the art may be used, and non-limiting examples include polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride, poly Acrylonitrile, polymethylmethacrylate, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, Polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluororubber, polyacrylic acid, and their hydrogen is substituted with Li, Na or Ca, etc. It may include at least one selected from the group consisting
  • the negative electrode binder may be included in an amount of 0.1 part by weight or more and 50 parts by weight or less based on 100 parts by weight of the negative electrode active material layer, for example, preferably 0.3 parts by weight or more and 35 parts by weight or less, more preferably 0.5 parts by weight or more and 20 parts by weight or less. can be included as
  • the negative electrode active material layer may further include a conductive material.
  • the conductive material included in the negative electrode active material layer is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite or artificial graphite; carbon black such as acetylene black, ketjen black, channel black, farnes black, lamp black, and thermal black; conductive fibers such as carbon fibers and metal fibers; conductive tubes such as carbon nanotubes; metal powders such as fluorocarbon, aluminum, and nickel powder; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • the content of the conductive material in the negative active material layer may be 0.01 part by weight to 30 parts by weight, preferably 0.1 part by weight to 5 parts by weight, based on 100 parts by weight of the negative electrode active material layer.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector and including the positive electrode active material.
  • the positive current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon, nickel, titanium on the surface of aluminum or stainless steel. , those surface-treated with silver, etc. may be used.
  • the cathode current collector may have a thickness of typically 1 ⁇ m to 500 ⁇ m, and fine irregularities may be formed on the surface of the current collector to increase adhesion of the cathode active material.
  • it may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
  • the negative electrode current collector may be conductive without causing chemical change in the battery, and is not particularly limited.
  • the current collector copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel surface-treated with carbon, nickel, titanium, or silver may be used.
  • a transition metal that adsorbs carbon well, such as copper and nickel can be used as the current collector.
  • the current collector may have a thickness of 1 ⁇ m to 500 ⁇ m, but the thickness of the current collector is not limited thereto.
  • the thickness of the cathode and anode active material layers may be 20 ⁇ m or more and 500 ⁇ m or less, preferably 50 ⁇ m or more and 200 ⁇ m or less.
  • the thickness of the positive electrode active material layer may be 90% to 110%, for example, 95% to 105% of the thickness of the negative electrode active material layer, and their thicknesses may be the same.
  • the ratio (C/A) of the efficiency (C) of the positive electrode and the efficiency (A) of the negative electrode may be 1 or less, preferably less than 1.
  • the ratio (C/A) may be 0.8 or more, preferably 0.9 or more, more preferably 0.95 or more, such as 0.96 or more, or 0.97 or more.
  • the difference between the efficiency (C) of the positive electrode and the efficiency (A) of the negative electrode may be 10% or less, for example, 5% or less, or 3% or less.
  • the efficiency (C) of the anode and the efficiency (A) of the cathode are each preferably 80% or more, more preferably 83% or more, and even more preferably 85% or more.
  • the anode and cathode efficiencies as described above it may be possible to develop a target high capacity from the beginning while having a larger irreversible anode capacity.
  • the ratio (AA/BB) of the content of the additive represented by Formula A relative to 100 parts by weight of the positive electrode active material (AA) and the content of the silicon-based oxide (BB) relative to 100 parts by weight of the negative electrode active material is 0.01 to 0.01. It may be 0.1, more preferably 0.015 to 0.06, more preferably 0.02 to 0.04.
  • the separator separates the negative electrode and the positive electrode and provides a passage for the movement of lithium ions. If it is normally used as a separator in a secondary battery, it can be used without particular limitation. Excellent is desirable.
  • a porous polymer film for example, a porous polymer film made of polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these A laminated structure of two or more layers of may be used.
  • porous non-woven fabrics for example, non-woven fabrics made of high-melting glass fibers, polyethylene terephthalate fibers, and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be selectively used in a single-layer or multi-layer structure.
  • electrolyte examples include, but are not limited to, organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel polymer electrolytes, solid inorganic electrolytes, and molten inorganic electrolytes that can be used in the manufacture of lithium secondary batteries.
  • the electrolyte may include a non-aqueous organic solvent and a metal salt.
  • non-aqueous organic solvent for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyllolactone, 1,2-dimethine Toxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxorane, formamide, dimethylformamide, dioxorane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid Triester, trimethoxy methane, dioxolane derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ether, methyl propionate, propionic acid
  • An aprotic organic solvent such as ethyl may be used.
  • ethylene carbonate and propylene carbonate which are cyclic carbonates
  • an electrolyte having high electrical conductivity can be made and can be used more preferably.
  • the metal salt may be a lithium salt, and the lithium salt is a material that is easily soluble in the non-aqueous electrolyte.
  • the anion of the lithium salt is F - , Cl - , I - , NO 3 - , N (CN ) 2 - , BF 4 - , ClO 4 - , PF 6 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , CF 3 CF 2 SO 3 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO 2 ) 2 CH - , (SF 5 ) 3 C - , (CF 3 SO 2 ) 3
  • the electrolyte may include, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and triglycerides for the purpose of improving battery life characteristics, suppressing battery capacity decrease, and improving battery discharge capacity.
  • haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and triglycerides
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be further included.
  • a lithium secondary battery according to an exemplary embodiment of the present invention may be a cylindrical battery.
  • the cylindrical battery may mean that the shape of the battery itself including an assembly including a positive electrode, a negative electrode, a separator, and an electrolyte is cylindrical, and specifically, a cylindrical can, a battery assembly provided inside the cylindrical can, and a top cap. can be configured. It is preferable to use a cylindrical battery that is freer in terms of the amount of gas compared to the pouch, but is not limited thereto.
  • a further embodiment of the present invention provides a battery module including the aforementioned cylindrical battery as a unit cell and a battery pack including the same. Since the battery module and the battery pack include the secondary battery having high capacity, high rate and cycle characteristics, a medium or large-sized device selected from the group consisting of an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and a power storage system can be used as a power source for
  • the lithium secondary battery according to the exemplary embodiments of the present invention stably exhibits excellent discharge capacity, output characteristics, and cycle performance, portable devices such as mobile phones, notebook computers, digital cameras,
  • the battery module or battery pack may include a power tool; electric vehicles, including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Alternatively, it may be used as a power source for one or more medium or large-sized devices among power storage systems.
  • EVs electric vehicles
  • PHEVs plug-in hybrid electric vehicles
  • a lithium composite transition metal compound having a content of 93.3 mol% of Ni, 4.9 mol% of Co, and 1.8 mol% of Mn among metals other than lithium as a positive electrode active material and in the form of single particles and Li 6 Co 0.7 Zn 98.04 parts by weight of 0.25 Al 0.05 O 4 additive (0.5 parts by weight based on 100 parts by weight of cathode active material), 1 part by weight of PVDF as a binder, and a CNT pre-dispersion containing 0.8 parts by weight of CNT and 0.16 parts by weight of a dispersant as a conductive material.
  • the composition for forming a positive electrode active material layer was coated on aluminum foil having a thickness of 30 ⁇ m to a thickness of 103 ⁇ m in a dry state and then dried to prepare a positive electrode.
  • artificial graphite and natural graphite (7:3 weight ratio, 85 parts by weight based on 100 parts by weight of the negative electrode active material) and silicon-based oxide SiO (15 parts by weight based on 100 parts by weight of the negative electrode active material) as negative electrode active materials ) as a binder, including 97.7 parts by weight of SBR (styrene-butadiene rubber) and 1 part by weight of CMC (carboxymethyl cellulose), and in addition to this, a CNT pre-dispersion containing 0.09 parts by weight of a dispersant and 0.06 parts by weight of single-walled CNT.
  • the composition for forming a negative electrode active material layer was coated on a copper foil having a thickness of 15 ⁇ m to a thickness of 86 ⁇ m in a dry state, and then dried to prepare a negative electrode.
  • An anode was prepared in the same manner as in Example 1, except that 10 parts by weight of SiO, a silicon-based oxide, was included based on 100 parts by weight of the negative electrode active material.
  • An anode was prepared in the same manner as in Example 1, except that 20 parts by weight of SiO, a silicon-based oxide, was included based on 100 parts by weight of the negative electrode active material.
  • a positive electrode was manufactured in the same manner as in Example 1, except that the additive included in the positive electrode active material layer was LiNiO 2 (2 parts by weight based on 100 parts by weight of the positive electrode active material).
  • the content of LiNiO 2 was set to 2 parts by weight based on 100 parts by weight of the positive electrode active material so that the positive electrode efficiency was about 86%, and the viscosity of the slurry was measured in the same manner as in Example 1, and the results are shown in Table 1.
  • Example 1 includes the additive represented by Chemical Formula A according to the present invention, and after preparing a positive electrode slurry with a composition for forming a positive electrode active material layer, storage in an environment of 40 ° C. and RH 10% until the 3rd day The viscosity did not exceed 10,000 cps or did not gel, and it was confirmed that the slurry stability was advantageous by maintaining the viscosity range of 10,000 cps or less.
  • Comparative Example 1 includes LiNiO 2 rather than the additive represented by Formula A according to the present invention, and after preparing a positive electrode slurry with a composition for forming a positive electrode active material layer, the second day of storage in an environment of 40 ° C. and RH 10% The viscosity exceeded 10,000 cps, and it was confirmed that gelation occurred on the third day of storage. In the case of LiNiO 2 , it can be confirmed that the viscosity exceeds 10,000 cps due to a rapid increase in viscosity and gelation occurs, which may affect processability during electrode manufacturing, and thus may be a problem in slurry stability.
  • Example 2 In the same manner as in Example 1, except that a lithium composite transition metal compound in the form of secondary particles having a content of 93.3 mol% of Ni, 4.9 mol% of Co, and 1.8 mol% of Mn among metals other than lithium as a cathode active material was included. An anode was prepared.
  • a positive electrode was prepared in the same manner as in Example 1, except that the positive electrode active material contained 60 mol% of Ni, 20 mol% of Co, and 20 mol% of Mn among metals other than lithium.
  • Example 1 Single-particle cathode material (Ni 93.3 mol%) + LCZAO 0.5% SiO 15% (Gr 85%) Target
  • Example 2 SiO 10% (Gr 90%) -5% (vs. Target)
  • Example 3 SiO 20% (Gr 80%) Comparative
  • Example 2 Secondary particle cathode material (Ni 93.3 mol%) + LCZAO 0.5% SiO 15% (Gr 85%)
  • Comparative Example 3 Single-particle cathode material (Ni 60 mol%) + LCZAO 0.5% SiO 15% (Gr 85%) -14% (vs. Target)
  • Example 1 includes 15 parts by weight of silicon-based oxide SiO and 85 parts by weight of graphite based on 100 parts by weight of the negative active material, and Example 2 includes 10 parts by weight of silicon-based oxide SiO and 90 parts by weight of graphite. Contains parts by weight.
  • Example 1 it can be confirmed that the design capacity is increased by 5% compared to Example 2, and it can be seen that the design capacity of the lithium secondary battery is reduced when the content of SiO, which is a silicon-based oxide, in the negative active material is less than 15 parts by weight.
  • Comparative Example 3 can confirm that the design capacity is reduced by 14% compared to Example 1. Accordingly, it can be seen that the design capacity of the lithium secondary battery is reduced by 14% when nickel is 60 mol% in the positive electrode active material compared to when nickel is 93.3 mol%.
  • Capacity retention rate (%) (N times discharge capacity / 1 time discharge capacity) ⁇ 100
  • 1 is a 55 ° C cycle graph in which charging and discharging is performed at 55 ° C, showing a cycle number (N)-capacity retention rate (%) curve, and 80% capacity retention rate must be satisfied during the 55 ° C cycle.
  • Example 1 is a positive electrode active material according to the present invention, which includes a lithium composite transition metal compound in the form of a single particle and having 93.3 mol% of Ni, 4.9 mol% of Co, and 1.8 mol% of Mn among metals other than lithium.
  • the capacity retention rate is maintained high during the cycle at 55 ° C. Excellent results were confirmed.
  • Example 1 compared to Example 3 including 20 parts by weight of silicon-based oxide SiO and 80 parts by weight of graphite based on 100 parts by weight of the negative electrode active material, a result of not fading during the cycle at 55 ° C can be confirmed.
  • This can be interpreted as the fact that when the SiO content is relatively high, the cathode efficiency decreases due to the influence of the material according to the increase in the anode SiO content, and the cycle performance deteriorates as the cathode is used relatively more as the cycle progresses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 니켈, 코발트 및 망간을 포함하고, 리튬을 제외한 금속 중 니켈을 80 몰% 이상 100 몰% 미만 포함하고, 단입자 형태인 리튬 복합 전이금속 화합물을 포함하는 양극 활물질 및 화학식 A로 표시되는 첨가제를 포함하는 리튬이차전지 양극 활물질층용 조성물과, 이를 포함하는 양극, 리튬이차전지, 전지 모듈 및 전지 팩에 관한 것이다.

Description

양극 활물질층용 조성물 및 리튬이차전지
본 출원은 2021년 11월 19일 한국특허청에 제출된 한국 특허 출원 제10-2021-0160759호의 출원일의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서에 포함된다.
본 출원은 양극 활물질층용 조성물 및 리튬이차전지에 관한 것이다.
최근 휴대전화, 노트북 컴퓨터, 전기 자동차뿐만 아니라 전동공구, 청소기 등 전지를 사용하는 전자기구의 급속한 보급에 수반하여 소형 경량이면서도 상대적으로 고용량 및/또는 고출력인 이차전지의 수요가 급속히 증대되고 있다. 특히, 리튬 이차전지는 경량이고 고에너지 밀도를 가지고 있어 전자기구의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 이차전지의 성능향상을 위한 연구개발 노력이 활발하게 진행되고 있다.
리튬 이차전지는 리튬 이온의 삽입(intercalations) 및 탈리(deintercalation)가 가능한 활물질로 이루어진 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리 될 때의 산화와 환원 반응에 의해 전기 에너지가 생산된다.
리튬 이차전지의 양극 활물질로는 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2), 리튬 망간 산화물(LiMnO2 또는 LiMn2O4등), 리튬 인산철 화합물(LiFePO4) 등이 사용되었다. 이 중에서도 리튬 코발트 산화물(LiCoO2)은 작동 전압이 높고 용량 특성이 우수한 장점이 있어, 널리 사용되고 있으며, 고전압용 양극 활물질로 적용되고 있다. 그러나, 코발트(Co)의 가격 상승 및 공급 불안정 때문에 전기 자동차 등과 같은 분야의 동력원으로 대량 사용하기에 한계가 있어, 이를 대체할 수 있는 양극 활물질 개발의 필요성이 대두되었다.
이에 따라, 코발트(Co)의 일부를 니켈(Ni)과 망간(Mn)으로 치환한 니켈코발트망간계 리튬 복합 전이금속 산화물(이하 간단히 'NCM계 리튬 복합 전이금속 산화물'이라 함)이 개발되었다. 최근에는 NCM계 리튬 복합 전이금속 산화물에서 Ni의 함량을 증가시켜 용량을 증가시키려는 연구가 이루어지고 있다. 그러나, 니켈 함량이 높은 고농도 니켈(Ni-rich) 양극 활물질의 경우, 열 안정성 저하와 전기화학 반응시 부반응 증가로 인한 저항 증가 및 가스 발생이 증가하는 단점이 있다.
한편, 리튬 이차전지의 음극 활물질로서는 흑연이 주로 이용되고 있지만, 흑연은 단위질량당의 용량이 372 mAh/g로 작기 때문에, 리튬 이차전지의 고용량화가 어렵다. 이에 따라, 리튬 이차전지의 고용량화를 위해, 흑연보다도 높은 에너지 밀도를 갖는 비탄소계 음극 재료로서, 실리콘, 주석 및 이들의 산화물 등과 같은 음극 재료가 개발되고 있다. 그러나, 이러한 비탄소계 음극 재료의 경우, 용량은 크지만, 초기 효율이 낮아 초기 충방전 동안의 리튬 소모량이 크고, 비가역 용량 손실이 크다는 문제가 있다.
본 발명자들은, 전지 성능을 개선할 수 있는 리튬이차전지 양극 활물질층용 조성물 및 이를 포함하는 양극, 리튬이차전지, 전지 모듈 및 전지 팩을 제공하고자 한다.
본 출원의 일 실시상태는 니켈, 코발트 및 망간을 포함하고, 리튬을 제외한 금속 중 니켈을 80 몰% 이상 100 몰% 미만 포함하고, 단입자(single particle) 형태인 리튬 복합 전이금속 화합물을 포함하는 양극 활물질; 및
하기 화학식 A로 표시되는 첨가제
를 포함하는 리튬이차전지 양극 활물질층용 조성물을 제공한다:
[화학식 A]
LixCo(1-y-z-m)ZnyAlzMmO4
상기 화학식 A에 있어서, M은 Ti, Zr, Mn 또는 Ni이고, 5 ≤ x ≤ 7, 0 < y ≤ 0.5, 0 < z ≤ 0.5, 0 < y+z+m < 1, 0 ≤ m ≤ 0.5이다.
본 출원의 추가의 실시상태는 양극 집전체; 및 상기 양극 집전체 상에 구비되고, 전술한 실시상태에 따른 조성물을 포함하는 양극 활물질층을 포함하는 리튬이차전지 양극을 제공한다.
본 출원의 추가의 실시상태는 양극; 음극; 상기 양극과 음극 사이에 구비된 분리막; 및 전해질을 포함하는 리튬이차전지로서,
상기 양극은 양극 집전체 및 상기 양극 집전체 상에 구비된 양극 활물질층을 포함하고, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 구비된 음극 활물질층을 포함하며,
상기 양극 활물질층은 전술한 실시상태에 따른 조성물을 포함하는 것인 리튬이차전지를 제공한다.
본 출원의 추가의 실시상태에 따르면, 전술한 실시상태의 상기 음극 활물질층은 총 음극 활물질 100 중량부 대비 15 중량부 이상의 실리콘계 산화물을 포함한다.
본 출원의 추가의 실시상태는 전술한 리튬이차전지를 포함하는 전지 모듈 및 상기 전지 모듈을 포함하는 전지 팩을 제공한다.
본 명세서에 기재된 실시상태들에 따르면, 한정된 공간 내에 설계되는 리튬이차전지의 에너지 밀도를 증가시키고 고출력 성능을 향상시킬 수 있으며, 전지 사이클 성능도 향상시킬 수 있다.
도 1은 실시예 1, 3 및 비교예 2에서 제조된 전지의 55 ℃ 사이클 그래프를 나타낸 것이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 층 등의 어떤 부분이 다른 부분 "위에" 또는 “상에” 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다. 또한, 기준이 되는 부분 "위에" 또는 “상에” 있다고 하는 것은 기준이 되는 부분의 위 또는 아래에 위치하는 것이고, 반드시 중력 반대 방향을 향하여 “위에” 또는 “상에” 위치하는 것을 의미하는 것은 아니다.
본 출원의 일 실시상태는
니켈, 코발트 및 망간을 포함하고, 리튬을 제외한 금속 중 니켈을 80 몰% 이상 100 몰% 미만 포함하고, 단입자 형태인 리튬 복합 전이금속 화합물을 포함하는 양극 활물질; 및
하기 화학식 A로 표시되는 첨가제
를 포함하는 리튬이차전지 양극 활물질층용 조성물을 제공한다:
[화학식 A]
LixCo(1-y-z-m)ZnyAlzMmO4
상기 화학식 A에 있어서, M은 Ti, Zr, Mn 또는 Ni이고, 5 ≤ x ≤ 7, 0 < y ≤ 0.5, 0 < z ≤ 0.5, 0 < y+z+m < 1, 0 ≤ m ≤ 0.5이다.
리튬이차전지는 용도에 따라 요구되는 크기가 있으며, 이에 따라 한정된 공간 내에 설계되어야 한다. 에너지 밀도 증가 및 고출력 성능 향상에 대한 수요자의 요구가 증가하고 있으나, 용량이 높은 양극재료를 사용하는 경우 이에 부합하도록 음극재의 함량을 높일 수 밖에 없으므로, 한정된 공간 내에서 전지 효율을 높이는데 한계가 있다. 또한, 음극재의 종류에 따라서도 음극재의 효율에 부합하는 효율을 갖는 양극재료를 설계할 필요가 있다.
본 발명의 상기 실시상태에 따른 양극 활물질층용 조성물은 음극 활물질로서 실리콘계 산화물을 사용하는 경우에 유용할 수 있다. 구체적으로, 음극 활물질로서 실리콘계 산화물을 사용하는 경우, 음극 활물질의 효율에 부합하도록 양극 재료로 특정 조성을 사용하는 것을 특징으로 한다. 특히, 양극 활물질로서 니켈, 코발트 및 망간을 포함하는 리튬 복합 전이금속 산화물을 사용하되, 니켈의 함량이 리튬을 제외한 금속 중 80 몰% 이상 100 몰% 미만으로 포함되고, 단입자 형태를 사용함과 동시에, 특정 종류의 첨가제를 함께 사용하는 것을 특징으로 한다.
음극 활물질로 사용되는 실리콘계 산화물은 효율, 예컨대 첫번째 사이클(충전 0.1C to 5mV, 0.005C cut-off, 방전 0.1C to 1.5V)의 충전용량 대비 방전용량에 대한 비율이 통상 70% 내지 90%, 방전용량 1,000 내지 1,600 mAh/g 수준이다. 이와 같이 실리콘계 산화물은 용량이 높아 전지의 에너지 밀도 증가 및 고출력 구현을 위해 사용될 수 있으나, 흑연 대비 효율이 낮아, 음극의 효율에 부합하도록 양극의 효율을 낮출 필요가 있다.
따라서, 상기 실시상태에서는 실리콘계 산화물을 음극 활물질로 사용함과 동시에, 양극 활물질로서 니켈 함량이 비교적 높은 고용량 재료를 사용하되, 단입자 형태를 사용함으로써, 양극 효율을 음극의 효율에 부합하도록 할 수 있다.
구체적으로, 본 발명자들은 니켈 함량이 높은 리튬 복합 전이금속 산화물의 경우 이차입자에 비하여 단입자가 분체 저항이 다소 높은 것을 확인하고, 양극 활물질로서 단입자를 채용함으로써 양극 효율을 음극 활물질로서 실리콘계 산화물을 사용할 때의 음극 효율에 맞출 수 있다.
또한, 첨가제로서 전술한 화학식 A의 재료를 사용하는 것을 특징으로 한다. 상기 화학식 A의 첨가제는 음극 활물질로서 사용되는 실리콘계 산화물의 비가역 용량 손실을 보상하기 위하여 리튬 이온 공급원 또는 저장소를 제공할 수 있는 한편, 일반 양극 활물질 대비 효율이 낮은 성질을 갖는다. 또한, LiNiO2 대비 화학식 A의 재료는 용량이 높아 상대적으로 적은 양을 블렌딩하여 사용할 수 있다. LiNiO2는 대기 중 수분 노출에 취약하고 전지 내 가스발생, 열적 안전성 열위 및 슬러리 내 부산물이 많아지면서 겔화(gelation), 예컨대 pvdf의 겔화(gelation) 문제 등을 일으킬 수 있다. 반면, 화학식 A의 재료는 상대적으로 적은 양으로도 양극의 용량과 효율을 음극과 맞추는 역할을 할 수 있고, LiNiO2와 같은 다른 재료 대비 수분 안정성 및 슬러리 안정성을 확보할 수 있다.
본 출원의 추가의 실시상태에 따르면, 상기 니켈, 코발트 및 망간을 포함하고, 리튬을 제외한 금속 중 니켈을 80 몰% 이상 100 몰% 미만 포함하는 리튬 복합 전이금속 화합물은 하기 화학식 1로 표시되는 1종 또는 2종 이상의 혼합물을 포함할 수 있다.
[화학식 1]
LiaNi1-b-c-dCobMncQdO2+δ
상기 식에서, Q은 Na, K, Mg, Ca, Sr, Ni, Co, Ti, Al, Si, Sn, Mn, Cr, Fe, V 및 Zr로 이루어진 군에서 선택되는 어느 하나 이상의 원소이고, 1≤a≤1.5, 0<b≤0.5, 0<c≤0.5, 0≤d≤0.1, 0 <b+c+d≤20, -0.1≤δ≤1.0이다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Li은 a에 해당하는 함량, 즉 1≤a≤1.5로 포함될 수 있다. a가 1 미만이면 용량이 저하될 우려가 있고, 1.5를 초과하면 소성 공정에서 입자가 소결되어 버려, 양극 활물질 제조가 어려울 수 있다. Li 함량 제어에 따른 양극 활물질의 용량 특성 개선 효과의 현저함 및 활물질 제조시의 소결성이 발란스를 고려할 때, 상기 Li는 보다 바람직하게는 1.1≤a≤1.2의 함량으로 포함될 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Ni은 1-(b+c+d)에 해당하는 함량, 예를 들어, 0.8≤1-(b+c+d) < 1 로 포함될 수 있다. 상기 화학식 1의 리튬 복합 전이금속 산화물 내 Ni의 함량이 0.8 이상의 조성이 되면 충방전에 기여하기에 충분한 Ni량이 확보되어 고용량화를 도모할 수 있다. 바람직하게는 Ni의 함량인 1-(b+c+d)는 0.8, 바람직하게는 0.83 이상, 더욱 바람직하게는 0.85 이상일 수 있다. 바람직하게는 Ni의 함량인 1-(b+c+d)는 0.99 이하, 0.96 이하일 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Co는 b에 해당하는 함량, 즉 0<b≤0.5로 포함될 수 있다. 상기 화학식 1의 리튬 복합 전이금속 산화물 내 Co의 함량이 0.5를 초과할 경우 비용 증가의 우려가 있다. Co 포함에 따른 용량 특성 개선 효과의 현저함을 고려할 때, 상기 Co는 보다 구체적으로 0.05≤b≤0.2의 함량으로 포함될 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Mn은 c에 해당하는 함량, 즉 0<c≤0.5의 함량으로 포함될 수 있다. 상기 화학식 1의 리튬 복합 전이금속 산화물 내 c가 0.5를 초과하면 오히려 전지의 출력 특성 및 용량 특성이 저하될 우려가 있으며, 상기 Mn은 보다 구체적으로 0.05≤c≤0.2의 함량으로 포함될 수 있다.
상기 화학식 1의 리튬 복합 전이금속 산화물에 있어서, Q는 리튬 복합 전이금속 산화물의 결정 구조 내 포함된 도핑원소일 수 있으며, Q는 d에 해당하는 함량, 즉 0≤d≤0.1로 포함될 수 있다. Q는 Na, K, Mg, Ca, Sr, Ni, Co, Ti, Al, Si, Sn, Mn, Cr, Fe, V 및 Zr 중에서 선택되는 하나 또는 2 이상일 수 있으며, 예컨대 Q는 Al일 수 있다.
본 명세서에 있어서, 상기 단입자라는 것은 종래의 수십 내지 수백개의 일차 입자들이 응집하여 형성되는 이차 입자 형태의 양극 활물질 입자와 구별하기 위해 사용되는 용어로, 1개의 일차 입자로 이루어진 단일 입자와 10개 이하의 일차 입자의 응집체 입자를 포함하는 개념이다.
본 출원의 일 실시상태에 있어서, 상기 단입자의 평균입경(D50)은 1 ㎛ 내지 10 ㎛, 바람직하게는 2 ㎛ 내지 7 ㎛일 수 있고, 예컨대 3 ㎛ 내지 7㎛일 수 있다.
상기 단입자는 평균 입경(D50)이 1 ㎛ 내지 10 ㎛ 정도의 소입경으로 형성되더라도, 그 입자 강도가 우수할 수 있다. 예를 들면, 상기 단입자 형태의 양극 활물질은 650 kgf/cm2의 힘으로 압연시 100 MPa 내지 300 MPa의 입자강도를 가질 수 있다.
이에 따라, 상기 단입자 형태의 양극 활물질을 650 kgf/cm2의 강한 힘으로 압연하더라도, 입자의 깨짐에 의한 전극 내 미립자 증가 현상이 완화되며, 이에 의해 전지의 수명 특성이 개선된다.
상기 단입자 형태의 리튬 복합 전이금속 산화물을 형성하는 방법은 특별히 제한되지 않으나, 일반적으로 소성 온도를 높여 과소성하여 형성할 수 있으며, 과소성에 도움이 되는 입성장 촉진제 등의 첨가제를 사용하거나, 시작 물질을 변경하는 방법 등으로 제조할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 A로 표시되는 첨가제는 하기 화학식 A로 표시된다:
[화학식 A]
LixCo(1-y-z-m)ZnyAlzMmO4
상기 화학식 A에 있어서, M은 Ti, Zr, Mn 또는 Ni이고, 5 ≤ x ≤ 7, 0 < y ≤ 0.5, 0 < z ≤ 0.5, 0 < y+z+m < 1, 0 ≤ m ≤ 0.5이다.
상기 화학식 A에 있어서, m이 0인 경우, 하기 화학식 A-1로 표시될 수 있다.
[화학식 A-1]
LixCo(1-y-z-m)ZnyAlzO4
상기 M이 존재하는 경우 M은 Ti, Zr, Mn 또는 Ni일 수 있으며, 예컨대 Zr일 수 있다.
상기 화학식 A 및 A-1에 있어서, 5.5 ≤ x ≤ 6.5, 0.2 ≤ y ≤ 0.4, 0 < z ≤ 0.1, 0 ≤ m ≤ 0.1일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 화학식 A로 표시되는 첨가제는 전술한 양극 활물질 100 중량부 대비 0.3 중량부 내지 10 중량부로 포함될 수 있다.
상기 화학식 A로 표시되는 첨가제는 상기 양극 활물질 100 중량부 대비 0.3 중량부 이상, 0.4 중량부 이상, 또는 0.5 중량부 이상 포함될 수 있다. 상기 화학식 A로 표시되는 첨가제는 상기 양극 활물질 100 중량부 대비 10 중량부 이하, 8 중량부 이하, 6 중량부 이하, 4 중량부 이하, 2 중량부 이하, 1 중량부 이하, 또는 0.8 중량부 이하 포함될 수 있다.
이와 같은 범위 내의 함량을 사용하는 것이, 상기 화학식 A로 표시되는 첨가제의 첨가에 의하여 양극과 음극의 효율을 맞추는데 유리하다. 양극에 포함되는 단입자 형태의 양극 활물질과 화학식 A로 표시되는 첨가제의 조합에 의한 양극의 효율이 실리콘계 산화물 또는 실리콘계 산화물과 탄소계 활물질을 포함하는 음극 활물질에 의한 음극의 효율보다 낮게 설계하는 것이 바람직하다. 따라서, 상기 화학식 A로 표시되는 첨가제의 함량은 양극과 음극의 활물질의 용량 및 효율에 따라 결정될 수 있으며, 특히 실리콘계 산화물의 함량에 따라 결정될 수 있다.
본 출원의 추가의 실시상태에 따르면, 전술한 실시상태에 따른 양극 활물질층용 조성물에 있어서, 상기 니켈, 코발트 및 망간을 포함하고, 리튬을 제외한 금속 중 니켈을 80 몰% 이상 100 몰% 미만 포함하고, 단입자 형태인 리튬 복합 전이금속 화합물은 총 양극 활물질 100 중량부 대비 90 중량부 내지 100 중량부, 예컨대 100 중량부일 수 있다.
본 출원의 추가의 실시상태에 있어서, 상기 양극 활물질층용 조성물은 이차 입자 형태의 양극 활물질을 더 포함할 수 있으나, 그 함량은 상기 양극 활물질층에 포함된 양극 활물질 100 중량부 중 10 중량부 이하일 수 있다. 이에 의하여, 단입자 형태의 양극 활물질의 존재에 의한 전술한 효과를 극대화할 수 있다. 이차 입자 형태의 양극 활물질을 포함하는 경우, 그 성분은 전술한 단입자 양극 활물질로 예시된 것과 같은 성분일 수 있으나, 단입자 형태가 응집된 형태를 의미할 수 있다.
본 출원의 추가의 실시상태에 따르면, 전술한 실시상태에 따른 양극 활물질층용 조성물은 양극 바인더 및 도전재를 더 포함할 수 있다.
상기 양극 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질 입자들과 양극 집전체와의 접착력을 향상시키는 역할을 할 수 있다. 상기 양극 바인더로는 당 기술분야에 알려진 것들을 사용할 수 있으며, 비제한적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
상기 양극 바인더는 상기 양극 활물질층용 조성물 100 중량부 기준 0.1 중량부 이상 50 중량부 이하로 포함될 수 있으며, 예컨대 바람직하게는 0.3 중량부 이상 35 중량부 이하, 더욱 바람직하게는 0.5 중량부 이상 20 중량부 이하로 포함될 수 있다.
상기 양극 활물질층용 조성물에 포함되는 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 전지 내에서 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
구체적으로, 일 실시상태에 있어서, 상기 도전재는 단일벽 탄소 나노튜브(SWCNT); 및 다중벽 탄소 나노튜브(MWCNT) 중 1 이상을 포함할 수 있다. 상기 도전재는 상기 양극 활물질층용 조성물 100 중량부 기준 0.1 중량부 이상 2 중량부 이하로 포함될 수 있으며, 예컨대 바람직하게는 0.3 중량부 이상 1.5 중량부 이하, 더욱 바람직하게는 0.5 중량부 이상 1.2 중량부 이하로 포함될 수 있다.
본 출원의 추가의 실시상태에 따르면, 상기 양극 활물질층용 조성물은 40℃, RH 10% 에서 3일 보관 시의 점도가 10,000 cps 이하이다. 상기 점도는 상기 양극 활물질층용 조성물로 양극 슬러리를 제조한 후 40℃, RH 10% 환경에 3일 보관 시의 슬러리 점도일 수 있다.
상기 점도는 브룩필드 점도계 64번 spindle, 12rpm 에서 측정된 값이며, 상기 RH 10%는 습도 범위를 의미한다.
상기 양극 활물질층용 조성물은 40℃, RH 10% 에서 3일 보관 시의 점도가 1,000 cps 이상, 2,000 cps 이상, 3,000 cps 이상, 또는 4,000 cps 이상일 수 있다. 상기 양극 활물질층용 조성물은 40℃, RH 10% 에서 3일 보관 시의 점도가 10,000 cps 이하, 9,000 cps 이하, 8,000 cps 이하, 또는 7,000 cps 이하일 수 있다.
상기 화학식 A로 표시되는 첨가제를 포함함에 따라 상기 양극 활물질층용 조성물은 상기 범위를 만족할 수 있으며, 수분 안정성 및 슬러리 안정성을 확보에 유리하다. 구체적으로, LiNiO2는 대기 중 수분 노출에 취약하고 슬러리 내 부산물이 많아지면서 겔화(gelation), 예컨대 pvdf의 겔화(gelation) 문제 등을 일으킬 수 있으나, 상기 화학식 A로 표시되는 첨가제는 상대적으로 적은 양으로도 양극의 용량과 효율을 음극과 맞추는 역할을 할 수 있고, LiNiO2와 같은 다른 재료 대비 수분 안정성, 및 슬러리 내 겔화(gelation)를 방지하여 슬러리 안정성을 확보할 수 있다.
본 출원의 추가의 실시상태는
양극 집전체; 및
상기 양극 집전체 상에 구비되고, 전술한 실시상태들에 따른 양극 활물질층용 조성물을 포함하는 양극 활물질층
을 포함하는 리튬이차전지 양극을 제공한다.
본 출원의 추가의 실시상태는 양극; 음극; 상기 양극과 음극 사이에 구비된 분리막; 및 전해질을 포함하는 리튬이차전지로서,
상기 양극은 양극 집전체 및 상기 양극 집전체 상에 구비된 양극 활물질층을 포함하고, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 구비된 음극 활물질층을 포함하며,
상기 양극 활물질층은 전술한 실시상태들에 따른 양극 활물질층용 조성물을 포함하는 것인 리튬이차전지를 제공한다.
본 출원의 추가의 실시상태에 따르면, 전술한 실시상태에 따른 리튬이차전지에 있어서, 상기 음극 활물질층에 포함된 음극 활물질 100 중량부 중 상기 실리콘계 산화물은 15 중량부 이상으로 포함된다.
상기 음극 활물질층에 포함된 음극 활물질 100 중량부 중 상기 실리콘계 산화물은 15 중량부 이상 70 중량부 이하, 바람직하게는 15 중량부 이상 60 중량부 이하로 포함될 수 있다.
상기 음극 활물질층에 포함된 음극 활물질 100 중량부 중 상기 실리콘계 산화물은 15 중량부 이상, 15.5 중량부 이상, 16 중량부 이상, 16.5 중량부 이상, 17 중량부 이상 포함될 수 있다. 상기 음극 활물질층에 포함된 음극 활물질 100 중량부 중 상기 실리콘계 산화물은 70 중량부 이하, 60 중량부 이하, 30 중량부 이하, 20 중량부 이하, 또는 20 중량부 미만 포함될 수 있다.
상기 범위 내로 실리콘계 산화물을 사용함으로써 고용량 및 고출력 성능을 구현하는데 유리하다. 예컨대 실리콘 산화물의 함량을 높일수록 고출력 구현에는 유리하나, 음극 두께가 얇아질 수 있으므로 양산 라인에서 공정성 구현을 위한 적정한 두께 범위를 설계할 필요가 있다. 실리콘계 산화물을 상기 범위 내로 사용함으로써 고출력 성능 및 공정성 구현을 달성할 수 있다.
상기 음극 활물질층에 포함되는 실리콘계 산화물은 입자 상태로 존재할 수 있으며, SiOx(0<x<2)를 포함할 수 있다. 상기 SiOx(0<x<2)는 상기 실리콘계 산화물 입자 내에서 매트릭스(matrix)에 해당할 수 있다. 상기 SiOx(0<x<2)는 Si 및 SiO2가 포함된 형태일 수 있으며, 상기 Si는 상(phase)을 이루고 있을 수도 있다. 즉, 상기 x는 상기 SiOx(0<x<2) 내에 포함된 Si에 대한 O의 개수비에 해당한다. 상기 실리콘계 산화물 입자가 상기 SiOx(0<x<2)를 포함하는 경우, 이차 전지의 방전 용량이 개선될 수 있다.
본 출원의 추가의 실시상태에 있어서, 상기 실리콘계 산화물은 금속 또는 금속 산화물을 더 포함할 수 있다. 예컨대, 상기 실리콘계 산화물은 Li 및 Mg 중 적어도 하나 또는 이의 화합물상을 더 포함할 수 있다.
상기 실리콘계 산화물이 Mg를 포함하는 경우, 상기 Mg는 Mg 화합물 상으로 존재할 수 있다. 상기 Mg 화합물 상은, 예컨대 Mg 실리케이트, Mg 실리사이드 및 Mg 산화물로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있다. 상기 Mg 실리케이트는 Mg2SiO4 및 MgSiO3 중 적어도 어느 하나를 포함할 수 있다. 상기 Mg 실리사이드는 Mg2Si를 포함할 수 있다. 상기 Mg 산화물은 MgO를 포함할 수 있다.
상기 실리콘계 산화물이 Li를 포함하는 경우, 상기 Li는 Li 화합물 상으로 존재할 수 있다. 상기 Li 화합물 상은 리튬 실리케이트, 리튬 실리사이드, 리튬 산화물 중 적어도 하나의 형태로 존재할 수 있다. 상기 Li 화합물 상은 리튬실리케이트일 수 있으며, 예컨대 LiaSibOc(2≤a≤4, 0<b≤2, 2≤c≤5)로 표시될 수 있고, 더욱 구체적으로 Li2SiO3, Li2Si2O5, Li3SiO3, Li4SiO4로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
상기 Mg 화합물 및/또는 Li 화합물은 상기 실리콘계 산화물의 입자에 도핑된 형태로 상기 실리콘계 화합물 입자의 표면 및/또는 내부에 분포될 수 있다. 상기 Mg 화합물 및/또는 Li 화합물은 실리콘계 산화물 입자의 표면 및/또는 내부에 분포되어, 실리콘계 산화물 입자의 부피 팽창/수축을 적절한 수준으로 제어할 수 있고, 활물질의 손상을 방지하는 역할을 수행할 수 있다. 또한, 상기 Mg 화합물 및/또는 상기 Li 화합물은 실리콘계 산화물 입자의 비가역상(예를 들면, SiO2)의 비율을 낮추어 활물질의 효율을 증가시키기 위한 측면에서 함유될 수 있다.
상기 Mg 원소 또는 Li 원소의 함량은 ICP 분석을 통해 확인할 수 있다. 상기 ICP 분석을 위해 음극 활물질 일정량(약 0.01 g)을 정확히 분취한 후, 백금 도가니에 옮겨 질산, 불산, 황산을 첨가하여 핫 플레이트에서 완전 분해한다. 이후, 유도플라즈마 발광 분석 분광기(ICPAES, Perkin-Elmer 7300)를 사용하여 Mg 원소 또는 Li 원소 고유 파장에서 표준 용액(5 mg/kg)을 이용하여 조제된 표준액의 강도를 측정하여 기준 검량선을 작성한다. 이 후, 전처리된 시료용액 및 바탕 시료를 기기에 도입하고, 각각의 강도를 측정하여 실제 강도를 산출하고, 상기 작성된 검량선 대비 각 성분의 농도를 계산한 후, 전체의 합이 이론 값이 되도록 환산하여 제조된 음극 활물질의 Mg 원소 함량을 분석할 수 있다.
Mg 및/또는 Li가 상기 실리콘계 산화물 입자에 포함되는 경우, 이들 각각의 함량은 Si 원소 100 atm% 대비 0.1 atm% 내지 20 atm%로 포함될 수 있다.
일 실시상태에 따르면, 상기 실리콘계 산화물 입자는 표면 중 적어도 일부에 구비된 탄소층을 더 포함할 수 있다.
상기 탄소층은 상기 실리콘계 산화물 입자의 표면 전체를 피복할 수도 있으나, 일부만을 피복한 상태일 수도 있다. 상기 탄소층에 의하여 상기 실리콘계 산화물 입자에 도전성이 부여되고, 상기 실리콘계 산화물 입자를 포함하는 음극 활물질의 부피 변화가 효과적으로 억제되어, 전지의 수명 특성이 개선될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 탄소층은 비정질 탄소 및 결정질 탄소 중 적어도 어느 하나를 포함할 수 있다.
상기 결정질 탄소는 상기 실리콘계 산화물 입자의 도전성을 보다 향상시킬 수 있다. 상기 결정질 탄소는 플로렌, 탄소나노튜브 및 그래핀으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있다.
상기 비정질 탄소는 상기 탄소층의 강도를 적절하게 유지시켜, 상기 실리콘계 산화물 입자의 팽창을 억제시킬 수 있다. 상기 비정질 탄소는 타르, 피치 및 기타 유기물로 이루어진 군에서 선택되는 적어도 어느 하나의 탄화물, 또는 탄화수소를 화학기상증착법의 소스로 이용하여 형성된 탄소계 물질일 수 있다.
상기 기타 유기물의 탄화물은 수크로오스, 글루코오스, 갈락토오스, 프록토오스, 락토오스, 마노스, 리보스, 알도헥소스 또는 케도헥소스의 탄화물 및 이들의 조합에서 선택되는 유기물의 탄화물일 수 있다.
상기 탄화수소는 치환 또는 비치환된 지방족 또는 지환식 탄화수소, 치환 또는 비치환된 방향족 탄화수소일 수 있다. 상기 지방족 또는 지환식 탄화수소는 메테인, 에테인, 에틸렌, 아세틸렌, 프로페인, 뷰태인, 뷰텐, 펜테인, 아이소뷰테인 또는 헥세인 등일 수 있다. 상기 치환 또는 비치환된 방향족 탄화수소의 방향족 탄화수소는 벤젠, 톨루엔, 자일렌, 스티렌, 에틸벤젠, 다이페닐메테인, 나프탈렌, 페놀, 크레졸, 나이트로벤젠, 클로로벤젠, 인덴, 쿠마론, 파이리딘, 안트라센 또는 페난트렌 등을 들 수 있다.
일 실시상태에 있어서, 상기 탄소층은 상기 실리콘계 산화물 입자 총 100 중량%를 기준으로 1 중량% 내지 50 중량%로 포함될 수 있으며, 구체적으로 5 중량% 내지 45 중량%로, 보다 구체적으로 8 중량% 내지 40 중량%로 포함될 수 있다. 상기 범위를 만족하는 경우 상기 음극 활물질의 도전성이 개선되며, 전지의 충전 및 방전 시 음극 활물질의 부피 변화가 용이하게 억제되어 전지의 수명 특성이 개선될 수 있다.
일 실시상태에 있어서, 상기 탄소층의 두께는 1 nm 내지 500 nm일 수 있고, 구체적으로 5 nm 내지 300 nm일 수 있다. 상기 범위를 만족하는 경우 상기 음극 활물질의 부피 변화가 용이하게 억제되며, 전해액과 음극 활물질의 부반응이 억제되어 전지의 수명 특성이 개선될 수 있다.
실리콘계 산화물 입자가 Mg 및/또는 Li를 포함하는 경우, 이는 실리콘계 산화물 입자에 Mg 및/또는 Li를 도핑하는 단계를 포함하는 방법에 의하여 제조될 수 있다.
예컨대, Mg를 포함하는 실리콘계 산화물 입자는 인시츄(in-situ) 도핑 방법을 이용할 수 있다. 하나의 예에서, 상기 Mg를 포함하는 실리콘계 산화물 입자를 제조하는 단계는, Si 분말 및 SiO2 분말을 혼합한 분말과 Mg을 각각 기화시킨 후 혼합하여 혼합 기체를 형성하는 단계 및 상기 혼합 기체를 800 ℃ 내지 950 ℃, 진공 상태에서 열처리하는 단계를 통하여 형성될 수 있다. 또 하나의 예로서, Mg를 포함하는 실리콘계 산화물 입자를 제조하는 단계는, Si 분말 및 SiO2 분말을 혼합한 분말과 Mg를 혼합한 후 이들을 모두 기화시켜 혼합 기체를 형성하는 단계; 및 상기 혼합 기체를 800 ℃ 내지 950 ℃, 진공 상태에서 열처리하는 단계를 통하여 형성될 수 있다.
상기 Si 분말 및 SiO2 분말의 혼합 분말은 1,000 ℃ 내지 1,800 ℃ 또는 1200 ℃ 내지 1500 ℃에서 열처리하여 기화시킬 수 있고, 상기 Mg 분말은 500 ℃ 내지 1,200 ℃ 또는 600 ℃ 내지 800 ℃에서 열처리하여 기화시킬 수 있다. 이와 같이 재료들이 기체 상태에서 반응하도록 함으로써 Mg가 실리콘계 산화물 입자 내에 균일하게 분포할 수 있다. 상기 실리콘계 산화물 입자 내에서, 상기 Mg 화합물 상은 전술한 Mg 실리케이트, Mg 실리사이드, Mg 산화물 등을 포함할 수 있다. 상기와 같은 방법에 의하여 제조된 Mg를 포함하는 실리콘계 산화물 입자는 필요에 따라 기계적 밀링 방법과 같은 분쇄 방법에 의하여 입경이 조절될 수 있다.
추가의 예로서, Li를 포함하는 실리콘계 산화물 입자는 엑스시츄(ex-situ) 도핑 방법에 의하여 수행될 수 있다. 예컨대, 실리콘계 산화물 입자에 Li를 분포시키는 단계는 실리콘계 산화물 입자의 표면에 탄소층을 형성하는 단계, 및 탄소층이 형성된 실리콘계 산화물 입자에 Li를 분포시키는 단계를 포함할 수 있다.
상기 실리콘계 산화물 입자의 표면에 탄소층을 형성하는 단계는 메탄 가스와 같은 탄소계 원료 가스를 주입하고, 회전 관상로에서 열처리를 수행하는 방법으로 수행될 수 있다. 구체적으로는, 상기 실리콘계 산화물 입자들을 회전 관상로에 투입하고, 온도를 3 내지 10 ℃/분의 속도로, 또는 약 5 ℃/분의 속도로 800 ℃ 내지 1,150 ℃, 또는 900 ℃ 내지 1,050 ℃, 또는 950 ℃ 내지 1,000 ℃까지 승온하고, 회전 관상로를 회전시키면서 아르곤 가스와 탄소계 물질 원료 가스를 흘려주며 30분 내지 8시간 동안 열처리를 행하여 탄소층을 형성할 수 있다.
상기 탄소층이 형성된 실리콘계 산화물 입자에 Li를 분포시키는 단계는 탄소층이 형성된 실리콘계 산화물 입자와 리튬 금속 분말 또는 리튬 전구체, 예컨대 LiOH, Li2O를 혼합하고, 필요한 경우 400 ℃ 내지 1200 ℃에서 열처리하여 수행될 수 있다. 또는, 상기 단계는 전기화학적 방법을 이용하여 수행할 수 있다.
필요에 따라, 전술한 Mg의 인시츄 도핑과 Li의 엑스시츄 도핑을 모두 수행하여 Mg 및 Li를 모두 포함하는 실리콘계 산화물 입자를 제조할 수도 있다.
일 예로서, 상기 방법은 실리콘 산화물 입자의 표면 중 적어도 일부에 탄소층을 형성하는 단계, 및 상기 탄소층이 형성된 실리콘 산화물 입자에 Mg 및 Li를 도핑하는 단계를 포함할 수 있다.
상기 탄소층을 형성하기 전 또는 후에, 실리콘계 산화물 입자는 필요에 따라 기계적 밀링 방법과 같은 분쇄 방법에 의하여 입경이 조절될 수 있다.
상기 실리콘계 산화물 입자의 표면에 탄소층을 형성하는 단계는 일 예로서 메탄 가스와 같은 탄소계 원료 가스를 주입하고, 회전 관상로에서 열처리를 수행하는 방법으로 수행될 수 있다. 구체적으로는, 상기 실리콘계 산화물 입자들을 회전 관상로에 투입하고, 온도를 3 내지 10 ℃/분의 속도로, 또는 약 5 ℃/분의 속도로 800 ℃ 내지 1,150 ℃, 또는 900 ℃ 내지 1,050 ℃, 또는 950 ℃ 내지 1,000 ℃까지 승온하고, 회전 관상로를 회전시키면서 아르곤 가스와 탄소계 물질 원료 가스를 흘려주며 30분 내지 8시간 동안 열처리를 행하여 탄소층을 형성할 수 있다.
상기 탄소층이 형성된 실리콘계 산화물 입자에 Li 및 Mg를 도핑하는 단계는 탄소층이 형성된 실리콘계 산화물 입자와 도핑재료, 예컨대 마그네슘 금속 분말 또는 마그네슘 전구체, 예컨대 MgO; 리튬 금속 분말 또는 리튬 전구체, 예컨대 LiOH, Li2O를 혼합하고, 필요한 경우 400 ℃ 내지 1200 ℃에서 열처리하여 수행될 수 있다. 또는, 상기 단계는 전기화학적 방법을 이용하여 수행할 수 있다.
본 발명의 또 하나의 실시상태에 따르면, 상기 실리콘계 산화물 입자의 평균 입경(D50)은 1 ㎛ 내지 30 ㎛일 수 있다. 상기 실리콘계 산화물 입자의 평균 입경(D50)은 구체적으로 3 ㎛ 내지 20 ㎛일 수 있고, 보다 구체적으로 5 ㎛ 내지 10 ㎛일 수 있다. 상기 범위를 만족하는 경우, 상기 음극 활물질과 전해액과의 부반응이 제어되며, 전지의 방전 용량 및 초기 효율이 효과적으로 구현될 수 있다. 본 명세서에서, 평균 입경(D50)은 입자의 입경 분포 곡선에 있어서, 체적 누적량의 50%에 해당하는 입경으로 정의할 수 있다. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.
본 발명의 또 하나의 실시상태에 따르면, 상기 실리콘계 산화물 입자의 BET 비표면적은 0.01 m2/g 내지 150 m2/g일 수 있다. 상기 실리콘계 산화물 입자의 BET비표면적은 바람직하게는 0.1 내지 100.0 m2/g, 특히 바람직하게는 0.2 m2/g 내지 80.0 m2/g, 구체적으로 0.6 m2/g 내지 20 m2/g일 수 있으며, 보다 구체적으로 0.8 m2/g 내지 15 m2/g일 수 있다. 상기 범위를 만족할 시 전지의 충전 및 방전 시 전해액과 상기 음극 활물질의 부반응이 감소할 수 있어서 전지의 수명 특성이 개선될 수 있다. BET 표면적은 BET(Brunauer-Emmett-Teller; BET)법으로 측정할 수 있다. 예를 들어, 기공분포 측정기(Porosimetry analyzer; Bell Japan Inc, Belsorp-Ⅱ mini)를 사용하여 질소 가스 흡착 유통법에 의해 BET 6점법으로 측정할 수 있다.
본 발명의 또 하나의 실시상태에 따르면, 상기 실리콘계 산화물 입자는 Si 결정립을 더 포함할 수 있다. 상기 Si 결정립은 입경이 1 nm 내지 15 nm일 수 있다.
본 출원의 추가의 실시상태에 따르면, 전술한 실시상태에 따른 리튬이차전지에 있어서, 상기 음극 활물질은 탄소계 활물질을 더 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 음극 활물질은 탄소계 활물질을 포함할 수 있으며, 구체적으로 상기 탄소계 활물질은 그래파이트일 수 있다. 상기 그래파이트는 천연 그래파이트, 흑연 그래파이트 또는 이들의 혼합물일 수 있다. 상기 음극 활물질층에 포함되는 총 음극 활물질 100 중량부 기준 상기 탄소계 활물질은 0 중량부 초과 85 중량부 이하로 포함될 수 있다.
본 출원의 추가의 실시상태에 따르면, 전술한 실시상태에 따른 리튬이차전지에 있어서, 상기 음극 활물질층은 실리콘계 산화물 및 탄소계 활물질 외에 추가로 음극 바인더를 더 포함할 수 있다.
상기 음극 바인더로는 음극 활물질 입자들 간의 부착 및 음극 활물질 입자들과 음극 집전체와의 접착력을 향상시키는 역할을 할 수 있다. 상기 음극 바인더로는 당 기술분야에 알려진 것들을 사용할 수 있으며, 비제한적인 예로는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 물질로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 또한 이들의 다양한 공중합체를 포함할 수 있다.
상기 음극 바인더는 상기 음극 활물질층 100 중량부 기준 0.1 중량부 이상 50 중량부 이하로 포함될 수 있으며, 예컨대 바람직하게는 0.3 중량부 이상 35 중량부 이하, 더욱 바람직하게는 0.5 중량부 이상 20 중량부 이하로 포함될 수 있다.
상기 음극 활물질층은 도전재를 더 포함할 수 있다. 상기 음극 활물질층에 포함되는 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 상기 음극 활물질층 중의 도전재의 함량은 음극 활물질층 100 중량부 대비 0.01 중량부 내지 30 중량부, 바람직하게는 0.1 중량부 내지 5 중량부일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 양극은 양극 집전체 및 상기 양극 집전체 상에 형성되며, 상기 양극활물질을 포함하는 양극 활물질층을 포함한다.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 1 ㎛ 내지 500 ㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 되고, 특별히 제한되는 것은 아니다. 예를 들어, 상기 집전체로는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 구체적으로는, 구리, 니켈과 같은 탄소를 잘 흡착하는 전이 금속을 집전체로 사용할 수 있다. 상기 집전체의 두께는 1 ㎛ 내지 500 ㎛일 수 있으나, 상기 집전체의 두께가 이에 제한되는 것은 아니다.
본 출원의 일 실시상태에 있어서, 상기 양극 및 음극 활물질층의 두께는 20 ㎛ 이상 500 ㎛ 이하, 바람직하게는 50 ㎛ 이상 200 ㎛ 이하일 수 있다. 양극 활물질층의 두께는 음극 활물질층의 두께의 90% 내지 110%, 예컨대 95% 내지 105%일 수 있으며, 이들의 두께는 동일할 수 있다.
본 출원의 일 실시상태에 있어서, 양극의 효율(C)과 음극의 효율(A)의 비(C/A)는 1 이하, 바람직하게는 1 미만일 수 있다. 상기 비(C/A)는 0.8 이상, 바람직하게는 0.9 이상, 더욱 바람직하게는 0.95 이상, 예컨대 0.96 이상, 또는 0.97 이상일 수 있다. 또한, 본 출원의 일 실시상태에 있어서, 양극의 효율(C)과 음극의 효율(A)의 차이는 10% 이하일 수 있으며, 예컨대 5% 이하, 또는 3% 이하일 수 있다. 또한, 본 출원의 일 실시상태에 있어서, 양극의 효율(C)과 음극의 효율(A)은 각각 80% 이상인 것이 바람직하며, 83% 이상인 것이 더욱 바람직하며, 85% 이상인 것이 더더욱 바람직하다. 상기와 같은 양극 및 음극 효율을 갖는 경우, 양극 비가역용량이 더 크면서도 초기부터 목표로 하는 고용량 발현이 가능할 수 있다.
본 출원의 일 실시상태에 있어서, 양극 활물질 100 중량부 대비 화학식 A로 표시되는 첨가제의 함량(AA)과 음극 활물질 100 중량부 대비 실리콘계 산화물의 함량(BB)의 비(AA/BB)은 0.01 내지 0.1일 수 있으며, 더욱 바람직하게는 0.015 내지 0.06, 더욱 바람직하게는 0.02 내지 0.04일 수 있다.
상기 분리막으로는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
상기 전해질은 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 비수계 유기용매와 금속염을 포함할 수 있다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라하이드로푸란, 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해질을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
상기 금속염은 리튬염을 사용할 수 있고, 상기 리튬염은 상기 비수 전해액에 용해되기 좋은 물질로서, 예를 들어, 상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다.
본 발명의 일 실시상태에 따른 리튬이차전지는 원통형 전지일 수 있다. 상기 원통형 전지는 양극, 음극, 분리막 및 전해질을 포함하는 조립체가 포함되어 있는 전지 자체의 형태가 원통형이라는 것을 의미하는 것일 수 있으며, 구체적으로 원통형 캔, 원통형 캔 내부에 구비된 전지 조립체 및 탑 캡으로 구성될 수 있다. 파우치 대비 가스량에 더 자유로운 원통형 전지에 사용하는 것이 바람직하지만, 이에 한정되는 것은 아니다.
본 발명의 추가의 실시상태는 전술한 원통형 전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지 팩을 제공한다. 상기 전지 모듈 및 전지 팩은 고용량, 높은 율속 특성 및 사이틀 특성을 갖는 상기 이차 전지를 포함하므로, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 중대형 디바이스의 전원으로 이용될 수 있다.
본 발명의 실시상태들에 따른 리튬이차전지는 우수한 방전 용량, 출력 특성 및 사이클 성능을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기,
뿐만 아니라 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 중대형 디바이스의 전원으로 이용될 수 있다. 예컨대, 상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 상기 실시예는 본 기재를 예시하는 것일 뿐 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.
<실시예 1>
양극 활물질층 100 중량부를 기준으로, 양극 활물질로서 리튬을 제외한 금속 중 Ni 93.3 몰%, Co 4.9 몰%, Mn 1.8 몰%의 함량을 갖고 단입자 형태인 리튬 복합 전이금속 화합물 및 Li6Co0.7Zn0.25Al0.05O4 첨가제(양극 활물질 100 중량부를 기준으로 0.5 중량부) 98.04 중량부, 바인더로서 PVDF 1 중량부, 및 도전재로 CNT 0.8 중량부와 분산제 0.16 중량부를 포함하는 CNT 선분산액을 포함하는 양극 활물질층 형성용 조성물을, 두께 30 ㎛의 알루미늄 호일 상에 건조 상태의 두께 103 ㎛가 되도록 코팅한 후 건조하여 양극을 제조하였다.
음극 활물질층 100 중량부를 기준으로, 음극 활물질로서 인조흑연 및 천연흑연(7:3 중량비, 음극 활물질 100 중량부를 기준으로 85 중량부)와 실리콘계 산화물인 SiO(음극 활물질 100 중량부를 기준으로 15 중량부)를 97.7 중량부, 바인더로서 SBR(styrene-butadiene rubber) 1.15 중량부와 CMC(carboxymethyl cellulose) 1 중량부를 포함하고, 이에 더하여 분산제 0.09 중량부 및 단일벽 CNT 0.06 중량부를 포함하는 CNT 선분산액을 포함하는 음극 활물질층 형성용 조성물을, 두께 15 ㎛의 구리 호일 상에 건조 상태의 두께 86 ㎛가 되도록 코팅한 후 건조하여 음극을 제조하였다.
상기 양극과 음극을 세퍼레이터를 사이에 두고 적층하고 전해액(1.4M LiPF6, EC(ethylene carbonate)/EMC(ethylmethyl carbonate)/DMC(dimethyl carbonate)=20/5/75 (Vol%), SN(succinonitrile) 1 %, FEC(fluoroethylene carbonate) 10%)을 주입하여 전지를 제작하였다.
양극 전극 효율이 약 86%가 되도록 상기 첨가제의 함량을 양극 활물질 100 중량부를 기준으로 0.5 중량부로 설정하고, 이를 포함하는 상기 양극 활물질층 형성용 조성물로 양극 슬러리를 제조한 후 40℃, RH 10% 환경에 보관함에 따른 슬러리 점도를 측정하여, 그 결과를 표 1에 나타내었다.
<실시예 2>
음극 활물질 100 중량부를 기준으로 실리콘계 산화물인 SiO 10 중량부를 포함하는 것을 제외하고는, 실시예 1과 동일한 방법으로 음극을 제조하였다.
<실시예 3>
음극 활물질 100 중량부를 기준으로 실리콘계 산화물인 SiO 20 중량부를 포함하는 것을 제외하고는, 실시예 1과 동일한 방법으로 음극을 제조하였다.
<비교예 1>
양극 활물질층에 포함되는 첨가제가 LiNiO2(양극 활물질 100 중량부를 기준으로 2 중량부)인 것을 제외하고는, 실시예 1과 동일한 방법으로 양극을 제조하였다.
양극 전극 효율이 약 86%가 되도록 LiNiO2의 함량을 양극 활물질 100 중량부를 기준으로 2 중량부로 설정하고, 실시예 1과 동일한 방법으로 슬러리 점도를 측정하여, 그 결과를 표 1에 나타내었다.
0일 1일 2일 3일
비교예 1 4,600 cps 8,200 cps 15,000 cps gelation
실시예 1 4,100 cps 5,000 cps 6,180 cps 6,900 cps
표 1을 참조하면, 실시예 1은 본 발명에 따른 화학식 A로 표시되는 첨가제를 포함하는 것으로, 양극 활물질층 형성용 조성물로 양극 슬러리를 제조한 후 40℃, RH 10% 환경에서 보관 3일차까지 점도가 10,000 cps를 초과하거나 겔화(gelation)되지 않고, 10,000 cps 이하의 점도 범위를 유지하여 슬러리 안정성에 유리함을 확인할 수 있었다.
반면, 비교예 1은 본 발명에 따른 화학식 A로 표시되는 첨가제가 아닌 LiNiO2를 포함하는 것으로, 양극 활물질층 형성용 조성물로 양극 슬러리를 제조한 후 40℃, RH 10% 환경에서 보관 2일차의 점도가 10,000 cps를 초과하였고, 보관 3일차에는 겔화(gelation)되는 것을 확인할 수 있었다. LiNiO2의 경우 급격한 점도 상승으로 점도가 10,000 cps를 초과하고, 겔화(gelation)가 발생함을 확인할 수 있는데, 이는 전극 제조 시 공정성에 영향을 줄 수 있으므로, 슬러리 안정성에 문제가 될 수 있다.
<비교예 2>
양극 활물질로서 리튬을 제외한 금속 중 Ni 93.3 몰%, Co 4.9 몰%, Mn 1.8 몰%의 함량을 갖고 이차입자 형태인 리튬 복합 전이금속 화합물을 포함하는 것을 제외하고는, 실시예 1과 동일한 방법으로 양극을 제조하였다.
<비교예 3>
양극 활물질로서 리튬을 제외한 금속 중 Ni 60 몰%, Co 20 몰%, Mn 20 몰%의 함량을 갖는 것을 제외하고는, 실시예 1과 동일한 방법으로 양극을 제조하였다.
실시예 1 내지 3, 비교예 2 및 3에 대한 리튬 복합 전이금속 화합물의 형태 및 실리콘계 산화물인 SiO의 함량(음극 활물질 100 중량부를 기준)을 표 2에 기재하였다.
양극 음극 설계 용량
실시예 1 단입자 양극재(Ni 93.3 몰%) +
LCZAO 0.5%
SiO 15% (Gr 85%) Target
실시예 2 SiO 10% (Gr 90%) -5% (vs. Target)
실시예 3 SiO 20% (Gr 80%)
비교예 2 이차입자 양극재(Ni 93.3 몰%) +
LCZAO 0.5%
SiO 15% (Gr 85%)
비교예 3 단입자 양극재(Ni 60 몰%) +
LCZAO 0.5%
SiO 15% (Gr 85%) -14% (vs. Target)
표 2를 참조하면, 본 발명에 따른 실시예 1은 음극 활물질 100 중량부를 기준으로 실리콘계 산화물인 SiO 15 중량부 및 그래파이트 85 중량부를 포함하고, 실시예 2는 실리콘계 산화물인 SiO 10 중량부 및 그래파이트 90 중량부를 포함한다. 실시예 1은 실시예 2 대비 설계 용량이 5% 증가되는 것을 확인할 수 있으며, 음극 활물질 중 실리콘계 산화물인 SiO 함량이 15 중량부 미만인 경우 리튬이차전지의 설계 용량이 감소되는 것을 알 수 있다.
한편, 비교예 3은 실시예 1 대비 설계 용량이 14% 감소되는 것을 확인할 수 있다. 이로써, 양극 활물질 중 니켈이 60 몰%인 경우 상기 니켈이 93.3 몰%인 경우 대비 리튬이차전지의 설계 용량이 14% 감소되는 것을 알 수 있다.
또한, 실시예 1, 3 및 비교예 2에서 제조된 전지에 대해 55 ℃에서 충·방전을 수행하여, 용량 유지율을 평가하였고, 상기 제조된 전지의 55 ℃ 사이클 그래프를 하기 도 1에 나타내었다.
충전 조건: 0.25C 4.2V, 250mA cut-off at 55℃
방전 조건: 1/3C 2.5V, cut-off at 55℃
용량 유지율은 각각 다음과 같은 계산에 의해 도출되었다.
용량 유지율(%) = (N회 방전 용량 / 1회 방전 용량)×100
도 1은 55 ℃에서 충·방전을 수행한 55 ℃ 사이클 그래프로서, 사이클 수(N)-용량 유지율(%) 곡선을 나타낸 것으로, 상기 55 ℃ 사이클 진행 시 80% 용량 유지율은 만족해야 한다.
실시예 1은 본 발명에 따른 양극 활물질로서 리튬을 제외한 금속 중 Ni 93.3 몰%, Co 4.9 몰%, Mn 1.8 몰%의 함량을 갖고 단입자 형태인 리튬 복합 전이금속 화합물을 포함하는 것으로, 양극 활물질로서 리튬을 제외한 금속 중 Ni 93.3 몰%, Co 4.9 몰%, Mn 1.8 몰%의 함량을 갖고 이차입자 형태인 리튬 복합 전이금속 화합물을 포함하는 비교예 2 대비 55 ℃ 사이클 진행 시 용량 유지율이 높게 유지되는 우수한 결과를 확인할 수 있었다. 반면, 비교예 2의 경우 사이클 진행에 따라 양극 효율 및 음극 효율의 균형이 깨지면서 음극 사용량이 증가함에 따라 용량 유지율이 급격하게 저하되어 사이클 성능이 저하되는 것으로 해석할 수 있다.
실시예 1은 음극 활물질 100 중량부를 기준으로 실리콘계 산화물인 SiO 20 중량부 및 그래파이트 80 중량부를 포함하는 실시예 3 대비 55 ℃ 사이클 진행 시 fading 되지 않는 결과를 확인할 수 있다. 이는, SiO 함량이 비교적 높은 경우 음극 SiO 함량에 증가에 따른 소재의 영향으로 음극 효율이 감소하게 되고, 사이클 진행에 따라 음극을 상대적으로 더 많이 사용하게 되어 사이클 성능이 저하되는 것으로 해석할 수 있다.

Claims (14)

  1. 니켈, 코발트 및 망간을 포함하고, 리튬을 제외한 금속 중 니켈을 80 몰% 이상 100 몰% 미만 포함하고, 단입자(single particle) 형태인 리튬 복합 전이금속 화합물을 포함하는 양극 활물질; 및
    하기 화학식 A로 표시되는 첨가제
    를 포함하는 리튬이차전지 양극 활물질층용 조성물:
    [화학식 A]
    LixCo(1-y-z-m)ZnyAlzMmO4
    상기 화학식 A에 있어서,
    M은 Ti, Zr, Mn 또는 Ni이고, 5 ≤ x ≤ 7, 0 < y ≤ 0.5, 0 < z ≤ 0.5, 0 < y+z+m < 1, 0 ≤ m ≤ 0.5이다.
  2. 청구항 1에 있어서, 상기 첨가제는 상기 양극 활물질 100 중량부 대비 0.3 내지 10 중량부로 포함되는 것인 리튬이차전지 양극 활물질층용 조성물.
  3. 청구항 1에 있어서, 상기 니켈, 코발트 및 망간을 포함하고, 리튬을 제외한 금속 중 니켈을 80 몰% 이상 100 몰% 미만 포함하고, 단입자 형태인 리튬 복합 전이금속 화합물은 총 양극 활물질 100 중량부 대비 90 중량부 내지 100 중량부로 포함되는 것인 리튬이차전지 양극 활물질층용 조성물.
  4. 청구항 1에 있어서, 양극 바인더 및 도전재를 더 포함하는 리튬이차전지 양극 활물질층용 조성물.
  5. 청구항 1에 있어서, 상기 양극 활물질층용 조성물은 40℃, RH 10% 에서 3일 보관 시의 점도가 10,000 cps 이하인 것인 양극 활물질층용 조성물.
  6. 양극 집전체; 및
    상기 양극 집전체 상에 구비되고, 청구항 1 내지 5 중 어느 한 항에 따른 양극 활물질층용 조성물을 포함하는 양극 활물질층
    을 포함하는 리튬이차전지 양극.
  7. 양극; 음극; 상기 양극과 음극 사이에 구비된 분리막; 및 전해질을 포함하는 리튬이차전지로서,
    상기 양극은 양극 집전체 및 상기 양극 집전체 상에 구비된 양극 활물질층을 포함하고, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 구비된 음극 활물질층을 포함하며,
    상기 양극 활물질층은 청구항 1 내지 5 중 어느 한 항에 따른 양극 활물질층용 조성물을 포함하는 것인 리튬이차전지.
  8. 청구항 7에 있어서, 상기 음극 활물질층은 총 음극 활물질 100 중량부 대비 15 중량부 이상의 실리콘계 산화물을 포함하는 것인 리튬이차전지.
  9. 청구항 8에 있어서, 상기 음극 활물질층은 탄소계 활물질을 더 포함하는 것인 리튬이차전지.
  10. 청구항 8에 있어서, 상기 실리콘계 산화물은 Mg 및 Li 중 적어도 하나를 포함하는 것인 리튬이차전지.
  11. 청구항 9에 있어서, 상기 음극 활물질층은 음극 바인더 및 도전재를 더 포함하는 리튬이차전지.
  12. 청구항 7에 있어서, 상기 리튬이차전지가 원통형 전지인 것인 리튬이차전지.
  13. 청구항 7에 따른 리튬이차전지를 포함하는 전지 모듈.
  14. 청구항 13의 전지 모듈을 포함하는 전지 팩.
PCT/KR2022/018340 2021-11-19 2022-11-18 양극 활물질층용 조성물 및 리튬이차전지 WO2023090950A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22896147.0A EP4336585A1 (en) 2021-11-19 2022-11-18 Composition for cathode active material layer, and lithium secondary battery
CN202280035555.2A CN117321788A (zh) 2021-11-19 2022-11-18 正极活性材料层用组合物和锂二次电池
CA3222014A CA3222014A1 (en) 2021-11-19 2022-11-18 Composition for cathode active material layer, and lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0160759 2021-11-19
KR20210160759 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023090950A1 true WO2023090950A1 (ko) 2023-05-25

Family

ID=86397476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018340 WO2023090950A1 (ko) 2021-11-19 2022-11-18 양극 활물질층용 조성물 및 리튬이차전지

Country Status (5)

Country Link
EP (1) EP4336585A1 (ko)
KR (1) KR20230074013A (ko)
CN (1) CN117321788A (ko)
CA (1) CA3222014A1 (ko)
WO (1) WO2023090950A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6121454B2 (ja) * 2013-01-31 2017-04-26 三洋電機株式会社 非水電解質二次電池用正極及び非水電解質二次電池
KR20170063408A (ko) * 2015-11-30 2017-06-08 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
JP6428647B2 (ja) * 2014-01-31 2018-11-28 三洋電機株式会社 非水電解質二次電池及び非水電解質二次電池の製造方法
KR20210119905A (ko) * 2020-03-25 2021-10-06 삼성에스디아이 주식회사 양극 활물질, 이를 포함한 양극 및 리튬이차전지
KR102327532B1 (ko) * 2018-11-20 2021-11-17 주식회사 엘지화학 리튬 이차전지용 양극 활물질 및 이의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6121454B2 (ja) * 2013-01-31 2017-04-26 三洋電機株式会社 非水電解質二次電池用正極及び非水電解質二次電池
JP6428647B2 (ja) * 2014-01-31 2018-11-28 三洋電機株式会社 非水電解質二次電池及び非水電解質二次電池の製造方法
KR20170063408A (ko) * 2015-11-30 2017-06-08 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR102327532B1 (ko) * 2018-11-20 2021-11-17 주식회사 엘지화학 리튬 이차전지용 양극 활물질 및 이의 제조 방법
KR20210119905A (ko) * 2020-03-25 2021-10-06 삼성에스디아이 주식회사 양극 활물질, 이를 포함한 양극 및 리튬이차전지

Also Published As

Publication number Publication date
KR20230074013A (ko) 2023-05-26
CN117321788A (zh) 2023-12-29
CA3222014A1 (en) 2023-05-25
EP4336585A1 (en) 2024-03-13

Similar Documents

Publication Publication Date Title
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2021029652A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019151774A1 (ko) 음극 활물질, 상기 음극 활물질의 제조 방법, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2020036397A1 (ko) 음극활물질, 이의 제조방법 및 이를 포함하는 음극을 구비한 리튬 이차전지
WO2018221827A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2021187907A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2019093830A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019093820A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2022055309A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019066129A2 (ko) 복합음극활물질, 이의 제조 방법 및 이를 포함하는 음극을 구비한 리튬이차전지
WO2019050216A2 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2021112606A1 (ko) 리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법
WO2019093825A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2020180125A1 (ko) 리튬 이차전지
WO2023090950A1 (ko) 양극 활물질층용 조성물 및 리튬이차전지
WO2023090948A1 (ko) 양극 활물질층용 조성물 및 리튬이차전지
WO2022080979A1 (ko) 음극 및 이의 제조방법
WO2020138629A1 (ko) 복합 음극활물질, 이의 제조 방법, 및 이를 포함한 음극을 구비한 리튬 이차 전지
WO2023106856A1 (ko) 리튬이차전지
WO2024019429A1 (ko) 음극 활물질, 이를 포함하는 음극, 이를 포함하는 이차전지 및 음극 활물질의 제조방법
WO2023018190A1 (en) Negative electrode active material, and negative electrode and secondary battery including same
WO2023106834A1 (ko) 리튬 이차 전지
WO2023033370A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지 및 상기 음극 활물질의 제조 방법
WO2023018218A1 (ko) 음극 활물질, 음극 슬러리, 음극 및 이차 전지
WO2024101947A1 (ko) 음극 활물질, 이를 포함하는 음극, 이를 포함하는 이차전지 및 음극 활물질의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22896147

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280035555.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023572238

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022896147

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3222014

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18570570

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022896147

Country of ref document: EP

Effective date: 20231207