WO2021112606A1 - 리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법 - Google Patents

리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법 Download PDF

Info

Publication number
WO2021112606A1
WO2021112606A1 PCT/KR2020/017599 KR2020017599W WO2021112606A1 WO 2021112606 A1 WO2021112606 A1 WO 2021112606A1 KR 2020017599 W KR2020017599 W KR 2020017599W WO 2021112606 A1 WO2021112606 A1 WO 2021112606A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
transition metal
lithium
positive electrode
metal oxide
Prior art date
Application number
PCT/KR2020/017599
Other languages
English (en)
French (fr)
Inventor
백소라
한기범
이상욱
김학윤
한정민
정왕모
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US17/778,475 priority Critical patent/US20220416238A1/en
Priority to CN202080080253.8A priority patent/CN114730872A/zh
Priority to JP2022528132A priority patent/JP2023501681A/ja
Priority to EP20895599.7A priority patent/EP4047693A4/en
Publication of WO2021112606A1 publication Critical patent/WO2021112606A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/53Particles with a specific particle size distribution bimodal size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material for a lithium secondary battery, a method for manufacturing the cathode active material, a cathode and a lithium secondary battery including the cathode active material.
  • a lithium transition metal composite oxide is used as a cathode active material of a lithium secondary battery, and among them, a lithium cobalt composite metal oxide such as LiCoO 2 having a high operating voltage and excellent capacity characteristics is mainly used.
  • LiCoO 2 has very poor thermal properties due to the destabilization of the crystal structure due to delithiation.
  • the LiCoO 2 is expensive, there is a limit to its mass use as a power source in fields such as electric vehicles.
  • LiMnO 2 or LiMn 2 O 4, etc. lithium manganese composite metal oxide
  • LiFePO 4 etc. lithium iron phosphate compound
  • LiNiO 2 etc. lithium nickel composite metal oxide
  • the LiNiO 2 has inferior thermal stability compared to LiCoO 2 , and when an internal short circuit occurs due to external pressure in a charged state, the positive active material itself is decomposed, causing rupture and ignition of the battery. Accordingly, as a method for improving low thermal stability while maintaining excellent reversible capacity of the LiNiO 2 , a lithium transition metal oxide in which a part of Ni is substituted with Co, Mn or Al has been developed.
  • the lithium transition metal oxide substituted with Co, Mn or Al as described above still has poor thermal stability, when it is applied to a battery, there is a problem in that the high temperature lifespan characteristics and storage characteristics are inferior.
  • Patent Document 1 Republic of Korea Patent No. 10-2004457
  • a first technical object of the present invention is to provide a positive electrode active material capable of improving high temperature lifespan characteristics and high temperature storage characteristics by controlling primary particle size and crystal size.
  • a second technical object of the present invention is to provide a method of manufacturing the positive active material.
  • a third technical object of the present invention is to provide a positive electrode including the positive electrode active material.
  • a fourth technical object of the present invention is to provide a lithium secondary battery including the positive electrode.
  • the present invention has a form of secondary particles formed by agglomeration of primary particles, and includes a lithium transition metal oxide represented by the following Chemical Formula 1, and the crystal grain size of the lithium transition metal oxide is 160 nm or less, and the primary particles It provides a positive electrode active material having an average particle diameter of 0.6 ⁇ m or more.
  • M 1 is to include at least one of Mn and Al, 0 ⁇ a ⁇ 0.5, 0.5 ⁇ x ⁇ 1.0, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4, 0 ⁇ w ⁇ 0.1 being.
  • the present invention comprises the steps of preparing a transition metal hydroxide precursor; And a transition metal hydroxide precursor, lithium raw material and boron (B)-containing raw material mixed and calcined at 760 ° C. to 840 ° C. to prepare boron (B)-doped lithium transition metal oxide;
  • the boron (B)-doped lithium transition metal oxide is represented by Chemical Formula 1, has a grain size of 160 nm or less, and an average particle diameter of primary particles of 0.6 ⁇ m or more.
  • the present invention provides a positive electrode for a lithium secondary battery comprising the positive active material.
  • the present invention provides a lithium secondary battery including the positive electrode for the lithium secondary battery.
  • the crystal size of the lithium transition metal oxide is small and the primary particles are large by doping boron and calcining at a specific temperature when preparing the lithium transition metal oxide.
  • 'crystalline' means a single crystal grain unit having a regular atomic arrangement.
  • the 'primary particle' means a minimum particle unit that is distinguished into one lump when the cross section of the positive electrode active material is observed through a scanning electron microscope (SEM), and may consist of one crystal grain, or a plurality of It may be made up of crystal grains.
  • SEM scanning electron microscope
  • the average particle diameter of the primary particles was measured by measuring the respective particle sizes distinguished in the cross-sectional SEM image of the positive active material particles, and then calculating their arithmetic average values.
  • 'secondary particles' means a secondary structure formed by aggregation of a plurality of primary particles.
  • the average particle diameter of the secondary particles may be measured using a particle size analyzer, and in the present invention, Microtrac's s3500 was used as the particle size analyzer.
  • the “particle diameter Dn” of the positive active material means the particle diameter at n% of the cumulative volume distribution according to the particle diameter. That is, D50 is the particle size at the 50% point of the cumulative volume distribution according to the particle size, D90 is the particle size at the 90% point of the cumulative volume distribution according to the particle size, and D10 is the particle size at the 10% point of the cumulative volume distribution according to the particle size. is the size The Dn may be measured using a laser diffraction method.
  • the powder to be measured in the dispersion medium After dispersing the powder to be measured in the dispersion medium, it is introduced into a commercially available laser diffraction particle size measuring device (for example, Microtrac S3500) to measure the diffraction pattern difference according to the particle size when the particles pass through the laser beam.
  • a commercially available laser diffraction particle size measuring device for example, Microtrac S3500
  • D10, D50, and D90 can be measured by calculating the particle diameter at the point used as 10%, 50%, and 90% of the cumulative volume distribution according to the particle diameter in a measuring apparatus.
  • the present inventors have completed the present invention by finding that the high temperature lifespan characteristics, high temperature storage characteristics and gas generation characteristics of the positive electrode active material can be improved by controlling the primary particle size and grain size of the lithium transition metal oxide to a specific range.
  • the positive electrode active material according to the present invention includes a lithium transition metal oxide having a secondary particle form formed by aggregation of primary particles, a crystal grain size of 160 nm or less, and an average particle diameter of the primary particles of 0.6 ⁇ m or more.
  • the lithium transition metal oxide may be a lithium transition metal oxide doped with boron (B), in which the mole ratio of nickel to the total moles of transition metal is 50 mol% or more, preferably 60 mol% or more.
  • the lithium transition metal oxide may be represented by the following formula (1).
  • M 1 is at least one of Mn and Al, and preferably Mn or a combination of Mn and Al.
  • 1+a represents the molar ratio of lithium in the lithium transition metal oxide, and may be 0 ⁇ a ⁇ 0.5, preferably 0 ⁇ a ⁇ 0.2, more preferably 0 ⁇ a ⁇ 0.1.
  • the x represents the molar ratio of nickel among the total transition metal elements in the lithium transition metal oxide, and may be 0.5 ⁇ x ⁇ 1.0, preferably 0.6 ⁇ x ⁇ 0.98, more preferably 0.6 ⁇ x ⁇ 0.95.
  • the y represents the molar ratio of cobalt among all transition metal elements in the lithium transition metal oxide, and may be 0 ⁇ y ⁇ 0.4, preferably 0 ⁇ y ⁇ 0.3, more preferably 0.05 ⁇ y ⁇ 0.3.
  • the z represents the molar ratio of the M 1 element among the total transition metal elements in the lithium transition metal oxide, and may be 0 ⁇ z ⁇ 0.4, preferably 0 ⁇ z ⁇ 0.3, more preferably 0.01 ⁇ z ⁇ 0.3.
  • w represents the molar ratio of boron in the lithium transition metal oxide, 0 ⁇ w ⁇ 0.1, preferably 0 ⁇ w ⁇ 0.05, more preferably 0 ⁇ w ⁇ 0.02.
  • the lithium transition metal oxide according to the present invention may be prepared by mixing a cathode active material precursor, a lithium raw material and a boron-containing raw material and then sintering.
  • boron-containing raw materials are added during calcination, boron (B) lowers the reaction temperature between the cathode active material precursor and the lithium raw material, so calcination can be performed at a relatively low temperature, and grain growth is suppressed due to the low calcination temperature Thus, a lithium transition metal oxide having a small grain size can be obtained.
  • boron (B) serves as a catalyst for accelerating the reaction between the cathode active material precursor and the lithium raw material to promote primary particle growth, and boron under the same firing conditions It is possible to obtain a lithium transition metal oxide having a larger primary particle size than the positive active material prepared without adding .
  • the lithium transition metal oxide may have an average particle diameter of the primary particles of 0.6 ⁇ m or more, preferably 0.6 ⁇ m to 1.3 ⁇ m, and more preferably 0.6 ⁇ m to 1.0 ⁇ m.
  • the average particle diameter of the primary particles satisfies the above range, breakage of particles is suppressed in the process of producing a positive electrode or charging and discharging a battery, thereby effectively suppressing deterioration of high-temperature storage characteristics and generation of a large amount of gas caused by fine powder in the positive electrode. have.
  • the lithium transition metal oxide may have a grain size of 160 nm or less, preferably 100 nm to 160 nm.
  • the crystal grain size of the lithium transition metal oxide satisfies the above-mentioned range, the generation of cracks in the positive active material generated during the charging and discharging process is minimized to increase the capacity retention rate according to the cycle progress, and the high temperature due to suppressing the resistance increase rate Lifespan characteristics can be improved.
  • the lithium transition metal oxide may represent a secondary particle form formed by agglomeration of primary particles.
  • the cathode active material contains lithium transition metal oxide in the form of secondary particles as described above, the contact interface between the cathode active material and the electrolyte is widened and the distance between lithium ions in the cathode active material is shortened, so that high capacity and high output characteristics can be achieved. have.
  • the positive active material may include 0.02 to 0.3 parts by weight of boron (B), preferably 0.05 to 0.2 parts by weight, based on 100 parts by weight of the lithium transition metal oxide represented by Formula 1 above.
  • boron (B) is included in the above-described range, the average particle diameter of the primary particles of the lithium transition metal oxide can be controlled in a desired range without lowering the energy density.
  • the content of doped boron (B) is less than the above-mentioned range, since the growth of primary particles is insignificant, it is easy to generate fine powder due to particle breakage in the process of producing a positive electrode or charging and discharging a battery, and thus, it is applied to a battery During the operation, high-temperature storage characteristics may be deteriorated, and a large amount of gas may be generated, which may cause a swelling phenomenon.
  • the content of boron (B) exceeds the above-mentioned range, the energy density of the positive electrode active material may be lowered due to the addition of an excessive doping element.
  • the positive active material may include two kinds of lithium transition metal oxides having different average particle diameters D 50 of secondary particles. That is, the bimodal grain size distribution of the positive electrode active material according to the invention comprises a large substituting the secondary average particle diameter D 50 of the particle diameter of lithium transition metal oxide and the mean particle diameter D 50 is less small particle size lithium transition metal oxide of a secondary particle may have
  • the large particle size lithium transition metal oxide and the small particle size lithium transition metal oxide may each independently have a composition represented by Formula 1, and the composition of the large particle size lithium transition metal oxide and the small particle size lithium transition metal oxide may be the same or different from each other. However, it is more preferable that the composition of the large particle size lithium transition metal oxide and the small particle size lithium transition metal oxide is the same.
  • the average particle diameter (D 50 ) of the secondary particles of the large particle diameter lithium transition metal oxide may be 7 ⁇ m to 20 ⁇ m, preferably 8 ⁇ m to 18 ⁇ m, more preferably 8 ⁇ m to 16 ⁇ m, and Particle Size
  • the secondary particle average particle diameter (D 50 ) of the lithium transition metal oxide may be 1 ⁇ m to 7 ⁇ m, preferably 3 ⁇ m to 7 ⁇ m, and more preferably 3 ⁇ m to 6 ⁇ m.
  • the method for manufacturing a cathode active material according to the present invention includes (1) preparing a transition metal hydroxide precursor and (2) mixing a transition metal hydroxide precursor, a lithium raw material, and a boron (B)-containing raw material at 760° C. to 840° C. By calcining in the boron (B) - comprising the step of preparing a doped lithium transition metal oxide.
  • the boron (B)-doped lithium transition metal oxide is a lithium transition metal oxide represented by Chemical Formula 1, having a crystal grain size of 160 nm or less, and having an average particle diameter of the primary particles of 0.6 ⁇ m or more. Since the lithium transition metal oxide is the same as that described above, a detailed description thereof will be omitted.
  • a transition metal hydroxide precursor is prepared (first step).
  • the transition metal hydroxide precursor may be a transition metal hydroxide containing nickel, cobalt, and a metal element M 1 (in this case, M 1 is to include at least any one or more of Mn and Al), preferably transition
  • M 1 is to include at least any one or more of Mn and Al
  • the molar ratio of nickel to the total number of moles of transition metals in the metal hydroxide may be 50 mol% or more, preferably 60 mol% or more.
  • the transition metal hydroxide precursor may be used by purchasing a commercially available precursor for a positive electrode active material, or may be prepared according to a method for preparing a precursor for a positive electrode active material well known in the art.
  • the transition metal hydroxide precursor may be represented by the following formula (2).
  • M 1 may include at least one of Mn and Al.
  • x1 may be 0.5 ⁇ x1 ⁇ 1.0, preferably 0.6 ⁇ x1 ⁇ 0.98, and more preferably 0.6 ⁇ x1 ⁇ 0.95.
  • the y1 may be 0 ⁇ y1 ⁇ 0.4, preferably 0 ⁇ y1 ⁇ 0.3, more preferably 0.05 ⁇ y1 ⁇ 0.3.
  • the z1 may be 0 ⁇ z1 ⁇ 0.4, preferably 0 ⁇ z1 ⁇ 0.3, more preferably 0.01 ⁇ z1 ⁇ 0.3.
  • transition metal hydroxide precursor, lithium raw material and boron (B)-containing raw material are mixed and calcined at 760° C. to 840° C. to prepare boron (B)-doped lithium transition metal oxide (second step) ).
  • the boron (B)-containing raw material sulfate, nitrate, acetate, halide, hydroxide or oxyhydroxide containing boron (B) may be used, and as long as it can be dissolved in a solvent such as water, it is not particularly limited. can be used without Specifically, the boron-containing raw material is, H 3 BO 3 , B 2 O 3 , B 4 C, BF 3 , (C 3 H 7 O) 3 B, (C 6 H 5 O) 3 B, [ CH 3 (CH 2 ) 3 O] 3 B, C 13 H 19 O 3 , C 6 H 5 B(OH) 2 , B 2 F 4 , or a combination thereof, but is not limited thereto.
  • the lithium raw material may be used without particular limitation as long as it is a compound containing a lithium source, preferably lithium carbonate (Li 2 CO 3 ), lithium hydroxide (LiOH ⁇ H 2 O), LiNO 3 , CH 3 At least one selected from the group consisting of COOLi and Li 2 (COO) 2 may be used.
  • a lithium source preferably lithium carbonate (Li 2 CO 3 ), lithium hydroxide (LiOH ⁇ H 2 O), LiNO 3 , CH 3
  • LiNO 3 LiNO 3
  • CH 3 At least one selected from the group consisting of COOLi and Li 2 (COO) 2 may be used.
  • the transition metal hydroxide precursor and boron (B)-containing raw material are in an amount such that the total number of moles of transition metal: the number of moles of boron is 0.97: 0.03 to 0.0998: 0.002, preferably 0.975: 0.025 to 0.995: 0.005. can be mixed.
  • the lithium raw material has a ratio of moles of lithium to the total moles of transition metal and boron, that is, (number of moles of Li / (number of moles of transition metal + number of moles of boron)) of 1.0 to 1.2, preferably 1.0 to 1.1, more preferably may be mixed in an amount such that it becomes 1.01 to 1.08.
  • the primary particle size and the grain size may be controlled to a desired range.
  • the mixture of the transition metal precursor, the lithium raw material, and the boron-containing raw material is calcined.
  • the firing temperature may be 760 °C to 840 °C, preferably 760 °C to 800 °C.
  • the grain size of the cathode active material may become larger than the range of the present invention due to overfiring in which the particles become disproportionately large.
  • the volume change in the unit lattice that occurs during the charging and discharging process is large, and as a result, the occurrence of cracks in the positive active material according to the cycle progresses. Lifespan characteristics may be degraded.
  • the sintering may be performed for 15 to 30 hours, preferably 17 to 25 hours.
  • the calcination time satisfies the above range, it is possible to prepare a lithium transition metal oxide having a desired average particle size and grain size of the primary particles. If the firing time is too short, the primary particles may not grow sufficiently, and if the firing time is too long, the crystal grains may grow too large.
  • the manufacturing method of the present invention even if the sintering temperature is lowered during the production of the positive active material by boron (B) included in the boron (B)-containing raw material, the growth of the primary particles of the positive active material is promoted by B. Therefore, even if the firing is performed at a relatively low firing temperature, it is possible to prepare a lithium transition metal oxide having an average particle diameter of the primary particles of 0.6 ⁇ m or more.
  • lithium transition metal oxide having an average particle diameter of the primary particles of 0.6 ⁇ m or more and a crystal size of 160 nm or less can be manufactured.
  • the present invention provides a positive electrode for a lithium secondary battery comprising the above-described positive electrode active material.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer disposed on at least one surface of the positive electrode current collector and including the positive electrode active material.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and for example, stainless steel, aluminum, nickel, titanium, fired carbon, or carbon, nickel, titanium on the surface of aluminum or stainless steel. , silver or the like surface-treated may be used.
  • the positive electrode current collector may typically have a thickness of 3 to 500 ⁇ m, and may increase the adhesion of the positive electrode active material by forming fine irregularities on the surface of the current collector.
  • it may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, a non-woven body, and the like.
  • the positive active material layer may include a conductive material and a binder together with the positive active material.
  • the positive active material may be included in an amount of 80 to 99% by weight, more specifically 85 to 98% by weight, based on the total weight of the positive active material layer. When included in the above content range, it can exhibit excellent capacity characteristics.
  • the conductive material is used to impart conductivity to the electrode, and in the configured battery, it can be used without any particular limitation as long as it does not cause chemical change and has electronic conductivity.
  • Specific examples include graphite such as natural graphite and artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and carbon fiber; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one type alone or a mixture of two or more types thereof may be used.
  • the conductive material may be included in an amount of 1 to 30% by weight based on the total weight of the positive electrode active material layer.
  • the binder serves to improve adhesion between the positive active material particles and the adhesion between the positive active material and the current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC) ), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene and rubber (SBR), fluororubber, or various copolymers thereof, and one type alone or a mixture of two or more types thereof may be used.
  • the binder may be included in an amount of 1 to 30% by weight based on the total weight of the positive active material layer.
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method except for using the above positive electrode active material. Specifically, the positive electrode active material and, optionally, a positive electrode mixture prepared by dissolving or dispersing a binder and a conductive material in a solvent may be coated on a positive electrode current collector, and then dried and rolled. In this case, the type and content of the positive electrode active material, the binder, and the conductive material are as described above.
  • the solvent may be a solvent generally used in the art, dimethyl sulfoxide (DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrrolidone (NMP), acetone (acetone) or water and the like, and any one of them or a mixture of two or more thereof may be used.
  • the amount of the solvent used is enough to dissolve or disperse the positive electrode active material, the conductive material and the binder in consideration of the coating thickness and the production yield of the positive electrode mixture, and to have a viscosity that can exhibit excellent thickness uniformity when applied for the production of the positive electrode Suffice.
  • the positive electrode may be manufactured by casting the positive electrode composite material on a separate support and then laminating a film obtained by peeling it off the support on the positive electrode current collector.
  • the present invention can manufacture an electrochemical device including the positive electrode.
  • the electrochemical device may specifically be a battery, a capacitor, or the like, and more specifically, a lithium secondary battery.
  • the lithium secondary battery specifically includes a positive electrode, a negative electrode positioned opposite to the positive electrode, and a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode is the same as described above, so detailed description is omitted, Hereinafter, only the remaining components will be described in detail.
  • the lithium secondary battery may optionally further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
  • the anode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel surface. Carbon, nickel, titanium, one surface-treated with silver, an aluminum-cadmium alloy, etc. may be used.
  • the negative electrode current collector may have a thickness of typically 3 ⁇ m to 500 ⁇ m, and similarly to the positive electrode current collector, fine irregularities may be formed on the surface of the current collector to strengthen the bonding force of the negative electrode active material.
  • it may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam body, a nonwoven body, and the like.
  • the anode active material layer optionally includes a binder and a conductive material together with the anode active material.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; metal compounds capable of alloying with lithium, such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, or Al alloy; metal oxides capable of doping and dedoping lithium, such as SiO ⁇ (0 ⁇ 2), SnO 2 , vanadium oxide, and lithium vanadium oxide;
  • a composite including the above-mentioned metallic compound and a carbonaceous material such as a Si-C composite or a Sn-C composite, may be mentioned, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the negative electrode active material.
  • both low crystalline carbon and high crystalline carbon may be used.
  • low crystalline carbon soft carbon and hard carbon are representative, and as high crystalline carbon, natural or artificial graphite of amorphous, plate-like, flaky, spherical or fibrous shape, and Kish graphite (Kish) graphite), pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, liquid crystal pitches (Mesophase pitches), and petroleum and coal tar pitch (petroleum or coal tar pitch) High-temperature calcined carbon such as derived cokes) is a representative example.
  • the anode active material may be included in an amount of 80 wt% to 99 wt% based on the total weight of the anode active material layer.
  • the binder is a component that assists in bonding between the conductive material, the active material, and the current collector, and is typically added in an amount of 0.1 wt% to 10 wt% based on the total weight of the anode active material layer.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinyl pyrrolidone, polytetra fluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, nitrile-butadiene rubber, fluororubber, and various copolymers thereof.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diene polymer
  • EPDM ethylene-propylene-d
  • the conductive material is a component for further improving the conductivity of the anode active material, and may be added in an amount of 10 wt% or less, preferably 5 wt% or less, based on the total weight of the anode active material layer.
  • a conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • graphite such as natural graphite or artificial graphite
  • carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black
  • conductive fibers such as carbon fibers and metal fibers
  • carbon fluoride such as aluminum and nickel powder
  • conductive whiskers such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • a conductive material such as a polyphenylene derivative may be used.
  • the negative electrode active material layer is prepared by applying and drying a negative electrode mixture prepared by dissolving or dispersing a negative electrode active material, and optionally a binder and a conductive material in a solvent, on the negative electrode current collector and drying, or It can be produced by casting on a support and then laminating a film obtained by peeling from this support onto a negative electrode current collector.
  • the separator separates the negative electrode and the positive electrode and provides a passage for lithium ions to move, and if it is used as a separator in a lithium secondary battery, it can be used without any particular limitation, especially for the movement of ions in the electrolyte It is preferable to have a low resistance to and excellent electrolyte moisture content.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as an ethylene homopolymer, a propylene homopolymer, an ethylene/butene copolymer, an ethylene/hexene copolymer, and an ethylene/methacrylate copolymer, or these
  • a laminate structure of two or more layers of may be used.
  • a conventional porous nonwoven fabric for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, etc. may be used.
  • a coated separator containing a ceramic component or a polymer material may be used, and may optionally be used in a single-layer or multi-layer structure.
  • the electrolyte used in the present invention may include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte, which can be used in manufacturing a lithium secondary battery, and is limited to these. it's not going to be
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, ⁇ -caprolactone
  • ether-based solvents such as dibutyl ether or tetrahydrofuran
  • ketone solvents such as cyclohexanone
  • aromatic hydrocarbon-based solvents such as benzene and fluorobenzene
  • alcohol solvents such as ethyl alcohol and isopropyl alcohol
  • nitriles such as R-CN (R is a linear, branched, or cyclic hydrocarbon group having
  • carbonate-based solvents are preferable, and cyclic carbonates (eg, ethylene carbonate or propylene carbonate, etc.) having high ionic conductivity and high dielectric constant capable of increasing the charge/discharge performance of the battery, and a low-viscosity linear carbonate-based compound ( For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • cyclic carbonates eg, ethylene carbonate or propylene carbonate, etc.
  • a low-viscosity linear carbonate-based compound For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate is more preferable.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2.
  • LiCl, LiI, or LiB(C 2 O 4 ) 2 , etc. may be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, the electrolyte may exhibit excellent electrolyte performance because it has appropriate conductivity and viscosity, and lithium ions may move effectively.
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, tri Ethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imida
  • One or more additives such as taxdine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be further included. In this case, the additive may be included in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the total weight of the electrolyte.
  • the lithium secondary battery including the positive electrode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics and lifespan characteristics, portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles ( It is useful in the field of electric vehicles such as hybrid electric vehicle, HEV).
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or battery pack is a power tool (Power Tool); electric vehicles, including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Alternatively, it may be used as a power source for any one or more medium and large-sized devices in a system for power storage.
  • Power Tool Power Tool
  • electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs);
  • PHEVs plug-in hybrid electric vehicles
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape using a can, a prismatic shape, a pouch type, or a coin type.
  • the lithium secondary battery according to the present invention may be used not only in a battery cell used as a power source for a small device, but may also be preferably used as a unit cell in a medium or large battery module including a plurality of battery cells.
  • a precursor represented by Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 , LiOH ⁇ H 2 O and H 3 BO 3 are mixed so that the molar ratio of the transition metal (Me):Li:B is 0.97:1.02:0.03, and 780° C. Heat treatment was performed for 23 hours to prepare a B-doped positive electrode active material.
  • a positive active material was prepared in the same manner as in Example 1, except for heat treatment at 790°C.
  • a positive electrode active material was prepared in the same manner as in Example 1, except for heat treatment at 750°C.
  • a positive electrode active material was prepared in the same manner as in Example 1, except for heat treatment at 850°C.
  • the precursor represented by Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 and LiOH H 2 O were mixed so that the molar ratio of transition metal (Me):Li was 1:1.02, and heat treatment was performed at 740 ° C. for 23 hours, A positive electrode active material was prepared.
  • the precursor represented by Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 and LiOH H 2 O were mixed so that the molar ratio of the transition metal (Me):Li was 1:1.02, and heat treatment was performed at 850° C. for 23 hours, A positive electrode active material was prepared.
  • a precursor represented by Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 , LiOH ⁇ H 2 O and H 3 BO 3 are mixed so that the molar ratio of the transition metal (Me):Li:B is 0.92:1.02:0.08, and 780° C.
  • a heat treatment was performed for 23 hours to prepare a B-doped positive electrode active material.
  • the average particle diameter of the primary particles of the positive electrode active material prepared in Examples 1 to 2 and Comparative Examples 1 to 5 was measured.
  • the grain size of the primary particles of the positive active material prepared in Examples 1 and 2 and Comparative Examples 1 and 2 was measured.
  • X-ray diffraction analysis conditions and data processing methods are the same as described above, and the measurement results are shown in Table 1 below.
  • the primary particle average particle size was 0.6 ⁇ m or more, and the crystal grain size was 160 nm. It can be seen that the following On the other hand, in the case of Comparative Examples 1 and 2, in which the sintering temperature is out of the range of the present invention even if boron doping is performed, it shows that the average particle size and grain size of the primary particles do not satisfy the range of the present invention.
  • Secondary batteries were manufactured using the positive active materials prepared in Examples 1 to 2 and Comparative Examples 1 to 5, and for each of the secondary batteries including the positive active materials of Examples 1 to 2 and Comparative Examples 1 to 5, High temperature characteristics were evaluated.
  • the positive electrode active material, the conductive material, and the binder prepared in Examples 1 to 2 and Comparative Examples 1 to 5 were mixed in an N-methylpyrrolidone (NMP) solvent in a weight ratio of 92:3:4 to prepare a positive electrode slurry did.
  • NMP N-methylpyrrolidone
  • the positive electrode slurry was coated on an aluminum foil having a thickness of 20 ⁇ m, dried at 130° C., and then rolled to prepare a positive electrode.
  • a negative active material slurry was prepared by mixing a negative active material, a conductive material, and a binder in a weight ratio of 96:1.1:2.9 and adding it to distilled water as a solvent. This was applied on a copper foil having a thickness of 10 ⁇ m, dried, and then roll press was performed to prepare a negative electrode.
  • An electrode assembly was prepared by interposing a separator between the positive electrode and the negative electrode prepared above, and then placed inside the battery case, and then the electrolyte was injected into the case to prepare a lithium secondary battery.
  • ethylene carbonate (EC): dimethyl carbonate (DMC): diethyl carbonate (DEC) is mixed in a ratio of 1:2:1 in an organic solvent in which 1M LiPF 6 is dissolved in 100 parts by weight of the total weight of the electrolyte
  • VC vinylene carbonate
  • the lithium secondary batteries including the positive electrode active materials of Examples 1 to 2 and Comparative Examples 1 to 5 were charged at 45° C. at 0.5 C constant current to 4.2 V at 0.05 C cut off, and then at 0.5 C constant current to 3.0 V. Discharge was performed.
  • the charging and discharging behavior was set as one cycle, and after this cycle was repeated 400 times, the capacity retention rate at 45° C. of the lithium secondary batteries of Examples 1-2 and Comparative Examples 1-5 was derived, and the results are shown in the table below. 2 is shown.
  • the secondary batteries of Examples 1 to 2 and Comparative Examples 1 to 5 were fully charged to 4.2V, respectively, and then stored at 60° C. for 4 weeks.
  • the stored secondary battery was charged to 4.2V with a constant current of 0.5C and discharged to 3.0V with a constant current of 0.5C, and the discharge capacity and volume were measured at this time, and the discharge of the secondary battery measured before storage Compared with the dose and volume, the capacity retention rate and volume change rate were derived by calculation. The results are shown in Table 3 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 1차 입자가 응집되어 형성된 2차 입자 형태를 가지고, 화학식 1로 표시되는 리튬 전이금속 산화물을 포함하고, 상기 리튬 전이금속 산화물의 결정립(Crystalline) 크기가 160nm 이하이고, 1차 입자의 평균 입경이 0.6㎛ 이상인 양극 활물질 및 그 제조 방법에 관한 것이다.

Description

리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법
[관련 출원과의 상호 인용]
본 출원은 2019년 12월 5일에 출원된 한국특허출원 제10-2019-0160667호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지의 양극 활물질로는 리튬 전이금속 복합 산화물이 이용되고 있으며, 이 중에서도 작용 전압이 높고 용량 특성이 우수한 LiCoO2 등의 리튬 코발트 복합금속 산화물이 주로 사용되고 있다. 그러나, LiCoO2는 탈리튬에 따른 결정 구조의 불안정화 때문에 열적 특성이 매우 열악하다. 또한, 상기 LiCoO2는 고가이기 때문에 전기 자동차 등과 같은 분야의 동력원으로서 대량 사용하기에는 한계가 있다.
상기 LiCoO2를 대체하기 위한 재료로서, 리튬 망간 복합금속 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4 등) 또는 리튬 니켈 복합금속 산화물(LiNiO2 등) 등이 개발되었다. 이 중에서도 약 200 mAh/g의 높은 가역용량을 가져 대용량의 전지 구현이 용이한 리튬 니켈 복합금속 산화물에 대한 연구 개발이 보다 활발히 연구되고 있다. 그러나, 상기 LiNiO2는 LiCoO2와 비교하여 열안정성이 열위하고, 충전 상태에서 외부로부터의 압력 등에 의해 내부 단락이 생기면 양극 활물질 그 자체가 분해되어 전지의 파열 및 발화를 초래하는 문제가 있었다. 이에 따라 상기 LiNiO2의 우수한 가역용량은 유지하면서도 낮은 열안정성을 개선하기 위한 방법으로서, Ni의 일부를 Co, Mn 또는 Al로 치환한 리튬 전이금속 산화물이 개발되었다.
그러나, 상기와 같이 Co, Mn 또는 Al로 치환한 리튬 전이금속 산화물은 여전히 열 안정성이 열위하기 때문에, 이를 전지에 적용시 고온 수명 특성 및 저장 특성이 열위하다는 문제점이 있었다.
따라서, 열 안정성을 개선하여 고온에서 수명 특성 및 저장 특성을 개선할 수 있는 양극 활물질의 개발이 요구되고 있다.
<선행기술문헌>
(특허문헌 1) 대한민국 등록특허 제10-2004457호
상기와 같은 문제점을 해결하기 위하여, 본 발명의 제1 기술적 과제는 일차 입자 크기 및 결정 크기가 제어되어, 고온 수명 특성 및 고온 저장 특성을 개선할 수 있는 양극 활물질을 제공하는 것이다.
본 발명의 제2 기술적 과제는 상기 양극 활물질의 제조 방법을 제공하는 것이다.
본 발명의 제3 기술적 과제는 상기 양극 활물질을 포함하는 양극을 제공하는 것이다.
본 발명의 제4 기술적 과제는 상기 양극을 포함하는 리튬 이차전지를 제공하는 것이다.
본 발명은 1차 입자가 응집되어 형성된 2차 입자 형태를 가지고, 하기 화학식 1로 표시되는 리튬 전이금속 산화물을 포함하고, 상기 리튬 전이금속 산화물의 결정립(Crystalline) 크기가 160nm 이하이고, 1차 입자의 평균 입경이 0.6㎛ 이상인 양극 활물질을 제공한다.
[화학식 1]
Li1+aNixCoyM1 zBwO2
상기 화학식 1에서, M1은 Mn 또는 Al 중 적어도 어느 하나 이상을 포함하는 것이고, 0≤a≤0.5, 0.5≤x<1.0, 0<y≤0.4, 0<z≤0.4, 0<w≤0.1임.
또한, 본 발명은 전이금속 수산화물 전구체를 준비하는 단계; 및 전이금속 수산화물 전구체, 리튬 원료물질 및 보론(B)-함유 원료물질을 혼합하고 760℃ 내지 840℃에서 소성하여, 보론(B)-도핑된 리튬 전이금속 산화물을 제조하는 단계;를 포함하며, 상기 보론(B)-도핑된 리튬 전이금속 산화물은, 상기 화학식 1로 표시되고, 결정립 크기가 160nm 이하이고, 1차 입자의 평균 입경이 0.6㎛ 이상인 것인 양극 활물질의 제조 방법을 제공한다.
또한, 본 발명은 상기 양극 활물질을 포함하는 리튬 이차전지용 양극을 제공한다.
또한, 본 발명은 상기 리튬 이차전지용 양극을 포함하는 리튬 이차전지를 제공한다.
본 발명의 제조 방법은 리튬 전이금속 산화물 제조 시에, 보론을 도핑하고 특정한 온도에서 소성을 진행함으로써, 리튬 전이금속 산화물의 결정 크기는 작고, 1차 입자는 크게 형성될 수 있도록 하였다.
상기와 같이 결정 크기와 1차 입자 크기가 제어된 본 발명의 리튬 전이금속 산화물을 포함하는 양극 활물질은, 이차 전지에 적용되었을 때, 우수한 고온 수명 특성, 고온 저장 특성 및 가스 발생 특성을 나타낸다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에 있어서, '결정립(Crystalline)'은 규칙적인 원자 배열을 갖는 단결정 입자 단위를 의미한다. 상기 결정립의 크기는 양극 활물질 분말을 X-선 회절분석하여 얻어진 XRD 데이터를 Rietveld refinement 방법으로 분석하여 측정할 수 있다. 이때, 상기 X선 회절 분석은 LynxEye XE-T-position sensitive detector가 장착된 Bruker D8 Endeavor(광원: Cu-Kα, λ=1.54Å)를 이용하여, 일반 분말용 홀더(holder)의 홈에 시료를 넣고, 슬라이드 글라스(slide glass)를 이용하여 시료 표면을 고르게 하고, 시료 높이가 홀더의 가장자리에 일치하도록 충진한 다음, FDS 0.5°, 2θ=15° ~ 90°영역에 대하여 스텝 사이즈(step size)=0.02°, total scan time=약 20분 조건으로 측정하였다.
측정된 데이터에 대하여 각 사이트(site)에서의 charge(전이금속 사이트에서의 금속들은 +3, Li 사이트의 Ni은 +2)와 양이온 혼합(cation mixing)을 고려하여 Rietveld refinement를 수행하였다. 구체적으로는, 결정립 크기 분석 시에 instrumental broadening은 Bruker TOPAS 프로그램에 내장되어 있는 Fundamental Parameter Approach(FPA)를 이용하여 고려되었고, 피팅(fitting) 시 측정 범위의 전체 피크들을 사용하였다, 피크 형태(Peak shape)은 TOPAS에서 사용가능한 피크 타입(peak type) 중 FP(First Principle)로 Lorenzian contribution만 사용하여 피팅(fitting)하였고, 스트레인(strain)은 고려하지 않았다.
본 발명에 있어서, '1차 입자'는 주사전자현미경(SEM)을 통해 양극 활물질의 단면을 관찰하였을 때 1개의 덩어리로 구별되는 최소 입자 단위를 의미하는 것으로, 하나의 결정립으로 이루어질 수도 있고, 복수개의 결정립으로 이루어질 수도 있다. 본 발명에서, 상기 1차 입자의 평균 입경은, 양극 활물질 입자의 단면 SEM 이미지에서 구별되는 각각의 입자 크기를 측정한 후, 이들의 산술 평균값을 계산하여 측정하였다.
본 발명에 있어서, '2차 입자'는 복수 개의 1차 입자가 응집되어 형성되는 2차 구조체를 의미한다. 상기 2차 입자의 평균 입경은, 입도 분석기를 이용하여 측정될 수 있으며, 본 발명에서는 입도 분석기로 Microtrac社의 s3500을 사용하였다.
본 발명에서 양극 활물질의 “입경 Dn”은, 입경에 따른 체적 누적 분포의 n% 지점에서의 입경을 의미한다. 즉, D50은 입경에 따른 체적 누적 분포의 50% 지점에서의 입경이며, D90은 입경에 따른 체적 누적 분포의 90% 지점에서의 입경을, D10은 입경에 따른 체적 누적 분포의 10% 지점에서의 입경이다. 상기 Dn은 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로, 측정 대상 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac S3500)에 도입하여 입자들이 레이저 빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 산출한다. 측정 장치에 있어서의 입경에 따른 체적 누적 분포의 10%, 50% 및 90%가 되는 지점에서의 입자 직경을 산출함으로써, D10, D50 및 D90을 측정할 수 있다.
양극 활물질
본 발명자들은, 리튬 전이금속 산화물의 1차 입자 크기 및 결정립 크기를 특정 범위로 제어함으로써 양극 활물질의 고온 수명 특성, 고온 저장 특성 및 가스 발생 특성을 개선할 수 있음을 알아내고 본 발명을 완성하였다.
본 발명에 따른 양극 활물질은, 1차 입자가 응집되어 형성된 2차 입자 형태를 가지고, 결정립 크기가 160nm 이하이고, 1차 입자의 평균 입경이 0.6㎛ 이상인 리튬 전이금속 산화물을 포함한다.
이때, 상기 리튬 전이금속 산화물은, 전이금속 총 몰수에 대한 니켈 몰비가 50몰% 이상, 바람직하게는 60몰% 이상이고, 보론(B)으로 도핑된 리튬 전이금속 산화물일 수 있다.
바람직하게는, 상기 리튬 전이금속 산화물은 하기 화학식 1로 표시되는 것일 수 있다.
[화학식 1]
Li1+aNixCoyM1 zBwO2
상기 화학식 1에서, M1은 Mn 및 Al 중 1종 이상이며, 바람직하게는 Mn 또는 Mn 및 Al의 조합일 수 있다.
상기 1+a는 리튬 전이금속 산화물 내 리튬의 몰비를 나타내며, 0≤a≤0.5, 바람직하게는 0≤a≤0.2, 더 바람직하게는 0≤a≤0.1일 수 있다.
상기 x는 리튬 전이금속 산화물 내 전체 전이금속 원소 중 니켈의 몰비를 나타내며, 0.5≤x<1.0, 바람직하게는 0.6≤x≤0.98, 더 바람직하게는 0.6≤x≤0.95일 수 있다.
상기 y는 리튬 전이금속 산화물 내 전체 전이금속 원소 중 코발트의 몰비를 나타내며, 0<y≤0.4, 바람직하게는 0<y≤0.3, 더 바람직하게는 0.05≤y≤0.3일 수 있다.
상기 z는 리튬 전이금속 산화물 내 전체 전이금속 원소 중 M1 원소의 몰비를 나타내며, 0<z≤0.4, 바람직하게는 0<z≤0.3, 더 바람직하게는 0.01≤z≤0.3일 수 있다.
상기 w는 리튬 전이금속 산화물 내 보론의 몰비를 나타내며, 0<w≤0.1, 바람직하게는 0<w≤0.05, 더 바람직하게는 0<w≤0.02이다.
상기 본 발명에 따른 리튬 전이금속 산화물은 양극 활물질 전구체, 리튬 원료 물질 및 보론 함유 원료 물질을 혼합한 후 소성함으로써 제조 될 수 있다. 소성 시에 보론 함유 원료를 첨가할 경우, 보론(B)이 양극 활물질 전구체와 리튬 원료 물질 사이의 반응 온도를 낮춰 상대적으로 낮은 온도에서 소성을 수행할 수 있으며, 낮은 소성 온도로 인해 결정립 성장이 억제되어 결정립 크기가 작은 리튬 전이금속 산화물을 얻을 수 있다. 또한, 상기와 같이 소성 시에 보론(B)이 존재할 경우, 보론이 양극 활물질 전구체와 리튬 원료 물질 사이의 반응을 촉진시키는 촉매제로서의 역할을 수행하여 1차 입자 성장을 촉진시키며, 동일 소성 조건에서 보론을 첨가하지 않고 제조된 양극 활물질에 비해 1차 입자 크기가 큰 리튬 전이금속 산화물을 얻을 수 있다.
구체적으로는, 본 발명에 있어서, 상기 리튬 전이금속 산화물은 1차 입자의 평균 입경이 0.6㎛ 이상, 바람직하게는 0.6㎛ 내지 1.3㎛, 더 바람직하게는 0.6㎛ 내지 1.0㎛ 일 수 있다. 1차 입자의 평균 입경이 상기 범위를 만족할 때, 양극 제조 또는 전지의 충방전 과정에서 입자의 깨짐이 억제되어 양극 내 미분에 의해 야기되는 고온 저장 특성 열화 및 다량의 가스 발생 등을 효과적으로 억제할 수 있다.
또한, 본 발명에 있어서, 상기 리튬 전이금속 산화물은 결정립 크기가 160nm 이하, 바람직하게는 100nm 내지 160nm일 수 있다. 리튬 전이금속 산화물의 결정립 크기가 상술한 범위를 만족할 경우, 충방전 과정에서 발생하는 양극 활물질 내 크랙(crack) 생성이 최소화되어 사이클 진행에 따른 용량 유지율을 증가시키고, 저항 증가율을 억제시킴에 따라 고온 수명 특성이 개선될 수 있다.
또한, 상기 리튬 전이금속 산화물은 1차 입자가 응집되어 이루어진 2차 입자 형태를 나타낼 수 있다.
양극 활물질이 상기와 같이 2차 입자 형태의 리튬 전이금속 산화물을 포함할 경우, 양극 활물질과 전해액의 저촉 면접이 넓어지고, 양극 활물질 내 리튬 이온의 거리가 짧아지기 때문에 고용량 및 고출력 특성을 달성할 수 있다.
또한, 상기 양극 활물질은, 상기 화학식 1로 표시되는 리튬 전이금속 산화물 100 중량부에 대하여 보론(B)을 0.02 내지 0.3 중량부, 바람직하게는 0.05 내지 0.2 중량부로 포함할 수 있다. 상술한 범위로 보론(B)을 포함할 경우, 에너지 밀도의 저하 없이, 리튬 전이금속 산화물의 1차 입자의 평균 입경을 원하는 범위로 제어할 수 있다. 도핑되는 보론(B)의 함량이 상술한 범위 미만일 경우, 1차 입자의 성장이 미미하기 때문에, 양극 제조 또는 전지의 충방전 과정에서 입자 깨짐으로 인한 미분이 발생하기 쉽고, 이로 인해, 전지에 적용 시에 고온 저장 특성이 저하되고, 가스가 다량 발생하여 스웰링(swelling) 현상을 야기할 수 있다. 반면, 상기 보론(B)의 함량이 상술한 범위를 초과할 경우, 과량의 도핑원소 첨가로 인해 양극 활물질의 에너지 밀도가 낮아질 수 있다.
한편, 본 발명에 있어서, 상기 양극 활물질은 2차 입자의 평균 입경 D50이 상이한 2종의 리튬 전이금속 산화물을 포함할 수 있다. 즉, 본 발명에 따른 양극 활물질은 2차 입자의 평균 입경 D50이 큰 대입경 리튬 전이금속 산화물과 2차 입자의 평균 입경 D50이 작은 소입경 리튬 전이금속 산화물을 포함하는 바이모달 입경 분포를 갖는 것일 수 있다. 상기 대입경 리튬 전이금속 산화물과 소입경 리튬 전이금속 산화물은 각각 독립적으로 상기 화학식 1로 표시되는 조성을 가질 수 있으며, 대입경 리튬 전이금속 산화물과 소입경 리튬 전이금속 산화물의 조성은 서로 동일하거나 상이할 수 있으나, 대입경 리튬 전이금속 산화물과 소입경 리튬 전이금속 산화물의 조성이 동일한 것이 보다 바람직하다.
한편, 상기 대입경 리튬 전이금속 산화물의 2차 입자의 평균입경(D50)은 7㎛ 내지 20㎛, 바람직하게는 8㎛ 내지 18㎛, 더 바람직하게는 8㎛ 내지 16㎛일 수 있고, 소입경 리튬 전이금속 산화물의 2차 입자 평균입경(D50)은 1㎛ 내지 7㎛, 바람직하게는 3㎛ 내지 7㎛, 더 바람직하게는 3㎛ 내지 6㎛일 수 있다. 상기와 같이 바이모달 입경 분포를 갖는 양극 활물질을 사용할 경우, 높은 전극 밀도 및 에너지 밀도를 갖는 양극을 형성할 수 있다.
양극 활물질의 제조 방법
다음으로 본 발명에 따른 양극 활물질의 제조 방법에 대해 설명한다.
본 발명에 따른 양극 활물질 제조 방법은, (1) 전이금속 수산화물 전구체를 준비하는 단계 및 (2) 전이금속 수산화물 전구체, 리튬 원료물질 및 보론(B)-함유 원료물질을 혼합하고 760℃ 내지 840℃에서 소성하여, 보론(B)-도핑된 리튬 전이금속 산화물을 제조하는 단계를 포함한다.
이때, 상기 보론(B)-도핑된 리튬 전이금속 산화물은, 상기 화학식 1로 표시되고, 결정립 크기가 160nm 이하이고, 1차 입자의 평균 입경이 0.6㎛ 이상인 리튬 전이금속 산화물이다. 상기 리튬 전이금속 산화물은 상술한 것과 동일하므로, 구체적인 설명은 생략한다.
이하, 본 발명에 따른 양극 활물질의 제조 방법에 대해 보다 구체적으로 설명한다.
먼저, 전이금속 수산화물 전구체를 준비한다(제1단계).
이때, 상기 전이금속 수산화물 전구체는, 니켈, 코발트 및 금속원소 M1(이때, M1은 Mn 또는 Al 중 적어도 어느 하나 이상을 포함하는 것임)을 포함하는 전이금속 수산화물일 수 있으며, 바람직하게는 전이금속 수산화물 내의 전이금속 전체 몰수에 대한 니켈의 몰비가 50몰% 이상, 바람직하게는 60몰% 이상인 전이금속 수산화물일 수 있다.
상기 전이금속 수산화물 전구체는 시판되는 양극 활물질용 전구체를 구입하여 사용하거나, 또는 당해 기술분야에 잘 알려진 양극 활물질용 전구체의 제조 방법에 따라 제조될 수 있다.
바람직하게는, 상기 전이금속 수산화물 전구체는 하기 화학식 2로 표시되는 것일 수 있다.
[화학식 2]
Nix1Coy1M1 z1(OH)2
상기 화학식 2에서, M1은 Mn 또는 Al 중 적어도 어느 하나 이상을 포함할 수 있다.
한편, 상기 x1은 0.5≤x1<1.0, 바람직하게는 0.6≤x1≤0.98, 더 바람직하게는 0.6≤x1≤0.95일 수 있다.
상기 y1은 0<y1≤0.4, 바람직하게는 0<y1≤0.3, 더 바람직하게는 0.05≤y1≤0.3일 수 있다.
상기 z1은 0<z1≤0.4, 바람직하게는 0<z1≤0.3, 더 바람직하게는 0.01≤z1≤0.3일 수 있다.
이때, x1+y1+z1=1일 수 있다. .
이어서, 상기 전이금속 수산화물 전구체, 리튬 원료물질 및 보론(B)-함유 원료물질을 혼합하고 760℃ 내지 840℃에서 소성하여, 보론(B)-도핑된 리튬 전이금속 산화물을 제조한다(제2 단계).
상기 보론(B)-함유 원료물질은 보론(B)을 포함하는 황산염, 질산염, 아세트산염, 할라이드, 수산화물 또는 옥시수산화물 등을 사용할 수 있으며, 물 등의 용매에 용해될 수 있는 것이라면, 특별히 제한되지 않고 사용될 수 있다. 구체적으로는, 상기 보론-함유 원료 물질은, H3BO3, B2O3, B4C, BF3, (C3H7O)3B, (C6H5O)3B, [CH3(CH2)3O]3B, C13H19O3, C6H5B(OH)2, B2F4 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 리튬 원료 물질은, 리튬 소스를 포함하는 화합물이라면 특별히 제한되지 않고 사용할 수 있으며, 바람직하게는 탄산리튬(Li2CO3), 수산화리튬(LiOH·H2O), LiNO3, CH3COOLi 및 Li2(COO)2로 이루어진 군에서 선택되는 적어도 하나를 사용할 수 있다.
한편, 상기 전이금속 수산화물 전구체와 보론(B)-함유 원료 물질은 전이금속 총 몰 수 : 보론의 몰수가 0.97 : 0.03 내지 0.0998 : 0.002, 바람직하게는 0.975 : 0.025 내지 0.995 : 0.005가 되도록 하는 양으로 혼합될 수 있다.
또한, 상기 리튬 원료 물질은 전이금속과 보론의 총 몰수에 대한 리튬의 몰수 비, 즉(Li 몰수 / (전이금속 몰수 + 보론 몰수))가 1.0 ~ 1.2, 바람직하게는 1.0 ~ 1.1, 더 바람직하게는 1.01 ~ 1.08이 되도록 하는 양으로 혼합될 수 있다.
전이금속 수산화물, 보론-함유 원료 물질 및 리튬 원료 물질의 배합비가 상기 범위를 만족할 때, 1차 입자 크기 및 결정립 크기를 원하는 범위로 제어할 수 있다.
다음으로, 상기 전이금속 전구체, 리튬 원료물질 및 보론-함유 원료 물질의 혼합물을 소성한다.
이때, 소성 온도는 760℃ 내지 840℃, 바람직하게는 760℃ 내지 800℃일 수 있다.
상술한 온도 범위로 소성 공정을 수행할 경우, 상대적으로 낮은 소성 온도로 인하여 결정 성장이 억제되어 160nm 이하, 바람직하게는 100nm 내지 160nm의 결정립 크기를 가지는 양극 활물질이 합성될 수 있다. 더불어, 낮은 소성 온도로 인하여 양극 활물질의 입자 내부가 치밀하게 성장하므로, 입자 강도가 개선되어 전극 제조시 또는 전지 충방전시 양극 활물질의 입자 깨짐을 억제할 수 있다.
반면, 840℃를 초과하는 온도에서 소성 공정을 수행할 경우, 입자가 불균형하게 커지는 과소성으로 인하여 양극 활물질의 결정립 크기가 본 발명 범위를 초과하여 커질 수 있다. 이 경우, 본 발명의 결정립 크기를 만족하는 양극 활물질에 비해 충전 및 방전 과정 동안 발생하는 단위 격자 내의 부피 변화가 크고, 이로 인해 사이클 진행에 따른 양극 활물질내 크랙(crack) 발생이 많아지기 때문에, 고온 수명 특성이 저하될 수 있다.
한편, 상기 소성은 15시간 내지 30시간, 바람직하게는 17시간 내지 25 시간 동안 수행될 수 있다. 소성 시간이 상기 범위를 만족할 때, 원하는 1차 입자의 평균 입경 및 결정립 크기를 갖는 리튬 전이금속 산화물을 제조할 수 있다. 소성시간이 너무 짧으면 1차 입자가 충분히 성장하지 못하고, 소성 시간이 너무 길면, 결정립이 너무 크게 성장할 수 있다.
본 발명의 제조 방법에 따르면, 보론(B)-함유 원료물질에 포함되는 상기 보론(B)에 의해 양극 활물질 제조 시 소성 온도를 낮추더라도, 상기 B에 의해 양극 활물질 1차 입자의 성장이 촉진되기 때문에, 상대적으로 낮은 소성온도에서 소성을 수행하더라도 1차 입자의 평균 입경이 0.6㎛ 이상인 리튬 전이금속 산화물을 제조할 수 있다.
일반적으로 전이금속 전체 몰수에 대하여 Ni의 함량이 50몰% 이상인 고함량 Ni 함유 전이금속 수산화물 전구체와, 리튬 원료물질(예를 들면, LiOH·H2O)을 혼합하고 소성 시, 리튬이 녹는 시점부터 전이금속 수산화물 전구체와 반응이 시작되는데, 이때, 상기 LiOH·H2O의 녹는점은 약 400℃이기 때문에, 400℃ 이상에서는 전이금속 수산화물 전구체와 리튬이 반응하게 된다. 그러나, 상기 B는, Li과 약 150℃에서 반응을 할 수 있기 때문에, 150℃에서는 B와 Li이 반응을 하게 되고, 450℃ 이상에서 Li과 전이금속 수산화물 전구체의 반응 시 상기 B가 촉매제의 역할 또한 수행할 수 있다. 이에 따라, Li과 전이금속 수산화물 전구체의 반응 온도를 낮춰주어, 상기 B를 적용할 경우 종래 고함량 니켈을 포함하는 전이금속 수산화물 전구체와 리튬 원료 물질과의 혼합물의 소성 온도보다 낮은 온도에서 소성을 수행하더라도, 상기 B에 의해 양극 활물질 1차 입자의 성장이 촉진되어 상대적으로 1차 입자의 평균입경이 큰 리튬 전이금속 산화물을 얻을 수 있다.
따라서, 소성 시에 보론 함유 원료 물질을 첨가하고, 특정 온도에서 소성을 수행하는 본 발명의 제조 방법에 따르면, 1차 입자의 평균 입경이 0.6㎛ 이상이고, 결정 크기가 160 nm 이하인 리튬 전이금속 산화물을 제조할 수 있다.
양극
또한, 본 발명은 상술한 양극 활물질을 포함하는 리튬 이차전지용 양극을 제공한다.
구체적으로, 상기 양극은 양극 집전체, 및 상기 양극 집전체의 적어도 일면에 위치하며, 상기한 양극 활물질을 포함하는 양극 활물질층을 포함한다.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질층은 양극 활물질과 함께, 도전재 및 바인더를 포함할 수 있다.
이때 상기 양극 활물질은 양극 활물질층 총 중량에 대하여 80 내지 99중량%, 보다 구체적으로는 85 내지 98중량%의 햠량으로 포함될 수 있다. 상기한 함량범위로 포함될 때 우수한 용량 특성을 나타낼 수 있다.
이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용 가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극 활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 선택적으로, 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 양극 합재를 양극집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극 활물질, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸설폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 양극 합재의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극 제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또한, 다른 방법으로, 상기 양극은 상기 양극 합재를 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
리튬 이차전지
또한, 본 발명은 상기 양극을 포함하는 전기화학소자를 제조할 수 있다. 상기 전기화학소자는 구체적으로 전지, 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로, 양극, 상기 양극과 대향하여 위치하는 음극, 및 상기 양극과 음극 사이에 개재되는 분리막 및 전해질을 포함하고, 상기 양극은 앞서 설명한 바와 동일하므로, 구체적인 설명을 생략하고, 이하 나머지 구성에 대해서만 구체적으로 설명한다.
또한, 상기 리튬 이차전지는 상기 양극, 음극, 분리막의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0<β<2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체와 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
상기 음극활물질은 음극 활물질층의 총 중량에 대하여 80 중량% 내지 99중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 활물질층의 총 중량에 대하여 0.1 중량% 내지 10 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 활물질층의 총 중량에 대하여 10 중량% 이하, 바람직하게는 5 중량% 이하로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
예를 들면, 상기 음극 활물질층은 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 합재를 도포하고 건조함으로써 제조되거나, 또는 상기 음극 합재를 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수 있다.
한편, 상기 리튬 이차전지에 있어서, 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또한, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조 시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량 100 중량부에 대하여 0.1 내지 5 중량부로 포함될 수 있다.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 수명 특성을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1
Ni0.6Co0.2Mn0.2(OH)2로 표시되는 전구체, LiOH·H2O 및 H3BO3를 전이금속(Me):Li:B의 몰비가 0.97:1.02:0.03이 되도록 혼합하고, 780℃에서 23시간 동안 열처리를 수행하여, B 도핑된 양극 활물질을 제조하였다.
실시예 2
790℃에서 열처리하는 것을 제외하고, 상기 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
비교예 1
750℃에서 열처리 하는 것을 제외하고, 상기 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
비교예 2
850℃에서 열처리 하는 것을 제외하고, 상기 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
비교예 3
Ni0.6Co0.2Mn0.2(OH)2로 표시되는 전구체 및 LiOH·H2O를 전이금속(Me):Li의 몰비가 1:1.02가 되도록 혼합하고, 740℃에서 23시간 동안 열처리를 수행하여, 양극 활물질을 제조하였다.
비교예 4
Ni0.6Co0.2Mn0.2(OH)2로 표시되는 전구체 및 LiOH·H2O를 전이금속(Me):Li의 몰비가 1:1.02가 되도록 혼합하고, 850℃에서 23시간 동안 열처리를 수행하여, 양극 활물질을 제조하였다.
비교예 5
Ni0.6Co0.2Mn0.2(OH)2로 표시되는 전구체, LiOH·H2O 및 H3BO3를 전이금속(Me):Li:B의 몰비가 0.92:1.02:0.08이 되도록 혼합하고, 780℃에서 23 시간 동안 열처리를 수행하여, B 도핑된 양극 활물질을 제조하였다.
실험예 1: 양극활물질 입자의 특성 확인
(1) 양극 활물질의 1차 입자의 평균 입경
상기 실시예 1~2 및 비교예 1~5에서 제조한 양극 활물질의 1차 입자의 평균 입경을 측정하였다.
구체적으로, 주사전자현미경을 이용하여 실시예 1~2 및 비교예 1~5에서 제조한 양극 활물질의 단면 이미지를 관찰하고, 양극 활물질 단면 중 100개의 1차 입자의 크기를 측정한 다음, 이들의 산술 평균값을 1차 입자의 평균 입경으로 측정하였다. 측정 결과는 하기 [표 1]에 나타내었다.
(2) 양극 활물질 결정립 크기
상기 실시예 1~2 및 비교예 1~2에서 제조한 양극 활물질의 1차 입자의 결정립 크기를 측정하였다.
구체적으로는, LynxEye XE-T-position sensitive detector가 장착된 Bruker D8 Endeavor(Cu-Kα, λ=1.54Å를 이용하여 X선 회절 분석을 실시하였으며, 얻어진 XRD 데이터를 분석하여 결정립 크기를 측정하였다. 이때, X선 회절 분석 조건 및 데이터 처리 방법은 상술한 바와 동일하다. 측정 결과는 하기 표 1에 나타내었다.
1차 입자 평균 입경(㎛) 결정 크기(nm)
실시예 1 0.6 108
실시예 2 0.7 115
비교예 1 0.5 97
비교예 2 0.4 167
비교예 3 0.3 88
비교예 4 0.5 173
비교예 5 1.2 210
상기 표 1을 통해, 보론 도핑을 수행하고, 760~840℃에서 소성을 수행한 실시예 1~2에 의해 제조된 양극 활물질의 경우, 1차 입자 평균 입경이 0.6㎛ 이상이고, 결정립 크기가 160nm 이하임을 확인할 수 있다. 한편, 보론 도핑을 수행하더라도 소성 온도가 본 발명의 범위를 벗어난 비교예 1 및 2의 경우, 1차 입자의 평균 입경 및 결정립 크기가 본 발명의 범위를 만족하지 못함을 보여준다. 또한, 보론 도핑을 수행하지 않으면서 낮은 온도에서 소성을 수행한 비교예 3의 경우, 양극 활물질의 1차 입자 평균입경과 결정립의 크기가 모두 본 발명의 범위 미만으로 낮은 것을 확인할 수 있었다. 비교예 4의 경우 보론 도핑을 수행하지 않으면서 높은 온도에서 열처리를 수행한 비교예 4의 경우, 양극 활물질의 결정립 크기가 실시예 1~2에 비해 크게 형성된데 반해, 1차 입자 크기는 작게 형성된 것을 확인할 수 있다.
한편, 비교예 5의 경우, 과량의 보론을 포함함에 따라 전구체와 리튬 원료물질 간의 반응성이 더 낮아져서 과소성되어 1차 입자 및 결정의 크기가 모두 본 발명 범위를 초과하는 것을 확인할 수 있었다.
실험예 2: 고온 수명 특성
실시예 1~2 및 비교예 1~5에서 제조한 양극 활물질을 이용하여, 이차전지를 제조하였고, 상기 실시예 1~2 및 비교예 1~5의 양극 활물질을 포함하는 이차전지 각각에 대하여, 고온 특성을 평가하였다.
먼저, 실시예 1~2 및 비교예 1~5에서 각각 제조한 양극 활물질, 도전재 및 바인더를 92:3:4의 중량비로 N-메틸피롤리돈(NMP) 용매 중에서 혼합하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 두께가 20㎛인 알루미늄 호일 상에 도포한 후, 130℃에서 건조 후, 압연하여 양극을 제조하였다.
한편, 음극 활물질, 도전재, 및 바인더를 96:1.1:2.9의 중량비로 혼합하여 용매인 증류수에 첨가하여 음극 활물질 슬러리를 제조하였다. 이를 두께가 10㎛인 구리 호일 상에 도포하고 건조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
상기에서 제조한 양극과 음극 사이에 분리막을 개재하여 전극 조립체를 제조한 다음, 이를 전지 케이스 내부에 위치시킨 후, 상기 케이스 내부로 전해액을 주입하여 리튬 이차전지를 제조하였다. 이때, 전해액으로서 에틸렌카보네이트(EC):디메틸카보네이트(DMC):디에틸카보네이트(DEC)를 1:2:1의 비율로 혼합한 유기 용매에 1M의 LiPF6를 용해시킨 전해액 총 중량 100 중량부에 대하여 비닐렌 카보네이트(VC)가 2 중량%가 되도록 주입하여, 실시예 1~2 및 비교예 1~5에 따른 리튬 이차전지를 제조하였다.
상기 실시예 1~2 및 비교예 1~5의 양극 활물질을 포함하는 리튬 이차전지를 45℃에서 0.5C 정전류로 4.2V까지 0.05C cut off로 충전을 실시하였고, 이후 0.5C 정전류로 3.0V까지 방전을 실시하였다.
상기 충전 및 방전 거동을 1사이클로 하여, 이러한 사이클을 400회 반복 실시한 후, 실시예 1~2 및 비교예 1~5의 리튬 이차전지의 45℃에서의 용량 유지율을 도출하였고, 그 결과를 하기 표 2에 나타내었다.
400번째 사이클에서의 용량유지율 (%)
실시예 1 93.9
실시예 2 91.3
비교예 1 83.9
비교예 2 90.2
비교예 3 88.7
비교예 4 85.1
비교예 5 77.5
상기 표 2에 나타난 바와 같이, 실시예 1~2에서 제조한 양극 활물질을 적용한 이차전지가 비교예 1~5의 이차전지에 비해 고온 사이클에 따른 용량 유지율이 더욱 개선된 것을 확인할 수 있었다.
실험예 3: 고온 저장 특성
상기 실험예 2를 통해 제조한 실시예 1~2 및 비교예 1~5의 이차 전지의 고온에서 저장 특성을 측정하였다.
구체적으로, 상기 실시예 1~2 및 비교예 1~5의 이차전지를 각각 4.2V까지 만충전한 후, 60℃에서 4주간 보존하였다.
보존하기 이전에, 만충전된 이차전지의 방전용량 및 부피를 측정하였다.
4주 후, 보존된 이차전지를 0.5C 정전류로 4.2V까지 충전하고, 0.5C 정전류로 3.0V까지 방전한 후, 이때의 방전용량 및 부피를 측정하였고, 보존하기 이전에 측정한 이차전지의 방전용량 및 부피와 비교하여, 용량 유지율 및 부피 변화율을 계산에 의해 도출하였다. 그 결과는 하기 표 3에 나타내었다.
용량 유지율 (%) 부피 변화율 (%)
실시예 1 91.4 125
실시예 2 89.7 129
비교예 1 80.6 162
비교예 2 82.5 156
비교예 3 77.1 181
비교예 4 76.5 189
비교예 5 69.4 210
상기 표 3에 나타난 바와 같이, 실시예 1~2의 이차전지가 비교예 1~5의 이차전지에 비해 고온 저장 후 용량 특성이 우수하고, 부피 변화가 적어 고온에서 가스 발생이 적게 일어난 것임을 확인할 수 있었다.

Claims (13)

1차 입자가 응집되어 형성된 2차 입자 형태를 가지고, 하기 화학식 1로 표시되는 리튬 전이금속 산화물을 포함하는 양극 활물질이며,
상기 리튬 전이금속 산화물은 결정립 크기가 160nm 이하이고, 1차 입자의 평균 입경이 0.6㎛ 이상인 양극 활물질.
[화학식 1]
Li1+aNixCoyM1 zBwO2
상기 화학식 1에서,
M1은 Mn 또는 Al 중 적어도 어느 하나 이상을 포함하는 것이고,
0≤a≤0.5, 0.5≤x<1.0, 0<y≤0.4, 0<z≤0.4, 0<w≤0.1임.
제1항에 있어서,
상기 리튬 전이금속 산화물 100 중량부에 대하여 상기 보론(B)은 0.02 내지 0.3 중량부로 포함되는 것인 양극 활물질.
제1항에 있어서,
상기 리튬 전이금속 산화물의 결정립 크기는 100nm 내지 160nm인 양극 활물질.
제1항에 있어서,
상기 리튬 전이금속 산화물의 1차 입자는 0.6㎛ 내지 1.3㎛의 평균입경을 가지는 것인 양극 활물질.
제1항에 있어서,
상기 양극 활물질은 2차 입자의 평균 입경 D50이 상이한 2종의 리튬 전이금속 산화물을 포함하는 것인 양극 활물질.
제5항에 있어서,
상기 양극 활물질은 2차 입자의 평균 입경 D50이 7㎛ 내지 20㎛인 대입경 리튬 전이금속 산화물과, 2차 입자의 평균 입경 D50이 1㎛ 내지 7㎛인 소입경 리튬 전이금속 산화물을 포함하는 것인 양극 활물질.
전이금속 수산화물 전구체를 준비하는 단계; 및
전이금속 수산화물 전구체, 리튬 원료물질 및 보론(B)-함유 원료물질을 혼합하고 760℃ 내지 840℃에서 소성하여, 보론(B)-도핑된 리튬 전이금속 산화물을 제조하는 단계;를 포함하며,
상기 보론(B)-도핑된 리튬 전이금속 산화물은, 하기 화학식 1로 표시되고, 결정립 크기가 160nm 이하이고, 1차 입자의 평균 입경이 0.6㎛ 이상인 것인 양극 활물질의 제조 방법.
[화학식 1]
Li1+aNixCoyM1 zBwO2
상기 화학식 1에서,
M1은 Mn 또는 Al 중 적어도 어느 하나 이상을 포함하는 것이고,
0≤a≤0.5, 0.5≤x<1.0, 0<y≤0.4, 0<z≤0.4, 0<w≤0.1임.
제7항에 있어서,
상기 전이금속 수산화물 전구체는 하기 화학식 2로 표시되는 것인 양극 활물질의 제조 방법.
[화학식 2]
Nix1Coy1M1 z1(OH)2
상기 화학식 1에서,
M1은 Mn 또는 Al 중 적어도 어느 하나 이상을 포함하는 것이고,
0.5≤x1<1.0, 0<y1≤0.4, 0<z1≤0.4, x1+y1+z1=1임.
제7항에 있어서,
상기 전이금속 수산화물 전구체와 보론(B)-함유 원료물질은 전이금속 총 몰 수 : 보론의 몰수가 0.97 : 0.03 내지 0.0998 : 0.002가 되도록 하는 양으로 혼합되는 것인 양극 활물질의 제조 방법.
제7항에 있어서,
상기 리튬 원료 물질은 전이금속과 보론의 총 몰수에 대한 리튬의 몰수 비가 1.0 내지 1.2가 되도록 하는 양으로 혼합되는 것인 양극 활물질의 제조 방법.
제7항에 있어서,
상기 소성은 760℃ 내지 800℃에서 15시간 내지 30시간 동안 수행하는 것인 양극 활물질의 제조 방법.
제1항에 따른 양극 활물질을 포함하는 리튬 이차전지용 양극.
제12항에 따른 양극을 포함하는 리튬 이차전지.
PCT/KR2020/017599 2019-12-05 2020-12-04 리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법 WO2021112606A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/778,475 US20220416238A1 (en) 2019-12-05 2020-12-04 Positive Electrode Active Material for Lithium Secondary Battery and Method of Preparing the Positive Electrode Active Material
CN202080080253.8A CN114730872A (zh) 2019-12-05 2020-12-04 锂二次电池用正极活性材料及正极活性材料的制备方法
JP2022528132A JP2023501681A (ja) 2019-12-05 2020-12-04 リチウム二次電池用正極活物質、前記正極活物質の製造方法
EP20895599.7A EP4047693A4 (en) 2019-12-05 2020-12-04 ACTIVE CATHODE MATERIAL FOR LITHIUM SECONDARY BATTERY AND PROCESS FOR MANUFACTURE OF ACTIVE CATHODE MATERIAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0160667 2019-12-05
KR20190160667 2019-12-05

Publications (1)

Publication Number Publication Date
WO2021112606A1 true WO2021112606A1 (ko) 2021-06-10

Family

ID=76221825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017599 WO2021112606A1 (ko) 2019-12-05 2020-12-04 리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법

Country Status (6)

Country Link
US (1) US20220416238A1 (ko)
EP (1) EP4047693A4 (ko)
JP (1) JP2023501681A (ko)
KR (1) KR20210070933A (ko)
CN (1) CN114730872A (ko)
WO (1) WO2021112606A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240019723A (ko) 2022-08-04 2024-02-14 주식회사 엘지에너지솔루션 리튬이차전지, 전지 모듈 및 전지 팩
CN117199343A (zh) * 2023-11-08 2023-12-08 宁德时代新能源科技股份有限公司 电池单体和含有其的用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120081808A (ko) * 2011-01-12 2012-07-20 삼성에스디아이 주식회사 양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
JP2013206553A (ja) * 2012-03-27 2013-10-07 Tdk Corp 正極活物質、及びそれを用いたリチウムイオン二次電池
JP2016026981A (ja) * 2014-06-27 2016-02-18 旭硝子株式会社 リチウム含有複合酸化物およびその製造方法
KR20190078498A (ko) * 2017-12-26 2019-07-04 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20190086403A (ko) * 2018-01-12 2019-07-22 한양대학교 산학협력단 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR102004457B1 (ko) 2015-11-30 2019-07-29 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW363940B (en) * 1996-08-12 1999-07-11 Toda Kogyo Corp A lithium-nickle-cobalt compound oxide, process thereof and anode active substance for storage battery
US10193150B2 (en) * 2014-07-07 2019-01-29 Hitachi Metals, Ltd. Lithium ion secondary battery cathode material, lithium ion secondary battery cathode and lithium ion secondary battery that use same, and method for manufacturing lithium ion secondary battery cathode material
JP6624885B2 (ja) * 2015-02-19 2019-12-25 パナソニック株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP2019192325A (ja) * 2016-08-31 2019-10-31 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
CN109713297B (zh) * 2018-12-26 2022-03-29 宁波容百新能源科技股份有限公司 一种一次颗粒定向排列的高镍正极材料及其制备方法
EP3905391A4 (en) * 2018-12-28 2022-01-26 Panasonic Intellectual Property Management Co., Ltd. ACTIVE MATERIAL OF POSITIVE ELECTRODE FOR SECONDARY NON-AQUEOUS ELECTROLYTE BATTERY AND SECONDARY NON-AQUEOUS ELECTROLYTE BATTERY
CN109817955B (zh) * 2019-03-29 2020-09-29 郑州中科新兴产业技术研究院 非水电解质二次电池用高镍正极材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120081808A (ko) * 2011-01-12 2012-07-20 삼성에스디아이 주식회사 양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
JP2013206553A (ja) * 2012-03-27 2013-10-07 Tdk Corp 正極活物質、及びそれを用いたリチウムイオン二次電池
JP2016026981A (ja) * 2014-06-27 2016-02-18 旭硝子株式会社 リチウム含有複合酸化物およびその製造方法
KR102004457B1 (ko) 2015-11-30 2019-07-29 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR20190078498A (ko) * 2017-12-26 2019-07-04 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20190086403A (ko) * 2018-01-12 2019-07-22 한양대학교 산학협력단 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬 이차 전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4047693A1

Also Published As

Publication number Publication date
CN114730872A (zh) 2022-07-08
US20220416238A1 (en) 2022-12-29
EP4047693A1 (en) 2022-08-24
KR20210070933A (ko) 2021-06-15
EP4047693A4 (en) 2022-12-21
JP2023501681A (ja) 2023-01-18

Similar Documents

Publication Publication Date Title
WO2021080374A1 (ko) 양극 활물질 전구체의 제조 방법 및 양극 활물질 전구체
WO2020116858A1 (ko) 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 이차전지용 양극
WO2021015511A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 제조 방법에 의해 제조된 양극 활물질
WO2021107684A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 방법에 의해 제조된 리튬 이차전지용 양극 활물질
WO2022092906A1 (ko) 양극 활물질 및 이의 제조방법
WO2021187907A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2022139311A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2021154035A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2022039576A1 (ko) 양극 활물질의 제조방법
WO2021049918A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2022154603A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2022092922A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2021112606A1 (ko) 리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법
WO2021125873A1 (ko) 리튬 이차전지용 양극, 상기 양극을 포함하는 리튬 이차전지
WO2021141463A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2022169271A1 (ko) 양극 활물질 및 이의 제조방법
WO2022169331A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2022119157A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2018124593A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021080384A1 (ko) 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2022092477A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법
WO2023063778A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조방법
WO2022169270A1 (ko) 양극 활물질 및 이의 제조방법
WO2022235047A1 (ko) 리튬 이차전지용 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2023224453A1 (ko) 양극 활물질 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895599

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022528132

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020895599

Country of ref document: EP

Effective date: 20220519

NENP Non-entry into the national phase

Ref country code: DE