WO2022169270A1 - 양극 활물질 및 이의 제조방법 - Google Patents

양극 활물질 및 이의 제조방법 Download PDF

Info

Publication number
WO2022169270A1
WO2022169270A1 PCT/KR2022/001710 KR2022001710W WO2022169270A1 WO 2022169270 A1 WO2022169270 A1 WO 2022169270A1 KR 2022001710 W KR2022001710 W KR 2022001710W WO 2022169270 A1 WO2022169270 A1 WO 2022169270A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
lithium
transition metal
electrode active
Prior art date
Application number
PCT/KR2022/001710
Other languages
English (en)
French (fr)
Inventor
정지훈
이혁
정원식
목덕균
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202280007945.9A priority Critical patent/CN116569360A/zh
Priority to JP2023544137A priority patent/JP2024505835A/ja
Priority to US18/267,652 priority patent/US20230402598A1/en
Priority to EP22750019.6A priority patent/EP4246627A4/en
Publication of WO2022169270A1 publication Critical patent/WO2022169270A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material and a method for manufacturing the same, and more particularly, to a cathode active material prepared from a cathode active material precursor with a controlled aspect ratio of crystal grains and voids included in secondary particles satisfying specific conditions, a method for manufacturing the same, and It relates to a positive electrode and a lithium secondary battery including the positive electrode active material.
  • a lithium transition metal oxide is used as a cathode active material for a lithium secondary battery, and among them, lithium cobalt oxide of LiCoO 2 having a high operating voltage and excellent capacity characteristics was mainly used.
  • LiCoO 2 has very poor thermal properties due to destabilization of the crystal structure due to lithium removal and is expensive, so there is a limit to its mass use as a power source in fields such as electric vehicles.
  • lithium manganese composite metal oxide LiMnO 2 or LiMn 2 O 4 , etc.
  • a lithium iron phosphate compound LiFePO 4 etc.
  • a lithium nickel composite metal oxide LiNiO 2 etc.
  • lithium containing two or more transition metals such as Li[Ni a Co b Mn c ]O 2 , Li[Ni a Co b Al c ]O 2 , and Li[Ni a Co b Mn c Al d ]O 2 .
  • Transition metal oxides have been developed and widely used.
  • the lithium composite transition metal oxide containing the two or more transition metals is usually prepared in the form of spherical secondary particles in which dozens to hundreds of primary particles are aggregated, and the secondary particles include pores.
  • the physical properties of the positive electrode active material such as reactivity and particle strength due to a change in the contact area with the electrolyte, vary depending on the pore size and distribution. Accordingly, studies are being attempted to analyze the voids included in the secondary particles through BET analysis, mercury intrusion, and the like, and to improve the performance of the positive electrode active material using the analysis.
  • An object of the present invention is to provide a positive electrode active material capable of improving initial capacity characteristics of a battery by satisfying a specific condition in which pores included in secondary particles satisfy a specific condition.
  • another object of the present invention is to provide a method of manufacturing the positive electrode active material by using a positive electrode active material precursor satisfying a specific condition of the aspect ratio of the crystal grains.
  • the present invention contains nickel in 60 mol% or more with respect to the total number of moles of transition metals excluding lithium, and includes lithium transition metal oxide in the form of secondary particles in which primary particles are aggregated,
  • the lithium transition metal oxide provides a positive electrode active material that satisfies the following formula (1).
  • the x and y are obtained from cross-sectional SEM image analysis of the secondary particles, and x is the smallest area of a rectangle including all pores having an area exceeding 0.002 ⁇ m 2 among the closed pores distributed inside the secondary particles. (unit: ⁇ m 2 ), and y is the sum of the areas (unit: ⁇ m 2 ) of pores having an area exceeding 0.002 ⁇ m 2 among the closed pores distributed inside the secondary particles.
  • the present invention is (A) a positive electrode containing 60 mol% or more of nickel with respect to the total number of moles of the transition metal, including a transition metal hydroxide in the form of secondary particles in which primary particles are aggregated, and having a grain aspect ratio of 4.0 to 10.0 preparing an active material precursor; and
  • (B) preparing a lithium transition metal oxide by mixing and calcining the cathode active material precursor and a lithium-containing raw material; provides a method for producing the cathode active material comprising a.
  • the present invention provides a positive electrode for a lithium secondary battery including the positive electrode active material and a lithium secondary battery including the positive electrode.
  • the pores included in the secondary particles satisfy a specific condition, and thus the initial capacity characteristics of the positive electrode active material are excellent. Specifically, the positive electrode active material has excellent initial discharge capacity and initial charge/discharge efficiency.
  • a positive electrode active material in which pores included in secondary particles satisfy a specific condition can be manufactured by using a positive electrode active material precursor that satisfies a specific condition with an aspect ratio of crystal grains.
  • Example 1 is a cross-sectional SEM image of one secondary particle of the positive active material prepared in Example 1 of the present invention, and a view showing the size and position distribution of pores.
  • Example 2 is a cross-sectional SEM image of one secondary particle of the positive active material prepared in Example 2 of the present invention, and a view showing the size and position distribution of pores.
  • FIG 3 is a cross-sectional SEM image of one secondary particle of the positive active material prepared in Comparative Example 1 of the present invention, and a view showing the size and position distribution of pores.
  • FIG. 4 is a cross-sectional SEM image of one secondary particle of the positive active material prepared in Comparative Example 2 of the present invention, and a view showing the size and position distribution of pores.
  • FIG. 5 is a cross-sectional SEM image of one secondary particle of the positive active material prepared in Comparative Example 3 of the present invention, and a view showing the size and position distribution of pores.
  • 'crystal grain' means a single crystal grain unit having a regular atomic arrangement.
  • the size of the grains is a value measured by analyzing XRD data obtained by X-ray diffraction analysis of the cathode active material precursor powder by the Rietveld refinement method, and the aspect ratio of the grains is the full width at half of all peaks appearing in the XRD data.
  • -maximum, FWHM is the ratio (a/c) of the major axis length (a) to the minor axis length (c) of the grains calculated by applying the Scherrer equation transformed by applying ellipsoid modeling.
  • the size and aspect ratio of the crystal grains can be specifically obtained by the following method.
  • X-ray diffraction analysis is performed on the cathode active material precursor to obtain XRD data.
  • the X-ray diffraction analysis may be performed under the following conditions using Empyreon XRD equipment manufactured by Malyer Panalytical.
  • Sample preparation About 5 g of sample is filled in a holder with a diameter of 2 cm and loaded on a rotation stage.
  • the grain size can be obtained using Malvern's XRD data refinement program Highscore, and specifically, it can be obtained by fitting the half widths of all peaks appearing in the XRD data with the Caglioti equation.
  • the aspect ratio of the crystal grains can be obtained from the minor axis length c and the major axis length a obtained through the least squares approximation method after applying the half-widths of all peaks appearing in the XRD data obtained by X-ray diffraction analysis of the positive electrode active material precursor to Equation 2 below.
  • Equation 2 d(hkl) is the full width at half maximum at the peak, h, k, and l are the Miller index in the crystal plane of the peak, k is the Scherrer constant, ⁇ is the Bragg angle, and ⁇ is X- The line wavelength, a is the major axis length of the grain, and c is the minor axis length of the grain.
  • the 'primary particle' means a minimum particle unit that is distinguished into one lump when the cross section of the positive electrode active material precursor is observed through a scanning electron microscope (SEM), and may consist of one crystal grain, It may consist of a plurality of crystal grains.
  • SEM scanning electron microscope
  • the present inventors have completed the present invention by finding that the initial capacity characteristics of a battery including the positive electrode active material according to the present invention can be improved when the pores included in the secondary particles satisfy a specific condition.
  • the positive active material according to the present invention contains 60 mol% or more of nickel with respect to the total number of moles of transition metals excluding lithium, and contains lithium transition metal oxide in the form of secondary particles in which primary particles are aggregated,
  • the lithium transition metal oxide satisfies Equation 1 below.
  • the x and y are obtained from cross-sectional SEM image analysis of the secondary particles, and x is the smallest area of a rectangle including all pores having an area exceeding 0.002 ⁇ m 2 among the closed pores distributed inside the secondary particles. (unit: ⁇ m 2 ), and y is the sum of the areas (unit: ⁇ m 2 ) of pores having an area exceeding 0.002 ⁇ m 2 among the closed pores distributed inside the secondary particles.
  • the x and y are the SEM images of the secondary particle cross-section including the voids with SEM (FEI, Quanta FEG 250) after processing the positive active material by ion milling, and using the Image J commercial program It can be obtained by analyzing the image threshold 1 ⁇ 2% condition.
  • the initial capacity characteristics of the battery including the positive active material are excellent. Specifically, the initial discharge capacity and initial charge/discharge efficiency of the battery including the positive electrode active material are excellent. This is because when the conditions of Equation 1 are satisfied and the pores distributed inside the secondary particles are evenly distributed inside the secondary particles, the contact area between the positive electrode active material and the electrolyte is widened, so that insertion and desorption of lithium occurs actively. to be.
  • the lithium transition metal oxide may satisfy the condition of Equation 1 above.
  • the lithium transition metal oxide has the form of secondary particles formed by agglomeration of primary particles.
  • the lithium transition metal oxide is formed in the form of secondary particles in which primary particles are agglomerated, it is possible to realize a high rolling density while having a high specific surface area at the same time, and when this is applied, it is possible to increase the energy density per volume.
  • Equation 1 20 ⁇ x ⁇ 400, specifically 40 ⁇ x ⁇ 225, more specifically 100 ⁇ x ⁇ 225 may be.
  • x is within the above range, there is an advantage that the voids in the secondary particles are evenly distributed.
  • Equation 1 0.01 ⁇ y ⁇ 5.0, specifically, 0.05 ⁇ y ⁇ 3.0, more specifically, 0.1 ⁇ y ⁇ 1.5.
  • y is within the above range, there is an advantage of securing particle strength while having electrochemical activity including appropriate voids.
  • the average pore area of pores having an area exceeding 0.002 ⁇ m 2 among the closed pores distributed inside the secondary particles may be 0.01 ⁇ m 2 / piece to 0.1 ⁇ m 2 / piece.
  • the average pore area may be 0.015 ⁇ m 2 / piece to 0.08 ⁇ m 2 / piece, more specifically 0.018 ⁇ m 2 / piece to 0.05 ⁇ m 2 / piece.
  • the average pore area means a value obtained by dividing the total sum of the areas of the pores by the number of pores.
  • the lithium transition metal oxide may have a composition represented by the following formula (1).
  • M1 is at least one selected from Mn and Al
  • M1 may be specifically Mn or a combination of Mn and Al.
  • the a represents the ratio of moles of Li to the total number of moles of transition metal, and may be 0.9 ⁇ a ⁇ 1.2, specifically 1.0 ⁇ a ⁇ 1.2, and more specifically 1.0 ⁇ a ⁇ 1.1.
  • the x1 represents the ratio of moles of Ni to the total number of moles of the transition metal, and may be 0.6 ⁇ x1 ⁇ 1, specifically 0.8 ⁇ x1 ⁇ 1, and more specifically 0.85 ⁇ x1 ⁇ 1.
  • the y1 represents the ratio of moles of Co to the total number of moles of transition metal, and may be 0 ⁇ y1 ⁇ 0.4, specifically 0 ⁇ y1 ⁇ 0.2, more specifically 0 ⁇ y1 ⁇ 0.15.
  • the z1 represents the ratio of moles of M1 to the total number of moles of the transition metal, and may be 0 ⁇ z1 ⁇ 0.4, specifically 0 ⁇ z1 ⁇ 0.2, and more specifically 0 ⁇ z1 ⁇ 0.15.
  • the w1 represents the ratio of moles of M2 to the total number of moles of the transition metal, and may be 0 ⁇ w1 ⁇ 0.2, specifically 0 ⁇ w1 ⁇ 0.05.
  • the lithium transition metal oxide When the lithium transition metal oxide has a composition represented by Formula 1, it may exhibit high capacity characteristics.
  • the positive electrode active material according to the present invention may further include a coating layer on the surface of the above-described lithium transition metal oxide.
  • a coating layer is further included on the surface of the lithium transition metal oxide, the contact between the lithium transition metal oxide and the electrolyte is blocked by the coating layer, thereby reducing transition metal elution and gas generation due to a side reaction with the electrolyte.
  • the coating layer may include at least one coating element selected from the group consisting of Li, B, W, Al, Zr, Na, S, P and Co.
  • the method for producing a positive active material according to the present invention includes (A) 60 mol% or more of nickel with respect to the total number of moles of transition metal, and includes a transition metal hydroxide in the form of secondary particles in which primary particles are aggregated, and the grain aspect ratio is Preparing a cathode active material precursor of 4.0 to 10.0; and
  • (B) mixing the cathode active material precursor and the lithium-containing raw material and calcining to prepare a lithium transition metal oxide includes.
  • a positive electrode active material precursor that satisfies a specific condition with an aspect ratio of crystal grains is used as in the method for manufacturing a positive electrode active material according to the present invention
  • a positive electrode active material in which pores included in the secondary particles satisfy a specific condition can be manufactured.
  • the grain aspect ratio of the positive electrode active material precursor is 4.0 to 10.0, specifically 4.0 to 9.0, and more specifically 4.0 to 8.0
  • the voids included in the secondary particles of the prepared positive active material may satisfy Formula 1 above. .
  • the grain aspect ratio of the positive electrode active material precursor is less than 4.0, there is a problem that the pores in the secondary particles of the positive electrode active material are not evenly distributed, and when it exceeds 10.0, there is a problem that the positive active material contains excessive pores.
  • the crystal grain aspect ratio of the positive electrode active material precursor is the molar ratio of ammonia/transition metal input, the temperature during the coprecipitation reaction, and the mole ratio of nickel to the total number of moles of transition metal included in the transition metal-containing solution when preparing the positive electrode active material precursor and co-precipitation
  • the reaction may be controlled according to pH conditions and the like.
  • the transition metal hydroxide has the form of secondary particles formed by aggregation of primary particles.
  • the prepared transition metal oxide may have a high specific surface area and at the same time realize a high rolling density.
  • the transition metal hydroxide may have a composition represented by the following formula (2).
  • M1' is at least one selected from Mn and Al
  • M1 may be specifically Mn or a combination of Mn and Al.
  • the x2 represents the ratio of moles of Ni to the total number of moles of the transition metal, and may be 0.6 ⁇ x2 ⁇ 1, specifically 0.8 ⁇ x2 ⁇ 1, and more specifically 0.85 ⁇ x2 ⁇ 1.
  • the y2 represents the ratio of moles of Co to the total number of moles of the transition metal, and may be 0 ⁇ y2 ⁇ 0.4, specifically 0 ⁇ y2 ⁇ 0.2, and more specifically 0 ⁇ y2 ⁇ 0.15.
  • the z2 represents the ratio of moles of M1 to the total number of moles of the transition metal, and may be 0 ⁇ z2 ⁇ 0.4, specifically 0 ⁇ z2 ⁇ 0.2, and more specifically 0 ⁇ z2 ⁇ 0.15.
  • the w2 represents the ratio of moles of M2 to the total number of moles of the transition metal, and may be 0 ⁇ w2 ⁇ 0.2, specifically 0 ⁇ w2 ⁇ 0.05.
  • the prepared positive active material may exhibit high capacity characteristics.
  • the lithium-containing raw material is, for example, at least one selected from the group consisting of lithium carbonate (Li 2 CO 3 ), lithium hydroxide (LiOH), LiNO 3 , CH 3 COOLi and Li 2 (COO) 2 It may be at least one , preferably lithium carbonate (Li 2 CO 3 ), lithium hydroxide (LiOH), or a combination thereof.
  • the cathode active material precursor and the lithium-containing raw material may be mixed in a molar ratio of 1:1 to 1:1.2, or 1:1 to 1:1.1.
  • the lithium-containing raw material is within the above range, the capacity of the produced positive electrode active material may be improved, and unreacted Li by-products may be minimized.
  • the firing may be performed at a temperature of 700°C to 1000°C.
  • the sintering temperature is within the above range, the reaction between the raw materials may sufficiently occur, and the particles may grow uniformly.
  • the calcination may be performed for 5 to 35 hours.
  • the calcination time is within the above range, a highly crystalline positive active material can be obtained, the particle size is appropriate, and production efficiency can be improved.
  • the method for manufacturing a cathode active material according to the present invention may further include washing the lithium transition metal oxide prepared in step (B) with a water washing solution and drying the lithium transition metal oxide.
  • the water washing process is a process for removing by-products such as residual lithium present in the lithium transition metal oxide prepared through step (B), and the drying process is a water washing process to remove moisture from the positive electrode active material containing moisture. It is a process for
  • the method for manufacturing a cathode active material according to the present invention may further include the step of mixing the dried lithium transition metal oxide with the coating element-containing raw material and heat-treating to form a coating layer. Accordingly, a cathode active material having a coating layer formed on the surface of the lithium transition metal oxide may be manufactured.
  • the metal element included in the coating element-containing raw material may be Zr, B, W, Mo, Cr, Nb, Mg, Hf, Ta, La, Ti, Sr, Ba, Ce, F, P, S and Y, etc. .
  • the raw material containing the coating element may be an acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide containing the metal element.
  • boric acid H 3 BO 3
  • the raw material containing the coating element may be included in an amount of 200 ppm to 2000 ppm based on the dried lithium transition metal oxide.
  • the content of the raw material containing the coating element is within the above range, the capacity of the battery may be improved, and the resulting coating layer inhibits a direct reaction between the electrolyte and the lithium transition metal oxide, thereby improving the long-term performance characteristics of the battery.
  • the heat treatment may be performed at a temperature of 200 °C to 400 °C.
  • the coating layer may be formed while maintaining the structural stability of the transition metal oxide.
  • the heat treatment may be performed for 1 hour to 10 hours.
  • the heat treatment time is within the above range, an appropriate coating layer may be formed and production efficiency may be improved.
  • the present invention may provide a positive electrode for a lithium secondary battery comprising the positive electrode active material according to the present invention.
  • the positive electrode includes a positive electrode current collector, and a positive electrode active material layer disposed on at least one surface of the positive electrode current collector and including the positive electrode active material.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and for example, stainless steel, aluminum, nickel, titanium, fired carbon, or carbon, nickel, titanium on the surface of aluminum or stainless steel. , silver or the like surface-treated may be used.
  • the positive electrode current collector may typically have a thickness of 3 ⁇ m to 500 ⁇ m, and may increase the adhesion of the positive electrode active material by forming fine irregularities on the surface of the current collector.
  • it may be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a non-woven body.
  • the positive active material layer may include a conductive material and a binder together with the positive active material.
  • the positive active material may be included in an amount of 80 wt% to 99 wt%, more specifically 85 wt% to 98 wt%, based on the total weight of the cathode active material layer.
  • excellent capacity characteristics may be exhibited.
  • the conductive material is used to impart conductivity to the electrode, and in the configured battery, it can be used without any particular limitation as long as it does not cause chemical change and has electronic conductivity.
  • Specific examples include graphite such as natural graphite and artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, and carbon fiber; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or a conductive polymer such as a polyphenylene derivative, and the like, and one or a mixture of two or more thereof may be used.
  • the conductive material may be included in an amount of 1 wt% to 30 wt% based on the total weight of the positive active material layer.
  • the binder serves to improve adhesion between the positive active material particles and adhesion between the positive active material and the current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC) ), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof, and any one of them or a mixture of two or more thereof may be used.
  • the binder may be included in an amount of 1 wt% to 30 wt% based on the total weight of the positive active material layer.
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method except for using the above positive electrode active material.
  • the cathode active material and, optionally, a cathode active material slurry prepared by dissolving or dispersing a binder and a conductive material in a solvent may be coated on a cathode current collector, and then dried and rolled.
  • the types and contents of the positive electrode active material, binder, and conductive material are as described above.
  • the solvent may be a solvent generally used in the art, dimethyl sulfoxide (DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrrolidone (NMP), acetone (acetone) or water, and the like, and any one of them or a mixture of two or more thereof may be used.
  • the amount of the solvent used is enough to dissolve or disperse the positive electrode active material, the conductive material and the binder in consideration of the application thickness of the slurry and the production yield, and to have a viscosity capable of exhibiting excellent thickness uniformity when applied for subsequent positive electrode manufacturing. do.
  • the positive electrode may be prepared by casting the slurry for forming the positive electrode active material layer on a separate support and then laminating a film obtained by peeling it off the support on the positive electrode current collector.
  • the present invention can manufacture an electrochemical device including the positive electrode according to the present invention.
  • the electrochemical device may specifically be a battery, a capacitor, or the like, and more specifically, a lithium secondary battery.
  • the lithium secondary battery specifically includes a positive electrode, a negative electrode positioned to face the positive electrode, and a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode is the same as described above, so detailed description is omitted, Hereinafter, only the remaining components will be described in detail.
  • the lithium secondary battery may optionally further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel surface. Carbon, nickel, titanium, one surface-treated with silver, an aluminum-cadmium alloy, etc. may be used.
  • the negative electrode current collector may have a thickness of typically 3 ⁇ m to 500 ⁇ m, and similarly to the positive electrode current collector, fine irregularities may be formed on the surface of the current collector to strengthen the bonding force of the negative electrode active material.
  • it may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam body, a nonwoven body, and the like.
  • the anode active material layer optionally includes a binder and a conductive material together with the anode active material.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; metal compounds capable of alloying with lithium, such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, or Al alloy; metal oxides capable of doping and dedoping lithium, such as SiO ⁇ (0 ⁇ 2), SnO 2 , vanadium oxide, and lithium vanadium oxide; Alternatively, a composite including the above-mentioned metallic compound and a carbonaceous material such as a Si-C composite or a Sn-C composite may be used, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the negative electrode active material.
  • both low crystalline carbon and high crystalline carbon may be used.
  • low crystalline carbon soft carbon and hard carbon are representative, and as high crystalline carbon, natural or artificial graphite of amorphous, plate-like, scale-like, spherical or fibrous shape, and Kish graphite (Kish) graphite), pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, liquid crystal pitches (Mesophase pitches), and petroleum and coal tar pitch (petroleum or coal tar pitch) High-temperature calcined carbon such as derived cokes) is a representative example.
  • the negative active material may be included in an amount of 80% to 99% by weight based on the total weight of the negative active material layer.
  • the binder is a component that assists in bonding between the conductive material, the active material, and the current collector, and may be typically added in an amount of 0.1 wt% to 10 wt% based on the total weight of the anode active material layer.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro and roethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, nitrile-butadiene rubber, fluororubber, and various copolymers thereof.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • EPDM ethylene-propylene-diene polymer
  • EPDM ethylene-propylene-
  • the conductive material is a component for further improving the conductivity of the anode active material, and may be added in an amount of 10 wt% or less, preferably 5 wt% or less, based on the total weight of the anode active material layer.
  • a conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • graphite such as natural graphite or artificial graphite
  • carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black
  • conductive fibers such as carbon fibers and metal fibers
  • metal powders such as carbon fluoride, aluminum, and nickel powder
  • conductive whiskers such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • a conductive material such as a polyphenylene derivative may be used.
  • the anode active material layer is prepared by applying and drying a slurry for forming the anode active material layer prepared by dissolving or dispersing the anode active material and, optionally, a binder and a conductive material in a solvent on the anode current collector and drying, or for forming the anode active material layer It can be prepared by casting the slurry on a separate support and then laminating the film obtained by peeling it from the support onto a negative electrode current collector.
  • the separator separates the negative electrode and the positive electrode and provides a passage for lithium ions to move, and if it is used as a separator in a lithium secondary battery, it can be used without any particular limitation, especially for the movement of ions in the electrolyte It is preferable to have a low resistance to and excellent electrolyte moisture content.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these
  • a laminate structure of two or more layers of may be used.
  • a conventional porous nonwoven fabric for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, etc. may be used.
  • a coated separator containing a ceramic component or a polymer material may be used, and may optionally be used in a single-layer or multi-layer structure.
  • examples of the electrolyte used in the present invention include organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel polymer electrolytes, solid inorganic electrolytes, and molten inorganic electrolytes, which can be used in the manufacture of lithium secondary batteries, and are limited to these. it's not going to be
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without any particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, ⁇ -caprolactone
  • ether-based solvents such as dibutyl ether or tetrahydrofuran
  • ketone solvents such as cyclohexanone
  • aromatic hydrocarbon solvents such as benzene and fluorobenzene
  • carbonate-based solvents such as dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), ethylene carbonate (EC), and propylene carbonate (PC)
  • alcohol solvents such as ethyl alcohol and isopropyl alcohol
  • nitriles such as R-CN (R is a linear, branched, or cyclic hydrocarbon group having 2 to 20 carbon atoms, and may contain
  • a carbonate-based solvent is preferable, and a cyclic carbonate (for example, ethylene carbonate or propylene carbonate, etc.) having high ionic conductivity and high dielectric constant capable of increasing the charge/discharge performance of the battery, and a low-viscosity linear carbonate-based compound (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • a cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1:1 to about 1:9, the electrolyte may exhibit excellent performance.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB(C 2 O 4 ) 2 and the like may be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1M to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has appropriate conductivity and viscosity, excellent electrolyte performance may be exhibited, and lithium ions may move effectively.
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, tri Ethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imida
  • One or more additives such as taxdine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol or aluminum trichloride may be further included. In this case, the additive may be included in an amount of 0.1 wt% to 5 wt% based on the total weight of the electrolyte.
  • the lithium secondary battery including the positive electrode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics and lifespan characteristics, so portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles ( It is useful in the field of electric vehicles such as hybrid electric vehicle and HEV).
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or battery pack is a power tool (Power Tool); electric vehicles, including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Alternatively, it may be used as a power source for any one or more medium and large-sized devices in a system for power storage.
  • Power Tool Power Tool
  • electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs);
  • PHEVs plug-in hybrid electric vehicles
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape using a can, a prismatic shape, a pouch type, or a coin type.
  • the lithium secondary battery according to the present invention can be used not only in a battery cell used as a power source for a small device, but can also be preferably used as a unit cell in a medium or large battery module including a plurality of battery cells.
  • NiSO 4 , CoSO 4 , and MnSO 4 were mixed in distilled water in an amount such that the molar ratio of nickel:cobalt:manganese was 88:5:7 to prepare an aqueous solution of a transition metal having a concentration of 2.4M.
  • transition metal aqueous solution was introduced into the reactor at a rate of 510 mL/hr, and a 7.96M aqueous NaOH solution was added at a rate of 306 mL/hr and a 5.08M NH 4 OH aqueous solution was added at a rate of 96 mL/hr at a reaction temperature of 45° C.
  • pH A cathode active material precursor A represented by Ni 0.88 Co 0.05 Mn 0.07 (OH) 2 having an average particle diameter of 10 ⁇ m was prepared by performing a co-precipitation reaction at 11.4 and a stirring speed of 300 rpm for 40 hours.
  • NiSO 4 , CoSO 4 , and MnSO 4 were mixed in distilled water in an amount such that the molar ratio of nickel:cobalt:manganese was 88:5:7 to prepare an aqueous solution of a transition metal having a concentration of 2.4M.
  • transition metal aqueous solution was introduced into the reactor at a rate of 510 mL/hr, and 7.96M aqueous NaOH solution was added at a rate of 306 mL/hr, and 5.08M NH 4 OH aqueous solution was added at a rate of 72 mL/hr at a reaction temperature of 45° C.
  • pH A cathode active material precursor B represented by Ni 0.88 Co 0.05 Mn 0.07 (OH) 2 having an average particle diameter of 10 ⁇ m was prepared by performing a co-precipitation reaction at 11.4 and a stirring speed of 300 rpm for 40 hours.
  • NiSO 4 , CoSO 4 , and MnSO 4 were mixed in distilled water in an amount such that the molar ratio of nickel:cobalt:manganese was 88:5:7 to prepare an aqueous solution of a transition metal having a concentration of 2.4M.
  • transition metal aqueous solution was introduced into the reactor at a rate of 510 mL/hr, and a 7.96M aqueous NaOH solution was added at a rate of 306 mL/hr and a 5.08M NH 4 OH aqueous solution was added at a rate of 204 mL/hr at a reaction temperature of 53° C.
  • pH A cathode active material precursor C represented by Ni 0.88 Co 0.05 Mn 0.07 (OH) 2 having an average particle diameter of 10 ⁇ m was prepared by performing a co-precipitation reaction at 11.4 and a stirring speed of 300 rpm for 40 hours.
  • NiSO 4 , CoSO 4 , and MnSO 4 were mixed in distilled water in an amount such that the molar ratio of nickel:cobalt:manganese was 88:5:7 to prepare an aqueous solution of a transition metal having a concentration of 2.4M.
  • transition metal aqueous solution was introduced into the reactor at a rate of 510 mL/hr, and a 7.96M aqueous NaOH solution was added at a rate of 306 mL/hr and a 5.08M NH 4 OH aqueous solution was added at a rate of 204 mL/hr at a reaction temperature of 60° C.
  • pH A cathode active material precursor D represented by Ni 0.88 Co 0.05 Mn 0.07 (OH) 2 having an average particle diameter of 10 ⁇ m was prepared by conducting a co-precipitation reaction at 11.4 and a stirring speed of 300 rpm for 40 hours.
  • NiSO 4 , CoSO 4 , and MnSO 4 were mixed in distilled water in an amount such that the molar ratio of nickel:cobalt:manganese was 88:5:7 to prepare an aqueous solution of a transition metal having a concentration of 2.4M.
  • the transition metal aqueous solution was introduced into the reactor at a rate of 510 mL/hr, and a 7.96M aqueous NaOH solution was added at a rate of 306 mL/hr and a 5.08M NH 4 OH aqueous solution was added at a rate of 306 mL/hr at a reaction temperature of 60° C., pH
  • a cathode active material precursor E represented by Ni 0.88 Co 0.05 Mn 0.07 (OH) 2 having an average particle diameter of 10 ⁇ m was prepared by performing a co-precipitation reaction at 11.4 and a stirring speed of 300 rpm for 40 hours.
  • X-ray diffraction analysis (Empyrean, Malvern Panalytical) was performed on the positive electrode active material precursors prepared in Preparation Examples 1 to 5 to derive the grain aspect ratio, which is shown in Table 1 below.
  • Table 1 the X-ray diffraction analysis conditions and the method of deriving the grain aspect ratio are the same as described above.
  • the cathode active material precursor prepared in Preparation Example 1 and LiOH were mixed in a molar ratio of 1:1.05, and 2 mol% of Al and 0.37 mol% of Zr were added based on the total moles of transition metals included in the cathode active material precursor, and then 780 Lithium transition metal oxide (composition: Li 1.05 Ni 0.8563 Co 0.05 Mn 0.07 Al 0.02 Zr 0.0037 O 2 ) was prepared by calcination at °C for 10 hours.
  • the lithium transition metal oxide was mixed with water in a weight ratio of 1:0.8 and washed with water.
  • boric acid was mixed so that 1000 ppm of B was included with respect to 100 parts by weight of the lithium transition metal oxide, and this was heat-treated at 300° C. for 5 hours to prepare a positive active material in which a B coating layer was formed on the surface of the lithium transition metal oxide.
  • a cathode active material was prepared in the same manner as in Example 1, except that the cathode active material precursor prepared in Preparation Example 2 was used instead of the cathode active material precursor prepared in Preparation Example 1.
  • a positive active material was prepared in the same manner as in Example 1, except that the positive active material precursor prepared in Preparation Example 3 was used instead of the positive active material precursor prepared in Preparation Example 1.
  • a positive active material was prepared in the same manner as in Example 1, except that the positive active material precursor prepared in Preparation Example 4 was used instead of the positive electrode active material precursor prepared in Preparation Example 1.
  • a positive active material was prepared in the same manner as in Example 1, except that the positive active material precursor prepared in Preparation Example 5 was used instead of the positive electrode active material precursor prepared in Preparation Example 1.
  • FIGS. 1 to 5 are diagrams showing a cross-sectional SEM image of one secondary particle of positive active materials prepared in Examples 1 to 2 and Comparative Examples 1 to 3 of the present invention, and the size and position distribution of pores, respectively.
  • Example 1 49.07 0.53 92.58 31 0.017
  • Example 2 54.27 0.65 83.49 37 0.018
  • Comparative Example 1 7.27 1.58 4.60 7.33 0.22
  • Comparative Example 2 5.56 1.10 8.02 3.33 0.33
  • Comparative Example 3 2.89 0.8 3.61 4 0.20
  • Lithium secondary batteries were manufactured using the positive active materials prepared in Examples 1 to 2 and Comparative Examples 1 to 3, and capacity characteristics were evaluated for each of them.
  • the positive electrode active material, carbon black conductive material, and polyvinylidene fluoride binder of Examples 1 to 2 and Comparative Examples 1 to 3 were mixed in an N-methylpyrrolidone solvent in a weight ratio of 97.5:1:1.5, and the positive electrode was mixed.
  • a slurry for forming an active material layer was prepared.
  • the slurry for forming the positive electrode active material layer was applied to one surface of an aluminum current collector having a thickness of 16.5 ⁇ m, dried at 130° C., and then rolled to prepare a positive electrode.
  • a slurry for forming a negative electrode active material layer was prepared by mixing the carbon black negative active material and the polyvinylidene fluoride binder in an N-methylpyrrolidone solvent in a weight ratio of 97.5:2.5.
  • the slurry for forming the negative electrode active material layer was applied to one surface of a copper current collector having a thickness of 16.5 ⁇ m, dried at 130° C., and then rolled to prepare a negative electrode.
  • An electrode assembly was prepared by interposing a porous polyethylene separator between the positive electrode and the negative electrode prepared above, and then placed inside the battery case, and then the electrolyte was injected into the case to prepare a lithium secondary battery.
  • an electrolyte in which 1M LiPF 6 is dissolved in an organic solvent in which ethylene carbonate (EC): dimethyl carbonate (DMC): ethylmethyl carbonate (EMC) is mixed in a ratio of 3:4:3 as an electrolyte is injected in Example Lithium secondary batteries according to 1 and 2 and Comparative Examples 1 to 3 were prepared.
  • Each of the lithium secondary batteries of Examples 1 and 2 and Comparative Examples 1 to 3 was charged to 4.25 V at 25° C. at a constant current of 0.2 C, and discharged to 3.0 V at a constant current of 0.2 C, followed by one cycle.
  • the charge capacity and the discharge capacity in the first cycle were measured, and are shown in Table 3 below.
  • a value obtained by multiplying a value obtained by dividing the discharging capacity in the first cycle by the charging capacity by 100 was taken as the charging/discharging efficiency (%), which is shown in Table 3 below.
  • the positive electrode active material according to the present invention is prepared from a positive electrode active material precursor in which the grain aspect ratio satisfies a specific range, and the pores included in the secondary particles satisfy a specific condition, so that the positive electrode according to the present invention It can be seen that the battery including the active material has excellent initial discharge capacity and initial charge/discharge efficiency characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬을 제외한 전이금속 전체 몰수에 대하여 60몰% 이상의 니켈을 포함하며, 1차 입자가 응집한 2차 입자의 형태인 리튬 전이금속 산화물을 포함하고, 상기 리튬 전이금속 산화물은 명세서 상의 식 1을 만족하는 것인 양극 활물질, 상기 양극 활물질의 제조방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지에 관한 것이다.

Description

양극 활물질 및 이의 제조방법
관련 출원과의 상호 인용
본 출원은 2021년 02월 05일자 한국특허출원 제10-2021-0017094호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원이 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 양극 활물질 및 이의 제조방법에 관한 것으로, 보다 구체적으로는, 결정립의 종횡비가 제어된 양극 활물질 전구체로부터 제조되어 2차 입자에 포함되는 공극이 특정 조건을 만족하는 양극 활물질, 이의 제조방법 및 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지의 양극 활물질로는 리튬 전이금속 산화물이 이용되고 있으며, 이중에서도 작용전압이 높고 용량 특성이 우수한 LiCoO2의 리튬 코발트 산화물이 주로 사용되었다. 그러나, LiCoO2는 탈 리튬에 따른 결정 구조의 불안정화로 열적 특성이 매우 열악하고, 또 고가이기 때문에 전기 자동차 등과 같은 분야의 동력원으로 대량 사용하기에는 한계가 있다.
상기 LiCoO2를 대체하기 위한 재료로서, 리튬 망간 복합금속 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4 등) 또는 리튬 니켈 복합금속 산화물(LiNiO2 등) 등이 개발되었다. 이 중에서도 약 200 mAh/g의 높은 가역용량을 가져 대용량의 전지 구현이 용이한 리튬 니켈 복합금속 산화물에 대한 연구 개발이 보다 활발히 연구되고 있다. 그러나, 상기 LiNiO2는 LiCoO2와 비교하여 열안정성이 열위하고, 충전 상태에서 외부로부터의 압력 등에 의해 내부 단락이 생기면 양극 활물질 그 자체가 분해되어 전지의 파열 및 발화를 초래하는 문제가 있었다. 이에 따라 LiNiO2의 우수한 가역 용량은 유지하면서도 낮은 열안정성을 개선하기 위한 방법으로서, 니켈의 일부를 코발트로 치환한 LiNi1-αCoαO2(α=0.1~0.3) 또는, 니켈의 일부를 Mn, Co 또는 Al로 치환한 리튬니켈코발트금속 산화물이 개발되었다. 최근에는 Li[NiaCobMnc]O2, Li[NiaCobAlc]O2, Li[NiaCobMncAld]O2와 같이 2종 이상의 전이금속을 포함하는 리튬 복합전이금속 산화물이 개발되어 널리 사용되고 있다.
상기 2종 이상의 전이금속을 포함하는 리튬 복합전이금속 산화물은 통상 수십개 ~ 수백개의 1차 입자들이 응집된 구형의 2차 입자 형태로 제조되고, 상기 2차 입자는 공극을 포함하는데, 2차 입자의 공극 크기, 분포 등에 따라 전해질과의 접촉 면적 변화로 인한 반응성 및 입자의 강도 등 양극 활물질의 물성이 달라지게 된다. 이에 따라, BET 분석, 수은 압입법 등을 통해 2차 입자에 포함되는 공극을 분석하고, 이를 이용하여 양극 활물질의 성능을 향상하고자 하는 연구들이 시도되고 있다.
그러나, BET 분석, 수은 압입법 등을 통한 공극 분석의 경우, 2차 입자에 포함되는 공극의 크기는 측정이 가능하나, 2차 입자 내에 공극이 어떻게 위치하는지는 알 수 없어, 양극 활물질의 성능을 제어하기 어려운 문제가 있다.
따라서, 보다 우수한 특성을 갖는 양극 활물질을 개발하기 위해서는 2차 입자에 포함되는 공극의 크기뿐만 아니라 공극의 위치가 제어된 양극 활물질의 개발이 요구되고 있다.
본 발명의 과제는 2차 입자에 포함되는 공극이 특정한 조건을 만족하여, 전지의 초기 용량 특성을 개선시킬 수 있는 양극 활물질을 제공하는 것이다.
그리고, 본 발명의 또 다른 과제는 결정립의 종횡비가 특정한 조건을 만족하는 양극 활물질 전구체를 사용하여 상기 양극 활물질을 제조하는 방법을 제공하는 것이다.
본 발명은 리튬을 제외한 전이금속 전체 몰수에 대하여 60몰% 이상의 니켈을 포함하며, 1차 입자가 응집한 2차 입자의 형태인 리튬 전이금속 산화물을 포함하고,
상기 리튬 전이금속 산화물은 하기 식 1을 만족하는 것인 양극 활물질을 제공한다.
[식 1]
Figure PCTKR2022001710-appb-I000001
상기 식 1에서,
상기 x, y는 상기 2차 입자의 단면 SEM 이미지 분석으로부터 얻어지는 것으로, 상기 x는 상기 2차 입자 내부에 분포하는 폐쇄형 공극 중 면적이 0.002㎛2를 초과하는 공극들을 모두 포함하는 직사각형의 최소 면적(단위: ㎛2)이며, 상기 y는 상기 2차 입자 내부에 분포하는 폐쇄형 공극 중 면적이 0.002㎛2를 초과하는 공극들의 면적(단위: ㎛2)의 총합이다.
그리고, 본 발명은 (A) 전이금속 전체 몰수에 대하여 60몰% 이상의 니켈을 포함하며, 1차 입자가 응집한 2차 입자의 형태인 전이금속 수산화물을 포함하고, 결정립 종횡비가 4.0 내지 10.0인 양극 활물질 전구체를 준비하는 단계; 및
(B) 상기 양극 활물질 전구체와 리튬 함유 원료물질을 혼합하고 소성하여 리튬 전이금속 산화물을 제조하는 단계;를 포함하는 상기 양극 활물질의 제조방법을 제공한다.
또한, 본 발명은 상기 양극 활물질을 포함하는 리튬 이차전지용 양극 및 상기 양극을 포함하는 리튬 이차전지를 제공한다.
본 발명은 2차 입자에 포함되는 공극이 특정한 조건을 만족하여, 양극 활물질의 초기 용량 특성이 우수하다. 구체적으로, 양극 활물질의 초기 방전 용량 및 초기 충방전 효율이 우수하다.
본 발명은 결정립의 종횡비가 특정한 조건을 만족하는 양극 활물질 전구체를 사용하여 2차 입자에 포함되는 공극이 특정한 조건을 만족하는 양극 활물질을 제조할 수 있다.
도 1은 본 발명의 실시예 1에서 제조한 양극 활물질 중 한 개의 2차 입자의 단면 SEM 이미지 및 공극의 크기, 위치 분포를 나타낸 도면이다.
도 2는 본 발명의 실시예 2에서 제조한 양극 활물질 중 한 개의 2차 입자의 단면 SEM 이미지 및 공극의 크기, 위치 분포를 나타낸 도면이다.
도 3은 본 발명의 비교예 1에서 제조한 양극 활물질 중 한 개의 2차 입자의 단면 SEM 이미지 및 공극의 크기, 위치 분포를 나타낸 도면이다.
도 4는 본 발명의 비교예 2에서 제조한 양극 활물질 중 한 개의 2차 입자의 단면 SEM 이미지 및 공극의 크기, 위치 분포를 나타낸 도면이다.
도 5는 본 발명의 비교예 3에서 제조한 양극 활물질 중 한 개의 2차 입자의 단면 SEM 이미지 및 공극의 크기, 위치 분포를 나타낸 도면이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
본 명세서에서 "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명에 있어서, '결정립'은 규칙적인 원자 배열을 갖는 단결정 입자 단위를 의미한다.
상기 결정립의 크기는 양극 활물질 전구체 분말을 X-선 회절분석하여 얻어진 XRD 데이터를 Rietveld refinement 방법으로 분석하여 측정한 값이고, 상기 결정립의 종횡비는 XRD 데이터에서 나타나는 모든 피크의 반가폭(full width at half-maximum, FWHM)을 타원형 모델링(ellipsoid modelling)을 적용하여 변형한 쉐러 식에 적용하여 계산된 결정립의 단축 길이(c)에 대한 장축 길이(a)의 비(a/c)이다.
결정립의 크기와 종횡비는 구체적으로 하기와 같은 방법으로 구할 수 있다.
먼저, 양극 활물질 전구체에 대해 X선 회절 분석을 수행하여, XRD 데이터를 얻는다. 이때, 상기 X선 회절 분석은 Malyer panalytical社의 Empyreon XRD 장비를 이용하여 하기와 같은 조건으로 수행될 수 있다.
<X선 회절 분석 조건>
광원: Cu-타겟, 45kV, 40mA 출력
디텍터: GaliPIX3D
시료 준비: 약 5g 정도의 시료를 2cm 직경의 홀더에 채워 회전 스테이지(rotation stage)에 로딩
측정 시간: 약 30분
측정 영역: 2θ=15° ~ 85°
결정립 크기는 Malvern社의 XRD 데이터 refinement 프로그램인 Highscore를 이용하여 구할 수 있으며, 구체적으로는, XRD 데이터에 나타나는 모든 피크의 반가폭을 Caglioti equation으로 피팅(fitting)하여 구할 수 있다.
결정립의 종횡비는 양극 활물질 전구체를 X-선 회절 분석하여 얻어진 XRD 데이터에 나타나는 모든 피크의 반가폭을 하기 식 2에 적용한 후, 최소 제곱 근사법을 통해 얻어진 단축 길이 c와 장축 길이 a로부터 구할 수 있다.
[식 2]
Figure PCTKR2022001710-appb-I000002
상기 식 2에서, d(hkl)은 해당 피크에서의 반가폭, h, k, l은 해당 피크의 결정면에서의 밀러 지수, k는 쉐러 상수, θ는 브래그 각도(bragg angle), λ는 X-선 파장, a는 결정립의 장축 길이, c는 결정립의 단축 길이이다.
본 발명에 있어서, '1차 입자'는 주사전자현미경(SEM)을 통해 양극 활물질 전구체의 단면을 관찰하였을 때 1개의 덩어리로 구별되는 최소 입자 단위를 의미하는 것으로, 하나의 결정립으로 이루어질 수도 있고, 복수개의 결정립으로 이루어질 수도 있다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 발명자들은 2차 입자에 포함되는 공극이 특정한 조건을 만족할 때, 본 발명에 따른 양극 활물질을 포함하는 전지의 초기 용량 특성을 개선할 수 있음을 알아내고 본 발명을 완성하였다.
양극 활물질
본 발명에 따른 양극 활물질은 리튬을 제외한 전이금속 전체 몰수에 대하여 60몰% 이상의 니켈을 포함하며, 1차 입자가 응집한 2차 입자의 형태인 리튬 전이금속 산화물을 포함하고,
상기 리튬 전이금속 산화물은 하기 식 1을 만족하는 것이다.
[식 1]
Figure PCTKR2022001710-appb-I000003
상기 식 1에서,
상기 x, y는 상기 2차 입자의 단면 SEM 이미지 분석으로부터 얻어지는 것으로, 상기 x는 상기 2차 입자 내부에 분포하는 폐쇄형 공극 중 면적이 0.002㎛2를 초과하는 공극들을 모두 포함하는 직사각형의 최소 면적(단위: ㎛2)이며, 상기 y는 상기 2차 입자 내부에 분포하는 폐쇄형 공극 중 면적이 0.002㎛2를 초과하는 공극들의 면적(단위: ㎛2)의 총합이다. 이 때, 상기 x, y는 양극 활물질을 Ion milling으로 가공한 후, SEM(FEI社, Quanta FEG 250)으로 공극을 포함하는 2차 입자 단면의 SEM 이미지를 얻고, 이를 Image J 상용 프로그램을 활용해 Image threshold 1~2% 조건으로 분석하여 얻을 수 있다.
상기 식 1의 조건을 만족하는 경우, 상기 양극 활물질을 포함하는 전지의 초기 용량 특성이 우수하다. 구체적으로, 상기 양극 활물질을 포함하는 전지의 초기 방전 용량 및 초기 충방전 효율이 우수하다. 이는 상기 식 1의 조건을 만족하여 2차 입자 내부에 분포하는 공극이 2차 입자 내부에서 고르게 분포되는 경우, 양극 활물질과 전해질의 접촉 면적이 넓어지게 되어, 리튬의 삽입 및 탈리가 활발하게 일어나기 때문이다.
한편, 결정립의 종횡비가 특정한 조건을 만족하는 양극 활물질 전구체를 사용하여 양극 활물질을 제조하는 경우, 상기 리튬 전이금속 산화물이 상기 식 1의 조건을 만족할 수 있다.
상기 리튬 전이금속 산화물은 1차 입자가 응집되어 이루어진 2차 입자의 형태를 가지는 것이다. 상기 리튬 전이금속 산화물이 1차 입자가 응집된 2차 입자 형태로 형성될 경우, 높은 비표면적을 가지면서도 동시에 높은 압연 밀도를 구현할 수 있어, 이를 적용시 부피당 에너지 밀도를 증가시킬 수 있다.
본 발명에 따르면, 상기 식 1에서, 20 ≤ x ≤ 400, 구체적으로는 40 ≤ x ≤ 225, 더욱 구체적으로는 100 ≤ x ≤ 225일 수 있다. x가 상기 범위 내인 경우, 2차 입자 내 공극이 고르게 분포되는 이점이 있다.
본 발명에 따르면, 상기 식 1에서, 0.01 ≤ y ≤ 5.0, 구체적으로는 0.05 ≤ y ≤ 3.0, 더욱 구체적으로는 0.1 ≤ y ≤ 1.5일 수 있다. y가 상기 범위 내인 경우, 적정한 공극을 포함하여 전기 화학적 활성도를 가짐과 동시에 입자 강도를 확보하는 이점이 있다.
본 발명에 따르면, 상기 2차 입자 내부에 분포하는 폐쇄형 공극 중 면적이 0.002㎛2 를 초과하는 공극들의 평균 공극 면적이 0.01㎛2/개 내지 0.1㎛2/개일 수 있다. 상기 평균 공극 면적은 구체적으로는 0.015㎛2/개 내지 0.08㎛2/개, 더욱 구체적으로는 0.018㎛2/개 내지 0.05㎛2/개일 수 있다. 상기 평균 공극 면적이 상기 범위 내인 경우, 양극 활물질과 전해질의 적절한 접촉 면적을 확보할 수 있는 이점이 있다. 이 때, 상기 평균 공극 면적은 상기 공극들의 면적의 총 합을 공극 개수로 나눈 값을 의미한다.
본 발명에 따르면, 상기 리튬 전이금속 산화물은 하기 화학식 1로 표시되는 조성을 가지는 것일 수 있다.
[화학식 1]
LiaNix1Coy1M1z1M2w1O2
상기 화학식 1에서, M1은 Mn 및 Al 중에서 선택되는 하나 이상이고, M2는 B, Zr, Y, Mo, Cr, V, W, Ta 및 Nb 중에서 선택되는 하나 이상이며, 0.9≤a≤1.2, 0.6≤x1≤1.0, 0≤y1≤0.4, 0≤z1≤0.4, 0≤w1≤0.2이며, x1+y1+z1+w1=1이다.
상기 M1은 구체적으로는 Mn이거나, Mn과 Al의 조합일 수 있다.
상기 a는 전이금속 전체 몰수에 대비 Li의 몰수 비를 나타내는 것으로, 0.9≤a≤1.2, 구체적으로는 1.0≤a≤1.2, 더욱 구체적으로는 1.0≤a≤1.1일 수 있다.
상기 x1은 전이금속 전체 몰수 대비 Ni의 몰수 비를 나타내는 것으로, 0.6≤x1<1, 구체적으로는 0.8≤x1<1, 더욱 구체적으로는 0.85≤x1<1일 수 있다.
상기 y1은 전이금속 전체 몰수 대비 Co의 몰수 비를 나타내는 것으로, 0≤y1≤0.4, 구체적으로는 0<y1<0.2, 더욱 구체적으로는 0<y1<0.15일 수 있다.
상기 z1은 전이금속 전체 몰수 대비 M1의 몰수 비를 나타내는 것으로, 0≤z1≤0.4, 구체적으로는 0<z1<0.2, 더욱 구체적으로는 0<z1<0.15일 수 있다.
상기 w1은 전이금속 전체 몰수 대비 M2의 몰수 비를 나타내는 것으로, 0≤w1≤0.2, 구체적으로는 0≤w1≤0.05일 수 있다.
리튬 전이금속 산화물이 상기 화학식 1로 표시되는 조성을 가질 때, 고용량 특성을 나타낼 수 있다.
한편, 본 발명에 따른 양극 활물질은 상술한 리튬 전이금속 산화물의 표면에 코팅층을 더 포함할 수 있다. 리튬 전이금속 산화물의 표면에 코팅층을 더 포함할 경우, 상기 코팅층에 의해 리튬 전이금속 산화물과 전해액의 접촉이 차단되어 전해액과의 부반응에 의한 전이금속 용출 및 가스 발생을 감소시킬 수 있다.
상기 코팅층은 Li, B, W, Al, Zr, Na, S, P 및 Co로 이루어진 군으로부터 선택된 1종 이상의 코팅 원소를 포함할 수 있다.
양극 활물질의 제조방법
본 발명에 따른 양극 활물질의 제조방법은 (A) 전이금속 전체 몰수에 대하여 60몰% 이상의 니켈을 포함하며, 1차 입자가 응집한 2차 입자의 형태인 전이금속 수산화물을 포함하고, 결정립 종횡비가 4.0 내지 10.0인 양극 활물질 전구체를 준비하는 단계; 및
(B) 상기 양극 활물질 전구체와 리튬 함유 원료물질을 혼합하고 소성하여 리튬 전이금속 산화물을 제조하는 단계;를 포함한다.
본 발명에 따른 양극 활물질의 제조방법과 같이 결정립의 종횡비가 특정한 조건을 만족하는 양극 활물질 전구체를 사용하는 경우, 2차 입자에 포함되는 공극이 특정한 조건을 만족하는 양극 활물질을 제조할 수 있다. 구체적으로, 상기 양극 활물질 전구체의 결정립 종횡비가 4.0 내지 10.0, 구체적으로 4.0 내지 9.0, 더욱 구체적으로 4.0 내지 8.0인 경우, 제조되는 양극 활물질의 2차 입자에 포함되는 공극이 상기 식 1을 만족할 수 있다. 이는 결정립 종횡비가 큰 양극 활물질 전구체와 리튬 함유 원료물질을 함께 소성할 때, 양극 활물질 전구체의 2차 입자 내부 및 표면부에 존재하는 1차 입자의 결정화 및 결정 성장이 고르게 일어나기 때문이다.
상기 양극 활물질 전구체의 결정립 종횡비가 4.0 미만인 경우에는 양극 활물질의 2차 입자 내 공극이 고르게 분포하지 못하는 문제가 있으며, 10.0 초과인 경우에는 양극 활물질이 과다한 공극을 포함하게 되는 문제가 있다.
한편, 상기 양극 활물질 전구체의 결정립 종횡비는 양극 활물질 전구체 제조 시, 암모니아/전이금속의 투입 몰비, 공침 반응 시의 온도, 전이금속 함유 용액에 포함되는 전이금속의 총 몰 수에 대한 니켈의 몰비 및 공침 반응 시 pH 조건 등에 따라서 제어되는 것일 수 있다.
상기 전이금속 수산화물은 1차 입자가 응집되어 이루어진 2차 입자의 형태를 가지는 것이다. 상기 전이금속 수산화물이 1차 입자가 응집된 2차 입자 형태로 형성될 경우, 제조되는 전이금속 산화물이 높은 비표면적을 가지면서도 동시에 높은 압연 밀도를 구현할 수 있다.
본 발명에 따르면, 상기 전이금속 수산화물은 하기 화학식 2로 표시되는 조성을 가지는 것일 수 있다.
[화학식 2]
Nix2Coy2M1'z2M2'w2(OH)2
상기 화학식 2에서, M1'는 Mn 및 Al 중에서 선택되는 하나 이상이고, M2'는 B, Zr, Y, Mo, Cr, V, W, Ta 및 Nb 중에서 선택되는 하나 이상이며, 0.6≤x2≤1.0, 0≤y2≤0.4, 0≤z2≤0.4, 0≤w2≤0.2이며, x2+y2+z2+w2=1이다.
상기 M1은 구체적으로는 Mn이거나, Mn과 Al의 조합일 수 있다.
상기 x2는 전이금속 전체 몰수 대비 Ni의 몰수 비를 나타내는 것으로, 0.6≤x2<1, 구체적으로는 0.8≤x2<1, 더욱 구체적으로는 0.85≤x2<1일 수 있다.
상기 y2은 전이금속 전체 몰수 대비 Co의 몰수 비를 나타내는 것으로, 0≤y2≤0.4, 구체적으로는 0<y2<0.2, 더욱 구체적으로는 0<y2<0.15일 수 있다.
상기 z2은 전이금속 전체 몰수 대비 M1의 몰수 비를 나타내는 것으로, 0≤z2≤0.4, 구체적으로는 0<z2<0.2, 더욱 구체적으로는 0<z2<0.15일 수 있다.
상기 w2은 전이금속 전체 몰수 대비 M2의 몰수 비를 나타내는 것으로, 0≤w2≤0.2, 구체적으로는 0≤w2≤0.05일 수 있다.
전이금속 수산화물이 상기 화학식 1로 표시되는 조성을 가질 때, 제조되는 양극 활물질이 고용량 특성을 나타낼 수 있다.
상기 리튬 함유 원료 물질은, 예를 들면, 탄산리튬(Li2CO3), 수산화리튬(LiOH), LiNO3, CH3COOLi 및 Li2(COO)2로 이루어진 군에서 선택되는 적어도 하나 이상일 수 있으며, 바람직하게는 탄산리튬(Li2CO3), 수산화리튬(LiOH) 또는 이들의 조합일 수 있다.
양극 활물질 제조 시에 상기 양극 활물질 전구체와 리튬 함유 원료 물질은 1:1 내지 1:1.2, 또는 1:1 내지 1:1.1 몰비로 혼합할 수 있다. 리튬 함유 원료물질이 상기 범위 내인 경우, 제조되는 양극 활물질의 용량이 개선될 수 있으며, 미반응된 Li이 부산물이 최소화될 수 있다.
상기 소성은 700℃ 내지 1000℃ 온도에서 수행할 수 있다. 소성 온도가 상기 범위 내인 경우, 원료 물질 간의 반응이 충분하게 일어날 수 있으며, 입자가 균일하게 성장할 수 있다.
상기 소성은 5시간 내지 35시간 동안 수행할 수 있다. 소성 시간이 상기 범위 내인 경우, 고결정성의 양극 활물질을 얻을 수 있고, 입자의 크기가 적당하며, 생산 효율이 개선될 수 있다.
본 발명에 따른 양극 활물질 제조방법은 (B) 단계를 통해 제조된 리튬 전이금속 산화물을 수세 용액으로 수세하고, 건조시키는 단계를 더 포함할 수 있다. 상기 수세 공정은 (B) 단계를 통해 제조된 리튬 전이금속 산화물에 존재하는 잔류 리튬 등의 부산물을 제거하기 위한 공정이며, 상기 건조 공정은 수세 공정을 거쳐 수분을 포함하는 양극 활물질에서 수분을 제거하기 위한 공정이다.
또한, 본 발명에 따른 양극 활물질 제조방법은 건조된 리튬 전이금속 산화물에 코팅 원소 함유 원료 물질을 혼합하고 열처리하여 코팅층을 형성하는 단계를 더 포함할 수 있다. 이에 따라, 상기 리튬 전이 금속 산화물 표면에 코팅층이 형성된 양극 활물질을 제조할 수 있다.
상기 코팅 원소 함유 원료 물질에 포함되는 금속 원소는 Zr, B, W, Mo, Cr, Nb, Mg, Hf, Ta, La, Ti, Sr, Ba, Ce, F, P, S 및 Y 등일 수 있다. 상기 코팅 원소 함유 원료 물질은 상기 금속 원소를 포함하는 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있다. 예를 들어, 상기 금속 원소가 B인 경우, 붕산(H3BO3) 등이 사용될 수 있다.
상기 코팅 원소 함유 원료 물질은 상기 건조된 리튬 전이금속 산화물에 대하여 200ppm 내지 2000ppm의 중량으로 포함되는 것일 수 있다. 코팅 원소 함유 원료 물질의 함량이 상기 범위 내인 경우, 전지의 용량이 개선될 수 있으며, 생성된 코팅층이 전해액과 리튬 전이금속 산화물과의 직접적인 반응을 억제하여 전지의 장기 성능 특성이 개선될 수 있다.
상기 열처리는 200℃ 내지 400℃ 온도에서 수행할 수 있다. 열처리 온도가 상기 범위 내인 경우, 전이 금속 산화물의 구조적 안정성을 유지시키면서 코팅층을 형성시킬 수 있다. 상기 열처리는 1시간 내지 10시간 동안 수행할 수 있다. 열처리 시간이 상기 범위 내인 경우, 적절한 코팅층이 형성될 수 있으며 생산 효율이 개선될 수 있다.
양극
또한, 본 발명은 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지용 양극을 제공할 수 있다.
구체적으로, 상기 양극은 양극 집전체, 및 상기 양극 집전체의 적어도 일면에 위치하며, 상기한 양극 활물질을 포함하는 양극 활물질층을 포함한다.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질층은 양극 활물질과 함께, 도전재 및 바인더를 포함할 수 있다.
이때 상기 양극 활물질은 양극 활물질층 총 중량에 대하여 80중량% 내지 99중량%, 보다 구체적으로는 85중량% 내지 98중량%의 햠량으로 포함될 수 있다. 상기한 함량 범위로 포함될 때 우수한 용량 특성을 나타낼 수 있다.
이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용 가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극 활물질층 총 중량에 대하여 1중량% 내지 30중량%로 포함될 수 있다.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 1중량% 내지 30중량%로 포함될 수 있다.
상기 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 선택적으로, 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 양극 활물질 슬러리를 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극 활물질, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포 시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또한, 다른 방법으로, 상기 양극은 상기 양극 활물질층 형성용 슬러리를 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
리튬 이차전지
또한, 본 발명은 본 발명에 따른 양극을 포함하는 전기화학소자를 제조할 수 있다. 상기 전기화학소자는 구체적으로 전지, 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로, 양극, 상기 양극과 대향하여 위치하는 음극, 및 상기 양극과 음극 사이에 개재되는 분리막 및 전해질을 포함하고, 상기 양극은 앞서 설명한 바와 동일하므로, 구체적인 설명을 생략하고, 이하 나머지 구성에 대해서만 구체적으로 설명한다.
또한, 상기 리튬 이차전지는 상기 양극, 음극, 분리막의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0<β<2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체와 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
상기 음극 활물질은 음극 활물질층의 총 중량에 대하여 80중량% 내지 99중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 활물질층의 총 중량에 대하여 0.1중량% 내지 10중량%로 첨가될 수 있다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 활물질층의 총 중량에 대하여 10중량% 이하, 바람직하게는 5중량% 이하로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 음극 활물질층은 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 활물질층 형성용 슬러리를 도포하고 건조함으로써 제조되거나, 또는 상기 음극 활물질층 형성용 슬러리를 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수 있다.
한편, 상기 리튬 이차전지에 있어서, 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또한, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1M 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1중량% 내지 5중량% 포함될 수 있다.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 수명 특성을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
제조예 1
NiSO4, CoSO4, 및 MnSO4를 니켈:코발트:망간의 몰비가 88:5:7이 되도록 하는 양으로 증류수 중에서 혼합하여 2.4M 농도의 전이금속 수용액을 준비하였다.
이어서, 상기 반응기에 탈이온수를 넣은 뒤 질소가스를 반응기에 퍼징하여 물 속의 용존 산소를 제거하고 반응기 내를 비산화 분위기로 조성하였다. 이후 7.96M NaOH를 투입하여 반응기 내의 pH가 11.9를 유지하도록 하였다.
이후, 상기 전이금속 수용액을 상기 반응기 내로 510mL/hr의 속도로 투입하고, 7.96M NaOH 수용액을 306mL/hr, 5.08M NH4OH 수용액을 96mL/hr의 속도로 각각 투입하면서 반응 온도 45℃, pH 11.4, 교반 속도 300rpm 조건에서 40시간 동안 공침 반응을 진행시켜 평균 입경 10 ㎛인 Ni0.88Co0.05Mn0.07(OH)2로 표시되는 양극 활물질 전구체 A를 제조하였다.
제조예 2
NiSO4, CoSO4, 및 MnSO4를 니켈:코발트:망간의 몰비가 88:5:7이 되도록 하는 양으로 증류수 중에서 혼합하여 2.4M 농도의 전이금속 수용액을 준비하였다.
이어서, 상기 반응기에 탈이온수를 넣은 뒤 질소가스를 반응기에 퍼징하여 물 속의 용존 산소를 제거하고 반응기 내를 비산화 분위기로 조성하였다. 이후 7.96M NaOH를 투입하여 반응기 내의 pH가 11.4를 유지하도록 하였다.
이후, 상기 전이금속 수용액을 상기 반응기 내로 510mL/hr의 속도로 투입하고, 7.96M NaOH 수용액을 306mL/hr, 5.08M NH4OH 수용액을 72mL/hr의 속도로 각각 투입하면서 반응 온도 45℃, pH 11.4, 교반 속도 300rpm 조건에서 40시간 동안 공침 반응을 진행시켜 평균 입경 10 ㎛인 Ni0.88Co0.05Mn0.07(OH)2로 표시되는 양극 활물질 전구체 B를 제조하였다.
제조예 3
NiSO4, CoSO4, 및 MnSO4를 니켈:코발트:망간의 몰비가 88:5:7이 되도록 하는 양으로 증류수 중에서 혼합하여 2.4M 농도의 전이금속 수용액을 준비하였다.
이어서, 상기 반응기에 탈이온수를 넣은 뒤 질소가스를 반응기에 퍼징하여 물 속의 용존 산소를 제거하고 반응기 내를 비산화 분위기로 조성하였다. 이후 7.96M NaOH를 투입하여 반응기 내의 pH가 11.9를 유지하도록 하였다.
이후, 상기 전이금속 수용액을 상기 반응기 내로 510mL/hr의 속도로 투입하고, 7.96M NaOH 수용액을 306mL/hr, 5.08M NH4OH 수용액을 204mL/hr의 속도로 각각 투입하면서 반응 온도 53℃, pH 11.4, 교반 속도 300rpm 조건에서 40시간 동안 공침 반응을 진행시켜 평균 입경 10 ㎛인 Ni0.88Co0.05Mn0.07(OH)2로 표시되는 양극 활물질 전구체 C를 제조하였다.
제조예 4
NiSO4, CoSO4, 및 MnSO4를 니켈:코발트:망간의 몰비가 88:5:7이 되도록 하는 양으로 증류수 중에서 혼합하여 2.4M 농도의 전이금속 수용액을 준비하였다.
이어서, 상기 반응기에 탈이온수를 넣은 뒤 질소가스를 반응기에 퍼징하여 물 속의 용존 산소를 제거하고 반응기 내를 비산화 분위기로 조성하였다. 이후 7.96M NaOH를 투입하여 반응기 내의 pH가 11.9를 유지하도록 하였다.
이후, 상기 전이금속 수용액을 상기 반응기 내로 510mL/hr의 속도로 투입하고, 7.96M NaOH 수용액을 306mL/hr, 5.08M NH4OH 수용액을 204mL/hr의 속도로 각각 투입하면서 반응 온도 60℃, pH 11.4, 교반 속도 300rpm 조건에서 40시간 동안 공침 반응을 진행시켜 평균 입경 10 ㎛인 Ni0.88Co0.05Mn0.07(OH)2로 표시되는 양극 활물질 전구체 D를 제조하였다.
제조예 5
NiSO4, CoSO4, 및 MnSO4를 니켈:코발트:망간의 몰비가 88:5:7이 되도록 하는 양으로 증류수 중에서 혼합하여 2.4M 농도의 전이금속 수용액을 준비하였다.
이어서, 상기 반응기에 탈이온수를 넣은 뒤 질소가스를 반응기에 퍼징하여 물 속의 용존 산소를 제거하고 반응기 내를 비산화 분위기로 조성하였다. 이후 7.96M NaOH를 투입하여 반응기 내의 pH가 11.9를 유지하도록 하였다.
이후, 상기 전이금속 수용액을 상기 반응기 내로 510mL/hr의 속도로 투입하고, 7.96M NaOH 수용액을 306mL/hr, 5.08M NH4OH 수용액을 306mL/hr의 속도로 각각 투입하면서 반응 온도 60℃, pH 11.4, 교반 속도 300rpm 조건에서 40시간 동안 공침 반응을 진행시켜 평균 입경 10 ㎛인 Ni0.88Co0.05Mn0.07(OH)2로 표시되는 양극 활물질 전구체 E를 제조하였다.
실험예 1: 양극 활물질 전구체 결정립의 종횡비 확인
상기 제조예 1~5에서 제조한 양극 활물질 전구체에 대한 X-선 회절 분석(Empyrean, Malvern panalytical 社)을 수행하여 결정립 종횡비를 도출하였고, 이를 하기 표 1에 나타내었다. 이 때, X-선 회절 분석 조건 및 결정립 종횡비의 도출 방법은 상술한 바와 동일하다.
결정립의 종횡비 (a/c)
양극 활물질 전구체 A 5.79
양극 활물질 전구체 B 6.42
양극 활물질 전구체 C 3.98
양극 활물질 전구체 D 3.60
양극 활물질 전구체 E 3.28
실시예 1
제조예 1에서 제조한 양극 활물질 전구체와 LiOH를 1:1.05의 몰비로 혼합하고, 양극 활물질 전구체에 포함되는 전이금속의 전체 몰 수 기준으로 Al을 2mol%, Zr을 0.37mol% 첨가한 후, 780℃에서 10시간 동안 소성하여 리튬 전이금속 산화물(조성: Li1.05Ni0.8563Co0.05Mn0.07Al0.02Zr0.0037O2)을 제조하였다.
이어서, 상기 리튬 전이금속 산화물을 물과 1:0.8의 무게비가 되도록 혼합하여 수세하였다.
수세 후, 리튬 전이금속 산화물 100 중량부에 대하여 B가 1000ppm이 포함되도록 붕산을 혼합하고, 이를 300℃에서 5시간 동안 열처리하여 리튬 전이금속 산화물의 표면에 B 코팅층이 형성된 양극 활물질을 제조하였다.
실시예 2
제조예 1에서 제조한 양극 활물질 전구체 대신 제조예 2에서 제조한 양극 활물질 전구체를 사용한 것을 제외하고 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
비교예 1
제조예 1에서 제조한 양극 활물질 전구체 대신 제조예 3에서 제조한 양극 활물질 전구체를 사용한 것을 제외하고 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
비교예 2
제조예 1에서 제조한 양극 활물질 전구체 대신 제조예 4에서 제조한 양극 활물질 전구체를 사용한 것을 제외하고 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
비교예 3
제조예 1에서 제조한 양극 활물질 전구체 대신 제조예 5에서 제조한 양극 활물질 전구체를 사용한 것을 제외하고 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
실험예 2: 2차 입자에 포함되는 공극 분석
실시예 1~2 및 비교예 1~3에서 제조한 양극 활물질을 Ion milling으로 가공한 후, SEM(FEI社, Quanta FEG 250)으로 공극을 포함하는 2차 입자 단면의 SEM 이미지를 얻고, 이를 Image J 상용 프로그램을 활용해 Image threshold 1~2% 조건으로 분석하여 2차 입자 내부에 분포하는 폐쇄형 공극 중 면적이 0.002㎛2를 초과하는 공극들을 모두 포함하는 직사각형의 최소 면적(x), 2차 입자 내부에 분포하는 폐쇄형 공극 중 면적이 0.002㎛2를 초과하는 공극들의 면적의 총합(y), 공극의 개수를 얻은 후, 이를 하기 표 2에 나타내었다. 이 때, 한 샘플 당 최소 3개 이상의 2차 입자를 분석하여 평균 값을 사용하였다.
도 1 내지 5는 각각 본 발명의 실시예 1~2 및 비교예 1~3에서 제조한 양극 활물질 중 한 개의 2차 입자의 단면 SEM 이미지 및 공극의 크기, 위치 분포를 나타낸 도면이다.
x (㎛2) y (㎛2) x/y 공극의 개수 (개) 평균 공극 면적 (㎛2/개)
실시예 1 49.07 0.53 92.58 31 0.017
실시예 2 54.27 0.65 83.49 37 0.018
비교예 1 7.27 1.58 4.60 7.33 0.22
비교예 2 5.56 1.10 8.02 3.33 0.33
비교예 3 2.89 0.8 3.61 4 0.20
실험예 3: 용량 특성 평가
실시예 1~2 및 비교예 1~3에서 제조한 양극 활물질을 이용하여 리튬 이차전지를 제조하였고, 이들 각각에 대하여 용량 특성을 평가하였다.
구체적으로, 실시예 1~2 및 비교예 1~3 각각의 양극 활물질, 카본블랙 도전재 및 폴리비닐리덴플루오라이드 바인더를 97.5:1:1.5의 중량비로 N-메틸피롤리돈 용매 중에서 혼합하여 양극 활물질층 형성용 슬러리를 제조하였다. 상기 양극 활물질층 형성용 슬러리를 두께가 16.5㎛인 알루미늄 집전체의 일면에 도포한 후, 130℃에서 건조 후, 압연하여 양극을 제조하였다.
한편, 카본블랙 음극 활물질 및 폴리비닐리덴플루오라이드 바인더를 97.5:2.5의 중량비로 N-메틸피롤리돈 용매 중에서 혼합하여 음극 활물질층 형성용 슬러리를 제조하였다. 상기 음극 활물질층 형성용 슬러리를 두께가 16.5㎛인 구리 집전체의 일면에 도포한 후, 130℃에서 건조 후, 압연하여 음극을 제조하였다.
상기에서 제조한 양극과 음극 사이에 다공성 폴리에틸렌 분리막을 개재하여 전극 조립체를 제조한 다음, 이를 전지 케이스 내부에 위치시킨 후, 상기 케이스 내부로 전해액을 주입하여 리튬 이차전지를 제조하였다. 이때, 전해액으로서 에틸렌카보네이트(EC):디메틸카보네이트(DMC):에틸메틸카보네이트(EMC)를 3:4:3의 비율로 혼합한 유기 용매에 1M의 LiPF6를 용해시킨 전해액을 주입하여, 실시예 1~2 및 비교예 1~3에 따른 리튬 이차전지를 제조하였다.
실시예 1~2 및 비교예 1~3의 리튬 이차전지에 각각에 대하여 25℃에서 0.2C 정전류로 4.25V까지 충전을 실시하였고, 0.2C 정전류로 3.0V까지 방전을 실시한 후, 이를 1 사이클로 하여 첫번째 사이클에서의 충전 용량 및 방전 용량을 측정하였고, 이를 하기 표 3에 나타내었다. 또한, 첫번째 사이클에서의 방전 용량을 충전 용량으로 나눈 값에 100을 곱한 값을 충방전 효율(%)로 하여, 이를 하기 표 3에 나타내었다.
충전용량 (mAh/g) 방전용량 (mAh/g) 충방전 효율 (%)
실시예 1 230.8 213.2 92.4
실시예 2 231.2 214.3 92.7
비교예 1 229.5 209 91.1
비교예 2 229.0 210.1 91.4
비교예 3 229.1 209.2 91.3
상기 표 1 내지 표 3를 참조하면, 본 발명에 따른 양극 활물질은 결정립 종횡비가 특정 범위를 만족하는 양극 활물질 전구체로부터 제조되어 2차 입자에 포함되는 공극이 특정한 조건을 만족하여, 본 발명에 따른 양극 활물질을 포함하는 전지의 초기 방전 용량 및 초기 충방전 효율 특성이 우수한 것을 확인할 수 있다.

Claims (11)

  1. 리튬을 제외한 전이금속 전체 몰수에 대하여 60몰% 이상의 니켈을 포함하며, 1차 입자가 응집한 2차 입자의 형태인 리튬 전이금속 산화물을 포함하고,
    상기 리튬 전이금속 산화물은 하기 식 1을 만족하는 것인 양극 활물질:
    [식 1]
    Figure PCTKR2022001710-appb-I000004
    상기 식 1에서,
    상기 x, y는 상기 2차 입자의 단면 SEM 이미지 분석으로부터 얻어지는 것으로, 상기 x는 상기 2차 입자 내부에 분포하는 폐쇄형 공극 중 면적이 0.002㎛2를 초과하는 공극들을 모두 포함하는 직사각형의 최소 면적(단위: ㎛2)이며, 상기 y는 상기 2차 입자 내부에 분포하는 폐쇄형 공극 중 면적이 0.002㎛2를 초과하는 공극들의 면적(단위: ㎛2)의 총합이다.
  2. 청구항 1에 있어서,
    상기 식 1에서, 20 ≤ x ≤ 400인 양극 활물질.
  3. 청구항 1에 있어서,
    상기 식 1에서, 0.01 ≤ y ≤ 5.0인 양극 활물질.
  4. 청구항 1에 있어서,
    상기 2차 입자 내부에 분포하는 폐쇄형 공극 중 면적이 0.002㎛2를 초과하는 공극들의 평균 공극 면적이 0.01㎛2/개 내지 0.1㎛2/개인 양극 활물질.
  5. 청구항 1에 있어서,
    상기 리튬 전이금속 산화물은 하기 화학식 1로 표시되는 조성을 가지는 것인 양극 활물질:
    [화학식 1]
    LiaNix1Coy1M1z1M2w1O2
    상기 화학식 1에서, M1은 Mn 및 Al 중에서 선택되는 하나 이상이고, M2는 B, Zr, Y, Mo, Cr, V, W, Ta 및 Nb 중에서 선택되는 하나 이상이며, 0.9≤a≤1.2, 0.6≤x1≤1.0, 0≤y1≤0.4, 0≤z1≤0.4, 0≤w1≤0.2이며, x1+y1+z1+w1=1이다.
  6. 청구항 5에 있어서,
    상기 화학식 1에서, 0.85≤x1<1.0, 0<y1<0.15, 0<z1<0.15인 양극 활물질.
  7. (A) 전이금속 전체 몰수에 대하여 60몰% 이상의 니켈을 포함하며, 1차 입자가 응집한 2차 입자의 형태인 전이금속 수산화물을 포함하고, 결정립 종횡비가 4.0 내지 10.0인 양극 활물질 전구체를 준비하는 단계; 및
    (B) 상기 양극 활물질 전구체와 리튬 함유 원료물질을 혼합하고 소성하여 리튬 전이금속 산화물을 제조하는 단계;를 포함하는 청구항 1에 따른 양극 활물질의 제조방법.
  8. 청구항 7에 있어서,
    상기 전이금속 수산화물은 하기 화학식 2로 표시되는 조성을 가지는 것인 양극 활물질의 제조방법:
    [화학식 2]
    Nix2Coy2M1'z2M2'w2(OH)2
    상기 화학식 2에서, M1'는 Mn 및 Al 중에서 선택되는 하나 이상이고, M2'는 B, Zr, Y, Mo, Cr, V, W, Ta 및 Nb 중에서 선택되는 하나 이상이며, 0.6≤x2≤1.0, 0≤y2≤0.4, 0≤z2≤0.4, 0≤w2≤0.2이며, x2+y2+z2+w2=1이다.
  9. 청구항 8에 있어서,
    상기 화학식 1에서, 0.85≤x2<1.0, 0<y2<0.15, 0<z2<0.15인 양극 활물질의 제조방법.
  10. 청구항 1에 따른 양극 활물질을 포함하는 리튬 이차전지용 양극.
  11. 청구항 10에 따른 양극을 포함하는 리튬 이차전지.
PCT/KR2022/001710 2021-02-05 2022-02-03 양극 활물질 및 이의 제조방법 WO2022169270A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280007945.9A CN116569360A (zh) 2021-02-05 2022-02-03 正极活性材料及其制备方法
JP2023544137A JP2024505835A (ja) 2021-02-05 2022-02-03 正極活物質およびその製造方法
US18/267,652 US20230402598A1 (en) 2021-02-05 2022-02-03 Positive Electrode Active Material and Method of Preparing the Same
EP22750019.6A EP4246627A4 (en) 2021-02-05 2022-02-03 POSITIVE ELECTRODE ACTIVE MATERIAL AND PRODUCTION METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210017094A KR20220113195A (ko) 2021-02-05 2021-02-05 양극 활물질 및 이의 제조방법
KR10-2021-0017094 2021-02-05

Publications (1)

Publication Number Publication Date
WO2022169270A1 true WO2022169270A1 (ko) 2022-08-11

Family

ID=82742414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001710 WO2022169270A1 (ko) 2021-02-05 2022-02-03 양극 활물질 및 이의 제조방법

Country Status (6)

Country Link
US (1) US20230402598A1 (ko)
EP (1) EP4246627A4 (ko)
JP (1) JP2024505835A (ko)
KR (1) KR20220113195A (ko)
CN (1) CN116569360A (ko)
WO (1) WO2022169270A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016011226A (ja) * 2014-06-27 2016-01-21 住友金属鉱山株式会社 マンガンコバルト複合水酸化物及びその製造方法、正極活物質及びその製造方法、並びに非水系電解質二次電池
KR20170076723A (ko) * 2014-10-30 2017-07-04 스미토모 긴조쿠 고잔 가부시키가이샤 니켈 함유 복합 수산화물과 그의 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법 및 비수계 전해질 이차 전지
KR20180063862A (ko) * 2016-12-02 2018-06-12 주식회사 엘지화학 이차전지용 양극활물질 전구체 및 이를 이용하여 제조한 이차전지용 양극활물질
KR20190008156A (ko) * 2017-07-14 2019-01-23 한양대학교 산학협력단 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
KR20210006869A (ko) * 2019-07-09 2021-01-19 주식회사 엘지화학 이차전지용 양극 활물질의 제조방법, 이와 같이 제조된 양극 활물질 및 이를 포함하는 리튬 이차전지

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11569503B2 (en) * 2016-07-20 2023-01-31 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
US11302919B2 (en) * 2016-07-20 2022-04-12 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
JP2018092931A (ja) * 2016-11-30 2018-06-14 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用ニッケル系活物質、その製造方法、及びそれを含んだ正極を含んだリチウム二次電池
JP7254407B2 (ja) * 2019-10-23 2023-04-10 エルジー・ケム・リミテッド 正極活物質前駆体の製造方法および正極活物質前駆体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016011226A (ja) * 2014-06-27 2016-01-21 住友金属鉱山株式会社 マンガンコバルト複合水酸化物及びその製造方法、正極活物質及びその製造方法、並びに非水系電解質二次電池
KR20170076723A (ko) * 2014-10-30 2017-07-04 스미토모 긴조쿠 고잔 가부시키가이샤 니켈 함유 복합 수산화물과 그의 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법 및 비수계 전해질 이차 전지
KR20180063862A (ko) * 2016-12-02 2018-06-12 주식회사 엘지화학 이차전지용 양극활물질 전구체 및 이를 이용하여 제조한 이차전지용 양극활물질
KR20190008156A (ko) * 2017-07-14 2019-01-23 한양대학교 산학협력단 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
KR20210006869A (ko) * 2019-07-09 2021-01-19 주식회사 엘지화학 이차전지용 양극 활물질의 제조방법, 이와 같이 제조된 양극 활물질 및 이를 포함하는 리튬 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4246627A4 *

Also Published As

Publication number Publication date
EP4246627A4 (en) 2024-05-29
CN116569360A (zh) 2023-08-08
KR20220113195A (ko) 2022-08-12
US20230402598A1 (en) 2023-12-14
EP4246627A1 (en) 2023-09-20
JP2024505835A (ja) 2024-02-08

Similar Documents

Publication Publication Date Title
WO2020106024A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2019221497A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019235885A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021080374A1 (ko) 양극 활물질 전구체의 제조 방법 및 양극 활물질 전구체
WO2020111543A1 (ko) 팔면체 구조의 리튬 망간계 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2021154021A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2016053056A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2021015511A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 제조 방법에 의해 제조된 양극 활물질
WO2021154026A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2019059647A2 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020111545A1 (ko) 양극 활물질, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2021154035A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2022154603A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2022092906A1 (ko) 양극 활물질 및 이의 제조방법
WO2022139311A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2022092922A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2022039576A1 (ko) 양극 활물질의 제조방법
WO2021107684A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 방법에 의해 제조된 리튬 이차전지용 양극 활물질
WO2021141463A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021112606A1 (ko) 리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법
WO2022119157A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2022124774A1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2022098136A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2021154024A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2022182162A1 (ko) 양극 활물질, 이를 포함하는 양극 및 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22750019

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280007945.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022750019

Country of ref document: EP

Effective date: 20230613

WWE Wipo information: entry into national phase

Ref document number: 2023544137

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE