WO2022119157A1 - 양극 활물질 및 이를 포함하는 리튬 이차전지 - Google Patents

양극 활물질 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2022119157A1
WO2022119157A1 PCT/KR2021/016130 KR2021016130W WO2022119157A1 WO 2022119157 A1 WO2022119157 A1 WO 2022119157A1 KR 2021016130 W KR2021016130 W KR 2021016130W WO 2022119157 A1 WO2022119157 A1 WO 2022119157A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
active material
oxide
lithium manganese
positive electrode
Prior art date
Application number
PCT/KR2021/016130
Other languages
English (en)
French (fr)
Inventor
임라나
양아름
김균중
임경민
김혜빈
Original Assignee
주식회사 에코프로비엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210067237A external-priority patent/KR20220079404A/ko
Application filed by 주식회사 에코프로비엠 filed Critical 주식회사 에코프로비엠
Priority to CN202180067291.4A priority Critical patent/CN116325225A/zh
Priority to EP21900845.5A priority patent/EP4216311A1/en
Priority to JP2023520050A priority patent/JP2023544339A/ja
Publication of WO2022119157A1 publication Critical patent/WO2022119157A1/ko
Priority to US18/188,194 priority patent/US20230231128A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material and a lithium secondary battery including the same, and more particularly, to a lithium manganese-based oxide in excess of lithium containing at least lithium, nickel, manganese and molybdenum, wherein the lithium manganese-based oxide is at least one By improving crystal growth of the primary particles by using a flux containing primary particles of It relates to a prevented positive electrode active material and a lithium secondary battery including the same.
  • a battery stores electric power by using a material capable of electrochemical reaction between the anode and the cathode.
  • a representative example of such a battery is a lithium secondary battery that stores electrical energy by a difference in chemical potential when lithium ions are intercalated/deintercalated in a positive electrode and a negative electrode.
  • the lithium secondary battery is manufactured by using a material capable of reversible intercalation/deintercalation of lithium ions as a positive electrode and a negative electrode active material, and filling an organic electrolyte solution or a polymer electrolyte solution between the positive electrode and the negative electrode.
  • a lithium composite oxide is used as a cathode active material for a lithium secondary battery, for example, LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiMnO 2 or Korean Patent Application Laid-Open No. 10-2015-0069334 (published on June 23, 2015) ), complex oxides in which Ni, Co, Mn, or Al are complexed are being studied.
  • LiCoO 2 is used the most because of its excellent lifespan characteristics and charge/discharge efficiency, but it is expensive due to the resource limitation of cobalt used as a raw material, so it has a limitation in price competitiveness.
  • LiMnO 2 , LiMn 2 O 4 Lithium manganese oxide, etc. has advantages of excellent thermal stability and low price, but has problems in that it has a small capacity and poor high-temperature characteristics.
  • the LiNiO 2 -based positive electrode active material exhibits high discharge capacity battery characteristics, it is difficult to synthesize due to a cation mixing problem between Li and a transition metal, and thus has a large problem in rate characteristics.
  • Li by-products are generated according to the degree of intensification of the cation mixing, and most of these Li by-products are composed of LiOH and Li 2 CO 3 compounds. It causes gas generation due to charging and discharging after manufacturing. Residual Li 2 CO 3 increases cell swelling, which not only reduces the cycle, but also causes the battery to swell.
  • lithium manganese-based oxide in excess of lithium in excess of the sum of the transition metal content and Mn content in the transition metal as a positive electrode active material for a lithium secondary battery.
  • This lithium-rich lithium manganese-based oxide is also referred to as a lithium-overlithiated layered oxide (OLO).
  • the OLO has the advantage that it can theoretically exhibit a high capacity under a high voltage operating environment, in fact, it has relatively low electrical conductivity due to the excessive amount of Mn in the oxide. It has the disadvantage of low capability rate). As such, when the rate characteristic is low, there is a problem in that the charge/discharge capacity and lifespan efficiency (cycle capacity retention rate; capacity retentio) of the lithium secondary battery are deteriorated during cycling.
  • reduction in charge/discharge capacity or voltage decay during cycling of a lithium secondary battery using OLO may be induced by a phase transition according to movement of a transition metal among lithium manganese oxides.
  • a transition metal among lithium manganese oxides having a layered crystal structure moves in an unintended direction to induce a phase transition
  • a spinel or similar crystal structure may occur entirely and/or partially in the lithium manganese oxide.
  • lithium secondary battery market While the growth of lithium secondary batteries for electric vehicles is playing a leading role in the market, the demand for positive electrode active materials used in lithium secondary batteries is also constantly changing.
  • lithium secondary batteries using LFP have been mainly used from the viewpoint of securing safety, etc., but recently, the use of nickel-based lithium composite oxides having a large energy capacity per weight compared to LFP has been expanding.
  • nickel-based lithium composite oxides recently used as positive electrode active materials for high-capacity lithium secondary batteries include ternary metal elements such as nickel, cobalt and manganese or nickel, cobalt, and aluminum.
  • ternary metal elements such as nickel, cobalt and manganese or nickel, cobalt, and aluminum.
  • cobalt Due to the unstable supply and demand and excessively expensive compared to other raw materials, there is a need for a cathode active material with a new composition capable of reducing the cobalt content or excluding cobalt.
  • lithium manganese oxide in excess of lithium can meet the market expectations described above, but the electrochemical properties or stability of lithium manganese oxide are insufficient to replace the commercially available NCM or NCA type positive electrode active material. can do
  • the lithium manganese oxide using a flux containing molybdenum is used even if the existing lithium manganese oxide having excess lithium has disadvantages in terms of electrochemical properties and/or stability. It is found that, when the crystal growth of the primary particles constituting the confirmed by the inventors.
  • the present invention includes at least lithium, nickel, manganese, and an excess lithium manganese oxide containing molybdenum, and using a flux containing molybdenum, the average particle diameter of the primary particles of the lithium manganese oxide is 0.4
  • the phase transition effect due to the movement of the transition metal between particles is reduced, and the charge/discharge capacity or voltage decay is reduced during cycling of the lithium secondary battery using the positive active material containing the lithium manganese oxide.
  • the present invention uses a flux containing molybdenum to promote crystal growth of the primary particles of the lithium manganese oxide and at the same time allow some molybdenum to exist in the form of an oxide on the surface of the lithium manganese oxide.
  • a positive electrode active material capable of alleviating and/or preventing the decrease in charge-transfer and/or diffusion (ie, surface kinetic) of Li ions on the surface of the primary particles is intended to provide
  • an object of the present invention is to provide a lithium secondary battery having improved low discharge capacity of the existing OLO by using a positive electrode including a positive electrode active material as defined herein.
  • the lithium manganese oxide is at least one
  • the cathode active material includes primary particles, and the average particle diameter of the primary particles of the lithium manganese oxide is 0.4 ⁇ m to 3.0 ⁇ m.
  • the lithium manganese oxide includes primary particles in which crystal growth is promoted using a molybdenum-containing flux.
  • some of the molybdenum contained in the flux may be present as a dopant in the primary particles.
  • the lithium manganese-based oxide may be represented by the following Chemical Formula 1.
  • M1 is Nb, Fe, Cr, V, Cu, Zn, Sn, Mg, Ru, Al, Ti, Zr, B, Na, K, Y, P, Ba, Sr, La, Ga, Gd, Sm, W, At least one selected from Ca, Ce, Ta, Sc, In, S, Ge, Si and Bi,
  • molybdenum present in the lithium manganese oxide is rLi 2 Mn 1-a Mo a O 3 corresponding to the c2/m phase and/or (1-r) corresponding to the R3-m phase.
  • Li b Ni x Co y Mn z Mo z' M1 1-(x+y+z+z') O 2 may be present as a dopant.
  • some of the molybdenum used as a flux for crystal growth of the primary particles constituting the lithium manganese oxide exists in the form of an oxide on the surface of the primary particles, so that the average particle diameter of the primary particles of the lithium manganese oxide
  • the decrease in charge-transfer and/or diffusion (that is, surface kinetic) of Li ions on the surface of the primary particles can be alleviated and/or prevented as this increases.
  • a positive electrode including the above-described positive electrode active material is provided.
  • a lithium secondary battery using the above-described positive electrode is provided.
  • the present invention it is possible to improve the limitations of the existing lithium-excess lithium manganese-based oxide, which has several disadvantages in terms of electrochemical properties and/or stability when compared with other commercially available positive electrode active materials.
  • the lithium secondary battery containing the lithium manganese oxide as a cathode active material is charged during cycling. / A reduction in discharge capacity or voltage decay can be mitigated or eliminated.
  • the molybdenum used as a flux for crystal growth of primary particles constituting the lithium manganese oxide exists as a dopant in the lithium manganese oxide, in particular, excess lithium and manganese in the lithium manganese oxide By inducing electrical activation of rLi 2 Mn 1-a Mo a O 3 corresponding to the c2/m phase containing characteristics can be improved.
  • some of the molybdenum used as a flux for crystal growth of the primary particles constituting the lithium manganese oxide exists in the form of an oxide on the surface of the primary particles, so that the average particle diameter of the primary particles of the lithium manganese oxide
  • the decrease in charge-transfer and/or diffusion (that is, surface kinetic) of Li ions on the surface of the primary particles can be alleviated and/or prevented as this increases.
  • Example 1 is a SEM image of a lithium manganese-based oxide included in a positive active material according to Example 1. Referring to FIG. 1
  • FIG. 2 is a SEM image of a lithium manganese-based oxide included in the positive active material according to Comparative Example 1. Referring to FIG.
  • FIG. 4 is a cross-sectional SEM image of a lithium manganese-based oxide included in the positive electrode active material according to Example 1. Referring to FIG.
  • FIG. 5 is an image in which molybdenum is mapped to the cross-sectional SEM image of FIG. 4 through EDX analysis.
  • a positive electrode active material including an excess lithium manganese oxide containing at least lithium, nickel, manganese and molybdenum according to the present invention and a lithium secondary battery including the positive electrode active material will be described in more detail.
  • a positive electrode active material including a lithium manganese-based oxide in excess of lithium, including at least lithium, nickel, manganese and molybdenum.
  • the lithium manganese oxide is a composite metal oxide capable of intercalation and deintercalation of lithium ions.
  • the lithium manganese-based oxide included in the positive active material as defined herein may be a particle including at least one primary particle.
  • the lithium manganese oxide includes particles formed by aggregation of a plurality of primary particles, the particles formed by aggregation of a plurality of primary particles may be referred to as secondary particles.
  • particles including at least one primary particle should be interpreted to include both “particles formed by agglomeration of a plurality of primary particles” or “particles in a non-agglomerated form including a single primary particle”. something to do.
  • the smaller the number of primary particles constituting the entire particle the larger the size of the primary particles is preferred.
  • the primary particle and the secondary particle may each independently have a rod shape, an oval shape, and/or an irregular shape.
  • the average particle diameter of the primary particles in the lithium manganese-based oxide including at least one primary particle is 0.4 ⁇ m to 3.0 ⁇ m.
  • the average particle diameter of the primary particles may be measured as a length of a major axis or a minor axis of the primary particles, or may be measured as a cumulative average particle size.
  • the lithium manganese-based OLO defined in the present invention
  • the primary particles have an average particle diameter of at least 0.4 ⁇ m, thereby reducing a phase transition effect due to the movement of a transition metal between particles, and thus charging/discharging capacity during cycling of a lithium secondary battery using a cathode active material including the lithium manganese oxide It is possible to mitigate and/or prevent a decrease in , or a voltage decay.
  • the average particle diameter of the primary particles constituting the lithium manganese oxide is a flux containing molybdenum. It may be that crystal growth is promoted using When a flux containing molybdenum is used to promote crystal growth of the primary particles, some of the molybdenum used as the flux may be present as a dopant in the primary particles.
  • the interparticle transition metal when the average particle diameter of the primary particles of the lithium manganese oxide is increased by simply increasing the roasting or sintering temperature during the manufacturing process of the lithium manganese oxide to promote crystal growth of particles, the interparticle transition metal The phase transition effect due to movement may not be sufficiently prevented, or, rather, as the size of the primary particles becomes larger than necessary, the charge-transfer and/or diffusion (ie, surface kinetic) of Li ions on the particle surface may be reduced. .
  • the average particle diameter of the primary particles When the average particle diameter of the primary particles is smaller than 0.4 ⁇ m, a decrease in charge/discharge capacity or a voltage decay during cycling of a lithium secondary battery including the lithium manganese oxide as a positive electrode active material is sufficiently alleviated or eliminated It can be difficult.
  • the average particle diameter of the primary particles is greater than 3.0 ⁇ m, as the average particle diameter of the primary particles becomes excessively large, charge-transfer and/or diffusion of Li ions on the surface of the primary particles (that is, , surface kinetic) may be lowered, and thus the initial charge/discharge capacity may be sharply lowered.
  • the average particle diameter of the secondary particles may vary depending on the number of primary particles constituting the secondary particles, but may be generally 1 ⁇ m to 30 ⁇ m.
  • the lithium manganese-based oxide as defined herein may be represented by Formula 1 below.
  • M1 is Nb, Fe, Cr, V, Cu, Zn, Sn, Mg, Ru, Al, Ti, Zr, B, Na, K, Y, P, Ba, Sr, La, Ga, Gd, Sm, W, At least one selected from Ca, Ce, Ta, Sc, In, S, Ge, Si and Bi,
  • the lithium manganese-based oxide represented by Formula 1 may optionally include cobalt.
  • a ratio of the number of moles of cobalt to the number of moles of all metal elements in the lithium manganese-based oxide may be 10% or less, preferably 5% or less.
  • the lithium manganese-based oxide represented by Formula 1 may not contain cobalt.
  • the lithium manganese oxide represented by Formula 1 is an oxide of a phase (hereinafter referred to as 'C2/m phase') belonging to the C2/m space group represented by rLi 2 Mn 1-a Mo a O 3 and (1-r ) Li b Ni x Co y Mn z Mo z' M1 1-(x+y+z+z') O 2 of the phase belonging to the R3-m space group (hereinafter referred to as the 'R3-m phase') It is a complex oxide in which oxides coexist. At this time, the oxide of the C2/m phase and the oxide of the R3-m phase exist in a solid solution state.
  • the lithium manganese oxide represented by Formula 1 when r exceeds 0.8, the ratio of Li 2 MnO 3 , which is an oxide of C2/m phase, among the lithium manganese oxides is excessively increased, so that the discharge capacity of the positive electrode active material is increased There is a risk of deterioration. That is, in order to sufficiently activate the oxide of the C2/m phase having relatively high resistance among the lithium manganese oxides to improve surface kinetics, it is preferable that the oxide of the R3-m phase is present in a predetermined ratio or more.
  • molybdenum is present in the range of 0.02 mol% to 5.0 mol% based on all metal elements excluding lithium among the lithium manganese oxides represented by Formula 1 above.
  • the amount of the molybdenum-containing flux used for crystal growth of the primary particles constituting the lithium manganese oxide is Insufficient, it means that the effect of the crystal growth of the primary particles by the molybdenum-containing flux is insignificant.
  • the average particle diameter of the primary particles constituting the lithium manganese oxide is smaller than 0.4 ⁇ m, or the lithium Among the manganese-based oxides, the proportion of primary particles having a particle diameter of less than 0.4 ⁇ m may increase.
  • a phase transition is induced due to the unintentional movement of the transition metal between particles in the lithium manganese oxide, and thus, a spinel or a similar crystal structure may occur in whole and/or in part in the lithium manganese oxide.
  • phase transition in the lithium manganese oxide acts as a major cause of reduction in charge/discharge capacity or voltage decay during cycling of a lithium secondary battery using the cathode active material including the lithium manganese oxide do.
  • the amount of the molybdenum-containing flux used for crystal growth of the primary particles constituting the lithium manganese oxide is excessive. means a lot
  • the charge-transfer and/or diffusion of Li ions on the surface of the primary particles may be lowered.
  • the ratio of active metal elements that can contribute to the improvement of the initial charge/discharge capacity of a lithium secondary battery using the lithium manganese oxide as a positive electrode active material may decrease.
  • the compression density of the positive active material under 4.5 tons of pressure may be 2.8 g/cc or more.
  • the structural stability of the positive electrode active material may be lowered.
  • the porosity in the secondary particles increases as the size of the primary particles of the lithium manganese oxide increases, the structural stability of the positive electrode active material may decrease.
  • the average particle diameter of the primary particles that promote crystal growth using a flux containing molybdenum is in the range of 0.4 ⁇ m to 3.0 ⁇ m, so that the structural structure of the positive active material A decrease in stability can be prevented.
  • At least one metal oxide represented by the following Chemical Formula 2 may be present on at least a portion of the surface of the lithium manganese oxide.
  • the region in which the metal oxide is present may be at least a portion of a surface of the primary particle and/or the secondary particle.
  • M2 is Ni, Mn, Co, Fe, Cu, Nb, Mo, Ti, Al, Cr, Zr, Zn, Na, K, Ca, Mg, Pt, Au, P, Eu, Sm, W, Ce, V, At least one selected from Ba, Ta, Sn, Hf, Ce, Gd and Nd,
  • the metal oxide represented by Formula 2 may be formed by reacting at least some of the metal elements (nickel, manganese, cobalt and/or doping metal) constituting the lithium manganese oxide with Li present on the surface of the lithium manganese oxide.
  • the metal elements nickel, manganese, cobalt and/or doping metal
  • the metal oxide reduces lithium-containing impurities (or residual lithium) present on the surface of the lithium manganese oxide and acts as a diffusion path of lithium ions, thereby electrochemical properties of the lithium manganese oxide can improve
  • the metal oxide may include at least one selected from molybdenum oxide and lithium molybdenum oxide.
  • Part of the molybdenum used as a flux for crystal growth of primary particles constituting the lithium manganese oxide exists in the form of an oxide on the surface of the primary particles, so that the average particle diameter of the primary particles of the lithium manganese oxide increases Accordingly, it is possible to alleviate and/or prevent a decrease in charge-transfer and/or diffusion (ie, surface kinetic) of Li ions on the surface of the primary particles.
  • the metal oxide may exist integrally with the shell.
  • the metal oxide may be present on at least a portion of the surface of the crystallites, primary particles, and/or secondary particles constituting the lithium manganese oxide.
  • the metal oxide is an oxide in which lithium and an element represented by M2 are complexed, or an oxide of M3, and the metal oxide is, for example, Li a W b O c , Li a Zr b O c , Li a Ti b O c .
  • the metal oxide may further include an oxide in which lithium and at least two elements represented by M2 are complexed, or an oxide in which lithium and at least two elements represented by M2 are complexed.
  • the oxide in which lithium and at least two elements represented by M2 are complexed is, for example, Li a (W/Ti) b O c , Li a (W/Zr) b O c , Li a (W/Ti/Zr ) b O c , Li a (W/Ti/B) b O c , etc., but is not necessarily limited thereto.
  • a positive electrode including a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector may be provided.
  • the positive electrode active material layer may include the lithium composite oxide according to various embodiments of the present invention described above as a positive electrode active material.
  • lithium composite oxide Accordingly, a detailed description of the lithium composite oxide will be omitted, and only the remaining components not described above will be described below. Also, hereinafter, for convenience, the above-described lithium composite oxide will be referred to as a positive electrode active material.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and for example, stainless steel, aluminum, nickel, titanium, fired carbon, or carbon, nickel, titanium on the surface of aluminum or stainless steel. , silver or the like surface-treated may be used.
  • the positive electrode current collector may typically have a thickness of 3 to 500 ⁇ m, and may increase the adhesion of the positive electrode active material by forming fine irregularities on the surface of the current collector.
  • it may be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a non-woven body.
  • the positive electrode active material layer may be prepared by applying a positive electrode slurry composition including a conductive material and optionally a binder along with the positive electrode active material to the positive electrode current collector.
  • the positive active material may be included in an amount of 80 to 99 wt%, more specifically 85 to 98.5 wt%, based on the total weight of the positive active material layer. It may exhibit excellent capacity characteristics when included in the above content range, but is not necessarily limited thereto.
  • the conductive material is used to impart conductivity to the electrode, and in the configured battery, it can be used without any particular limitation as long as it has electronic conductivity without causing chemical change.
  • Specific examples include graphite such as natural graphite and artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, and carbon fiber; metal powders or metal fibers, such as copper, nickel, aluminum, and silver; conductive whiskeys such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one or a mixture of two or more thereof may be used.
  • the conductive material may be included in an amount of 0.1 to 15 wt% based on the total weight of the positive electrode active material layer.
  • the binder serves to improve adhesion between the positive active material particles and the adhesion between the positive active material and the current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC) ), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof, and any one of them or a mixture of two or more thereof may be used.
  • the binder may be included in an amount of 0.1 to 15 wt% based on the total weight of the positive active material layer.
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method except for using the above positive electrode active material. Specifically, the positive electrode active material and, optionally, the positive electrode slurry composition prepared by dissolving or dispersing the binder and the conductive material in a solvent may be coated on the positive electrode current collector, and then dried and rolled.
  • the solvent may be a solvent generally used in the art, dimethyl sulfoxide (DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrrolidone (NMP), acetone (acetone) or water, and the like, and any one of them or a mixture of two or more thereof may be used.
  • the amount of the solvent used is enough to dissolve or disperse the positive electrode active material, the conductive material and the binder in consideration of the application thickness of the slurry and the production yield, and to have a viscosity capable of exhibiting excellent thickness uniformity when applied for the production of the positive electrode thereafter. do.
  • the positive electrode may be prepared by casting the positive electrode slurry composition on a separate support and then laminating a film obtained by peeling it from the support on the positive electrode current collector.
  • an electrochemical device including the above-described positive electrode may be provided.
  • the electrochemical device may specifically be a battery, a capacitor, or the like, and more specifically, may be a lithium secondary battery.
  • the lithium secondary battery may include a positive electrode, a negative electrode positioned opposite to the positive electrode, and a separator and an electrolyte interposed between the positive electrode and the negative electrode.
  • a positive electrode a negative electrode positioned opposite to the positive electrode
  • a separator and an electrolyte interposed between the positive electrode and the negative electrode.
  • the lithium secondary battery may optionally further include a battery container accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member sealing the battery container.
  • the negative electrode may include a negative electrode current collector and an anode active material layer positioned on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel surface. Carbon, nickel, titanium, silver, etc. surface-treated, aluminum-cadmium alloy, etc. may be used.
  • the negative electrode current collector may have a thickness of typically 3 ⁇ m to 500 ⁇ m, and similarly to the positive electrode current collector, fine irregularities may be formed on the surface of the current collector to strengthen the bonding force of the negative electrode active material.
  • it may be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the negative electrode active material layer may be prepared by applying a negative electrode slurry composition including a conductive material and optionally a binder along with the negative electrode active material to the negative electrode current collector.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; metal compounds capable of alloying with lithium, such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, or Al alloy; metal oxides capable of doping and dedoping lithium, such as SiO ⁇ (0 ⁇ ⁇ ⁇ 2), SnO 2 , vanadium oxide, and lithium vanadium oxide;
  • a composite including the metallic compound and a carbonaceous material such as a Si-C composite or a Sn-C composite may be used, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the negative electrode active material.
  • both low crystalline carbon and high crystalline carbon may be used.
  • low crystalline carbon soft carbon and hard carbon are representative, and as high crystalline carbon, amorphous, plate-like, flaky, spherical or fibrous natural or artificial graphite, Kish graphite (Kish) graphite), pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, liquid crystal pitches (Mesophase pitches), and petroleum and coal tar pitch (petroleum or coal tar pitch) High-temperature calcined carbon such as derived cokes) is a representative example.
  • the negative active material may be included in an amount of 80 to 99 wt% based on the total weight of the negative electrode and the active material layer.
  • the binder is a component that assists in bonding between the conductive material, the active material, and the current collector, and may be typically added in an amount of 0.1 to 10 wt% based on the total weight of the negative electrode and the active material layer.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro and roethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, nitrile-butadiene rubber, fluororubber, and various copolymers thereof.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM st
  • the conductive material is a component for further improving the conductivity of the negative electrode active material, and may be added in an amount of 10 wt% or less, preferably 5 wt% or less, based on the total weight of the negative electrode active material layer.
  • a conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • graphite such as natural graphite or artificial graphite
  • carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black
  • conductive fibers such as carbon fibers and metal fibers
  • metal powders such as carbon fluoride, aluminum, and nickel powder
  • conductive whiskeys such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • the negative electrode active material layer is prepared by applying and drying a negative electrode slurry composition prepared by dissolving or dispersing the negative electrode active material, and optionally a binder and a conductive material in a solvent on the negative electrode current collector and drying, or the negative electrode slurry It can be prepared by casting the composition on a separate support and then laminating a film obtained by peeling it from the support onto a negative electrode current collector.
  • the negative electrode active material layer is coated with a negative electrode slurry composition prepared by dissolving or dispersing the negative electrode active material, and optionally a binder and a conductive material in a solvent on the negative electrode current collector and drying, or the negative electrode slurry It can also be prepared by casting the composition on a separate support and then laminating the film obtained by peeling it off from the support on the negative electrode current collector.
  • a negative electrode slurry composition prepared by dissolving or dispersing the negative electrode active material, and optionally a binder and a conductive material in a solvent on the negative electrode current collector and drying, or the negative electrode slurry It can also be prepared by casting the composition on a separate support and then laminating the film obtained by peeling it off from the support on the negative electrode current collector.
  • the separator separates the anode and the anode and provides a passage for lithium ions to move, and as long as it is used as a separator in a lithium secondary battery, it can be used without any particular limitation, especially for the movement of ions in the electrolyte It is preferable to have a low resistance to respect and an excellent electrolyte moisture content.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these
  • a laminate structure of two or more layers of may be used.
  • a conventional porous nonwoven fabric for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, etc. may be used.
  • a coated separator including a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may optionally be used in a single-layer or multi-layer structure.
  • examples of the electrolyte used in the present invention include organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel polymer electrolytes, solid inorganic electrolytes, and molten inorganic electrolytes that can be used in the manufacture of lithium secondary batteries, and are limited to these. it's not going to be
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without any particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, ⁇ -caprolactone
  • ether solvents such as dibutyl ether or tetrahydrofuran
  • ketone solvents such as cyclohexanone
  • aromatic hydrocarbon-based solvents such as benzene and fluorobenzene
  • alcohol solvents such as ethyl alcohol and isopropyl alcohol
  • nitriles such as R-CN (R is a linear, branched, or cyclic hydrocarbon group having 2
  • a carbonate-based solvent is preferable, and a cyclic carbonate (eg, ethylene carbonate or propylene carbonate, etc.) having high ionic conductivity and high dielectric constant capable of increasing the charge/discharge performance of the battery, and a low-viscosity linear carbonate-based compound (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • a cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1:1 to about 1:9, the performance of the electrolyte may be excellent.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2.
  • LiCl, LiI, or LiB(C 2 O 4 ) 2 , etc. may be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0 M. When the concentration of the lithium salt is included in the above range, the electrolyte may exhibit excellent electrolyte performance because it has appropriate conductivity and viscosity, and lithium ions may move effectively.
  • haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, tri Ethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imida
  • One or more additives such as taxdine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol or aluminum trichloride may be further included. In this case, the additive may be included in an amount of 0.1 to 5 wt% based on the total weight of the electrolyte.
  • the lithium secondary battery containing the positive electrode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics and lifespan characteristics, portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles ( It is useful in the field of electric vehicles such as hybrid electric vehicle and HEV).
  • the external shape of the lithium secondary battery according to the present invention is not particularly limited, but may be a cylindrical shape using a can, a prismatic shape, a pouch type, or a coin type.
  • the lithium secondary battery may be used not only in a battery cell used as a power source for a small device, but may also be preferably used as a unit cell in a medium or large battery module including a plurality of battery cells.
  • a battery module including the lithium secondary battery as a unit cell and/or a battery pack including the same may be provided.
  • the battery module or the battery pack is a power tool (Power Tool); electric vehicles, including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Alternatively, it may be used as a power source for any one or more medium-to-large devices in a system for power storage.
  • Power Tool Power Tool
  • electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs);
  • PHEVs plug-in hybrid electric vehicles
  • NiSO 4 ⁇ 6H 2 O and MnSO 4 ⁇ H 2 O were mixed aqueous solution in a molar ratio of 40:60, while NaOH and NH 4 OH were added and stirred.
  • the temperature in the reactor was maintained at 45° C., and the precursor synthesis reaction was performed while N 2 gas was introduced into the reactor. After completion of the reaction, washing and dehydration were performed to obtain a hydroxide precursor having a composition of Ni 0.4 Mn 0.6 (OH) 2 .
  • the temperature of the kiln in O 2 atmosphere was raised at a rate of 2 °C/min and then maintained at 550 °C, and the hydroxide precursor obtained in step (a) was heat-treated for 5 hours, followed by furnace cooling to obtain a precursor in an oxide state. .
  • the temperature of the kiln in an O 2 atmosphere is raised at a rate of 2° C./min and then maintained at 1,000° C., the mixture is heat-treated for 8 hours, then furnace cooled, and finally a cathode active material containing lithium manganese oxide was obtained.
  • a positive active material was prepared in the same manner as in Example 1, except that 6.0 mol% of MoO 3 was used in step (c).
  • a positive active material was prepared in the same manner as in Example 1, except that 0.01 mol% of MoO 3 was used in step (c).
  • a positive active material was prepared in the same manner as in Example 1, except that MoO 3 was not used in step (c).
  • NiSO 4 ⁇ 6H 2 O and MnSO 4 ⁇ H 2 O were mixed aqueous solution in a molar ratio of 40:60, while NaOH and NH 4 OH were added and stirred.
  • the temperature in the reactor was maintained at 45° C., and the precursor synthesis reaction was performed while N 2 gas was introduced into the reactor. After completion of the reaction, washing and dehydration were performed to obtain a hydroxide precursor having a composition of Ni 0.4 Mn 0.6 (OH) 2 .
  • the temperature of the kiln in an O 2 atmosphere was raised at a rate of 2°C/min and then maintained at 800°C and the hydroxide precursor obtained in step (a) was heat-treated for 5 hours, followed by furnace cooling to obtain an oxide precursor. .
  • the temperature of the kiln in an O 2 atmosphere is raised at a rate of 2° C./min and then maintained at 1,000° C., the mixture is heat-treated for 8 hours, then furnace cooled, and finally a cathode active material containing lithium manganese oxide was obtained.
  • a positive active material was prepared in the same manner as in Example 1, except that 0.5 mol% of Nb 2 O 3 was used instead of 0.5 mol% of MoO 3 in step (c).
  • a positive electrode slurry was prepared by dispersing 90 wt% of each of the positive active material prepared according to Preparation Example 1, 5.5 wt% of carbon black, and 4.5 wt% of a PVDF binder in 30 g of N-methyl-2 pyrrolidone (NMP).
  • NMP N-methyl-2 pyrrolidone
  • lithium foil as a counter electrode
  • a porous polyethylene membrane (Celgard 2300, thickness: 25 ⁇ m) as a separator
  • LiPF in a solvent in which ethylene carbonate and ethylmethyl carbonate were mixed in a volume ratio of 3:7
  • a coin battery was prepared using an electrolyte in which 6 was present at a concentration of 1.15M.
  • the lithium composite oxide was cross-sectioned using a Ga-ion source (FIB), and a cross-sectional SEM image was taken using a scanning electron microscope.
  • FIB Ga-ion source
  • molybdenum a target transition metal present in the interior and surface of the primary particles, was mapped through EDX analysis of the lithium manganese oxide confirmed from the cross-sectional SEM image.
  • FIG. 4 is a cross-sectional SEM image of lithium manganese oxide included in the positive electrode active material according to Example 1, and FIG. 5 is an image obtained by mapping molybdenum to the cross-sectional SEM image of FIG. 4 through EDX analysis (a region with a high density of shade) to be.
  • molybdenum is present on at least a part of the surface of the primary particles constituting the lithium manganese oxide.
  • the above result means that some of MoO 3 used as a flux for crystal growth of the primary particles is present as molybdenum oxide and/or lithium molybdenum oxide on the surface of the primary particles.
  • the ratio of the discharge capacity at the 50th cycle to the initial capacity after 50 charging/discharging under the conditions of 1C/1C within the driving voltage range of 25°C and 2.0V to 4.6V for the same lithium secondary battery (cycle capacity retention rate) ; capacity retention) and the retention rate (average discharge voltage retention) of the average discharge voltage at the 50th cycle compared to the average voltage at the 1st cycle were measured.
  • the positive active materials according to Examples 1 to 3 promote crystal growth of primary particles by using a flux containing molybdenum, so that the initial discharge capacity, the discharge capacity It can be seen that discharge characteristics such as ratio are improved compared to the positive active material according to Comparative Example 1.
  • Example 3 Comparing the positive active materials according to Examples 1 to 3, in the case of Example 3 using a relatively small amount of flux containing molybdenum, the degree of crystal growth of primary particles is lower than that of the positive active material according to Example 1, , it can be seen that the discharge capacity (1C-rate) and the discharge capacity ratio (5C/0.1C) are slightly lower than that of the lithium secondary battery using the positive electrode active material according to Example 1.
  • Example 3 in which a flux containing molybdenum was used in a relatively large amount, the degree of crystal growth was not significantly different from that of the positive active material according to Example 1, but rather, as the amount of flux increased, the discharge capacity (1C-rate) And it can be seen that the discharge capacity ratio (5C/0.1C) is slightly lower than that of the lithium secondary battery using the positive active material according to Example 1.
  • the above result is expected to be because the content of the active metal element in the lithium manganese oxide decreases as the content of the remaining molybdenum in the lithium manganese oxide increases.
  • the lithium secondary battery according to Examples 1 to 3 It can be seen that the initial discharge capacity and initial heating efficiency are similar to those of the positive electrode active material. However, it can be seen that the cycle capacity retention and discharge capacity ratio of the lithium secondary battery using the positive active material according to Comparative Example 2 is lower than that of the lithium secondary battery using the positive active material according to Examples 1 to 3.
  • lithium using the positive active material according to Comparative Example 3 in which crystal growth of primary particles was promoted by using a flux containing niobium instead of molybdenum, lithium using the positive active material according to Examples 1 to 3 It can be seen that the ratio of the initial charge/discharge capacity and the discharge capacity is lower than that of the secondary battery.
  • the results show that the crystal growth of primary particles constituting the lithium manganese oxide is promoted using a flux containing molybdenum, and at the same time, some of the molybdenum used as the flux is present as a dopant in the lithium manganese oxide, Charge-transfer and/or of Li ions on the surface of the primary particle by inducing electrical activation of rLi 2 Mn 1-a Mo a O 3 corresponding to the c2/m phase by being present as an oxide on the surface of the primary particle It can be confirmed that the decrease in diffusion (ie, surface kinetic) is caused by relaxation and/or prevention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 양극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것으로서, 보다 구체적으로, 적어도 리튬, 니켈, 망간 및 몰리브덴을 포함하는 리튬 과잉의 리튬 망간계 산화물을 포함하되, 상기 리튬 망간계 산화물은 적어도 하나의 1차 입자를 포함하며, 몰리브덴을 함유하는 플럭스를 사용하여 상기 1차 입자의 결정 성장을 향상시킴으로써 상기 리튬 망간계 산화물 중 과량으로 존재하는 리튬 및 망간에 의해 야기되는 안정성 저하가 완화 및/또는 방지된 양극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것이다.

Description

양극 활물질 및 이를 포함하는 리튬 이차전지
본 발명은 양극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것으로서, 보다 구체적으로, 적어도 리튬, 니켈, 망간 및 몰리브덴을 포함하는 리튬 과잉의 리튬 망간계 산화물을 포함하되, 상기 리튬 망간계 산화물은 적어도 하나의 1차 입자를 포함하며, 몰리브덴을 함유하는 플럭스를 사용하여 상기 1차 입자의 결정 성장을 향상시킴으로써 상기 리튬 망간계 산화물 중 과량으로 존재하는 리튬 및 망간에 의해 야기되는 안정성 저하가 완화 및/또는 방지된 양극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것이다.
전지는 양극과 음극에 전기 화학 반응이 가능한 물질을 사용함으로써 전력을 저장하는 것이다. 이러한 전지 중 대표적인 예로는 양극 및 음극에서 리튬 이온이 인터칼레이션/디인터칼레이션될 때의 화학전위(chemical potential)의 차이에 의하여 전기 에너지를 저장하는 리튬 이차 전지가 있다.
상기 리튬 이차 전지는 리튬 이온의 가역적인 인터칼레이션/디인터칼레이션이 가능한 물질을 양극과 음극 활물질로 사용하고, 상기 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시켜 제조한다.
리튬 이차 전지의 양극 활물질로는 리튬 복합 산화물이 사용되고 있으며, 그 예로 LiCoO2, LiMn2O4, LiNiO2, LiMnO2 또는 한국공개특허공보 제10-2015-0069334호(2015. 06. 23. 공개)와 같이 Ni, Co, Mn 또는 Al 등이 복합화된 복합 산화물이 연구되고 있다.
상기 양극 활물질들 중에 LiCoO2은 수명 특성 및 충방전 효율이 우수하여 가장 많이 사용되고 있지만, 원료로서 사용되는 코발트의 자원적 한계로 인해 고가이므로 가격 경쟁력에 한계가 있다는 단점을 가지고 있다.
LiMnO2, LiMn2O4 등의 리튬 망간 산화물은 열적 안전성이 우수하고 가격이 저렴하다는 장점이 있지만, 용량이 작고, 고온 특성이 열악하다는 문제점이 있다. 또한, LiNiO2계 양극 활물질은 높은 방전용량의 전지 특성을 나타내고 있으나, Li과 전이금속 간의 양이온 혼합(cation mixing) 문제로 인해 합성이 어려우며, 그에 따라 레이트(rate) 특성에 큰 문제점이 있다.
또한, 이러한 양이온 혼합의 심화 정도에 따라 다량의 Li 부산물이 발생하게 되고, 이들 Li 부산물의 대부분은 LiOH 및 Li2CO3의 화합물로 이루어져 있어서, 양극 페이스트 제조시 겔(gel)화되는 문제점과 전극 제조 후 충방전 진행에 따른 가스 발생의 원인이 된다. 잔류 Li2CO3는 셀의 스웰링 현상을 증가시켜 사이클을 감소시킬 뿐만 아니라 배터리가 부풀어 오르는 원인이 된다.
이러한 기존 양극 활물질의 단점을 보완하기 위한 다양한 후보 물질들이 거론되고 있다.
일 예로, 전이금속 중 Mn이 과량으로 포함됨과 동시에 리튬의 함량이 전이금속의 함량의 합보다 많은 리튬 과잉의 리튬 망간계 산화물을 리튬 이차전지용 양극 활물질로서 사용하고자 하는 연구가 진행되고 있다. 이러한 리튬 과잉의 리튬 망간계 산화물은 리튬 과잉 층상계 산화물(overlithiated layered oxide; OLO)로 지칭되기도 한다.
상기 OLO는 이론적으로 고전압 작동 환경 하에서 고용량을 발휘할 수 있다는 장점이 있기는 하나, 실제로 산화물 중 과량으로 포함된 Mn으로 인해 상대적으로 전기 전도도가 낮으며, 이에 따라 OLO를 사용한 리튬 이차전지의 율 특성(capability rate)이 낮다는 단점이 있다. 이와 같이, 율 특성이 낮을 경우, 리튬 이차전지의 사이클링시 충/방전 용량 및 수명 효율(사이클 용량 유지율; capacity retentio)이 저하되는 문제점이 나타난다.
또한, OLO를 사용한 리튬 이차전지의 사이클링시 충/방전 용량의 감소 또는 전압 강하(voltage decay)는 리튬 망간계 산화물 중 전이금속의 이동에 따른 상전이에 의해 유발될 수도 있다. 예를 들어, 층상 결정 구조의 리튬 망간계 산화물 중 전이금속이 의도하지 않은 방향으로 이동하여 상전이가 유도될 경우, 리튬 망간계 산화물 내 전체적 및/또는 부분적으로 스피넬 또는 이와 유사한 결정 구조가 발생할 수 있다.
상술한 문제점을 해결하기 위해 OLO의 입자 크기를 조절하거나 OLO의 표면을 코팅하는 등 입자의 구조적 개선 및 표면 개질을 통해 OLO의 문제점을 개선하고자 하는 시도가 있기는 하나, 상용화 수준에는 미치지 못하는 실정이다.
리튬 이차전지 시장에서는 전기 자동차용 리튬 이차전지의 성장이 시장의 견인 역할을 하고 있는 가운데, 리튬 이차전지에 사용되는 양극 활물질의 수요 역시 지속적으로 변화하고 있다.
예를 들어, 종래에는 안전성 확보 등의 관점에서 LFP를 사용한 리튬 이차전지가 주로 사용되어 왔으나, 최근들어 LFP 대비 중량당 에너지 용량이 큰 니켈계 리튬 복합 산화물의 사용이 확대되는 추세이다.
또한, 최근 고용량의 리튬 이차전지의 양극 활물질로서 사용되는 대부분의 니켈계 리튬 복합 산화물은 니켈, 코발트 및 망간 또는 니켈, 코발트 및 알루미늄과 같이 3원계 금속 원소가 필수적으로 사용되는데, 이 중 코발트의 경우 수급이 불안정할 뿐만 아니라, 다른 원료 대비 과도하게 비싸다는 문제로 인해 코발트의 함량을 줄이거나 코발트를 배제할 수 있는 새로운 조성의 양극 활물질이 필요하다.
이러한 관점에서 리튬 과잉의 리튬 망간계 산화물은 상술한 시장의 기대에 부응할 수 있기는 하나, 아직까지 상용화된 NCM 또는 NCA 타입의 양극 활물질의 대체하기에는 리튬 망간계 산화물의 전기화학적 특성이나 안정성은 부족하다 할 수 있다.
그러나, 상용화된 다른 타입의 양극 활물질과 비교할 때 기존의 리튬 과잉의 리튬 망간계 산화물이 전기화학적 특성 및/또는 안정성 측면에서 불리한 부분이 있다 하더라도, 몰리브덴을 함유하는 플럭스를 사용하여 상기 리튬 망간계 산화물을 구성하는 1차 입자의 결정 성장을 향상시킬 경우(즉, 1차 입자의 크기를 키울 경우), 리튬 과잉의 리튬 망간계 산화물 역시 상용화가 가능한 수준의 전기화학적 특성 및 안정성을 발휘할 수 있다는 것이 본 발명자들에 의해 확인되었다.
이에 따라, 본 발명은 적어도 리튬, 니켈, 망간 및 몰리브덴을 포함하는 리튬 과잉의 리튬 망간계 산화물을 포함하되, 몰리브덴을 함유하는 플럭스를 사용하여 상기 리튬 망간계 산화물 중 1차 입자의 평균 입경이 0.4μm 이상이 되도록 결정 성장시킴으로써, 입자간 전이금속의 이동에 따른 상전이 효과를 줄여 상기 리튬 망간계 산화물을 포함하는 양극 활물질을 사용한 리튬 이차전지의 사이클링시 충/방전 용량의 감소 또는 전압 강하(voltage decay)를 완화 및/또는 방지하는 것이 가능한 양극 활물질을 제공하는 것을 목적으로 한다.
또한, 본 발명은 몰리브덴을 함유하는 플럭스를 사용하여 상기 리튬 망간계 산화물 중 1차 입자의 결정 성장을 촉진시킴과 동시에 일부 몰리브덴이 상기 1차 입자의 표면에 산화물 형태로 존재하도록 함으로써 상기 리튬 망간계 산화물 중 1차 입자의 평균 입경이 커짐에 따라 상기 1차 입자의 표면에서의 Li 이온의 charge-transfer 및/또는 diffusion (즉, 표면 kinetic)의 저하되는 것을 완화 및/또는 방지하는 것이 가능한 양극 활물질을 제공하는 것을 목적으로 한다.
아울러, 본 발명은 본원에 정의된 양극 활물질을 포함하는 양극을 사용함으로써, 기존 OLO의 낮은 방전 용량이 개선된 리튬 이차전지를 제공하는 것을 목적으로 한다.
상술한 기술적 과제를 해결하기 위한 본 발명의 일 측면에 따르면, 적어도 리튬, 니켈, 망간 및 몰리브덴을 포함하는 리튬 과잉의 리튬 망간계 산화물을 포함하는 양극 활물질로서, 상기 리튬 망간계 산화물은 적어도 하나의 1차 입자를 포함하며, 상기 리튬 망간계 산화물 중 1차 입자의 평균 입경은 0.4μm 내지 3.0μm인 양극 활물질이 제공된다.
이 때, 상기 리튬 망간계 산화물은 몰리브덴 함유 플럭스를 사용하여 결정 성장이 촉진된 1차 입자를 포함한다.
이 때, 상기 플럭스에 함유된 몰리브덴 중 일부는 상기 1차 입자 내 도펀트로서 존재할 수 있다.
일 실시예에 있어서, 상기 리튬 망간계 산화물은 하기의 화학식 1로 표시될 수 있다.
[화학식 1]
rLi2Mn1-aMoaO3·(1-r)LibNixCoyMnzMoz'M11-(x+y+z+z')O2
여기서,
M1은 Nb, Fe, Cr, V, Cu, Zn, Sn, Mg, Ru, Al, Ti, Zr, B, Na, K, Y, P, Ba, Sr, La, Ga, Gd, Sm, W, Ca, Ce, Ta, Sc, In, S, Ge, Si 및 Bi로부터 선택되는 적어도 하나이며,
0<r≤0.7, 0≤a<0.2, 0<b≤1, 0<x≤1, 0≤y<1, 0<z<1, 0<z'<0.2 및 0<x+y+z+z'≤1이다.
상기 화학식 1로 나타낸 바와 같이, 상기 리튬 망간계 산화물 내 존재하는 몰리브덴은 c2/m 상에 해당하는 rLi2Mn1-aMoaO3 및/또는 R3-m 상에 해당하는 (1-r)LibNixCoyMnzMoz'M11-(x+y+z+z')O2 내에 도펀트로서 존재할 수 있다.
상기 리튬 망간계 산화물을 구성하는 1차 입자의 결정 성장을 위해 플럭스로서 사용된 몰리브덴 중 일부가 상기 리튬 망간계 산화물 내 도펀트로서 존재함에 따라 특히 상기 리튬 망간계 산화물 중 과잉의 리튬 및 망간을 포함하는 c2/m 상에 해당하는 rLi2Mn1-aMoaO3의 전기적 활성화를 유도할 수 있다.
또한, 상기 리튬 망간계 산화물을 구성하는 1차 입자의 결정 성장을 위해 플럭스로서 사용된 몰리브덴 중 일부가 상기 1차 입자의 표면에 산화물 형태로 존재함으로써 상기 리튬 망간계 산화물 중 1차 입자의 평균 입경이 커짐에 따라 상기 1차 입자의 표면에서의 Li 이온의 charge-transfer 및/또는 diffusion (즉, 표면 kinetic)의 저하되는 것을 완화 및/또는 방지할 수 있다.
또한, 본 발명의 다른 측면에 따르면, 상술한 양극 활물질을 포함하는 양극이 제공된다.
아울러, 본 발명의 또 다른 측면에 따르면, 상술한 양극이 사용된 리튬 이차전지가 제공된다.
본 발명에 따르면, 상용화된 다른 타입의 양극 활물질과 비교할 때 전기화학적 특성 및/또는 안정성 측면에서 여러 불리한 부분이 있는 기존의 리튬 과잉의 리튬 망간계 산화물의 한계를 개선하는 것이 가능하다.
구체적으로, 본 발명에 따른 리튬 망간계 산화물을 구성하는 1차 입자는 몰리브덴을 함유하는 플럭스를 사용하여 결정 성장이 촉진됨에 따라 상기 리튬 망간계 산화물을 양극 활물질로서 포함하는 리튬 이차전지의 사이클링시 충/방전 용량의 감소 또는 전압 강하(voltage decay)를 완화 또는 해소할 수 있다.
또한, 상기 리튬 망간계 산화물을 구성하는 1차 입자의 결정 성장을 위해 플럭스로서 사용된 몰리브덴 중 일부가 상기 리튬 망간계 산화물 내 도펀트로서 존재함에 따라 특히 상기 리튬 망간계 산화물 중 과잉의 리튬 및 망간을 포함하는 c2/m 상에 해당하는 rLi2Mn1-aMoaO3의 전기적 활성화를 유도함으로써 상기 리튬 망간계 산화물을 양극 활물질로서 사용한 리튬 이차전지의 방전평균전압 유지율 및 방전용량 비율과 같은 방전 특성을 향상시킬 수 있다.
또한, 상기 리튬 망간계 산화물을 구성하는 1차 입자의 결정 성장을 위해 플럭스로서 사용된 몰리브덴 중 일부가 상기 1차 입자의 표면에 산화물 형태로 존재함으로써 상기 리튬 망간계 산화물 중 1차 입자의 평균 입경이 커짐에 따라 상기 1차 입자의 표면에서의 Li 이온의 charge-transfer 및/또는 diffusion (즉, 표면 kinetic)의 저하되는 것을 완화 및/또는 방지할 수 있다.
도 1은 실시예 1에 따른 양극 활물질에 포함된 리튬 망간계 산화물의 SEM 이미지이다.
도 2는 비교예 1에 따른 양극 활물질에 포함된 리튬 망간계 산화물의 SEM 이미지이다.
도 3은 비교예 2에 따른 양극 활물질에 포함된 리튬 망간계 산화물의 SEM 이미지이다.
도 4는 실시예 1에 따른 양극 활물질에 포함된 리튬 망간계 산화물의 단면 SEM 이미지이다.
도 5는 EDX 분석을 통해 도 4의 단면 SEM 이미지에 몰리브덴을 mapping한 이미지이다.
본 발명을 더 쉽게 이해하기 위해 편의상 특정 용어를 본원에 정의한다. 본원에서 달리 정의하지 않는 한, 본 발명에 사용된 과학 용어 및 기술 용어들은 해당 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미를 가질 것이다. 또한, 문맥상 특별히 지정하지 않는 한, 단수 형태의 용어는 그것의 복수 형태도 포함하는 것이며, 복수 형태의 용어는 그것의 단수 형태도 포함하는 것으로 이해되어야 한다.
이하, 본 발명에 따른 적어도 리튬, 니켈, 망간 및 몰리브덴을 포함하는 리튬 과잉의 리튬 망간계 산화물을 포함하는 양극 활물질 및 상기 양극 활물질을 포함하는 리튬 이차전지에 대하여 보다 상세히 설명하기로 한다.
양극 활물질
본 발명의 일 측면에 따르면, 적어도 리튬, 니켈, 망간 및 몰리브덴을 포함하는 리튬 과잉의 리튬 망간계 산화물을 포함하는 양극 활물질이 제공된다. 상기 리튬 망간계 산화물은 리튬 이온의 인터칼레이션 및 디인터칼레이션이 가능한 복합 금속 산화물이다.
본원에 정의된 양극 활물질에 포함된 상기 리튬 망간계 산화물은 적어도 하나의 1차 입자(primary particle)를 포함하는 입자일 수 있다. 상기 리튬 망간계 산화물이 복수의 1차 입자가 응집되어 형성된 입자를 포함할 경우, 복수의 1차 입자가 응집되어 형성된 입자는 2차 입자(secondary particle)로서 지칭할 수 있다.
여기서, "적어도 하나의 1차 입자를 포함하는 입자"는 "복수의 1차 입자가 응집되어 형성된 입자" 또는 "단일의 1차 입자를 포함하는 비응집 형태의 입자"를 모두 포함하는 것으로 해석되어야 할 것이다. 이 때, 전체 입자를 구성하는 1차 입자의 수가 적을수록 1차 입자의 크기는 큰 것이 바람직하다.
상기 1차 입자 및 상기 2차 입자는 각각 독립적으로 막대 형상, 타원 형상 및/또는 부정형 형상을 가질 수 있다.
이 때, 적어도 하나의 1차 입자를 포함하는 상기 리튬 망간계 산화물 내 상기 1차 입자의 평균 입경은 0.4μm 내지 3.0μm인 것이 바람직하다. 상기 1차 입자의 평균 입경은 상기 1차 입자의 장축 또는 단축의 길이로서 측정되거나 누적 평균 입도로서 측정될 수 있다.
일반적으로, 복수의 1차 입자가 응집되어 형성된 2차 입자 형태인 OLO에 있어서, 상기 1차 입자의 평균 입경이 수~수십 nm에 불과한 기존의 OLO와 달리, 본 발명에서 정의된 상기 리튬 망간계 산화물 중 상기 1차 입자는 적어도 0.4μm의 평균 입경을 가짐으로써 입자간 전이금속의 이동에 따른 상전이 효과를 줄여 상기 리튬 망간계 산화물을 포함하는 양극 활물질을 사용한 리튬 이차전지의 사이클링시 충/방전 용량의 감소 또는 전압 강하(voltage decay)를 완화 및/또는 방지하는 것이 가능하다.
상기 리튬 망간계 산화물 중 상기 1차 입자의 결정 성장을 촉진시키는 방법으로는 여러가지가 가능할 것이나, 본 발명에 따르면, 상기 리튬 망간계 산화물을 구성하는 상기 1차 입자의 평균 입경은 몰리브덴을 함유하는 플럭스를 사용하여 결정 성장이 촉진된 것일 수 있다. 몰리브덴을 함유하는 플럭스를 사용하여 1차 입자의 결정 성장을 촉진시킬 경우, 플럭스로서 사용된 몰리브덴 중 일부는 상기 1차 입자 내 도펀트로서 존재할 수 있다.
반면에, 단순히 상기 리튬 망간계 산화물을 제조하는 공정 중 배소 또는 소성 온도를 높여 입자의 결정 성장을 촉진함에 따라 상기 리튬 망간계 산화물 중 상기 1차 입자의 평균 입경을 키울 경우, 입자간 전이금속의 이동에 따른 상전이 효과를 충분히 방지하지 못하거나, 오히려 1차 입자의 크기가 필요 이상으로 커짐에 따라 입자 표면에서의 Li 이온의 charge-transfer 및/또는 diffusion (즉, 표면 kinetic)의 저하될 수 있다.
상기 1차 입자의 평균 입경이 0.4μm 보다 작은 경우, 상기 리튬 망간계 산화물을 양극 활물질로서 포함하는 리튬 이차전지의 사이클링시 충/방전 용량의 감소 또는 전압 강하(voltage decay)를 충분히 완화하거나 해소하기 어려울 수 있다. 반면에, 상기 1차 입자의 평균 입경이 3.0μm 보다 큰 경우, 상기 1차 입자의 평균 입경이 과도하게 커짐에 따라 상기 1차 입자의 표면에서의 Li 이온의 charge-transfer 및/또는 diffusion (즉, 표면 kinetic)의 저하되고, 이에 따라 초기 충/방전 용량이 급격히 낮아질 수 있다.
상기 2차 입자의 평균 입경은 상기 2차 입자를 구성하는 1차 입자의 수에 따라 달라질 수 있으나, 일반적으로 1μm 내지 30μm일 수 있다.
본원에 정의된 상기 리튬 망간계 산화물은 하기의 화학식 1로 표시될 수 있다.
[화학식 1]
rLi2Mn1-aMoaO3·(1-r)LibNixCoyMnzMoz'M11-(x+y+z+z')O2
여기서,
M1은 Nb, Fe, Cr, V, Cu, Zn, Sn, Mg, Ru, Al, Ti, Zr, B, Na, K, Y, P, Ba, Sr, La, Ga, Gd, Sm, W, Ca, Ce, Ta, Sc, In, S, Ge, Si 및 Bi로부터 선택되는 적어도 하나이며,
0<r≤0.7, 0≤a<0.2, 0<b≤1, 0<x≤1, 0≤y<1, 0<z<1, 0<z'<0.2 및 0<x+y+z+z'≤1이다.
상기 화학식 1로 표시되는 리튬 망간계 산화물은 코발트를 선택적으로 포함할 수 있다. 또한, 상기 리튬 망간계 산화물이 코발트를 포함할 경우, 상기 리튬 망간계 산화물 중 전체 금속 원소의 몰 수 대비 상기 코발트의 몰 수의 비율은 10% 이하, 바람직하게는 5% 이하일 수 있다. 반면에, 상기 화학식 1로 표시되는 리튬 망간계 산화물은 코발트를 포함하지 않을 수 있다.
상기 화학식 1로 표시되는 리튬 망간계 산화물은 rLi2Mn1-aMoaO3으로 표시되는 C2/m 공간군에 속하는 상(이하 'C2/m 상'이라 함)의 산화물과 (1-r)LibNixCoyMnzMoz'M11-(x+y+z+z')O2으로 표시되는 R3-m 공간군에 속하는 상(이하 'R3-m 상'이라 함)의 산화물이 공존하는 복합 산화물이다. 이 때, C2/m 상의 산화물과 R3-m 상의 산화물은 고용체를 형성한 상태로 존재한다.
상기 화학식 1로 표시되는 리튬 망간계 산화물에 있어서, r이 0.8을 초과할 경우, 상기 리튬 망간계 산화물 중 C2/m 상의 산화물인 Li2MnO3의 비율이 과도하게 많아져 양극 활물질의 방전 용량이 저하될 우려가 있다. 즉, 상기 리튬 망간계 산화물 중 상대적으로 저항이 큰 C2/m 상의 산화물을 충분히 활성화시켜 표면 kinetic을 개선하기 위해서는 R3-m 상의 산화물이 소정의 비율 이상으로 존재하는 것이 바람직하다.
상기 화학식 1로 표시되는 상기 리튬 망간계 산화물 중 리튬을 제외한 전체 금속 원소를 기준으로 몰리브덴은 0.02mol% 내지 5.0mol%의 범위 내로 존재하는 것이 바람직하다.
상기 리튬 망간계 산화물 중 리튬을 제외한 전체 금속 원소를 기준으로 몰리브덴의 함량이 0.02mol% 보다 작다는 것은 상기 리튬 망간계 산화물을 구성하는 1차 입자의 결정 성장을 위해 사용된 몰리브덴 함유 플럭스의 양이 부족하며, 상기 몰리브덴 함유 플럭스에 의한 1차 입자의 결정 성장의 효과가 미미하다는 것을 의미한다.
한편, 상기 리튬 망간계 산화물 중 몰리브덴의 함량이 과도하게 많아질 경우, 오히려 상기 리튬 망간계 산화물 중 활성 금속 원소의 함량이 줄어듬에 따라 양극 활물질의 방전 용량이 저하될 우려가 있다.
상기 리튬 망간계 산화물을 구성하는 1차 입자의 결정 성장을 위해 사용된 몰리브덴 함유 플럭스의 양이 부족할 경우, 상기 리튬 망간계 산화물을 구성하는 1차 입자의 평균 입경이 0.4μm 보다 작아지거나, 상기 리튬 망간계 산화물 중 입경이 0.4μm 보다 작은 1차 입자의 비율이 늘어날 수 있다.
이에 따라, 상기 리튬 망간계 산화물 중 입자간 전이금속의 의도하지 않은 이동에 따른 상전이가 유도되며, 이에 따라, 상기 리튬 망간계 산화물 내 전체적 및/또는 부분적으로 스피넬 또는 이와 유사한 결정 구조가 발생할 수 있다.
이와 같은 상기 리튬 망간계 산화물 내 상전이의 발생은 상기 리튬 망간계 산화물을 포함하는 양극 활물질을 사용한 리튬 이차전지의 사이클링시 충/방전 용량의 감소 또는 전압 강하(voltage decay)를 야기하는 주요한 원인으로서 작용한다.
상기 리튬 망간계 산화물 중 리튬을 제외한 전체 금속 원소를 기준으로 몰리브덴의 함량이 5.0mol% 보다 크다는 것은 상기 리튬 망간계 산화물을 구성하는 1차 입자의 결정 성장을 위해 사용된 몰리브덴 함유 플럭스의 양이 과도하게 많음을 의미한다.
이 경우, 과잉으로 사용된 상기 몰리브덴 함유 플럭스에 의해 1차 입자의 결정 성장이 불필요하게 커짐에 따라 상기 1차 입자의 표면에서의 Li 이온의 charge-transfer 및/또는 diffusion (즉, 표면 kinetic)의 저하될 수 있다.
또한, 상기 리튬 망간계 산화물 중 몰리브덴의 함량이 늘어남에 따라 상기 리튬 망간계 산화물을 양극 활물질로서 사용하는 리튬 이차전지의 초기 충/방전 용량의 향상에 기여할 수 있는 활성 금속 원소의 비율이 줄어들 수 있다.
한편, 상기 몰리브덴 함유 플럭스를 사용하여 1차 입자의 결정 성장을 촉진시킨 경우라 하더라도 상기 양극 활물질에 대한 4.5톤 압력 하의 압축 밀도는 2.8 g/cc 이상일 수 있다.
상기 리튬 망간계 산화물 중 1차 입자의 크기가 과도하게 작거나 과도하게 클 경우, 상기 양극 활물질의 구조적 안정성이 낮아질 수 있다. 또한, 상기 리튬 망간계 산화물 중 1차 입자의 크기가 커짐에 따라 상기 2차 입자 내 공극률이 증가할 경우, 상기 양극 활물질의 구조적 안정성이 낮아질 수 있다.
그러나, 전술한 바와 같이, 본 발명에 따른 양극 활물질은 몰리브덴을 함유하는 플럭스를 사용하여 결정 성장을 촉진시킨 1차 입자의 평균 입경이 0.4μm 내지 3.0μm의 범위에 존재하도록 함으로써 상기 양극 활물질의 구조적 안정성이 저하되는 것을 방지할 수 있다.
한편, 다른 실시예에 있어서, 상기 리튬 망간계 산화물의 표면 중 적어도 일부에는 하기의 화학식 2로 표시되는 적어도 하나의 금속 산화물이 존재할 수 있다. 이 때, 상기 금속 산화물이 존재하는 영역은 상기 1차 입자 및/또는 상기 2차 입자의 표면 중 적어도 일부일 수 있다.
[화학식 2]
LibM2cOd
여기서,
M2는 Ni, Mn, Co, Fe, Cu, Nb, Mo, Ti, Al, Cr, Zr, Zn, Na, K, Ca, Mg, Pt, Au, P, Eu, Sm, W, Ce, V, Ba, Ta, Sn, Hf, Ce, Gd 및 Nd로부터 선택되는 적어도 하나이며,
0≤d≤8, 0<e≤8, 2≤f≤13이다.
상기 화학식 2로 표시되는 금속 산화물은 리튬 망간계 산화물을 구성하는 금속 원소(니켈, 망간, 코발트 및/또는 도핑 금속) 중 적어도 일부가 상기 리튬 망간계 산화물의 표면에 존재하는 Li과 반응하여 형성될 수 있다.
상기 금속 산화물은 상기 리튬 망간계 산화물의 표면에 존재하는 리튬 함유 불순물(또는 잔류 리튬이라 함)을 저감시킴과 동시에 리튬 이온의 이동 경로(diffusion path)로서 작용함으로써 상기 리튬 망간계 산화물의 전기화학적 특성을 향상시킬 수 있다.
또한, 상기 금속 산화물은 몰리브덴 산화물 및 리튬 몰리브덴 산화물로부터 선택되는 적어도 하나를 포함할 수 있다.
상기 리튬 망간계 산화물을 구성하는 1차 입자의 결정 성장을 위해 플럭스로서 사용된 몰리브덴 중 일부가 상기 1차 입자의 표면에 산화물 형태로 존재함으로써 상기 리튬 망간계 산화물 중 1차 입자의 평균 입경이 커짐에 따라 상기 1차 입자의 표면에서의 Li 이온의 charge-transfer 및/또는 diffusion (즉, 표면 kinetic)의 저하되는 것을 완화 및/또는 방지할 수 있다.
상기 리튬 망간계 산화물이 코어-쉘 입자인 경우, 상기 금속 산화물은 상기 쉘과 일체로 존재할 수도 있다.
이에 따라, 상기 금속 산화물은 리튬 망간계 산화물을 구성하는 결정자, 1차 입자 및/또는 2차 입자의 표면 중 적어도 일부에 존재할 수 있다.
상기 금속 산화물은 리튬과 M2로 표시되는 원소가 복합화된 산화물이거나, M3의 산화물로서, 상기 금속 산화물은 예를 들어, LiaWbOc, LiaZrbOc, LiaTibOc, LiaNibOc, LiaCobOc, LiaAlbOc, LiaMobOc, CobOc, AlbOc, WbOc, ZrbOc 또는 TibOc 등일 수 있으나, 상술한 예는 이해를 돕기 위해 편의상 기재한 것에 불과할 뿐 본원에서 정의된 상기 금속 산화물은 상술한 예에 제한되지 않는다.
또한, 상기 금속 산화물은 리튬과 M2로 표시되는 적어도 2종의 원소가 복합화된 산화물이거나, 리튬과 M2로 표시되는 적어도 2종의 원소가 복합화된 산화물을 더 포함할 수 있다. 리튬과 M2로 표시되는 적어도 2종의 원소가 복합화된 산화물은 예를 들어, Lia(W/Ti)bOc, Lia(W/Zr)bOc, Lia(W/Ti/Zr)bOc, Lia(W/Ti/B)bOc 등일 수 있으나, 반드시 이에 제한되는 것은 아니다.
리튬 이차전지
본 발명의 다른 측면에 따르면, 양극 집전체 및 상기 양극 집전체 상에 형성된 양극 활물질층을 포함하는 양극이 제공될 수 있다. 여기서, 상기 양극 활물질층은 양극 활물질로서 상술한 본 발명의 다양한 실시예에 따른 리튬 복합 산화물을 포함할 수 있다.
따라서, 리튬 복합 산화물에 대한 구체적인 설명을 생락하고, 이하에서는 나머지 전술되지 아니한 구성에 대해서만 설명하기로 한다. 또한, 이하에서는 편의상 상술한 리튬 복합 산화물을 양극 활물질이라 지칭하기로 한다.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또한, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질층은 상기 양극 활물질과 함께 도전재 및 필요에 따라 선택적으로 바인더를 포함하는 양극 슬러리 조성물을 상기 양극 집전체에 도포하여 제조될 수 있다.
이 때, 상기 양극 활물질은 양극 활물질층 총 중량에 대하여 80 내지 99 wt%, 보다 구체적으로는 85 내지 98.5 wt%의 함량으로 포함될 수 있다. 상기한 함량범위로 포함될 때 우수한 용량 특성을 나타낼 수 있으나, 반드시 이에 제한되는 것은 아니다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용 가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극 활물질층 총 중량에 대하여 0.1 내지 15 wt%로 포함될 수 있다.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 0.1 내지 15 wt%로 포함될 수 있다.
상기 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 선택적으로, 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 양극 슬러리 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조할 수 있다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또한, 다른 실시예에 있어서, 상기 양극은 상기 양극 슬러리 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
아울러, 본 발명의 또 다른 측면에 따르면, 상술한 양극을 포함하는 전기화학소자가 제공될 수 있다. 상기 전기화학소자는 구체적으로 전지, 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로, 양극, 상기 양극과 대향하여 위치하는 음극, 및 상기 양극과 상기 음극 사이에 개재되는 분리막 및 전해질을 포함할 수 있다. 여기서, 상기 양극은 앞서 설명한 바와 동일하므로, 편의상 구체적인 설명을 생략하고, 이하에서는 전술되지 아니한 나머지 구성에 대해서만 구체적으로 설명한다.
상기 리튬 이차전지는 상기 양극, 상기 음극 및 상기 분리막의 전극 조립체를 수납하는 전지용기 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함할 수 있다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 상기 음극 집전체는 통상적으로 3 μm 내지 500 μm의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질층은 상기 음극 활물질과 함께 도전재 및 필요에 따라 선택적으로 바인더를 포함하는 음극 슬러리 조성물을 상기 음극 집전체에 도포하여 제조될 수 있다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ (0 < β < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극 활물질로서 금속 리튬 박막이 사용될 수도 있다. 또한, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
상기 음극 활물질은 음극 활물질층의 전체 중량을 기준으로 80 내지 99 wt%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 활물질층의 전체 중량을 기준으로 0.1 내지 10 wt%로 첨가될 수 있다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 활물질층의 전체 중량을 기준으로 10 wt% 이하, 바람직하게는 5 wt% 이하로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
일 실시예에 있어서, 상기 음극 활물질층은 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 슬러리 조성물을 도포하고 건조함으로써 제조되거나, 또는 상기 음극 슬러리 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수 있다.
또한, 다른 실시예에 있어서, 상기 음극 활물질층은 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 슬러리 조성물을 도포하고 건조하거나, 또는 상기 음극 슬러리 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
한편, 상기 리튬 이차전지에 있어서, 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또한, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또한, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN (R은 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0 M 범위 내에서 사용하는 것이 바람직하다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 wt%로 포함될 수 있다.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 수명 특성을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
본 발명에 따른 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다. 또한, 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
본 발명의 또 다른 측면에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및/또는 이를 포함하는 전지팩이 제공될 수 있다.
상기 전지모듈 또는 상기 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
제조예 1. 양극 활물질의 제조
실시예 1
(a) 전구체 제조
반응기 내에 NiSO4·6H2O 및 MnSO4·H2O가 40:60의 몰 비로 혼합된 혼합 수용액으로 NaOH 및 NH4OH를 투입하면서 교반하였다. 반응기 내 온도는 45℃로 유지하였으며, 반응기 내로 N2 가스를 투입하면서 전구체 합성 반응을 진행하였다. 반응 완료 후 세척 및 탈수하여 Ni0.4Mn0.6(OH)2 조성의 수산화물 전구체를 수득하였다.
(b) 제1 열처리
O2 분위기의 소성로를 2℃/min의 속도로 승온한 다음 550℃를 유지하며 단계 (a)에서 수득한 수산화물 전구체를 5시간 동안 열처리한 후 노냉(furnace cooling)하여 산화물 상태의 전구체를 수득하였다.
(c) 제2 열처리
단계 (b)에서 얻은 산화물 상태의 전구체와 리튬 화합물로서 LiOH (Li/(Li 제외 metal) mol ratio = 1.3) 및 상기 전구체 중 전체 금속 원소 대비 0.5mol%의 MoO3를 혼합하여 혼합물을 준비하였다.
이어서, O2 분위기의 소성로를 2℃/min의 속도로 승온한 다음 1,000℃를 유지하며, 상기 혼합물을 8시간 동안 열처리한 후 노냉(furnace cooling)하여 최종적으로 리튬 망간계 산화물을 포함하는 양극 활물질을 수득하였다.
실시예 2
단계 (c)에서 6.0mol%의 MoO3를 사용한 것을 제외하고, 실시예 1과 동일하게 양극 활물질을 제조하였다.
실시예 3
단계 (c)에서 0.01mol%의 MoO3를 사용한 것을 제외하고, 실시예 1과 동일하게 양극 활물질을 제조하였다.
비교예 1
단계 (c)에서 MoO3를 사용하지 않은 것을 제외하고, 실시예 1과 동일하게 양극 활물질을 제조하였다.
비교예 2
(a) 전구체 제조
반응기 내에 NiSO4·6H2O 및 MnSO4·H2O가 40:60의 몰 비로 혼합된 혼합 수용액으로 NaOH 및 NH4OH를 투입하면서 교반하였다. 반응기 내 온도는 45℃로 유지하였으며, 반응기 내로 N2 가스를 투입하면서 전구체 합성 반응을 진행하였다. 반응 완료 후 세척 및 탈수하여 Ni0.4Mn0.6(OH)2 조성의 수산화물 전구체를 수득하였다.
(b) 제1 열처리
O2 분위기의 소성로를 2℃/min의 속도로 승온한 다음 800℃를 유지하며 단계 (a)에서 수득한 수산화물 전구체를 5시간 동안 열처리한 후 노냉(furnace cooling)하여 산화물 상태의 전구체를 수득하였다.
(c) 제2 열처리
단계 (b)에서 얻은 산화물 상태의 전구체와 리튬 화합물로서 LiOH (Li/(Li 제외 metal) mol ratio = 1.3)을 혼합하여 혼합물을 준비하였다.
이어서, O2 분위기의 소성로를 2℃/min의 속도로 승온한 다음 1,000℃를 유지하며, 상기 혼합물을 8시간 동안 열처리한 후 노냉(furnace cooling)하여 최종적으로 리튬 망간계 산화물을 포함하는 양극 활물질을 수득하였다.
비교예 3
단계 (c)에서 0.5mol%의 MoO3 대신 0.5mol%의 Nb2O3를 사용한 것을 제외하고, 실시예 1과 동일하게 양극 활물질을 제조하였다.
제조예 2. 리튬 이차전지의 제조
제조예 1에 따라 제조된 양극 활물질 각각 90wt%, 카본 블랙 5.5wt%, PVDF 바인더 4.5wt%를 N-메틸-2 피롤리돈(NMP) 30g에 분산시켜 양극 슬러리를 제조하였다. 상기 양극 슬러리를 두께 15μm의 알루미늄 박막에 균일하게 도포하고 135℃에서 진공 건조하여 리튬 이차전지용 양극을 제조하였다.
상기 양극에 대하여 리튬 호일을 상대 전극(counter electrode)으로 하며, 다공성 폴리에틸렌막(Celgard 2300, 두께: 25μm)을 분리막으로 하고, 에틸렌카보네이트 및 에틸메틸카보네이트가 3:7의 부피비로 혼합된 용매에 LiPF6가 1.15M 농도로 존재하는 전해액을 사용하여 코인 전지를 제조하였다.
실험예 1. 양극 활물질의 물성 분석
제조예 1에 따라 제조된 각각의 양극 활물질로부터 리튬 망간계 산화물을 선별한 후, 주사 전자 현미경으로 촬영하여 SEM 이미지를 수득하였다. 도 1 내지 도 3은 실시예 1, 비교예 1 및 비교예 2에 따른 양극 활물질에 포함된 리튬 망간계 산화물의 SEM 이미지이다.
Image analyzer 프로그램을 사용하여 실시예 1 내지 실시예 3 및 비교예 1 내지 비교예 3에 따른 양극 활물질에 포함된 리튬 망간계 산화물의 SEM 이미지로부터 100개의 1차 입자를 선별한 후 각각의 1차 입자의 평균 입경을 측정하고, 이들의 평균값을 산출하였다.
이어서, 펠렛타이저에 제조예 1에 따라 제조된 각각의 양극 활물질을 3g씩 칭량한 후 4.5톤으로 5초 동안 가압한 후 압축 밀도(press density)를 측정하였다.
상기 측정 결과는 하기의 표 1에 나타내었다.
구분 1차 입자
평균 입경
(nm)
압축 밀도
(g/cc)
실시예 1 0.9 2.8
실시예 2 0.7 2.7
실시예 3 0.5 2.6
비교예 1 0.3 2.6
비교예 2 0.8 2.8
비교예 3 0.8 2.8
실험예 2. 양극 활물질의 조성 분석
실시예 1에 따른 양극 활물질로부터 리튬 망간계 산화물을 선별한 후, 상기 리튬 복합 산화물을 FIB (Ga-ion source)를 이용하여 단면 처리하고 주사형 전자 현미경을 사용하여 단면 SEM 이미지를 촬영하였다.
이어서, 상기 단면 SEM 이미지로부터 확인되는 리튬 망간계 산화물에 대한 EDX 분석을 통해 1차 입자의 내부 및 표면에 존재하는 타겟 전이 금속인 몰리브덴을 mapping하였다.
도 4는 실시예 1에 따른 양극 활물질에 포함된 리튬 망간계 산화물의 단면 SEM 이미지이며, 도 5는 EDX 분석을 통해 도 4의 단면 SEM 이미지에 몰리브덴을 mapping (음영의 밀집도가 높은 영역) 한 이미지이다.
도 5를 참조하면, 상기 리튬 망간계 산화물을 구성하는 1차 입자의 표면 중 적어도 일부에 몰리브덴이 존재하는 것을 확인할 수 있다. 상기 결과는 1차 입자의 결정 성장을 위해 플럭스로서 사용한 MoO3 중 일부가 1차 입자의 표면에 몰리브덴 산화물 및/또는 리튬 몰리브덴 산화물로서 존재함을 의미한다.
또한, 상기 리튬 망간계 산화물을 구성하는 1차 입자의 내부에 해당하는 영역 내에도 일부 빨간색으로 mapping된 영역이 존재하며, 이는 1차 입자의 결정 성장을 위해 플럭스로서 사용한 MoO3으로부터 유래된 몰리브덴이 1차 입자 내 도펀트로서 존재함을 의미한다.
실험예 3. 리튬 이차전지의 전기화학적 특성 평가
제조예 2에서 제조된 리튬 이차전지(코인 셀)에 대하여 전기화학분석장치(Toyo, Toscat-3100)를 이용하여 25℃, 전압범위 2.0V ~ 4.6V, 0.1C ~ 5.0C의 방전율을 적용한 충방전 실험을 통해 초기 충전용량, 초기 방전용량, 초기 가역효율 및 율 특성(방전용량 비율; rate capability (C-rate))을 측정하였다.
또한, 동일한 리튬 이차전지에 대하여 25℃, 2.0V ~ 4.6V의 구동 전압 범위 내에서 1C/1C의 조건으로 50회 충/방전을 실시한 후 초기 용량 대비 50사이클째 방전용량의 비율(사이클 용량 유지율; capacity retention)과 1사이클째 방전 평균전압 대비 50사이클째 방전 평균전압의 유지율(방전평균전압 유지율)을 측정하였다.
상기 측정 결과는 하기의 표 2 및 표 3에 나타내었다.
구분 초기 충전용량
(0.1C-rate)
초기 방전용량
(0.1C-rate)
초기 가역효율
단위 mAh/g mAh/g %
실시예 1 259.6 210.0 81
실시예 2 255.3 204.5 80
실시예 3 251.5 203.0 81
비교예 1 250.9 202.8 81
비교예 2 211.7 175.6 83
비교예 3 235.2 187.0 80
구분 방전용량
(1C-rate)
사이클 용량
유지율
(1C-rate, 50cycle)
방전평균
전압유지율
방전용량비율
(2C/0.1C)
방전용량비율
(5C/0.1C)
단위 mAh/g % % % %
실시예 1 175.0 87 98 74 63
실시예 2 162.5 86 96 71 56
실시예 3 162.0 86 97 72 58
비교예 1 160.9 85 96 69 55
비교예 2 112.6 66 91 41 18
비교예 3 140.5 86 93 67 51
상기 표 2 및 표 3의 결과를 참조하면, 실시예 1 내지 실시예 3에 따른 양극 활물질은 몰리브덴을 함유하는 플럭스를 사용하여 1차 입자의 결정 성장을 촉진시킴에 따라, 초기 방전용량, 방전용량 비율 등과 같은 방전 특성이 비교예 1에 따른 양극 활물질 대비 향상된 것을 확인할 수 있다.
실시예 1 내지 실시예 3에 따른 양극 활물질을 비교하면, 몰리브덴을 함유하는 플럭스를 상대적으로 적게 사용한 실시예 3의 경우, 실시예 1에 따른 양극 활물질 대비 1차 입자의 결정 성장의 정도가 낮으며, 이에 따라 방전 용량(1C-rate) 및 방전용량 비율(5C/0.1C)이 실시예 1에 따른 양극 활물질을 사용한 리튬 이차전지 보다 소폭 낮은 것을 확인할 수 있다.
또한, 몰리브덴을 함유하는 플럭스를 상대적으로 많이 사용한 실시예 3의 경우, 실시예 1에 따른 양극 활물질과 결정 성장의 정도가 크게 차이나지 않으나, 오히려 플럭스의 사용량이 많아짐에 따라 방전 용량(1C-rate) 및 방전용량 비율(5C/0.1C)이 실시예 1에 따른 양극 활물질을 사용한 리튬 이차전지 보다 소폭 낮은 것을 확인할 수 있다. 상기 결과는 상기 리튬 망간계 산화물 중 잔존하는 몰리브덴의 함량이 많아짐에 따라 상기 리튬 망간계 산화물 중 활성 금속 원소의 함량이 줄어들었기 때문인 것으로 예상된다.
한편, 별도의 플럭스를 사용하는 대신 제2 열처리 온도를 높여 결정 성장을 촉진시킨 1차 입자를 포함하는 비교예 2에 따른 양극 활물질을 사용한 리튬 이차전지의 경우, 실시예 1 내지 실시예 3에 따른 양극 활물질과 유사한 초기 방전용량 및 초기 가열효율을 나타내는 것을 확인할 수 있다. 그러나, 비교예 2에 따른 양극 활물질을 사용한 리튬 이차전지의 사이클 용량 유지율 및 방전용량 비율은 실시예 1 내지 실시예 3에 따른 양극 활물질을 사용한 리튬 이차전지 대비 낮은 것을 확인할 수 있다.
또한, 몰리브덴 대신 니오븀을 함유하는 플럭스를 사용하여 1차 입자의 결정 성장을 촉진시킨 비교예 3에 따른 양극 활물질을 사용한 리튬 이차전지의 경우, 실시예 1 내지 실시예 3에 따른 양극 활물질을 사용한 리튬 이차전지 대비 초기 충/방전 용량 및 방전용량 비율이 낮은 것을 확인할 수 있다.
즉, 상기 결과는 몰리브덴을 함유하는 플럭스를 사용하여 리튬 망간계 산화물을 구성하는 1차 입자의 결정 성장을 촉진시킴과 동시에 플럭스로서 사용된 몰리브덴 중 일부가 상기 리튬 망간계 산화물 내 도펀트로서 존재하거나, 1차 입자의 표면에 산화물로서 존재함으로써 c2/m 상에 해당하는 rLi2Mn1-aMoaO3의 전기적 활성화를 유도함으로써 상기 1차 입자의 표면에서의 Li 이온의 charge-transfer 및/또는 diffusion (즉, 표면 kinetic)의 저하되는 것을 완화 및/또는 방지함에 따른 것임을 확인할 수 있다.
이상, 본 발명의 실시예에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.

Claims (9)

  1. 적어도 리튬, 니켈, 망간 및 몰리브덴을 포함하는 리튬 과잉의 리튬 망간계 산화물을 포함하는 양극 활물질로서,
    상기 리튬 망간계 산화물은 적어도 하나의 1차 입자를 포함하며,
    상기 리튬 망간계 산화물 중 1차 입자의 평균 입경은 0.4μm 내지 3.0μm인,
    양극 활물질.
  2. 제1항에 있어서,
    상기 리튬 망간계 산화물은 상기 몰리브덴을 도펀트로서 포함하는,
    양극 활물질.
  3. 제1항에 있어서,
    상기 리튬 망간계 산화물 중 리튬을 제외한 전체 금속 원소를 기준으로 0.02mol% 내지 5.0mol%의 몰리브덴을 포함하는,
    양극 활물질.
  4. 제1항에 있어서,
    상기 리튬 망간계 산화물은 하기의 화학식 1로 표시되는 양극 활물질.
    [화학식 1]
    rLi2Mn1-aMoaO3·(1-r)LibNixCoyMnzMoz'M11-(x+y+z+z')O2
    여기서,
    M1은 Nb, Fe, Cr, V, Cu, Zn, Sn, Mg, Ru, Al, Ti, Zr, B, Na, K, Y, P, Ba, Sr, La, Ga, Gd, Sm, W, Ca, Ce, Ta, Sc, In, S, Ge, Si 및 Bi로부터 선택되는 적어도 하나이며,
    0<r≤0.7, 0≤a<0.2, 0<b≤1, 0<x≤1, 0≤y<1, 0<z<1, 0<z'<0.2 및 0<x+y+z+z'≤1이다.
  5. 제1항에 있어서,
    상기 양극 활물질에 대한 4.5톤 압력 하의 압축 밀도는 2.8 g/cc 이상인 양극 활물질.
  6. 제1항에 있어서,
    상기 리튬 망간계 산화물의 표면 중 적어도 일부에 몰리브덴 산화물 및 리튬 몰리브덴 산화물로부터 선택되는 적어도 하나의 금속 산화물이 존재하는 양극 활물질.
  7. 제1항에 있어서,
    상기 리튬 망간계 산화물의 표면 중 적어도 일부에 하기의 화학식 2로 표시되는 적어도 하나의 금속 산화물이 존재하는 양극 활물질.
    [화학식 2]
    LibM2cOd
    여기서,
    M2는 Ni, Mn, Co, Mo, Nb, V, Zn, Sn, Mg, Ru, Al, Ti, Zr, B, Na, K, P, Ba, W, Ce, Ta, S, Ge 및 Si로부터 선택되는 적어도 하나이며,
    0≤d≤8, 0<e≤8, 2≤f≤13이다.
  8. 제1항 내지 제7항 중 어느 한 항에 따른 양극 활물질을 포함하는 양극.
  9. 제8항에 따른 양극을 사용하는 리튬 이차전지.
PCT/KR2021/016130 2020-12-04 2021-11-08 양극 활물질 및 이를 포함하는 리튬 이차전지 WO2022119157A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180067291.4A CN116325225A (zh) 2020-12-04 2021-11-08 正极活性物质及包括其的锂二次电池
EP21900845.5A EP4216311A1 (en) 2020-12-04 2021-11-08 Cathode active material and lithium secondary battery comprising same
JP2023520050A JP2023544339A (ja) 2020-12-04 2021-11-08 正極活物質およびこれを含むリチウム二次電池
US18/188,194 US20230231128A1 (en) 2020-12-04 2023-03-22 Positive electrode active material and lithium secondary battery including the same

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
KR20200168858 2020-12-04
KR10-2020-0168858 2020-12-04
KR10-2021-0067237 2021-05-25
KR1020210067237A KR20220079404A (ko) 2020-12-04 2021-05-25 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR1020210080133A KR20220079409A (ko) 2020-12-04 2021-06-21 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR10-2021-0080133 2021-06-21
KR10-2021-0080132 2021-06-21
KR1020210080132A KR20220079408A (ko) 2020-12-04 2021-06-21 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR1020210138123A KR20220079427A (ko) 2020-12-04 2021-10-18 양극 활물질 및 이를 포함하는 리튬 이차전지
KR10-2021-0138123 2021-10-18
KR1020210144259A KR20220079429A (ko) 2020-12-04 2021-10-27 양극 활물질 및 이를 포함하는 리튬 이차전지
KR10-2021-0144259 2021-10-27
KR1020210145310A KR20220079430A (ko) 2020-12-04 2021-10-28 양극 활물질 및 이를 포함하는 리튬 이차전지
KR10-2021-0145310 2021-10-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/188,194 Continuation US20230231128A1 (en) 2020-12-04 2023-03-22 Positive electrode active material and lithium secondary battery including the same

Publications (1)

Publication Number Publication Date
WO2022119157A1 true WO2022119157A1 (ko) 2022-06-09

Family

ID=81853202

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/KR2021/016129 WO2022119156A1 (ko) 2020-12-04 2021-11-08 양극 활물질 및 이를 포함하는 리튬 이차전지
PCT/KR2021/016130 WO2022119157A1 (ko) 2020-12-04 2021-11-08 양극 활물질 및 이를 포함하는 리튬 이차전지
PCT/KR2021/016132 WO2022119158A1 (ko) 2020-12-04 2021-11-08 양극 활물질 및 이를 포함하는 리튬 이차전지

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016129 WO2022119156A1 (ko) 2020-12-04 2021-11-08 양극 활물질 및 이를 포함하는 리튬 이차전지

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016132 WO2022119158A1 (ko) 2020-12-04 2021-11-08 양극 활물질 및 이를 포함하는 리튬 이차전지

Country Status (5)

Country Link
US (3) US20230231128A1 (ko)
EP (3) EP4231389A1 (ko)
JP (3) JP2023544339A (ko)
CN (2) CN116325225A (ko)
WO (3) WO2022119156A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240057133A (ko) * 2022-10-24 2024-05-02 주식회사 에코프로비엠 양극 활물질 및 이를 포함하는 리튬 이차전지

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075773A (ja) * 2011-09-29 2013-04-25 Tanaka Chemical Corp リチウム過剰型のリチウム金属複合酸化物
JP2013080603A (ja) * 2011-10-03 2013-05-02 Nippon Chem Ind Co Ltd リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
KR20140089851A (ko) * 2013-01-07 2014-07-16 삼성에스디아이 주식회사 양극 활물질, 이를 포함하는 양극과 리튬 전지, 및 상기 양극 활물질의 제조방법
KR20150004645A (ko) * 2013-07-03 2015-01-13 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 그리고 이를 포함하는 리튬 이차 전지용 양극 및 리튬 이차 전지
KR20150069334A (ko) 2013-12-13 2015-06-23 삼성정밀화학 주식회사 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬이차전지
JP2016139569A (ja) * 2015-01-29 2016-08-04 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012426A (ja) * 2004-06-22 2006-01-12 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質および非水電解質二次電池
US9249034B2 (en) * 2009-09-30 2016-02-02 Toda Kogyo Corporation Positive electrode active substance particles and process for producing the same, and non-aqueous electrolyte secondary battery
KR101886174B1 (ko) * 2011-02-18 2018-08-08 미쓰이 긴조꾸 고교 가부시키가이샤 리튬망간계 고용체 양극 재료
JP2012174642A (ja) * 2011-02-24 2012-09-10 National Institute For Materials Science リチウム二次電池正極材化合物、その製造方法及び充放電プロセス
WO2012164752A1 (ja) * 2011-05-30 2012-12-06 住友金属鉱山株式会社 非水系二次電池用正極活物質とその製造方法、ならびに該正極活物質を用いた非水系電解質二次電池
WO2013002457A1 (ko) * 2011-06-27 2013-01-03 주식회사 에코프로 양극활물질, 상기 양극활물질을 포함하는 전극, 및 리튬 전기 화학 전지
KR101975394B1 (ko) * 2012-09-12 2019-05-07 삼성에스디아이 주식회사 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
KR101913906B1 (ko) * 2015-06-17 2018-10-31 주식회사 엘지화학 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
KR102273775B1 (ko) * 2016-06-14 2021-07-06 삼성전자주식회사 복합양극활물질, 이를 채용한 양극과 리튬 전지 및 그 제조방법
KR102081858B1 (ko) * 2016-12-02 2020-02-26 주식회사 엘지화학 이차전지용 양극활물질 전구체 및 이를 이용하여 제조한 이차전지용 양극활물질

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075773A (ja) * 2011-09-29 2013-04-25 Tanaka Chemical Corp リチウム過剰型のリチウム金属複合酸化物
JP2013080603A (ja) * 2011-10-03 2013-05-02 Nippon Chem Ind Co Ltd リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
KR20140089851A (ko) * 2013-01-07 2014-07-16 삼성에스디아이 주식회사 양극 활물질, 이를 포함하는 양극과 리튬 전지, 및 상기 양극 활물질의 제조방법
KR20150004645A (ko) * 2013-07-03 2015-01-13 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 그리고 이를 포함하는 리튬 이차 전지용 양극 및 리튬 이차 전지
KR20150069334A (ko) 2013-12-13 2015-06-23 삼성정밀화학 주식회사 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬이차전지
JP2016139569A (ja) * 2015-01-29 2016-08-04 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池

Also Published As

Publication number Publication date
US20230268497A1 (en) 2023-08-24
JP2023544339A (ja) 2023-10-23
EP4231389A1 (en) 2023-08-23
CN116250101A (zh) 2023-06-09
CN116325225A (zh) 2023-06-23
WO2022119156A1 (ko) 2022-06-09
JP2023551720A (ja) 2023-12-12
EP4216311A1 (en) 2023-07-26
US20230231128A1 (en) 2023-07-20
US20230261179A1 (en) 2023-08-17
WO2022119158A1 (ko) 2022-06-09
JP2023544060A (ja) 2023-10-19
EP4216312A1 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
WO2019221497A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020106024A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2019235885A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019103363A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2018143753A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2016053056A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2018160023A1 (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021154021A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2019059647A2 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020085731A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021187907A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2020111545A1 (ko) 양극 활물질, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2021154035A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2022154603A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2016053051A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2022139311A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2022092906A1 (ko) 양극 활물질 및 이의 제조방법
WO2020004988A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2022039576A1 (ko) 양극 활물질의 제조방법
WO2021141463A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019194609A1 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021107684A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 방법에 의해 제조된 리튬 이차전지용 양극 활물질
WO2021025464A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2020145638A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조방법에 의해 제조된 양극 활물질
WO2021112606A1 (ko) 리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023520050

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021900845

Country of ref document: EP

Effective date: 20230419

NENP Non-entry into the national phase

Ref country code: DE