WO2015052865A1 - 走行制御装置及び走行制御方法 - Google Patents

走行制御装置及び走行制御方法 Download PDF

Info

Publication number
WO2015052865A1
WO2015052865A1 PCT/JP2014/004508 JP2014004508W WO2015052865A1 WO 2015052865 A1 WO2015052865 A1 WO 2015052865A1 JP 2014004508 W JP2014004508 W JP 2014004508W WO 2015052865 A1 WO2015052865 A1 WO 2015052865A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
adjacent
inter
lane
distance
Prior art date
Application number
PCT/JP2014/004508
Other languages
English (en)
French (fr)
Inventor
康啓 鈴木
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to RU2016118004A priority Critical patent/RU2624392C1/ru
Priority to BR112016007927-2A priority patent/BR112016007927B1/pt
Priority to US15/028,560 priority patent/US9718473B2/en
Priority to CN201480055611.4A priority patent/CN105636849B/zh
Priority to JP2015541419A priority patent/JP6052424B2/ja
Priority to MX2016004520A priority patent/MX346612B/es
Priority to EP14852920.9A priority patent/EP3056405B1/en
Publication of WO2015052865A1 publication Critical patent/WO2015052865A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/162Speed limiting therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle

Definitions

  • the present invention relates to a travel control device and a travel control method that support the lane change of the host vehicle.
  • the movement of the mechanical system is made using each element of the spring, mass, and damper so that the own vehicle is in the optimum position between the vehicles in the adjacent lane.
  • the vehicle position is controlled according to the spring mass damper model, which is a mathematical model that schematically represents the vehicle, and the lane is changed when the distance between adjacent lanes exceeds the threshold at the vehicle position (see Patent Document 1). .
  • the purpose of the present invention is to pay attention to the above points, and when trying to change the lane from the own lane to the adjacent lane, the own vehicle keeps waiting on the side of the same vehicle regardless of the situation of the adjacent lane. Is to prevent that.
  • a travel control device provides a vehicle in front of a side of a host vehicle that is a target for changing the lane of the host vehicle to the side of the host vehicle in an adjacent lane adjacent to the host lane.
  • the first inter-vehicle distance that is the inter-vehicle distance between the first preceding adjacent vehicle and the first subsequent adjacent vehicle on the rear side of the vehicle is acquired.
  • a second inter-vehicle distance that is one inter-vehicle distance is acquired.
  • the first inter-vehicle distance it is determined whether or not the lane change from the own lane to the adjacent lane is possible.
  • the second inter-vehicle distance is used to determine whether or not there is a possibility that the first inter-vehicle distance extends to a lane changeable length. If it is determined that there is a possibility that the first inter-vehicle distance may be extended to a lane changeable length, it is determined that standby is required. If it is determined that there is no possibility that the first inter-vehicle distance will be extended to a lane changeable length, it is determined that standby is unnecessary.
  • the vehicle can move to the side between the other vehicles when the lane can be changed between the other vehicles without continuously waiting on the side between the same vehicles.
  • the vehicle includes a control operation switch 1, a wheel speed sensor 2, an external environment recognition device 3, a communication device 4, a travel control device 5, a brake controller 6, and a drive / steering controller. 7, a fluid pressure circuit 8, a brake device 9, a drive / steering device 10, and wheels 11.
  • the control operation switch 1 is an operating element for instructing start and end of automatic travel control including platoon travel control, ACC travel control (preceding vehicle following travel control), or an instruction to change the set vehicle speed of travel control. It is.
  • the state of this control operation switch is output to the travel control device 5.
  • the control operation switch 1 is provided, for example, on a steering wheel.
  • the platooning travels by forming a group of platoons with a plurality of vehicles.
  • travel control is executed so that the target inter-vehicle time is reached with respect to the preceding vehicle.
  • the ACC travel control the travel control is performed so that the preceding vehicle has the target inter-vehicle time.
  • the control is performed so that the inter-vehicle time is shorter than the ACC travel control in consideration of traffic efficiency. Is called.
  • the platoon travel control and the ACC travel control are the same in that the travel control is performed so that the target inter-vehicle time is reached.
  • the wheel speed sensor 2 detects the wheel speed and outputs the detected wheel speed information to the travel control device 5.
  • the wheel speed sensor 2 is composed of, for example, a pulse generator such as a rotary encoder that measures wheel speed pulses.
  • the external world recognition device 3 recognizes a preceding vehicle existing ahead of the host vehicle, and detects the presence / absence of the preceding vehicle and the running state as the recognized preceding vehicle state. Information regarding the detected state of the preceding vehicle is output to the travel control device 5.
  • the external environment recognition device 3 is configured by, for example, a laser distance meter, a laser scanner, or a camera.
  • the communication device 4 performs inter-vehicle communication with other vehicles around the own vehicle. Note that the communication device 4 may perform road-to-vehicle communication with a roadside machine. For example, the communication device 4 may use a communication device that performs vehicle-to-vehicle communication and a communication device that performs road-to-vehicle communication.
  • the communication device 4 performs inter-vehicle communication with a preceding vehicle and a succeeding vehicle existing in a preset range, exchanges identification information for performing platooning, and controls the identification information acquired from the preceding vehicle and the following vehicle. Output to the device 5. You may acquire the traveling information of a preceding vehicle or a succeeding vehicle via the communication apparatus 4.
  • the travel control device 5 determines that the control operation switch 1 is ON (control operation request)
  • the travel state of the control operation switch 1 the vehicle speed based on the signal from the wheel speed sensor 2
  • traveling control for following traveling and platooning for the preceding vehicle is performed.
  • the travel control device 5 determines that the convoy travel operation request is ON (control operation request) in the control operation switch 1
  • the travel control device 5 performs inter-vehicle communication with the preceding and subsequent vehicles existing in the preset range. Judge whether to shift to the running state.
  • the traveling control device 5 determines to shift to the convoy travel state, the convoy travel control process is executed.
  • the travel control device 5 performs platooning control based on information on the traveling state of the own vehicle, information on detection of the preceding vehicle by the external recognition device 3, and information on other vehicles around the own vehicle obtained from the communication device 4. If it is determined that the ACC travel operation request is ON (control operation request) in the control operation switch 1, the ACC travel control is performed based on the travel state information of the own vehicle and the detection information of the preceding vehicle by the external recognition device 3. Do. Also in the ACC travel control, the travel information of the preceding vehicle may be acquired and used by inter-vehicle communication.
  • the travel control device 5 executes the following travel control using the inter-vehicle time based on the inter-vehicle distance set by the occupant or the preset inter-vehicle time for ACC travel as the target inter-vehicle time.
  • the traveling control device 5 performs the following traveling control for the preceding vehicle so that the target inter-vehicle time for the platooning is reached when the own vehicle is not the leading vehicle.
  • the target inter-vehicle time for platooning is set smaller than, for example, the target inter-vehicle time during ACC control.
  • the travel control device 5 outputs each command value (braking / driving force control amount) of the braking command or the drive command calculated for the follow-up travel control to the brake controller 6 and the drive / steering controller 7.
  • the traveling control device 5 outputs a steering command to the drive / steering controller 7 when the own vehicle needs to be steered.
  • Each of the brake controller 6 and the drive / steering controller 7 receives a command value (braking / driving force control amount) of a braking command or a drive command from the travel control device 5 that is a host controller, and receives each command value (a control value).
  • the acceleration / deceleration of the vehicle is controlled so as to be the driving force control amount.
  • the brake controller 6 and the drive / steering controller 7 constitute an acceleration / deceleration control device.
  • the brake controller 6 controls the braking force generated by the brake device 9 via the fluid pressure circuit 8 to a value corresponding to each command value (braking / driving force control amount) from the travel control device 5.
  • the fluid pressure circuit 8 adjusts the pressure of the fluid flowing into the brake device 9 in accordance with a control command from the brake controller 6.
  • the fluid pressure circuit 8 is not limited to the brake cylinder, and includes a pipe connected to the brake device 9 and an adjustment valve.
  • the brake device 9 is provided on the wheel 11 and generally brakes the wheel 11 using a frictional force.
  • the brake device 9 is generally a hydraulic disc brake.
  • a drum brake, a parking (side) brake, an air brake, an exhaust brake, and the like are also known. That is, as a fluid, brake fluid (oil) or compressed air is generally used.
  • the brake device 9 is not limited to a device that applies a braking force with fluid pressure, and may be an electric brake device or the like.
  • the brake controller 6, the fluid pressure circuit 8, and the brake device 9 constitute a braking device that generates a braking force.
  • the drive / steering controller 7 controls the torque (driving force) generated by the drive source of the driving / steering device 10 according to each command value (braking / driving force control amount) from the travel control device 5.
  • the drive source of the drive / steering device 10 generates drive force (drive torque) and rotates the wheels 11.
  • the drive source of the drive / steering device 10 is not limited to a general engine, and may be an electric motor or a hybrid configuration combining an engine and a motor.
  • the drive / steering controller 7 controls the steering mechanism of the driving / steering device 10 in accordance with the steering command from the travel control device 5 to change the direction of the wheels 11.
  • the drive source and the turning mechanism of the drive / steering device 10 are independent of each other.
  • FF vehicle engine front wheel drive vehicle
  • FR vehicle front engine rear wheel drive vehicle
  • 4WD four wheel drive vehicle
  • midship is acceptable.
  • e4WD registered trademark
  • a motor assist type vehicle in which one of the front and rear wheels is driven by power from an engine and the other wheel is appropriately driven by a power from an electric motor via a clutch. good.
  • the travel control device 5 includes a control state setting unit 51, a surrounding vehicle detection state determination unit 52, a surrounding vehicle speed calculation unit 53, and a lane change necessity determination unit 54.
  • the first inter-vehicle distance acquisition unit 55, the second inter-vehicle distance acquisition unit 56, the lane change availability determination unit 57, and the standby necessity determination unit 58 are provided.
  • an electronic control device (ECU) mounted on a vehicle is assumed. Since the electronic control unit (ECU) is generally inseparable from the vehicle, the travel control unit 5 may be read as a vehicle.
  • the control state setting unit 51 detects the operation state of the control operation switch 1 by the occupant and determines whether or not various switch operations for operating the control are performed based on the operation state of the control operation switch 1.
  • the control state setting unit 51 sets the vehicle speed of the own vehicle according to the target inter-vehicle time for the platooning during the follow-up traveling.
  • an operation command may be output to the surrounding vehicle detection state determination unit 52. If the presence of a preceding vehicle is not detected during ACC travel, the set vehicle speed is set as the vehicle speed command value. If the vehicle is the leading vehicle during platooning, the set vehicle speed for platooning is used as the vehicle speed command value. That is, the set vehicle speed does not necessarily match between the ACC travel control and the platoon travel control.
  • the surrounding vehicle detection state determination unit 52 receives the operation command from the control state setting unit 51 at any time or when the other vehicle surrounding the vehicle obtained from the vehicle detection device mounted on the own vehicle and the own vehicle The presence or absence of other vehicles around the vehicle is determined based on the relative value between the vehicles.
  • the inter-vehicle relative value in the present embodiment is the inter-vehicle distance and relative speed with the own vehicle.
  • an inter-vehicle relative value (an inter-vehicle distance and a relative speed) is acquired by using an external recognition device 3 (camera, laser, radar, etc.) or a communication device 4 (vehicle-to-vehicle communication, road-to-vehicle communication, etc.)
  • an external recognition device 3 camera, laser, radar, etc.
  • a communication device 4 vehicle-to-vehicle communication, road-to-vehicle communication, etc.
  • the presence / absence of a preceding adjacent vehicle in front of the vehicle side in the lane and a subsequent adjacent vehicle in the rear side of the vehicle is determined.
  • the presence or absence of a preceding vehicle in front of the host vehicle and a subsequent vehicle in the rear of the host vehicle can also be determined, but the description is omitted here.
  • the surrounding vehicle detection state determination unit 52 determines other vehicles around the host vehicle by GPS, map matching using a digital map database and a camera or a laser, and vehicle position measurement using a magnetic marker installed on a track. The vehicle position (position information) may be detected. Moreover, the surrounding vehicle detection state determination part 52 may acquire the vehicle position of the other vehicle around the own vehicle directly via the communication apparatus 4 (vehicle-to-vehicle communication, road-to-vehicle communication, etc.).
  • the own lane is a lane (traveling path) in which the own vehicle is currently traveling.
  • the adjacent lane is a lane adjacent to the own lane and is a lane to which the own vehicle is moved. Further, the surrounding vehicle detection state determination unit 52 may operate only when an operation command is received from the lane change necessity determination unit 54 described later.
  • the surrounding vehicle speed calculation unit 53 determines, for each detected vehicle, the speed of the host vehicle and the relative speed between the vehicles. Calculate the speed of each car. That is, the speed of each car is an estimated value. If necessary, the surrounding vehicle speed calculation unit 53 may calculate the speed of the host vehicle using the wheel speed sensor 2. The surrounding vehicle speed calculation unit 53 may acquire the speed of each vehicle via the communication device 4 (vehicle-to-vehicle communication, road-to-vehicle communication, etc.). In addition, the surrounding vehicle speed calculation unit 53 can confirm the speed of the own vehicle and the speed of the adjacent vehicle in the adjacent lane, and can confirm whether the own lane is a higher speed lane or a lower speed lane than the adjacent lane.
  • the lane change necessity determination unit 54 determines whether or not to change the lane from the own lane to the adjacent lane. For example, when the lane change necessity determination unit 54 detects the intention (intention) of changing the lane by operating the control operation switch 1, the direction indicator, the steering wheel, or the like by the occupant, to decide. In addition, when an approach to “another vehicle around the own vehicle” is detected by the external environment recognition device 3 (camera, laser, radar, etc.) or the communication device 4 (vehicle-to-vehicle communication, road-to-vehicle communication, etc.) You may decide to change the lane.
  • the external environment recognition device 3 camera, laser, radar, etc.
  • the communication device 4 vehicle-to-vehicle communication, road-to-vehicle communication, etc.
  • the lane change necessity determination unit 54 determines that the lane change of the host vehicle is to be performed, the surrounding vehicle detection state determination unit 52, the first inter-vehicle distance acquisition unit 55 (and the second inter-vehicle distance acquisition unit 56), whether or not the lane change is possible. An operation command is output to at least one of the determination units 57.
  • the lane change necessity determination unit 54 always determines whether or not the lane change of the own vehicle is continued (unconditionally) while the host vehicle is traveling. May not work. In this case, the lane change necessity determination unit 54 becomes unnecessary.
  • the first inter-vehicle distance acquisition unit 55 indicates the inter-vehicle distance (the width of the target space) that is the target of the lane change of the own vehicle based on the inter-vehicle distance (or the vehicle position) obtained by the surrounding vehicle detection state determination unit 52. Acquire “first inter-vehicle distance”.
  • the first inter-vehicle distance is an inter-vehicle distance between two adjacent vehicles located on the side front and side rear of the own vehicle in the adjacent lane.
  • the first inter-vehicle distance acquisition unit 55 acquires the “lateral adjacent inter-vehicle distance” as the first inter-vehicle distance.
  • the side-to-side adjacent vehicle distance is an inter-vehicle distance between the first preceding adjacent vehicle in front of the vehicle side and the first subsequent adjacent vehicle in the rear side of the vehicle in the adjacent lane.
  • the first inter-vehicle distance is not limited to the side-to-side adjacent inter-vehicle distance.
  • the first inter-vehicle distance acquisition unit 55 may acquire the inter-vehicle distance that may become the “lateral inter-vehicle distance” in the near future in advance (in advance) as the first inter-vehicle distance in the adjacent lane. good.
  • the first inter-vehicle distance acquisition unit 55 starts an operation when the inter-vehicle distance (or vehicle position) is acquired by the surrounding vehicle detection state determination unit 52. Or you may make it start operation
  • the second inter-vehicle distance acquisition unit 56 calculates other inter-vehicle distances before and after the inter-vehicle distance that is the target of the lane change of the own vehicle.
  • the obtained “second inter-vehicle distance” is acquired.
  • the second inter-vehicle distance is the inter-vehicle distance between the adjacent vehicle located behind the own vehicle in the adjacent lane and the adjacent vehicle located further rearward thereof, or in the adjacent lane in front of the side of the own vehicle. This is the inter-vehicle distance between the adjacent vehicle positioned and the adjacent vehicle positioned further forward.
  • the second inter-vehicle distance acquisition unit 56 acquires the “subsequent adjacent vehicle distance”, the “adjacent adjacent vehicle distance”, or both as the second inter-vehicle distance.
  • the inter-following adjacent vehicle distance is an inter-vehicle distance between the first subsequent adjacent vehicle in the adjacent lane and the second subsequent adjacent vehicle that is the subsequent vehicle.
  • the preceding adjacent vehicle distance is an inter-vehicle distance between the first preceding adjacent vehicle in the adjacent lane and the second preceding adjacent vehicle that is the preceding vehicle.
  • the second inter-vehicle distance acquisition unit 56 further calculates the inter-vehicle distance between the second succeeding adjacent vehicle and the succeeding vehicle and the inter-vehicle distance between the second preceding adjacent vehicle and the preceding vehicle.
  • the second inter-vehicle distance acquisition unit 56 may acquire a plurality of inter-vehicle distances that are continuous in the front-rear direction based on the inter-vehicle distance that is the target of lane change of the host vehicle as the second inter-vehicle distance.
  • the second inter-vehicle distance acquisition unit 56 starts to operate when the first inter-vehicle distance acquisition unit 55 acquires the first inter-vehicle distance. Or you may make it start operation
  • the first inter-vehicle distance acquisition unit 55 and the second inter-vehicle distance acquisition unit 56 may be integrated.
  • the lane change possibility determination unit 57 uses the first inter-vehicle distance acquired by the first inter-vehicle distance acquisition unit 55 to determine whether the lane change of the own vehicle can be performed.
  • the lane change permission determination unit 57 determines whether the lane of the own vehicle can be changed using the “distance between the side-by-side adjacent vehicles”.
  • the lane change possibility determination unit 57 controls the brake device 9 and the drive / steering device 10 via the brake controller 6 and the drive / steering controller 7. Is output.
  • the brake device 9 and the drive / steering device 10 adjust the speed of the own vehicle according to the control command, steer it, and change the lane of the own vehicle.
  • the lane change possibility determination unit 57 may output an operation command for a direction indicator or the like, and automatically display an intention to change lanes with the direction indicator or the like. Further, the lane change permission determination unit 57 outputs a control command for performing screen display on the display and sound output from the sound output device, and determines whether the lane change is possible for the occupant through the screen display and sound output. You may make it notify implementation (or implementation schedule) of a lane change. The lane change possibility determination unit 57 starts the operation when the first inter-vehicle distance acquisition unit 55 acquires the first inter-vehicle distance. Or you may make it start operation
  • the waiting necessity determination unit 58 uses the second inter-vehicle distance acquired by the second inter-vehicle distance acquisition unit 56 when the lane change permission determination unit 57 determines that the lane change of the host vehicle is impossible. It is determined whether or not there is a possibility that the distance between the lanes may be extended to a lane changeable length, and whether or not to wait is determined based on the possibility that the first lane distance is likely to be extended to a lane changeable length. For example, when an adjacent vehicle serving as a boundary between the first inter-vehicle distance and the second inter-vehicle distance moves back and forth, and the second inter-vehicle distance becomes shorter, the first inter-vehicle distance becomes longer and the second inter-vehicle distance becomes longer.
  • the standby necessity determination unit 58 uses the “distance between adjacent vehicles”, the “adjacent vehicle distance”, or both, so that the first vehicle distance can be changed to a length that can be changed by changing the length. Determine if there is a possibility of spreading.
  • the standby necessity determination unit 58 determines that the standby is required, and the brake controller 6 and the drive / steering controller 7 A control command is output to the brake device 9 and the drive / steering device 10 via The brake device 9 and the drive / steering device 10 maintain the current traveling state of the vehicle and wait on the side between the first vehicles, which is between the first preceding adjacent vehicle and the first subsequent adjacent vehicle. To do.
  • the lane change permission determination unit 57 periodically uses the first inter-vehicle distance to determine whether the lane change of the own vehicle is possible.
  • the waiting necessity determination unit 58 counts the waiting time, and it is not determined that the lane change of the own vehicle is possible even if a certain time elapses (for example, 10 seconds elapse) after the own vehicle starts waiting. In this case, it is determined that there is no possibility that the first inter-vehicle distance will extend to a length that allows the lane to be changed.
  • the standby necessity determination unit 58 determines that standby is not necessary, and the brake controller 6 and the drive / steering controller 7 A control command is output to the brake device 9 and the drive / steering device 10 via The brake device 9 and the drive / steering device 10 adjust the speed of the vehicle according to the control command, and move to the side between the second vehicles adjacent to each other before and after the first vehicle.
  • the standby necessity determination unit 58 may determine whether or not the lane change of the own vehicle with respect to the second vehicle can be changed using the second inter-vehicle distance. .
  • the standby necessity determination unit 58 determines whether or not the lane change of the own vehicle can be performed using “the distance between the following adjacent vehicles”, “the distance between the preceding adjacent vehicles”, or both.
  • the brake device 9 and the drive are driven via the brake controller 6 and the drive / steering controller 7.
  • -A control command is output to the steering apparatus 10.
  • the brake device 9 and the drive / steering device 10 adjust the speed of the own vehicle according to the control command, and move to the side between the second vehicles.
  • the standby necessity determination unit 58 determines that the lane change of the own vehicle cannot be performed between the second vehicles, the abandonment of the lane of the own vehicle is abandoned, and the brake controller 6 and the drive / switch are determined.
  • a control command is output to the brake device 9 and the drive / steering device 10 via the rudder controller 7.
  • the brake device 9 and the drive / steering device 10 stop waiting and continue running in the own lane according to the control command. That is, instead of waiting, the vehicle travels in its own lane as usual.
  • the standby necessity determination unit 58 outputs a control command for performing screen display on the display and voice output from the voice output device, and whether the standby is required for the occupant by screen display and voice output, Or you may make it notify the necessity of the movement of the own vehicle.
  • the lane change permission determination unit 57 and the standby necessity determination unit 58 may be integrated.
  • the traveling control device 5 is realized by a processor that is driven based on a program and executes predetermined processing, and a memory that stores the program and various data.
  • the processor is a CPU, a microprocessor, a microcontroller, or a semiconductor integrated circuit (LSI) having a dedicated function.
  • the memory is a RAM, ROM, EEPROM, flash memory, or the like. Further, a storage medium such as a HDD or SSD, a removable disk such as a DVD, or a storage medium (media) such as an SD memory card may be used together with or instead of the above memory. A buffer, a register, or the like may be used. Note that the processor and the memory may be integrated. For example, in recent years, a single chip such as a microcomputer has been developed. Therefore, a case where a one-chip microcomputer mounted on an electronic device or the like corresponding to the traveling control device 5 includes the above processor and the above memory can be considered. However, actually, it is not limited to the above example.
  • FIG. 3 A case where it is determined whether or not a lane change is possible will be described by taking a lane change environment (road situation) as shown in FIG. 3 as an example.
  • the own lane “A”, the adjacent lane “B”, the own vehicle “A1”, the first subsequent adjacent vehicle “B21”, the second subsequent adjacent vehicle “B22”, the first preceding adjacent vehicle “B31”, The second preceding adjacent vehicle “B32”, the side adjacent vehicle distance “L1”, the preceding adjacent vehicle distance “L2”, and the subsequent adjacent vehicle distance “L3” are illustrated.
  • the first subsequent adjacent vehicle “B21”, the second subsequent adjacent vehicle “B22”, the first preceding adjacent vehicle “B31”, and the second preceding adjacent vehicle “B32” are vehicles in the adjacent lane “B”.
  • the first subsequent adjacent vehicle “B21” and the second subsequent adjacent vehicle “B22” are vehicles behind the own vehicle “A1” in the front-rear direction.
  • the second subsequent adjacent vehicle “B22” is a subsequent vehicle of the first subsequent adjacent vehicle “B21”.
  • the first preceding adjacent vehicle “B31” and the second preceding adjacent vehicle “B32” are vehicles ahead of the host vehicle “A1” in the front-rear direction.
  • the second preceding adjacent vehicle “B32” is a preceding vehicle of the first preceding adjacent vehicle “B31”.
  • the side-to-side adjacent vehicle distance “L1” is a distance between the first preceding adjacent vehicle “B31” and the first subsequent adjacent vehicle “B21”.
  • the side-to-side adjacent vehicle distance “L2” is an inter-vehicle distance between the first subsequent adjacent vehicle “B21” and the second subsequent adjacent vehicle “B22”.
  • the side-to-side adjacent vehicle distance “L3” is an inter-vehicle distance between the first preceding adjacent vehicle “B31” and the second preceding adjacent vehicle “B32”.
  • the surrounding vehicle detection state determination unit 52 includes a first subsequent adjacent vehicle “B21”, a second subsequent adjacent vehicle “B22”, and a first preceding adjacent vehicle “B31”. For each of the second preceding adjacent vehicles “B32”, the inter-vehicle distance and the relative speed with respect to the host vehicle “A1” are acquired, and the presence or absence of each vehicle is confirmed.
  • the surrounding vehicle speed calculation unit 53 also determines the first subsequent adjacent vehicle “B21” based on the own vehicle speed “V1” indicating the speed of the own vehicle “A1” and the relative speed of the first subsequent adjacent vehicle “B21”. The first subsequent adjacent vehicle speed “V21” indicating the speed of the vehicle is calculated.
  • the first preceding adjacent vehicle speed “V31” indicating the speed of the first preceding adjacent vehicle “B31” is calculated based on the host vehicle speed “V1” and the relative speed of the first preceding adjacent vehicle “B31”. .
  • the second subsequent adjacent vehicle “B22” or the second preceding adjacent vehicle “B32” may be used.
  • the surrounding vehicle speed calculation unit 53 calculates the host vehicle speed “V1” using the wheel speed sensor 2 if necessary. Actually, the surrounding vehicle speed calculation unit 53 performs the first subsequent adjacent vehicle speed “V21” and the first preceding adjacent vehicle speed “V31” via the communication device 4 (vehicle-to-vehicle communication, road-to-vehicle communication, etc.).
  • the first inter-vehicle distance acquisition unit 55 acquires the side-to-side adjacent inter-vehicle distance “L1” on the side of the host vehicle.
  • the second inter-vehicle distance acquisition unit 56 calculates the distance between the adjacent adjacent vehicles “L2” at the rear side of the own vehicle and the distance between the preceding adjacent vehicles “L3” at the front side of the own vehicle. It should be noted that either one of the following adjacent inter-vehicle distance “L2” and the preceding adjacent inter-vehicle distance “L3” may be used.
  • the surrounding vehicle speed calculation unit 53 confirms whether the own lane is a higher speed lane or a lower speed lane than the adjacent lane.
  • the own vehicle speed “V1” By comparing the own vehicle speed “V1” with the first subsequent adjacent vehicle speed “V21” and the first preceding adjacent vehicle speed “V31” as to whether the own lane is faster or slower than the adjacent lane. Can be confirmed. For example, if the own vehicle speed “V1” is faster than the first subsequent adjacent vehicle speed “V21” or the first preceding adjacent vehicle speed “V31”, it can be determined that the own lane is a lane faster than the adjacent lane.
  • the standby necessity determination unit 58 uses the information of the subsequent adjacent inter-vehicle distance “L2” to change the length of the subsequent adjacent inter-vehicle distance “L2”. It is determined whether or not the adjacent inter-vehicle distance “L1” is likely to be extended to a lane changeable length.
  • the standby necessity determination unit 58 uses the information on the preceding adjacent inter-vehicle distance “L3” to change the length of the preceding adjacent inter-vehicle distance “L3”. It is determined whether or not there is a possibility that the side-to-side distance between adjacent vehicles “L1” extends to a length that allows lane change. Details will be described below.
  • step S101 the lane change permission determination unit 57 checks whether or not the side-to-side adjacent vehicle distance “L1” is greater than the first threshold value. At this time, not only the determination with respect to the side-to-side adjacent vehicle distance “L1” but also the determination with respect to the relative speed between the vehicle “A1” and the first subsequent adjacent vehicle “B21” and the distance to the vehicle position and the lane change end point You may combine determination.
  • the first threshold indicates an inter-vehicle distance necessary for the own vehicle “A1” to change lanes. Details of the first threshold will be described later. If the side-to-side adjacent inter-vehicle distance “L1” is smaller than the first threshold (No in step S101), it is determined that the lane change is impossible because the side-to-side adjacent inter-vehicle distance “L1” is insufficient, and the process proceeds to step S102. . If the side-to-side adjacent vehicle distance “L1” is greater than the first threshold, it is determined that the lane change is possible because the side-to-side adjacent vehicle distance “L1” is satisfied (Yes in step S101), and step S104. Migrate to
  • step S102 the standby necessity determination unit 58 confirms whether or not the distance between the subsequent adjacent vehicles “L2” is larger than the second threshold value.
  • the second threshold indicates an inter-vehicle distance required for the first subsequent adjacent vehicle “B21” to increase the side-to-side adjacent vehicle distance “L1” (relatively retreat). Details of the second threshold will be described later.
  • Step S103 the process proceeds to Step S103. If the distance between the adjacent vehicles “L2” is smaller than the second threshold value (No in step S102), the process proceeds to step S105.
  • step S103 the standby necessity determination unit 58 determines that there is a possibility that the first subsequent adjacent vehicle “B21” decelerates relative to the own vehicle “A1” and increases the distance between the side adjacent vehicles “L1”. For example, as shown in FIG. 5A, the side-to-side adjacent vehicle distance “L1” is smaller than the first threshold value, and the subsequent adjacent vehicle-to-vehicle distance “L2” is larger than the second threshold value (L1 ⁇ first , L2> second threshold), it is determined that the side-to-side adjacent inter-vehicle distance “L1” may be extended to a lane changeable distance (highly likely).
  • the occupant of the host vehicle “A1” displays an intention to change lanes with a direction indicator or the like, and the side-to-side adjacent inter-vehicle distance “L1” until the side-to-side adjacent inter-vehicle distance “L1” exceeds the first threshold.
  • the vehicle waits on the side between the first cars indicated by (shift to S101).
  • An upper limit may be set for the waiting time at this time, or the waiting may be canceled by the operation of the passenger.
  • the occupant may be read as the lane change permission determination unit 57 or the standby necessity determination unit 58.
  • the lane change permission determination unit 57 or the standby necessity determination unit 58 may automatically display the intention to change the lane with a direction indicator or the like.
  • the first succeeding adjacent vehicle “B21” decelerates relative to the own vehicle “A1” and increases the side-to-side adjacent vehicle distance “L1”, so that the side-to-side adjacent vehicle distance “L1” becomes the first threshold value.
  • the lane change possibility determination unit 57 determines that the lane change is possible because the side-to-side adjacent inter-vehicle distance “L1” is satisfied, and the process proceeds to step S104. .
  • step S104 the lane change possibility determination unit 57 outputs a control command to the brake device 9 and the drive / steering device 10 via the brake controller 6 and the drive / steering controller 7.
  • the brake device 9 and the drive / steering device 10 adjust the speed of the host vehicle “A1” in accordance with the control command, steer it, and change the lane of the host vehicle “A1”.
  • the host vehicle “A1” When the first subsequent adjacent vehicle “B21” decelerates according to the intention indication of the passenger and the side-to-side adjacent vehicle distance “L1” becomes larger than the first threshold, the side-to-side adjacent vehicle distance “L1” Change the lane.
  • step S105 the standby necessity determination unit 58 determines that the standby is unnecessary because there is no possibility that the first subsequent adjacent vehicle “B21” decelerates and increases the distance between the side adjacent vehicles “L1”. It moves to the side between the second vehicles indicated by other inter-vehicle distances before and after the adjacent inter-vehicle distance “L1”. Actually, if the standby necessity determination unit 58 determines that standby is not necessary, the standby necessity determination unit 58 determines whether or not the lane of the vehicle can be changed with respect to the other inter-vehicle distances, and automatically determines the other vehicle-to-vehicle distances. When it is determined that the lane of the vehicle can be changed, the vehicle may move to the side between the second vehicles.
  • a control command is output to the brake device 9 and the drive / steering device 10 via the controller 6 and the drive / steering controller 7.
  • the brake device 9 and the drive / steering device 10 move to the side between the second vehicles by adjusting the speed of the own vehicle “A1” and changing the position of the own vehicle in accordance with the control command.
  • the host vehicle “A1” is accelerated so as to be ahead of the first preceding adjacent vehicle “B31”. Since the own vehicle “A1” is traveling in a higher speed lane than the adjacent lane “B”, the first preceding adjacent vehicle is to be moved to the side between the second vehicles when following the vehicle or changing the lane. “B31” can be overtaken.
  • the process proceeds to step S106.
  • the past side-to-side adjacent vehicle-to-vehicle distance “L1” may be replaced as it is, and is corrected according to the vehicle speed and the elapsed time of the adjacent vehicle. May be.
  • the subsequent adjacent vehicle distance “L2” may be newly acquired from the second inter-vehicle distance acquisition unit 56.
  • the side-to-side inter-vehicle distance “L1” is larger than the first threshold also when the side-to-side inter-vehicle distance “L1” is substantially equal to the first threshold (L1 ⁇ first threshold). You may judge. Similarly, when the subsequent adjacent vehicle distance “L2” is substantially equal to the second threshold (L2 ⁇ second threshold), it may be determined that the subsequent adjacent vehicle distance “L2” is larger than the second threshold. .
  • the lane change possibility determination unit 57 acquires an inter-vehicle time “THW1” that can be set in advance (in advance).
  • the inter-vehicle time “THW1” indicates the inter-vehicle time with the vehicle in the adjacent lane “B” required when the own vehicle “A1” changes lanes.
  • the standby necessity determination unit 58 calculates and sets the first threshold value by the following equation (1) based on the host vehicle speed “V1” and the inter-vehicle time “THW1”.
  • the lane change possibility determination unit 57 sets the first threshold value as the inter-vehicle distance necessary for the own vehicle “A1” to change lanes.
  • the standby necessity determination unit 58 acquires a preset subsequent minimum inter-vehicle time “THW2min”.
  • the subsequent minimum inter-vehicle time “THW2min” is the inter-vehicle time that needs to be kept at least between the first subsequent adjacent vehicle “B21” and the second subsequent adjacent vehicle “B22” during follow-up traveling.
  • the minimum following inter-vehicle distance “L2min” is the inter-vehicle distance that needs to be kept at least between the first subsequent adjacent vehicle “B21” and the second subsequent adjacent vehicle “B22” during follow-up traveling. For example, by setting the subsequent minimum inter-vehicle time “THW2min” to 4 to 5 seconds, it is possible to set the inter-vehicle distance that does not cause a sense of incongruity in a general traffic scene. Further, the standby necessity determination unit 58 acquires a margin for adjustment “margin” set in advance.
  • the margin for adjustment “margin” is a variable (variable) distance that can be changed according to other vehicles around the own vehicle, the traveling state of the own vehicle, and other conditions.
  • the standby necessity determination unit 58 sets the second threshold based on the subsequent minimum inter-vehicle distance “L2min”, the first threshold, the side-to-side adjacent inter-vehicle distance “L1”, and the margin for adjustment “margin”. And calculated and set by the following equation (3).
  • Second threshold L2min + first threshold ⁇ L1 + margin ...
  • the second threshold is variable according to the distance obtained by subtracting the inter-vehicle distance “L1” from the first threshold (the difference between the first threshold and the inter-vehicle distance “L1”). The longer the threshold value is, the shorter the second threshold value is. This is because, when the inter-vehicle distance “L1” is sufficiently long, the inter-vehicle distance necessary for changing the lane of the own vehicle “A1” is secured even if the first subsequent adjacent vehicle “B21” does not give up the space. In this way, the standby necessity determination unit 58 sets the second threshold value so that the own vehicle “A1” can change the lane even if the first subsequent adjacent vehicle “B21” does not yield the space.
  • the second threshold As described above, when the positional relationship satisfies the condition of “L2> second threshold”, the condition of “L2 margin distance> L1 insufficient distance” is satisfied. If this condition is satisfied, as shown in FIG. 6, the first succeeding adjacent vehicle “B21” shifts the vehicle position backward so as to compensate for the shortage distance of the side adjacent inter-vehicle distance “L1” (deceleration or current state) Therefore, when the own vehicle “A1” displays the intention to change lanes, it is determined that there is a possibility that the distance between the vehicles may be increased.
  • the lane of the first subsequent adjacent vehicle “B21” is used by using not only the side adjacent inter-vehicle distance “L1” but also the subsequent adjacent inter-vehicle distance “L2”.
  • L1 side adjacent inter-vehicle distance
  • L2 subsequent adjacent inter-vehicle distance
  • step S ⁇ b> 201 the lane change possibility determination unit 57 confirms whether or not the side-to-side adjacent inter-vehicle distance “L ⁇ b> 1” is greater than the first threshold value.
  • step S201 If the side-to-side adjacent inter-vehicle distance “L1” is smaller than the first threshold (No in step S201), it is determined that the lane change is impossible because the side-to-side adjacent inter-vehicle distance “L1” is insufficient, and the process proceeds to step S202. . If the side-to-side adjacent distance “L1” is greater than the first threshold (Yes in step S201), it is determined that the lane change is possible because the side-to-side adjacent distance “L1” is satisfied, and the process proceeds to step S204. Transition.
  • step S202 the standby necessity determination unit 58 confirms whether or not the preceding adjacent inter-vehicle distance “L3” is greater than the third threshold value.
  • the third threshold value indicates an inter-vehicle distance that is necessary for the first preceding adjacent vehicle “B31” to increase the side-to-side adjacent inter-vehicle distance “L1” (to advance relatively). Details of the third threshold will be described later.
  • step S203 the standby necessity determination unit 58 determines that there is a possibility that the first preceding adjacent vehicle “B31” is accelerated with respect to the host vehicle “A1” and the distance between the side adjacent vehicles “L1” is increased.
  • the side-to-side adjacent vehicle distance “L1” is smaller than the first threshold, and the preceding adjacent vehicle-to-vehicle distance “L3” is larger than the third threshold (L1 ⁇ first , L3> third threshold), it is determined that the side-to-side adjacent inter-vehicle distance “L1” may possibly extend to a lane changeable distance.
  • the occupant of the host vehicle “A1” displays an intention to change lanes with a direction indicator or the like, and the side-to-side adjacent inter-vehicle distance “L1” until the side-to-side adjacent inter-vehicle distance “L1” exceeds the first threshold.
  • the vehicle waits on the side between the first cars indicated by (shift to step S201).
  • An upper limit may be set for the waiting time at this time, or the waiting may be canceled by the operation of the passenger.
  • the occupant may be read as the lane change permission determination unit 57 or the standby necessity determination unit 58.
  • the lane change permission determination unit 57 or the standby necessity determination unit 58 may automatically display the intention to change the lane with a direction indicator or the like.
  • the first preceding adjacent vehicle “B31” accelerates with respect to the host vehicle “A1” to increase the side-to-side adjacent vehicle distance “L1”, so that the side-to-side adjacent vehicle distance “L1” becomes the first threshold value.
  • the lane change possibility determination unit 57 determines that the lane change is possible because the side-to-side adjacent inter-vehicle distance “L1” is satisfied, and the process proceeds to step S204. .
  • step S ⁇ b> 204 the lane change permission determination unit 57 outputs a control command to the brake device 9 and the drive / steering device 10 via the brake controller 6 and the drive / steering controller 7.
  • the brake device 9 and the drive / steering device 10 adjust the speed of the host vehicle “A1” in accordance with the control command, steer it, and change the lane of the host vehicle “A1”.
  • the host vehicle “A1” When the first preceding adjacent vehicle “B31” accelerates according to the intention display of the passenger and the side-to-side adjacent vehicle distance “L1” becomes larger than the first threshold, the side-to-side adjacent vehicle distance “L1”. Change the lane.
  • step S205 the standby necessity determination unit 58 determines that the standby is unnecessary because the first preceding adjacent vehicle “B31” is not accelerated and the distance between the side adjacent vehicles “L1” may not be increased. It moves to the side between the second vehicles indicated by other inter-vehicle distances before and after the adjacent inter-vehicle distance “L1”. Actually, if the standby necessity determination unit 58 determines that standby is not necessary, the standby necessity determination unit 58 determines whether or not the lane of the vehicle can be changed with respect to the other inter-vehicle distances, and automatically determines the other vehicle-to-vehicle distances. When it is determined that the lane of the vehicle can be changed, the vehicle may move to the side between the second vehicles.
  • the side-to-side adjacent vehicle distance “L1” is smaller than the first threshold, and the preceding adjacent vehicle-to-vehicle distance “L3” is also smaller than the third threshold (L1 ⁇ first If the threshold value L3 ⁇ the third threshold value), it is determined that the side-to-side distance between adjacent vehicles “L1” is not likely to increase to a lane changeable distance, and it is determined that standby is not necessary.
  • a control command is output to the brake device 9 and the drive / steering device 10 via the steering controller 7.
  • the brake device 9 and the driving / steering device 10 adjust the speed of the host vehicle “A1” in accordance with the control command, and change the host vehicle position with respect to the first subsequent adjacent vehicle “B21”. Move to the side between the two cars. For example, the host vehicle “A1” is decelerated so as to be behind the first succeeding adjacent vehicle “B21”. Alternatively, the host vehicle “A1” is put on standby so that the first succeeding adjacent vehicle “B21” accelerates and is ahead of the host vehicle “A1”. Since the own vehicle “A1” is traveling in a lower speed lane than the adjacent lane “B”, the first succeeding adjacent vehicle is to move to the side between the second vehicles when following the vehicle or changing the lane. "B21" can be overtaken (go first). When the vehicle is overtaken by the first subsequent adjacent vehicle “B21”, the process proceeds to step S206.
  • the past side-to-side adjacent vehicle-to-vehicle distance “L1” may be replaced as it is, and is corrected according to the vehicle speed and the elapsed time of the adjacent vehicle. May be.
  • the preceding adjacent vehicle distance “L3” may be newly acquired from the second inter-vehicle distance acquisition unit 56.
  • the side-to-side inter-vehicle distance “L1” is larger than the first threshold also when the side-to-side inter-vehicle distance “L1” is substantially equal to the first threshold (L1 ⁇ first threshold). You may judge. Similarly, when the preceding adjacent vehicle distance “L3” is substantially equal to the third threshold (L3 ⁇ third threshold), it may be determined that the preceding adjacent vehicle distance “L3” is greater than the third threshold. .
  • the standby necessity determination unit 58 acquires a preset preceding minimum inter-vehicle time “THW3min”.
  • the preceding minimum inter-vehicle time “THW3min” is the inter-vehicle time that is required to be kept at least between the first preceding adjacent vehicle “B31” and the second preceding adjacent vehicle “B32” during follow-up traveling.
  • the preceding minimum inter-vehicle distance “L3min” is the inter-vehicle distance that needs to be kept at least between the first preceding adjacent vehicle “B31” and the second preceding adjacent vehicle “B32” during follow-up traveling. For example, by setting the preceding minimum inter-vehicle time “THW3min” to 4 to 5 seconds, it is possible to set the inter-vehicle distance that does not cause a sense of incongruity in a general traffic scene. Further, the standby necessity determination unit 58 acquires a margin for adjustment “margin” set in advance. The margin for adjustment “margin” is as described above.
  • the waiting necessity determination unit 58 sets the third threshold based on the preceding minimum inter-vehicle distance “L3min”, the first threshold, the side-to-side adjacent inter-vehicle distance “L1”, and the margin for adjustment “margin”. And calculated and set by the following equation (5).
  • Third threshold L3min + first threshold ⁇ L1 + margin ... (5)
  • third threshold about 126 m”.
  • the third threshold is variable according to the distance obtained by subtracting the inter-vehicle distance “L1” from the first threshold (the difference between the first threshold and the inter-vehicle distance “L1”), so the inter-vehicle distance “L1” is The longer the threshold value is, the shorter the third threshold value is.
  • the standby necessity determination unit 58 sets the third threshold value so that the own vehicle “A1” can change the lane even if the first preceding adjacent vehicle “B31” does not yield the space.
  • the third threshold value As described above, when the positional relationship satisfies the condition of “L3> third threshold value”, the condition of “the margin distance of L3> the insufficient distance of L1” is satisfied. As shown in FIG. 9, the first preceding adjacent vehicle “B31” shifts the vehicle position forward so as to compensate for the insufficient distance of the side-to-side adjacent vehicle distance “L1” (accelerated or relatively advanced by maintaining the current state). Therefore, when the own vehicle “A1” displays the intention to change lanes, it is determined that there is a possibility that the distance between the vehicles may be increased.
  • the lane of the first preceding adjacent vehicle “B31” is used by using not only the side adjacent inter-vehicle distance “L1” but also the preceding adjacent inter-vehicle distance “L3”.
  • L1 side adjacent inter-vehicle distance
  • L3 preceding adjacent inter-vehicle distance
  • the own vehicle “A1” performs ACC traveling or platooning by the control state setting unit 51. While the host vehicle “A1” is traveling along the host vehicle lane “A”, the surrounding vehicle detection state determination unit 52 causes the adjacent vehicle “B” in the adjacent lane “B” to follow the first subsequent adjacent vehicle “B21” and the vehicle For each of the second succeeding adjacent vehicle “B22” of the follower, the first preceding adjacent vehicle “B31” in front of the own vehicle, and the second preceding adjacent vehicle “B32” of the preceding vehicle, the own vehicle “A1” The inter-vehicle distance and relative speed (or vehicle position and speed) with respect to the vehicle are acquired, and the presence or absence of each vehicle is determined.
  • the surrounding vehicle speed calculation unit 53 also determines the first subsequent adjacent vehicle “B21” based on the own vehicle speed “V1” indicating the speed of the own vehicle “A1” and the relative speed of the first subsequent adjacent vehicle “B21”.
  • the first subsequent adjacent vehicle speed “V21” indicating the speed of the vehicle is calculated.
  • the first preceding adjacent vehicle speed “V31” indicating the speed of the first preceding adjacent vehicle “B31” is calculated based on the host vehicle speed “V1” and the relative speed of the first preceding adjacent vehicle “B31”.
  • the own vehicle “A1” uses the surrounding vehicle speed calculation unit 53 to set at least one of the first subsequent adjacent vehicle speed “V21” and the first preceding adjacent vehicle speed “V31” and the own vehicle speed “V1”.
  • the own vehicle “A1” can recognize the presence of adjacent vehicles around the own vehicle “A1” in the adjacent lane “B”.
  • the own vehicle “A1” can grasp the speed of the adjacent vehicle by the surrounding vehicle speed calculation unit 53.
  • the own vehicle “A1” confirms the speed of the own vehicle “A1” and the speed of the adjacent vehicle by the surrounding vehicle speed calculation unit 53, and the own lane “A” is faster than the adjacent lane “B”. You can check whether it is a lane or a low-speed lane.
  • the first inter-vehicle distance acquisition unit 55 The side-to-side adjacent inter-vehicle distance “L1” is calculated based on the inter-vehicle distances (or vehicle positions) of the subsequent adjacent vehicle “B21” and the first preceding adjacent vehicle “B31”. In addition, when the surrounding vehicle detection state determination unit 52 has not detected the first subsequent adjacent vehicle “B21” and the first preceding adjacent vehicle “B31”, it is not necessary to calculate the side adjacent vehicle distance “L1”. It is clear that the lane can be changed.
  • the side-to-side adjacent vehicle distance “L1” may be set to an infinite or sufficiently large value.
  • the first inter-vehicle distance acquisition unit 55 calculates the side-to-side adjacent vehicle distance “L1” because the surrounding vehicle speed calculation unit 53 causes the own lane “A” to be faster than the adjacent lane “B”. Before / after confirming / confirming whether the lane is a low-speed lane. This is because the side-to-side adjacent inter-vehicle distance “L1” is calculated regardless of whether the lane is a high-speed lane or a low-speed lane.
  • the second inter-vehicle distance acquisition unit 56 calculates the subsequent inter-vehicle distance “L2”.
  • the own vehicle “A1” determines whether or not the lane change of the own vehicle “A1” can be performed by the lane change enable / disable determining unit 57 using the distance L1 between the adjacent vehicles.
  • the standby necessity determination unit 58 confirms the distance between the subsequent adjacent vehicles “L2” and the distance between the adjacent adjacent vehicles “L1” due to the change in the length of the subsequent adjacent vehicle distance “L2”. Judge whether there is a possibility of extending to a length that can change the lane.
  • the second subsequent adjacent vehicle “B22” when the second subsequent adjacent vehicle “B22” is not detected by the surrounding vehicle detection state determination unit 52, it means that the second subsequent adjacent vehicle “B22” does not exist, and the side adjacent inter-vehicle distance “L1”. Obviously, there is a possibility of extending to a lane-changeable length. In this case, for the sake of convenience, the distance between the adjacent vehicles “L2” may be set to an infinite or sufficiently large value.
  • the own vehicle “A1” automatically determines whether or not the lane change of the own vehicle “A1” is possible when the own lane “A” is a lane faster than the adjacent lane “B”. To do.
  • the inter-vehicle distance acquisition unit 56 calculates the inter-preceding inter-vehicle distance “L3” based on the inter-vehicle distances (or vehicle positions) of the first preceding adjacent vehicle “B31” and the second preceding adjacent vehicle “B32”.
  • the own vehicle “A1” determines whether or not the lane change of the own vehicle “A1” can be performed by the lane change enable / disable determining unit 57 using the distance L1 between the adjacent vehicles.
  • the waiting necessity determination unit 58 confirms the preceding adjacent vehicle distance “L3”, and the side adjacent vehicle distance “L1” is determined by the change in the length of the preceding adjacent vehicle distance “L3”. Judge whether there is a possibility of extending to a length that can change the lane.
  • the second preceding adjacent vehicle “B32” is not detected by the surrounding vehicle detection state determination unit 52, it means that the second preceding adjacent vehicle “B32” does not exist, and the side adjacent inter-vehicle distance “L1”.
  • the distance between preceding adjacent vehicles “L3” may be set to an infinite or sufficiently large value.
  • the own vehicle “A1” automatically determines whether or not the lane change of the own vehicle “A1” is possible when the own lane “A” is a lane slower than the adjacent lane “B”. To do.
  • the own vehicle “A1” is detected by the surrounding vehicle detection state determination unit 52 regardless of whether the own lane “A” is a higher speed lane or a lower speed lane than the adjacent lane “B”.
  • the second inter-vehicle distance acquisition unit 56 calculates both the subsequent adjacent vehicle distance “L2” and the preceding adjacent vehicle distance “L3”. Also good.
  • both the adjacent inter-vehicle distance “L2” and the preceding adjacent inter-vehicle distance “L3” are calculated by the second inter-vehicle distance acquisition unit 56, the own vehicle “A1” It is possible to confirm both the inter-vehicle distance “L2” and the preceding adjacent inter-vehicle distance “L3”, and the side-to-side inter-vehicle distance “L1” can be expanded to a lane-changeable length by changing the length of either inter-vehicle distance Determine the presence or absence of sex.
  • the own vehicle “A1” may have a side-to-side adjacent distance “L1” that can be extended to a lane changeable length. It is automatically judged.
  • the own vehicle “A1” is determined to be lane changeable by the lane change enable / disable determination unit 57, or the side-to-side adjacent inter-vehicle distance “L1” can be extended to a length that can be changed by the standby necessity determination unit 58.
  • a control command is output to the brake device 9 or the drive / steering device 10 via the brake controller 6 or the drive / steering controller 7, and the brake device 9 or the drive / steering device 10 is output. To change lanes.
  • the own vehicle “A1” outputs an operation command for the direction indicator or the like by the lane change permission determination unit 57 or the standby necessity determination unit 58, and automatically intends to change the lane with the direction indicator or the like. Display may be performed. Further, the own vehicle “A1” outputs a control command for performing screen display on the display or sound output from the sound output device by the lane change permission determination unit 57 or the standby necessity determination unit 58, and the screen You may be made to notify a passenger
  • the host vehicle “A1” can immediately change the lane of the host vehicle “A1” when the lane change enable / disable determining unit 57 determines that the lane can be changed.
  • the device 10 immediately changes the lane from the own lane “A” to the adjacent lane “B”, moves between the first subsequent adjacent vehicle “B21” and the first preceding adjacent vehicle “B31”, and changes the adjacent lane “B”. Run. If the own vehicle “A1” determines that the distance between adjacent side vehicles “L1” may be extended to a lane changeable length by the standby necessity determination unit 58, the current driving state is changed.
  • the lane “A” is changed to the adjacent lane “B” by the brake device 9 and the drive / steering device 10, and the first subsequent adjacent The vehicle moves between the vehicle “B21” and the first preceding adjacent vehicle “B31” and travels on the adjacent lane “B”.
  • the own vehicle “A1” counts the standby time by the standby necessity determination unit 58 and the adjacent vehicle does not yield even after a certain time (for example, 10 seconds elapses) after the standby is started. Therefore, it is determined that there is no possibility that the side-to-side adjacent vehicle distance “L1” will increase, and it is determined that standby is unnecessary. If the own vehicle “A1” determines that standby is not required by the standby necessity determination unit 58, the vehicle “A1” does not wait, and the brake device 9 and the drive / steering controller 7 via the brake controller 6 and the drive / steering controller 7 do not wait. A control command is output to the device 10.
  • a certain time for example, 10 seconds elapses
  • the vehicle “A1” It may be determined whether or not the vehicle lane can be changed with respect to the inter-vehicle distance. For example, the own vehicle “A1” determines whether or not the lane of the own vehicle can be changed by using the “neighboring inter-adjacent vehicle distance” and / or the “advance adjacent inter-vehicle distance” by the standby necessity determination unit 58.
  • the brake device 9 and the drive / steering device 10 Accelerate, decelerate, or maintain the current speed, move in the front-rear direction relative to the adjacent vehicle, and move to the side between the second vehicles as a new target for lane change.
  • the own vehicle “A1” accelerates or maintains the current speed, and the first preceding adjacent vehicle “B31” And move to the side of the inter-vehicle distance formed by the first preceding adjacent vehicle “B31” and the second preceding adjacent vehicle “B32”. A new target space for changing lanes. Then, the side-to-side adjacent vehicle distance “L1” before the movement is set to the subsequent adjacent-vehicle distance “L2” after the movement.
  • the own vehicle “A1” decelerates or maintains the current speed, and the first subsequent adjacent vehicle “B21” To the side of the inter-vehicle distance formed by the first subsequent adjacent vehicle “B21” and the second subsequent adjacent vehicle “B22”. A new target space for changing lanes. Then, the side-to-side adjacent vehicle distance “L1” before the movement is set to the preceding adjacent vehicle distance “L3” after the movement.
  • the own vehicle “A1” determines that the lane change of the own vehicle is not possible with respect to the other inter-vehicle distances by the standby necessity determination unit 58, the lane change of the own vehicle is abandoned, The standby is stopped and the vehicle continues on its own lane “A”. Further, the own vehicle “A1” outputs a control command for performing screen display on the display and sound output from the sound output device by the standby necessity determination unit 58, and provides the passenger with the screen display and sound output. Thus, it may be notified whether the lane change is possible, whether the lane change is performed (or scheduled to be performed), whether it is necessary to wait, or whether the own vehicle needs to be moved.
  • the probability that the lane can be changed is calculated step by step according to the length of the following adjacent inter-vehicle distance “L2” and the preceding adjacent inter-vehicle distance “L3”. And if it is more than a fixed probability (for example, 60%), you may make it judge that a lane change is possible. For example, when the subsequent adjacent vehicle distance “L2” and the preceding adjacent vehicle distance “L3” are smaller than the respective threshold values (second threshold value or third threshold value), the probability that the lane can be changed is calculated as “0%”.
  • the probability that the lane can be changed may be calculated step by step. Moreover, you may make it notify a passenger
  • the traveling control device 5 may be an on-vehicle device or a roadside device. Further, when a lane change simulation is performed on a computer, or when a server or the like that can communicate with the host vehicle performs the traveling control, the traveling control device 5 includes a personal computer (PC), an appliance, a workstation, a mainframe, A computer such as a supercomputer may be used. In this case, a virtual machine (VM) constructed on a physical machine may be used. In car navigation systems, mobile phones, smartphones, smart books, game consoles, head mounted displays, etc.
  • PC personal computer
  • VM virtual machine
  • the travel control device 5 is not limited to a vehicle, and may be mounted on a moving unit that moves in the same manner as the vehicle. However, actually, it is not limited to the above example.
  • the lane change permission determination unit 57 and the standby necessity determination unit 58 may be subdivided into configurations for each function.
  • the lane change permission determination unit 57 can be divided into a “first threshold value calculation unit” and a “first threshold value determination unit”.
  • the lane change possibility determination unit 57 may include a “first threshold value calculation unit” and a “first threshold value determination unit”.
  • the first threshold value calculation unit calculates a first threshold value based on the speed of the host vehicle.
  • the first threshold value determination unit determines whether or not the lane of the own vehicle can be changed based on the magnitude relationship between the first threshold value and the first inter-vehicle distance.
  • the standby necessity determination unit 58 is divided into a “second threshold calculation unit”, a “second threshold determination unit”, a “third threshold calculation unit”, and a “third threshold determination unit”. Can do. Actually, the standby necessity determination unit 58 includes a “second threshold calculation unit”, a “second threshold determination unit”, a “third threshold calculation unit”, and a “third threshold determination unit”. Also good. Here, the standby necessity determination unit 58 may include only the “second threshold value calculation unit and the second threshold value determination unit” or may include only the “third threshold value calculation unit and the third threshold value determination unit”. good. That is, the configuration of the standby necessity determination unit 58 can be arbitrarily changed according to the implementation status.
  • the second threshold value calculation unit and the second threshold value determination unit are used when the second inter-vehicle distance is the subsequent adjacent inter-vehicle distance.
  • the second threshold value calculation unit calculates the second threshold value using the difference between the first threshold value and the first inter-vehicle distance when it is determined that the lane change of the own vehicle is impossible.
  • the second threshold value determination unit determines whether or not there is a possibility that the succeeding adjacent vehicle gives up and the lane of the own vehicle can be changed based on the magnitude relationship between the second threshold value and the distance between the adjacent adjacent vehicles.
  • the third threshold value calculation unit and the third threshold value determination unit are used when the second inter-vehicle distance is the preceding adjacent inter-vehicle distance.
  • the third threshold value calculation unit calculates the third threshold value using the difference between the first threshold value and the first inter-vehicle distance when it is determined that the lane change of the host vehicle is impossible.
  • the third threshold value determination unit determines whether or not there is a possibility that the preceding adjacent vehicle gives up and the lane of the own vehicle can be changed based on the magnitude relationship between the third threshold value and the distance between the adjacent adjacent vehicles.
  • it is not limited to the above example.
  • the brake controller 6, the drive / steering controller 7, the fluid pressure circuit 8, the brake device 9, the driving / steering device 10, and the wheels 11 constitute a “target changing unit”.
  • the target changing unit waits on the side between the first vehicles, which is the space between the first preceding adjacent vehicle and the first subsequent adjacent vehicle, when the standby necessity determination unit 58 determines that the standby is required. .
  • the standby necessity determination unit 58 determines that standby is unnecessary, the vehicle moves to the side between the second vehicles adjacent to each other before and after the first vehicle.
  • the target changing unit may be a display or an audio output device.
  • the target changing unit notifies the occupant of whether or not to change lanes, whether or not to change lanes (or scheduled for execution), whether or not to wait, and whether or not to move the vehicle.
  • it is not limited to the above example.
  • the travel control apparatus includes a first preceding adjacent vehicle and a host vehicle that are in front of the host vehicle sideward and that is a target for changing the lane of the host vehicle to the side of the host vehicle in an adjacent lane adjacent to the host vehicle lane.
  • the first inter-vehicle distance which is the inter-vehicle distance between the first rear adjacent vehicle behind the side, is acquired.
  • a second inter-vehicle distance that is one inter-vehicle distance is acquired.
  • the first inter-vehicle distance it is determined whether or not the lane change from the own lane to the adjacent lane is possible.
  • the second inter-vehicle distance is used to determine whether or not there is a possibility that the first inter-vehicle distance extends to a lane changeable length. If it is determined that there is a possibility that the first inter-vehicle distance may be extended to a lane changeable length, it is determined that standby is required.
  • first inter-vehicle distance first inter-vehicle distance
  • second inter-vehicle distance the inter-vehicle distance
  • the travel control device waits on the side between the first vehicles, which is between the first preceding adjacent vehicle and the first subsequent adjacent vehicle, and does not need to wait.
  • said traveling control device determines that standby is not necessary, it uses the second inter-vehicle distance to determine whether or not the lane can be changed between the second vehicles, and the lane can be changed between the second vehicles. When it is determined, it may be moved to the side between the second vehicles. As a result, when it is determined that it is useless even if the vehicle waits on the side between the current target lanes, it is possible to determine whether or not to change lanes between the front and rear lanes between the target vehicles. Can be done in stages.
  • the inter-following adjacent vehicle distance is an inter-vehicle distance between the first subsequent adjacent vehicle in the adjacent lane and the second subsequent adjacent vehicle that is the subsequent vehicle.
  • the traveling control device 5 multiplies the speed of the first succeeding adjacent vehicle by the preset succeeding minimum inter-vehicle time to obtain the subsequent minimum between the following adjacent vehicles. Calculate the inter-vehicle distance.
  • the first succeeding adjacent vehicle determines the first inter-vehicle distance by adding the minimum following inter-vehicle distance, a value (difference) obtained by subtracting the first inter-vehicle distance from the first threshold, and a preset margin for adjustment.
  • a second threshold value indicating the inter-vehicle distance necessary for the expansion is calculated.
  • the subsequent inter-vehicle distance is larger than the second threshold, it is determined that the first inter-vehicle distance may be larger than the first threshold.
  • the distance between the following adjacent vehicles is smaller than the second threshold, it is determined that there is no possibility that the first inter-vehicle distance becomes larger than the first threshold.
  • the distance which the 1st succeeding adjacent vehicle can yield can be estimated, and it can be judged accurately whether the 1st succeeding adjacent vehicle yields. Further, even when the own lane is a higher speed lane than the adjacent lane and the first succeeding adjacent vehicle cannot be transferred, it is possible to prevent the own vehicle from falling into a standby state without being able to change the lane. (5) In (4) above, when the first preceding adjacent vehicle in the adjacent lane is overtaken, the past first inter-vehicle distance is set to the current subsequent adjacent vehicle distance.
  • the inter-vehicle distance behind the target space can be estimated.
  • the preceding adjacent inter-vehicle distance is assumed.
  • the preceding adjacent vehicle distance is an inter-vehicle distance between the first preceding adjacent vehicle in the adjacent lane and the second preceding adjacent vehicle that is the preceding vehicle.
  • the traveling control device 5 multiplies the speed of the first preceding adjacent vehicle by the preset minimum preceding inter-vehicle time to obtain the minimum preceding Calculate the inter-vehicle distance.
  • a third threshold value indicating a necessary inter-vehicle distance is calculated. If the preceding adjacent inter-vehicle distance is greater than the third threshold, it is determined that the first inter-vehicle distance may be greater than the first threshold. If the preceding adjacent inter-vehicle distance is smaller than the third threshold, it is determined that there is no possibility that the first inter-vehicle distance will be larger than the first threshold.
  • the distance that the first preceding adjacent vehicle can yield can be estimated, and it can be accurately determined whether or not the first preceding adjacent vehicle yields. Also, even when the host lane is lower than the adjacent lane and the first preceding adjacent vehicle cannot be transferred, it is possible to prevent the host vehicle from falling into a standby state without being able to change the lane. (7) In (6) above, when the vehicle is overtaken by the first subsequent adjacent vehicle, the past first inter-vehicle distance is set to the preceding adjacent vehicle distance.
  • the inter-vehicle distance ahead of the target space can be estimated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

 自車線と隣接する隣接車線において自車の車線変更の目標となる第1車間距離を用いて、自車の車線変更の可否を判断する。車線変更が不可であると判断した場合に、第1車間距離の前後の第2車間距離を用いて、第1車間距離が車線変更可能な長さにまで拡がる可能性の有無を判断する。可能性があると判断した場合には待機を要すると判断し、可能性がないと判断した場合には待機は不要と判断する。

Description

走行制御装置及び走行制御方法
 本発明は、自車の車線変更を支援する走行制御装置及び走行制御方法に関する。
 既存の技術では、自車線から隣接車線に車線変更しようとする際、自車が隣接車線の車両間の最適な位置に来るように、バネ・マス・ダンパーの各要素を用いて機構系の運動を模式化した数学モデルであるバネマスダンパーモデルに従って自車位置を制御し、その自車位置で隣接車線の車間距離が閾値以上になった場合に、車線変更していた(特許文献1参照)。
特許第4366419号公報
 しかし、自車線から隣接車線に車線変更しようとする際に、自車の車線変更の目標となる車間距離しか見ていない場合、他の車間で車線変更できる場合であっても、その車間の側方で自車が待機し続けてしまうという問題点があった。
 本発明の目的は、上記のような点に着目し、自車線から隣接車線に車線変更しようとする際に、隣接車線の状況に関わらず同じ車間の側方で自車が待機し続けてしまうことを防ぐことである。
 上記の課題を解決するために、本発明の一態様に係る走行制御装置は、自車線と隣接する隣接車線において自車の側方に自車の車線変更の目標となる自車側方前方の第1先行隣接車と自車側方後方の第1後続隣接車との間の車間距離である第1車間距離を取得する。第1後続隣接車とその後続車である第2後続隣接車との間の車間距離と、第1先行隣接車とその先行車である第2先行隣接車との間の車間距離とのうち少なくとも一方の車間距離である第2車間距離を取得する。第1車間距離を用いて、自車線から隣接車線への車線変更の可否を判断する。自車線から隣接車線への車線変更が不可であると判断した場合に、第2車間距離を用いて、第1車間距離が車線変更可能な長さにまで拡がる可能性の有無を判断する。第1車間距離が車線変更可能な長さにまで拡がる可能性があると判断した場合には待機を要すると判断する。第1車間距離が車線変更可能な長さにまで拡がる可能性がないと判断した場合には待機は不要と判断する。
 本発明の一態様によれば、同じ車間の側方で自車が待機し続けることなく、他の車間で車線変更できる場合には他の車間の側方まで移動することができるようになる。
車両の構成例を示す図である。 走行制御装置の概念図である。 車線変更環境(道路状況)について説明するための図である。 高速車線から低速車線への車線変更について説明するためのフローチャートである。 (a)後続隣接車が譲ってくれるまで待機する状況と、(b)待機せずに前方に進む状況について説明するための図である。 後続隣接車が譲ってくれた状態について説明するための図である。 低速車線から高速車線への車線変更について説明するためのフローチャートである。 (a)先行隣接車が譲ってくれるまで待機する状況と、(b)待機せずに後方に下がる状況について説明するための図である。 先行隣接車が譲ってくれた状態について説明するための図である。
 以下に、本発明の実施形態について添付図面を参照して説明する。
 (構成)
 図1に示すように、車両は、制御作動用スイッチ1と、車輪速センサ2と、外界認識装置3と、通信装置4と、走行制御装置5と、ブレーキコントローラ6と、駆動・転舵コントローラ7と、流体圧回路8と、ブレーキ装置9と、駆動・転舵装置10と、車輪11を備える。
 制御作動用スイッチ1は、隊列走行制御、ACC走行制御(先行車追従走行制御)を含む自動走行制御の作動の開始指示及び終了指示、又は走行制御の設定車速の変更指示を行うための操作子である。この制御作動用スイッチの状態は、走行制御装置5に出力される。制御作動用スイッチ1は、例えばステアリングホイールに設けられている。
 ここで、隊列走行は、複数の車両と隊列の群を形成して走行する。自車が所属する隊列内において自車が先頭車でない場合には、先行車に対し目標車間時間となるように走行制御が実行される。ACC走行制御でも、先行車に対し目標車間時間となるように走行制御が行われるが、隊列走行制御では、交通効率を考慮して、ACC走行制御よりも短い車間時間となるように制御が行われる。追従制御という点だけに限定すれば、目標車間時間となるように走行制御する点では、隊列走行制御もACC走行制御も同様である。
 車輪速センサ2は、車輪速を検出し、検出した車輪速情報を走行制御装置5に出力する。車輪速センサ2は、例えば車輪速パルスを計測するロータリエンコーダ等のパルス発生器で構成する。
 外界認識装置3は、自車前方に存在する先行車を認識し、その認識した先行車の状態として、当該先行車の有無及び走行状態を検出する。検出した先行車の状態に関する情報は、走行制御装置5に出力される。外界認識装置3は、例えばレーザ距離計、レーザースキャナ、又はカメラにより構成する。
 通信装置4は、自車の周囲の他車と車車間通信を行う。なお、通信装置4は、路側機と路車間通信を行うようにしても良い。例えば、通信装置4は、車車間通信を行う通信装置と路車間通信を行う通信装置を併用しても良い。通信装置4は、予め設定した範囲に存在する先行車や後続車と車車間通信を行い、隊列走行を行うための識別情報の授受を行い、先行車や後続車から取得した識別情報を走行制御装置5に出力する。通信装置4を介して先行車や後続車の走行情報を取得しても良い。
 走行制御装置5は、制御作動用スイッチ1がON(制御作動要求)であると判定した場合には、制御作動用スイッチ1の作動状態と、車輪速センサ2からの信号に基づく自車速と、外界認識装置3が検出した先行車の走行状態に関する情報と、通信装置4が取得した識別情報とに基づき、先行車に対する追従走行や隊列走行のための走行制御を行う。
 走行制御装置5は、制御作動用スイッチ1のうち隊列走行作動要求がON(制御作動要求)であると判定すると、予め設定した範囲に存在する先行車及び後続車と車車間通信をして隊列走行状態へ移行するか判定する。走行制御装置5は、隊列走行状態へ移行と判定すると、隊列走行制御の処理を実行する。すなわち、走行制御装置5は、自車の走行状態の情報、外界認識装置3による先行車の検出情報、通信装置4から得られる自車の周囲の他車の情報に基づき隊列走行制御を行う。なお、制御作動用スイッチ1のうちACC走行作動要求がON(制御作動要求)であると判定すると、自車の走行状態の情報、外界認識装置3による先行車の検出情報に基づきACC走行制御を行う。ACC走行制御においても、車車間通信により先行車の走行情報を取得して使用しても良い。
 走行制御装置5は、ACC走行制御を行う場合、乗員が設定した車間距離に基づく車間時間や予め設定されているACC走行用の車間時間を目標車間時間として追従走行制御を実行する。また、走行制御装置5は、隊列走行制御の処理を実行する場合、自車が先頭車でない場合には、先行車に対し、隊列走行用の目標車間時間となるように追従走行制御を実行する。隊列走行用の目標車間時間は、例えばACC制御時の目標車間時間よりも小さく設定されている。走行制御装置5は、上記追従走行制御のために算出した制動指令又は駆動指令の各指令値(制駆動力制御量)を、ブレーキコントローラ6及び駆動・転舵コントローラ7に出力する。また、走行制御装置5は、自車の転舵が必要な場合、転舵指令を駆動・転舵コントローラ7に出力する。
 ブレーキコントローラ6及び駆動・転舵コントローラ7は、それぞれ上位コントローラである走行制御装置5からの制動指令又は駆動指令の各指令値(制駆動力制御量)を受信し、受信した各指令値(制駆動力制御量)となるように車両の加減速を制御する。ブレーキコントローラ6と駆動・転舵コントローラ7は、加減速制御装置を構成する。
 ブレーキコントローラ6は、流体圧回路8を介して、ブレーキ装置9で発生する制動力を、走行制御装置5からの各指令値(制駆動力制御量)に応じた値に制御する。流体圧回路8は、ブレーキコントローラ6からの制御指令に応じて、ブレーキ装置9に流入する流体の圧力を調整する。流体圧回路8は、ブレーキシリンダに限らず、ブレーキ装置9に接続される配管や調整弁を含む。ブレーキ装置9は、車輪11に設けられ、一般的に摩擦力を利用して車輪11を制動する。ブレーキ装置9は、一般的に油圧式ディスクブレーキが主流であるが、他にもドラムブレーキやパーキング(サイド)ブレーキ、エア式ブレーキ、エキゾーストブレーキ等が知られている。すなわち、流体として、一般的にブレーキフルード(オイル)又は圧縮空気等が使用されている。また、ブレーキ装置9は、流体圧で制動力を付与する装置に限定されるものではなく、電動ブレーキ装置等であっても良い。ブレーキコントローラ6と流体圧回路8とブレーキ装置9は、制動力を発生する制動装置を構成する。
 駆動・転舵コントローラ7は、走行制御装置5からの各指令値(制駆動力制御量)に応じて、駆動・転舵装置10の駆動源で発生するトルク(駆動力)を制御する。駆動・転舵装置10の駆動源は、駆動力(駆動トルク)を発生し、車輪11を回転させる。なお、駆動・転舵装置10の駆動源は、一般的なエンジンに限らず、電動モータでも良いし、エンジンとモータを組み合わせたハイブリッド構成でも良い。また、駆動・転舵コントローラ7は、走行制御装置5からの転舵指令に応じて、駆動・転舵装置10の転舵機構を制御し、車輪11の向きを変える。一般的には駆動・転舵装置10の駆動源と転舵機構はそれぞれ独立している。本実施形態では、説明の簡略化のため駆動源と転舵機構を一括して説明する。ここでは、車両として、FF車(エンジン前輪駆動車)を想定しているが、実際には、FR車(前エンジン後輪駆動車)や4WD(4輪駆動車)等でも良い。無論、ミッドシップでも構わない。また、e4WD(登録商標)のように、前後輪のうち一方の車輪をエンジンからの動力により駆動し、他方の車輪を電動モータからの動力によりクラッチを介して適宜駆動するモータアシスト方式の車両でも良い。
 (走行制御装置の詳細)
 図2に示すように、本実施形態に係る走行制御装置5は、制御状態設定部51と、周囲車検出状態判定部52と、周囲車速度算出部53と、車線変更要否判定部54と、第1車間距離取得部55と、第2車間距離取得部56と、車線変更可否判定部57と、待機要否判定部58とを備える。走行制御装置5の例として、車両に搭載される電子制御装置(ECU)を想定している。なお、電子制御装置(ECU)は一般的に車両と一体不可分であるため、走行制御装置5は車両と読み替えても良い。
 制御状態設定部51は、乗員による制御作動用スイッチ1の操作状態を検出し、制御作動用スイッチ1の作動状態に基づき、制御を作動させるための各種スイッチ操作の有無判断を行う。ここで、制御状態設定部51は、隊列走行を行うと判定した場合には、追従走行時の隊列走行用の目標車間時間に応じて自車の車速を設定する。このとき、周囲車検出状態判定部52に作動指令を出力しても良い。なお、ACC走行時に先行車の存在を検出しない場合には、設定車速を車速指令値とする。隊列走行時に自車が先頭車となった場合には、隊列走行用の設定車速を車速指令値とする。すなわち、ACC走行制御時と隊列走行制御時では、上記設定車速は必ずしも一致しない。
 周囲車検出状態判定部52は、随時、又は制御状態設定部51からの作動指令を受信した場合、自車に搭載された車両検出装置から得られる自車の周囲の他車と自車との間の車間相対値に基づき、自車の周囲の他車の有無を判断する。ここで、本実施形態における車間相対値は、自車との車間距離及び相対速度である。例えば、外界認識装置3(カメラ、レーザ、レーダ等)又は通信装置4(車車間通信、路車間通信等)を用いて車間相対値(自車との車間距離及び相対速度)を取得し、隣接車線において自車側方前方の先行隣接車及び自車側方後方の後続隣接車の有無を判断する。無論、自車線において自車前方の先行車及び自車後方の後続車の有無も判断可能であるが、ここでは説明を省略する。なお、周囲車検出状態判定部52は、GPSや、デジタル地図データベースとカメラ又はレーザを用いたマップマッチング、軌道に設置された磁気マーカ等を用いた車両位置計測により、自車の周囲の他車の車両位置(位置情報)を検出するようにしても良い。また、周囲車検出状態判定部52は、通信装置4(車車間通信、路車間通信等)を介して、自車の周囲の他車の車両位置を直に取得しても良い。ここで、自車線は、自車が現在走行している車線(走行路)である。また、隣接車線は、自車線に隣接する車線であって、自車の移動先となる車線である。また、周囲車検出状態判定部52は、後述する車線変更要否判定部54からの作動指令を受信した時にのみ動作するようにしても良い。
 周囲車速度算出部53は、周囲車検出状態判定部52により自車の周囲の他車が検出された場合、検出された車両毎に、自車の速度と各車との相対速度に基づいて、各車の速度を算出する。すなわち、各車の速度は推定値である。周囲車速度算出部53は、必要であれば、車輪速センサ2を用いて自車の速度を算出するようにしても良い。なお、周囲車速度算出部53は、通信装置4(車車間通信、路車間通信等)を介して、各車の速度を取得しても良い。また、周囲車速度算出部53は、自車の速度と、隣接車線における隣接車の速度とを確認し、自車線が隣接車線よりも高速の車線か低速の車線かを確認することができる。
 車線変更要否判定部54は、自車線から隣接車線への車線変更を行うか否かを判断する。例えば、車線変更要否判定部54は、乗員による制御作動用スイッチ1や方向指示器、ステアリングホイール等の操作により車線変更の意思(意図)を検出した場合に、自車の車線変更を行うと判断する。また、外界認識装置3(カメラ、レーザ、レーダ等)又は通信装置4(車車間通信、路車間通信等)等により「自車の周囲の他車」への接近を検出した場合に、自車の車線変更を行うと判断しても良い。自車の周囲の他車へ接近する事例については、自車線の先行車の減速(先行車への接近)、自車線の後続車の加速(後続車への接近)、自車の横方向への移動(隣接車線の先行隣接車や後続隣接車への接近)等が考えられる。また、自車の速度と自車の周囲の他車の速度とを確認し、自車線よりも隣接車線を走行するほうが好ましいと判断した場合に、自車の車線変更を行うと判断しても良い。また、カメラ等により「自車線と隣接車線との境界にある白線」への接近を検出した場合に、自車の車線変更を行うと判断しても良い。車線変更要否判定部54は、自車の車線変更を行うと判断した場合、周囲車検出状態判定部52、第1車間距離取得部55(及び第2車間距離取得部56)、車線変更可否判定部57のうち少なくとも1つに作動指令を出力する。なお、車線変更の意思(意図)や必要性に関わらず、自車の走行中、常に(無条件に)自車の車線変更の可否を判断し続ける場合には、車線変更要否判定部54は動作しなくても良い。この場合、車線変更要否判定部54は不要となる。
 第1車間距離取得部55は、周囲車検出状態判定部52により得られた車間距離(又は車両位置)に基づいて、自車の車線変更の目標となる車間距離(目標スペースの幅)を示す「第1車間距離」を取得する。例えば、第1車間距離は、隣接車線において自車の側方前方と側方後方とに位置する2台の隣接車の間の車間距離である。ここでは、第1車間距離取得部55は、第1車間距離として、「側方隣接車間距離」を取得する。側方隣接車間距離は、隣接車線において自車側方前方の第1先行隣接車と自車側方後方の第1後続隣接車との間の車間距離である。但し、実際には、第1車間距離は、側方隣接車間距離に限定されない。例えば、第1車間距離取得部55は、隣接車線において、近い将来に「側方車間距離」となる可能性がある車間距離を、予め(事前に)第1車間距離として取得するようにしても良い。第1車間距離取得部55は、周囲車検出状態判定部52により車間距離(又は車両位置)が取得された時に動作を開始する。若しくは、車線変更要否判定部54からの作動指令を受信した時に動作を開始するようにしても良い。
 第2車間距離取得部56は、周囲車検出状態判定部52により得られた車間距離(又は車両位置)に基づいて、自車の車線変更の目標となる車間距離の前後の他の車間距離を示す「第2車間距離」を取得する。例えば、第2車間距離は、隣接車線において自車の側方後方に位置する隣接車とその更に後方に位置する隣接車との間の車間距離、若しくは、隣接車線において自車の側方前方に位置する隣接車とその更に前方に位置する隣接車との間の車間距離である。ここでは、第2車間距離取得部56は、第2車間距離として、「後続隣接車間距離」若しくは「先行隣接車間距離」又はその両方を取得する。後続隣接車間距離は、隣接車線における第1後続隣接車とその後続車である第2後続隣接車との間の車間距離である。先行隣接車間距離は、隣接車線における第1先行隣接車とその先行車である第2先行隣接車との間の車間距離である。但し、実際には、第2車間距離取得部56は、更に、第2後続隣接車とその後続車との間の車間距離や、第2先行隣接車とその先行車との間の車間距離を取得しても良い。すなわち、第2車間距離取得部56は、第2車間距離として、自車の車線変更の目標となる車間距離を基準として前後方向に連続する複数の車間距離を取得しても良い。第2車間距離取得部56は、第1車間距離取得部55により第1車間距離が取得された時に動作を開始する。若しくは、車線変更要否判定部54からの作動指令を受信した時に動作を開始するようにしても良い。なお、実際には、第1車間距離取得部55と第2車間距離取得部56は、一体化していても良い。
 車線変更可否判定部57は、第1車間距離取得部55により取得された第1車間距離を用いて、自車の車線変更の可否を判断する。ここでは、車線変更可否判定部57は、「側方隣接車間距離」を用いて、自車の車線変更の可否を判断する。車線変更可否判定部57は、自車の車線変更が可能であると判断した場合には、ブレーキコントローラ6や駆動・転舵コントローラ7を介してブレーキ装置9や駆動・転舵装置10に制御指令を出力する。ブレーキ装置9や駆動・転舵装置10は、制御指令に応じて、自車の速度を調節し、転舵して、自車の車線変更を実施する。更に、車線変更可否判定部57は、方向指示器等の操作指令を出力して、自動的に方向指示器等での車線変更の意思表示を行うようにしても良い。また、車線変更可否判定部57は、ディスプレイ上への画面表示や音声出力装置からの音声出力を行うための制御指令を出力して、画面表示や音声出力により乗員に対して車線変更の可否や車線変更の実施(又は実施予定)を通知するようにしても良い。車線変更可否判定部57は、第1車間距離取得部55により第1車間距離が取得された時に動作を開始する。若しくは、車線変更要否判定部54からの作動指令を受信した時に動作を開始するようにしても良い。なお、実際には、車線変更要否判定部54と車線変更可否判定部57は、一体化していても良い。
 待機要否判定部58は、車線変更可否判定部57により自車の車線変更が不可であると判断された場合、第2車間距離取得部56により取得された第2車間距離を用いて、第1車間距離が車線変更可能な長さにまで拡がる可能性の有無を判断し、第1車間距離が車線変更可能な長さにまで拡がる可能性の有無により、待機するか否かを判断する。例えば、第1車間距離と第2車間距離との境界となる隣接車が前後に移動して、第2車間距離が短くなった場合は第1車間距離が長くなり、第2車間距離が長くなった場合は第1車間距離が短くなる。ここでは、待機要否判定部58は、「後続隣接車間距離」若しくは「先行隣接車間距離」又はその両方を用いて、その長さの変化により第1車間距離が車線変更可能な長さにまで拡がる可能性の有無を判断する。
 待機要否判定部58は、第1車間距離が車線変更可能な長さにまで拡がる可能性があると判断した場合には、待機を要すると判断し、ブレーキコントローラ6や駆動・転舵コントローラ7を介してブレーキ装置9や駆動・転舵装置10に制御指令を出力する。ブレーキ装置9や駆動・転舵装置10は、自車の現在の走行状態を維持して、第1先行隣接車と第1後続隣接車との間の車間である第1車間の側方で待機する。待機中は、車線変更可否判定部57が定期的に第1車間距離を用いて、自車の車線変更の可否を判断する。ここで、待機要否判定部58は、待機時間をカウントし、自車が待機を開始してから一定時間経過(例えば10秒経過)しても自車の車線変更が可能であると判断されない場合には、第1車間距離が車線変更可能な長さにまで拡がる可能性がないと判断する。
 待機要否判定部58は、第1車間距離が車線変更可能な長さにまで拡がる可能性がないと判断した場合には、待機は不要と判断し、ブレーキコントローラ6や駆動・転舵コントローラ7を介してブレーキ装置9や駆動・転舵装置10に制御指令を出力する。ブレーキ装置9や駆動・転舵装置10は、制御指令に応じて、自車の速度を調節して、上記の第1車間の前後に隣接する第2車間の側方に移動する。
 このとき、待機要否判定部58は、待機は不要と判断した場合には、第2車間距離を用いて、上記の第2車間に対する自車の車線変更の可否を判断するようにしても良い。例えば、待機要否判定部58は、「後続隣接車間距離」若しくは「先行隣接車間距離」又はその両方を用いて、自車の車線変更の可否を判断する。
 待機要否判定部58は、上記の第2車間に対して自車の車線変更が可能であると判断した場合には、ブレーキコントローラ6や駆動・転舵コントローラ7を介してブレーキ装置9や駆動・転舵装置10に制御指令を出力する。ブレーキ装置9や駆動・転舵装置10は、制御指令に応じて、自車の速度を調節し、上記の第2車間の側方に移動する。
 また、待機要否判定部58は、上記の第2車間に対して自車の車線変更が不可であると判断した場合には、自車の車線変更を断念し、ブレーキコントローラ6や駆動・転舵コントローラ7を介してブレーキ装置9や駆動・転舵装置10に制御指令を出力する。ブレーキ装置9や駆動・転舵装置10は、制御指令に応じて、待機を中止して自車線の走行を継続する。すなわち、待機ではなく、通常通りに自車線を走行する。
 更に、待機要否判定部58は、ディスプレイ上への画面表示や音声出力装置からの音声出力を行うための制御指令を出力して、画面表示や音声出力により乗員に対して待機の要否、若しくは自車の移動の要否を通知するようにしても良い。なお、実際には、車線変更可否判定部57と待機要否判定部58は、一体化していても良い。
 図示しないが、上記の走行制御装置5は、プログラムに基づいて駆動し所定の処理を実行するプロセッサと、当該プログラムや各種データを記憶するメモリにより実現される。
 上記のプロセッサは、CPU、マイクロプロセッサ、マイクロコントローラ、又は専用の機能を有する半導体集積回路(LSI)等である。上記のメモリは、RAM、ROM、EEPROM、又はフラッシュメモリ等である。また、上記のメモリと共に、若しくは上記のメモリの代わりとして、HDDやSSD等のストレージ、DVD等のリムーバブルディスク、若しくはSDメモリカード等の記憶媒体(メディア)等を使用しても良い。また、バッファやレジスタ等を使用しても良い。
 なお、上記のプロセッサ及び上記のメモリは、一体化していても良い。例えば、近年では、マイコン等の1チップ化が進んでいる。したがって、走行制御装置5に相当する電子機器等に搭載される1チップマイコンが、上記のプロセッサ及び上記のメモリを備えている事例も考えられる。但し、実際には、上記の例に限定されない。
 (車線変更環境)
 図3に示すような車線変更環境(道路状況)を例として、車線変更の可否を判断する場合について説明する。
 図3には、自車線「A」、隣接車線「B」、自車「A1」、第1後続隣接車「B21」、第2後続隣接車「B22」、第1先行隣接車「B31」、第2先行隣接車「B32」、側方隣接車間距離「L1」、先行隣接車間距離「L2」、後続隣接車間距離「L3」が図示されている。なお、第1後続隣接車「B21」、第2後続隣接車「B22」、第1先行隣接車「B31」、及び第2先行隣接車「B32」は、隣接車線「B」の車両である。第1後続隣接車「B21」、第2後続隣接車「B22」は、前後方向において、自車「A1」の後方の車両である。第2後続隣接車「B22」は、第1後続隣接車「B21」の後続車である。第1先行隣接車「B31」及び第2先行隣接車「B32」は、前後方向において、自車「A1」の前方の車両である。第2先行隣接車「B32」は、第1先行隣接車「B31」の先行車である。側方隣接車間距離「L1」は、第1先行隣接車「B31」と第1後続隣接車「B21」との間の車間距離である。側方隣接車間距離「L2」は、第1後続隣接車「B21」と第2後続隣接車「B22」との間の車間距離である。側方隣接車間距離「L3」は、第1先行隣接車「B31」と第2先行隣接車「B32」との間の車間距離である。
 図3に示すような車線変更環境において、周囲車検出状態判定部52は、第1後続隣接車「B21」と、第2後続隣接車「B22」と、第1先行隣接車「B31」と、第2先行隣接車「B32」の各々について、自車「A1」に対する車間距離及び相対速度を取得し、各車の有無を確認する。また、周囲車速度算出部53は、自車「A1」の速度を示す自車速度「V1」と、第1後続隣接車「B21」の相対速度に基づいて、第1後続隣接車「B21」の速度を示す第1後続隣接車速度「V21」を算出する。同様に、自車速度「V1」と、第1先行隣接車「B31」の相対速度に基づいて、第1先行隣接車「B31」の速度を示す第1先行隣接車速度「V31」を算出する。なお、第2後続隣接車「B22」と第2先行隣接車「B32」については、いずれか一方でも良い。周囲車速度算出部53は、必要であれば、車輪速センサ2を用いて自車速度「V1」を算出する。なお、実際には、周囲車速度算出部53は、通信装置4(車車間通信、路車間通信等)を介して、第1後続隣接車速度「V21」及び第1先行隣接車速度「V31」を取得しても良い。次に、第1車間距離取得部55は、自車側方の側方隣接車間距離「L1」を取得する。第2車間距離取得部56は、自車側方後方の後続隣接車間距離「L2」と、自車側方前方の先行隣接車間距離「L3」を算出する。なお、後続隣接車間距離「L2」と先行隣接車間距離「L3」については、いずれか一方でも良い。
 また、図3に示すような車線変更環境において、周囲車速度算出部53は、自車線が隣接車線よりも高速の車線か低速の車線かを確認する。自車線が隣接車線よりも高速の車線か低速の車線かについては、自車速度「V1」と、第1後続隣接車速度「V21」及び第1先行隣接車速度「V31」を比較することで確認することができる。例えば、自車速度「V1」が第1後続隣接車速度「V21」や第1先行隣接車速度「V31」よりも速ければ、自車線が隣接車線よりも高速の車線であると判断できる。また、自車速度「V1」が第1後続隣接車速度「V21」や第1先行隣接車速度「V31」よりも遅ければ、自車線が隣接車線よりも低速の車線であると判断できる。待機要否判定部58は、自車線が隣接車線よりも高速の車線である場合、後続隣接車間距離「L2」の情報を用いて、後続隣接車間距離「L2」の長さの変化により側方隣接車間距離「L1」が車線変更可能な長さにまで拡がる可能性の有無を判断する。また、待機要否判定部58は、自車線が隣接車線よりも低速の車線である場合、先行隣接車間距離「L3」の情報を用いて、先行隣接車間距離「L3」の長さの変化により側方隣接車間距離「L1」が車線変更可能な長さにまで拡がる可能性の有無を判断する。詳細については、以下に説明する。
 まず、図4を参照して、自車線が隣接車線よりも高速の車線である場合について説明する。ここでは、後続隣接車間距離「L2」に注目して、側方隣接車間距離「L1」が車線変更可能な長さにまで拡がる可能性の有無の判断を行う。
 ステップS101では、車線変更可否判定部57は、側方隣接車間距離「L1」が第1の閾値よりも大きいか否か確認する。このとき、側方隣接車間距離「L1」に対する判定だけではなく、自車「A1」と第1後続隣接車「B21」との相対速度に対する判定や、自車位置と車線変更終点までの距離に対する判定を組み合わせても良い。第1の閾値は、自車「A1」が車線変更するために必要な車間距離を示す。第1の閾値の詳細については後述する。側方隣接車間距離「L1」が第1の閾値よりも小さい場合(ステップS101でNo)、側方隣接車間距離「L1」が不足しているため車線変更不可と判断し、ステップS102に移行する。また、側方隣接車間距離「L1」が第1の閾値よりも大きい場合、側方隣接車間距離「L1」が充足しているため車線変更可能と判断し、(ステップS101でYes)、ステップS104に移行する。
 ステップS102では、待機要否判定部58は、後続隣接車間距離「L2」が第2の閾値よりも大きいか否か確認する。第2の閾値は、第1後続隣接車「B21」が側方隣接車間距離「L1」を拡げるため(相対的に後退するため)に必要な車間距離を示す。第2の閾値の詳細については後述する。後続隣接車間距離「L2」が第2の閾値よりも大きい場合(ステップS102でYes)、ステップS103に移行する。また、後続隣接車間距離「L2」が第2の閾値よりも小さい場合(ステップS102でNo)、ステップS105に移行する。
 ステップS103では、待機要否判定部58は、第1後続隣接車「B21」が自車「A1」に対して減速して側方隣接車間距離「L1」を拡げる可能性があると判断する。例えば、図5(a)に示すように、側方隣接車間距離「L1」が第1の閾値よりも小さく、後続隣接車間距離「L2」が第2の閾値よりも大きい状況(L1<第1の閾値、L2>第2の閾値)の場合、側方隣接車間距離「L1」が車線変更可能な距離まで広がる可能性がある(蓋然性が高い)と判断する。このとき、自車「A1」の乗員は、方向指示器等で車線変更の意思表示を行い、側方隣接車間距離「L1」が第1の閾値を超えるまで、側方隣接車間距離「L1」で示される第1車間の側方で待機する(S101に移行)。このときの待機時間に上限を設定しても良いし、乗員の操作により待機をキャンセルしても良い。なお、乗員を、車線変更可否判定部57又は待機要否判定部58と読み替えても良い。例えば、乗員ではなく、車線変更可否判定部57又は待機要否判定部58が、自動的に、方向指示器等での車線変更の意思表示を行うようにしても良い。待機中に、第1後続隣接車「B21」が自車「A1」に対して減速して側方隣接車間距離「L1」を拡げることで、側方隣接車間距離「L1」が第1の閾値よりも大きくなった場合(移行後のステップS101でYes)、車線変更可否判定部57は、側方隣接車間距離「L1」が充足しているため車線変更可能と判断し、ステップS104に移行する。
 ステップS104では、車線変更可否判定部57は、ブレーキコントローラ6や駆動・転舵コントローラ7を介してブレーキ装置9や駆動・転舵装置10に制御指令を出力する。ブレーキ装置9や駆動・転舵装置10は、制御指令に応じて、自車「A1」の速度を調節し、転舵して、自車「A1」の車線変更を実施する。例えば、現時点で側方隣接車間距離「L1」が第1の閾値よりも大きい場合、若しくは、側方隣接車間距離「L1」で示される第1車間の側方で待機中に、自車「A1」の乗員の意思表示に応じて第1後続隣接車「B21」が減速し、側方隣接車間距離「L1」が第1の閾値よりも大きくなった場合に、側方隣接車間距離「L1」に対して、車線変更を行う。
 ステップS105では、待機要否判定部58は、第1後続隣接車「B21」が減速して側方隣接車間距離「L1」を拡げる可能性がないため、待機は不要と判断して、側方隣接車間距離「L1」の前後の他の車間距離で示される第2車間の側方に移動する。実際には、待機要否判定部58は、待機は不要と判断した場合には、上記の他の車間距離に対する自車の車線変更の可否を判断し、上記の他の車間距離に対して自車の車線変更が可能であると判断した場合に、上記の第2車間の側方に移動するようにしても良い。すなわち、待機は不要と判断した場合には、現在の自車「A1」の側方の車間での車線変更を断念して、他の車間での車線変更を試みる。例えば、図5(b)に示すように、側方隣接車間距離「L1」が第1の閾値よりも小さく、後続隣接車間距離「L2」も第2の閾値よりも小さい状況(L1<第1の閾値、L2<第2の閾値)の場合、側方隣接車間距離「L1」が車線変更可能な距離まで広がる可能性がない(蓋然性が低い)と判断し、待機は不要と判断し、ブレーキコントローラ6や駆動・転舵コントローラ7を介してブレーキ装置9や駆動・転舵装置10に制御指令を出力する。ブレーキ装置9や駆動・転舵装置10は、制御指令に応じて、自車「A1」の速度を調節し、自車位置を変更することで、上記の第2車間の側方に移動する。例えば、第1先行隣接車「B31」よりも前方になるように、自車「A1」を加速する。自車「A1」は、隣接車線「B」よりも高速車線を走行しているため、追従走行時や車線変更時に上記の第2車間の側方に移動する場合には、第1先行隣接車「B31」を追い抜くことができる。第1先行隣接車「B31」を追い抜いた時点で、ステップS106に移行する。
 ステップS106では、待機要否判定部58は、第1先行隣接車「B31」を追い抜く前(過去)の側方隣接車間距離「L1」を、追い抜いた後(現在)の後続隣接車間距離「L2」にする(L2=L1)。例えば、第1先行隣接車「B31」を追い抜いた時点(第1先行隣接車「B31」が第1後続隣接車「B21」になった時点)で、後続隣接車間距離「L2」に、追い抜く前の側方隣接車間距離「L1」を設定する。側方隣接車間距離「L1」を後続隣接車間距離「L2」にする際、過去の側方隣接車間距離「L1」をそのまま置き換えても良いし、隣接車の車速や経過時間に応じて補正しても良い。但し、実際には、第1先行隣接車「B31」を追い抜いた後、第2車間距離取得部56から後続隣接車間距離「L2」を新たに取得しても良い。
 なお、上記の説明において、側方隣接車間距離「L1」が第1の閾値とほぼ等しい(L1≒第1の閾値)場合も、側方隣接車間距離「L1」が第1の閾値よりも大きいと判断しても良い。同様に、後続隣接車間距離「L2」が第2の閾値とほぼ等しい(L2≒第2の閾値)場合も、後続隣接車間距離「L2」が第2の閾値よりも大きいと判断しても良い。ここで、ほぼ等しい「≒」という表現を用いているのは、多少の誤差であれば許容するためである。無論、等しい「=」と読み替えることもできる。但し、実際には、上記の例に限定されない。
 以下に、第1の閾値について説明する。
 車線変更可否判定部57は、予め(事前に)設定可能な車間時間「THW1」を取得する。車間時間「THW1」は、自車「A1」が車線変更した場合に必要な隣接車線「B」の車両との車間時間を示す。待機要否判定部58は、自車速度「V1」と車間時間「THW1」に基づいて、第1の閾値を、次式(1)により算出し、設定する。
   第1の閾値=V1×THW1            ・・・(1)
 例えば、「V1=100km/h」、「THW1=3秒」のとき、「第1の閾値=約83m」となる。第1の閾値は、自車速度「V1」に応じて可変であるため、自車速度「V1」が速いほど、第1の閾値は長くなる。なお、実際には、自車速度「V1」の代わりに、自車「A1」と隣接車線「B」の車両との相対速度を用いることも考えられる。このように、車線変更可否判定部57は、自車「A1」が車線変更するために必要な車間距離として、第1の閾値を設定する。
 以下に、第2の閾値について説明する。
 待機要否判定部58は、予め設定した後続最低車間時間「THW2min」を取得する。後続最低車間時間「THW2min」は、追従走行時において、第1後続隣接車「B21」と第2後続隣接車「B22」との間で最低限空けておく必要がある車間時間である。待機要否判定部58は、第1後続隣接車速度「V21」と後続最低車間時間「THW2min」に基づいて、後続隣接車間の後続最低車間距離「L2min」を、次式(2)により算出する。
   L2min=THW2min×V21        ・・・(2)
 後続最低車間距離「L2min」は、追従走行時において、第1後続隣接車「B21」と第2後続隣接車「B22」との間で最低限空けておく必要がある車間距離である。例えば、後続最低車間時間「THW2min」を4~5秒に設定することで、一般的な交通シーンで違和感のない車間距離に設定できる。また、待機要否判定部58は、予め設定した調整用の余裕代「margin」を取得する。調整用の余裕代「margin」は、自車の周囲の他車及び自車の走行状況やその他の条件に応じて変更可能(可変)な距離である。待機要否判定部58は、後続最低車間距離「L2min」と、第1の閾値と、側方隣接車間距離「L1」と、調整用の余裕代「margin」に基づいて、第2の閾値を、次式(3)により算出し、設定する。
   第2の閾値=L2min+第1の閾値-L1+margin
                            ・・・(3)
 例えば、「L2min=約83m」、「第1の閾値=約83m」、「L1=50m」、「margin=10m」のとき、「第2の閾値=約126m」となる。第2の閾値は、第1の閾値から車間距離「L1」を減じた距離(第1の閾値と車間距離「L1」との差)に応じて可変であるため、車間距離「L1」が第1の閾値に対して長いほど、第2の閾値は短くなる。車間距離「L1」が十分長い場合、仮に第1後続隣接車「B21」がスペースを譲ってくれなくても、自車「A1」の車線変更に必要な車間距離が確保されるためである。このように、待機要否判定部58は、第1後続隣接車「B21」がスペースを譲ってくれなくても、自車「A1」が車線変更できるように第2の閾値を設定する。
 上記のように第2の閾値を設定することで、「L2>第2の閾値」の条件を満たす位置関係のときは、「L2の余裕距離>L1の不足距離」の条件を満たす。この条件を満たしていれば、図6に示すように、第1後続隣接車「B21」は、側方隣接車間距離「L1」の不足距離を補うように車両位置を後方にずらす(減速又は現状維持により相対的に後退する)ことができるため、自車「A1」が車線変更の意思表示を行った時に、車間を拡げる可能性があると判断する。
 このように、自車「A1」が車線変更を行う際に、側方隣接車間距離「L1」のみならず、後続隣接車間距離「L2」を用いて、第1後続隣接車「B21」の車線変更による影響を予測することで、従来と比べて精度の高い車線変更の可否の判断を行うことができるようになる。これにより、車線変更する時に、隣接車3台の位置関係を用いて、最も譲ってくれそうな所を探して、車線変更することができるようになる。
 次に、図7を参照して、自車線が隣接車線よりも低速の車線である場合について説明する。ここでは、先行隣接車間距離「L3」に注目して、側方隣接車間距離「L1」が車線変更可能な長さにまで拡がる可能性の有無の判断を行う。
 ステップS201では、車線変更可否判定部57は、側方隣接車間距離「L1」が第1の閾値よりも大きいか否か確認する。このとき、側方隣接車間距離「L1」に対する判定だけではなく、自車「A1」と第1先行隣接車「B31」との相対速度に対する判定や、自車位置と車線変更終点までの距離に対する判定を組み合わせても良い。第1の閾値の詳細については前述の通りである。側方隣接車間距離「L1」が第1の閾値よりも小さい場合(ステップS201でNo)、側方隣接車間距離「L1」が不足しているため車線変更不可と判断し、ステップS202に移行する。また、側方隣接車間距離「L1」が第1の閾値よりも大きい場合(ステップS201でYes)、側方隣接車間距離「L1」が充足しているため車線変更可能と判断し、ステップS204に移行する。
 ステップS202では、待機要否判定部58は、先行隣接車間距離「L3」が第3の閾値よりも大きいか否か確認する。第3の閾値は、第1先行隣接車「B31」が側方隣接車間距離「L1」を拡げるため(相対的に前進するため)に必要な車間距離を示す。第3の閾値の詳細については後述する。先行隣接車間距離「L3」が第3の閾値よりも大きい場合(ステップS202でYes)、ステップS203に移行する。また、先行隣接車間距離「L3」が第3の閾値よりも小さい場合(ステップS202でNo)、ステップS205に移行する。
 ステップS203では、待機要否判定部58は、第1先行隣接車「B31」が自車「A1」に対して加速して側方隣接車間距離「L1」を拡げる可能性があると判断する。例えば、図8(a)に示すように、側方隣接車間距離「L1」が第1の閾値よりも小さく、先行隣接車間距離「L3」が第3の閾値よりも大きい状況(L1<第1の閾値、L3>第3の閾値)の場合は、側方隣接車間距離「L1」が車線変更可能な距離まで広がる可能性があると判断する。このとき、自車「A1」の乗員は、方向指示器等で車線変更の意思表示を行い、側方隣接車間距離「L1」が第1の閾値を超えるまで、側方隣接車間距離「L1」で示される第1車間の側方で待機する(ステップS201に移行)。このときの待機時間に上限を設定しても良いし、乗員の操作により待機をキャンセルしても良い。なお、乗員を、車線変更可否判定部57又は待機要否判定部58と読み替えても良い。例えば、乗員ではなく、車線変更可否判定部57又は待機要否判定部58が、自動的に、方向指示器等での車線変更の意思表示を行うようにしても良い。待機中に、第1先行隣接車「B31」が自車「A1」に対して加速して側方隣接車間距離「L1」を拡げることで、側方隣接車間距離「L1」が第1の閾値よりも大きくなった場合(移行後のステップS201でYes)、車線変更可否判定部57は、側方隣接車間距離「L1」が充足しているため車線変更可能と判断し、ステップS204に移行する。
 ステップS204では、車線変更可否判定部57は、ブレーキコントローラ6や駆動・転舵コントローラ7を介してブレーキ装置9や駆動・転舵装置10に制御指令を出力する。ブレーキ装置9や駆動・転舵装置10は、制御指令に応じて、自車「A1」の速度を調節し、転舵して、自車「A1」の車線変更を実施する。例えば、現時点で側方隣接車間距離「L1」が第1の閾値よりも大きい場合、若しくは、側方隣接車間距離「L1」で示される第1車間の側方で待機中に、自車「A1」の乗員の意思表示に応じて第1先行隣接車「B31」が加速し、側方隣接車間距離「L1」が第1の閾値よりも大きくなった時点で、側方隣接車間距離「L1」に対して、車線変更を行う。
 ステップS205では、待機要否判定部58は、第1先行隣接車「B31」が加速して側方隣接車間距離「L1」を拡げる可能性がないため、待機は不要と判断して、側方隣接車間距離「L1」の前後の他の車間距離で示される第2車間の側方に移動する。実際には、待機要否判定部58は、待機は不要と判断した場合には、上記の他の車間距離に対する自車の車線変更の可否を判断し、上記の他の車間距離に対して自車の車線変更が可能であると判断した場合に、上記の第2車間の側方に移動するようにしても良い。すなわち、待機は不要と判断した場合には、現在の自車「A1」の側方の車間での車線変更を断念して、他の車間での車線変更を試みる。例えば、図8(b)に示すように、側方隣接車間距離「L1」が第1の閾値よりも小さく、先行隣接車間距離「L3」も第3の閾値よりも小さい状況(L1<第1の閾値、L3<第3の閾値)の場合、側方隣接車間距離「L1」が車線変更可能な距離まで広がる可能性がないと判断し、待機は不要と判断し、ブレーキコントローラ6や駆動・転舵コントローラ7を介してブレーキ装置9や駆動・転舵装置10に制御指令を出力する。ブレーキ装置9や駆動・転舵装置10は、制御指令に応じて、自車「A1」の速度を調節し、第1後続隣接車「B21」に対する自車位置を変更することで、上記の第2車間の側方に移動する。例えば、第1後続隣接車「B21」よりも後方になるように、自車「A1」を減速する。若しくは、第1後続隣接車「B21」が加速して自車「A1」よりも前方になるように、自車「A1」を待機させる。自車「A1」は、隣接車線「B」よりも低速車線を走行しているため、追従走行時や車線変更時に上記の第2車間の側方に移動する場合には、第1後続隣接車「B21」をやり過ごす(先に行かせる)ことができる。第1後続隣接車「B21」に追い抜かれた時点で、ステップS206に移行する。
 ステップS206では、待機要否判定部58は、第1後続隣接車「B21」に追い抜かれる前(過去)の側方隣接車間距離「L1」を、追い抜かれた後(現在)の先行隣接車間距離「L3」にする(L3=L1)。例えば、第1後続隣接車「B21」に追い抜かれた時点(第1後続隣接車「B21」が第1先行隣接車「B31」になった時点)で、先行隣接車間距離「L3」に、追い抜かれる前の側方隣接車間距離「L1」を設定する。側方隣接車間距離「L1」を先行隣接車間距離「L3」にする際、過去の側方隣接車間距離「L1」をそのまま置き換えても良いし、隣接車の車速や経過時間に応じて補正しても良い。但し、実際には、第1後続隣接車「B21」に追い抜かれた後、第2車間距離取得部56から先行隣接車間距離「L3」を新たに取得しても良い。
 なお、上記の説明において、側方隣接車間距離「L1」が第1の閾値とほぼ等しい(L1≒第1の閾値)場合も、側方隣接車間距離「L1」が第1の閾値よりも大きいと判断しても良い。同様に、先行隣接車間距離「L3」が第3の閾値とほぼ等しい(L3≒第3の閾値)場合も、先行隣接車間距離「L3」が第3の閾値よりも大きいと判断しても良い。ここで、ほぼ等しい「≒」という表現を用いているのは、多少の誤差であれば許容するためである。無論、等しい「=」と読み替えることもできる。但し、実際には、上記の例に限定されない。
 以下に、第3の閾値について説明する。
 待機要否判定部58は、予め設定した先行最低車間時間「THW3min」を取得する。先行最低車間時間「THW3min」は、追従走行時において、第1先行隣接車「B31」と第2先行隣接車「B32」との間で最低限空けておく必要がある車間時間である。待機要否判定部58は、第1先行隣接車速度「V31」と先行最低車間時間「THW3min」に基づいて、先行隣接車間の先行最低車間距離「L3min」を、次式(4)により算出する。
   L3min=THW3min×V31        ・・・(4)
 先行最低車間距離「L3min」は、追従走行時において、第1先行隣接車「B31」と第2先行隣接車「B32」との間で最低限空けておく必要がある車間距離である。例えば、先行最低車間時間「THW3min」を4~5秒に設定することで、一般的な交通シーンで違和感のない車間距離に設定できる。また、待機要否判定部58は、予め設定した調整用の余裕代「margin」を取得する。調整用の余裕代「margin」については前述の通りである。待機要否判定部58は、先行最低車間距離「L3min」と、第1の閾値と、側方隣接車間距離「L1」と、調整用の余裕代「margin」に基づいて、第3の閾値を、次式(5)により算出し、設定する。
   第3の閾値=L3min+第1の閾値-L1+margin
                            ・・・(5)
 例えば、「L3min=約83m」、「第1の閾値=約83m」、「L1=50m」、「margin=10m」のとき、「第3の閾値=約126m」となる。第3の閾値は、第1の閾値から車間距離「L1」を減じた距離(第1の閾値と車間距離「L1」との差)に応じて可変であるため、車間距離「L1」が第1の閾値に対して長いほど、第3の閾値は短くなる。車間距離「L1」が十分長い場合、仮に第1先行隣接車「B31」がスペースを譲ってくれなくても、自車「A1」の車線変更に必要な車間距離が確保されるためである。このように、待機要否判定部58は、第1先行隣接車「B31」がスペースを譲ってくれなくても、自車「A1」が車線変更できるように第3の閾値を設定する。
 上記のように第3の閾値を設定することで、「L3>第3の閾値」の条件を満たす位置関係のときは、「L3の余裕距離>L1の不足距離」の条件を満たす。図9に示すように、第1先行隣接車「B31」は、側方隣接車間距離「L1」の不足距離を補うように車両位置を前方にずらす(加速又は現状維持により相対的に前進する)ことができるため、自車「A1」が車線変更の意思表示を行った時に、車間を拡げる可能性があると判断する。
 このように、自車「A1」が車線変更を行う際に、側方隣接車間距離「L1」のみならず、先行隣接車間距離「L3」を用いて、第1先行隣接車「B31」の車線変更による影響を予測することで、従来と比べて精度の高い車線変更の可否の判断を行うことができるようになる。これにより、車線変更する時に、隣接車3台の位置関係を用いて、最も譲ってくれそうな所を探して、車線変更することができるようになる。
 (動作その他)
 次に、自車の挙動について説明する。
 自車「A1」は、制御状態設定部51により、ACC走行又は隊列走行を実施する。自車「A1」は、自車線「A」を走行中に、周囲車検出状態判定部52により、隣接車線「B」において、自車側方後方の第1後続隣接車「B21」と、その後続車の第2後続隣接車「B22」と、自車側方前方の第1先行隣接車「B31」と、その先行車の第2先行隣接車「B32」の各々について、自車「A1」に対する車間距離と相対速度(又は車両位置と速度)を取得し、各車の有無を判断する。また、周囲車速度算出部53は、自車「A1」の速度を示す自車速度「V1」と、第1後続隣接車「B21」の相対速度に基づいて、第1後続隣接車「B21」の速度を示す第1後続隣接車速度「V21」を算出する。同様に、自車速度「V1」と、第1先行隣接車「B31」の相対速度に基づいて、第1先行隣接車「B31」の速度を示す第1先行隣接車速度「V31」を算出する。更に、自車「A1」は、周囲車速度算出部53により、第1後続隣接車速度「V21」及び第1先行隣接車速度「V31」のうち少なくとも一方と、自車速度「V1」とを確認し、自車線「A」が隣接車線「B」よりも高速の車線か低速の車線かを確認する。これにより、自車「A1」は、隣接車線「B」における自車「A1」の周囲の隣接車の存在を認識することができる。また、自車「A1」は、周囲車速度算出部53により、隣接車の速度を把握することができる。更に、自車「A1」は、周囲車速度算出部53により、自車「A1」の速度と、隣接車の速度とを確認し、自車線「A」が隣接車線「B」よりも高速の車線か低速の車線かを確認することができる。
 自車「A1」は、周囲車検出状態判定部52により第1後続隣接車「B21」及び第1先行隣接車「B31」を検出している場合、第1車間距離取得部55により、第1後続隣接車「B21」及び第1先行隣接車「B31」のそれぞれの車間距離(又は車両位置)に基づいて、側方隣接車間距離「L1」を算出する。なお、周囲車検出状態判定部52により第1後続隣接車「B21」及び第1先行隣接車「B31」を検出していない場合は、側方隣接車間距離「L1」を算出するまでもなく、車線変更可能であることは明らかである。この場合、便宜上、側方隣接車間距離「L1」を無限大或いは十分に大きな値としても良い。また、実際には、第1車間距離取得部55により側方隣接車間距離「L1」を算出するのは、周囲車速度算出部53により自車線「A」が隣接車線「B」よりも高速の車線か低速の車線かを確認する前/確認した後/確認と同時のいずれでも良い。高速の車線か低速の車線かに関わらず、いずれの場合にも側方隣接車間距離「L1」を算出することになるためである。
 自車「A1」は、自車線「A」が隣接車線「B」よりも高速の車線であり、周囲車検出状態判定部52により第2先行隣接車「B32」を検出している場合、第2車間距離取得部56により、第1後続隣接車「B21」及び第2後続隣接車「B22」のそれぞれの車間距離(又は車両位置)に基づいて、後続隣接車間距離「L2」を算出する。自車「A1」は、車線変更可否判定部57により、側方隣接車間距離「L1」を用いて、自車「A1」の車線変更の可否を判断する。車線変更不可と判断した場合には、待機要否判定部58により、後続隣接車間距離「L2」を確認し、後続隣接車間距離「L2」の長さの変化により側方隣接車間距離「L1」が車線変更可能な長さにまで拡がる可能性の有無を判断する。
 なお、周囲車検出状態判定部52により第2後続隣接車「B22」を検出していない場合は、第2後続隣接車「B22」が存在しないということであり、側方隣接車間距離「L1」が車線変更可能な長さにまで拡がる可能性があることは明らかである。この場合、便宜上、後続隣接車間距離「L2」を無限大或いは十分に大きな値としても良い。
 これにより、自車「A1」は、自車線「A」が隣接車線「B」よりも高速の車線である場合において、自車「A1」の車線変更が可能であるか否か自動的に判断する。また、自車「A1」は、自車「A1」の車線変更が現状では不可能である場合に、側方隣接車間距離「L1」が車線変更可能な長さにまで拡がる可能性があるか自動的に判断する。
 自車「A1」は、自車線「A」が隣接車線「B」よりも低速の車線であり、周囲車検出状態判定部52により第2後続隣接車「B22」を検出している場合、第2車間距離取得部56により、第1先行隣接車「B31」及び第2先行隣接車「B32」のそれぞれの車間距離(又は車両位置)に基づいて、先行隣接車間距離「L3」を算出する。自車「A1」は、車線変更可否判定部57により、側方隣接車間距離「L1」を用いて、自車「A1」の車線変更の可否を判断する。車線変更不可と判断した場合には、待機要否判定部58により、先行隣接車間距離「L3」を確認し、先行隣接車間距離「L3」の長さの変化により側方隣接車間距離「L1」が車線変更可能な長さにまで拡がる可能性の有無を判断する。
 なお、周囲車検出状態判定部52により第2先行隣接車「B32」を検出していない場合は、第2先行隣接車「B32」が存在しないということであり、側方隣接車間距離「L1」が車線変更可能な長さにまで拡がる可能性があることは明らかである。この場合、便宜上、先行隣接車間距離「L3」を無限大或いは十分に大きな値としても良い。
 これにより、自車「A1」は、自車線「A」が隣接車線「B」よりも低速の車線である場合において、自車「A1」の車線変更が可能であるか否か自動的に判断する。また、自車「A1」は、自車「A1」の車線変更が現状では不可能である場合に、側方隣接車間距離「L1」が車線変更可能な長さにまで拡がる可能性があるか自動的に判断する。
 但し、実際には、自車「A1」は、自車線「A」が隣接車線「B」よりも高速の車線か低速の車線かに関係なく、周囲車検出状態判定部52により第2後続隣接車「B22」及び第2先行隣接車「B32」を両方とも検出した場合、第2車間距離取得部56により、後続隣接車間距離「L2」及び先行隣接車間距離「L3」を両方とも算出しても良い。
 例えば、自車「A1」は、第2車間距離取得部56により、後続隣接車間距離「L2」及び先行隣接車間距離「L3」を両方とも算出した場合、待機要否判定部58により、後続隣接車間距離「L2」と先行隣接車間距離「L3」との両方を確認し、いずれかの車間距離の長さの変化により側方隣接車間距離「L1」が車線変更可能な長さにまで拡がる可能性の有無を判断する。
 これにより、自車「A1」は、自車「A1」の車線変更が現状では不可能である場合に、側方隣接車間距離「L1」が車線変更可能な長さにまで拡がる可能性があるか自動的に判断する。
 自車「A1」は、車線変更可否判定部57により車線変更可能と判断した場合、又は、待機要否判定部58により側方隣接車間距離「L1」が車線変更可能な長さにまで拡がる可能性があると判断した場合には、ブレーキコントローラ6や駆動・転舵コントローラ7を介してブレーキ装置9や駆動・転舵装置10に制御指令を出力し、ブレーキ装置9や駆動・転舵装置10により、車線変更を実施する。
 このとき、自車「A1」は、車線変更可否判定部57又は待機要否判定部58により、方向指示器等の操作指令を出力して、自動的に方向指示器等での車線変更の意思表示を行うようにしても良い。
 また、自車「A1」は、車線変更可否判定部57又は待機要否判定部58により、ディスプレイ上への画面表示や音声出力装置からの音声出力を行うための制御指令を出力して、画面表示や音声出力により乗員に対して車線変更の可否や車線変更の実施(又は実施予定)を通知するようにしても良い。
 ここで、自車「A1」は、車線変更可否判定部57により車線変更可能と判断した場合には、自車「A1」の車線変更が直ちに可能であるため、ブレーキ装置9や駆動・転舵装置10により直ちに自車線「A」から隣接車線「B」へ車線変更し、第1後続隣接車「B21」と第1先行隣接車「B31」との間に移動し、隣接車線「B」を走行する。
 また、自車「A1」は、待機要否判定部58により側方隣接車間距離「L1」が車線変更可能な長さにまで拡がる可能性があると判断した場合には、現在の走行状態を維持して待機し、待機中に隣接車が譲ってくれた場合に、ブレーキ装置9や駆動・転舵装置10により自車線「A」から隣接車線「B」へ車線変更し、第1後続隣接車「B21」と第1先行隣接車「B31」との間に移動し、隣接車線「B」を走行する。
 なお、自車「A1」は、待機要否判定部58により待機時間をカウントし、待機を開始してから一定時間経過(例えば10秒経過)しても隣接車が譲ってくれない場合には、側方隣接車間距離「L1」の拡がる可能性がないと判断し、待機は不要と判断する。
 自車「A1」は、待機要否判定部58により待機は不要と判断した場合には、待機せずに、ブレーキコントローラ6や駆動・転舵コントローラ7を介してブレーキ装置9や駆動・転舵装置10に制御指令を出力する。このとき、自車「A1」は、待機要否判定部58により側方隣接車間距離「L1」の拡がる可能性がないと判断した場合には、側方隣接車間距離「L1」の前後の他の車間距離に対する自車の車線変更の可否を判断するようにしても良い。例えば、自車「A1」は、待機要否判定部58により「後続隣接車間距離」若しくは「先行隣接車間距離」又はその両方を用いて、自車の車線変更の可否を判断する。
 自車「A1」は、待機要否判定部58により上記の他の車間距離に対して自車の車線変更が可能であると判断した場合には、ブレーキ装置9や駆動・転舵装置10により、加速、減速、又は現在の速度を維持して、隣接車に対して相対的に前後方向に移動し、車線変更の新たな目標となる第2車間の側方に移動する。
 例えば、自車「A1」は、自車線「A」が隣接車線「B」よりも高速の車線である場合、加速して、又は現在の速度を維持して、第1先行隣接車「B31」に対して相対的に前進し、第1先行隣接車「B31」と第2先行隣接車「B32」とが形成する車間距離の側方に移動し、移動後の自車側方の車間距離を、車線変更のための新たな目標スペースとする。そして、移動前の側方隣接車間距離「L1」を、移動後の後続隣接車間距離「L2」にする。
 また、自車「A1」は、自車線「A」が隣接車線「B」よりも低速の車線である場合、減速して、又は現在の速度を維持して、第1後続隣接車「B21」に対して相対的に後退し、第1後続隣接車「B21」と第2後続隣接車「B22」とが形成する車間距離の側方に移動し、移動後の自車側方の車間距離を、車線変更のための新たな目標スペースとする。そして、移動前の側方隣接車間距離「L1」を、移動後の先行隣接車間距離「L3」にする。
 また、自車「A1」は、待機要否判定部58により上記の他の車間距離に対して自車の車線変更が不可であると判断した場合には、自車の車線変更を断念し、待機を中止して自車線「A」の走行を継続する。
 更に、自車「A1」は、待機要否判定部58によりディスプレイ上への画面表示や音声出力装置からの音声出力を行うための制御指令を出力して、画面表示や音声出力により乗員に対して車線変更の可否や車線変更の実施(又は実施予定)、若しくは待機の要否や自車の移動の要否を通知するようにしても良い。
 (変形例)
 上記の説明において、車線変更の可否を判断する際、後続隣接車間距離「L2」や先行隣接車間距離「L3」の長さに応じて、車線変更が可能な確率を段階的(小刻み)に算出し、一定の確率(例えば60%)以上であれば、車線変更可能と判断するようにしても良い。例えば、後続隣接車間距離「L2」や先行隣接車間距離「L3」がそれぞれの閾値(第2の閾値や第3の閾値)より小さい場合、車線変更が可能な確率を「0%」と算出し、後続隣接車間距離「L2」や先行隣接車間距離「L3」がそれぞれの閾値より大きい(又はほぼ等しい)場合、それぞれの閾値との差分(余裕距離)を確認し、その差分の大きさに応じて、車線変更が可能な確率を段階的に算出するようにしても良い。また、車線変更が可能な確率を、画面表示や音声出力により乗員に対して通知するようにしても良い。但し、実際には、上記の例に限定されない。
 また、車車間通信や路車間通信が可能である場合、走行制御装置5は車載器や路側機でも良い。更に、計算機上で車線変更のシミュレーションを行う場合や、自車と通信可能なサーバ等が走行制御を行う場合には、走行制御装置5は、パソコン(PC)、アプライアンス、ワークステーション、メインフレーム、スーパーコンピュータ等の計算機でも良い。この場合、物理マシン上に構築された仮想マシン(VM)でも良い。また、画面表示や音声出力により乗員に対して車線変更の可否や車線変更の実施(又は実施予定)を通知可能なカーナビゲーションシステム、携帯電話機、スマートフォン、スマートブック、ゲーム機、ヘッドマウントディスプレイ等でも良い。また、走行制御装置5は、車両に限らず、車両と同様の挙動で移動する移動ユニットに搭載されていても良い。但し、実際には、上記の例に限定されない。
 なお、上記の車線変更可否判定部57及び待機要否判定部58は、機能毎に構成を細分化することもできる。
 例えば、上記の車線変更可否判定部57は、「第1閾値算出部」と、「第1閾値判定部」とに分けることができる。実際には、車線変更可否判定部57は、「第1閾値算出部」と、「第1閾値判定部」とを備えていても良い。第1閾値算出部は、自車の速度に基づいて、第1の閾値を算出する。第1閾値判定部は、第1の閾値と第1車間距離との大小関係に基づいて、自車の車線変更の可否を判断する。
 また、上記の待機要否判定部58は、「第2閾値算出部」と、「第2閾値判定部」と、「第3閾値算出部」と、「第3閾値判定部」とに分けることができる。実際には、待機要否判定部58は、「第2閾値算出部」と「第2閾値判定部」と、「第3閾値算出部」と、「第3閾値判定部」とを備えていても良い。ここで、待機要否判定部58は、「第2閾値算出部と第2閾値判定部」のみ備えていても良いし、「第3閾値算出部と第3閾値判定部」のみ備えていても良い。すなわち、待機要否判定部58の構成は、実施状況に合わせて任意に変更可能であるものとする。第2閾値算出部と第2閾値判定部は、第2車間距離が後続隣接車間距離である場合に用いられる。第2閾値算出部は、自車の車線変更が不可であると判断された場合に、第1の閾値と第1車間距離との差を用いて、第2の閾値を算出する。第2閾値判定部は、第2の閾値と後続隣接車間距離との大小関係に基づいて、後続隣接車が譲ってくれて自車の車線変更が可能になる可能性の有無を判断する。また、第3閾値算出部と第3閾値判定部は、第2車間距離が先行隣接車間距離である場合に用いられる。第3閾値算出部は、自車の車線変更が不可であると判断された場合に、第1の閾値と第1車間距離との差を用いて、第3の閾値を算出する。第3閾値判定部は、第3の閾値と先行隣接車間距離との大小関係に基づいて、先行隣接車が譲ってくれて自車の車線変更が可能になる可能性の有無を判断する。但し、実際には、上記の例に限定されない。
 別の視点では、上記のブレーキコントローラ6と、駆動・転舵コントローラ7と、流体圧回路8と、ブレーキ装置9と、駆動・転舵装置10と、車輪11は、「目標変更部」を構成する。この目標変更部は、待機要否判定部58により待機を要すると判断された場合には第1先行隣接車と第1後続隣接車との間の車間である第1車間の側方で待機する。一方、待機要否判定部58により待機は不要と判断された場合には第1車間の前後に隣接する第2車間の側方に移動する。
 また、別の視点では、目標変更部は、ディスプレイや音声出力装置でも良い。この目標変更部は、画面表示や音声出力により乗員に対して車線変更の可否や車線変更の実施(又は実施予定)、若しくは待機の要否や自車の移動の要否を通知する。但し、実際には、上記の例に限定されない。
 (本実施形態の効果)
 本実施形態は、以下のような効果を奏する。
 (1)本実施形態に係る走行制御装置は、自車線と隣接する隣接車線において自車の側方に自車の車線変更の目標となる自車側方前方の第1先行隣接車と自車側方後方の第1後続隣接車との間の車間距離である第1車間距離を取得する。第1後続隣接車とその後続車である第2後続隣接車との間の車間距離と、第1先行隣接車とその先行車である第2先行隣接車との間の車間距離とのうち少なくとも一方の車間距離である第2車間距離を取得する。第1車間距離を用いて、自車線から隣接車線への車線変更の可否を判断する。自車線から隣接車線への車線変更が不可であると判断した場合に、第2車間距離を用いて、第1車間距離が車線変更可能な長さにまで拡がる可能性の有無を判断する。第1車間距離が車線変更可能な長さにまで拡がる可能性があると判断した場合には待機を要すると判断する。第1車間距離が車線変更可能な長さにまで拡がる可能性がないと判断した場合には待機は不要と判断する。
 このように、自車が車線変更を行う際に、自車側方の車間距離(第1車間距離)のみならず、その車間距離(第2車間距離)を用いて、隣接車線の先行隣接車や後続隣接車の車線変更による影響を予測することで、従来と比べて精度の高い車線変更の可否の判断を行うことができるようになる。
 (2)上記の走行制御装置は、待機を要すると判断した場合には第1先行隣接車と第1後続隣接車との間の車間である第1車間の側方で待機し、待機は不要と判断した場合には第1車間の前後に隣接する第2車間の側方に移動すると好ましい。
 これにより、車線変更の可否の判断結果に応じて適切な車線変更の準備動作を行うことが可能となる。
 (3)上記の走行制御装置は、待機は不要と判断した場合に、第2車間距離を用いて、第2車間に対する車線変更の可否を判断し、第2車間に対する車線変更が可能であると判断された場合に、上記の第2車間の側方に移動するようにしても良い。
 これにより、現在の目標車間の側方で待機しても無駄と判断した際には、その目標車間の前後の車間に対する車線変更の可否を判断することができ、車線変更の可否の判断を多段階に行うことができる。
 (4)ここで、第2車間距離の1つとして、後続隣接車間距離を想定している。後続隣接車間距離は、隣接車線における第1後続隣接車とその後続車である第2後続隣接車との間の車間距離である。上記の走行制御装置5は、第1車間距離が第1の閾値よりも小さい場合には、第1後続隣接車の速度と、予め設定した後続最低車間時間を乗じて、後続隣接車間の後続最低車間距離を算出する。また、後続最低車間距離と、第1の閾値から第1車間距離を減じた値(差)と、予め設定した調整用の余裕代を加算して、第1後続隣接車が第1車間距離を拡げるために必要な車間距離を示す第2の閾値を算出する。後続隣接車間距離が第2の閾値よりも大きい場合には、第1車間距離が第1の閾値よりも大きくなる可能性があると判断する。後続隣接車間距離が第2の閾値よりも小さい場合には、第1車間距離が第1の閾値よりも大きくなる可能性がないと判断する。
 これにより、第1後続隣接車が譲ることができる距離を推定することができ、第1後続隣接車が譲ってくれるかどうかを精度良く判断することができる。また、自車線が隣接車線よりも高速車線で第1後続隣接車が譲れない状況でも、自車が車線変更できずに待機状態に陥ることを防止することができる。
 (5)なお、上記(4)において、隣接車線の第1先行隣接車を追い抜いた場合、過去の第1車間距離を、現在の後続隣接車間距離にする。例えば、第1車間距離が第1の閾値よりも大きくなる可能性がないと判断した場合、自車線が隣接車線よりも高速の車線であれば、第1先行隣接車を追い抜き、過去の第1車間距離を現在の後続隣接車間距離として利用する。
 これにより、目標スペースの後方の車間距離を推定することができる。
 (6)また、第2車間距離の1つとして、先行隣接車間距離を想定している。先行隣接車間距離は、隣接車線における第1先行隣接車とその先行車である第2先行隣接車との間の車間距離である。上記の走行制御装置5は、第1車間距離が第1の閾値よりも小さい場合には、第1先行隣接車の速度と、予め設定した先行最低車間時間を乗じて、先行隣接車間の先行最低車間距離を算出する。また、先行最低車間距離と、第1の閾値から第1車間距離を減じた値と、予め設定した調整用の余裕代を加算して、第1先行隣接車が第1車間距離を拡げるために必要な車間距離を示す第3の閾値を算出する。先行隣接車間距離が第3の閾値よりも大きい場合には、第1車間距離が第1の閾値よりも大きくなる可能性があると判断する。先行隣接車間距離が第3の閾値よりも小さい場合には、第1車間距離が第1の閾値よりも大きくなる可能性がないと判断する。
 これにより、第1先行隣接車が譲ることができる距離を推定することができ、第1先行隣接車が譲ってくれるかどうかを精度良く判断することができる。また、自車線が隣接車線よりも低速車線で第1先行隣接車が譲れない状況でも、自車が車線変更できずに待機状態に陥ることを防止することができる。
 (7)なお、上記(6)において、第1後続隣接車に追い抜かれた場合、過去の第1車間距離を、先行隣接車間距離にする。例えば、第1車間距離が第1の閾値よりも大きくなる可能性がないと判断した場合、自車線が隣接車線よりも低速の車線であれば、第1後続隣接車をやり過ごし(先に行かせ)、過去の第1車間距離を現在の先行隣接車間距離として利用する。これにより、目標スペースの前方の車間距離を推定することができる。
 以上、本願が優先権を主張する日本国特許出願2013-213953(2013年10月11日出願)の全内容は、参照により本開示の一部をなす。
 ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。
  1 制御作動用スイッチ
  2 車輪速センサ
  3 外界認識装置
  4 通信装置
  5 走行制御装置
  51 制御状態設定部
  52 周囲車検出状態判定部
  53 周囲車速度算出部
  54 車線変更要否判定部
  55 第1車間距離取得部
  56 第2車間距離取得部
  57 車線変更可否判定部
  58 待機要否判定部
  6 ブレーキコントローラ
  7 駆動・転舵コントローラ
  8 流体圧回路
  9 ブレーキ装置
  10 駆動・転舵装置
  11 車輪

Claims (9)

  1.  自車線と隣接する隣接車線において自車の側方に自車の車線変更の目標となる自車側方前方の第1先行隣接車と自車側方後方の第1後続隣接車との間の車間距離である第1車間距離を取得する第1車間距離取得部と、
     前記第1後続隣接車とその後続車である第2後続隣接車との間の車間距離と、前記第1先行隣接車とその先行車である第2先行隣接車との間の車間距離とのうち少なくとも一方の車間距離である第2車間距離を取得する第2車間距離取得部と、
     前記第1車間距離を用いて、自車線から隣接車線への車線変更の可否を判断する車線変更可否判定部と、
     前記車線変更可否判定部により自車線から隣接車線への車線変更が不可であると判断された場合に、前記第2車間距離を用いて、前記第1車間距離が車線変更可能な長さにまで拡がる可能性の有無を判断し、前記第1車間距離が車線変更可能な長さにまで拡がる可能性があると判断した場合には待機を要すると判断し、前記第1車間距離が車線変更可能な長さにまで拡がる可能性がないと判断した場合には待機は不要と判断する待機要否判定部と、
    を備えることを特徴とする走行制御装置。
  2.  前記待機要否判定部により待機を要すると判断された場合には前記第1先行隣接車と前記第1後続隣接車との間の車間である第1車間の側方で待機し、前記待機要否判定部により待機は不要と判断された場合には前記第1車間の前後に隣接する第2車間の側方に移動する目標変更部を更に備えることを特徴とする、請求項1に記載の走行制御装置。
  3.  前記待機要否判定部は、待機は不要と判断した場合、前記第2車間距離を用いて、前記第2車間に対する車線変更の可否を判断し、
     前記目標変更部は、前記待機要否判定部により前記第2車間に対する車線変更が可能であると判断された場合に、前記第2車間の側方に移動することを特徴とする、請求項2に記載の走行制御装置。
  4.  前記第2車間距離取得部は、前記第1後続隣接車と前記第2後続隣接車との間の車間距離である後続隣接車間距離を取得し、
     前記車線変更可否判定部は、
     自車の速度と予め設定した車間時間とを乗じて第1の閾値を算出する第1閾値算出部と、
     前記第1車間距離が前記第1の閾値よりも大きい場合には、自車線から隣接車線への車線変更が可能であると判断し、前記第1車間距離が前記第1の閾値よりも小さい場合には、自車線から隣接車線への車線変更が不可であると判断する第1閾値判定部と、
    を備え、
     前記待機要否判定部は、
     自車線から隣接車線への車線変更が不可であると判断された場合に、前記第1後続隣接車の速度と、予め設定した後続最低車間時間とを乗じて後続隣接車間の後続最低車間距離を算出し、前記後続最低車間距離と、前記第1の閾値から前記第1車間距離を減じた値と、予め設定した調整用の余裕代とを加算して第2の閾値を算出する第2閾値算出部と、
     前記後続隣接車間距離が前記第2の閾値よりも大きい場合には、前記第1車間距離が前記第1の閾値よりも大きくなる可能性があると判断し、前記後続隣接車間距離が前記第2の閾値よりも小さい場合には、前記第1車間距離が前記第1の閾値よりも大きくなる可能性がないと判断する第2閾値判定部と、
    を備えることを特徴とする、請求項1から請求項3のいずれか一項に記載の走行制御装置。
  5.  前記待機要否判定部は、前記隣接車線の先行隣接車を追い抜いた場合、過去の前記第1車間距離を前記後続隣接車間距離にすることを特徴とする、請求項4に記載の走行制御装置。
  6.  前記第2車間距離取得部は、前記第1先行隣接車と前記第2先行隣接車との間の車間距離である先行隣接車間距離を取得し、
     前記車線変更可否判定部は、
     自車の速度と予め設定した車間時間とを乗じて第1の閾値を算出する第1閾値算出部と、
     前記第1車間距離が前記第1の閾値よりも大きい場合には、自車線から隣接車線への車線変更が可能であると判断し、前記第1車間距離が前記第1の閾値よりも小さい場合には、自車線から隣接車線への車線変更が不可能であると判断する第1閾値判定部と、
    を備え、
     前記待機要否判定部は、
     自車線から隣接車線への車線変更が不可であると判断された場合に、前記第1先行隣接車の速度と予め設定した先行最低車間時間とを乗じて先行隣接車間の先行最低車間距離を算出し、前記先行最低車間距離と、前記第1の閾値から前記第1車間距離を減じた値と、予め設定した調整用の余裕代とを加算して第3の閾値を算出する第3閾値算出部と、
     前記先行隣接車間距離が前記第3の閾値よりも大きい場合には、前記第1車間距離が前記第1の閾値よりも大きくなる可能性があると判断し、前記先行隣接車間距離が前記第3の閾値よりも小さい場合には、前記第1車間距離が前記第1の閾値よりも大きくなる可能性がないと判断する第3閾値判定部と、
    を備えることを特徴とする、請求項1から請求項3のいずれか一項に記載の走行制御装置。
  7.  前記待機要否判定部は、前記第1後続隣接車に追い抜かれた場合、過去の前記第1車間距離を前記先行隣接車間距離にすることを特徴とする、請求項6に記載の走行制御装置。
  8.  自車線と隣接する隣接車線において自車の側方に自車の車線変更の目標となる自車側方前方の第1先行隣接車と自車側方後方の第1後続隣接車との間の車間距離である第1車間距離を取得し、
     前記第1後続隣接車とその後続車である第2後続隣接車との間の車間距離と、前記第1先行隣接車とその先行車である第2先行隣接車との間の車間距離とのうち少なくとも一方の車間距離である第2車間距離を取得し、
     前記第1車間距離を用いて、自車線から隣接車線への車線変更の可否を判断し、
     自車線から隣接車線への車線変更が不可であると判断した場合に、前記第2車間距離を用いて、前記第1車間距離が車線変更可能な長さにまで拡がる可能性の有無を判断し、
     前記第1車間距離が車線変更可能な長さにまで拡がる可能性があると判断した場合には待機を要すると判断し、
     前記第1車間距離が車線変更可能な長さにまで拡がる可能性がないと判断した場合には待機は不要と判断することを特徴とする走行制御方法。
  9.  待機を要すると判断した場合には前記第1先行隣接車と前記第1後続隣接車との間の車間である第1車間の側方で待機し、
     待機は不要と判断した場合には前記第1車間の前後に隣接する第2車間の側方に移動することを特徴とする、請求項8に記載の走行制御方法。
PCT/JP2014/004508 2013-10-11 2014-09-02 走行制御装置及び走行制御方法 WO2015052865A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2016118004A RU2624392C1 (ru) 2013-10-11 2014-09-02 Устройство управления движением и способ управления движением
BR112016007927-2A BR112016007927B1 (pt) 2013-10-11 2014-09-02 dispositivo de controle de deslocamento e método de controle de deslocamento
US15/028,560 US9718473B2 (en) 2013-10-11 2014-09-02 Travel control device and travel control method
CN201480055611.4A CN105636849B (zh) 2013-10-11 2014-09-02 行驶控制装置以及行驶控制方法
JP2015541419A JP6052424B2 (ja) 2013-10-11 2014-09-02 走行制御装置及び走行制御方法
MX2016004520A MX346612B (es) 2013-10-11 2014-09-02 Dispositivo de control de desplazamiento y método de control de desplazamiento.
EP14852920.9A EP3056405B1 (en) 2013-10-11 2014-09-02 Travel control device and travel control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-213953 2013-10-11
JP2013213953 2013-10-11

Publications (1)

Publication Number Publication Date
WO2015052865A1 true WO2015052865A1 (ja) 2015-04-16

Family

ID=52812702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004508 WO2015052865A1 (ja) 2013-10-11 2014-09-02 走行制御装置及び走行制御方法

Country Status (9)

Country Link
US (1) US9718473B2 (ja)
EP (1) EP3056405B1 (ja)
JP (1) JP6052424B2 (ja)
CN (1) CN105636849B (ja)
BR (1) BR112016007927B1 (ja)
MX (1) MX346612B (ja)
MY (1) MY161720A (ja)
RU (1) RU2624392C1 (ja)
WO (1) WO2015052865A1 (ja)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106064626A (zh) * 2015-04-20 2016-11-02 丰田自动车株式会社 车辆行驶控制装置
JP2017001665A (ja) * 2015-06-08 2017-01-05 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド 自律移動体のため車線変更方法
CN106335509A (zh) * 2015-07-09 2017-01-18 富士重工业株式会社 车辆的驾驶辅助装置
JP2017021506A (ja) * 2015-07-09 2017-01-26 日産自動車株式会社 走行制御装置
JP2017047814A (ja) * 2015-09-03 2017-03-09 株式会社デンソー 車両認識装置
JP2017065420A (ja) * 2015-09-30 2017-04-06 日立オートモティブシステムズ株式会社 車線変更システム
KR20170053880A (ko) * 2015-11-09 2017-05-17 엘지전자 주식회사 차량 운전 보조장치 및 이를 포함하는 차량
JP2017084112A (ja) * 2015-10-28 2017-05-18 株式会社デンソー 情報提示システム
CN106904165A (zh) * 2015-12-22 2017-06-30 奥迪股份公司 用于在交通堵塞情况中操作机动车辆的控制单元的方法
JP2017190106A (ja) * 2016-04-15 2017-10-19 株式会社デンソー 支援装置
JP2018025989A (ja) * 2016-08-10 2018-02-15 トヨタ自動車株式会社 自動運転システム
JP2018062300A (ja) * 2016-10-14 2018-04-19 トヨタ自動車株式会社 車両制御システム
WO2018131298A1 (ja) * 2017-01-13 2018-07-19 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
JP2019018788A (ja) * 2017-07-20 2019-02-07 株式会社Soken 車両制御装置及び車両制御方法
JP2019028000A (ja) * 2017-08-02 2019-02-21 クラリオン株式会社 走行支援装置、渋滞検出方法
JP2019028733A (ja) * 2017-07-31 2019-02-21 日野自動車株式会社 隊列走行システム
JP2020508509A (ja) * 2017-02-10 2020-03-19 ニッサン ノース アメリカ,インク 自律走行車の動作管理制御
JP2020166318A (ja) * 2019-03-28 2020-10-08 日本電気株式会社 車線変更支援装置、車線変更支援方法、プログラム
JP2020166837A (ja) * 2019-03-28 2020-10-08 バイドゥ オンライン ネットワーク テクノロジー (ベイジン) カンパニー リミテッド 無人車両の車線変更方法、装置、記憶媒体、及びプログラム
US10836405B2 (en) 2017-10-30 2020-11-17 Nissan North America, Inc. Continual planning and metareasoning for controlling an autonomous vehicle
JP2020191032A (ja) * 2019-05-24 2020-11-26 日産自動車株式会社 走行支援方法及び走行支援装置
JP2021084479A (ja) * 2019-11-26 2021-06-03 日産自動車株式会社 車線変更支援方法及び車線変更支援装置
US11027751B2 (en) 2017-10-31 2021-06-08 Nissan North America, Inc. Reinforcement and model learning for vehicle operation
US11084504B2 (en) 2017-11-30 2021-08-10 Nissan North America, Inc. Autonomous vehicle operational management scenarios
US11113973B2 (en) 2017-02-10 2021-09-07 Nissan North America, Inc. Autonomous vehicle operational management blocking monitoring
US11110941B2 (en) 2018-02-26 2021-09-07 Renault S.A.S. Centralized shared autonomous vehicle operational management
US11120688B2 (en) 2018-06-29 2021-09-14 Nissan North America, Inc. Orientation-adjust actions for autonomous vehicle operational management
JP2021149119A (ja) * 2020-03-16 2021-09-27 本田技研工業株式会社 移動体制御装置、移動体及び移動体制御方法
US11148666B2 (en) * 2017-06-27 2021-10-19 Honda Motor Co., Ltd. Vehicle control apparatus
US11300957B2 (en) 2019-12-26 2022-04-12 Nissan North America, Inc. Multiple objective explanation and control interface design
US11500380B2 (en) 2017-02-10 2022-11-15 Nissan North America, Inc. Autonomous vehicle operational management including operating a partially observable Markov decision process model instance
US11577746B2 (en) 2020-01-31 2023-02-14 Nissan North America, Inc. Explainability of autonomous vehicle decision making
US11613269B2 (en) 2019-12-23 2023-03-28 Nissan North America, Inc. Learning safety and human-centered constraints in autonomous vehicles
US11635758B2 (en) 2019-11-26 2023-04-25 Nissan North America, Inc. Risk aware executor with action set recommendations
US11702070B2 (en) 2017-10-31 2023-07-18 Nissan North America, Inc. Autonomous vehicle operation with explicit occlusion reasoning
US11714971B2 (en) 2020-01-31 2023-08-01 Nissan North America, Inc. Explainability of autonomous vehicle decision making
US11782438B2 (en) 2020-03-17 2023-10-10 Nissan North America, Inc. Apparatus and method for post-processing a decision-making model of an autonomous vehicle using multivariate data
US11874120B2 (en) 2017-12-22 2024-01-16 Nissan North America, Inc. Shared autonomous vehicle operational management
US11899454B2 (en) 2019-11-26 2024-02-13 Nissan North America, Inc. Objective-based reasoning in autonomous vehicle decision-making

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10520581B2 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Sensor fusion for autonomous or partially autonomous vehicle control
US10474166B2 (en) 2011-07-06 2019-11-12 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
US8744666B2 (en) 2011-07-06 2014-06-03 Peloton Technology, Inc. Systems and methods for semi-autonomous vehicular convoys
US20170242443A1 (en) 2015-11-02 2017-08-24 Peloton Technology, Inc. Gap measurement for vehicle convoying
US11294396B2 (en) 2013-03-15 2022-04-05 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
US10621869B2 (en) * 2015-03-18 2020-04-14 Nec Corporation Driving control device, driving control method, and vehicle-to-vehicle communication system
CA2993497A1 (en) * 2015-07-28 2017-02-02 Nissan Motor Co., Ltd. Travel control method and travel control apparatus
KR20170016177A (ko) * 2015-08-03 2017-02-13 엘지전자 주식회사 차량 및 그 제어방법
JP6442771B2 (ja) * 2015-08-06 2018-12-26 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム
US11122400B2 (en) * 2015-09-17 2021-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Communication device, first radio node, second radio node, and methods therein, for determining whether to allow a first vehicle to overtake a vehicle platoon
US11066070B2 (en) * 2015-10-15 2021-07-20 Hyundai Motor Company Apparatus and method for controlling speed in cooperative adaptive cruise control system
KR102107726B1 (ko) * 2016-12-30 2020-05-07 현대자동차주식회사 협조 적응형 순항 제어 시스템의 속도 제어 장치 및 방법
US10890922B2 (en) * 2015-11-19 2021-01-12 Agjunction Llc Automated multi-vehicle alignment steering
KR101846631B1 (ko) * 2015-12-08 2018-04-06 현대자동차주식회사 차량의 주행대열 합류 방법
JP6288590B2 (ja) * 2016-03-15 2018-03-07 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム
JP2017178217A (ja) * 2016-03-31 2017-10-05 株式会社デンソー 支援装置
JP6604356B2 (ja) * 2016-05-16 2019-11-13 株式会社デンソー 支援装置、支援方法
CN109661563B (zh) * 2016-06-03 2023-09-01 爱知制钢株式会社 位置捕捉方法及系统
EP3500940A4 (en) 2016-08-22 2020-03-18 Peloton Technology, Inc. AUTOMATED CONNECTED VEHICLE CONTROL SYSTEM ARCHITECTURE
CA3036160A1 (en) * 2016-09-09 2018-03-15 Nissan Motor Co., Ltd. Vehicle travel control method and travel control device
KR102629625B1 (ko) * 2016-11-01 2024-01-29 주식회사 에이치엘클레무브 주행차로 변경장치 및 주행차로 변경방법
KR102383427B1 (ko) * 2016-12-16 2022-04-07 현대자동차주식회사 자율주행 제어 장치 및 방법
JP6706196B2 (ja) * 2016-12-26 2020-06-03 株式会社デンソー 走行制御装置
US10229600B2 (en) * 2017-02-22 2019-03-12 Telenav, Inc. Navigation system with traffic flow mechanism and method of operation thereof
JP6494121B2 (ja) * 2017-03-01 2019-04-03 本田技研工業株式会社 車線変更推定装置、車線変更推定方法、およびプログラム
US10814913B2 (en) 2017-04-12 2020-10-27 Toyota Jidosha Kabushiki Kaisha Lane change assist apparatus for vehicle
KR102254973B1 (ko) * 2017-04-25 2021-05-24 현대모비스 주식회사 주행 차선 안내 장치 및 그 제어 방법
US10710588B2 (en) * 2017-05-23 2020-07-14 Toyota Motor Engineering & Manufacturing North America, Inc. Merging and lane change acceleration prediction energy management
JP6642522B2 (ja) * 2017-06-06 2020-02-05 トヨタ自動車株式会社 車線変更支援装置
JP6627822B2 (ja) 2017-06-06 2020-01-08 トヨタ自動車株式会社 車線変更支援装置
JP6627821B2 (ja) 2017-06-06 2020-01-08 トヨタ自動車株式会社 車線変更支援装置
JP6897349B2 (ja) * 2017-06-09 2021-06-30 トヨタ自動車株式会社 運転支援装置
JP2019003234A (ja) * 2017-06-09 2019-01-10 トヨタ自動車株式会社 運転支援装置
JP6838525B2 (ja) * 2017-08-23 2021-03-03 日立Astemo株式会社 車両制御装置
US10089876B1 (en) * 2017-09-06 2018-10-02 Qualcomm Incorporated Systems and methods for coordinated lane-change negotiations between vehicles
US11225257B2 (en) * 2017-09-26 2022-01-18 Nissan Motor Co., Ltd. Driving assistance method and driving assistance device
KR102374916B1 (ko) * 2017-09-29 2022-03-16 주식회사 만도모빌리티솔루션즈 차선 유지 제어장치 및 제어방법
JP6933080B2 (ja) * 2017-10-05 2021-09-08 いすゞ自動車株式会社 車速制御装置
JP6600671B2 (ja) * 2017-10-12 2019-10-30 本田技研工業株式会社 車両制御装置
US10156850B1 (en) * 2017-12-08 2018-12-18 Uber Technologies, Inc. Object motion prediction and vehicle control systems and methods for autonomous vehicles
CN108569296B (zh) * 2017-12-15 2020-06-16 上海蔚来汽车有限公司 自适应匹配辅助驾驶系统的方法及其实现模块
JP7047482B2 (ja) * 2018-03-09 2022-04-05 株式会社Jvcケンウッド 測長システム、車両連結システム、測長方法、およびプログラム
US11548509B2 (en) 2018-04-11 2023-01-10 Hyundai Motor Company Apparatus and method for controlling lane change in vehicle
US10843710B2 (en) 2018-04-11 2020-11-24 Hyundai Motor Company Apparatus and method for providing notification of control authority transition in vehicle
US11084490B2 (en) 2018-04-11 2021-08-10 Hyundai Motor Company Apparatus and method for controlling drive of vehicle
US11084491B2 (en) 2018-04-11 2021-08-10 Hyundai Motor Company Apparatus and method for providing safety strategy in vehicle
US11334067B2 (en) 2018-04-11 2022-05-17 Hyundai Motor Company Apparatus and method for providing safety strategy in vehicle
EP3552913B1 (en) 2018-04-11 2021-08-18 Hyundai Motor Company Apparatus and method for controlling to enable autonomous system in vehicle
US20190315405A1 (en) * 2018-04-11 2019-10-17 Hyundai Motor Company Apparatus and method for controlling lane change in vehicle
US11351989B2 (en) 2018-04-11 2022-06-07 Hyundai Motor Company Vehicle driving controller, system including the same, and method thereof
US11597403B2 (en) 2018-04-11 2023-03-07 Hyundai Motor Company Apparatus for displaying driving state of vehicle, system including the same and method thereof
EP3569460B1 (en) 2018-04-11 2024-03-20 Hyundai Motor Company Apparatus and method for controlling driving in vehicle
EP3552901A3 (en) 2018-04-11 2020-04-29 Hyundai Motor Company Apparatus and method for providing safety strategy in vehicle
US11077854B2 (en) 2018-04-11 2021-08-03 Hyundai Motor Company Apparatus for controlling lane change of vehicle, system having the same and method thereof
EP3552902A1 (en) 2018-04-11 2019-10-16 Hyundai Motor Company Apparatus and method for providing a driving path to a vehicle
US11173910B2 (en) 2018-04-11 2021-11-16 Hyundai Motor Company Lane change controller for vehicle system including the same, and method thereof
CN108829107B (zh) * 2018-06-27 2021-06-04 重庆长安汽车股份有限公司 基于通信的协同式队列行驶系统及基于该系统的组队和退出方法
EP3848271B1 (en) * 2018-09-07 2024-01-31 Nissan Motor Co., Ltd. Travel control method and travel control device for vehicle
JP2020050109A (ja) * 2018-09-26 2020-04-02 本田技研工業株式会社 車両制御装置、車両制御方法、及びプログラム
US10762791B2 (en) 2018-10-29 2020-09-01 Peloton Technology, Inc. Systems and methods for managing communications between vehicles
US10852727B2 (en) * 2018-11-26 2020-12-01 GM Global Technology Operations LLC System and method for control of an autonomous vehicle
JP7188452B2 (ja) * 2018-12-06 2022-12-13 日産自動車株式会社 走行支援方法、及び走行支援装置
US11119492B2 (en) 2019-02-12 2021-09-14 Sf Motors, Inc. Automatically responding to emergency service vehicles by an autonomous vehicle
JP7316064B2 (ja) * 2019-03-08 2023-07-27 株式会社Subaru 車両の制御装置、車両の制御方法及びプログラム
KR102645057B1 (ko) * 2019-04-10 2024-03-11 현대자동차주식회사 차량의 군집 주행 정보 출력 장치 및 방법
US11427196B2 (en) 2019-04-15 2022-08-30 Peloton Technology, Inc. Systems and methods for managing tractor-trailers
JP7159109B2 (ja) * 2019-05-16 2022-10-24 本田技研工業株式会社 車両制御装置、車両制御装方法、およびプログラム
US11001200B2 (en) * 2019-05-30 2021-05-11 Nissan North America, Inc. Vehicle occupant warning system
JP7123867B2 (ja) * 2019-06-28 2022-08-23 本田技研工業株式会社 車両制御装置、車両制御装方法、およびプログラム
JP7247042B2 (ja) * 2019-07-11 2023-03-28 本田技研工業株式会社 車両制御システム、車両制御方法、及びプログラム
CN112298200B (zh) * 2019-07-26 2022-12-23 魔门塔(苏州)科技有限公司 一种车辆的换道方法和装置
DE102019122249A1 (de) * 2019-08-19 2021-02-25 Zf Friedrichshafen Ag Verfahren zum Ermitteln eines Fahrspurwechsels, Fahrassistenzsystem und Fahrzeug
FR3104518B1 (fr) 2019-12-13 2022-06-24 Renault Sas Système et procédé de prédiction de la trajectoire d’un véhicule
JP7283416B2 (ja) * 2020-02-21 2023-05-30 株式会社デンソー 走行支援装置、走行支援方法、および走行支援プログラム
JP7061148B2 (ja) * 2020-03-31 2022-04-27 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
US11935404B2 (en) 2021-03-24 2024-03-19 Toyota Motor Engineering & Manufacturing North America, Inc. Integrated congested mitigation for freeway non-recurring queue avoidance
CN113335282B (zh) * 2021-06-01 2023-06-30 南京航空航天大学 一种基于博弈论的换道决策方法
CN113895462B (zh) * 2021-11-19 2023-07-07 天津天瞳威势电子科技有限公司 预测车辆换道的方法、装置、计算设备及存储介质
US12065173B2 (en) * 2022-03-29 2024-08-20 Honda Motor Co., Ltd. System and methods for speed and lane advisory in evaluating lane change events and opportunities

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307976A (ja) * 2001-04-17 2002-10-23 Toyota Motor Corp 走行支援装置
JP2004268644A (ja) * 2003-03-06 2004-09-30 Nissan Motor Co Ltd 車両用走行制御装置
JP4366419B2 (ja) 2007-09-27 2009-11-18 株式会社日立製作所 走行支援装置
JP2013107431A (ja) * 2011-11-18 2013-06-06 Mitsubishi Motors Corp 車間距離制御装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296767A (ja) * 1992-04-20 1993-11-09 Mitsubishi Electric Corp 車間距離検出装置
DE4313568C1 (de) * 1993-04-26 1994-06-16 Daimler Benz Ag Verfahren zur Leithilfe für einen Fahrspurwechsel durch ein Kraftfahrzeug
DE19921449C1 (de) * 1999-05-08 2001-01-25 Daimler Chrysler Ag Leithilfe bei einem Fahrspurwechsel eines Kraftfahrzeuges
DE10134367A1 (de) * 2001-07-14 2003-01-23 Daimler Chrysler Ag Verfahren zur Leithilfe für einen Fahrspurwechsel eines Fahrzeuges
JP3617502B2 (ja) * 2002-04-11 2005-02-09 日産自動車株式会社 車線逸脱防止装置
WO2003093857A2 (en) * 2002-05-03 2003-11-13 Donnelly Corporation Object detection system for vehicle
KR100559870B1 (ko) * 2003-11-04 2006-03-13 현대자동차주식회사 차량의 주행차로 변경방법
JP4379199B2 (ja) * 2004-05-17 2009-12-09 日産自動車株式会社 車線変更支援装置および方法
KR101075615B1 (ko) * 2006-07-06 2011-10-21 포항공과대학교 산학협력단 주행 차량의 운전자 보조 정보 생성 장치 및 방법
DE102006034122A1 (de) * 2006-07-24 2008-01-31 Robert Bosch Gmbh Fahrerassistenzsystem
CN101574970B (zh) * 2009-03-06 2014-06-25 北京中星微电子有限公司 一种监控车辆变更车道的方法及装置
US9041806B2 (en) * 2009-09-01 2015-05-26 Magna Electronics Inc. Imaging and display system for vehicle
RU2402445C1 (ru) * 2009-10-16 2010-10-27 Осман Мирзаевич Мирза Способ предупреждения столкновения транспортного средства с объектом, перемещающимся в переднебоковой зоне транспортного средства в направлении, пересекающем траекторию движения транспортного средства
JP4992959B2 (ja) * 2009-11-30 2012-08-08 株式会社デンソー 衝突回避支援装置、および衝突回避支援プログラム
JP5482167B2 (ja) * 2009-12-10 2014-04-23 アイシン・エィ・ダブリュ株式会社 車両用走行案内装置、車両用走行案内方法及びコンピュータプログラム
DE102011106746B4 (de) * 2011-06-28 2015-04-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Spurwechselassistenzsystem
CN102910126B (zh) * 2012-10-30 2015-03-04 浙江吉利汽车研究院有限公司杭州分公司 一种辅助车辆安全变更车道的方法及系统
DE102012025328A1 (de) * 2012-12-22 2013-07-11 Daimler Ag Unterstützen eines Fahrers eines Kraftfahrzeugs bei einem Spurwechsel durch eine geregelte Vorbeifahrt an einer Fahrzeugkolonne

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307976A (ja) * 2001-04-17 2002-10-23 Toyota Motor Corp 走行支援装置
JP2004268644A (ja) * 2003-03-06 2004-09-30 Nissan Motor Co Ltd 車両用走行制御装置
JP4366419B2 (ja) 2007-09-27 2009-11-18 株式会社日立製作所 走行支援装置
JP2013107431A (ja) * 2011-11-18 2013-06-06 Mitsubishi Motors Corp 車間距離制御装置

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016203745A (ja) * 2015-04-20 2016-12-08 トヨタ自動車株式会社 車両走行制御装置
US9884625B2 (en) 2015-04-20 2018-02-06 Toyota Jidosha Kabushiki Kaisha Vehicle traveling control device
CN106064626A (zh) * 2015-04-20 2016-11-02 丰田自动车株式会社 车辆行驶控制装置
JP2020109001A (ja) * 2015-06-08 2020-07-16 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド 自律移動体のため車線変更方法
JP2017001665A (ja) * 2015-06-08 2017-01-05 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド 自律移動体のため車線変更方法
JP7050102B2 (ja) 2015-06-08 2022-04-07 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド 自律移動体のため車線変更方法
JP2017019358A (ja) * 2015-07-09 2017-01-26 富士重工業株式会社 車両の運転支援装置
JP2017021506A (ja) * 2015-07-09 2017-01-26 日産自動車株式会社 走行制御装置
US9809223B2 (en) 2015-07-09 2017-11-07 Subaru Corporation Driving assistant for vehicles
CN106335509A (zh) * 2015-07-09 2017-01-18 富士重工业株式会社 车辆的驾驶辅助装置
JP2017047814A (ja) * 2015-09-03 2017-03-09 株式会社デンソー 車両認識装置
JP2017065420A (ja) * 2015-09-30 2017-04-06 日立オートモティブシステムズ株式会社 車線変更システム
WO2017056726A1 (ja) * 2015-09-30 2017-04-06 日立オートモティブシステムズ株式会社 車線変更システム
US10663971B2 (en) 2015-09-30 2020-05-26 Hitachi Automotive Systems, Ltd. Lane change system
CN108137044B (zh) * 2015-09-30 2021-02-26 日立汽车系统株式会社 车道变更系统
CN108137044A (zh) * 2015-09-30 2018-06-08 日立汽车系统株式会社 车道变更系统
JP2017084112A (ja) * 2015-10-28 2017-05-18 株式会社デンソー 情報提示システム
KR102420922B1 (ko) 2015-11-09 2022-07-15 엘지전자 주식회사 차량 운전 보조장치 및 이를 포함하는 차량
KR20170053880A (ko) * 2015-11-09 2017-05-17 엘지전자 주식회사 차량 운전 보조장치 및 이를 포함하는 차량
CN106904165A (zh) * 2015-12-22 2017-06-30 奥迪股份公司 用于在交通堵塞情况中操作机动车辆的控制单元的方法
CN106904165B (zh) * 2015-12-22 2019-10-25 奥迪股份公司 用于在交通堵塞情况中操作机动车辆的控制单元的方法
JP2017190106A (ja) * 2016-04-15 2017-10-19 株式会社デンソー 支援装置
JP2018025989A (ja) * 2016-08-10 2018-02-15 トヨタ自動車株式会社 自動運転システム
JP2018062300A (ja) * 2016-10-14 2018-04-19 トヨタ自動車株式会社 車両制御システム
JPWO2018131298A1 (ja) * 2017-01-13 2019-11-07 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
WO2018131298A1 (ja) * 2017-01-13 2018-07-19 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
JP2020508509A (ja) * 2017-02-10 2020-03-19 ニッサン ノース アメリカ,インク 自律走行車の動作管理制御
US10654476B2 (en) 2017-02-10 2020-05-19 Nissan North America, Inc. Autonomous vehicle operational management control
US11113973B2 (en) 2017-02-10 2021-09-07 Nissan North America, Inc. Autonomous vehicle operational management blocking monitoring
US11500380B2 (en) 2017-02-10 2022-11-15 Nissan North America, Inc. Autonomous vehicle operational management including operating a partially observable Markov decision process model instance
US11148666B2 (en) * 2017-06-27 2021-10-19 Honda Motor Co., Ltd. Vehicle control apparatus
JP2019018788A (ja) * 2017-07-20 2019-02-07 株式会社Soken 車両制御装置及び車両制御方法
JP2019028733A (ja) * 2017-07-31 2019-02-21 日野自動車株式会社 隊列走行システム
JP2019028000A (ja) * 2017-08-02 2019-02-21 クラリオン株式会社 走行支援装置、渋滞検出方法
US10836405B2 (en) 2017-10-30 2020-11-17 Nissan North America, Inc. Continual planning and metareasoning for controlling an autonomous vehicle
US11027751B2 (en) 2017-10-31 2021-06-08 Nissan North America, Inc. Reinforcement and model learning for vehicle operation
US11702070B2 (en) 2017-10-31 2023-07-18 Nissan North America, Inc. Autonomous vehicle operation with explicit occlusion reasoning
US11084504B2 (en) 2017-11-30 2021-08-10 Nissan North America, Inc. Autonomous vehicle operational management scenarios
US11874120B2 (en) 2017-12-22 2024-01-16 Nissan North America, Inc. Shared autonomous vehicle operational management
US11110941B2 (en) 2018-02-26 2021-09-07 Renault S.A.S. Centralized shared autonomous vehicle operational management
US11120688B2 (en) 2018-06-29 2021-09-14 Nissan North America, Inc. Orientation-adjust actions for autonomous vehicle operational management
JP2020166837A (ja) * 2019-03-28 2020-10-08 バイドゥ オンライン ネットワーク テクノロジー (ベイジン) カンパニー リミテッド 無人車両の車線変更方法、装置、記憶媒体、及びプログラム
JP2020166318A (ja) * 2019-03-28 2020-10-08 日本電気株式会社 車線変更支援装置、車線変更支援方法、プログラム
JP7363073B2 (ja) 2019-03-28 2023-10-18 日本電気株式会社 車線変更支援装置、車線変更支援方法、プログラム
US11409288B2 (en) 2019-03-28 2022-08-09 Apollo Intelligent Driving Technology (Beijing) Co., Ltd. Lane changing method, device for driverless vehicle and computer-readable storage medium
JP7257882B2 (ja) 2019-05-24 2023-04-14 日産自動車株式会社 走行支援方法及び走行支援装置
JP2020191032A (ja) * 2019-05-24 2020-11-26 日産自動車株式会社 走行支援方法及び走行支援装置
US11635758B2 (en) 2019-11-26 2023-04-25 Nissan North America, Inc. Risk aware executor with action set recommendations
JP7365872B2 (ja) 2019-11-26 2023-10-20 日産自動車株式会社 車線変更支援方法及び車線変更支援装置
US12001211B2 (en) 2019-11-26 2024-06-04 Nissan North America, Inc. Risk-aware executor with action set recommendations
US11899454B2 (en) 2019-11-26 2024-02-13 Nissan North America, Inc. Objective-based reasoning in autonomous vehicle decision-making
JP2021084479A (ja) * 2019-11-26 2021-06-03 日産自動車株式会社 車線変更支援方法及び車線変更支援装置
US11613269B2 (en) 2019-12-23 2023-03-28 Nissan North America, Inc. Learning safety and human-centered constraints in autonomous vehicles
US11300957B2 (en) 2019-12-26 2022-04-12 Nissan North America, Inc. Multiple objective explanation and control interface design
US11714971B2 (en) 2020-01-31 2023-08-01 Nissan North America, Inc. Explainability of autonomous vehicle decision making
US11577746B2 (en) 2020-01-31 2023-02-14 Nissan North America, Inc. Explainability of autonomous vehicle decision making
CN113479207A (zh) * 2020-03-16 2021-10-08 本田技研工业株式会社 移动体控制装置、移动体以及移动体控制方法
JP7125957B2 (ja) 2020-03-16 2022-08-25 本田技研工業株式会社 移動体制御装置、移動体及び移動体制御方法
JP2021149119A (ja) * 2020-03-16 2021-09-27 本田技研工業株式会社 移動体制御装置、移動体及び移動体制御方法
CN113479207B (zh) * 2020-03-16 2024-03-26 本田技研工业株式会社 移动体控制装置、移动体以及移动体控制方法
US11577731B2 (en) 2020-03-16 2023-02-14 Honda Motor Co., Ltd. Moving body control apparatus, moving body, and moving body control method
US11782438B2 (en) 2020-03-17 2023-10-10 Nissan North America, Inc. Apparatus and method for post-processing a decision-making model of an autonomous vehicle using multivariate data

Also Published As

Publication number Publication date
MX2016004520A (es) 2016-07-06
US9718473B2 (en) 2017-08-01
MY161720A (en) 2017-05-15
JPWO2015052865A1 (ja) 2017-03-09
US20160297447A1 (en) 2016-10-13
EP3056405A4 (en) 2017-04-19
RU2624392C1 (ru) 2017-07-03
CN105636849B (zh) 2018-05-18
BR112016007927B1 (pt) 2021-01-19
EP3056405A1 (en) 2016-08-17
EP3056405B1 (en) 2018-01-17
MX346612B (es) 2017-03-27
JP6052424B2 (ja) 2016-12-27
CN105636849A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
JP6052424B2 (ja) 走行制御装置及び走行制御方法
JP6273754B2 (ja) 走行制御装置及び走行制御方法
JP6451111B2 (ja) 走行支援装置及び走行支援方法
JP6222137B2 (ja) 車両制御装置
US10453346B2 (en) Vehicle light control
JP6337435B2 (ja) 運転支援装置
US20160139598A1 (en) Autonomous driving vehicle system
JP5360235B2 (ja) 車両制御装置
CN110799403B (zh) 车辆控制装置
JP6729326B2 (ja) 自動運転装置
JP7081423B2 (ja) 情報処理システム
JP6299496B2 (ja) 走行支援装置及び走行支援方法
JP2021020580A (ja) 車両制御装置、車両制御方法、およびプログラム
JP2021507849A (ja) 車両の縦方向動力を自動的に調整するための方法および装置
JP2017088045A (ja) 走行制御装置
JP6446245B2 (ja) 自動運転制御装置
CN114763135A (zh) 一种车辆行驶控制方法、装置、电子设备及存储介质
JP2017073060A (ja) 車線変更支援装置
JP5375924B2 (ja) 走行制御計画生成装置
JP5716560B2 (ja) 車両支援装置
JP6264271B2 (ja) 車両走行制御装置
JP2020015345A (ja) 車両制御装置
JP7530823B2 (ja) 走行支援方法、及び、走行支援装置
JP7211479B2 (ja) 運転支援装置
JP2011031768A (ja) 車両制御装置および車両制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14852920

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015541419

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/004520

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15028560

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016007927

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2014852920

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014852920

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201603110

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2016118004

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016007927

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160408