CN110799403B - 车辆控制装置 - Google Patents

车辆控制装置 Download PDF

Info

Publication number
CN110799403B
CN110799403B CN201880043032.6A CN201880043032A CN110799403B CN 110799403 B CN110799403 B CN 110799403B CN 201880043032 A CN201880043032 A CN 201880043032A CN 110799403 B CN110799403 B CN 110799403B
Authority
CN
China
Prior art keywords
vehicle
inter
vehicle distance
target
distance information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880043032.6A
Other languages
English (en)
Other versions
CN110799403A (zh
Inventor
今井正人
儿岛隆生
万谷洁
毛塚润
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Publication of CN110799403A publication Critical patent/CN110799403A/zh
Application granted granted Critical
Publication of CN110799403B publication Critical patent/CN110799403B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/162Speed limiting therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed

Abstract

本发明提供能够基于与前车及后车的车间距信息控制自身车辆的车辆控制装置。以维持与前车(C0)的车间距的方式控制自身车辆(C1)的车辆控制装置(10)具备:基于与前车(C0)的车间距信息及与后车(C2)的车间距信息计算目标车间距信息的目标车间距运算部(13);以及以保持计算出的目标车间距信息的方式控制自身车辆(C1)的速度的车辆控制部(14)。

Description

车辆控制装置
技术领域
本发明涉及车辆控制装置。
背景技术
提出有各种使用车载照相机、雷达等外界识别传感器识别自身车辆周边的物体(车辆、行人、建筑物等)、道路标示、标识(划分线等路面涂料、停止等的标识等)的技术。而且,还提出了使用这些外界识别技术控制自身车辆,提高乘客的安全感、舒适性的技术。
近年来,还提出了支持追随前车的辅助行驶、取代驾驶员自动地行驶的技术(专利文献1)。专利文献1记载的现有技术中,在自身车辆执行追随前车的追随控制中,若后车相对于自身车辆接近,则基于与后车的车间距距离补正加减速度,避免与前车及后车的接触。
现有技术文献
专利文献
专利文献1:日本特开平7-172208号公报
发明内容
发明所要解决的课题
专利文献1公开的现有技术中,以与后车的车间距距离越近,加减速度越变缓的方式补正。因此,在与后车的车间距距离近的情况下,若前车以预定值以上的减速度减速,则自身车辆无法产生用于避免与前车的接触的减速度,存在导致接近前车的问题。
本发明鉴于上述课题而做成,其目的在于提供能够基于与前车及后车的车间距信息控制自身车辆的车辆控制装置。
用于解决课题的方案
为了解决上述课题,根据本发明的一观点的车辆控制装置,以维持与前车的车间距的方式控制自身车辆,上述车辆控制装置具备:基于与前车的车间距信息及与后车的车间距信息计算目标车间距信息的目标车间距运算部;以及以保持计算出的目标车间距信息的方式控制自身车辆的速度的车辆控制部。
发明的效果
根据本发明,能够基于与前车的车间距信息及与后车的车间距计算出目标车间距信息,能够以保持计算出的目标车间距信息的方式控制自身车辆的速度。由此,能够兼顾易用性和安全性。
附图说明
图1是表示车辆控制装置的整体结构的说明图。
图2是表示车辆控制处理的流程图。
图3是表示图2中的一部分的步骤的详情的流程图。
图4是表示变更目标车间距时间的方案的说明图。
图5是表示将目标车间距时间返回预定值时的变化率的设定例的图表。
图6是表示变更目标车间距时间的另一方案的说明图。
图7是表示变更目标车间距时间的再另一方案的说明图。
图8是表示与前车的车间距时间及与后车的车间距时间的关系的说明图。
图9是表示第二实施例的车辆控制装置的结构的块图。
图10是表示车辆控制处理的流程图。
图11是表示变更目标车间距时间的方案的说明图。
图12是表示第三实施例的车辆控制装置的结构的块图。
图13是表示车辆控制处理的流程图。
图14是表示变更目标车间距时间的方案的说明图。
具体实施方式
以下,基于附图说明本发明的实施方式。如后述地,本实施方式中,在车道变更时的目标车间距信息的切换过渡期(设定变更时),使目标车间距从此前的值(设定变更前的预定值)临时降低至进行车道变更时的与前车的车间距信息(目标车间距信息=与前车的车间距信息<设定变更前的预定值)。之后,基于与后车的车间距信息,使目标车间距信息以预定的变化率恢复到设定变更前的预定值。
因此,本实施方式的车辆控制装置是检测与前车的车间距信息并以保持为预先设定的车间距信息设定值的方式控制自身车辆的速度的车辆控制装置,其检测与后车的车间距信息,基于上述与前车的车间距信息及上述与后车的车间距信息,在预定的范围内设定目标车间距,并以保持为设定的上述目标车间距的方式控制自身车辆的速度。
由此,根据本实施方式,基于与后车的车间距信息(车间距时间或车间距距离)使相对于前车的车间距设定值动态地变化,因此能够进行考虑到前车及后车双方的平顺且安全的行驶。另外,在本实施方式中,抑制使后车进行意外的急减速的可能,因此能够降低对比后车更靠后方的交通流的不良影响(发生堵车等)。
实施例1
使用图1~图8对实施例进行说明。图1是表示车辆控制装置10的整体结构的说明图。
图1中示出了车辆控制装置10及其周边装置20、31、32、41、42。图1示例的车辆控制装置10是控制自身车辆的计算机,通过执行存储于未图示的存储介质的程序,实现前车信息运算部11、后车信息运算部12、目标车间距运算部13、车辆控制部14的各功能。
车辆控制装置10连接于外界识别装置20、驱动装置31、制动装置32、发声装置41、显示装置42。另外,车辆控制装置10经由自身车辆的通信网络(未图示)从自身车辆内的各传感器取得车速、转向角、横摆率等车辆信息。作为在自身车辆使用的通信网络,已知例如CAN(Controller Area Network)。CAN是指用于连接车载的电路、各装置的网络标准。
外界识别装置20取得与自身车辆的周围环境相关的信息,例如是拍摄自身车辆的前方的车载立体照相机、分别拍摄自身车辆的前方、后方、右侧方、左侧方的周围环境的四个车载照相机。
这些车载照相机使用得到的图像数据检测自身车辆周边的静止立体物、移动体、车道划分线等路面涂料、标识等物体的形状、位置,而且具有检测路面的凹凸等,判断是否为自身车辆可行驶的路面的判断功能。
在此,静止立体物例如是停止车辆、墙壁、电线杆、塔门、路牙、车档等。另外,移动体为例如路人、自行车、摩托车、车辆等。而且,也可以构成为,作为用于推断移动体的状态的信息,检测刹车灯、转向指示器有无点亮、车内有无人等。以下,将静止立体物和移动体双方总地称为障碍物。
物体的形状、位置例如能够使用图案匹配方法、其它方法来检测。物体的位置例如能够使用以拍摄自身车辆的前方的车载照相机的位置为原点的坐标系来表现。并且,使用专用线路、CAN等将得到的物体的种类、距离、其方位等信息输出至车辆控制装置10。
此外,也可以采用将由车载照相机得到的图像使用专用线路等输出至车辆控制装置10,在车辆控制装置10内处理图像数据的方式。另外,除了车载照相机以外,也能够使用毫米波、激光计测与物体的距离的雷达、使用超声波计测与物体的距离的声呐等。将这些由雷达、声呐得到的与物体的距离及其方位等信息使用专用线路、CAN等输出至车辆控制装置10。
也可以将用于进行与自身车辆的外部的通信的通信装置包含于外界识别装置20。车辆控制装置10使用通信装置与自身车辆周边的车辆通信,由此能够交换车辆位置、速度的信息等。车辆控制装置10使用通信装置与路侧的通信机通信,由此也能够更换交换搭载于自身车辆的传感器无法检测到的信息(例如,自身车辆的死角的障碍物的信息等)。
驱动装置31由例如根据来自车辆控制装置10的驱动指令动作的发动机系统、可通过来自车辆控制装置10的驱动指令控制的电动传动系统等构成。在这样的发动机系统中,当接收来自车辆控制装置10的驱动指令时,使电动油门等动作,由此控制发动机扭矩。电动传动系统中,当接收来自车辆控制装置10的驱动指令时,通过马达等控制驱动力。
制动装置32具备电动制动器、液压制动器等。这些制动器根据来自车辆控制装置10的制动指令控制制动力。
发声装置41由喇叭等构成。车辆控制装置10从发声装置41输出对驾驶员的警报、语音指导等。
显示装置42能够由导航装置等的显示器、仪表盘、警告灯等构成。车辆控制装置10除了车辆控制装置10的操作画面,还从显示装置42向乘客提供视觉表现自身车辆的行驶状态的画面等。
此外,如在后述的实施例中叙述地,车辆控制装置10也能够控制转向装置33。转向装置33能够具备电动助力转向装置、液压助力转向装置。这些助力转向装置当接收来自车辆控制装置10的驱动指令时吗,使电动、液压的驱动器等动作来控制转向角。
对车辆控制装置10实现的功能进行说明。前车信息运算部11从由外界识别装置20检测出的自身车辆周边的车辆选择自身车辆追随的车辆作为前车,运算该前车与自身车辆的车间距距离、相对速度、车间距时间。此外,关于前车的选择方法,能够使用选择自身车辆的行进路前方的车辆作为前车等、已知的方法。
后车信息运算部12从由外界识别装置20检测出的自身车辆周边的车辆选择追随自身车辆的车辆作为后车,运算该后车与自身车辆的车间距距离、相对速度、车间距时间。此外,关于后车的选择方法,能够使用选择自身车辆的行进路后方的车辆作为后车等、已知的方法。
目标车间距运算部13通常将系统启动时预先设定的预定值(车间距设定值)设定为目标车间距(目标车间距值)。预定值能够如后述的其它附图所示地显示为Tset。
目标车间距运算部13在基于前车信息运算部11运算出的信息及后车信息运算部12运算出的信息判断为需要变更目标车间距的情况下,运算新的目标车间距。
此外,预先设定的车间距设定值也可以使用开关操作、对触摸面板的操作、音声识别等由乘客手动设定。作为“设定变更前的预定值”的车间距设定值和目标车间距可以表现为车间距距离及车间距时间的任一个。以下的说明中,采用车间距时间。
车辆控制部14基于由目标车间距运算部13运算出的信息以将与前车的车间距保持为目标车间距的方式控制自身车辆。另外,车辆控制部14在不存在前车的情况下,按照乘客预先设定的设定速度控制自身车辆。而且,车辆控制部14在能够利用限制速度的信息、道路曲率等信息的情况下,也能够将按照这些信息的速度作为上限值控制自身车辆。
而且,车辆控制部14运算用于控制自身车辆的目标速度,计算用于实现该目标速度的控制参数。控制参数具有目标发动机扭矩、目标制动器压力。车辆控制部14将计算出的控制参数输出至驱动装置31、制动装置32。
另外,车辆控制部14通过发声装置41和/或显示装置42向乘客通知预定的信息。预定的信息例如具有目标速度的信息、根据目标车间距运算部13目标车间距变更的情况的状况、前车信息运算部11选择的前车的信息、后车信息运算部12选择的后车等的信息等。
如图1的下侧所示,本实施例的车辆控制装置10在自身车辆C1从当前行驶中的车道La向相邻车道Lb转移的情况下,将在相邻车道Lb行驶的车辆C0、C2中的在自身车辆C1的前方行驶的车辆C0识别成前车,将在自身车辆C1的后方行驶的车辆C2识别成后车。
然后,车辆控制装置10基于车道变更时的前车C0及后车C1的识别时的与前车的车间距时间Tf和与后车C2的车间距时间Tr算出目标车间距时间Tf1。详情在图2进行叙述,但车辆控制装置10的目标车间距运算部13根据识别到前车及后车的时刻(预定定时)的与前车C0的车间距时间Tf求出目标车间距时间Tf1。
目标车间距时间Tf1一般比设定变更前的预定值(车间距设定值)小(目标车间距时间Tf1<预定值)。这是因为,车道变更时,在前车C0通过后,迅速向相邻车道Lb移动。
目标车间距运算部13在车道变更后从目标车间距时间Tf1以预定的变化率θ逐渐恢复至车道变更前的目标车间距时间即预定值。即,目标车间距运算部13使目标车间距时间的值从车道变更后的小的值Tf1向车道变更前的通常值即预定值以预定的变化率θ增加。
使用图2的流程图,说明车辆控制装置10的处理顺序的一例。车辆控制装置10取得外界信息和车辆信息(S10)。在此,外界信息是由外界识别装置20输入的信息。车辆信息是自身车辆的车速、转向角、横摆率等信息。
车辆控制装置10的前车信息运算部11使用在步骤S10取得的外界信息,从周边的车辆中判断前车,并且运算前车信息(车间距距离、相对速度、车间距时间)(S11)。
车辆控制装置10的后车信息运算部12使用在步骤S10取得的外界信息,从周边的车辆中判断后车,并且运算后车信息(车间距距离、相对速度、车间距时间)(S12)。
车辆控制装置10的目标车间距运算部13使用在步骤S11运算出的前车信息和在步骤S12运算出的后车信息,运算车道变更后使用的目标车间距(S13)。
车辆控制装置10的车辆控制部14运算用以使自身车辆以保持在步骤S13运算出的目标车间距的方式行驶的控制参数(S14)。在此,控制参数例如为目标发动机扭矩、目标制动器压力。步骤S14是“控制参数运算部”的例。
车辆控制部14将在步骤S14运算出的控制参数输出至驱动装置31及制动装置32,结束一连串的处理(S15)。详细而言,车辆控制部14将在步骤S14运算出的控制参数中的与驱动装置31相关的控制参数输出至驱动装置31,将与制动装置32相关的控制参数输出至制动装置32。步骤S15是“控制参数输出部”的例。
此外,作为向驱动装置31和制动装置32输出的控制参数,可以列举用于实现目标速度的目标发动机扭矩、目标制动器压力等。取而代之,也可以根据驱动装置31和制动装置32的结构,直接将目标速度从车辆控制部14向驱动装置31和制动装置32输出。
使用图3的流程图说明图2中的步骤S13的详情。图3是与目标车间距运算处理(图2的S13)相关的流程图。
目标车间距运算部13使用在图2的步骤S11及步骤S12运算出的前车信息及后车信息判断是否为切换目标车间距的定时(S130)。该切换定时相当于“预定的定时”。
目标车间距运算部13若判断为达到切换目标车间距的定时(S130:YES),则基于前车信息及后车信息从预先设定的预定值(车间距设定值)切换成目标车间距Tf1,结束一连串的处理。
此时,切换的目标车间距设为Tf1,在与后车的车间距为预定值(例如,车间距时间1秒)以下的情况下,将与前车的车间距Tf设定为目标车间距Tf1。但是,在与前车的车间距Tf低于作为下限阈值的预定值Tfmin(例如,车间距时间0.2秒)的情况下(Tf<Tfmin),目标车间距运算部13不将与前车的车间距Tf设定为目标车间距,而使设定判断出的预定值(在图7后述)。
在本实施例中,在后车接近的情况且并未过度接近前车的情况下,将车道变更时的与前车的车间距Tf用作目标车间距时间Tf1。因此,在本实施例中,能够抑制自身车辆过于接近前车。
另一方面,目标车间距运算部13若判断为不是切换定时(S130:否),则判断当前的目标车间距Tf是否低于预定值(S132)。目标车间距运算部13若判断为当前的目标车间距Tf低于预定值(S132:YES),则执行使目标车间距Tf恢复预定值的处理(S133),结束一连串的处理。
在此,作为将目标车间距恢复到设定值的方法,具有如下方法:基于与后车的车间距决定恢复时的变化量(斜率)θ,在每处理周期逐渐返回到设定值。例如,在与后车的车间距小的情况下,将恢复的变化量设定得小,相对于后车不会急速接近,在与后车的车间距大的情况下,将恢复的变化量设定得大。
另一方面,目标车间距运算部13若判断为当前的目标车间距Tf为预定值以上(S132:否),则将预定值带入目标车间距Tf,结束一连串的处理。
如以上所说明地,根据本实施例,能够基于前车信息及后车信息的双方控制目标车间距,因此能够防止相对于后车的急速接近,能够进行平顺且安全的速度控制。
使用图4至图8表示本实施例的动作例。图4、图6、图7是假定自身车辆C1从合流路Lc向两车道的主道Ld合流的场面的状况说明图。划分主道的车道的线的图示进行了省略。本实施例表示左侧通行的合流。因此,图示的主道中的右侧的空白部分为相邻的车道。在主道Ld的任意的车道行驶中的自身车辆向其它车道转移的情况也同样。以下,为了表示时间系列的顺序,在车辆的符号添加带括号的数字。
在图4的地点P0,自身车辆C1(0)按照预先设定的目标车间距的预定值被控制。自身车辆C1(0)在合流路Lc行驶,车辆C0、C1在主道Ld行驶。自身车辆C1(0)与车辆C0、C1并列行驶,并开始合流。
并且,当自身车辆C1(1)到达地点P1时,将前车C0(1)设备成前车,将后车C2(2)识别成后车。此时,在与后车C2(1)的车间距时间Tr为预定值(例如,1秒)以下,而且与前车C0(1)的车间距时间Tf低于预定值的情况下,与前车C0(1)的车间距时间Tf设定为目标车间距Tf1。
这样,在车道变更时,目标车间距临时变更成比预定值低的值Tf1。然后,目标车间距Tf1按照预定的变化率θ逐渐增加,在地点P2恢复到作为初始的值的预定值。
使用图5说明将目标车间距返回到预定值时使用的变化率(斜率)θ的设定例。图5是表示基于与后车的车间距时间Tr的变化率θ的图表。
图5(a)中,与后车的车间距时间Tr和变化率θ处于线性关系。但是,在与后车设定车间距时间Tr为极限车间距时间以下的情况下,将变化率θ设定为零,防止自身接近后车。
图5(b)表示另一例,与后车的车间距时间Tr和变化率θ处于曲线关系。该情况下也与图5(a)同样地,在与后车的车间距时间Tr为极限车间距时间以下的情况下,将变化率θ设为零,以使自己不会接近后车的方式设定。
此外,也可以根据在地点P1的与后车的车间距时间Tr将变化率θ设定为恒定值。或者,也可以在每个处理周期逐渐参照变化率θ而设定目标车间距时间。
图6针对图4说明的状况,表示自身车辆C1合流时在主道Ld行驶的车辆C0、C2比自身车辆C1速度高的情况。
与图4的情况同样地,在地点P1,车辆控制装置10将车辆C0设为前车,将车辆C2设为后车,分别进行判断。
在与后车C2地车间距时间Tr为预定值(例如,1秒)以下且与前车C0的车间距时间Tf低于预定值的情况下,将与前车C0的车间距时间Tf设定为目标车间距Tf1。
此时,使用了基于与后车的车间距时间Tr决定的变化率θ的目标车间距时间应当如虚线L1那样,但是,在此,前车C0比车辆C1速度高,因此与前车C0的车间距时间Tf如两点划线L2那样变化。
车道变更时的前车C0的车速比自身车辆C1的车速快的情况下,在与前车C0的车间距时间Tf从增加的倾向向降低的倾向变化的定时,设定值不减小的目标车间距时间L3。然后,持续至与虚线L1相交的时刻,然后,执行与图4同样的动作。由此,能够设定考虑到自身车辆C1与主道车辆C0的速度差的目标车间距时间。
图7针对图4说明的状况表示自身车辆C1从合流路Lc向主道Ld合流时与在主道Ld行驶的车辆C0的车间距时间Tf短的情况。
与图4同样地,在地点P1将车辆C0(1)设为前车,将车辆C2(1)设为后车进行了判断。
在与后车C2(1)的车间距时间Tr为预定值(例如,1秒)以下且与前车C0(1)的车间距时间Tf为低于预定值且为最低阈值Tfmin(例如,0.2秒)以下的情况,将最低阈值Tfmin作为目标车间距Tf1而设定。
之后,执行与图4同样的动作。由此,能够抑制自身车辆C1意外地过于接近前车C0,能够降低与前车C0接触的可能性。
图8是表示本实施例的与前车的车间距时间和与后车的车间距时间的关系的图表。各个轴规定了极限车间距时间。在将极限车间距时间降低的情况下,前车或后车和自身车辆过于接近的可能性提高。
虚线54表示未搭载车辆控制装置10的比较例的情况。在比较例中,仅将前车C0作为控制对象。在比较例中,如图中的虚线54所示,在车道变更后,将与前车C0的车间距距离扩大到预定值,因此与后车的车间距时间低于极限车间距时间的可能性小。
与之相对,在搭载本实施例的车辆控制装置10的车辆C1的情况下,如实线51~53所示地,与车道变更时的车间距控制开始时的位置关系无关地,与前车的车间距时间及与后车的车间距时间被适当地控制,不会低于各个极限车间距时间。
根据这样的结构的本实施例,能够在车道变更时基于与后车的车间距时间使与前车的目标车间距时间动态地变化,因此,能够实现考虑到前车及后车双方的平顺且安全的行驶。
另外,根据本实施例,使后车进行意外的急减速的可能性降低,因此能够降低对比后车靠后方的交通流的不良影响(发生堵车等)。
实施例2
使用图9~图11,对第二实施例进行说明。在包括本实施例的以下的各实施例中,以与第一实施例的差异为中心进行叙述。
图9是第二实施例的车辆控制装置10a的概略结构图。图9中示出了车辆控制装置10a及其周边装置31~33、41、42。
车辆控制装置10a是控制自身车辆的计算机,通过执行存储于未图示的存储介质的程序,实现前车信息运算部11、后车信息运算部12、目标车间距运算部13、车辆控制部14、周边环境识别部15、道路信息取得部16、目标路径生成部17的各功能。
车辆控制装置10a除了图1的结构,还连接于转向装置33。
道路信息取得部16取得当前的自车位置周边的地图数据。取得的地图数据是用多边形、折线等表现的近似于实际的道路形状的形状数据和通行限制信息(限制速度、可通行车辆种类等)、车道划分(主道、超车道、慢性车道、直行车道、左转车道、右转车道等)、信号机、标识等的有无(有的情况下,其位置信息)等数据。地图数据可以从自身车辆内的存储介质取得,也可以从外部的地图数据发送服务器取得。
周边环境识别部15具有前车信息运算部11和后车信息运算部1b。周边环境识别部15基于由外界识别装置20检测出的与物体的形状、位置相关的信息和判断是否为自身车辆可行驶的路面的判断结果,例如,如果是在一般道行驶的情况,则检测可行驶的车道位置、交叉点的可转弯空间等。
另外,周边环境识别部15具有根据由外界识别装置20检测出的自身车辆周边的移动体的当前预测将来的举动的功能。例如,使用由道路信息取得部16取得的地图数据、由外界识别装置20检测出的车辆的状态(例如,方向指示器的点亮状态等)判断在路边伸出停止的车辆是停在路上的车辆还是等待左转的车辆,或者存在于导流带(斑马线)上的车辆是否为等待右转的车辆等。
前车信息运算部11的基本功能与图1的前车信息运算部11相同,但是,在本实施例中,作为新的信息,可以进行通过道路信息取得部16与地图数据核对的判断。因此,本实施例的前车信息运算部11例如只要能够取得自身车辆的行驶车道及前车的行驶车道的信息,就能够使用这些行驶车道的信息判断前车。
后车信息运算部12也与前车信息运算部11同样地能够利用道路信息取得部16。本实施例的后车信息运算部12可以进行与地图数据核对的判断,因此,例如,只要能够取得自身车辆的行驶车道及后车的行驶车道的信息,就能够使用这些行驶车道的信息判断后车。
目标路径生成部17具有目标车间距运算部13,运算用于使自身车辆从当前的自车位置向目标位置移动的轨道及速度。目标路径生成部17根据以由道路信息取得部16取得的地图数据的车道信息为基础的进路信息生成行驶轨道。而且,目标路径生成部17使用地图数据的限制速度、路径的曲率、信号机、临时停止位置、前车/后车的速度/位置等信息运算在生成的行驶轨道行驶的目标速度。
车辆控制部14沿由目标路径生成部17生成的目标路径控制自身车辆。车辆控制部14基于目标路径运算目标转向角和目标速度。此外,车辆控制部14在预测自身车辆与障碍物的接触的情况下,以使自身车辆不接触障碍物的方式运算目标转向角和目标速度。
而且,车辆控制部14将用于实现该目标转向角的目标转向扭矩输出至转向装置33。另外,车辆控制部14将用于实现目标速度的目标发动机扭矩、目标制动器压力输出至驱动装置31、制动装置32。
进一步地,车辆控制部14将目标速度的信息或由目标车间距运算部13对目标车间距进行了变更的情况的状况、由前车信息运算部11选择的前车、由后车信息运算部12选择的后车等信息输出至发声装置41及显示装置42。
图10是表示车辆控制装置10a的处理顺序的一例的流程图。车辆控制装置10a的周边环境识别部15取得外界信息和车辆信息(S20),然后取得道路信息(S21)。
周边环境识别部15使用在步骤S20取得的外界信息及车辆信息、以及在步骤S21取得的道路信息,执行识别自身车辆周边的行驶环境的处理(S22)。具体而言,周边环境识别部15将障碍物等外界信息配置于地图数据上,检测自身车辆可行驶的车道位置、交叉点的可转弯空间等。在步骤S22,也合并执行图2的步骤S11及步骤S12的处理。
车辆控制装置10a的目标路径生成部17生成以进路为基础的目标路径(S23)。在该处理内,也合并执行在图2的步骤S13叙述的目标车间距运算处理。
车辆控制部14运算用于使自身车辆按照在步骤S23生成的目标路径行驶的控制参数(S24),且将运算出的控制参数分别输出至对应的转向装置33、驱动装置31、制动装置32(S25),结束一连串的处理。与上述同样地,步骤S24是“控制参数运算部”的例。步骤S25是“控制参数输出部”的例。
此外,作为对转向装置33输出的控制参数,可以列举用于实现目标操转向角的目标转向扭矩,但根据转向装置33的结构,也可以直接输出目标操转向角。
图11是表示自身车辆C1向两车道的主道合流的样子的状况说明图。
图11表示自身车辆C1向在主道行驶中的车辆C0与车辆C2之间在并排行驶的状态下合流的情况。
在图11(a)的地点P0,自身车辆C1在合流路行驶,此时的自身车辆C1的目标轨道60以沿着合流路的方式生成。自身车辆C1的目标速度以按照合流路的限制速度的方式运算。此时,自身车辆C1的目标车间距时间设定为预先设定的预定值。
如图11(b)所示,当自身车辆C1到达合流路与主道的连接点时,在此前方合流路被切断,因此需要进行向主道的车道变更。但是,在图11(b)中,车辆C0正在主道行驶,因此当自身车辆C1向主道进行了车道变更时,存在与车辆C0接触的可能性。因此,在图11(b)的时刻,以沿着和流路的方式运算目标轨道61。但是,在保持这样的状态下不能进行向主道的车道变更,因此车辆控制装置10a运算用于向主道的车辆C0与车辆C2之间移动的目标速度,并开始移动。
如图11(c)所示,自身车辆C1位于主道的车辆C0与车辆C1之间并排行驶,车辆控制装置10a判断为可以进行车道变更,运算用于向主道进行车道变更的目标轨道62。此时,以维持在主道的车辆C0与车辆C2之间的方式运算目标速度。
如图11(d)所示,当自身车辆C1开始向主道的车道变更且到达地点P1时,车辆控制装置10a将车辆C0判断成前车,将车辆C2判断成后车。
车辆控制装置10a在与后车C2的车间距时间Tr为预定值(例如,1秒)以下且与前车C0的车间距时间Tf低于预定值的情况下,将与前车C0的车间距时间Tf设定成目标车间距Tf1。然后,车辆控制装置10a使用在图5所说明的以与后车C2的车间距时间Tr为基础的变化率θ实施将目标车间距时间返回至预定值的处理。
在图11(e)中,自身车辆C1到达地点P2。自身车辆C1正在使用在图5所示的变化率θ将目标车间距时间逐渐返回到预定值Tset。然后,目标车间距时间恢复到预定值Tset。
这样构成的本实施例也起到与第一实施例同样的作用效果。而且,在应用于控制转向和速度双方的自动驾驶控制的情况下,能够基于与后车的车间距时间使相对于前车的目标车间距时间动态地变化,可以进行考虑到前车及后车双方的平顺且安全的行驶。另外,在本实施例中,不会使后车进行意外的急减速,因此能够降低对比后车靠后方的交通流的不良影响(发生堵车等)。
实施例3
使用图12~图14,对第三实施例进行说明。本实施例中,对车道变更时仅考虑前车控制目标车间距时间的情况进行说明。
图12是本实施例的车辆控制装置10b的概略结构图。本实施例的车辆控制装置10b相比第一实施例的车辆控制装置10,不具备后车信息运算部12。
图13是本实施例的车辆控制处理的流程图。本实施例的车辆控制处理相比在图2叙述的车辆控制处理不具备运算后车信息的步骤S12。
图14是表示自身车辆C1向两车道的主道合流的样子的状况说明图。图14表示自身车辆C1向主道行驶中的车辆C0的后方合流的情况。
在图14的地点P0,按照预先设定的目标车间距的预定值控制自身车辆C1(0)。
自身车辆C1在合流路行驶,与在主道行驶的车辆C0并排行驶,当到达地点P1时,自身车辆C1(1)开始合流,将车辆C0(1)判断为前车。车辆控制装置10b在与前车C0(1)的车间距时间Tf低于预定值的情况下,将与前车C0(1)的车间距时间Tf设定为目标车间距Tf1。
接下来,车辆控制装置10b执行使临时降低了的目标车间距以预定的变化率θ返回到预定值的处理。在地点P2,正在将目标车间距以预定的变化率θ返回到预定值。之后,目标车间距时间恢复到预定值。
在这样构成的本实施例中,即使在自身车辆C1以因车道变更等而有意地使与前车C0的车间距时间成为设定预定值以下的方式行驶的情况,也将目标车间距时间临时设定为比预定值低的值,从该低的值逐渐返回预定值,由此能够降低对乘客的不协调感。
此外,以上的说明只是一例,解释发明时,丝毫不限定于上述实施方式的记载事项与权利要求书的记载事项的对应关系。例如,作为车间距控制的参数,举出车间距时间来说明,但也可以取代车间距时间而使用车间距距离,而且,也可以是使用车间距时间、车间距距离运算出的其它参数。
另外,在各实施例中,以自身车辆从合流路向主道合流的情况为中心进行叙述,但本发明不限于此,例如,也能够用用于在多车道道路中进行车道变更的情况。
进一步地,在各实施例中,作为自身车辆举例说明了乘用车,但也可以将本发明应用于例如可自主行驶的建设机械、可自主行驶的机器人、所谓的无人机(陆地行驶型、空中移动型、水中或水上移动型的任一种都可以)等。
此外,第三实施例例如也能够如下表现。“一种车辆控制装置,检测与前车的车间距信息,且以保持为预先设定的车间距信息预定值的方式控制自身车辆的速度,该车辆控制装置的特征在于,在与上述前车的车间距信息低于上述车间距信息预定值的情况下,将与上述前车的车间距信息设定为上述目标车间距,将上述目标车间距以预定的比例返回到上述车间距信息预定值。”
进一步地,权利要求书记载的结构除了在权利要求书中明示的组合以外,还能够进行组合。
符号说明
10、10a、10b—车辆控制装置,11—前车信息运算部,12—后车信息运算部,13—目标车间距运算部,14—车辆控制部,15—周边环境识别部,16—道路信息取得部,17—目标路径生成部,20—外界识别装置,31—驱动装置,32—制动装置,33—转向装置,41—发声装置,42—显示装置,C0—前车,C1—自身车辆,C2—后车。

Claims (7)

1.一种车辆控制装置,以维持与前车的车间距的方式控制自身车辆,上述车辆控制装置的特征在于,具备:
基于与前车的车间距信息及与后车的车间距信息计算目标车间距信息的目标车间距运算部;以及
以保持上述计算出的目标车间距信息的方式控制自身车辆的速度的车辆控制部,
当到达预定的定时时,上述目标车间距运算部取代设定变更前的预定值而将与上述前车的车间距信息设定为上述目标车间距信息,
在上述预定的定时后,上述目标车间距运算部以与上述后车的车间距信息越变小而越减小的变化率将上述目标车间距信息恢复到上述设定变更前的预定值。
2.根据权利要求1所述的车辆控制装置,其特征在于,
上述车间距信息是车间距时间或车间距距离。
3.根据权利要求1所述的车辆控制装置,其特征在于,
在与上述前车的车间距信息处于预先设定的预定的范围的情况下,上述目标车间距运算部将与上述前车的车间距信息设定为上述目标车间距信息,在与上述前车的车间距信息处于上述预定的范围外的情况下,将根据与上述前车的车间距信息计算出的上述预定的范围内的值设定为上述目标车间距信息。
4.根据权利要求3所述的车辆控制装置,其特征在于,
在与上述后车的车间距信息为预先设定的预定值以下且与上述前车的车间距信息处于上述预定的范围的情况下,上述目标车间距运算部将与上述前车的车间距信息设定为上述目标车间距信息。
5.根据权利要求1所述的车辆控制装置,其特征在于,
上述预定的定时是在上述自身车辆进行车道变更时识别在车道变更目标的车道行驶的车辆中的上述前车及上述后车的定时。
6.根据权利要求2所述的车辆控制装置,其特征在于,
还具备目标路径生成部,该目标路径生成部基于来自识别上述自身车辆的周围的交通环境的外界识别装置的信息来生成包括上述自身车辆的速度及行进方向的目标路径,
上述目标车间距运算部被上述目标路径生成部使用。
7.根据权利要求2所述的车辆控制装置,其特征在于,还具备:
判断上述前车并运算与上述前车的车间距信息的前车信息运算部;判断上述后车并运算与上述后车的车间距信息的后车信息运算部;运算用于控制上述自身车辆的速度的控制参数的控制参数运算部;以及将上述运算出的控制参数输出至控制对象装置的控制参数输出部。
CN201880043032.6A 2017-08-23 2018-08-08 车辆控制装置 Active CN110799403B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017-159998 2017-08-23
JP2017159998A JP6838525B2 (ja) 2017-08-23 2017-08-23 車両制御装置
PCT/JP2018/029715 WO2019039275A1 (ja) 2017-08-23 2018-08-08 車両制御装置

Publications (2)

Publication Number Publication Date
CN110799403A CN110799403A (zh) 2020-02-14
CN110799403B true CN110799403B (zh) 2022-09-30

Family

ID=65439505

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880043032.6A Active CN110799403B (zh) 2017-08-23 2018-08-08 车辆控制装置

Country Status (5)

Country Link
US (1) US11247677B2 (zh)
JP (1) JP6838525B2 (zh)
CN (1) CN110799403B (zh)
DE (1) DE112018003112T5 (zh)
WO (1) WO2019039275A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6809890B2 (ja) * 2016-12-15 2021-01-06 日立オートモティブシステムズ株式会社 車両制御装置
WO2019166141A1 (en) * 2018-03-01 2019-09-06 Jaguar Land Rover Limited Vehicle control method and apparatus
JP7431081B2 (ja) * 2020-03-27 2024-02-14 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
JP7456392B2 (ja) 2021-01-12 2024-03-27 株式会社豊田中央研究所 管制装置及び管制システム
JP2022146655A (ja) * 2021-03-22 2022-10-05 トヨタ自動車株式会社 車両制御装置、車両制御方法及び車両制御用コンピュータプログラム
DE102021207640A1 (de) 2021-07-16 2023-01-19 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zum Betreiben eines automatisierten Fahrzeugs
JP7345580B2 (ja) 2022-02-14 2023-09-15 ソフトバンク株式会社 サーバおよび車両
US11491987B1 (en) * 2022-06-22 2022-11-08 Embark Trucks Inc. Merge handling based on merge intentions over time

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4313568C1 (de) * 1993-04-26 1994-06-16 Daimler Benz Ag Verfahren zur Leithilfe für einen Fahrspurwechsel durch ein Kraftfahrzeug
JP3276231B2 (ja) 1993-12-21 2002-04-22 マツダ株式会社 自動車の車速制御装置
JP3671745B2 (ja) * 1998-08-04 2005-07-13 株式会社デンソー 車間制御装置及び記録媒体
US6418370B1 (en) 1998-08-04 2002-07-09 Denso Corporation Apparatus and method for controlling a target distance and a warning distance between traveling vehicles and a recording medium for storing the control method
JP2002052952A (ja) * 2000-08-11 2002-02-19 Nissan Motor Co Ltd 車両用走行制御装置
JP4867561B2 (ja) * 2005-12-22 2012-02-01 日産自動車株式会社 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP4877773B2 (ja) * 2006-10-02 2012-02-15 クラリオン株式会社 車両の走行制御システム
JP2008265611A (ja) * 2007-04-23 2008-11-06 Mazda Motor Corp 車両の走行制御装置
JP4882957B2 (ja) * 2007-10-25 2012-02-22 住友電気工業株式会社 車両運転支援システム、運転支援装置、車両及び車両運転支援方法
KR100892539B1 (ko) * 2007-12-07 2009-04-09 현대자동차주식회사 차량의 차간거리 제어방법
EP2404804B1 (en) * 2009-03-04 2019-04-24 Toyota Jidosha Kabushiki Kaisha Follow-up run control device
US8744661B2 (en) * 2009-10-21 2014-06-03 Berthold K. P. Horn Method and apparatus for reducing motor vehicle traffic flow instabilities and increasing vehicle throughput
JP4992959B2 (ja) * 2009-11-30 2012-08-08 株式会社デンソー 衝突回避支援装置、および衝突回避支援プログラム
CN103395419B (zh) * 2013-08-22 2016-02-24 贵州大学 基于安全间距策略的车辆队列行驶控制系统及其控制方法
JP6052424B2 (ja) * 2013-10-11 2016-12-27 日産自動車株式会社 走行制御装置及び走行制御方法
US9272711B1 (en) * 2014-12-31 2016-03-01 Volkswagen Ag Congestion-friendly adaptive cruise control
JP6531983B2 (ja) * 2015-07-31 2019-06-19 パナソニックIpマネジメント株式会社 自動運転装置、自動運転支援方法及び自動運転支援プログラム
JP6442771B2 (ja) * 2015-08-06 2018-12-26 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム
US9886857B2 (en) * 2015-09-16 2018-02-06 Here Global B.V. Organized intelligent merging
JP6344695B2 (ja) * 2015-10-28 2018-06-20 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム
CN105270176B (zh) * 2015-10-29 2018-05-25 郑州宇通客车股份有限公司 一种安全车距保持控制方法和一种安全车距保持控制系统
JP6787671B2 (ja) * 2016-01-14 2020-11-18 株式会社デンソー 合流支援装置
JP6642413B2 (ja) * 2016-12-27 2020-02-05 トヨタ自動車株式会社 車両走行制御装置
US10752246B2 (en) * 2017-07-01 2020-08-25 Tusimple, Inc. System and method for adaptive cruise control with proximate vehicle detection
US10960880B2 (en) * 2018-03-28 2021-03-30 Intel Corporation Vehicle slack distribution
US10710580B2 (en) * 2018-04-10 2020-07-14 Valeo Schalter Und Sensoren Gmbh Tailgating situation handling by an automated driving vehicle
US10836394B2 (en) * 2018-04-11 2020-11-17 Hyundai Motor Company Apparatus and method for lane change control
DE102018221860A1 (de) * 2018-12-17 2020-07-02 Volkswagen Aktiengesellschaft Verfahren und Assistenzsystem zur Vorbereitung und/oder Durchführung eines Spurwechsels
US20200331476A1 (en) * 2018-12-31 2020-10-22 Chongqing Jinkang New Energy Vehicle, Ltd. Automatic lane change with minimum gap distance
JP7152339B2 (ja) * 2019-03-25 2022-10-12 本田技研工業株式会社 走行制御装置、走行制御方法、およびプログラム

Also Published As

Publication number Publication date
CN110799403A (zh) 2020-02-14
JP6838525B2 (ja) 2021-03-03
US20200189587A1 (en) 2020-06-18
JP2019038322A (ja) 2019-03-14
DE112018003112T5 (de) 2020-03-05
WO2019039275A1 (ja) 2019-02-28
US11247677B2 (en) 2022-02-15

Similar Documents

Publication Publication Date Title
CN110799403B (zh) 车辆控制装置
US9981658B2 (en) Autonomous driving vehicle system
US11163310B2 (en) Vehicle control device
CN106796759B (zh) 车辆控制系统
US9733642B2 (en) Vehicle control device
EP3072770B1 (en) Autonomous driving device
US11370442B2 (en) Vehicle control device and control method
US11072334B2 (en) Vehicle control system
JP6729326B2 (ja) 自動運転装置
JP2019160032A (ja) 車両制御装置、車両制御方法、およびプログラム
US10983516B2 (en) Vehicle control system
WO2019155880A1 (ja) 車両制御装置
CN110194151B (zh) 车辆控制装置
CN112447057B (zh) 停止线位置推定装置及车辆控制系统
CN111661041B (zh) 车辆控制装置
CN111661042A (zh) 车辆控制装置
JP6617166B2 (ja) 車両制御装置
JP7220192B2 (ja) 車両制御装置、車両制御方法、およびプログラム
US20230294676A1 (en) Driving assistance device, driving assistance method, and storage medium
EP4197870A1 (en) Driving control apparatus for vehicle
CN114261391A (zh) 用于控制本车辆的转弯操作的方法和设备
JP2023076936A (ja) 車両制御装置
CN113386751A (zh) 控制装置以及车辆
CN115465298A (zh) 用于控制本车辆对超车行为进行协助的方法和设备
CN116767191A (zh) 驾驶支援装置、驾驶支援方法以及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Ibaraki

Applicant after: Hitachi astemo Co.,Ltd.

Address before: Ibaraki

Applicant before: HITACHI AUTOMOTIVE SYSTEMS, Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant