WO2015016359A1 - 解砕シリカ粒子の製造方法および該微粒子を含む樹脂組成物 - Google Patents

解砕シリカ粒子の製造方法および該微粒子を含む樹脂組成物 Download PDF

Info

Publication number
WO2015016359A1
WO2015016359A1 PCT/JP2014/070389 JP2014070389W WO2015016359A1 WO 2015016359 A1 WO2015016359 A1 WO 2015016359A1 JP 2014070389 W JP2014070389 W JP 2014070389W WO 2015016359 A1 WO2015016359 A1 WO 2015016359A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica particles
particles
crushing
crushed
resin
Prior art date
Application number
PCT/JP2014/070389
Other languages
English (en)
French (fr)
Inventor
良 村口
美紀 江上
光章 熊澤
正展 谷口
小柳 嗣雄
小松 通郎
和孝 江上
Original Assignee
日揮触媒化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮触媒化成株式会社 filed Critical 日揮触媒化成株式会社
Priority to CN201480042492.9A priority Critical patent/CN105408252B/zh
Priority to JP2015529632A priority patent/JP6480863B2/ja
Priority to US14/908,621 priority patent/US10358353B2/en
Priority to KR1020167004196A priority patent/KR102260856B1/ko
Publication of WO2015016359A1 publication Critical patent/WO2015016359A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof

Definitions

  • the present invention relates to a method for producing crushed silica particles and a resin composition containing the particles.
  • the present invention relates to a method for producing crushed silica particles having low hygroscopicity and excellent dispersibility in a resin.
  • the present invention relates to a resin composition containing crushed silica particles, which can provide good injectability and filterability when used in semiconductor underfill materials, in-plane spacers and seal spacers of liquid crystal display devices.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-140472 discloses a spacer particle for a liquid crystal cell by subjecting particles obtained by hydrolysis and condensation polymerization of an organosilicon compound to heat treatment (100 to 1000 ° C.). Is described.
  • Patent Document 2 Japanese Patent Laid-Open No. 11-228699
  • Patent Document 3 Japanese Patent Laid-Open No.
  • silica particles obtained by hydrolyzing and condensing an organosilicon compound are calcined at a high temperature, It is described that the fired silica particles are used for an in-plane spacer or a sealing spacer of a liquid crystal display device.
  • the fired silica particles are mixed in the resin composition as a filler or filler.
  • a filler or filler it is known to mix baked silica particles as a filler in a curable resin composition used as a sealing material or a dental material for a semiconductor element.
  • the calcined silica particles are required to have low hygroscopicity, narrow particle size distribution, uniform particle size, good dispersibility, and the like.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2012-1424308 discloses polyorganosiloxane particles having an average particle diameter in the range of 0.5 to 30 ⁇ m and a particle diameter variation coefficient (CV value) of 3% or less.
  • a semiconductor device mounting paste containing a resin is disclosed.
  • Patent Document 5 Japanese Patent Laid-Open No. 62-96313
  • Patent Document 6 Japanese Patent Laid-Open No. 1-234319
  • silica particles obtained by condensing hydrates have uniform particle diameters. It is disclosed that it is suitable as a filler or the like.
  • Patent Document 7 Japanese Patent Laid-Open No. 2003-176121 discloses calcined silica particles having an average particle diameter in a predetermined range, a small standard deviation of the average particle diameter, a small amount of aggregates, and low hygroscopicity. . Specifically, silica particles are produced by hydrolyzing and condensing a hydrolyzable silicon compound in an organic solvent containing water and a catalyst. The silica particles are spray-dried, and then the silica particles are fired within a range of 1000 to 1200 ° C.
  • the silica particles are dried in an agglomerated state, if the calcination is carried out as it is, the silica particles are fused, and a monodispersed product cannot be obtained as an aggregate. Therefore, after spray drying, the silica particles are pulverized by a pulverization apparatus such as a hammer mill (pulverization step), thereby pulverizing the aggregates and suppressing the occurrence of aggregation during the firing of the silica particles.
  • a pulverization apparatus such as a hammer mill
  • Patent Document 8 Japanese Patent Application Laid-Open No. 2011-245362
  • a high-pressure gas is introduced into the container, and a swirling flow is generated concentrically along the inner wall surface of the perfect circular container so that the raw materials collide with each other.
  • a jet mill that pulverizes and pulverizes is disclosed.
  • particles obtained by any method are insufficient as particles used for the underfill material or the sealing material.
  • There are various methods for preparing the silica particles but it is not easy to prevent the silica particles from agglomerating and to increase the dispersibility in the resin.
  • the smaller the particle size the larger the surface area, resulting in a more prominent problem.
  • the silica particles are fused, and sufficient dispersibility cannot be obtained.
  • silica particles are produced using a spray dryer as in Patent Documents 5 and 6, the silica particles are aggregated and the dispersibility in the resin is not sufficient.
  • Patent Document 7 it is empirically known that if densification is promoted by firing at a relatively high temperature of 1000 to 1200 ° C., the hygroscopicity of the particles decreases. The more the silica particles are fused to each other, the more the agglomerates are formed of the primary particles. By crushing before firing, agglomeration is less likely to occur, but particle fusion cannot be eliminated. For this reason, aggregates are generated, which deteriorates the injectability into a narrow gap, the embedding property, and the filterability of the kneaded material when kneaded with the resin.
  • Patent Document 8 Even if pulverization can be performed, the hydrophilic surface and the hydrophobic surface cannot be sufficiently controlled, and the dispersion in the resin is reduced. Aggregates are generated and the filterability of the resin kneaded product is lowered.
  • the low hygroscopicity / high dispersibility of the fired silica particles and the filterability / injectability of the resin composition cannot be achieved at the same time.
  • an object of the present invention is to realize particles having a uniform particle diameter, low hygroscopicity, and excellent dispersibility in a resin.
  • the fired silica particles obtained by firing the silica particles at 600 to 1200 ° C. in the firing process are supplied into the swirl flow generated by the gas introduced into the crushing vessel and crushed. It was. According to such a method, it is possible to crush and separate into primary particles relatively easily without crushing the particles, and it is difficult to generate a hydrophilic crushing surface. For this reason, the obtained crushed silica particles have low hygroscopicity and are difficult to form aggregates, so that the dispersibility in the resin is good.
  • the composition obtained by kneading with the resin component has good filterability, and excellent injectability into the sandwich gap and embedding property.
  • silica particles having an average particle diameter in the range of 1 to 100 ⁇ m and a water content in the range of 0.01 to 10% by mass are suitable. It is preferable that the silica particles used for spray drying have a uniform particle size distribution because the packing properties of the spray dried particles become uniform.
  • the ejection speed from the nozzle in the crushing step is set to a subsonic speed or higher to increase the linear velocity of the swirling flow.
  • the average particle diameter is in the range of 5 nm to 0.95 ⁇ m by setting the supply amount (gas-solid ratio) of the calcined silica particles (solid) supplied in the swirling flow (gas) to a predetermined range. It is possible to efficiently obtain crushed silica particles.
  • dehumidified air gas
  • the hygroscopicity becomes lower, and the dispersibility in the resin is greatly improved.
  • the firing step is a step of firing silica particles at 800 to 1000 ° C. in an environment with an absolute humidity of 50 g / m 3 or more (alternative firing step). It has been found that, by firing in a humidified environment, the hygroscopicity is reduced even when fired at a relatively low temperature. Furthermore, after firing in a humidified environment, it is preferable to inject an inert gas having a dew point of 0 ° C. or less into a firing furnace to discharge a gas containing water vapor.
  • the resin composition according to the present invention includes crushed silica particles obtained by any one of the aforementioned methods for producing crushed silica particles and a resin.
  • a resin composition can realize a highly reliable electronic device in which crushed silica particles are uniformly dispersed, has excellent injectability and filling properties even in a narrow gap, has no hygroscopic property even after curing, and the like.
  • the resin is preferably one or more selected from epoxy resins, polyimide resins, bismaleimide resins, acrylic resins, methacrylic resins, silicon resins, BT resins, and cyanate resins.
  • the content of crushed silica particles is preferably in the range of 5 to 75% by mass.
  • the resin composition according to the present invention includes crushed silica particles obtained by any one of the aforementioned methods for producing crushed silica particles and a resin.
  • a resin composition can realize a highly reliable electronic device in which crushed silica particles are uniformly dispersed, has excellent injectability and filling properties even in a narrow gap, has no hygroscopic property even after curing, and the like.
  • the resin is preferably one or more selected from epoxy resins, polyimide resins, bismaleimide resins, acrylic resins, methacrylic resins, silicon resins, BT resins, and cyanate resins.
  • the content of crushed silica particles is preferably in the range of 5 to 75% by mass.
  • crushed silica particles having a uniform particle diameter, low hygroscopicity, and excellent dispersibility in a resin can be obtained, and semiconductor underfill materials, in-plane spacers and seals for liquid crystal display devices can be obtained.
  • a resin composition having good injectability and filterability can be provided.
  • the method for producing crushed silica particles according to the present invention comprises a firing step in which the silica particles are fired at 600 to 1200 ° C. to produce the fired silica particles, and a gas introduced into the crushing vessel at a predetermined speed (linear speed).
  • the fired silica particles can be crushed into primary particles without being crushed. Since the crushing surface does not generate silanol groups like the crushing surface, the crushing silica particles have low hygroscopicity and are difficult to form aggregates. Therefore, the dispersibility into the resin is good. As a result, the filterability of the composition obtained by kneading with the resin component is good, and the injection property into the sandwiching gap and the embedding property are excellent.
  • silica particles used in the firing step there are no particular restrictions on the method of producing the silica particles used in the firing step. However, silica particles from which calcined silica particles having excellent dispersibility in the resin can be obtained are preferable.
  • the silica particle after a baking process (before a crushing process) and the silica particle after a crushing process are crushed silica particles. It shall be called. (Baking process)
  • silica particles produced by various methods are fired at 600 to 1200 ° C.
  • the silica particles primary particles
  • these are aggregated into aggregate particles.
  • the calcination temperature is less than 600 ° C.
  • the resulting particles are not sufficiently densified and have high hygroscopicity.
  • the resin composition containing these particles has high hygroscopicity even after curing, and it is difficult to obtain sufficient reliability.
  • the firing temperature exceeds 1200 ° C.
  • the aggregate particles of silica particles are easily sintered. Therefore, it is difficult to crush until the original particle size is obtained in the crushing step (that is, return to primary particles).
  • firing can be performed in an air atmosphere, but when cooling after firing, it is preferable to use a gas atmosphere with a dew point of 0 ° C. or lower in order to prevent moisture absorption due to condensation.
  • a gas atmosphere having a dew point of ⁇ 10 ° C. or lower is more preferable.
  • crushed silica particles are obtained.
  • the state of crushing is schematically shown in FIG. 2A.
  • the aggregate particles of the fired silica particles 10 obtained by the firing process are supplied to a uniform swirl flow and pulverized, the contact portions of the aggregate particles are separated by contact between the aggregate particles to obtain the fired silica particles 10. It is done. Furthermore, the neck part 12 which is the fused part of the fired silica particles 10 is cleaved, and the crushed silica particles 13 dispersed in the primary particle size are obtained.
  • FIG. 2B the state of crushing is schematically shown in FIG. 2B.
  • the fired silica particles 10 are pulverized by a conventionally used device that does not generate a swirling flow, for example, a pulverizer such as a hammer mill, due to collision between the fired silica particles 10 and the wall of the container or collision between particles, The particles are broken to produce a fracture surface 15 which is an active surface (see FIG. 2B).
  • a pulverizer such as a hammer mill
  • the siloxane bond of the particles is cut, so that a silanol group is easily generated.
  • the fracture surface 15 becomes a hydrophilic surface, and the hygroscopicity cannot be lowered.
  • the crushed silica particles 13 obtained by pulverization using a uniform swirl flow are crushed by shearing in the swirl flow rather than by collisions between particles, so that a fracture surface is hardly generated.
  • the separation surface 14 generated when the particles are cleaved at the fused portion (neck portion) becomes an active surface due to the crushing force, the area is smaller than the fracture surface. Therefore, according to the crushing in the swirling flow, the hydrophilicity and hydrophobicity of the particle surface are controlled, the hygroscopicity is low, the aggregate is hardly generated, and the crushed silica particles 13 excellent in dispersibility are easily obtained. .
  • the dew point of the gas introduced into the crushing container is preferably 0 ° C. or less. This is because when the dew point of the gas exceeds 0 ° C., silanol groups due to moisture are easily generated on the active surface that appears on the crushed silica particles by pulverization. A cured product obtained from a resin composition in which crushed silica particles having a silanol group are blended absorbs moisture when exposed to the outside air for a long time, and sufficient reliability cannot be obtained.
  • the dew point of the introduced gas is preferably ⁇ 10 ° C. or lower, and more preferably ⁇ 20 ° C.
  • the introduced gas having a dew point of 0 ° C. or lower can be prepared by a known method such as a compressed gas, an air dryer, or an adsorption removal method using an adsorbent.
  • the temperature at the time of crushing is not limited as long as it does not cause condensation.
  • dry steam can be used for the purpose of increasing the ratio of isolated silanol groups.
  • the pressure of the introduced gas is preferably in the range of 0.1 to 1.5 MPa.
  • the pressure of the introduced gas is less than 0.1 MPa, the gas swirling speed is insufficient, and the crushing may be insufficient.
  • the pressure of the introduced gas exceeds 1.5 MPa, there is a possibility that not only the aggregate particles are crushed but also the collision between the particles increases and the particles are destroyed. Therefore, the range of 0.1 to 1.0 MPa with the high pressure side suppressed is more preferable.
  • the Joule-Thomson effect caused by the latent heat of expansion may locally lower the temperature and adsorb moisture from the active surface of the particles.
  • the linear velocity of the introduced gas is preferably subsonic or higher, and more preferably transonic to supersonic. If the linear velocity of the introduced gas is less than the subsonic speed, the turning speed may be insufficient and the crushing may be insufficient. Further, when the supersonic speed is exceeded, not only the aggregate particles are crushed but also the collision between the particles may increase and the particles may be destroyed.
  • the linear velocity of the introduced gas can be calculated from the pressure of the introduced gas.
  • the amount ratio of the calcined silica particles and introducing the gas supplied to the swirling flow for a fixed grinding chamber volume is preferably 4.4 ⁇ 36.3g / m 3, 6.6 ⁇ 30.3 g / m 3 is more preferred.
  • the gas-solid ratio is less than 4.4 g / m 3 , the supply amount of the fired silica particles may not be stable, and when it exceeds 36.3 g / m 3 , crushing may be insufficient.
  • the solid-gas ratio is calculated by the ratio of the supply amount of calcined silica particles (solid) and the flow rate of introduced gas (gas) per unit time (solid (g / Hr) / gas (m 3 / Hr)). be able to.
  • the size of the grinding chamber is not limited as long as the swirling flow is maintained and the grinding chamber volume / solid-gas ratio is maintained.
  • FIG. 1 is a model diagram showing a crushing apparatus suitable for the present invention.
  • the calcined silica particles are supplied into the crushing container 1 from the inlet 3 provided in the crushing container 1. It is preferable that the inlet 3 and the storage part 4 of the baked silica particles are in one sealed space 5 and the sealed space 5 is filled with the introduced gas.
  • the introduced gas flows into the container from the gas introduction unit 2.
  • Examples of the crushing apparatus that performs crushing using the swirling flow generated by the high-pressure gas include the Nanojet Mizer series manufactured by Aisin Nanotechnology, the Nano Grinding Mill series manufactured by Sanrex Industry Co., Ltd., and the like.
  • Silicon carbide is suitable for the material of the surface in the crushing container 1.
  • SiC Silicon carbide
  • crushed silica particles that do not contain impurities such as zirconium (Zr), iron (Fe), uranium (U), and thorium (Th) can be obtained. Therefore, an electronic device (semiconductor chip, liquid crystal sealing material, etc.) excellent in reliability can be realized.
  • the crushed silica particles thus prepared preferably have an average particle diameter in the range of 5 nm to 0.95 ⁇ m, more preferably 20 nm to 0.95 ⁇ m.
  • the average particle size of the crushed silica particles is less than 5 nm, the dispersibility in the resin may be insufficient.
  • the average particle size of the crushed silica particles exceeds 0.95 ⁇ m, the gap may be narrow when used for a highly integrated semiconductor device or the like, which may reduce the filling property.
  • the crushed silica particles have a uniform particle diameter. That is, the particle diameter variation coefficient (CV value) is preferably in the range of 1 to 50%, more preferably 1 to 45%. It is difficult to obtain particles having a CV value of less than 1% in the above range. Even if it is obtained, it is necessary to finely adjust various conditions for particle preparation, and productivity and economy are lowered. In the case of particles having a CV value exceeding 50%, when the gap is narrow, the injection property and the filling property are deteriorated. When a CV value in an appropriate range cannot be obtained, pulverization and coarse particle removal may be performed to obtain a target CV value.
  • CV value particle diameter variation coefficient
  • the particle diameter variation coefficient (CV value) can be calculated by the following equation (2).
  • the average particle size when calculating the particle size variation coefficient was taken with a scanning electron microscope (manufactured by JEOL Ltd .: JSM-5300 type), and about 250 particles in this image. It is measured using an image analyzer (Asahi Kasei Co., Ltd .: IP-1000).
  • coarse particles having a particle size of 4 times or more of the average particle size may be present, and the proportion of the coarse particles is preferably 5% by mass or less.
  • the ratio of coarse particles is more preferably 2% by mass or less.
  • the moisture absorption amount of the crushed silica particles is preferably 0.2% by mass or less.
  • the moisture absorption amount of the crushed silica particles exceeds 0.2% by mass, the dispersibility in the resin decreases, and the cured product obtained by curing the resin composition containing the particles easily absorbs moisture, such as an electronic device. Reliability may be reduced. More preferably, the moisture absorption of the crushed silica particles is 0.15% by mass or less.
  • the amount of moisture absorption is obtained as follows.
  • the mass (W D ) of the fired silica fine particles (B1) is exposed to an environment at a temperature of 25 ° C. and a humidity of 90%, and the mass (W H ) after 48 hours is measured.
  • the amount of moisture absorption (% by mass) is represented by ((W H ) ⁇ (W D )) / (W D ) ⁇ 100.
  • the crushed silica particles obtained by the pulverization step described above can be used as they are in the resin composition, it is preferable to modify the surface. Specifically, after the crushing step, heat treatment is performed at 500 to 1100 ° C.
  • the active surface is siloxaneized by heat treatment at 500 ° C. or higher. Can be prevented.
  • the heat treatment temperature is less than 500 ° C.
  • silanol groups are easily generated by rehydration even if the active surface can be temporarily siloxane. Therefore, crushed silica particles having low hygroscopicity and excellent dispersibility in the resin cannot be obtained.
  • the heat treatment temperature is less than 500 ° C., it is difficult to siloxaneize the active surfaces. Therefore, silanol groups are generated on the surface during use.
  • the heat treatment temperature exceeds 1100 ° C., the crushed particles may be aggregated and fused again.
  • the heat treatment is preferably performed in an atmosphere of air, oxygen gas, inert gas, or the like.
  • a gas atmosphere with a dew point of 0 ° C. or lower.
  • a classification step may be provided after the crushing step or after the surface modification step.
  • the crushed silica particles obtained in the pulverization step (or the surface-modified crushed silica particles obtained in the surface modification step) are classified by a classifier, and the particles have an average particle size of 4 times or more. It is preferable that coarse particles having a diameter are removed and the ratio of the coarse particles is 5% by mass or less. More preferably, it is 2 mass% or less.
  • the classifier many crushed silica particles having an average particle diameter within a predetermined range can be obtained (that is, the CV value can be lowered).
  • the classifiers there are Donaresson made by Donaldson, Spin Air Sheave made by Seishin Enterprise, Aerofine Classifier made by Nissin Engineering, Hyprec Classifier made by Powder Systems, and Twin Turbo made by Hosokawa Micron. Plex etc. can be used. (Alternative firing process)
  • Such a firing step can reduce the hydroxyl groups on the surface of the fired silica particles, so that the hygroscopicity of the fired silica particles is reduced in spite of firing at a low temperature.
  • firing is preferably performed in a state where the amount of water vapor in the furnace is maintained at 100 g / m 3 to 2000 g / m 3 .
  • the amount of water vapor in the furnace is less than 100 g / m 3 , since the amount of water vapor is small, the condensation polymerization of the silanol groups of the particles hardly proceeds at low temperatures, and there is a tendency that many silanol groups in the particles remain.
  • the amount of water vapor in the furnace is more than 2000 g / m 3 , the condensation polymerization of silanol groups does not proceed any further, which is not preferable from an economic viewpoint.
  • an inert gas having a dew point of 0 ° C. or lower into the furnace and discharge the water vapor in the furnace. This is because if water vapor is present during cooling, moisture may adhere to the fired silica particles. For example, it is also effective to replace the gas containing water vapor in the furnace with an inert gas having a dew point of 0 ° C. or lower during the cooling of the fired silica particles after the firing process.
  • the firing method is not particularly limited as long as the water vapor amount can be properly maintained, and rotary firing, batch firing, and conveyor firing may be used.
  • Water vapor may be introduced into the furnace as a gas, or may be introduced as a liquid and vaporized in the furnace.
  • calcined silica particles having an average particle size of 10 nm to 10 ⁇ m are obtained from a dispersion of silica particles having an average particle size of 10 nm to 10 ⁇ m.
  • the water vapor amount is maintained at 100 g / m 3 to 2000 g / m 3
  • Fired silica particles that are difficult to adsorb are obtained. Furthermore, since it is fired at a low temperature, particles are less fused and particles with good dispersibility can be obtained.
  • the fired silica particles having an average particle size of less than 10 nm Even if obtained, since the specific surface area of the particles is large, it is easy to sinter strongly at the time of firing, and fired silica particles having low hygroscopicity and excellent dispersibility in the resin cannot be obtained.
  • the fired silica particles having an average particle diameter of more than 10 ⁇ m are difficult to be filled in a narrow gap, and thus are not suitable as a filler used for a semiconductor element having a high degree of integration.
  • crushed silica particles obtained by this alternative firing step are less fused and superior in dispersibility than those obtained by the aforementioned firing step.
  • coarse particles having a particle diameter of 4 times or more of the average particle diameter may be present in the fired silica particles, and the ratio of the coarse particles is preferably 5% by mass or less. Particularly, 2% by mass or less is suitable. When the proportion of coarse particles exceeds 5% by weight, the dispersibility in the resin is lowered, and depending on the particle size, the injectability and the filling property may be lowered.
  • silica particles used in the above firing step will be described in detail.
  • the method for producing the silica particles is not limited as long as spherical fired silica particles having an average particle size range described below and excellent dispersibility in the resin are obtained.
  • silica particles obtained by hydrolyzing an organosilicon compound disclosed in JP-A-11-228698, JP-A-11-228699, or the like, or silica particles obtained by a method according thereto may be used.
  • an active silicic acid solution obtained by dealkalizing water glass with an ion exchange resin to seed particles Silica particles that have been grown by adding, or silica particles obtained by a method similar to this may be used.
  • a hydrolyzable organosilicon compound represented by the following formula (1) is hydrolyzed, and then particle growth (build-up) is performed to prepare a dispersion of silica particles, which is spray-dried to obtain silica particles.
  • Rn-SiX4-n (1)
  • R is a substituted or unsubstituted hydrocarbon group having 1 to 10 carbon atoms, which may be the same or different from each other.
  • X is an alkoxy group having 1 to 4 carbon atoms or a hydroxyl group.
  • Halogen or hydrogen, n is an integer from 0 to 3
  • Seed particle preparation step First, a hydrolysis catalyst is added to a mixed solvent of water and alcohol to form a mixed solvent. When the organosilicon compound represented by the formula (1) is added to this mixed solvent, a dispersion (liquid A) of silica fine particles (sometimes referred to as seed particles) is obtained. That is, silica seed particles are a hydrolyzate of an organosilicon compound.
  • the organosilicon compound When adding the organosilicon compound to the mixed solvent, it is preferable to add it in a short time if possible. By adding in a short time, seed particles having a uniform particle size can be produced. When the particles are grown in the particle growth step described later, silica particles having a uniform particle size (small particle size variation coefficient) are obtained.
  • the alcohol methanol, ethanol, propanol, butanol or the like can be used.
  • the water / alcohol weight ratio in the mixed solvent is preferably in the range of 1/1 to 3/1. Within this range, relatively monodispersed silica seed particles can be obtained, which is effective for producing silica particles having a uniform particle diameter.
  • hydrolysis catalyst basic compounds such as alkali metal hydroxides and basic nitrogen compounds can be used.
  • ammonia is recommended. Ammonia is effective not only in hydrolyzing ability but also in adjusting the pH of the dispersion in each step, and ammonia does not remain as an impurity in the finally obtained crushed silica particles.
  • the concentration of the hydrolysis catalyst in the mixed solvent varies depending on the type of the hydrolysis catalyst and the organosilicon compound, it is preferably in the range of 1 to 7.5% by mass. If the concentration of the catalyst for hydrolysis is within this range, relatively monodispersed silica fine particles suitable for seed particles can be obtained. Further, the concentration of the hydrolysis catalyst is more preferably 3 to 5% by mass.
  • the concentration of the silica seed particle dispersion (liquid A) is preferably in the range of 0.01 to 5% by mass as R n —SiO 2 (4-n) / 2 .
  • concentration of the dispersion (liquid A) is within this range, silica seed particles having a desired particle diameter can be obtained. More preferably, it is in the range of 0.1 to 1% by mass.
  • the temperature of the dispersion (liquid A) is preferably in the range of 5 to 40 ° C., and the pH is preferably 8 to 13. A more preferred pH range is 10-12. As described above, by setting the temperature and pH within appropriate ranges, the average particle diameter of the silica seed particles can be controlled between 5 nm and 0.8 ⁇ m, and the standard deviation can be reduced to 0.5 ⁇ m or less. .
  • a pH adjuster to the silica fine particle dispersion (liquid A).
  • ammonia water is added. Water may be added as necessary.
  • a dispersion of silica fine particles (liquid B) having a pH in the range of 10 to 13 is obtained.
  • the temperature of the silica fine particle dispersion (liquid B) is preferably in the range of 5 to 40 ° C.
  • the conductivity of the dispersion is preferably in the range of 80 to 200 ⁇ s / cm.
  • a particle growth step is performed. That is, a hydrolyzable organosilicon compound and a hydrolysis catalyst are continuously or intermittently added to a silica fine particle dispersion (liquid B).
  • the organosilicon compound and the hydrolysis catalyst are added simultaneously and continuously.
  • the amount of the organosilicon compound added is preferably in the range of 2 to 200 times the amount of R n —SiO 2 (4-n) / 2 in the dispersion (A liquid).
  • silica particles having an average particle diameter in the range of 10 nm to 1 ⁇ m, which will be described later, can be obtained in a monodisperse manner without agglomeration. More preferably, the range is 10 to 150 times.
  • a similar particle growth step may be further performed using the particles obtained here as seed particles.
  • silica particles can be grown to about 10 ⁇ m by repeating the particle growth step.
  • the addition time of the organosilicon compound and the hydrolysis catalyst is 1 to 48 hours, although it varies depending on the amount of silica particles produced. In particular, 2 to 24 hours are preferable. If the addition time is within this range, monodispersed silica particles can be produced without agglomeration.
  • the pH of the dispersion is set in the range of 8-13.
  • the fluctuation range of pH is preferably ⁇ 1.0, and more preferably in the range of ⁇ 0.5.
  • the range of 6 to 100 mol is suitable. If the amount of water is less than 4 mol, hydrolysis hardly occurs and spherical particles may not be obtained. If the water is 200 mol or more, the hydrolysis rate increases, so that particle growth does not occur and autonucleation may occur. Further, although the catalyst for hydrolysis depends on the kind, it is preferably added so that it is present in the system at 0.5 to 7.5%. If it is less than 0.5%, there is a case where particle growth does not occur and the target particle size is not achieved. If it exceeds 7.5%, the particle growth is not affected, but it is not preferable from the viewpoint of cost.
  • the silica fine particles grow to obtain a silica particle dispersion (liquid C).
  • a dispersion of silica particles having an average particle diameter of 10 nm to 1 ⁇ m can be produced.
  • the silica dispersion (liquid C) is spray dried and granulated.
  • the average particle size of spray-dried silica particles is suitably 1 to 100 ⁇ m. In particular, the range of 1 to 70 ⁇ m is preferable.
  • the average particle diameter of the spray-dried silica particles is less than 1 ⁇ m, the fluidity is low, and it may not be possible to perform uniform firing in the firing step. In that case, if the processing conditions of the crushing process are fixed, there is a possibility that the crushing cannot be performed so that the original particle diameter is obtained. If the average particle size of the spray-dried silica particles exceeds 100 ⁇ m, the particles are too large and may not be crushed until the original particle size is obtained in the crushing step. Even if it can, it takes a long time to disintegrate. In addition, it becomes difficult to obtain crushed silica particles having low hygroscopicity and excellent dispersibility in the resin.
  • the moisture content of the spray-dried silica particles is suitably 0.01 to 10% by mass. In particular, the range of 0.1 to 7% by mass is preferable. It is difficult to reduce the water content to less than 0.01% by mass. Even if it is possible, fusion occurs in the spray-drying process, and this is baked as it is until the original particle size is obtained in the crushing process. It may not be crushed. On the other hand, if the water content exceeds 10% by mass, fusion may be promoted in the firing step, and it may not be pulverized until the original particle size is obtained in the pulverization step.
  • the spray drying method is not particularly limited as long as crushed silica particles to be described later can be obtained as a result, but conventional methods such as a rotating disk method, a pressurized nozzle method, and a two-fluid nozzle method can be employed.
  • the two-fluid nozzle method is suitable.
  • the temperature of hot air in spray drying is suitably 120 to 300 ° C at the outlet temperature. In particular, 130 to 250 ° C. is preferable.
  • the outlet temperature is less than 120 ° C., the granulated particles cannot be dried sufficiently. When granulated particles that are not sufficiently dried are fired, fusion tends to occur. Even if the above-described crushing step is used, it is difficult to uniformly crush the fused particles.
  • the outlet temperature exceeds 300 ° C., the water content of the granulated particles decreases, but the number of particles fused in the firing process increases. Therefore, it is difficult to crush all the fused particles.
  • the concentration of the silica dispersion (liquid C) used for spray drying is suitably 1 to 40% by mass. In particular, the range of 10 to 30% by mass is preferable.
  • concentration of the silica dispersion (liquid C) is less than 1% by mass, not only the productivity is lowered but also the particle diameter of the granulated particles is reduced. That is, since the number of aggregates of silica particles is small, the fluidity of the granulated particles is lowered. In the case where the firing process cannot be performed uniformly, if the fluidity is low, the granulated particles cannot be supplied to the crushing process under certain conditions, so that there is a possibility that the original particle diameter cannot be crushed.
  • the concentration of the silica dispersion (liquid C) exceeds 40% by mass, the stability of the dispersion is lowered, and it is difficult to obtain uniform shaped aggregate particles (granulated particles). Therefore, when uniform baking cannot be performed in the baking process, the granulated particles may not be supplied to the crushing process under certain conditions, and there is a possibility that the particles cannot be crushed to the original particle diameter.
  • the concentration of the silica dispersion is adjusted to about 20% by mass, and the particle size of the spray-dried silica particles is adjusted to about several tens of ⁇ m, so that even after firing at 800 to 1100 ° C., it occurs after firing. It was found that the fused particles were greatly reduced (see Examples 1 to 8 below).
  • an aging step and a filtration step may be provided as follows before the spray drying step and after the above-described particle growth step, if necessary. (Aging process) The silica particle dispersion (liquid C) that has undergone the particle growth step is heated to 35 to 120 ° C. and stirred for a predetermined time.
  • a dispersion of silica particles is aged, and a dispersion of silica particles (liquid D) is obtained. It is more preferable to age at a temperature in the range of 40 to 80 ° C. If it is in this temperature range, the temperature of a dispersion liquid (C liquid) may be fluctuate
  • the pH of the dispersion during aging needs to be in the range of 8-13. At this time, it is necessary to make the fluctuation range of the pH of the dispersion liquid ⁇ 1.0. It is more preferable to control within a range of ⁇ 0.5.
  • the aging time varies depending on the temperature, but is generally 1 to 24 hours. By aging under such conditions, condensation of the hydrolyzate of the organosilicon compound proceeds and silica particles having a more uniform particle size (small particle size variation coefficient) can be obtained. (Filtering process) Furthermore, you may provide the filtration process as needed. It does not matter whether the above-described aging step is performed before the filtration step.
  • an aggregate of silica particles larger than a predetermined average particle diameter can be separated. If aggregates larger than the predetermined average particle size remain at this point, calcined silica particles that are difficult to disintegrate are generated by firing in the firing step. This is because calcined silica particles having a high degree of fusion are formed, and even if pulverized thereafter, destruction occurs inside the particles, so that siloxane bonds are broken and silanol groups are easily generated on the fracture surface. Therefore, the hygroscopicity of silica particles cannot be lowered.
  • the filtration method is not particularly limited as long as an aggregate of silica particles having a predetermined average particle diameter or more can be separated, and can be separated using conventionally known various filters.
  • the above-mentioned spray drying is performed using the silica dispersion liquid that has passed through the filtration step, and the obtained silica particles are fired.
  • the average particle diameter (DA) of the silica particles supplied to the spray drying process is suitably 10 nm to 1 ⁇ m. In particular, the range of 20 nm to 1 ⁇ m is preferable.
  • the average particle size (DA) is less than 10 nm, it is difficult to obtain particles having a uniform particle size, and even if obtained, the particles are strongly sintered during firing. Therefore, it is difficult to obtain crushed silica particles having low hygroscopicity and excellent dispersibility in the resin.
  • the average particle diameter (DA) of the silica particles exceeds 1 ⁇ m, the filling property of the resin composition is lowered when the gap is narrow in a highly integrated semiconductor element.
  • the average particle diameter of each silica particle described in this specification uses a particle size distribution measuring apparatus LA-950V2 manufactured by HORIBA, Ltd. for particles having a particle diameter of less than 1 ⁇ m, and in the case of 1 ⁇ m or more, a Coulter Counter III manufactured by Beckman Coulter is used. Use to measure.
  • a particle size distribution measuring apparatus LA-950V2 manufactured by HORIBA, Ltd. for particles having a particle diameter of less than 1 ⁇ m, and in the case of 1 ⁇ m or more, a Coulter Counter III manufactured by Beckman Coulter is used. Use to measure.
  • the resin composition according to the present invention will be described.
  • the resin composition contains crushed silica particles obtained through the above-described pulverization step and a resin.
  • Resin can be appropriately selected depending on the application. Here, it is preferable that it is 1 type, or 2 or more types chosen from an epoxy resin, a polyimide resin, a bismaleimide resin, an acrylic resin, a methacrylic resin, a silicon resin, BT resin, and a cyanate resin.
  • the crushed silica particles are uniformly dispersed, and the resulting resin composition is excellent in injectability and filling properties even when the gap is narrow. Furthermore, it is possible to obtain an electronic device or the like that has no hygroscopicity after curing and has excellent reliability.
  • the content of crushed silica particles in the resin composition is preferably in the range of 5 to 75% by mass, more preferably 10 to 70% by mass.
  • the content of the crushed silica particles in the resin composition is less than 5% by mass, since the number of particles is small, the expansion coefficient is not significantly different from that of the resin alone, and cracks may occur around the bumps, for example. If the content of the crushed silica particles in the resin composition exceeds 75% by mass, the viscosity of the resin composition increases, and the injectability, filling property, permeability, etc. may be insufficient.
  • hydrolyzable organosilicon compound represented by the above formula (1) examples include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, and phenyltrimethoxysilane.
  • Example 1 Preparation of calcined silica particles (seed particle preparation process) First, water, alcohol and a hydrolysis catalyst are added to prepare a mixed solvent. In this example, 221.2 g of water, 185.1 g of ethyl alcohol (manufactured by Kanto Chemical Co., Ltd.), and 38.1 g of 28 mass% ammonia water (manufactured by Kanto Chemical Co., Ltd.) were placed in a 2 L (liter) glass reactor. Add and stir. The liquid temperature of this solution is adjusted to 35 ⁇ 0.5 ° C., and 7.88 g of tetraethoxysilane (manufactured by Tama Chemical Co., Ltd.) is added all at once to the reactor.
  • liquid A In order to adjust the pH of the silica fine particle dispersion (liquid A), 61.1 g of 28 wt% aqueous ammonia and 10.0 g of water are added, and the liquid temperature is adjusted to 35 ⁇ 0.5 ° C. while stirring. Thereby, a dispersion of silica fine particles (liquid B) is obtained.
  • the pH of this dispersion (liquid B) was 12.2, and the conductivity was 196 ⁇ s / cm.
  • particle growth process In the first dropping device, 497.0 g of tetraethoxysilane is added as an organic silicon compound for particle growth.
  • the second dropping device is charged with 8% by mass ammonia water (catalyst for hydrolysis) obtained by diluting 126.0 g of 28% by mass ammonia water with 315.0 g of water. Tetraethoxysilane and aqueous ammonia are added dropwise to the dispersion (liquid B) controlled at 35 ⁇ 0.5 ° C. over 12 hours using the first dropping device and the second dropping device.
  • the pH should not fall below 11.5 during the addition period.
  • finish of dripping was 96.1 microseconds / cm, and it was not less than 90 microseconds / cm during the dropping period similarly.
  • the liquid temperature of the dispersion liquid (C liquid) is adjusted to 60 ⁇ 0.5 ° C., and stirred for 1 hour to be aged to prepare a dispersion liquid (liquid D) of silica particles (A1).
  • the average particle diameter of the silica particles (A1) was 0.27 ⁇ m, and the standard deviation of the average particle diameter was 0.07 ⁇ m.
  • the pH of the dispersion at this time was 11.7.
  • the silica particle (A1) dispersion (D liquid) thus obtained is filtered through a 0.5 ⁇ m nylon filter to remove the aggregated particles of the silica particles.
  • the silica particle (A1) dispersion (solution E) is spray-dried using a spray-drying device (Okawara Kako Co., Ltd .: FOC-25 type) to granulate silica powder (spray-dried silica particles). .
  • the inlet temperature of the spray dryer is 250 ° C. and the outlet temperature is 150 ° C.
  • the water content of the silica powder is 7% by mass.
  • the average particle diameter of the silica particles (A1) constituting the silica powder was measured, and the results are shown in Table 1.
  • the silica powder is put in a SiC crucible (baking container) and fired at 900 ° C. for 10 hours using an electric furnace. This is cooled to obtain calcined silica particles.
  • the calcined silica particles are put into a crushing apparatus (Aisin Nano Technologies Co., Ltd .: NanoJet Mizer NJ-100) in which a swirling flow is generated by high-pressure gas, and the calcined silica particles are crushed and disintegrated. Crushed silica particles (B1) are obtained.
  • the high-pressure gas dry air controlled at a dew point minus 10 ° C. when the pressure is 1.0 MPa by an air dryer is used. Moreover, the enclosure was provided so that the inlet of the baked silica particle might be sealed. There, dry air having a dew point minus 10 ° C. is introduced.
  • the calcined silica particles are supplied from an environment having a dew point of minus 10 ° C., and the dry air introduced together with the calcined silica particles is also air having a dew point of minus 10 ° C.
  • the operating conditions of the apparatus are as follows: the crushing pressure (swirl air pressure in the crushing part) is 0.85 MPa, the pressure in the introduction part of the calcined silica particles is 1.0 MPa, the raw material introduction speed is 5 kg / Hr, and the speed of the swirl flow (Linear speed) was set to 391 m / s, and the solid-gas ratio was set to 22.6 g / m 3 .
  • the crushing pressure swirl air pressure in the crushing part
  • the pressure in the introduction part of the calcined silica particles is 1.0 MPa
  • the raw material introduction speed is 5 kg / Hr
  • the speed of the swirl flow Linear speed
  • the solid-gas ratio was set to 22.6 g / m 3 .
  • it is preferable to comprise the crushing container of this apparatus by the silicon carbide heat-processed at 900 degreeC or more.
  • the average particle size and the particle size variation coefficient (CV value) were measured, and the results are shown in Table 2. Furthermore, the measurement of the content of coarse particles, the hygroscopicity (adsorbed water amount), the content of impurities (Fe, Zr, U, Th) and the dispersibility were evaluated as follows. The results are shown in Table 2.
  • the crushed silica particles (B1) obtained were classified by an aerofine classifier manufactured by Nissin Engineering Co., Ltd., the average particle size was 0.25 ⁇ m, the CV value was 19.0%, and the coarse particle content was 0.00. 1% by mass, adsorbed water content of 0.12% by mass, Fe content of 0.3 ppm, Zr content of 0.0 ppm, U content of 0.1 ppm, Th content of 0.0 ppm Obtainable.
  • the proportion (weight proportion) of the particles more than 4 times the average particle size is obtained and used as the content of the coarse particles. .
  • the hygroscopic crushed silica particles (B1) are exposed to an environment at a temperature of 25 ° C. and a humidity of 90%, the mass (W H ) after 48 hours is measured, and the mass (W D ) of the crushed silica particles is measured.
  • the amount of adsorbed water Q was determined by dividing the increase in ((W H )-(W D )) by (W D ).
  • crushed silica particles (B1) 4 0.5 g was mixed and kneaded at 2000 rpm for 10 minutes using a rotating / revolving mixer (Sinky Corp .: Awatori Nertaro AR-100). Subsequently, the resin composition (Paste 1) is produced by passing the product once through a three-roll mill (manufactured by EXAKT: EXAKT50). The resin composition was evaluated for dispersibility according to the following criteria, and the results are shown in Table 2.
  • a resin composition is prepared as follows and the injectability is evaluated.
  • Bisphenol F epoxy resin manufactured by Nippon Steel & Sumikin Chemical Co., Ltd .: YDF8170
  • liquid phenolic resin Maywa Kasei Co., Ltd .: MEH8000
  • imidazole Sanoku Kasei Kogyo Co., Ltd .: 2E4MZ
  • the crushed silica particles (B1) were mixed at a weight ratio of 31.0: 19.0: 0.26: 50.0, and were rotated at 2000 rpm using a rotation / revolution mixer (Shinky Corporation: Awatori Nertaro AR-100). For 10 minutes.
  • the resin composition (paste 1) 15 g is produced by passing it through a three-roll mill (EXAKT: EXAKT50) five times.
  • injection property evaluation was performed at 110 degreeC.
  • the evaluation of pouring property was made by attaching a gap cover glass (CG00024) manufactured by Matsunami Glass Industry Co., Ltd. with a gap of about 20 ⁇ m on the glass, and opening the opening (short side of the gap cover glass).
  • the resin composition of each Example and Comparative Example was placed evenly using a syringe.
  • the placed resin composition decreases in viscosity when heated to 110 ° C., and proceeds to the opposite side (opening) in the gap cover glass by capillary action.
  • the injection properties were evaluated according to the following criteria, and the results are shown in Table 2.
  • a resin composition is prepared as follows, and the dispersibility is evaluated. 8.
  • the obtained resin composition was packed into a SUS column, heated to 40 ° C., and pressurized with 0.4 MPa of nitrogen, and a 3 ⁇ m metal filter (manufactured by Nippon Kinnet Shoko Co., Ltd .: NKS) Filtration was performed with Superpore A3).
  • the filterability of the resin composition was evaluated according to the following criteria, and the results are shown in Table 2.
  • Example 2 a surface modification step is provided after the crushing step of Example 1. That is, the crushed silica fine particles (B1) obtained in the pulverization step in the same manner as in Example 1 were again put in a crucible, baked at 700 ° C. for 10 hours using an electric furnace, and then cooled and baked silica fine particles. Prepare (B2). The obtained fired silica fine particles (B2) were evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 3 This example is different from Example 2 in the size of the silica particles obtained.
  • a dispersion of silica fine particles (A3 liquid) is prepared. Thereafter, it is concentrated to a silica concentration of 20%.
  • 26.9 g of a silica fine particle dispersion (A3 liquid), 125.5 g of water, 136.0 g of ethyl alcohol, and 92.5 g of 28 mass% ammonia water are placed in a 2 L glass reactor. While stirring this, the liquid temperature is adjusted to 35 ⁇ 0.5 ° C. to obtain a dispersion liquid (B3 liquid).
  • tetraethoxysilane for particle growth Into the first dropping device, 702.0 g of tetraethoxysilane for particle growth is put, and in the second dropping device, 8 wt% ammonia water obtained by diluting 183.0 g of aqueous ammonia at a concentration of 28 mass% with 458.0 g of water is put. From each dropping device, tetraethoxysilane and 8 mass% ammonia water are dropped into a dispersion liquid (B3 liquid) controlled at 35 ⁇ 0.5 ° C. over 19 hours.
  • B3 liquid dispersion liquid
  • the liquid temperature is adjusted to 60 ⁇ 0.5 ° C. and stirred for 1 hour. Thereby, hydrolysis and condensation of tetraethoxysilane are performed, and a dispersion liquid (D3 liquid) of silica particles is obtained.
  • D3 liquid dispersion liquid
  • the average particle diameter of the silica particles (A3) was 0.96 ⁇ m, and the standard deviation of the average particle diameter was 0.22 ⁇ m.
  • This dispersion (liquid D3) is filtered through a 2.0 ⁇ m nylon filter, substituted with an aqueous solvent using a distillation apparatus, and then concentrated to a silica concentration of 35% by mass to obtain a concentrated dispersion (liquid E3).
  • this dispersion (E3 liquid) is dried and granulated with a spray dryer, baked at 900 ° C. in an electric furnace, and then pulverized using a nanojet mizer. Furthermore, surface modification is performed in the same manner as in Example 2 to obtain crushed silica particles (B3).
  • a summary of the production conditions for the crushed silica particles (B3) is shown in Table 1.
  • the characteristics of the crushed silica particles (B3) are evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 4 In this example, the firing conditions are different from those in Example 2. That is, in this embodiment, the baking is performed at 800 ° C. for 10 hours in the baking step. The rest is the same as in Example 2.
  • crushed silica particles (B4) are produced.
  • a summary of the production conditions for the crushed silica particles (B4) is shown in Table 1.
  • the characteristics of the crushed silica particles (B4) are evaluated in the same manner as in Example 1.
  • the results are shown in Table 2.
  • Example 5 In this embodiment, the baking is performed at 1100 ° C. for 10 hours in the baking step. The rest is the same as in Example 2.
  • crushed silica particles (B5) are produced.
  • a summary of the production conditions for the crushed silica particles (B5) is shown in Table 1.
  • the characteristics of the crushed silica particles (B5) are evaluated in the same manner as in Example 1.
  • the results are shown in Table 2.
  • the high-pressure gas used in the crushing process is different from that in the second embodiment.
  • dry air having a dew point of ⁇ 20 ° C. is used when the pressure is 1.0 MPa as the high-pressure gas that generates the swirling flow.
  • the crushed silica particles (B6) are produced in the same manner as in Example 2.
  • a summary of the production conditions for the crushed silica particles (B6) is shown in Table 1.
  • the characteristics of the crushed silica particles (B6) are evaluated in the same manner as in Example 1.
  • the results are shown in Table 2.
  • the firing conditions in the surface modification step are different from those in Example 2. In this embodiment, baking is performed at 600 ° C. for 10 hours.
  • crushed silica particles (B7) are produced in the same manner as in Example 2.
  • Table 1 shows an overview of the production conditions of the crushed silica particles (B7).
  • the characteristics of the crushed silica particles (B7) are evaluated in the same manner as in Example 1.
  • the results are shown in Table 2.
  • Example 8 In this example, the firing conditions in the surface modification step are different from those in Example 2. In this example, the surface modification step is performed at 1000 ° C. for 10 hours.
  • crushed silica particles (B8) are produced in the same manner as in Example 2.
  • Table 1 shows an overview of the production conditions of the crushed silica particles (B8).
  • the characteristics of the crushed silica particles (B8) are evaluated in the same manner as in Example 1.
  • the results are shown in Table 2.
  • Example 9 the crushing conditions in the crushing step are different from those in Example 1.
  • the crushing pressure is 0.85 MPa
  • the pressure at the introduction part of the burned silica particles is 1.0 MPa
  • the raw material introduction speed is 1.8 kg / Hr
  • the swirling flow speed (linear speed) was set to 391 m / s
  • the solid-gas ratio was set to 8.1 g / m 3 .
  • a summary of the production conditions for the crushed silica particles (B9) is shown in Table 1.
  • the characteristics of the crushed silica particles (B9) are evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • a surface modification step is provided after the crushing step of Example 9.
  • Example 9 the crushed silica particles (B9) obtained in the pulverization step in the same manner as in Example 9 were again put in a baking container, baked at 700 ° C. for 10 hours using an electric furnace, and then cooled to be pulverized.
  • Prepare crushed silica particles (B10) The obtained crushed silica particles (B10) were evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 1 the crushing process is not performed.
  • Example 1 the fired silica particles (R1) obtained by the firing process were evaluated in the same manner as in Example 1. The results are shown in Table 2. However, since the baked silica particles (R1) are too large, preparation of the resin composition and evaluation of dispersibility are not performed.
  • Example 2 In this comparative example, the firing conditions in the firing step of Example 1 are set to 550 ° C. for 10 hours. Except for the firing step, crushed silica particles (R2) are produced under the same conditions as in Example 1. The characteristics of the crushed silica particles (R2) are evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Comparative Example 3 This comparative example is an example in which the firing conditions in the firing step of Example 2 are set at 1250 ° C. for 10 hours. Except for the firing step, crushed silica particles (R3) are produced under the same conditions as in Example 2. The characteristics of the crushed silica particles (R3) are evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 4 In this comparative example, the firing process and the crushing process of Example 1 are switched. That is, the silica powder is granulated by carrying out the spray drying process from the seed particle adjusting process in the same manner as in Example 1. Next, the silica powder is pulverized using a nanojet mizer (manufactured by Aisin Nano Technologies: NJ-100) in the same manner as in the pulverization step of Example 1. That is, silica powder is put into a swirling flow generated by a high-pressure gas of low humidity and crushed. Next, the crushed silica powder is put into a firing container and fired at 900 ° C. for 10 hours using an electric furnace. Next, it is cooled to produce crushed silica particles (R4).
  • a nanojet mizer manufactured by Aisin Nano Technologies: NJ-100
  • the characteristics of the crushed silica particles (R4) are evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • a surface modification process is provided after the manufacturing process shown in comparative example 4. That is, the crushed silica particles (R4) produced in the same manner as in Comparative Example 4 were placed in a firing container, baked at 700 ° C. for 10 hours using an electric furnace, and then cooled to obtain the crushed silica particles (R5). obtain. The characteristics of the crushed silica particles (R5) are evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • This comparative example is an example in which the crushing process of Example 1 is performed using a pulverizer (manufactured by Hosokawa Micron Corporation: Micron Jet MJT). That is, the process up to the firing step is performed in the same manner as in Example 1 to produce fired silica particles.
  • the fired silica particles are pulverized with a pulverizer (manufactured by Hosokawa Micron Corporation: Micron Jet MJT), and the crushed silica particles (R6) are taken out.
  • This pulverizer is not a swirl type pulverizer but a pulverizer that collides particles with a zirconia target.
  • Example 11 The present embodiment is different from the first embodiment after the firing step.
  • the process from the seed particle preparation step to the spray drying step is performed in the same manner as in Example 1.
  • silica powder is obtained.
  • this silica powder is put into a firing container and heated from room temperature to 350 ° C. in an electric furnace (Murao Electric) over 3 hours.
  • 0.9 kg of silica powder was stored in one baking container, and 115 baking containers were stored in an electric furnace having a volume of 0.8 m 3 .
  • water is supplied so that the amount of water vapor in the electric furnace is 100 g / m 3 .
  • the temperature was raised to 900 ° C. over 11 hours, and firing was performed at 900 ° C. for 10 hours.
  • the heater is turned off, the supply of water is stopped, and nitrogen gas is introduced into the furnace at 90 L / min. It is cooled to 500 ° C. over 19 hours, and the electric furnace door is opened and cooled to 50 ° C. over 6 hours. Thereafter, the introduction of nitrogen gas was stopped, the firing container was taken out from the electric furnace, and fired silica particles (fired body of silica particles) were obtained.
  • the crushed silica particles are exposed to an environment at a temperature of 25 ° C. and a humidity of 90%, the mass (W H ) after 48 hours is measured, and the amount of increase from the mass (W D ) of the crushed silica particles (( (W H )-(W D )) was divided by (W D ) to determine the amount of adsorbed water Q (mass%).
  • Q ((W H ) ⁇ (W D )) / (W D ) ⁇ 100 (%) Evaluation is performed based on the obtained amount Q of adsorbed moisture.
  • Example 12 the amount of water vapor was set to 700 g / m 3 and 900 ° C. for 10 hours in the firing step of Example 11. Except for this, crushed silica particles were produced under the same conditions. With respect to the crushed silica particles, the average particle diameter and the particle diameter variation coefficient (CV value) were measured, and the hygroscopicity and dispersibility were evaluated in the same manner as in Example 11. The results are shown in Table 3.
  • Example 13 the firing step of Example 11 was set to a steam amount of 2000 g / m 3 and 900 ° C. for 10 hours. Except for this, crushed silica particles were produced under the same conditions. With respect to the crushed silica particles, the average particle diameter and the particle diameter variation coefficient (CV value) were measured, and the hygroscopicity and dispersibility were evaluated in the same manner as in Example 11. The results are shown in Table 3.
  • Example 14 In this example, the amount of water vapor was set to 2000 g / m 3 and 800 ° C. for 10 hours in the firing step of Example 11. Except for this, crushed silica particles were produced under the same conditions.
  • Example 15 In this example, in the baking step of Example 11, the water vapor amount was set to 100 g / m 3 and 800 ° C. for 10 hours. Except for this, crushed silica particles were produced under the same conditions. With respect to the crushed silica particles, the average particle diameter and the particle diameter variation coefficient (CV value) were measured, and the hygroscopicity and dispersibility were evaluated in the same manner as in Example 11. The results are shown in Table 3.
  • Example 16 In this example, in the baking step of Example 11, the water vapor amount was set to 100 g / m 3 and 1000 ° C. for 10 hours. Except for this, crushed silica particles were produced under the same conditions. With respect to the crushed silica particles, the average particle diameter and the particle diameter variation coefficient (CV value) were measured, and the hygroscopicity and dispersibility were evaluated in the same manner as in Example 11. The results are shown in Table 3. [Example 17] In this example, the firing step of Example 11 was set to a water vapor amount of 2000 g / m 3 and 1000 ° C. for 10 hours. Except for this, crushed silica particles were produced under the same conditions.
  • Example 18 In this example, in the baking step of Example 11, a 5 L rotary baking furnace was used as the baking apparatus, and the water vapor amount was set to 2000 g / m 3 and 900 ° C. for 1 hour. Except for this, crushed silica particles were produced under the same conditions. With respect to the crushed silica particles, the average particle diameter and the particle diameter variation coefficient (CV value) were measured, and the hygroscopicity and dispersibility were evaluated in the same manner as in Example 11. The results are shown in Table 3.
  • [Comparative Example 7] Crushed silica particles were produced under the same conditions except that the amount of water vapor was set to 10 g / m 3 in the firing step of Example 11. When air having a humidity of 45% and a temperature of 24 degrees is introduced into the furnace, the amount of water vapor is about 10 g / m 3 . With respect to the crushed silica particles, the average particle diameter and the particle diameter variation coefficient (CV value) were measured, and the hygroscopicity and dispersibility were evaluated in the same manner as in Example 11. The results are shown in Table 3. [Comparative Example 8] Crushed silica particles were produced under the same conditions except that the firing temperature was set to 800 ° C. in the firing step of Comparative Example 7.
  • Example 9 Crushed silica particles were produced under the same conditions except that the firing temperature was set to 1000 ° C. in the firing step of Comparative Example 7. With respect to the crushed silica particles, the average particle diameter and the particle diameter variation coefficient (CV value) were measured, and the hygroscopicity and dispersibility were evaluated in the same manner as in Example 11. The results are shown in Table 3.
  • Comparative Example 10 In the firing step of Comparative Example 7, a 5 L rotary firing furnace was used as the firing apparatus, and the temperature was set to 900 ° C. for 1 hour. Except for this, crushed silica particles were produced under the same conditions. With respect to the crushed silica particles, the average particle diameter and the particle diameter variation coefficient (CV value) were measured, and the hygroscopicity and dispersibility were evaluated in the same manner as in Example 11. The results are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

 解砕用容器内に導入するガスによって発生させた旋回流中に焼成工程で焼成されたシリカ粒子を供給して解砕する。これにより、解砕が容易に可能になり、低い吸湿性と、高い樹脂分散性を両立する解砕シリカ粒子が実現する。さらに、解砕時に除湿空気(ガス)を導入すると、吸湿性が低くなり、樹脂への分散性が大幅に向上する。さらに、解砕後に再度加熱処理(焼成)すると、解砕シリカ粒子の表面が改質され、吸湿性と樹脂への分散性、が大幅に向上する。 このようにして得られた解砕シリカ粒子を含む樹脂組成物は、半導体のアンダーフィル材や、液晶表示装置の面内用スペーサやシール用スペーサに用いた際に注入性、濾過性の良い。

Description

解砕シリカ粒子の製造方法および該微粒子を含む樹脂組成物
 本発明は、解砕シリカ粒子の製造方法および該粒子を含む樹脂組成物に関する。特に、吸湿性が低く、樹脂への分散性に優れた解砕シリカ粒子の製造方法に関する。さらに、半導体のアンダーフィル材や、液晶表示装置の面内用スペーサやシール用スペーサに用いた際に、良好な注入性、濾過性が得られる、解砕シリカ粒子を含んだ樹脂組成物に関する。
 真球状のシリカ粒子は各種用途に使用されている。例えば、特許文献1(特開平7-140472号公報)には、有機珪素化合物を加水分解、縮重合して得られた粒子を熱処理(100~1000℃)して、液晶セル用スペ-サ粒子を得ることが記載されている。また、特許文献2(特開平11-228699号公報)や特許文献3(特開平11-228698号公報)には、有機珪素化合物を加水分解・縮合させて得られるシリカ粒子を高温で焼成し、この焼成シリカ粒子を液晶表示装置の面内用スペーサやシール用スペーサに用いることが記載されている。
 また、焼成シリカ粒子は、樹脂組成物に充填剤やフィラーとして混入されている。例えば、半導体素子の封止材や歯科材料として用いる硬化性樹脂組成物には、焼成シリカ粒子を充填剤として混合することが知られている。焼成シリカ粒子には、吸湿性が低いこと、粒度分布が狭く粒径が揃っていること、分散性が良いことなどが求められる。例えば、特許文献4(特開2012-142438号公報)には、平均粒子径が0.5~30μmの範囲にあり、粒子径変動係数(CV値)が3%以下であるポリオルガノシロキサン粒子と樹脂を含んだ半導体素子の実装用ペーストが開示されている。
 また、特許文献5(特開昭62-96313号公報)や特許文献6(特開平1-234319号公報)には、水和物を縮合して得られるシリカ粒子は粒子径が揃っているため、フィラー等として好適であることが開示されている。
 特許文献7(特開2003-176121号公報)には、平均粒子径が所定範囲にあり、平均粒子径の標準偏差が小さく、凝集物が少なく、吸湿性の低い焼成シリカ粒子が開示されている。具体的には、加水分解が可能なシリコン化合物を、水と触媒とを含む有機溶媒中で加水分解,縮合することによってシリカ粒子を作製する。このシリカ粒子を噴霧乾燥し、その後、シリカ粒子を1000~1200℃の範囲内で焼成する。このとき、凝集状態でシリカ粒子を乾燥させることになるため、このまま焼成を行なうとシリカ粒子の融着が進み、凝集体となり単分散したものが得られない。そこで、噴霧乾燥後、ハンマーミル等の粉砕装置でシリカ粒子を粉砕する(粉砕工程)ことで、凝集体を粉砕し、シリカ粒子の焼成時に凝集が生じるのを抑制している。
 また、特許文献8(特開2011-245362号公報)には、容器内に高圧気体を導入し、真円容器の内壁面に沿うような旋回流を同心円状に生じさせ、原材料同士を衝突させて粉砕、粉化するジェットミルが開示されている。
特開平7-140472号公報 特開平11-228699号公報 特開平11-228698号公報 特開2012-142438号公報 特開昭62-96313号公報 特開平1-234319号公報 特開2003-176121号公報 特開2011-245362号公報
 しかしながら、以下に述べる理由から、いずれの方法で得られる粒子でもアンダーフィル材や、封止材に用いる粒子としては不十分である。シリカ粒子を調製する方法には種々の方法があるが、シリカ粒子の凝集を防ぎ、樹脂への分散性を高めることは容易ではない。特に、粒子径が小さいほど、結果的に表面積が大きくなるため、この問題が顕著になる。凝集した状態のシリカ粒子を高温で焼成すると、シリカ粒子が融着し、十分な分散性が得られない。特許文献5、特許文献6のように噴霧乾燥装置を用いてシリカ粒子を作製すると、シリカ粒子が凝集して樹脂への分散性等が十分ではない。また、特許文献7のように、1000~1200℃の比較的高温で焼成して緻密化を進めると、粒子の吸湿性が低下することが経験的に知られているが、高温で処理すればするほど、シリカ粒子同士の融着が起こるので一次粒子が合着した凝集体となる。焼成する前に粉砕しておくことにより、凝集体は発生し難くなるにしても、粒子の融着を無くすことはできない。そのため、凝集体は発生してしまい、狭いギャップへの注入性、埋め込み性、及び樹脂と混練した際の混練物の濾過性を悪化させてしまう。
 このような場合、更に、融着や合着した粒子を粉砕装置で処理することも経験的になされているが、粉砕された粒子の破砕面はシロキサン結合が切れているため、シラノール基が発生し易く、結果的に親水性の表面になり易い。焼成によって緻密化された表面はシラノール基が少なく、疎水性の表面となるが、粉砕によってシロキサン結合が切断されて、シラノール基が発生すると、疎水性の表面が減り親水性の表面が増加することになる。すると一次粒子がゆるく会合した凝集体(ダマ)が形成され易くなり、後に樹脂成分と共に混練した時に分散が不十分となり、濾過性の低下および注入性の低下を引き起こす。
 また、粒子の融着を防ぐには、900℃未満の低温で焼成することが効果的である。しかし、低温でシリカ粒子を焼成すると、焼成シリカ粒子の表面にシラノール基が残りやすく、吸湿量を少なくすることができない。
 また、特許文献8に示された装置を用いれば、粉砕による粉化はできたとしても、親水性の表面と疎水性の表面を十分に制御することはできず、樹脂への分散の低下、凝集体の発生、樹脂混練物の濾過性の低下を引き起こす。
 このように、従来の製造方法では、焼成シリカ粒子の低吸湿性・高分散性と樹脂組成物の濾過性・注入性とを両立させることができなかった。
 そこで、本発明は、粒子径が均一で、吸湿性が低く、樹脂への分散性に優れた粒子を実現することを目的とする。

 上述の目的を達成するため、焼成工程においてシリカ粒子を600~1200℃で焼成した焼成シリカ粒子を、解砕用容器内に導入するガスによって発生させた旋回流中に供給して解砕することとした。このような方法によれば、粒子を破砕することなく、比較的容易に一次粒子に解砕、分離することができ、親水性の破砕面が生成され難い。そのため、得られる解砕シリカ粒子は吸湿性が低く、かつ、凝集体もでき難いので、樹脂への分散性が良好である。その結果、樹脂成分との混練により得られる組成物は、濾過性が良好で、挟ギャップへの注入性、埋め込み性に優れている。
 ここで、解砕シリカ粒子の分散性を向上させるために、平均粒子径が1~100μmの範囲にあり、水分含有量が0.01~10質量%の範囲にあるシリカ粒子を用いることが好ましい。例えば、平均粒子径10nm~1μmの範囲にあるシリカ粒子の分散液を噴霧乾燥して得られる噴霧乾燥シリカ粒子が適している。噴霧乾燥に用いるシリカ粒子は、粒度分布が揃っていると、噴霧乾燥粒子のパッキング性が均一となるため好ましい。小粒子を含む分布のシリカ粒子を用いて噴霧乾燥を行うと、高パッキング性を備えた噴霧乾燥粒子が得られる傾向にあり、粒子間接点が増大し、その結果として焼成工程で融着箇所が増え、解砕され難い粒子となるため、樹脂への分散性の低下に繋がる。用いる噴霧乾燥シリカ粒子の水分含有量が所定量であると、得られる解砕シリカ粒子のシラノール基が全体的に少なく、吸湿量や樹脂への分散性を所定の範囲内にすることができる。
 ここで、解砕工程におけるノズルからの噴出速度を亜音速以上とし、旋回流の線速を高めることが好ましい。
 また、解砕工程において、旋回流(気体)中に供給する焼成シリカ粒子(固体)の供給量(気固比)を所定の範囲にすることにより、平均粒子径が5nm~0.95μmの範囲にある解砕シリカ粒子を効率的に得ることができる。
 さらに、解砕時に除湿空気(ガス)を導入すると、シラノール基の生成が抑制され、吸湿性がより低くなり、樹脂への分散性が大幅に向上するので好ましい。
 さらに、解砕後に再度加熱処理(焼成)を行った場合には、解砕シリカ粒子の表面が改質され、吸湿性が大幅に低減し、樹脂への分散性が大幅に向上するので好ましい。
 また、焼成工程を、絶対湿度50g/m3以上の環境下で800~1000℃でシリカ粒子を焼成する工程(代替焼成工程)とすることはさらに好ましい。加湿環境下で焼成することにより、比較的低温で焼成しても吸湿性が低減することを見出した。さらに、加湿環境下の焼成の後で、焼成炉内に露点0℃以下の不活性ガスを注入して、水蒸気を含む気体を排出することが好ましい。
 本発明に係る樹脂組成物は、前述のいずれかの解砕シリカ粒子の製造方法によって得られた解砕シリカ粒子と樹脂を含んでいる。このような樹脂組成物は、解砕シリカ粒子が均一に分散し、狭いギャップでも注入性、充填性に優れ、硬化後も吸湿性がなく、信頼性に優れた電子デバイス等を実現できる。樹脂には、エポキシ系樹脂、ポリイミド系樹脂、ビスマレイミド系樹脂、アクリル系樹脂、メタクリル系樹脂、シリコン系樹脂、BTレジン、シアネート系樹脂から選ばれる1種または2種以上であることが好ましい。また、解砕シリカ粒子の含有量が5~75質量%の範囲にあることが好ましい。

 本発明に係る樹脂組成物は、前述のいずれかの解砕シリカ粒子の製造方法によって得られた解砕シリカ粒子と樹脂を含んでいる。このような樹脂組成物は、解砕シリカ粒子が均一に分散し、狭いギャップでも注入性、充填性に優れ、硬化後も吸湿性がなく、信頼性に優れた電子デバイス等を実現できる。樹脂には、エポキシ系樹脂、ポリイミド系樹脂、ビスマレイミド系樹脂、アクリル系樹脂、メタクリル系樹脂、シリコン系樹脂、BTレジン、シアネート系樹脂から選ばれる1種または2種以上であることが好ましい。また、解砕シリカ粒子の含有量が5~75質量%の範囲にあることが好ましい。
 本発明によれば、粒子径が均一で、吸湿性が低く、樹脂への分散性に優れた解砕シリカ粒子が得られ、半導体のアンダーフィル材や、液晶表示装置の面内用スペーサやシール用スペーサに用いた際に注入性、濾過性の良い樹脂組成物を提供することができる。
本発明に用いる解砕装置の1態様を示すモデル図である。 解砕を説明する模式図である。 粉砕を説明する模式図である。
[解砕シリカ粒子の製造方法]
 本発明に係る解砕シリカ粒子の製造方法は、シリカ粒子を600~1200℃で焼成して焼成シリカ粒子を作製する焼成工程と、解砕用容器内に所定速度(線速)で導入するガスによって旋回流を発生させ、該旋回流中に所定量の焼成シリカ粒子を供給して解砕し、解砕シリカ粒子を作製する解砕工程を有している。このような製造方法によれば、焼成シリカ粒子を破砕することなく、一次粒子に解砕することができる。解砕面は破砕面のようにシラノール基が生成されることがないので、解砕シリカ粒子は吸湿性が低く、かつ、凝集体もでき難い。そのため、樹脂への分散性が良好であり、その結果、樹脂成分との混練により得られる組成物の濾過性が良好で、挟ギャップへの注入性、埋め込み性に優れている。
 焼成工程に使用するシリカ粒子の製法に関しては、特に制限はない。ただし、樹脂への分散性に優れた焼成シリカ粒子が得られるシリカ粒子が好ましい。
 なお、本明細書では、解砕工程前後のシリカ粒子を区別するために、焼成工程後(解砕工程前)のシリカ粒子を焼成シリカ粒子と、解砕工程後のシリカ粒子を解砕シリカ粒子と称することとする。
(焼成工程)
 焼成工程では、種々の方法で作製されたシリカ粒子を600~1200℃で焼成する。焼成により、シリカ粒子(一次粒子)はネック部で融着し、さらにこれらが凝集して集合粒子となる。ここで、焼成温度が600℃未満の場合は、得られる粒子(焼成シリカ粒子)の緻密化が十分に進んでおらず、吸湿性が高い。そのため、これ粒子を含んだ樹脂組成物は硬化後も吸湿性が高く、充分な信頼性が得られ難い。一方、焼成温度が1200℃を超える場合、シリカ粒子の集合体粒子が焼結しやすい。そのため、解砕工程で元の粒子径になるまで解砕すること(すなわち、一次粒子に戻すこと)が困難である。通常、焼成は空気雰囲気で行えるが、焼成後に冷却する際には、結露による吸湿を防ぐために、露点が0℃以下のガス雰囲気にすることが好ましい。露点-10℃以下のガス雰囲気がさらに好ましい。
(解砕工程)
 解砕工程では、解砕用容器内にガスを導入して旋回流を発生させ、この旋回流中に焼成工程で得られた焼成シリカ粒子を供給する。これにより、焼成シリカ粒子の集合体粒子が焼成前のシリカ粒子の粒子径になるまで、粒子が破壊されることなく解砕される。これにより、解砕シリカ粒子が得られる。
 ここで、解砕の様子を図2Aに模式的に示す。焼成工程により得られた焼成シリカ粒子10の集合体粒子を均一旋回流に供給して解砕すると、集合体粒子同士の接触により、集合体粒子の接触部分が分離して焼成シリカ粒子10が得られる。さらに、焼成シリカ粒子10の融着部分であるネック部12が開裂し、一次粒子経に分散された解砕シリカ粒子13が得られる。次に、破砕の様子を図2Bに模式的に示す。従来から使用される、旋回流を生じない装置、例えば、ハンマーミル等の粉砕装置で焼成シリカ粒子10を粉砕する場合では、焼成シリカ粒子10と容器の壁との衝突や粒子同士の衝突により、粒子が破壊されて活性表面である破壊面15を生じる(図2B参照)。この破壊面15では、粒子のシロキサン結合が切断されることから、シラノール基を生成し易い。その結果、破壊面15は親水性の表面となり、吸湿性を低くすることができない。
 これに比べて、均一な旋回流を用いた解砕によって得られる解砕シリカ粒子13は、粒子同士の衝突等ではなく旋回流中の剪断により解砕されるので、破壊面が発生し難い。また、粒子が融着した部分(ネック部)で開裂した際に生じる分離面14は、解砕される力で活性面となっても、破壊面に比べて面積が小さい。そのため、旋回流中の解砕によれば、粒子表面の親水性と疎水性は制御され、吸湿性が低く、凝集体が発生し難く、分散性に優れた解砕シリカ粒子13が得られ易い。
 ここで、導入ガスとしては、空気、酸素ガス、不活性ガス等を用いることができる。安全性や経済性の観点から空気が推奨される。
さらに、解砕用容器に導入するガスの露点は0℃以下が好ましい。ガスの露点が0℃を超えていると、解砕により解砕シリカ粒子に現れた活性表面に、水分に依るシラノール基が生成しやすくなるからである。シラノール基を持つ解砕シリカ粒子が配合された樹脂組成物から得られる硬化物は、長時間外気に触れると吸湿し、充分な信頼性が得られない。このような理由から、導入ガスの露点は-10℃以下が好ましく、-20℃以下がより好ましい。露点が0℃以下の導入ガスは、圧縮ガス、エアドライヤー、あるいは吸着剤による吸着除去法等の、公知の方法で調製することができる。解砕時の温度は、結露しない範囲であれば、制限はない。ここで、孤立のシラノール基の比率を増やす目的で、ドライスチームを用いることができる。
 さらに、導入ガスの圧力は0.1~1.5MPaの範囲にあることが好ましい。導入ガスの圧力が0.1MPa未満の場合は、ガスの旋回速度が足りず、解砕が不充分となる場合がある。導入ガスの圧力が1.5MPaを超えると、集合体粒子の解砕にとどまらず、粒子同士の衝突が増えて、粒子が破壊する虞がある。したがって、高圧側を抑えた0.1~1.0MPaの範囲がより好ましい。また、膨張潜熱によるジュール・トムソン効果により局部的に低温となり、粒子の活性表面から水分を吸着することがある。このように、導入ガスの圧力が適正でないと、吸湿性の低い、樹脂への分散性に優れた解砕シリカ粒子を得ることが困難となる。

 また、導入ガスの線速は、亜音速以上が好ましく、遷音速~超音速がより好ましい。導入ガスの線速が亜音速未満であると、旋回速度が足りず解砕が不充分となる場合がある。また、超音速を超えると、集合体粒子の解砕にとどまらず、粒子同士の衝突が増えて粒子が破壊する虞がある。なお、導入ガスの線速は、導入ガスの圧力から算出することができる。
 更に、一定の粉砕チャンバー容積に対する旋回流に供給する焼成シリカ粒子と導入ガスの量比(固気比:g/m3)は、4.4~36.3g/m3が好ましく、6.6~30.3g/m3がより好ましい。気固比が、4.4g/m3未満であると、焼成シリカ粒子の供給量が安定しない場合があり、36.3g/m3を超えると、解砕が不充分となる場合がある。
なお、固気比は、単位時間あたりの、焼成シリカ粒子(固体)供給量と、導入ガス(気体)の風量の比(固体(g/Hr)/気体(m3/Hr))で算出することができる。なお、旋回流の流れが維持されて、粉砕チャンバー容積/固気比が維持されれば、粉砕チャンバーの大きさに制限されるものではない。
 図1は本発明に好適な解砕装置を示すモデル図である。焼成シリカ粒子は解砕用容器1に設けられた導入口3から解砕用容器1内に供給される。導入口3と焼成シリカ粒子の貯留部4は一つの密閉空間5にあり、密閉空間5に導入ガスが充填されることが好ましい。また、導入ガスはガス導入部2から容器内に流入する。
 高圧ガスにより発生する旋回流を用いて解砕を行う解砕装置としては、アイシンナノテクノロジーズ社製のナノジェットマイザーシリーズや、サンレックス工業株式会社製のナノグラインディングミルシリーズ等が挙げられる。
 解砕用容器1内の表面の材質は炭化ケイ素(SiC)が適している。特に、900℃以上で焼成されたSiCを用いることが好ましい。材質がSiCである解砕用容器1を用いると、ジルコニウム(Zr)、鉄(Fe)、ウラン(U)、トリウム(Th)等の不純物を含まない解砕シリカ粒子を得ることができる。そのため、信頼性に優れた電子デバイス(半導体チップ、液晶シール材等)が実現できる。
 このようにして調製した解砕シリカ粒子は平均粒径が5nm~0.95μm、さらには20nm~0.95μmの範囲にあることが好ましい。解砕シリカ粒子の平均粒径が5nm未満の場合は、樹脂への分散性が不充分となる場合がある。また、解砕シリカ粒子の平均粒径が0.95μmを超えると、集積度の高い半導体素子等に用いる場合にギャップが狭いために、充填性が低下する場合がある。
 また、解砕シリカ粒子は粒子径が均一であることが好ましい。すなわち、粒子径変動係数(CV値)は1~50%、さらには1~45%の範囲にあることが好ましい。CV値が1%未満の粒子は、上述の範囲の平均粒子径を得ることが困難である。仮に、得られたとしても粒子調製の諸条件を精緻に調整する必要があり、生産性、経済性が低下する。CV値が50%を超える粒子では、ギャップが狭い場合、注入性や充填性が低下する。適切な範囲のCV値が得られないときには、解砕や粗大粒子除去を行って、目的のCV値にすればよい。
 粒子径変動係数(CV値)は下記の式(2)によって算出できる。
Figure JPOXMLDOC01-appb-M000001
 なお、粒子径変動係数(CV値)を求める際の平均粒子径は、走査型電子顕微鏡(日本電子(株)製:JSM-5300型)により写真を撮影し、この画像の250個の粒子について画像解析装置(旭化成(株)製:IP-1000)を用いて測定される。
 また、解砕シリカ粒子中には平均粒子径の4倍以上の粒子径を持つ粗大粒子が存在することがあるが、この粗大粒子の割合は5質量%以下であることが好ましい。粗大粒子の割合が5重量%を超えると、樹脂への分散性が低下するとともに、樹脂組成物は粒子径によって注入性、充填性が低下する場合がある。粗大粒子の割合は2質量%以下が、より好ましい。
 また、解砕シリカ粒子の吸湿量は0.2質量%以下であることが好ましい。解砕シリカ粒子の吸湿量が0.2質量%を超えると、樹脂への分散性が低下するとともに、粒子を配合した樹脂組成物を硬化させて得られる硬化物が吸湿しやすく、電子デバイス等の信頼性が低下する場合がある。より好ましくは、解砕シリカ粒子の吸湿量を0.15質量%以下にする。
 ここでは、吸湿量を以下のように求める。質量(WD)の焼成シリカ微粒子(B1)を、温度25℃、湿度90%の環境下に暴露し、48時間経過後の質量(WH)を測定する。このとき、吸湿量(質量%)は、((WH)-(WD))/(WD)×100 で表される。
(表面改質工程)
 上述した解砕工程により得られた解砕シリカ粒子は、そのまま樹脂組成物に用いることができるが、表面を改質することが好ましい。具体的には、解砕工程に次いで、500~1100℃で加熱処理する。解砕工程により粒子の融着部が開裂して活性表面が現れて、活性表面にシラノール基が生成しても、500℃以上で加熱処理すると、活性表面がシロキサン化されるので、表面の吸湿を防ぐことができる。加熱処理温度が500℃未満だと、活性表面を一時的にシロキサンできても、再水和によってシラノール基が生成され易い。そのため、吸湿性の低い、樹脂への分散性に優れた解砕シリカ粒子が得られない。活性表面が露出した粒子を配合した樹脂組成物も同様で、加熱処理温度が500℃未満だと、活性表面をシロキサン化することが困難である。そのため、使用中に表面にシラノール基が生成することとなる。一方、加熱処理温度が1100℃を超えると、解砕された粒子が再び凝集、融着する虞がある。
 また、加熱処理は空気、酸素ガス、不活性ガス等の雰囲気で行うことが好ましい。特に、表面改質工程後の冷却時には露点が0℃以下のガス雰囲気下にすることが好ましい。
 なお、熱処理温度800~1100℃の表面改質工程を設けた場合には、焼成工程の温度が600~1000℃という比較的低い温度範囲でも、吸湿性が低く、かつ、樹脂への分散性に優れた解砕シリカ粒子を得ることができる。

(分級工程)
 解砕工程の後、あるいは、表面改質工程の後に分級工程を設けてもよい。解砕工程にて得られた解砕シリカ粒子(あるいは、表面改質工程にて得られた表面改質された解砕シリカ粒子)を分級装置により分級し、平均粒子径の4倍以上の粒径を持つ粗大粒子を除去し、この粗大粒子の割合を5質量%以下とすることが好ましい。2質量%以下とすることがさらに好ましい。また、分級装置により、平均粒子径が所定範囲内の解砕シリカ粒子を多く得ることができる(すなわち、CV値を低くすることができる)。ここで、分級装置としては、ドナルドソン社製のドレセレック、セイシン企業社製のスピンエアシーブ、日清エンジニアリング社製のエアロファインクラシファイア、パウダーシステムズ社製のハイプレック分級機、ホソカワミクロン社製のツインターボプレックス等が使用できる。

(代替の焼成工程)
 また、前述の焼成工程を以下のように設定してもよい。すなわち、シリカ粒子を、50g/m3以上の水蒸気の存在下で800~1000℃で焼成する。これにより、焼成シリカ粒子が作製される。このような焼成工程により、焼成シリカ粒子の表面の水酸基を低減することができるので、低温での焼成にも関わらず焼成シリカ粒子の吸湿性が低減する。特に、炉内の水蒸気量を100g/m3~2000g/m3に維持した状態で焼成することが好ましい。炉内の水蒸気量が100g/m3未満の場合は、水蒸気量が少ないため、低温では粒子が持つシラノール基の縮合重合が進みにくく、粒子中のシラノール基が多く残る傾向がある。一方、炉内の水蒸気量を2000g/m3より多くしても、シラノール基の縮合重合はこれ以上加速的に進むことはなく、経済的観点から好ましくない。
 また、この代替の焼成工程後に、炉内に露点0℃以下の不活性ガスを注入し、炉内の水蒸気を排出することが好ましい。冷却中に水蒸気が存在していると、焼成シリカ粒子に水分が付着する虞があるためである。例えば、焼成工程の後で、焼成シリカ粒子の冷却中に、炉内にある水蒸気を含む気体を露点0℃以下の不活性ガスに置き換えることでも効果がある。
 ここでは、水蒸気量を適正に維持できれば特に焼成法に制限はなく、回転焼成、バッチ焼成、コンベア焼成でもよい。水蒸気も気体として炉内に導入してもよく、液体として導入し炉内で水蒸気化させてもよい。
 このようにして、平均粒子径10nm~10μmのシリカ粒子の分散液から、平均粒子径10nm~10μmの焼成シリカ粒子が得られる。水蒸気量を100g/m3 ~2000g/m3に維持した条件で焼成した場合には、水蒸気量が少ない焼成条件に比べ、低温でシラノール基を低減することが可能となり、吸湿性が低く水の吸着しにくい焼成シリカ粒子が得られる。さらに、低温で焼成しているため、粒子の融着も少なく、分散性の良い粒子が得られる。一方、平均粒子径が10nm未満の焼成シリカ粒子は、均一な粒子径を得ることが困難である。仮に得られたとしても粒子の比表面積が大きいため焼成時に強く焼結し易く、吸湿性の低い、樹脂への分散性に優れた焼成シリカ粒子が得られない。平均粒子径が10μmを超える焼成シリカ粒子では、狭いギャップに充填し難くなるため、集積度の高い半導体素子等に用いる充填剤には適さない。
 このように、この代替焼成工程により得られる解砕シリカ粒子は、前述の焼成工程で得られるそれに比べて融着が少なく分散性に優れている。
 また、焼成シリカ粒子には粒子径が平均粒子径の4倍以上の粗大粒子が存在することがあるが、この粗大粒子の割合を5質量%以下にすることが好ましい。特に、2質量%以下が適している。粗大粒子の割合が5重量%を超えると、樹脂への分散性が低下するとともに、粒子径によっては注入性、充填性が低下する場合がある。
 上述と同様の目的で、比重差を利用した水比分級やフィルターによる除去、サイクロン法による粗大粒子除去も必要に応じて利用することができる。

[シリカ粒子の作製について]
 次に、前述の焼成工程で使用するシリカ粒子について詳細に説明する。後述する平均粒子径範囲にあり、樹脂への分散性に優れた球状の焼成シリカ粒子が得られれば、シリカ粒子の製造方法は問わない。例えば、特開平11-228698号公報、特開平11-228699号公報等に開示した、有機珪素化合物を加水分解して得られるシリカ粒子、あるいは、これに準じた方法で得られるシリカ粒子でもよい。また、特開昭63-45114号公報、特開2004-203729号公報、特開2013-126925公報等に開示した、種粒子に、水硝子をイオン交換樹脂で脱アルカリして得られる活性珪酸液を添加することにより粒子成長したシリカ粒子、あるいは、これに準じた方法で得られるシリカ粒子でもよい。

 ここでは、下記式(1)で表される加水分解可能な有機珪素化合物を加水分解し、次いで粒子成長(ビルドアップ)させてシリカ粒子の分散液を作製し、これを噴霧乾燥してシリカ粒子を得る調製法を説明する。
  Rn-SiX4-n      (1)
(但し、式中、Rは炭素数1~10の置換または非置換の炭化水素基であって、互いに同一であっても異なっていてもよい。Xは炭素数1~4のアルコキシ基、水酸基、ハロゲンまたは水素。nは0~3の整数)
(1)種粒子調製工程
 まず、水とアルコールの混合溶媒に加水分解用触媒を加えて混合溶媒とする。この混合溶媒に式(1)で示した有機珪素化合物を添加すると、シリカ微粒子(種粒子ということもある)の分散液(A液)が得られる。すなわち、シリカ種粒子は有機珪素化合物の加水分解物である。
 混合溶媒に有機珪素化合物を添加する際、できるだけ短時間で、できれば一気に添加することが好ましい。短時間で添加することによって、均一な粒子径の種粒子が作製できる。これを後述する粒子成長工程で粒子成長させると、均一な粒子径の(粒子径変動係数の小さい)シリカ粒子が得られる。
 アルコールとしてはメタノール、エタノール、プロパノール、ブタノール等を用いることができる。なお、必要に応じて他の有機溶媒を併用してもよい。このとき、混合溶媒中の水/アルコール重量比は1/1~3/1の範囲にあることが好ましい。この範囲にあれば、比較的単分散のシリカ種粒子が得られ、均一な粒子径のシリカ粒子の作製に有効である。
 加水分解用触媒としては、アルカリ金属水酸化物、塩基性窒素化合物等の塩基性化合物を用いることができる。ここでは、アンモニアが推奨される。アンモニアは、加水分解能だけでなく、各工程における分散液のpH調整に有効で、かつ、最終的に得られる解砕シリカ粒子中にアンモニアは不純物として残存することがない。
 加水分解用触媒や有機珪素化合物の種類によって、混合溶媒中の加水分解用触媒の濃度は異なるものの、1~7.5質量%の範囲にあることが好ましい。加水分解用触媒の濃度がこの範囲にあれば、種粒子に適した比較的単分散のシリカ微粒子が得られる。さらに、加水分解用触媒の濃度は3~5質量%がより好ましい。
 シリカ種粒子の分散液(A液)の濃度はRn-SiO(4-n)/2として0.01~5質量%の範囲にあることが好ましい。分散液(A液)の濃度がこの範囲にあれば、所望の粒子径を有するシリカ種粒子を得ることができる。より好ましくは、0.1~1質量%の範囲である。また、分散液(A液)の温度は5~40℃の範囲が、pHは8~13が好ましい。より好ましいpHの範囲は10~12である。このように、温度とpHを適正な範囲にすることにより、シリカ種粒子の平均粒子径を5nm~0.8μmの間に制御することができ、標準偏差を0.5μm以下にすることができる。
 さらに、シリカ微粒子の分散液(A液)に、pH調整剤を添加することが好ましい。本実施例ではアンモニア水を加える。必要に応じて水を加えてもよい。このようにして、pHが10~13の範囲のシリカ微粒子の分散液(B液)が得られる。シリカ微粒子の分散液(B液)の温度を5~40℃の範囲にすることが好ましい。また、分散液の電導度は80~200μs/cmの範囲が好ましい。シリカ微粒子の分散液(B液)のpH、温度および電導度をこのような範囲とすることによってシリカ微粒子は凝集することなく、より均一な粒子径となり、種粒子として好適に用いることができる。
(2)粒子成長工程
 次いで、粒子成長工程を行う。すなわち、シリカ微粒子の分散液(B液)に加水分解可能な有機珪素化合物と加水分解用触媒を連続的にあるいは断続的に添加する。ここでは、有機珪素化合物と加水分解用触媒を同時かつ連続的に添加する。同時に添加することにより、粒子成長工程で分散液のpHの変動を小さくすることが可能となり、粒子成長用の有機珪素化合物の加水分解およびシリカ微粒子(種粒子)表面への析出速度が一定となり、均一な粒子径のシリカ粒子が得られる。
 このとき、有機珪素化合物の添加量は、前述の分散液(A液)のRn-SiO(4-n)/2量の2~200倍の範囲にあることが好ましい。この範囲にあれば、平均粒子径が後述する10nm~1μm範囲にあるシリカ粒子を、凝集することなく単分散で得られる。より好ましくは、10~150倍の範囲である。1μm以上のシリカ粒子を得たい場合には、ここで得られた粒子を種粒子として、同様の粒子成長工程を更に行えばよい。このように、粒子成長工程を繰り返すことで、10μm程度までシリカ粒子を成長させることができる。
 この工程で、有機珪素化合物と加水分解用触媒(アンモニア水)の添加時間は、シリカ粒子の作製量によっても異なるが、1~48時間である。特に、2~24時間が好ましい。添加時間がこの範囲にあれば、凝集することなく単分散のシリカ粒子を作製することができる。また、粒子成長中には分散液のpHを8~13の範囲にする。pHの変動幅は±1.0が好ましく、±0.5の範囲にあることがより好ましい。
 またこのとき、シリカ微粒子(SiO2)1モルに対して、水を4~200モル加えることが好ましい。特に、6~100モルの範囲が適している。水が4モル未満であると、加水分解が生じにくく、球状の粒子が得られない場合がある。水が200モル以上であると、加水分解速度が速くなるため、粒子成長が生じずに自己核生成が生じる場合がある。さらに加水分解用の触媒は種類にもよるが、系内に0.5~7.5%存在するように添加することが好ましい。0.5%未満の場合は、粒子成長をせず目的の粒子サイズにならない場合がある。7.5%より多い場合は粒子成長に影響は及ぼさないがコスト的観点から好ましくない。
 このように、シリカ微粒子の分散液(B液)に有機珪素化合物と加水分解用触媒を同時かつ連続的に添加することでシリカ微粒子が成長し、シリカ粒子の分散液(C液)が得られる。以上のような方法により、平均粒子径10nm~1μmのシリカ粒子の分散液を作製することができる。
(3)噴霧乾燥工程
 次に、シリカ分散液(C液)を噴霧乾燥して、造粒を行う。噴霧乾燥シリカ粒子(噴霧乾燥により得られる造粒粒子であり、シリカ粒子の均一な集合体粒子)の平均粒子径は1~100μmが適している。特に、1~70μmの範囲が好ましい。噴霧乾燥シリカ粒子の平均粒子径が1μm未満の場合は、流動性が低く、焼成工程で均一に焼成できないことがある。その場合、解砕工程の処理条件を固定にしたままでは、元の粒子径になるように解砕できないおそれがある。噴霧乾燥シリカ粒子の平均粒子径が100μmを超えると、粒子が大きすぎて解砕工程で元の粒子径になるまで解砕できないおそれがある。できたとしても長時間の解砕を要する。また、吸湿性の低い、樹脂への分散性に優れた解砕シリカ粒子を得ることが困難となる。
 また、噴霧乾燥シリカ粒子の水分含有量は0.01~10質量%が適している。特に、0.1~7質量%の範囲が好ましい。水分含有量を0.01質量%未満とすることは困難であり、できたとしても噴霧乾燥工程で融着が起き、これをこのまま焼成したのでは、解砕工程で元の粒子径になるまで解砕できないことがある。また、水分含有量が10質量%を超えると、焼成工程で融着が促進され、解砕工程で元の粒子径になるまで解砕できないことがある。
 噴霧乾燥方法としては、後述する解砕シリカ粒子が結果的に得られれば特に制限は無いが、回転ディスク法、加圧ノズル法、2流体ノズル法等、従来の方法を採用できる。特に、2流体ノズル法が好適である。
 噴霧乾燥における熱風の温度は、出口温度で120~300℃が適している。特に、130~250℃が好ましい。入口温度にも依るが、出口温度が120℃未満の場合、造粒粒子は十分に乾燥できない。十分に乾燥していない造粒粒子を焼成すると、融着が起きやすい。前述の解砕工程を用いても、融着した粒子を均一に解砕することは困難である。また、出口温度が300℃を越える場合には、造粒粒子の水分は少なくなるものの、焼成工程で融着する粒子が増大する。そのため、全ての融着粒子を解砕することは難しい。
 噴霧乾燥に用いるシリカ分散液(C液)の濃度は1~40質量%が適している。特に、10~30質量%の範囲が好ましい。シリカ分散液(C液)の濃度が1質量%未満だと、生産性が低下するだけでなく、造粒粒子の粒子径が小さくなる。即ち、シリカ粒子の集合数の少ない造粒粒子となるため、造粒粒子の流動性が低下する。焼成工程で均一に焼成できない場合、流動性が低いと解砕工程に一定の条件で造粒粒子を供給できないために、元の粒子径になるように解砕できないおそれがある。一方、シリカ分散液(C液)の濃度が40質量%を超えると、分散液の安定性が低下するため、均一な形状の集合体粒子(造粒粒子)が得られ難い。そのため、焼成工程で均一な焼成ができない場合、解砕工程に一定の条件で造粒粒子を供給できない場合があり、元の粒子径になるように解砕できないおそれがある。
 この噴霧乾燥工程で、シリカ分散液の濃度を20質量%程度に調整して、噴霧乾燥シリカ粒子の粒子径を概ね数十μmに揃えることにより、800~1100℃で焼成しても焼成後に生じる融着粒子が大きく減少することがわかった(後述の実施例1~8を参照)。

 さらに、噴霧乾燥工程の前、上述の粒子成長工程の後に、必要に応じて熟成工程と濾過工程を以下のように設けてもよい。
(熟成工程)
 粒子成長工程を経たシリカ粒子の分散液(C液)を、35~120℃に加温し、所定時間撹拌する。するとシリカ粒子の分散液が熟成し、シリカ粒子の分散液(D液)が得られる。40~80℃の範囲で熟成させることがより好ましい。この温度範囲内であれば分散液(C液)の温度は変動してもかまわない。
 また、熟成時の分散液のpHを8~13の範囲にする必要がある。このとき、分散液のpHの変動幅を±1.0にする必要がある。±0.5の範囲に制御することが、より好ましい。熟成時間は温度によっても異なるが概ね1~24時間である。このような条件で熟成することによって、有機珪素化合物の加水分解物の縮合が進むとともに、より均一な粒子径の(粒子径変動係数の小さい)シリカ粒子が得られる。
(濾過工程)
 さらに、必要に応じて濾過工程を設けてもよい。濾過工程の前に前述の熟成工程を行っているか否かは問わない。濾過によって、所定の平均粒子径よりも大きい、シリカ粒子の凝集体を分離できる。この時点で所定の平均粒子径よりも大きい凝集体が残存していると、焼成工程での焼成により、解砕が困難な焼成シリカ粒子が生成する。これは、融着度合が大きい焼成シリカ粒子ができるからで、仮にその後に粉砕したとしても、粒子内部での破壊が起こるためシロキサン結合が切断され、破断面にシラノール基が生成しやすい。そのためシリカ粒子の吸湿性を低くすることができない。このように、この時点で凝集状態にあるシリカ粒子をそのまま焼成すると、吸湿性が低く、樹脂への分散性、充填性に優れた解砕シリカ粒子を得ることができない。

 濾過方法としては、所定の平均粒子径以上のシリカ粒子の凝集体を分離できれば特に制限はなく、従来公知の各種フィルターを用いて分離することができる。濾過工程を経たシリカ分散液を用いて前述の噴霧乾燥を行い、得られたシリカ粒子を焼成する。
 噴霧乾燥工程に供給するシリカ粒子の平均粒子径(DA)は10nm~1μmが適している。特に、20nm~1μmの範囲が好ましい。平均粒子径(DA)が10nm未満の場合は、均一な粒子径の粒子を得ることが困難で、得られたとしても焼成時に強く焼結する。そのため、吸湿性の低い、樹脂への分散性に優れた解砕シリカ粒子を得ることが困難である。シリカ粒子の平均粒子径(DA)が1μmを超えると、集積度の高い半導体素子でギャップが狭い場合に、樹脂組成物の充填性が低下する。
 なお、本明細書において述べる各シリカ粒子の平均粒子径は、1μm未満の粒子は堀場製作所製の粒度分布測定装置LA-950V2を用い、1μm以上の場合はベックマン・コールター社製のコールターカウンターIIIを用いて測定する。

[解砕シリカ粒子を含む樹脂組成物]
 ここでは、本発明に係る樹脂組成物について説明する。樹脂組成物は、上述した解砕工程を経て得られた解砕シリカ粒子と樹脂を含んでいる。
 樹脂は、用途によって適宜選択できる。ここでは、エポキシ系樹脂、ポリイミド系樹脂、ビスマレイミド系樹脂、アクリル系樹脂、メタクリル系樹脂、シリコン系樹脂、BTレジン、シアネート系樹脂から選ばれる1種または2種以上であることが好ましい。
 このような樹脂を用いると、解砕シリカ粒子が均一に分散し、得られる樹脂組成物はギャップが狭い場合であっても注入性、充填性に優れている。さらに、硬化させた後も吸湿性がなく、信頼性に優れた電子デバイス等を得ることができる。
 樹脂組成物中の解砕シリカ粒子の含有量は5~75質量%、さらには10~70質量%の範囲にあることが好ましい。樹脂組成物中の解砕シリカ粒子の含有量が5質量%未満の場合は、粒子が少ないので膨張率が樹脂のみの場合と大きく変わらず、例えばバンプ周辺にクラックが発生する場合がある。樹脂組成物中の解砕シリカ粒子の含有量が75質量%を超えると樹脂組成物の粘度が高くなり、注入性、充填性、浸透性等が不充分となる場合がある。
 なお、前述の式(1)で表される加水分解性有機ケイ素化合物としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、3,3,3-トリフルオロプロピルトリメトキシシラン、メチル-3,3,3-トリフルオロプロピルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシメチルトリメトキシシラン、γ-グリシドキシメチルトリエキシシラン、γ-グリシドキシエチルトリメトキシシラン、γ-グリシドキシエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-(β-グリシドキシエトキシ)プロピルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリエキシシラン、γ-(メタ)アクリロオキシエチルトリメトキシシラン、γ-(メタ)アクリロオキシエチルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、ブチルトリメトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、ブチルトリエトキシシラン、3-ウレイドイソプロピルプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、パ-フルオロオクチルエチルトリメトキシシラン、パ-フルオロオクチルエチルトリエトキシシラン、パ-フルオロオクチルエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシラン、トリデカフルオロオクチルトリメトキシシラン、ヘプタデカトリフルオロデシルトリメトキシシラン、ジメトキシメチルトリフルオロプロピルシラン、ペンタデカトリフルオロデシルトリメトキシシラン、ヘプタデカトリフルオロデシルトリプロポキシシラン、トリメチルシラノール、メチルトリクロロシラン、3-グリシドキシプロピルメチルジエトキシシラン,3-メタクリロキシプロピルメチルジメトキシシラン,3-メタクリロキシプロピルメチルジエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、およびこれらの化合物を2種以上含む混合物が挙げられる。

 以下、解砕シリカ粒子の製造方法の実施例を説明する。本発明はこれら実施例に限定されるものではない。
[実施例1]
焼成シリカ粒子の調製
(種粒子調製工程)
 まず、水、アルコールと加水分解用触媒を加えて混合溶媒を調製する。本実施例では、水221.2g、エチルアルコール(関東化学社製)185.1g、及び濃度28質量%アンモニア水(関東化学社製)38.1gを容量2L(リットル)のガラス製反応器に入れ撹拌する。この溶液の液温を35±0.5℃に調節して、反応器にテトラエトキシシラン(多摩化学社製)7.88gを一気に加える。その後、1時間撹拌する。1時間撹拌することにより、テトラエトキシシランは加水分解・縮合し、シリカ微粒子の分散液(A液)が得られる。このとき、シリカ微粒子の平均粒子径は0.083μm、平均粒子径の標準偏差は0.072μmとなった。
 このシリカ微粒子の分散液(A液)のpHを調整するために、28重量%アンモニア水61.1gと水10.0gを加え、撹拌しながら液温を35±0.5℃に調整する。これにより、シリカ微粒子の分散液(B液)を得る。この分散液(B液)のpHは12.2で、電導度は196μs/cmであった。
(粒子成長工程)
 第一滴下装置に粒子成長用の有機珪素化合物としてテトラエトキシシラン497.0gを入れる。第二滴下装置には、濃度28質量%アンモニア水126.0gを水315.0gで希釈した濃度8質量%アンモニア水(加水分解用触媒)を入れる。35±0.5℃に管理された分散液(B液)に、第一滴下装置と第二滴下装置を用いてテトラエトキシシランとアンモニア水を12時間かけて滴下する。滴下期間中にpHが11.5を下回らないようにする。また、滴下終了後の分散液(C液)の電導度は96.1μs/cmで、同様に、滴下期間中90μs/cmを下回ることはなかった。
(熟成工程)
 滴下終了後、分散液(C液)の液温を60±0.5℃に調節し、1時間撹拌して熟成させ、シリカ粒子(A1)の分散液(D液)を調製する。このとき、シリカ粒子(A1)の平均粒子径は0.27μmであり、平均粒子径の標準偏差は0.07μmであった。また、この時の分散液のpHは11.7であった。
(濾過工程および噴霧乾燥用分散液調製工程)
 このようにして得られたシリカ粒子(A1)の分散液(D液)を0.5μmのナイロンフィルターで濾過して、シリカ粒子の凝集粒子を除去する。さらに、蒸留装置を用いて水溶媒に置換する。その後、シリカ濃度が20質量%になるまで濃縮して、シリカ粒子(A1)の分散液(E液)を得る。
(噴霧乾燥工程)
 シリカ粒子(A1)の分散液(E液)を、噴霧乾燥装置(大川原化工機株式会社製:FOC-25型)を用いて噴霧乾燥してシリカ粉体(噴霧乾燥シリカ粒子)を造粒する。このとき、噴霧乾燥装置の入口温度を250℃、出口温度を150℃とする。シリカ粉体の水分含有量は7質量%である。シリカ粉体を構成するシリカ粒子(A1)の平均粒子径を測定し、結果を表1に示す。
(焼成工程)
 次に、シリカ粉体をSiC製のるつぼ(焼成用容器)に入れ、電気炉を用いて900℃で10時間焼成する。これを冷却して焼成シリカ粒子が得られる。
(解砕工程)
 続いて、この焼成シリカ粒子を、高圧ガスによる旋回流が発生している解砕装置(アイシンナノテクノロジーズ社製:ナノジェットマイザーNJ-100)に投入して、焼成シリカ粒子を解砕し、解砕シリカ粒子(B1)を得る。このとき、高圧ガスとして、エアドライヤーにより圧力が1.0MPaの場合に露点マイナス10℃に制御された乾燥空気を用いる。また、焼成シリカ粒子の導入口を密閉するように囲いを設けた。そこへ露点マイナス10℃の乾燥空気が導入される。露点がマイナス10℃の環境から焼成シリカ粒子を供給し、焼成シリカ粒子とともに導入される乾燥空気も露点マイナス10℃の空気とする。
 本装置の運転条件は、解砕圧力(解砕部における旋回流空気圧)を0.85MPa、焼成シリカ粒子の導入部における圧力を1.0MPa、原料の導入速度を5kg/Hr、旋回流の速度(線速)を391m/s、固気比を22.6g/m3と設定した。また、この装置の解砕用容器は、900℃以上で熱処理された炭化ケイ素により構成することが好ましい。
 得られた解砕シリカ粒子(B1)について、平均粒子径、粒子径変動係数(CV値)を測定し、結果を表2に示す。さらに、以下のように、粗大粒子の含有量、吸湿性(吸着水量)、不純物(Fe、Zr、U、Th)含有量の測定、分散性を評価した。結果を表2に示す。
 更に、得られた解砕シリカ粒子(B1)を、日清エンジニアリング社製のエアロファインクラシファイアにより分級すると、平均粒子径が0.25μm、CV値が19.0%、粗大粒子含有量が0.1質量%、吸着水量が0.12質量%、Fe含有量が0.3ppm、Zr含有量が0.0ppm、U含有量が0.1ppm、Th含有量が0.0ppmである分級シリカ粒子を得ることができる。


粗大粒子の測定
 平均粒子径を測定する際に、粒子径の大きな粒子の分布が観察された場合、平均粒子径の4倍以上の粒子の割合(重量割合)を求め粗大粒子の含有量とした。
吸湿性
 解砕シリカ粒子(B1)を、温度25℃、湿度90%の環境下に暴露し、48時間経過後の質量(WH)を測定し、解砕シリカ粒子の質量(WD)からの増加量((WH)-(WD))を(WD)で除して吸着水分量Q(質量%)を求めた。Q=((WH)-(WD))/(WD)×100(%)
 Q≦0.15     : ◎(非常に好ましい。)
 0.2≧Q>0.15  : ○(好ましい。)
 1.0≧Q>0.2   : △
 2.0≧Q>1.0   : ×
不純物含有量
 解砕シリカ粒子(B1)を硫酸・硝酸・弗化水素酸で前処理した後、硝酸に溶解させ、ICP質量分析装置(Agilent製:型式Agilent 7500S)を用いて不純物含有量を測定した。
分散性の評価
 次のように、樹脂組成物を作製し、分散性を評価する。エポキシアクリレート樹脂(共栄社化学(株)製:3000A)とエポキシアクリレート樹脂(共栄社化学(株)製:M600A)を重量比85:15で混合した樹脂25.5gに、解砕シリカ粒子(B1)4.5gを混合し、自転・公転ミキサー(シンキー社製:あわとり練太郎AR-100)を用いて、2000rpmで10分間混練した。次いで、三本ロールミル(EXAKT社製:EXAKT50)に1回通過させて樹脂組成物(ペースト1)を作製する。樹脂組成物について、以下の基準で分散性を評価し、結果を表2に示す。
 微細な粒子凝集体が全く認められない。  : ◎
 微細な粒子凝集体が殆ど認められない。  : ○
 微細な粒子凝集体が僅かに認められる。  : △
 比較的大きな粒子凝集体が認められる。  : ×

注入性の評価
 次のように、樹脂組成物を作製し、注入性を評価する。ビスフェノールF型エポキシ樹脂(新日鐵住金化学(株)社製:YDF8170)と液状フェノール樹脂(明和化成(株)社製:MEH8000)とイミダゾール(四国化成工業(株)社製:2E4MZ)と解砕シリカ粒子(B1)を重量比31.0:19.0:0.26:50.0で混合し、自転・公転ミキサー(シンキー社製:あわとり練太郎AR-100)を用いて、2000rpmで10分間混練した。次いで、三本ロールミル(EXAKT社製:EXAKT50)に5回通過させて樹脂組成物(ペースト1)15gを作製する。得られた樹脂組成物について、110℃で注入性の評価を行った。注入性の評価は、ガラスの上に、ギャップ約20μmの松浪硝子工業(株)社製のギャップカバーグラス(CG00024)を貼り付けたものを用い、開口部(ギャップカバーグラスの短辺)に、シリンジを用いて満遍なく各実施例及び比較例の樹脂組成物を載置した。載置した樹脂組成物は、110℃に加熱されることで粘度が下がり、毛管現象により、ギャップカバーガラス内を対辺(開口部)まで進んでいく。その際、以下の基準で注入性を評価し、結果を表2に示す。
 注入口付近に微細な粒子凝集体が全く認められない。  : ◎
 注入口付近に微細な粒子凝集体が殆ど認められない。  : ○
 注入口付近に微細な粒子凝集体が僅かに認められる。  : △
 注入口付近に比較的大きな粒子凝集体が認められる。  : ×
濾過性の評価
 次のように、樹脂組成物を作製し、分散性を評価する。エポキシアクリレート樹脂(共栄社化学(株)製:3000A)とエポキシアクリレート樹脂(共栄社化学(株)製:M600A)を重量比85:15で混合した樹脂51.0gに、焼成シリカ微粒子(B1)9.0gを混合し、自転・公転ミキサー(シンキー社製:あわとり練太郎AR-100)を用いて、2000rpmで10分間混練した。次いで、三本ロールミル(EXAKT社製:EXAKT50)に1回通過させて樹脂組成物(ペースト1)を作製する。得られた樹脂組成物を、SUS製のカラムに充填し、40度に加温した状態で、0.4MPaの窒素で加圧し、3μmの金属製フィルター(日本金網商工(株)社製:NKSスーパーポアA3)で濾過を行った。樹脂組成物について、以下の基準で濾過性を評価し、結果を表2に示す。
 濾過速度の低下が全く認められない。  : ◎
 濾過速度の低下が殆ど認められない。  : ○
 濾過速度の低下が僅かに認められる。  : △
 濾過速度の低下が認められる。     : ×

[実施例2]
 本実施例は、実施例1の解砕工程の後で、表面改質工程を設けている。すなわち、実施例1と同様にして解砕工程で得られた解砕シリカ微粒子(B1)を、再びるつぼに入れ、電気炉を用いて700℃で10時間焼成し、次いで冷却して焼成シリカ微粒子(B2)を調製する。得られた焼成シリカ微粒子(B2)を実施例1と同様に評価した。結果を表2に示す。
[実施例3]
 本実施例は、得られるシリカ粒子の大きさが実施例2とは異なっている。まず、実施例1と同様に、シリカ微粒子の分散液(A3液)を作製する。その後、シリカ濃度20%まで濃縮する。次いで、容量2Lのガラス製反応器に、シリカ微粒子の分散液(A3液)26.9g、水125.5g、エチルアルコール136.0g及び濃度28質量%アンモニア水92.5gを入れる。これを撹拌しながら液温を35±0.5℃に調節し、分散液(B3液)を得る。
 第一滴下装置に粒子成長用のテトラエトキシシラン702.0gを入れ、第二滴下装置に、濃度28質量%アンモニア水183.0gを水458.0gで希釈した8重量%アンモニア水を入れる。35±0.5℃に管理された分散液(B3液)に、それぞれの滴下装置から、テトラエトキシシランと濃度8質量%アンモニア水を19時間かけて滴下する。
 滴下終了後、液温を60±0.5℃に調節し、1時間撹拌する。これにより、テトラエトキシシランの加水分解、縮合が行われ、シリカ粒子の分散液(D3液)が得られる。このとき、シリカ粒子(A3)の平均粒子径は0.96μm、平均粒子径の標準偏差は0.22μmとなった。
 この分散液(D3液)を、2.0μmのナイロンフィルターで濾過し、蒸留装置を用いて水溶媒に置換後、シリカ濃度35質量%まで濃縮し、濃縮した分散液(E3液)を得る。
 実施例1と同様に、この分散液(E3液)をスプレードライヤで乾燥造粒し、電気炉で900℃焼成した後、ナノジェットマイザーを用いて解砕する。更に実施例2と同様に表面改質して、解砕シリカ粒子(B3)が得られる。解砕シリカ粒子(B3)の製造条件の概要を表1に示す。この解砕シリカ粒子(B3)について、実施例1と同様に特性を評価する。結果を表2に示す。
[実施例4]
 本実施例は焼成条件が実施例2とは異なっている。すなわち、本実施例では、焼成工程において、800℃で10時間焼成する。これ以外は実施例2と同様とする。このようにして、解砕シリカ粒子(B4)を作製する。解砕シリカ粒子(B4)の製造条件の概要を表1に示す。この解砕シリカ粒子(B4)について、実施例1と同様に特性を評価する。結果を表2に示す。
[実施例5]
 本実施例では、焼成工程において、1100℃で10時間焼成する。これ以外は実施例2と同様とする。このようにして、解砕シリカ粒子(B5)を作製する。解砕シリカ粒子(B5)の製造条件の概要を表1に示す。この解砕シリカ粒子(B5)について、実施例1と同様に特性を評価する。結果を表2に示す。

[実施例6]
 本実施例は解砕工程において使用する高圧ガスが実施例2と異なっている。本実施例では、旋回流を発生する高圧ガスとして、圧力が1.0MPaの場合に露点が-20℃の乾燥空気を用いることとした。これ以外は実施例2と同様にして解砕シリカ粒子(B6)を作製する。解砕シリカ粒子(B6)の製造条件の概要を表1に示す。この解砕シリカ粒子(B6)について、実施例1と同様に特性を評価する。結果を表2に示す。
[実施例7]
 本実施例は表面改質工程における焼成条件が実施例2と異なっている。本実施例では、600℃で10時間焼成する。これ以外は実施例2と同様に解砕シリカ粒子(B7)を作製する。解砕シリカ粒子(B7)の製造条件の概要を表1に示す。この解砕シリカ粒子(B7)について、実施例1と同様に特性を評価する。結果を表2に示す。
[実施例8]
 本実施例は表面改質工程における焼成条件が実施例2と異なっている。本実施例では、表面改質工程において1000℃で10時間焼成する。これ以外は実施例2と同様に解砕シリカ粒子(B8)を作製する。解砕シリカ粒子(B8)の製造条件の概要を表1に示す。この解砕シリカ粒子(B8)について、実施例1と同様に特性を評価する。結果を表2に示す。
[実施例9]
 本実施例は、解砕工程における解砕条件が実施例1と異なっている。本実施例では、解砕工程において、解砕圧力を0.85MPa、焼成シリカ粒子の導入部における圧力を1.0MPa、原料の導入速度を1.8kg/Hr、旋回流の速度(線速)を391m/s、固気比を8.1g/m3と設定した。解砕シリカ粒子(B9)の製造条件の概要を表1に示す。この解砕シリカ粒子(B9)について、実施例1と同様に特性を評価する。結果を表2に示す。
[実施例10]
 本実施例は、実施例9の解砕工程の後で、表面改質工程を設けている。すなわち、実施例9と同様にして解砕工程で得られた解砕シリカ粒子(B9)を、再び焼成用容器に入れ、電気炉を用いて700℃で10時間焼成し、次いで冷却して解砕シリカ粒子(B10)を調製する。得られた解砕シリカ粒子(B10)を実施例1と同様に評価した。結果を表2に示す。
[比較例1]
 本比較例では解砕工程を行っていない。実施例1で、焼成工程により得た焼成シリカ粒子(R1)を実施例1と同様に評価した。結果を表2に示す。ただし、焼成シリカ粒子(R1)が大き過ぎるので、樹脂組成物の調製、分散性の評価は実施していない。
[比較例2]
 本比較例では、実施例1の焼成工程における焼成条件を550℃で10時間とする。焼成工程以外は実施例1と同様の条件で解砕シリカ粒子(R2)を作製する。この解砕シリカ粒子(R2)について、実施例1と同様に特性を評価する。結果を表2に示す。
[比較例3]
 本比較例は、実施例2の焼成工程における焼成条件を1250℃で10時間とする例である。焼成工程以外は実施例2と同じ条件で解砕シリカ粒子(R3)を作製する。この解砕シリカ粒子(R3)について、実施例1と同様に特性を評価する。結果を表2に示す。
[比較例4]
 本比較例では、実施例1の焼成工程と解砕工程の順序を入れ替えている。すなわち、種粒子調整工程から噴霧乾燥工程を実施例1と同様に行って、シリカ粉体を造粒する。次いで、シリカ粉体を、実施例1の解砕工程と同様にナノジェットマイザー(アイシンナノテクノロジーズ社製:NJ-100)を用いて解砕する。すなわち、低湿度の高圧ガスにより生じた旋回流にシリカ粉体を投入して、解砕する。次いで、解砕したシリカ粉体を焼成用容器に入れ、電気炉を用いて900℃で10時間焼成する。次いで冷却し、解砕シリカ粒子(R4)を作製する。この解砕シリカ粒子(R4)について、実施例1と同様に特性を評価する。結果を表2に示す。
[比較例5]
 本比較例では、比較例4で示した製造工程の後に、表面改質工程を設けている。すなわち、比較例4と同様に作製した解砕シリカ粒子(R4)を、焼成用容器に入れ、電気炉を用いて700℃で10時間焼成し、ついで冷却して解砕シリカ粒子(R5)を得る。この解砕シリカ粒子(R5)について、実施例1と同様に特性を評価する。結果を表2に示す。
[比較例6]
 本比較例は、実施例1の解砕工程を、粉砕機(ホソカワミクロン(株)製:ミクロンジェットMJT)を用いて行う例である。すなわち、焼成工程までは実施例1と同様に行い焼成シリカ粒子を作製する。この焼成シリカ粒子を粉砕機(ホソカワミクロン(株)製:ミクロンジェットMJT)で粉砕し、解砕シリカ粒子(R6)を取り出す。この粉砕機は旋回流式の解砕装置ではなく、ジルコニア製のターゲットに粒子を衝突させる方式の粉砕装置である。
 解砕シリカ粒子(R6)について、実施例1と同様に特性を評価する。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[実施例11]
 本実施例は、実施例1とは焼成工程以降が異なっている。まず、種粒子調製工程から噴霧乾燥工程までは実施例1と同様に行う。これにより、シリカ粉体が得られる。
(焼成工程)
 次に、このシリカ粉体を焼成用容器に入れ、電気炉(村尾電気製)で3時間かけて室温から350℃まで昇温する。本実施例では、一つの焼成用容器に0.9Kgのシリカ粉を収め、容積が0.8m3の電気炉に115個の焼成用容器を収めた。350℃で2時間保持した後、電気炉内の水蒸気量が100g/m3になるように水を供給する。その状態から11時間かけて900℃まで昇温し、900℃で10時間焼成を行った。焼成終了後(10時間経過後)、ヒーターの電源を切り、水の供給を止め、炉内に窒素ガスを90L/minで導入する。そのまま19時間かけて500℃まで冷却し、電気炉の扉を開け6時間かけて50℃まで冷却する。その後、窒素ガスの導入を止め、電気炉内から焼成用容器を取り出し、焼成シリカ粒子(シリカ粒子の焼成体)を得た。

(解砕工程)
 続いてシリカ粒子の焼成体を解砕装置に投入して、シリカ粒子の焼成体を解砕し、解砕シリカ粒子が得られる。得られた解砕シリカ粒子について、平均粒子径、粒子径変動係数(CV値)を測定した。結果を表3に示す。
 また、解砕シリカ粒子の吸湿性について、以下の方法と基準で評価した。結果を表3に示す。解砕シリカ粒子を、温度25℃、湿度90%の環境下に暴露し、48時間経過後の質量(WH)を測定し、解砕シリカ粒子の質量(WD)からの増加量((WH)-(WD))を(WD)で除して吸着水分量Q(質量%)を求めた。Q=((WH)-(WD))/(WD)×100(%)
 求めた吸着水分量Qに基づいて評価する。
Q≦0.15     : ○(好ましい)
 0.2≧Q>0.15 : △(やや好ましい)
 Q>0.2       : ×(好ましくない)


樹脂組成物(ペースト)の調製
 エポキシアクリレート樹脂(共栄社化学(株)製:3000A)とエポキシアクリレート樹脂(共栄社化学(株)製:M600A)を重量比85:15で混合した樹脂25.5gに、この解砕シリカ粒子4.5gを混ぜ、自転・公転ミキサー(シンキー社製:あわとり練太郎AR-100)を用いて、2000rpmで10分間混練する。次いで、三本ロールミル(EXAKT社製:EXAKT50)に1回通過させて樹脂組成物を調製する。

分散性の評価
 実施例1と同様に、この樹脂組成物中の解砕シリカ粒子の分散性を評価した。結果を表1に示す。

[実施例12]
 本実施例では、実施例11の焼成工程で、水蒸気量700g/m3、900℃10時間と設定した。これ以外は、同様の条件で解砕シリカ粒子を作製した。この解砕シリカ粒子について、平均粒子径、粒子径変動係数(CV値)を測定し、実施例11と同様に吸湿性と分散性を評価した。結果を表3に示す。
[実施例13]
 本実施例では、実施例11の焼成工程を、水蒸気量2000g/m3、900℃10時間と設定した。これ以外は、同様の条件で解砕シリカ粒子を作製した。この解砕シリカ粒子について、平均粒子径、粒子径変動係数(CV値)を測定し、実施例11と同様に吸湿性と分散性を評価した。結果を表3に示す。
[実施例14]
 本実施例では、実施例11の焼成工程で、水蒸気量2000g/m3、800℃10時間に設定した。これ以外は、同様の条件で解砕シリカ粒子を作製した。この解砕シリカ粒子について、平均粒子径、粒子径変動係数(CV値)を測定し、実施例11と同様に吸湿性と分散性を評価した。結果を表3に示す。
[実施例15]
 本実施例では、実施例11の焼成工程で、水蒸気量100g/m3、800℃10時間に設定した。これ以外は、同様の条件で解砕シリカ粒子を作製した。この解砕シリカ粒子について、平均粒子径、粒子径変動係数(CV値)を測定し、実施例11と同様に吸湿性と分散性を評価した。結果を表3に示す。
[実施例16]
 本実施例では、実施例11の焼成工程で、水蒸気量100g/m3、1000℃10時間に設定した。これ以外は、同様の条件で解砕シリカ粒子を作製した。この解砕シリカ粒子について、平均粒子径、粒子径変動係数(CV値)を測定し、実施例11と同様に吸湿性と分散性を評価した。結果を表3に示す。
[実施例17]
 本実施例では、実施例11の焼成工程を、水蒸気量2000g/m3、1000℃10時間に設定した。これ以外は、同様の条件で解砕シリカ粒子を作製した。この解砕シリカ粒子について、平均粒子径、粒子径変動係数(CV値)を測定し、実施例11と同様に吸湿性と分散性を評価した。結果を表3に示す。
[実施例18]
 本実施例では、実施例11の焼成工程で、焼成装置に5Lの回転焼成炉を用い、水蒸気量2000g/m3 、900℃1時間に設定した。これ以外は、同様の条件で解砕シリカ粒子を作製した。この解砕シリカ粒子について、平均粒子径、粒子径変動係数(CV値)を測定し、実施例11と同様に吸湿性と分散性を評価した。結果を表3に示す。
[比較例7]
 実施例11の焼成工程で、水蒸気量を10g/m3に設定した以外は、同様の条件で解砕シリカ粒子を作製した。湿度45%、温度24度の大気を炉内に導入する場合、水蒸気量は約10g/m3となる。この解砕シリカ粒子について、平均粒子径、粒子径変動係数(CV値)を測定し、実施例11と同様に吸湿性と分散性を評価した。結果を表3に示す。
[比較例8]
 比較例7の焼成工程で、焼成温度を800℃に設定した以外は、同様の条件で解砕シリカ粒子を作製した。この解砕シリカ粒子について、平均粒子径、粒子径変動係数(CV値)を測定し、実施例11と同様に吸湿性と分散性を評価した。結果を表3に示す。
[比較例9]
 比較例7の焼成工程で、焼成温度を1000℃に設定した以外は、同様の条件で解砕シリカ粒子を作製した。この解砕シリカ粒子について、平均粒子径、粒子径変動係数(CV値)を測定し、実施例11と同様に吸湿性と分散性を評価した。結果を表3に示す。
[比較例10]
 比較例7の焼成工程で、焼成装置に5Lの回転焼成炉を用い、900℃1時間に設定した。これ以外は、同様の条件で解砕シリカ粒子を作製した。この解砕シリカ粒子について、平均粒子径、粒子径変動係数(CV値)を測定し、実施例11と同様に吸湿性と分散性を評価した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004

Claims (22)

  1.  シリカ粒子を600~1200℃の範囲で焼成して焼成シリカ粒子を作製する焼成工程と、
     解砕容器内に導入するガスによって旋回流を発生させ、該旋回流中に前記焼成シリカ粒子を供給し、前記焼成シリカ粒子を解砕して解砕シリカ粒子を作製する解砕工程と、
     を含むことを特徴とする解砕シリカ粒子の製造方法。
  2.  前記導入するガスの線速が亜音速以上であることを特徴とする請求項1に記載の解砕シリカ粒子の製造方法。
  3.  前記解砕工程において、前記旋回流中に供給される焼成シリカ粒子の供給量W1(g/Hr)と、導入するガスの供給量W2(m3/Hr)の比である固気比W1/W2が4.4~36.3g/m3の範囲であることを特徴とする請求項1または2に記載の解砕シリカ粒子の製造方法。
  4.  前記ガスの露点が0℃以下であることを特徴とする請求項1~3のいずれか一項に記載の解砕シリカ粒子の製造方法。
  5.  前記解砕用容器の導入部では、前記ガスの圧力が0.1~1.5MPaの範囲にあることを特徴とする請求項1~4のいずれか一項に記載の解砕シリカ粒子の製造方法。
  6.  前記解砕工程の後に、500~1100℃の温度範囲で加熱処理する表面改質工程が設けられることを特徴とする請求項1~5のいずれか一項に記載の解砕シリカ粒子の製造方法。
  7.  前記表面改質工程が、露点0℃以下のガス雰囲気下で行なわれることを特徴とする請求項6に記載の解砕シリカ粒子の製造方法。
  8.  前記焼成工程と前記解砕工程の間で、前記焼成工程で焼成されたシリカ粒子の冷却が、露点0℃以下のガス雰囲気下で行われることを特徴とする請求項1~7のいずれか一項に記載の解砕シリカ粒子の製造方法。
  9.  前記焼成工程が、
     前記シリカ粒子を絶対湿度50g/m3以上の環境下で800~1000℃の範囲で焼成する工程であることを特徴とする請求項1~8のいずれか一項に記載の解砕シリカ粒子の製造方法。
  10.  前記焼成工程において、100g/m3~2000g/m3の水蒸気を含む気体が充填された炉内で前記シリカ粒子を焼成することを特徴とする請求項9に記載の解砕シリカ粒子の製造方法。
  11.  前記焼成工程の後で、前記炉内に露点0℃以下の不活性ガスを注入して、前記水蒸気を含む気体を排出することを特徴とする請求項10に記載の解砕シリカ粒子の製造方法。
  12.  前記焼成工程の後に、前記シリカ粒子を前記炉内で50℃まで冷却する冷却工程が設けられ、該冷却工程において、前記炉内にある前記水蒸気を含む気体を露点0℃以下の不活性ガスに置き換えることを特徴とする請求項10または11に記載の解砕シリカ粒子の製造方法。
  13.  前記焼成工程で焼成されたシリカ粒子は、前記解砕用容器に設けられた導入口から前記解砕用容器内に供給され、前記導入口と前記焼成体の貯留部は一つの密閉空間にあり、前記密閉空間に前記ガスが充填されたことを特徴とする請求項1~12のいずれか一項に記載の解砕シリカ粒子の製造方法。
  14.  前記解砕用容器の内表面の材質が炭化ケイ素(SiC)であることを特徴とする請求項1~13のいずれか一項に記載の解砕シリカ粒子の製造方法。
  15.  前記炭化ケイ素が900℃以上で焼成されていることを特徴とする請求項14に記載の解砕シリカ粒子の製造方法。
  16.  前記シリカ粒子が、平均粒子径10nm~1μmの範囲にあるシリカ粒子の分散液を噴霧乾燥して得られる噴霧乾燥シリカ粒子であり、前記噴霧乾燥シリカ粒子の平均粒子径が1~100μmの範囲にあり、水分含有量が0.01~10質量%の範囲にあり、
     前記解砕工程により得られた焼成シリカ微粒子の平均粒子径が5nm~0.95μmの範囲にあることを特徴とする請求項1~15のいずれか一項に記載の解砕シリカ粒子の製造方法。
  17.  前記焼成工程に用いるシリカ粒子が、下記式(1)で表される加水分解性有機珪素化合物を加水分解し、ついで粒子成長させて得たシリカ粒子であることを特徴とする請求項1~16のいずれか一項に記載の解砕シリカ粒子の製造方法。
      Rn-SiX4-n   (1)
    (但し、式中、Rは炭素数1~10の置換または非置換の炭化水素基であって、互いに同一であっても異なっていてもよい。Xは炭素数1~4のアルコキシ基、水酸基、ハロゲン、または水素。nは0~3の整数)
  18.  前記シリカ粒子の調製において加水分解時の分散液のpHが8~13の範囲にあり、粒子成長時の分散液のpHが8~13の範囲にあり、このときの分散液のpHの変動幅が±1.0の範囲にあることを特徴とする請求項17に記載の解砕シリカ粒子の製造方法。
  19.  シリカ粒子を600~1000℃の範囲で焼成して焼成シリカ粒子を得る焼成工程と、
     解砕用容器内に導入するガスによって旋回流を発生させ、該旋回流中に前記焼成シリカ粒子を供給して、前記焼成されたシリカ粒子を解砕して解砕シリカ粒子を得る解砕工程と、
     前記解砕シリカ粒子を、800~1100℃の温度範囲で加熱処理して表面改質された解砕シリカ粒子を得る表面改質工程と、を含むことを特徴とする解砕シリカ粒子の製造方法。
  20.  解砕シリカ粒子と樹脂を含むとともに、
     前記解砕シリカ粒子が、シリカ粒子を600~1200℃の範囲で焼成して焼成シリカ粒子を得る焼成工程と、解砕用容器内に導入するガスによって旋回流を発生させ、該旋回流中に前記焼成シリカ粒子を供給して、前記焼成シリカ粒子を解砕して解砕シリカ粒子を得る解砕工程とを経て得られた樹脂組成物。
  21.  前記解砕シリカ粒子の含有量が5~75質量%の範囲にあることを特徴とする請求項20に記載の樹脂組成物。
  22.  前記樹脂がエポキシ系樹脂、ポリイミド系樹脂、ビスマレイミド系樹脂、アクリル系樹脂、メタクリル系樹脂、シリコン系樹脂、BTレジン、シアネート系樹脂から選ばれる1種または2種以上であることを特徴とする請求項20に記載の樹脂組成物。
PCT/JP2014/070389 2013-08-01 2014-08-01 解砕シリカ粒子の製造方法および該微粒子を含む樹脂組成物 WO2015016359A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480042492.9A CN105408252B (zh) 2013-08-01 2014-08-01 碎解二氧化硅粒子的制造方法及包含该微粒的树脂组合物
JP2015529632A JP6480863B2 (ja) 2013-08-01 2014-08-01 解砕シリカ粒子の製造方法
US14/908,621 US10358353B2 (en) 2013-08-01 2014-08-01 Method for producing disintegrated silica particles
KR1020167004196A KR102260856B1 (ko) 2013-08-01 2014-08-01 해쇄 실리카 입자의 제조방법 및 그 입자를 포함하는 수지 조성물

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013160717 2013-08-01
JP2013-160717 2013-08-01
JP2013-238810 2013-11-19
JP2013238810 2013-11-19
JP2014-123286 2014-06-16
JP2014123286 2014-06-16

Publications (1)

Publication Number Publication Date
WO2015016359A1 true WO2015016359A1 (ja) 2015-02-05

Family

ID=52431882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070389 WO2015016359A1 (ja) 2013-08-01 2014-08-01 解砕シリカ粒子の製造方法および該微粒子を含む樹脂組成物

Country Status (6)

Country Link
US (1) US10358353B2 (ja)
JP (1) JP6480863B2 (ja)
KR (1) KR102260856B1 (ja)
CN (1) CN105408252B (ja)
TW (1) TWI639556B (ja)
WO (1) WO2015016359A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016190769A (ja) * 2015-03-31 2016-11-10 日揮触媒化成株式会社 シリカ粒子の製造方法
JP2016190770A (ja) * 2015-03-31 2016-11-10 日揮触媒化成株式会社 シリカ粒子の製造方法
JP2017179169A (ja) * 2016-03-31 2017-10-05 日揮触媒化成株式会社 被膜形成用の塗布液、及び該塗布液を用いた被膜付基材
JP2017179170A (ja) * 2016-03-31 2017-10-05 日揮触媒化成株式会社 被膜形成用の塗布液、及び該塗布液を用いた被膜付基材
WO2019044929A1 (ja) * 2017-08-31 2019-03-07 株式会社トクヤマ 表面処理ゾルゲルシリカ及びその製造方法
WO2019177004A1 (ja) * 2018-03-15 2019-09-19 株式会社トクヤマ 複合酸化物粉末、及びその製造方法
JP2020079165A (ja) * 2018-11-12 2020-05-28 花王株式会社 中空シリカ粒子及びその製造方法
JP2020090434A (ja) * 2018-11-22 2020-06-11 株式会社日本触媒 シリカ粉体、シリカ粉体の製造方法、および焼成シリカ粉体の製造方法
JPWO2021085149A1 (ja) * 2019-10-31 2021-05-06
KR102666806B1 (ko) 2018-03-15 2024-05-17 가부시키가이샤 도쿠야마 복합 산화물 분말 및 그 제조 방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI761649B (zh) * 2017-12-27 2022-04-21 日商日揮觸媒化成股份有限公司 多孔二氧化矽粒子及其製造方法
WO2020181490A1 (zh) * 2019-03-12 2020-09-17 湖州五爻硅基材料研究院有限公司 一种球形二氧化硅粉体填料的制备方法和由此得到的球形二氧化硅粉体填料及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259172A (ja) * 1988-04-09 1989-10-16 Idemitsu Petrochem Co Ltd 粉砕機
JPH02311310A (ja) * 1989-05-26 1990-12-26 Kawatetsu Mining Co Ltd 高純度シリカ微粉末の製造方法
JPH0431311A (ja) * 1990-05-25 1992-02-03 Shin Etsu Chem Co Ltd 球状シリカ及びその製造方法並びにエポキシ樹脂組成物及びその硬化物
JPH10324517A (ja) * 1997-05-22 1998-12-08 Mizusawa Ind Chem Ltd 破砕法によるシリカゲル粒子、その製法及びその用途
WO1999026881A1 (fr) * 1997-11-21 1999-06-03 Asahi Kasei Kogyo Kabushiki Kaisha Silice mesoporeuse, son procede de preparation et son utilisation
JP2010137189A (ja) * 2008-12-15 2010-06-24 Tokuyama Dental Corp 金属酸化物粒子の製造方法
JP2012227448A (ja) * 2011-04-21 2012-11-15 Nippon Shokubai Co Ltd 非晶質シリカ粒子

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296313A (ja) 1985-10-24 1987-05-02 Denki Kagaku Kogyo Kk 高純度球状シリカフイラ−の製造方法
JPS6345114A (ja) 1986-08-13 1988-02-26 Catalysts & Chem Ind Co Ltd シリカゾルの製造方法
JPH01234319A (ja) 1988-03-16 1989-09-19 Nippon Steel Chem Co Ltd 球状シリカの製造方法
JPH06115925A (ja) * 1992-09-30 1994-04-26 Nippon Steel Chem Co Ltd 単分散シリカ微粒子の製造方法
JP2698541B2 (ja) 1993-11-17 1998-01-19 株式会社日本触媒 液晶表示板用スペーサーおよびこれを用いた液晶表示板
US5503932A (en) 1993-11-17 1996-04-02 Nippon Shokubai Co., Ltd. Organic-inorganic composite particles and production process therefor
JP3596780B2 (ja) 1994-07-28 2004-12-02 株式会社吉野工業所 櫛型吐出具を備えたエアゾール容器
US5670257A (en) 1994-11-15 1997-09-23 Nippon Shokubai Co., Ltd. Organic-inorganic composite particles and production process therefor
CN1065212C (zh) * 1996-12-30 2001-05-02 徐梦雷 高纯二氧化硅超微粉的生产方法
KR100542032B1 (ko) 1998-02-09 2006-01-16 쇼꾸바이 카세이 고교 가부시키가이샤 오르가노폴리실록산 미세 입자, 그의 제조방법 및 액정디스플레이
JP3824766B2 (ja) 1998-02-09 2006-09-20 触媒化成工業株式会社 オルガノポリシロキサン微粒子、その製造方法および液晶表示装置
JP3824767B2 (ja) 1998-02-09 2006-09-20 触媒化成工業株式会社 オルガノポリシロキサン微粒子、その製造方法および液晶表示装置
US20030069347A1 (en) 2001-09-28 2003-04-10 Hideki Oishi Calcined silica particle and manufacturing method of same
JP3863085B2 (ja) 2001-09-28 2006-12-27 株式会社日本触媒 焼成シリカ粒子およびその製造方法
JP4493320B2 (ja) 2002-12-12 2010-06-30 日揮触媒化成株式会社 シリカゾルの製造方法およびシリカゾル
CN1222472C (zh) 2002-12-30 2005-10-12 广州吉必时科技实业有限公司 一种高分散纳米二氧化硅的制备方法
JP4092568B2 (ja) * 2003-07-10 2008-05-28 信越化学工業株式会社 微粉末ケイ素又はケイ素化合物の製造方法
DE102006048508A1 (de) * 2006-10-13 2008-04-17 Evonik Degussa Gmbh Oberflächenmodifizierte Kieselsäuren
JP2011173779A (ja) * 2010-01-26 2011-09-08 Sakai Chem Ind Co Ltd シリカ粒子とその製造方法、及びそれを含む樹脂組成物
JP2011245362A (ja) 2010-05-24 2011-12-08 Aishin Nano Technologies Co Ltd ジェットミル用グライディングノズル、ジェットミル用エジェクターノズル及びそれらを備えたジェットミル
JP5912249B2 (ja) 2010-12-28 2016-04-27 日揮触媒化成株式会社 半導体装置実装用ペ−スト
JP5840476B2 (ja) 2011-12-16 2016-01-06 日揮触媒化成株式会社 シリカ粒子、その製造方法および半導体実装用ペースト

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259172A (ja) * 1988-04-09 1989-10-16 Idemitsu Petrochem Co Ltd 粉砕機
JPH02311310A (ja) * 1989-05-26 1990-12-26 Kawatetsu Mining Co Ltd 高純度シリカ微粉末の製造方法
JPH0431311A (ja) * 1990-05-25 1992-02-03 Shin Etsu Chem Co Ltd 球状シリカ及びその製造方法並びにエポキシ樹脂組成物及びその硬化物
JPH10324517A (ja) * 1997-05-22 1998-12-08 Mizusawa Ind Chem Ltd 破砕法によるシリカゲル粒子、その製法及びその用途
WO1999026881A1 (fr) * 1997-11-21 1999-06-03 Asahi Kasei Kogyo Kabushiki Kaisha Silice mesoporeuse, son procede de preparation et son utilisation
JP2010137189A (ja) * 2008-12-15 2010-06-24 Tokuyama Dental Corp 金属酸化物粒子の製造方法
JP2012227448A (ja) * 2011-04-21 2012-11-15 Nippon Shokubai Co Ltd 非晶質シリカ粒子

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016190770A (ja) * 2015-03-31 2016-11-10 日揮触媒化成株式会社 シリカ粒子の製造方法
JP2016190769A (ja) * 2015-03-31 2016-11-10 日揮触媒化成株式会社 シリカ粒子の製造方法
JP2017179169A (ja) * 2016-03-31 2017-10-05 日揮触媒化成株式会社 被膜形成用の塗布液、及び該塗布液を用いた被膜付基材
JP2017179170A (ja) * 2016-03-31 2017-10-05 日揮触媒化成株式会社 被膜形成用の塗布液、及び該塗布液を用いた被膜付基材
WO2019044929A1 (ja) * 2017-08-31 2019-03-07 株式会社トクヤマ 表面処理ゾルゲルシリカ及びその製造方法
JPWO2019044929A1 (ja) * 2017-08-31 2019-11-07 株式会社トクヤマ 表面処理ゾルゲルシリカ及びその製造方法
US11932543B2 (en) 2018-03-15 2024-03-19 Tokuyama Corporation Composite oxide powder and method for production thereof
WO2019177004A1 (ja) * 2018-03-15 2019-09-19 株式会社トクヤマ 複合酸化物粉末、及びその製造方法
JPWO2019177004A1 (ja) * 2018-03-15 2021-02-25 株式会社トクヤマ 複合酸化物粉末、及びその製造方法
KR102666806B1 (ko) 2018-03-15 2024-05-17 가부시키가이샤 도쿠야마 복합 산화물 분말 및 그 제조 방법
JP2020079165A (ja) * 2018-11-12 2020-05-28 花王株式会社 中空シリカ粒子及びその製造方法
JP7132827B2 (ja) 2018-11-12 2022-09-07 花王株式会社 中空シリカ粒子及びその製造方法
JP2020090434A (ja) * 2018-11-22 2020-06-11 株式会社日本触媒 シリカ粉体、シリカ粉体の製造方法、および焼成シリカ粉体の製造方法
JP7470508B2 (ja) 2018-11-22 2024-04-18 株式会社日本触媒 シリカ粉体、シリカ粉体の製造方法、および焼成シリカ粉体の製造方法
JP7287488B2 (ja) 2019-10-31 2023-06-06 信越化学工業株式会社 耐アルカリ性撥水部材及び該撥水部材の製造方法並びに撥水部材の耐アルカリ性と耐摩耗性の向上方法
JPWO2021085149A1 (ja) * 2019-10-31 2021-05-06

Also Published As

Publication number Publication date
JPWO2015016359A1 (ja) 2017-03-02
TW201515997A (zh) 2015-05-01
US20160159654A1 (en) 2016-06-09
US10358353B2 (en) 2019-07-23
CN105408252B (zh) 2019-07-09
KR20160037945A (ko) 2016-04-06
KR102260856B1 (ko) 2021-06-03
TWI639556B (zh) 2018-11-01
CN105408252A (zh) 2016-03-16
JP6480863B2 (ja) 2019-03-13

Similar Documents

Publication Publication Date Title
JP6480863B2 (ja) 解砕シリカ粒子の製造方法
JP6440551B2 (ja) シリカ粒子の製造方法
KR101808859B1 (ko) 구형 알루미나 분말의 제조 방법
JP6462459B2 (ja) シリカ粒子の製造方法
JP6209030B2 (ja) シリカ被覆無機酸化物粒子およびその製造方法、並びに樹脂組成物
EP3196167B1 (en) Spherical ferrite powder, resin composition containing said spherical ferrite powder, and molded article using said resin composition
WO2021215285A1 (ja) 表面処理シリカ粉末の製造方法
TW201946873A (zh) 氧化鋁粒子
JP5974986B2 (ja) シリカ付着珪素粒子及び焼結混合原料、ならびにシリカ付着珪素粒子及び疎水性球状シリカ微粒子の製造方法
WO2007020855A1 (ja) 球状化無機物粉末の製造方法
JP2016073919A (ja) 粉粒体の製造方法
JP6329776B2 (ja) モールドアンダーフィル用封止材
US20140356624A1 (en) Silica composite particles and method of producing the same
JP6195524B2 (ja) 疎水性シリカ粉末およびその製造方法
JP5975589B2 (ja) 半導体装置実装用ペースト
CN113874323A (zh) 球状氧化镁、其制造方法、导热性填料和树脂组合物
JP6782088B2 (ja) 被膜形成用の塗布液、及び該塗布液を用いた被膜付基材
JP7470508B2 (ja) シリカ粉体、シリカ粉体の製造方法、および焼成シリカ粉体の製造方法
KR100814479B1 (ko) 비표면적이 향상된 구형 실리카의 제조방법
JP6751578B2 (ja) 被膜形成用の塗布液、及び該塗布液を用いた被膜付基材
TW202335962A (zh) 氧化物微粒、含微粒的樹脂組成物、密封材、有機基板及氧化物微粒的製造方法
JP2022090679A (ja) 球状シリカ粉末の製造方法
CN117699807A (zh) 一种溶剂型二氧化硅溶胶的制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480042492.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832611

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015529632

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14908621

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167004196

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14832611

Country of ref document: EP

Kind code of ref document: A1