WO2019044929A1 - 表面処理ゾルゲルシリカ及びその製造方法 - Google Patents

表面処理ゾルゲルシリカ及びその製造方法 Download PDF

Info

Publication number
WO2019044929A1
WO2019044929A1 PCT/JP2018/032023 JP2018032023W WO2019044929A1 WO 2019044929 A1 WO2019044929 A1 WO 2019044929A1 JP 2018032023 W JP2018032023 W JP 2018032023W WO 2019044929 A1 WO2019044929 A1 WO 2019044929A1
Authority
WO
WIPO (PCT)
Prior art keywords
sol
gel silica
ppm
treated
silica
Prior art date
Application number
PCT/JP2018/032023
Other languages
English (en)
French (fr)
Inventor
宏昌 藤岡
田中 修
浩昭 平
三上 直樹
俊明 大谷
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to EP18851850.0A priority Critical patent/EP3674264A4/en
Priority to CN201880054691.XA priority patent/CN111094184A/zh
Priority to KR1020207008565A priority patent/KR102142386B1/ko
Priority to US16/643,542 priority patent/US20200199371A1/en
Priority to JP2019519351A priority patent/JP6564966B2/ja
Publication of WO2019044929A1 publication Critical patent/WO2019044929A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3072Treatment with macro-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to surface-treated sol-gel silica that can be suitably used as a filler for semiconductor sealing materials, liquid crystal sealing agents, films and the like. More specifically, it relates to surface-treated sol-gel silica having a very small amount of coarse particles.
  • Silica is blended as a filler in various resin compositions for electronic materials such as a semiconductor sealing material and a liquid crystal sealing agent, and for film production.
  • sol which is obtained by supplying silicon alkoxide such as tetraethoxysilane as a raw material to a reaction solution containing a hydrolysis catalyst, water and an organic solvent as silica having high monodispersity, so as to carry out hydrolysis and polycondensation
  • sol-gel silica produced by the gel method.
  • the particle diameter and particle size distribution can be controlled to some extent by controlling the reaction conditions at the time of carrying out the reaction.
  • Patent Document 1 controls the particle diameter and particle size distribution by adjusting the reaction conditions in the sol-gel method, and further suppresses the generation of coarse particles such as adhesion particles and aggregates, and is a silica with good monodispersity. The manufacturing method of is described.
  • the sol-gel silica particles are highly dispersed as fine primary particles, and substantially no aggregates are observed.
  • a step of solid-liquid separation of sol-gel silica from the dispersion, a step of drying, or a step of firing if necessary, etc. are required. Flocculated clumps form. Then, it is difficult to crush the powder which has been strongly consolidated at one end into primary particles, and as a result, coarse particles increase.
  • the coarse particles when the coarse particles are present in the silica in this way, in the resin composition containing the same, the coarse particles inhibit the smooth flow of the resin at the time of melting thereof and the flowability is lowered. As a result, in the production of molded articles such as films, fish eyes and protrusions are generated. And, even when the resin composition having low fluidity is used as the semiconductor sealing material or liquid crystal sealing agent, a pattern after the molten resin flows, so-called “flow mark” or gap permeability to the narrow gap This is not sufficient, and clogging between wires tends to occur.
  • Patent Document 2 a coagulant comprising a specific compound is added to a sol-gel silica dispersion obtained by a sol-gel method, the dispersion is concentrated, and then the concentrate is dried to obtain a sol-gel.
  • a method of obtaining silica is disclosed. That is, according to this method, it is possible to form a loose aggregate in a post-process without generating a strong aggregate, and this may be up to the primary particle due to the share of the disperser at the time of dispersing in a resin. It is described that it can be easily crushed.
  • the sol-gel method is controlled as described above so as to be excellent in the monodispersity of silica
  • the aggregates formed in the subsequent step are again subjected to the simple crushing process and primary particles again.
  • coarse particles are not substantially contained. That is, it is possible to obtain silica in which coarse particles having a particle size exceeding 5 ⁇ m are not detected as measured by a general-purpose particle size distribution measurement method, specifically, a laser diffraction scattering method.
  • a surface treatment agent such as a silane coupling agent is added to the silica obtained by drying, and the particle surface is treated to achieve dispersibility in the resin.
  • a surface treatment agent such as a silane coupling agent
  • the particle surface is treated to achieve dispersibility in the resin.
  • surface-treated silica is obtained by mixing and heating silica and a surface treatment agent using a mixing apparatus having a stirring blade.
  • the surface-treated silica is suitably used as a filler, for example, to reduce the coefficient of thermal expansion of the semiconductor sealing material and to improve its strength. At that time, it is known that the presence of agglomerated particles or particles whose surface is unevenly treated on the surface of the powder causes a decrease in dispersibility in the resin and a decrease in the strength of the resin.
  • sol-gel method silica synthesis is carried out by controlling to be excellent in monodispersity as described above, and further, a specific flocculant is added to the obtained sol-gel silica dispersion to obtain a laser diffraction scattering method.
  • the sol-gel silica in which coarse particles as aggregates are reduced is obtained as undetected by the particle size distribution measurement by the above-mentioned method, and the surface-treated sol-gel silica obtained by surface-treating this sol-gel silica is also mentioned above.
  • the coarse particles are not agglomerates produced in the subsequent steps such as the above-mentioned step of drying the silica bulk, but are coarsely independent which are inevitably generated during synthesis of the silica bulk by the sol-gel method.
  • Primary particles are mainly used, and this coarse independent primary particles can be efficiently filtered by wet filtration of the resulting silica particle dispersion after synthesis of untreated silica (hereinafter referred to as sol-gel silica) by the sol-gel method. I found that I could remove it.
  • the surface of the sol-gel silica particles is modified with a surface treatment agent, the average particle diameter by the laser diffraction scattering method is 0.05 ⁇ m or more and 2.0 ⁇ m or less, and 5% by mass in ethanol
  • the content of particles having a particle diameter of 5 ⁇ m or more is 10 ppm on a number basis
  • the surface treatment sol gel silica characterized by being the following.
  • the surface-treated sol-gel silica of the present invention has an average particle diameter of 0.05 to 2 ⁇ m by a laser diffraction scattering method, and a Coulter counter method having higher detection sensitivity of coarse particles than the laser diffraction scattering method as a particle size distribution measuring method.
  • the content of particles having a particle diameter of 5 ⁇ m or more is 10 ppm or less on a number basis, and is substantially non-containing. Therefore, in the resin composition which mix
  • the particles of sol-gel silica in the present embodiment are sol-gel methods, that is, solid particles formed after hydrolysis and polycondensation of silicon alkoxide as a raw material in a reaction medium to form silica sol and gelation thereof. It is a particle of silica obtained by taking out a portion and drying.
  • sol-gel silica particles obtained by the sol-gel method are independent spherical particles having a sphericity of 0.9 or more.
  • the sol-gel silica particle surface is modified with a surface treatment agent.
  • that the surface of the sol-gel silica particles is modified by the surface treating agent means that the surface of the sol-gel silica particles is treated with the surface treating agent, and the surface morphology, chemical composition, chemical reactivity, compatibility with the resin.
  • the state has been changed.
  • a state in which the compatibility with the resin is improved or the water repellency is imparted by applying a carbon atom to the surface of the sol-gel silica is applicable.
  • the dispersibility of the sol-gel silica in the resin is improved, the viscosity of the resin composition is reduced, and the strength of the resin composition is further improved. Further, by imparting water repellency to sol-gel silica, moisture absorption during storage is suppressed, and storage stability and the like are improved.
  • the degree of modification by introducing a carbon atom to the surface of the sol-gel silica can be evaluated by the amount of carbon on the surface of the sol-gel silica.
  • the measurement of the surface carbon content may be performed using a trace carbon analyzer by a combustion oxidation method. Specifically, the surface-treated sol-gel silica sample is heated to 1350 ° C. in an oxygen atmosphere, and the obtained amount of carbon is determined by converting it into 1 g of the sample.
  • the surface-treated sol-gel silica to be subjected to the measurement is heated at 80 ° C. as a pretreatment to reduce the pressure in the system to remove moisture and the like adsorbed in the air, and then subjected to the measurement of the carbon content.
  • the surface carbon content of the surface-treated sol-gel silica is preferably 0.01% by mass or more and 1% by mass or less, and more preferably 0.03% by mass or more and 0.8% by mass or less.
  • the sol-gel silica particle surface is treated with at least one selected from the group consisting of silane coupling agents and silazanes, and the sol-gel silica particle surface is a resin Form coated with at least one selected from the group consisting of a silane coupling agent and silazanes, and further, a form wherein the surface is further coated with a resin, etc. It can be taken.
  • the surface treatment agent is not particularly limited as long as it is a known one used for imparting a silica surface-specific function, but at least one selected from silicone oil, silane coupling agent, siloxanes and silazanes. It is preferable that it is a surface treatment agent. In particular, at least one surface treatment agent selected from the group consisting of silane coupling agents and silazanes is preferable. Moreover, resin can also be used for the surface treatment agent as an aspect coat
  • the surface treating agents it is desirable to select one having a functional group according to the modifying property to be imparted to the surface treated sol-gel silica to be obtained.
  • those having a polymerizable group such as an epoxy group or a (meth) acrylic group are preferable. That is, in these applications, the resin to which the surface-treated sol-gel silica is compounded is an epoxy resin and a (meth) acrylic resin, so that the surface-treated sol-gel silica corresponds to the epoxy according to the polymerizable groups of these resins.
  • the use of one having a group or a polymerizable group such as a (meth) acrylic group makes it possible to strongly bond with the resin when curing these compounded resins, which can be made high in strength and is preferable.
  • the quantity incorporated is preferably from the gel silica per specific surface area of the surface 5 ⁇ 25 ⁇ mol / m 2, with 3 ⁇ 15 ⁇ mol / m 2 It is more preferable that there be.
  • Specific examples of the surface treatment agent used in the present embodiment include dimethyl silicone oil, methyl phenyl silicone oil, methyl hydrogen silicone oil, alkyl modified silicone oil, amino modified silicone oil, epoxy modified silicone as the silicone oil. Oil, carboxyl modified silicone oil, carbinol modified silicone oil, methacryl modified silicone oil, polyether modified silicone oil, fluorine modified silicone oil and the like can be mentioned.
  • silane coupling agent methyltrimethoxysilane, methyltriethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-methacryloyloxypropyltrimethoxy Silane, 3-methacryloyloxypropyltriethoxysilane, 3-acryloyloxytrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-amino Propyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane,
  • siloxane examples include polysiloxanes such as disiloxane, hexamethyldisiloxane, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and polydimethylsiloxane.
  • silazanes it is possible to use a commonly used known compound having a Si-N (silicon-nitrogen) bond without particular limitation, depending on the required performance of the surface-treated sol-gel silica particles, etc. It may be appropriately selected and used.
  • hexamethyldisilazane 1,3-divinyl-1,1,3,3-tetramethyldisilazane, octamethyltrisilazane, hexa (t-butyl) disilazane, hexabutyldisilazane, hexaoctyldisilazane Silazane, 1,3-diethyltetramethyldisilazane, 1,3-di-n-octyltetramethyldisilazane, 1,3-diphenyltetramethyldisilazane, 1,3-dimethyltetraphenyldisilazane, 1,3- Diethyl tetramethyldisilazane, 1,1,3,3-tetraphenyl-1,3-dimethyldisilazane, 1,3-dipropyltetramethyldisilazane, hexamethylcyclotrisil
  • alkyldisilazanes are preferred in view of the high reactivity with the silica surface, etc.
  • R 1 to R 3 each represent a hydrogen atom, an alkyl group having 10 or less carbon atoms (preferably having a carbon number of 1 to 3 which may have a halogen atom), or an aryl group At least one of 1 to R 3 is an alkyl group having 10 or less carbon atoms which may have a halogen atom, R 6 is a hydrogen atom or a methyl group, and R 7 to R 9 are the aforementioned R 1 to R Same as 3 ) And particularly preferably tetramethyldisilazane, hexamethyldisilazane and heptamethyldisilazane.
  • the resin for coating (hereinafter, also referred to as a coating resin) is not particularly limited, and the resin is directly applied to the sol gel silica surface. It may be Preferably, a composition in which a polymerizable composition containing a polymerizable monomer is coated on a sol-gel silica surface and polymerized on the sol-gel silica surface is preferable. Further, in order to achieve high strength, the resin is preferably a crosslinked polymer. The crosslinking of the crosslinked polymer is preferably covalent from the viewpoint of stability.
  • coating resins it is desirable to select those having a functional group according to the modifying properties to be imparted to the surface-treated sol-gel silica to be obtained, for electronic materials such as semiconductor sealing materials and liquid crystal sealing agents, and films
  • polymeric groups such as an epoxy group or a (meth) acrylic group, from the above-mentioned reason is preferable.
  • a polymerizable composition containing a radically polymerizable monomer having an epoxy group (hereinafter, also referred to as "epoxy group-containing radical polymerizable monomer”) is polymerized The product is used.
  • the polymer itself has an epoxy group.
  • a radically polymerizable group a (meth) acryl group, a vinyl group, etc. are preferable.
  • glycidyl (meth) acrylate, (meth) acrylic glycidyl ether and the like can be mentioned.
  • These epoxy group-containing radically polymerizable monomers may be used alone or in combination of two or more depending on the target coating resin.
  • the polymerizable composition containing the epoxy group-containing radically polymerizable monomer preferably contains a crosslinking agent in order to make the polymer a crosslinked product.
  • the crosslinking agent can be used without particular limitation as long as it is a compound having two or more radically polymerizable groups in one molecule.
  • aromatic vinyl monomers such as polyfunctional aromatic vinyl compounds such as divinylbenzene, divinylbiphenyl, trivinylbenzene, divinylnaphthalene, etc., ethylene glycol di (meth) acrylate, diethylene glycol di (meth) Acrylate, triethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, trimethylolmethane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, methylene bis
  • polyfunctional (meth) acrylic monomers such as (meth) acrylamide and hexamethylene di (meth) acrylamide, and (meth) allyl (meth) acrylate.
  • a polymer having a (meth) acrylic group When a polymer having a (meth) acrylic group is used as the coating resin, one obtained by polymerizing a polymerizable composition containing a non-radically polymerizable monomer having a (meth) acrylic group is generally used.
  • a non-radically polymerizable monomer having such a (meth) acrylic group a polymerizable monomer having a (meth) acrylic group and an epoxy group as a non-radically polymerizable group (hereinafter referred to as “( Preferably, it is also referred to as "meth) acrylic group / epoxy group-containing monomer”.
  • the polymer itself has a (meth) acrylic group.
  • the epoxy group may be polymerized by ring-opening cationic polymerization, or may be polymerized by polyaddition reaction in the coexistence of an epoxy curing agent.
  • the (meth) acrylic group / epoxy group-containing monomer is specifically, specifically, glycidyl acrylate, glycidyl methacrylate, ⁇ -methyl glycidyl acrylate, ⁇ -methyl glycidyl methacrylate, bisphenol A-monoglycidyl ether-methacrylate 4-glycidyl oxybutyl methacrylate, 3- (glycidyl-2-oxyethoxy) -2-hydroxypropyl methacrylate, 3- (glycidyloxy-1-isopropyloxy) -2-hydroxypropyl acrylate, 3- (glycidyloxy-2 And -hydroxypropyloxy) -2-hydroxypropyl acrylate and the like.
  • glycidyl (meth) acrylate is preferably used.
  • These (meth) acrylic group / epoxy group-containing polymerizable monomers may be used alone or in combination of two or more, depending on the target coating resin.
  • a polymerizable composition containing a non-radically polymerizable monomer having a (meth) acrylic group may contain a crosslinking agent in order to make the polymer a crosslinked product.
  • a crosslinking agent a compound having two or more epoxy groups in one molecule can be used.
  • the surface-treated sol-gel silica in the present embodiment preferably has an average particle diameter of 0.05 ⁇ m to 2 ⁇ m as measured by a laser diffraction scattering method, and more preferably 0.1 ⁇ m to 1.5 ⁇ m. If the size is larger than the above range, it will be difficult to reduce agglomerates accurately in the subsequent step, and the size will not be suitable for filling in the resin composition for electronic materials. In general, particles having a small particle size and a large specific surface area tend to aggregate, and when the average particle size is smaller than the above range, it is difficult to suppress the formation of aggregates, and the generated aggregates are broken up It is difficult to do and causes coarse grains. In addition, such particles having a small particle diameter increase in viscosity when filled in a resin or the like, and the fluidity decreases.
  • the content of particles having a particle diameter of 5 ⁇ m or more in the particle size distribution obtained by the Coulter counter method is 10 ppm or less on a number basis, preferably 6 ppm or less .
  • the content of particles having a particle diameter of 5 ⁇ m or more in the particle size distribution obtained by the Coulter counter method exceeds 10 ppm, the flowability of the resin composition containing the same is lowered, and the semiconductor encapsulant is When it is used for applications and liquid crystal sealant applications, the grain penetration of the resin composition is deteriorated by coarse particles, and clogging between wires can not be suppressed.
  • the content of particles having a particle diameter of 3 ⁇ m or more is preferably 10 ppm or less, more preferably 6 ppm or less .
  • the Coulter counter method is a method of measuring particle diameter by an electrical resistance method called Coulter principle.
  • electrodes are placed on both sides of the aperture (pore) of the aperture tube and a current is applied to suspend particles to be measured in the electrolyte, and the electrolyte is sucked with a manometer from the inside of the aperture tube. Do.
  • the electrolyte corresponding to the particle volume is replaced, and resistance is generated between the two electrodes, but this resistance change amount is detected because it is proportional to the volume of the particles passing through the aperture, It is a method of calculating and calculating
  • the content of particularly coarse particles having a particle diameter of 20 ⁇ m or more in the particle size distribution obtained by the Coulter Counter method is preferably 5 ppm or less, and further substantially It is more preferable that the content is 4 ppm or less which is near to non-content.
  • the wet sieving method using an electrostatic sieving can determine the amount of coarse particles with small particle size, but because it dislikes the organic solvent derived from its material, for the determination of coarse particles of hydrophobic surface-treated sol-gel silica Not suitable.
  • coarse particles are detected when quantified by the particle size distribution measurement method using the Coulter counter.
  • the presence of such coarse particles reduces the flowability of the resin composition and is a factor that hinders the improvement of the yield in applications of semiconductor sealing materials and liquid crystal sealing agents. It is what I found out.
  • the surface-treated sol-gel silica in the present embodiment preferably has a coefficient of variation of 40% or less, more preferably 25% or less, and 20% or less, which is one of indices indicating the spread of particle size distribution. Is particularly preferred. If the coefficient of variation is larger than the above range, the particle size distribution becomes broad, and fine particles increase when compared with powders having the same average particle size. The increase in the number of fine particles leads to an increase in viscosity when the resin or the like is filled, as described above. Generally, the variation coefficient in sol-gel silica is 10% or more. The coefficient of variation can be measured by a laser diffraction scattering method.
  • the amount of surface silanol groups of the sol-gel silica before surface treatment is generally 15 to 25 ⁇ mol / m 2 (9 to 15 pieces / nm 2 ) in the case of non-baking. In the case of firing, it is 5 to 8 ⁇ mol / m 2 (3 to 5 particles / nm 2 ).
  • the smaller the amount of surface silanol groups on the surface-treated sol-gel silica the more hygroscopicity during storage can be suppressed, and the stability over time can be excellent.
  • it is usually 6 to 12 / nm 2.
  • firing it is usually 0 to 2 / nm 2 .
  • the surface-treated sol-gel silica in the present embodiment preferably has an ⁇ dose of 0.002 c / (cm 2 ⁇ h) or less. It is known that if the ⁇ dose is large, when it is used for filling the resin composition for electronic materials, it may lead to factors such as soft errors such as inversion of stored charge of the memory cell. As a result of the progress in miniaturization, high integration, and 3D mounting of semiconductor packages, the influence of ⁇ rays and the like derived from fillers has become significant, and fillers with low ⁇ dose are required.
  • Uranium (U), thorium (Th), etc. may be mentioned as the impurity that emits this alpha ray, and in the surface-treated sol-gel silica powder in the present embodiment, the U content and the Th content are preferably 0.1 ppb or less And more preferably 0.05 ppb or less, and particularly preferably 0.02 ppb or less.
  • the said quantitative method of uranium and thorium is the value measured by ICP mass spectrometry, and the detection lower limit is 0.01 ppb.
  • the surface-treated sol-gel silica in the present embodiment has an Fe content of 10 ppm or less, an Al content of 10 ppm or less, a Na content of 5 ppm or less, a K content of 5 ppm or less, and a chloride ion content of 1 ppm or less Is preferred. Further, it is preferable that the Ca content is 5 ppm or less, the Cr content is 5 ppm or less, the Ni content is 5 ppm or less, and the Ti content is 5 ppm or less.
  • the amount of impurities contained in the surface-treated sol-gel silica in this embodiment is within the above-mentioned range, a short circuit between metal wires or metal wires caused by the silica particles when used as a filler for a semiconductor sealing material Is preferable in that it can reduce the corrosion of
  • the method of quantifying the impurities is a value measured by ion chromatography for chloride ions, and a value measured by ICP emission analysis for elements other than chloride ions.
  • uranium (U) and thorium (Th) are contained derived from the raw materials, and Fe, Al, Cr, Ni and Ti are not only derived from the raw materials but also reaction vessels, piping, crushing equipment, etc. Also those derived from wear powder are included. Na, K, Ca, and chloride ions are often derived from the atmosphere.
  • the surface-treated sol-gel silica in the present embodiment does not contain coarse particles, and has excellent fluidity when filled in a resin according to the properties modified by surface treatment, and therefore, for filling the resin composition for electronic materials In particular, it can be suitably used for semiconductor encapsulant applications and liquid crystal sealant applications. Furthermore, the property of the resin composition being excellent in fluidity at the time of melting, and in which fish eyes and protrusions are not easily generated in the molded product can be suitably used for various molded product applications including film applications.
  • blends surface treatment sol gel silica is not specifically limited.
  • the type of resin may be appropriately selected according to the desired application, and epoxy resin, acrylic resin, silicone resin, olefin resin, polyimide resin, polyester resin and the like can be mentioned.
  • epoxy resin acrylic resin, silicone resin and the like are preferable for use as a semiconductor sealing material or liquid crystal sealant.
  • olefin resins polypropylene, polyethylene, polystyrene etc.
  • polyimide resins polyimide resins
  • polyester resins etc. are preferred.
  • the compounding amount of the surface-treated sol-gel silica may be appropriately adjusted according to the application and purpose. Specifically, when used for semiconductor encapsulants, the range of 65 to 900 parts by mass with respect to 100 parts by mass of resin, and when used for a liquid crystal sealing agent, 1 to 40 parts by mass with respect to 100 parts by mass of resin When used for film applications, it is preferably in the range of 0.01 to 1 part by mass with respect to 100 parts by mass of the resin.
  • another filler may be included.
  • the surface-treated sol-gel silica in the present embodiment does not contain coarse particles, it can be suitably used as a toner external additive or a filler for dental materials.
  • the sol-gel silica in the present embodiment is a sol-gel silica obtained by a sol-gel method, and the production method is not limited to a particular method as long as the above-defined requirements are obtained.
  • a silicon alkoxide is hydrolyzed and polycondensed in a reaction medium consisting of water containing a catalyst and an organic solvent to form a silica sol, which is gelled and then formed.
  • the solid content is taken out and dried to mean a method of obtaining sol-gel silica.
  • the sol-gel silica obtained by drying can also be fired as needed.
  • Production Method (I) including the following steps (1) to (5) can be mentioned as a preferred embodiment.
  • a process of producing a sol-gel silica dispersion in which sol-gel silica particles having an average particle diameter of 0.05 to 2.0 ⁇ m are dispersed by a laser diffraction scattering method by a sol-gel method (hereinafter also referred to as sol-gel silica dispersion production process Say) (2) A step of adding a surface treatment agent to the sol-gel silica dispersion to wet-treat the surface of the sol-gel silica particles (hereinafter also referred to as dispersion liquid silica particle surface treatment step) (3) A step of wet-filtering the sol-gel silica dispersion with a filter medium having a filtration pore diameter of 5 ⁇ m or less (hereinafter, also referred to as a sol-gel silica dispersion wet-filtration step) (4) To the sol-gel silica dispersion after wet filtration, add a coagulant consisting of at least one compound selected from the group consisting of carbon dioxide, ammonium carbonate,
  • a coagulating agent comprising the above, and coagulating the silica particles to obtain a coagulated silica dispersion having coagulated sol-gel silica particles
  • solid-liquid separation of sol-gel silica particles from the coagulated silica dispersion Step of Drying (6) Step of Further Sintering the Sol-Gel Silica Particles Obtained by Drying to Obtain Calcined Silica Particles (hereinafter referred to as Sintering Also referred to as a process)
  • a step of dry-treating the surface of the calcined silica particles using a surface treatment agent to obtain calcined silica particles whose surface has been treated hereinafter, also referred to as calcined silica particle surface treatment step
  • the calcined silica particles whose surface has been treated are dispersed in a solvent to obtain a dispersion, and the dispersion is subjected to wet filtration with a filter medium having a filtration pore diameter
  • sol-Gel Silica Dispersion Production Step In the production method of this embodiment, a sol-gel silica in which sol-gel silica particles having an average particle diameter of 0.05 to 2.0 ⁇ m dispersed by a laser diffraction scattering method are dispersed. Make a dispersion.
  • the silicon alkoxide to be used is not particularly limited as long as it is a compound used for producing silica particles by a reaction of the sol-gel method.
  • examples of the silicon alkoxide include methyltrimethoxysilane, methyltriethoxysilane, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane and the like.
  • methyltrimethoxysilane, tetramethoxysilane and tetraethoxysilane are more preferable because they are industrially easily available and easy to handle.
  • These silicon alkoxides may be used alone or in combination of two or more.
  • a sol-gel silica in which impurities are reduced it is preferable to use one having a high purity of the silicon alkoxide.
  • silicon alkoxide when tetra-methoxysilane is used as the raw material silicon alkoxide to obtain a sol-gel silica having a U content and a Th content of 0.1 ppb or less, each of the tetra content having a U content and a Th content of 0.2 ppb or less It is preferred to use methoxysilane.
  • the raw material can also be purified beforehand by distillation or the like to obtain a silicon alkoxide of high purity.
  • silicon alkoxide When the silicon alkoxide is liquid at normal temperature and pressure, it may be used as it is, or may be used after diluting it with an organic solvent described later. When the silicon alkoxide is solid at normal temperature and pressure, it can be used by dissolving or dispersing in an organic solvent.
  • ⁇ Catalyst> In the production of silica particles by the sol-gel method, although an acidic catalyst may be used in some cases, a basic catalyst is used in this embodiment in that it is easy to obtain spherical particles with uniform particle size. Is preferred. In addition, in the case of performing particle growth after performing preliminary hydrolysis under an acidic catalyst first, a method using a basic catalyst at the time of particle growth is preferably employed.
  • the basic catalyst used in the present embodiment is not particularly limited, and any known basic catalyst used for producing silica particles by a sol-gel reaction can be suitably used.
  • an amine compound As such a basic catalyst, an amine compound, an alkali metal hydroxide etc. can be mentioned, for example.
  • an amine compound from the viewpoint that a high purity sol-gel silica can be obtained with a small amount of impurities containing metals other than the metal element constituting the target sol-gel silica.
  • an amine compound ammonia, methylamine, dimethylamine, trimethylamine, ethylamine, dimethylamine, trimethylamine etc. can be mentioned, for example.
  • ammonia is particularly preferable in view of its high volatility and easy removal, and the high reaction rate of the sol-gel method.
  • the basic catalysts may be used alone or in combination of two or more.
  • the basic catalyst industrially available ones can be used as they are (as they are in the commercially available form), or diluted with water or an organic solvent, such as aqueous ammonia, etc. It can also be done. In particular, it is preferable to dilute the basic catalyst in water and use it as an aqueous solution whose concentration is adjusted as necessary, in that the reaction progress rate can be easily controlled.
  • concentration in the case of using an aqueous solution as the basic catalyst is preferably in the range of 1 to 30% by mass from the viewpoint of industrial availability and easy adjustment of the concentration.
  • the use ratio of the basic catalyst may be appropriately determined in consideration of the reaction rate and the like of the hydrolysis and polycondensation reaction of the silicon alkoxide.
  • the proportion of the basic catalyst used is preferably such that the amount of the basic catalyst present in the reaction solution is 0.1 to 60% by mass with respect to the mass of the silicon alkoxide used, 0.5 to 40%. It is more preferable to use in the range of%.
  • a polar solvent is preferable.
  • the polar solvent is an organic solvent which dissolves 10 g or more of water per 100 g at normal temperature and normal pressure, or water.
  • a plurality of organic solvents other than water may be mixed and used, and in this case, the mixture of the organic solvents may satisfy the above requirements.
  • organic solvent which is a polar solvent other than water examples include alcohols such as methanol, ethanol, isopropyl alcohol and butanol; ethers such as tetrahydrofuran and dioxane; and amide compounds such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone. be able to.
  • the alcohol is by-produced during the reaction of the sol-gel method, it is unnecessary to use an alcohol such as methanol, ethanol, isopropyl alcohol or butanol among the above, in the sol-gel silica dispersion after the reaction. It is particularly preferable from the viewpoint of suppressing the mixing of impurities and the point of being easily removable by heating.
  • the organic solvent and water can be used alone or as a mixture of two or more solvents.
  • the proportion of the organic solvent or water used may be appropriately determined according to the desired particle size of the desired sol-gel silica particles and the desired concentration of the sol-gel silica particles in the sol-gel silica dispersion after the reaction of the sol-gel method.
  • the proportion of the alcohol in the mass (100 mass%) of the sol-gel silica dispersion obtained by the sol-gel reaction is preferably 10 to 90 mass%, more preferably 15 to It is used to be in the range of 80% by mass.
  • Water is essential for the sol-gel reaction (so polar solvents that dissolve water as described above are used).
  • water is used as part or all of the solvent, it is not necessary to add water separately to the reaction solution. However, in other cases, it is necessary to add water necessary for the sol-gel reaction separately.
  • the proportion of water used is appropriately adjusted and selected according to the particle size of the sol-gel silica particles to be produced. If the proportion of water used is too low, the reaction rate will be slow, and if too large, drying (solvent removal) will take a long time, so the proportion of water used is selected in consideration of both of these requirements.
  • the proportion of water used is preferably in the range of 2 to 50% by mass, and more preferably 5 to 40% by mass, based on the total mass of the sol-gel silica dispersion obtained by the sol-gel reaction. Is more preferred.
  • Water may be used as a part or all of the reaction solvent, or may be added to the reaction solution after preparing all the reaction materials other than water. However, it is preferable to use water as a part of a solvent, that is, to use a mixture of water and an organic solvent as a solvent, in order to proceed the reaction of the sol-gel method rapidly and stably.
  • water as a solvent also includes the case where it is added along with the addition of a basic catalyst.
  • the reactor used in this embodiment is not particularly limited as long as it is a reactor having a stirrer.
  • a stirring blade of the stirrer any known one may be used without particular limitation, but a typical example is a tilted paddle blade, a turbine blade, a triple-swept blade, an anchor blade, a full zone blade, a twin star blade. , Max Blend wings etc.
  • a reactor having such a stirrer a hemispherical or flat bottomed or round bottomed cylindrical generally-shaped reactor, and one having baffles installed in these reactors are particularly limited. It can be used without it.
  • the material of the reactor is not particularly limited, and it is possible to use one made of glass, metal such as stainless steel (including those coated with glass or resin), or resin. In order to obtain the sol-gel silica in which the above-mentioned impurities are reduced, it is preferable that the material is excellent in wear resistance.
  • the stirring efficiency of the reactor used in this embodiment is not particularly limited, but the dimensionless mixing time n ⁇ m (where n is the number of revolutions of the stirring blade (1 / s)) is an index of the stirring efficiency of the reactor. , ⁇ m is desirable to use a reactor having a mixing time (s) of 100 or less.
  • the dimensionless mixing time n ⁇ m in the above-mentioned range, the reaction solution at the time of reaction can be kept uniform, and a sol gel silica having a narrower particle size distribution and a more uniform particle size can be obtained.
  • the range of the stirring efficiency of the reactor corresponds to the stirring efficiency of the reactor that handles the reaction liquid of 50 L or more in many cases in the industrial implementation described later.
  • the non-dimensional mixing time n ⁇ m means the product of the stirring blade rotational speed n (1 / s) and the mixing time ⁇ m (s), and if the stirring Reynolds number is constant, it is unique regardless of the scale of the reactor It is a very useful indicator to show the stirring efficiency.
  • ⁇ m means the time until the tracer substance is uniformly mixed, but the mixing time ⁇ m is the shape of the reactor, the presence or absence of the installation of the baffle plate, the arrangement state thereof, the type of the stirring blade, the rotation It is influenced by the number, the visco-elastic properties of the liquids to be mixed, etc.
  • the dimensionless mixing time n ⁇ m is less than 55, the stirring efficiency of the reactor is high, the reaction solution can be sufficiently stirred, and adhesion particles and aggregates are hardly generated.
  • n ⁇ m is 55 to 100, the formation of adhesion particles and aggregates can be suppressed by supplying a silicon alkoxide solution to the reaction liquid at a discharge linear velocity of 30 mm / s to 1000 mm / s.
  • the dimensionless mixing time n ⁇ m exceeds 100, the stirring efficiency of the reactor becomes extremely low, the mixing is insufficient, the reaction liquid becomes nonuniform, and a large number of adhesion particles and aggregates easily occur.
  • the hydrolysis and polycondensation reaction (sol-gel reaction) in the present embodiment is generally carried out in the presence of a basic catalyst as described above.
  • a basic catalyst as described above.
  • the reaction conditions known conditions can be adopted, and the method of contacting the silicon alkoxide with the basic catalyst is not particularly limited, and has a desired particle size distribution in consideration of the configuration of the reaction apparatus and the reaction scale. It may be appropriately selected and determined so as to obtain a sol-gel silica powder.
  • reaction method of the sol-gel method is as follows, for example.
  • Water, a polar solvent other than water (organic solvent) and a basic catalyst may be charged in a reaction vessel, and a method of simultaneously adding a silicon alkoxide (or an organic solvent solution of silicon alkoxide) and an aqueous solution of the basic catalyst may be added thereto. It can. According to this method, spherical silica particles having good reaction efficiency and uniform particle diameter can be produced efficiently and reproducibly, which is preferable. In this case, for example, it is also possible to simultaneously add the remaining silicon alkoxide and the basic catalyst after adding a part of the silicon alkoxide first. When two or more types of silicon alkoxides are used in combination, each may be mixed and added simultaneously, or each may be added sequentially.
  • the addition of the silicon alkoxide and the basic catalyst is preferably carried out in the reaction solution.
  • in-liquid charging means that the tip of the charging port is immersed in the reaction liquid when the raw material is charged into the reaction liquid. Furthermore, it is desirable that the position of the tip of the inlet be a position where stirring is sufficiently performed, such as in the vicinity of the stirring blade, so that the input can be quickly diffused into the reaction liquid.
  • the addition time (the time from the start of addition to the end of addition) of the silicon alkoxide and the basic catalyst is a very important factor in producing particles having a narrow particle size distribution. If the addition time is too short, the particle size distribution width tends to be wide. Conversely, if the addition time is too long, stable particle growth can not be achieved. Therefore, in order to obtain sol-gel silica particles having a narrow particle size distribution width and uniform particle diameter, it is necessary to select and adopt an addition time suitable for the particle growth. In particular, in order to produce silica particles having good monodispersity, it is preferable to supply a raw material such as silicon alkoxide at a discharge linear velocity of 30 mm / s to 1000 mm / s. From such a point of view, the addition time is preferably in the range of 0.2 to 8 hours per 100 nm of the desired particle diameter.
  • the reaction temperature is not particularly limited as long as the reaction of the sol-gel method proceeds rapidly depending on the type of the starting material used, and may be appropriately selected according to the particle size of the target sol-gel silica particles. Just do it.
  • the reaction temperature may be appropriately selected in the range of -10 to 60 ° C.
  • the ripening temperature is preferably about the same as the reaction temperature, ie, -10 to 60 ° C., and the ripening time is preferably 0.25 to 5 hours.
  • sol-gel silica particles having a desired particle diameter it is also possible to add a silicon alkoxide and a basic catalyst again after aging to grow the particle diameter of the sol-gel silica particles.
  • a sol-gel silica dispersion liquid is obtained, in which sol-gel silica particles having an average particle diameter of 0.05 to 2.0 ⁇ m according to a laser diffraction scattering method are dispersed.
  • the sol-gel silica particles are present in the state of being dispersed in a mixed solvent composed of the used polar solvent and the alcohol produced by the hydrolysis of the silicon alkoxide.
  • the sol-gel silica particles are uniformly monodispersed with substantially no adhesion particles or aggregates, but due to local excessive reaction progress, aggregation, etc., the particle size is coarse of 5 ⁇ m or more.
  • a small amount of independent primary particles (hereinafter, abbreviated as "coarse independent primary particles”) coexists in a small amount.
  • coarse independent primary particles are contained in an amount of about 15 to 1000 ppm based on the number of the sol-gel silica to be obtained, and when these remain in the final surface-treated sol-gel silica, the fluidity of the resin composition It causes a problem of reduction of strength and strength of the cured resin composition.
  • the concentration of the silica particles in the sol-gel silica dispersion obtained is preferably 1 to 40% by mass, and particularly preferably 2 to 25% by mass. Therefore, it is preferable to adjust the amount of polar solvent, particularly polar solvent other than water, so that the concentration of the sol-gel silica particles is adjusted to the above range.
  • the surface treatment agent introduced to the sol-gel silica surface in the step is not decomposed during the firing, so the step is not essential. Since the effects described later can be obtained, it is preferable to provide the same.
  • the surface treatment in the step not only can impart the performance derived from the surface treatment agent to the silica particles in the embodiment of production method (I), but also in the embodiment of production method (II) the efficiency of solid-liquid separation step described later It is preferable also from the point which can be performed well.
  • the obtained sol-gel silica particles can be used for various applications without special crushing treatment.
  • the surface treatment step is required to be carried out before the (3) sol-gel silica dispersion wet filtration step in order to reduce coarsely independent primary particles accurately in the silica dispersion after the sol-gel reaction. By doing so, it is possible to remove (3) sol-gel silica dispersion wet filtration step of aggregates or surface treatment agent residue generated at the time of surface treatment in the step.
  • silicone oil examples of the silicone oil, silane coupling agent, siloxanes and silazanes can be appropriately selected from those described above according to the required performance of the surface-treated sol-gel silica particles and the like.
  • the use ratio of the silicone oil is not particularly limited, but if it is too small, the surface treatment becomes insufficient, and if too large, post treatment becomes complicated, and even if the amount present on the sol-gel silica surface is excessive, formation of agglomerates
  • the amount is preferably 0.05 to 80 parts by mass, more preferably 0.1 to 60 parts by mass, and more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the sol-gel silica powder to be used. It is most preferable to
  • the use ratio of the silane coupling agent is not particularly limited, but if the amount is too small, the surface treatment may be insufficient, and if it is too large, the post treatment may be complicated, and agglomerates may be produced even if the amount of sol gel silica to the surface is excessive.
  • the amount is preferably 0.05 to 80 parts by mass, more preferably 0.1 to 40 parts by mass, with respect to 100 parts by mass of the sol-gel silica powder used. It is most preferable to set to 5 parts by mass.
  • the proportion of the siloxanes used is not particularly limited, but if the amount is too small, the surface treatment will be insufficient, if too much, post-treatment will be complicated, and aggregates will be produced even if the amount of sol gel silica to the surface is excessive.
  • the amount is preferably 0.1 to 150 parts by mass, more preferably 1 to 120 parts by mass, and more preferably 2 to 60 parts by mass with respect to 100 parts by mass of the sol-gel silica powder to be used. It is most preferable to
  • silazanes include tetramethyldisilazane, hexamethyldisilazane, heptamethyldisilazane and the like.
  • the proportion of silazanes used is not particularly limited, but if the amount is too small, the surface treatment will be insufficient, if too much, post-treatment will be complicated, and aggregates will be produced even if the amount of sol gel silica to the surface is excessive.
  • the amount is preferably 0.1 to 150 parts by mass, more preferably 1 to 120 parts by mass, and more preferably 2 to 60 parts by mass with respect to 100 parts by mass of the sol-gel silica powder to be used. It is most preferable to
  • the above-mentioned surface treatment agents may be used alone or in combination of two or more.
  • the fluidity of the surface-treated sol-gel silica to be obtained is excellent, and the subsequent solid-liquid separation step can be efficiently performed, and the formation of strong agglomerates upon drying is also effective.
  • the using ratio is a viewpoint with respect to the surface silanol group amount of sol-gel silica from a viewpoint of reducing the production amount of an aggregate especially.
  • the ratio is preferably 0.2 to 2 times, more preferably 0.5 to 1 time.
  • the method of adding the surface treatment agent is not particularly limited.
  • the surface treatment agent is a low viscosity liquid at normal temperature and pressure, it may be added to the dispersion.
  • the surface treatment agent is a high viscosity liquid or solid, it can be added to an appropriate organic solvent to form a solution or dispersion, and then added in the same manner as the low viscosity liquid.
  • organic solvent used here the well-known solvent which does not affect the functional group of the surface treating agent to be used can be used. Specifically, the same organic solvents as mentioned in the (1) sol-gel silica dispersion production process can be mentioned.
  • the surface treatment agent when in the form of gas, it can be added by blowing it into the solution in the form of fine bubbles.
  • the treatment temperature for the surface treatment may be determined in consideration of the reactivity of the surface treatment agent to be used, etc. However, if the treatment temperature is too low, the reaction proceeds slowly, and if it is too high, the operation is complicated.
  • the temperature is preferably 10 to 100 ° C., and more preferably 20 to 80 ° C.
  • the treatment time when performing the surface treatment there is no particular limitation on the treatment time when performing the surface treatment, and it may be determined in consideration of the reactivity of the surface treatment agent to be used, the treatment temperature, and the like. In consideration of both the progress of the surface treatment reaction and the shortening of the process time, the treatment time is preferably 0.1 to 48 hours, and more preferably 0.5 to 24 hours.
  • the sol-gel silica dispersion obtained after the sol-gel reaction is filtered by wet treatment to remove the contained coarse independent primary particles.
  • a sol-gel silica dispersion from which coarse particles are removed is obtained. That is, when the sol-gel silica dispersion is subjected to wet filtration, the coarse independent primary particles, and further, the adhesion particles and the agglomerates are separated on the filter medium, if any.
  • the dispersion liquid silica particle surface treatment step by providing the step after the surface treatment, agglomerates generated during the surface treatment and residues of the surface treatment agent are also separated.
  • a filter medium used for filtration one having a filtration pore diameter of 5 ⁇ m or less can be used without particular limitation, and one having a filtration pore diameter of 3 ⁇ m or less is preferable. If the filtration pore diameter is too small, the filterability is greatly reduced, so the lower limit of the filtration pore diameter is usually 1 ⁇ m although it depends on the average particle diameter of the target sol-gel silica or surface-treated sol-gel silica.
  • the filtration pore diameter of the filter medium is measured using particle diameter standard particles (in each average particle diameter, the standard deviation of the average particle diameter ⁇ 2% or less).
  • particle diameter standard particles in each average particle diameter, the standard deviation of the average particle diameter ⁇ 2% or less.
  • 99% by mass or more of the standard particles can be captured, and the standard particles with a smaller particle size mean a pore diameter which can be captured with less than 99% by mass.
  • the trapping rate of the corresponding particle size standard particles is filtered by flowing water concentration 0.5% by mass at 1 L / min, and then the permeated slurry is dried at 200 ° C. for 8 h to remove the solvent and remain.
  • the solid content to be measured is measured and calculated from the amount of slurry and the amount of solid remaining.
  • particle diameter standard particles functional nano-micro particles manufactured by Thermo Fisher are preferable. For example, if the particle diameter is 5 ⁇ m, model number 4205A is used, and if the particle diameter is 3 ⁇ m, model number 4203A is used.
  • the material of the filter is not particularly limited, but may be resin (polypropylene, PTFE, etc.) or metal. It is preferable to use a resin filter from the viewpoint of preventing the mixing of metal impurities.
  • wet filtration is performed again after the surface treatment of the fired silica particles, but even in this stage, wet filtration is performed first, and the (1) sol gel It is important to remove coarse independent primary particles and strong agglomerates generated in the silica dispersion production process and (2) dispersion liquid silica particle surface treatment process. If these coarse particles are mixed with sol-gel silica in the firing step, in the second surface treatment step applied to the fired silica particles, as described later, strong agglomerates will be generated more vigorously starting from this. . As a result, in the wet filtration after the surface treatment to the calcined silica particles, the small opening is easily clogged, which makes industrial implementation difficult.
  • the coagulating step is carried out by at least one selected from the group consisting of carbon dioxide, ammonium carbonate, ammonium hydrogen carbonate and ammonium carbamate in the dispersion of sol-gel silica or surface-treated sol-gel silica obtained after the wet filtration. It is carried out in the state where a coagulant consisting of a compound is added.
  • a coagulant consisting of a compound is added.
  • sol gel silica of high purity or surface treated sol gel silica can be easily manufactured.
  • the content of sodium element in the obtained sol-gel silica or surface-treated sol-gel silica can be 100 ppm or less, and more preferably 10 ppm or less.
  • sol-gel silica or surface-treated sol silica particles may be contaminated with the metal element component constituting these salts, which requires a washing (purification) operation to remove it, which is industrially disadvantageous.
  • the cohesion becomes strong, and may not be resolved into primary particles in a simple crushing treatment, and may remain as coarse particles in sol-gel silica or surface-treated sol silica.
  • the use ratio and addition method of the coagulant can be set as follows according to the type of coagulant to be used.
  • the proportion of coagulant used should take into account the balance between the degree of formation of weak aggregates of sol-gel silica particles or surface-treated sol-gel silica particles in the dispersion and the waste of using an excessively large amount of raw material.
  • the proportion thereof is preferably 0.005 parts by mass or more with respect to 100 parts by mass of sol gel silica or surface treated sol gel silica contained in the dispersion. More preferably, it is 0.005 to 300 parts by mass.
  • a further preferable usage ratio of carbon dioxide to sol-gel silica is 0.05 parts by mass or more, particularly preferably 0.05 to 300 parts by mass, with respect to 100 parts by mass of sol-gel silica powder. It is particularly preferable to set to ⁇ 200 parts by mass.
  • a more preferable usage ratio of carbon dioxide to the surface-treated sol-gel silica is 15 parts by mass or more, particularly preferably 15 to 300 parts by mass with respect to 100 parts by mass of the surface-treated sol-gel silica powder. It is particularly preferable to set to ⁇ 200 parts by mass.
  • a method of adding carbon dioxide a method of blowing into a dispersion liquid in a gas state, a method of adding in a solid state (dry ice), etc. can be mentioned, but adding in a solid state is easy to operate It is preferable from being.
  • ammonium carbonate, ammonium hydrogencarbonate or ammonium carbamate When ammonium carbonate, ammonium hydrogencarbonate or ammonium carbamate is used as the coagulant, the proportion thereof is 0.001 mass per 100 parts by mass of sol gel silica or surface treated sol gel silica contained in the dispersion.
  • the amount is preferably at least part, and more preferably 0.001 to 80 parts by mass.
  • a further preferable use ratio of ammonium carbonate, ammonium hydrogencarbonate or ammonium carbamate is 0. 0 to 100 parts by mass of the sol-gel silica.
  • the amount is preferably 001 to 15 parts by mass, and particularly preferably 0.001 to 10 parts by mass.
  • a further preferable usage ratio of ammonium carbonate, ammonium hydrogencarbonate or ammonium carbamate is 15 parts by mass or more with respect to 100 parts by mass of surface treated sol-gel silica. It is particularly preferable to set it as 20 to 50 parts by mass.
  • Ammonium carbonate, ammonium hydrogencarbonate or ammonium carbamate may be added in solid form or in solution in a suitable solvent.
  • the solvent used in the case of adding them in the form of solution is not particularly limited as long as it dissolves them, but from the viewpoint of high dissolving ability and easy removal after filtration, water is added. It is preferred to use.
  • the concentration of the ammonium carbonate, ammonium hydrogencarbonate or ammonium carbamate solution is not particularly limited as long as it dissolves them, but if the concentration is too low, the amount of the solution used increases and it is uneconomical, so 2 to 15 mass %, Preferably 5 to 12% by mass.
  • the above coagulants may be used alone or in combination of two or more.
  • ammonium hydrogen carbonate and ammonium carbamate which is commercially available as so-called “ammonium carbonate"
  • ammonium carbonate a mixture of ammonium hydrogen carbonate and ammonium carbamate, which is commercially available as so-called “ammonium carbonate”
  • ammonium carbonate a mixture of ammonium hydrogen carbonate and ammonium carbamate, which is commercially available as so-called “ammonium carbonate”
  • ammonium carbonate a mixture of ammonium hydrogen carbonate and ammonium carbamate, which is commercially available as so-called “ammonium carbonate”
  • the total use ratio of ammonium hydrogen carbonate and ammonium carbamate, the type of solvent used when adding this as a solution and the concentration of the solution are in the case of ammonium carbonate, ammonium hydrogen carbonate or ammonium carbamate Is the same as the above.
  • the pH of the dispersion of sol-gel silica particles or surface-treated sol-gel silica particles when adding a coagulant does not cause any undesirable decomposition in the dispersion, and the effect of the present embodiment can be effectively exhibited. It is desirable to select and set the pH range. From such a viewpoint, the pH of the dispersion is preferably in the alkaline region, and more preferably pH 9 or more.
  • the temperature of the sol-gel silica particles or surface-treated sol-gel silica particle dispersion when adding the coagulant is a temperature at which weak aggregates of sol-gel silica particles or surface-treated sol-gel silica particles formed by the addition of the coagulant can be stably present. It is desirable to select and set. From such a viewpoint, the temperature of the dispersion is preferably ⁇ 10 to 60 ° C., which is the same as the reaction temperature in the reaction of the sol-gel method, and more preferably 10 to 40 ° C.
  • Aging is preferably performed after addition of the coagulant, that is, after a while for the next step of filtration.
  • Aging after addition of the coagulant promotes formation of weak aggregates of the sol-gel silica particles or surface-treated sol-gel silica particles described above, which is preferable.
  • Aging time is better as long as possible, but too long is uneconomical.
  • the ripening time is preferably 0.5 to 72 hours, and more preferably 1 to 48 hours.
  • the temperature of the dispersion during the ripening is not particularly limited, and can be carried out in the same temperature range as the preferred temperature for the addition of the coagulant, if it is carried out at the same temperature as the addition of the coagulant. It is enough.
  • a sol-gel silica or surface-treated sol-gel silica is recovered from a dispersion after adding a coagulant as described above, preferably aging. It is a process of further drying.
  • the means for solid-liquid separation of sol-gel silica or surface-treated sol-gel silica in which weak aggregates are formed by the addition of the coagulant is not particularly limited, but can be easily recovered as a filter by filtration.
  • the method of filtration is not particularly limited, and for example, known methods such as vacuum filtration, pressure filtration, centrifugal filtration and the like can be applied.
  • a filter paper, a filter cloth, etc. (hereinafter referred to collectively as “filter paper etc.”) used in the filtration can be used without particular limitation as long as it is industrially available, and a separation device ( It may be appropriately selected according to the scale of the filter, the average particle diameter of the silica to be recovered, and the like.
  • a separation device It may be appropriately selected according to the scale of the filter, the average particle diameter of the silica to be recovered, and the like.
  • surface-treated sol-gel silica is recovered as a cake.
  • the pore diameter of the filter paper or the like may be much larger than the primary particle diameter.
  • sol-gel silica particles of 05 to 2.0 ⁇ m those having a retention particle diameter of 5 ⁇ m or less are sufficient.
  • the pore diameter of the filter paper or the like is large, it is possible to rapidly filter.
  • sol-gel silica or surface-treated sol-gel silica is recovered as a cake.
  • the obtained cake was used in a sol-gel reaction by rinsing with an appropriate solvent such as water, alcohol, etc. It is possible to carry out the decomposition or removal of the solvent, the basic catalyst, and the unreacted surface treatment agent.
  • sol-gel silica or surface-treated sol-gel silica recovered by the filtration step is dried.
  • the crushability of the cake of sol-gel silica or surface-treated sol-gel silica recovered as described above is further improved when it is dried at a temperature of 35 ° C. or higher. Therefore, it is preferable to set the drying temperature in the drying process in the present embodiment to a temperature of 35 ° C. or more. By heating at this temperature, the coagulant remaining in the cake without being removed by the above-mentioned filtration, rinse and the like can be easily removed by thermal decomposition.
  • the method of drying is not particularly limited, and it is possible to adopt a known method such as blast drying or vacuum drying. It is preferable to employ reduced pressure drying because it tends to be more easily crushed.
  • the drying temperature is preferably 35 to 200 ° C., more preferably 50 to 200 ° C., particularly preferably 80 to 200 ° C., and 120 to 200 ° C. It is particularly preferred to
  • the drying time is not particularly limited, and may be appropriately selected depending on the drying conditions, for example, the drying temperature, pressure, etc., but the sol-gel silica or surface-treated sol-gel silica is generally selected by setting to about 2 to 48 hours. It can be sufficiently dried.
  • the removal of the dispersion medium from the dispersion of the sol-gel silica or the surface-treated sol-gel silica particles can be carried out by concentration instead of the filtration. That is, it is also possible to carry out continuously over concentration and drying.
  • the dispersion medium is removed from the sol-gel silica particles or the surface-treated sol-gel silica particle dispersion by performing the method of volatilizing the dispersion medium by heating or concentrating the sol-gel silica particles or the surface-treated sol-gel silica particles dispersion by vacuum concentration.
  • Sol-gel silica or surface-treated sol-gel silica can be obtained directly.
  • the salt derived from the specific coagulant disappears and the coagulation effect becomes thin, and in such a case, the sol gel silica particles or surface treated sol gel silica particle dispersion during concentration and drying
  • a specific coagulant may be added as appropriate to the concentrate in order to prevent the salts from disappearing in the concentrate.
  • the sol-gel silica or surface-treated sol-gel silica obtained by the above method is obtained as a dry powder in the form of an aggregate in which individual particles are aggregated by a weak force.
  • the sol-gel silica or the surface-treated sol-gel silica is excellent in dispersibility which can be easily crushed without forming agglomerates which are difficult to be crushed.
  • the sol-gel silica or surface-treated sol-gel silica obtained in the (5) solid-liquid separation / drying step highly removes the dispersion medium in the particles and crushes silanol groups to obtain solid sol-gel silica,
  • the sol-gel silica treated in the firing step is preferable not only because the amount of silanol groups on the particle surface is reduced but also the dispersion medium remaining in the particles is removed.
  • the solvent remaining in the particles when used as a filler for resin, generates bubbles and the like when heated, which causes a decrease in yield.
  • the surface-treated sol-gel silica in this embodiment has a heating loss of usually 0.1 to 20% when heated at 700 ° C. for 5 hours, but the one to which calcination is performed is the dispersion medium remaining in the particles. It is preferable that the heating loss is usually 5% or less, and particularly preferably 3% or less, because it is removed and baked.
  • the temperature during the baking treatment is preferably 300 to 1300 ° C, and more preferably 600 to 1200 ° C. Is more preferred.
  • the firing time is not particularly limited as long as the remaining dispersion medium is removed, but if it is too long, the productivity will fall, so 0.5 to 48 hours are preferable after raising the temperature to the target firing temperature. Preferably, holding and firing in the range of 2 to 24 hours is sufficient.
  • the atmosphere at the time of firing is also not particularly limited, and may be performed under an inert gas such as argon or nitrogen or under an air atmosphere.
  • the sol-gel silica obtained from the calcination step is also obtained as a dry powder in the form of aggregates in which individual particles are agglomerated with a weak force as described above.
  • the dried powder obtained by the above-mentioned calcination can be further reduced in aggregate by being crushed by a known crushing means.
  • a well-known crushing means a ball mill, a jet mill, etc. are mentioned, for example.
  • Step of Surface-Treating Calcined Silica Particles The surface of the sol-gel silica particles obtained from the above-mentioned sintering step is treated with a surface treating agent. Although this surface treatment was carried out in a wet manner because the surface treatment in the (2) dispersion liquid silica particle surface treatment step was applied to the sol gel silica in the dispersion obtained in the (1) sol gel silica dispersion production step. In contrast, it will be carried out dry. Therefore, various surface treatment agents can be treated efficiently.
  • the surface treatment agent shown in the (2) dispersion liquid silica particle surface treatment step can be preferably used. That is, at least one selected from silicone oils, silane coupling agents, siloxanes and silazanes is preferable.
  • the coating resin is not particularly limited, and the above-described polymer having an epoxy group or a (meth) acrylic group is preferably used.
  • the epoxy group-containing radical polymerizable monomer is 100 parts by mass of sol-gel silica Preferably, it is used in the range of 0.01 to 5 parts by mass, and particularly preferably in the range of 0.1 to 1 parts by mass.
  • a crosslinking agent it is preferably used in a molar ratio of 0.001 to 1 with respect to the epoxy group-containing radically polymerizable monomer, and more preferably in a range of 0.01 to 0.3. Is preferred.
  • the polymerizable composition containing a radically polymerizable monomer having an epoxy group if necessary, other radically polymerizable monomers, a polymerization initiator, a polymerization inhibitor, a polymerization inhibitor, an ultraviolet absorber And other additives may be added.
  • the above-mentioned other radically polymerizable monomers have the purpose of facilitating absorption or adsorption of the epoxy group-containing radically polymerizable monomer into the raw material powder, and the epoxy group-containing radically polymerizable monomer is solid at normal temperature and normal pressure. In some cases, it is added for the purpose of dissolving them or improving the physical properties of the coating resin.
  • styrene As other radically polymerizable monomers suitably used, styrene, ⁇ -methylstyrene, vinyltoluene, 2,4-dimethylstyrene, p-tert-butylstyrene, chloromethylstyrene, p-chlorostyrene, vinyl Aromatic vinyl monomers such as naphthalene, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, (Meth) acrylic acid tritridecyl, (meth) acrylic acid benzyl, (meth) acrylic acid phenoxyethyl, (meth) acrylic acid benzyl, (meth) acrylic acid phenoxyethyl acrylate, (meth) acrylic acid 2-methoxyethyl (meth) ) 2-
  • the addition amount of the other radically polymerizable monomer is preferably in the range of 0.001 to 1 in molar ratio with respect to the epoxy group-containing radically polymerizable monomer, and in particular 0.01 to 0.3 It is preferable to use in the range.
  • the polymerization initiator a known polymerization initiator may be appropriately selected and used according to the radically polymerizable monomer to be used, but a radical type polymerization initiator is used in order to prevent the ring opening of the epoxy group. It is necessary. Among them, it is more convenient and particularly preferable that the polymerization initiation ability is expressed by heating.
  • octanoyl peroxide lauroyl peroxide, t-butylperoxy-2-ethylhexanoate, benzoyl peroxide, t-butylperoxyisobutyrate, t-butylperoxylaurate, t-hexylperoxy
  • Organic peroxides such as benzoate and di-t-butyl peroxide; and azobiss such as 2,2-azobisisobutyronitrile and 2,2-azobis- (2,4, -dimelvaleronitrile)
  • a system polymerization initiator etc. are mentioned as a suitable polymerization initiator.
  • the amount of the polymerization initiator is 0.1 to 20 parts by mass, preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the epoxy group-containing radically polymerizable monomer.
  • additives such as a polymerization inhibitor, a polymerization inhibitor, and a ultraviolet absorber, as needed. These are not particularly limited, and known ones can be used.
  • the polymer having an epoxy group When the polymer having an epoxy group is solid or has a high viscosity, it may be made liquid using a small amount of solvent.
  • a solvent any solvent which does not ring-open the epoxy group and does not affect the polymerization can be used without particular limitation.
  • organic solvents are preferred, and alcohols are particularly preferably used. Specifically, methyl alcohol, ethyl alcohol, 1-propyl alcohol and the like can be mentioned.
  • the coating resin uses a polymer having a (meth) acrylic group
  • the polymerizable composition containing a (meth) acrylic group / epoxy group-containing monomer the (meth) acrylic group / epoxy group-containing unit amount
  • the body is preferably used in an amount of 0.01 to 5 parts by mass, particularly preferably 0.1 to 5 parts by mass, per 100 parts by mass of the sol-gel silica.
  • crosslinking agent When a crosslinking agent is used, it is preferably used in a molar ratio of 0.001 to 1 with respect to the epoxy group-containing radically polymerizable monomer, and more preferably in a range of 0.01 to 0.3. Is preferred.
  • the epoxy curing agent is not particularly limited, and known monomers can be suitably used. If an example is shown, an organic acid dihydrazide compound, imidazole and its derivative (s), an aromatic amine, dicyandiamide etc. will be mentioned. One of these may be used alone, or two or more may be used in combination.
  • the amount of epoxy curing agent may be determined according to the addition functional equivalent of the epoxy curing agent used. Generally, the amount is 20 to 200 parts by mass, preferably 40 to 100 parts by mass, with respect to 100 parts by mass of the (meth) acrylic group / epoxy group-containing monomer.
  • additives such as an epoxy resin and a hardening accelerator
  • the epoxy resin can use a well-known thing without a restriction
  • bisphenol-type epoxy resins such as bisphenol A and bisphenol F, cresol novolac-type epoxy resin, phenol novolac-type epoxy resin, etc. are mentioned. These compounds also include monomers and oligomers. These may be used alone or in combination of two or more.
  • the amount of the epoxy resin may be determined according to the epoxy equivalent of the epoxy resin to be used, but generally 10 to 500 parts by mass with respect to 100 parts by mass of the (meth) acrylic group / epoxy group containing monomer Is preferable, and 50 to 300 parts by mass is more preferable.
  • the epoxy group in the polymer having (meth) acrylic group is increased, and as a result, the polymerization reaction part is increased, so that the polymerization reactivity and the reaction rate become high, and the epoxy weight is stronger.
  • known ones can be used without particular limitation.
  • imidazole-based curing accelerators such as imidazole and 2-methylimidazole
  • phosphine derivatives such as triphenylphosphine, tris-p-methoxyphenylphosphine, and tricyclohexylphosphine, 1, 8-diazabicyclo (5.4.0
  • a cycloamidine derivative such as undec-7-ene and the like.
  • the amount of the curing accelerator is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the (meth) acrylic group / epoxy group-containing monomer. It is a department. By adding a curing accelerator, the reaction time can be shortened and the production efficiency can be improved. Moreover, when adding an epoxy resin in the polymer which has a (meth) acryl group, what is necessary is just to determine the addition amount of a hardening accelerator from the epoxy equivalent and addition amount of an epoxy resin. In general, the amount of the curing accelerator added is about 1 to 50 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • the surface of the sol-gel silica particles is treated with the coating resin, it is not necessary to cover the entire surface, and a part of the surface may be coated with the coating resin.
  • the state of the coating is not particularly limited as long as the coating resin is immobilized on the surface of the core particle in such a manner that the coating resin is not easily detached, for example, when the core particle has pores It may be in the state of covering the wall of the pore, or in the state of being present so as to fill the pore, or in the state of combining them.
  • Functional group content of the coating resin has a resin-coated surface-treated gel silica particle surface area 1 m 2 per 0.01 ⁇ 25 ( ⁇ mol), it is preferred that a particularly 0.1 ⁇ 15 ( ⁇ mol).
  • the proportion of the coating resin used is not particularly limited, but if it is too small, surface treatment will be insufficient, and if it is too large, aggregation will occur, so 0.05 to 10 parts by weight per 100 parts by weight of the sol-gel silica powder used
  • the amount is preferably in the range of 0.1 to 2 parts by mass.
  • the above-mentioned surface treatment agents may be used alone or in combination of two or more.
  • surface treatment with silazanes in advance to reduce silanol groups on the silica surface is preferable because the stability of the epoxy group or (meth) acrylic group is improved.
  • the surface treatment agents as described above it is preferable to use at least one selected from the group consisting of a silane coupling agent and a silazane, because the fluidity of the obtained sol-gel silica is excellent, and silazanes are used It is more preferable to do.
  • the sol-gel silica and the various surface treatment agents are mixed to dry-treat the silica surface.
  • the means for mixing at this time is not particularly limited, but it is preferable that the means for mixing is not based on a rotating body having a drive unit. Specifically, mixing by rotation or rocking of the container body, airflow mixing by air, etc. may be mentioned.
  • a mixing apparatus having such mixing means a V blender mixed by rotation or rocking of a container body, a rocking mixer, a double cone type mixing apparatus, an air blender mixed by air flow, etc. may be mentioned.
  • a specific device is a mixing device provided with stirring blades, mixing blades and the like, and examples thereof include a Henschel-type mixing device and a Loedige mixer.
  • the mixing apparatus used in the present embodiment includes at least one crushing blade as a means for making the particle diameter of the sol-gel silica before and after the surface treatment equal.
  • the crushing blade is a rotating body having a rotation axis as crushing means, and the shaft passes through the center of gravity of the blade, or at least one sheet extending in a direction perpendicular to the shaft, the shaft being one end of the blade. It is a feather.
  • a plurality of crushing blades are installed coaxially, they can be installed anywhere on the rotation axis as long as the inner wall of the mixing vessel and the gap with other crushing blades are sufficient.
  • the crushing energy of the crushing blade is preferably 0.3 to 10 J. If it is less than 0.1 J, the agglomerated particles can not be crushed sufficiently and the agglomerated particles remain. On the other hand, if it exceeds 20 J, there arises a problem that sol-gel silica tends to reaggregate.
  • the crushing energy is extremely small while the stirring energy of the stirring / mixing blade used as the mixing means is 50 J or more. Therefore, the crushing blade in this embodiment is used as the mixing means. It is clearly distinguished from a rotating body having a drive, that is, a stirring and mixing blade.
  • the example of the calculation method of the said crushing energy is concretely described below.
  • the crushing energy is calculated for each rotation axis, and the moment of inertia of the crushing blade is first determined.
  • Iz 1 (kg ⁇ m 2 ) (a 1 2 + b 2 ) ⁇ M / 12 ⁇ m (1) (When the axis is one end of the blade)
  • the length of the long side in the direction perpendicular to the rotation axis of the crushing blade is a 2 (m)
  • the length of the short side is b (m)
  • the thickness is t (m)
  • the weight is M (M
  • the moment of inertia (Iz 2 ) of a blade whose axis is one end of the blade can be calculated from the following (Equation 2).
  • Disintegration energy E (J) Iz ⁇ ⁇ 2/2 ⁇ ( Equation 4) Also in the case where the crushing blade has a shape other than the above, the crushing energy can be determined by a known formula depending on the shape.
  • the crushing energy per one rotation shaft may be in the above-described range, and at least one rotation shaft having crushing blades may be installed, and a plurality of the rotation shafts may be installed.
  • the crushing energy of the crushing blades of each rotation shaft may be in the range of 0.3 to 10 J.
  • the material of the rotary shaft and the crushing blade is not particularly limited, and metals such as stainless steel, resins such as aluminum, polycarbonate, polypropylene, acrylic and the like can be mentioned. Among them, metals, particularly stainless steel, are abrasion resistant Excellent and preferred.
  • the shape of the said crushing blade is not specifically limited, A well-known thing can be used. For example, horizontal shape, L-shape, cylindrical shape etc. may be mentioned.
  • the size of the crushing blade is a size that can be accommodated in the device, and is not particularly limited as long as the crushing energy falls within the above range, but it is a case where a load is locally applied from the contents during rotation Also, it may be installed with a sufficient gap so as not to collide with the wall surface or other crushing blades.
  • the length of the long side of the crushing blade is too short, the crushing effect becomes small (requires high rotation to obtain the necessary crushing energy), but if too long, a large power is required to rotate.
  • the longer the length of the long side of the crushing blade the larger the crushing energy becomes and exceeds the above range, and the sol-gel silica tends to reaggregate, so the length of the long side of the crushing blade is It is preferable to set it as 300 mm or less.
  • the thickness of the crushing blade is not particularly limited, but is preferably 1 to 5 mm.
  • the rotational speed of the crushing blade is also directly related to the crushing energy as in the above equation.
  • it is preferably 50 to 300 (rad / s).
  • the rotation speed is too slow, the crushing effect decreases, and conversely, when it exceeds 310 (rad / s), the crushing energy tends to exceed 10 J.
  • the rotational speed is set to a small value, mechanical load tends to be suppressed.
  • the material of the crushing blade that is, the weight is taken into consideration so that the crushing energy per one rotation shaft obtained from the above (formula 1) to (formula 4) becomes 0.3 to 10 J
  • the length, the length of the short side, the thickness, the number of crushing blades, and the number of rotations may be relatively selected within the above ranges.
  • the installation location of the rotation shaft of the crushing blade is not particularly limited as long as the crushing blade is in the powder contact portion in the apparatus.
  • the powder in the case of using a V blender, a rocking mixer, or a double cone type mixing device, the powder can be in contact with the powder anywhere in the space in the mixing device, so If it is the inner wall surface of the both ends, it can install in any location.
  • the crushing blade in consideration of the flow of sol-gel silica by the air flow, the crushing blade may be installed so as to contact the powder efficiently, and the inner surface of the body and the inner wall surface of the ceiling It can be installed at any place.
  • the size of the mixing apparatus used for the mixing is not particularly limited, but generally, one having an inner volume of 10 L to 4 m 3 is preferably used.
  • the sol-gel silica is supplied to the surface treatment apparatus.
  • the supply amount of the sol-gel silica is not particularly limited as long as the supplied sol-gel silica can be mixed, but in view of general processing efficiency, it is preferably 1 to 60% with respect to the internal volume of the mixing apparatus More preferably, it is 30 to 50%.
  • the surface treatment agent and / or the coating resin are supplied to the mixing device supplied with sol-gel silica.
  • the amount of the surface treatment agent supplied is as described above.
  • the surface treatment agent may be mixed with sol-gel silica after being diluted with a solvent.
  • the solvent to be used is not particularly limited as long as the surface treatment agent can be dissolved.
  • the solvent is not particularly limited as long as it does not affect the functional group of the surface treatment agent, and known solvents can be used.
  • organic solvents are preferred, and alcohols are particularly preferably used. Specifically, methyl alcohol, ethyl alcohol, 1-propyl alcohol and the like can be mentioned.
  • the dilution rate at the time of dilution with a solvent is not particularly limited, it is generally used after diluting about 2 to 5 times.
  • the supply of the surface treatment agent is preferably performed by dropping or spraying using a pump or the like.
  • a well-known spray nozzle etc. can be used conveniently.
  • the surface treatment agent may be supplied at once, or may be supplied continuously or intermittently while mixing. It is preferable to supply continuously or intermittently while mixing, particularly when the throughput is large.
  • the supply rate of the surface treatment agent is not particularly limited, but may be determined in consideration of the supply amount of the surface treatment agent. Generally, it is preferable to supply at 1 to 20 ml / min per 100 g of sol-gel silica powder. In particular, when the supply amount of the surface treatment agent is large, if the supply rate is slow, the treatment time will be long since the treatment time will be long and the productivity will be inferior. If the surface treatment agent is supplied at once or the supply rate is too fast It becomes large, and agglomerated particles are easily formed in the sol-gel silica.
  • the atmosphere in the mixing apparatus is not particularly limited, but an inert gas such as nitrogen, helium or argon is preferably used. By doing so, it is possible to suppress hydrolysis by moisture and oxidative degradation by oxygen.
  • the temperature conditions for supplying the surface treatment agent and mixing with the sol-gel silica are not particularly limited, but if the temperature is too high, the surface treatment agent may be polymerized or the surface treatment agent may be rapidly vaporized. Generally, the temperature is about -10 to 40.degree.
  • the mixing may be carried out as long as the surface treatment agent is uniformly mixed with the sol-gel silica, and the time taken for the mixing may be appropriately determined according to the processing amount of the sol-gel silica to be treated and the capacity of the mixing apparatus used. For example, when processing 80 kg of sol-gel silica powder using a double cone mixer with an internal volume of 340 L, the mixture is sufficiently mixed within 3 hours.
  • sol-gel silica when mixing the sol-gel silica and the surface treatment agent, agglomerated particles are formed due to the uneven distribution of the surface treatment agent and strong mixing energy, but in the case of mixing means not due to the rotating body having the drive part, sol-gel silica
  • sol-gel silica The formation of agglomerated particles in the Further, by providing a holding blade in the mixing apparatus, the generated agglomerated particles are efficiently crushed by the crushing blade before becoming a strong agglomerated particle, so sol gel silica in which the agglomerated particle is extremely reduced A mixture with the surface treatment agent is obtained.
  • sol gel silica in which the agglomerated particle is extremely reduced A mixture with the surface treatment agent is obtained.
  • the surface treatment agent is uniformly treated on the particle surface, and the generation of aggregated particles is reduced.
  • the obtained surface-treated sol-gel silica is obtained.
  • the mixture of the sol gel silica with reduced agglomerated particles and the surface treatment agent is heat treated to coat the surface treatment agent on the sol gel silica surface.
  • the said heat processing can also heat-process, adding heat, mixing.
  • the sol-gel silica sufficiently mixed with the surface treatment agent may be taken out, heated by another heating device, and heat treatment may be performed without mixing means.
  • the atmosphere gas in another heating device is not particularly limited, but it is preferable to use an inert gas atmosphere such as nitrogen, helium or argon as in the mixing device.
  • the temperature at which the heat treatment is performed is 40 to 300 ° C., preferably 80 to 250 ° C.
  • the vapor pressure of the surface treatment agent in the mixing apparatus is preferably 1 kPa or more, and the heat treatment is preferably performed at a temperature at which the vapor pressure of the surface treatment agent is 10 kPa or more.
  • the pressure in the mixing apparatus may be any of normal pressure, pressure and negative pressure.
  • the heat treatment time may be appropriately determined according to the reactivity of the surface treatment agent to be used. In general, it is possible to obtain a sufficient reaction rate within 24 hours.
  • the surface-treated sol-gel silica obtained from the calcinated silica particle surface treatment step contains adhesion particles, aggregates and the like, and these are removed by wet filtration. .
  • the surface-treated sol-gel silica is dispersed in a solvent, and the dispersion is subjected to wet filtration to remove coarse particles.
  • the coarse particles are separated on the filter medium together with the surface treatment reaction residue and the like, and the silica dispersion from which the coarse particles have been removed is recovered as a filtrate.
  • solvents which do not affect the modifying groups on the surface-treated sol-gel silica can be used. Specifically, water, alcohols and the like can be mentioned, and when the surface-treated sol-gel silica exhibits hydrophobicity, alcohols can be suitably used.
  • the silica particle concentration in the surface-treated sol-gel silica particle dispersion obtained is preferably 1 to 60% by mass, and particularly preferably 25 to 50% by mass.
  • a dispersion of the surface-treated calcined silica particles is obtained in this manner, it is used to carry out a wet filtration in the same manner as the above-mentioned “(3) Wet filtration step of surface-treated sol-gel silica dispersion”. It should be implemented. Then, surface-treated sol-gel silica may be solid-liquid separated from the obtained filtrate and dried. The method may be carried out in the same manner as the method described in the above (5) solid-liquid separation / drying step.
  • sol-gel silica powder or surface-treated sol-gel silica powder is weighed on an electronic balance in a 50 mL glass bottle, and about 40 ml of distilled water or ethanol is added, and 40 W ⁇ 10 minutes using an ultrasonic homogenizer (Sonifier 250 manufactured by BRANSON) After dispersion under the following conditions, the average particle size ( ⁇ m) and coefficient of variation of the surface-treated sol-gel silica powder were measured by a laser diffraction / scattering method particle size distribution analyzer (manufactured by Beckman Coulter, LS-230).
  • the average particle diameter ( ⁇ m) referred to here means the 50% diameter based on volume.
  • the amount of coarse particles of 5 ⁇ m, 3 ⁇ m and 20 ⁇ m or more in Coulter counter method Prepare five 50-mL glass bottles, weigh 1 g of surface-treated sol-gel silica powder on each with an electronic balance, add 19 g of ethanol each, and use the ultrasonic homogenizer (BRANSON, Sonifier 250) for 40 W ⁇ 10 minutes And dispersed as a measurement sample.
  • the individual particle sizes of the surface-treated sol-gel silica particles were measured using a Coulter Counter (manufactured by Beckman Coulter, Multisizer 3) using an aperture diameter of 30 ⁇ m for measurement of 5 ⁇ m and 3 ⁇ m and an aperture diameter of 50 ⁇ m for measurement of 20 ⁇ m.
  • the number of particles measured per sample was about 50,000, and the total of five samples was measured for about 250,000.
  • the number of particles having a particle diameter of 5 ⁇ m or more, the number of particles having a particle diameter of 3 ⁇ m or more, and the number of particles having a particle diameter of 20 ⁇ m or more are respectively calculated to be the respective coarse particle amounts (ppm) with respect to the total measured number.
  • the loss on heating was determined using a thermogravimetry-differential thermal thermal analyzer (TG-DTA, manufactured by Rigaku Corporation, TG 8120). Specifically, the surface-treated sol-gel silica powder was weighed by an electronic balance of about 10 mg, placed in a sample holder, heated to 700 ° C. at a temperature rising rate of 20 ° C./min, and held at 700 ° C. for 5 hours. The heating loss was calculated from the difference in weight before and after heating.
  • TG-DTA thermogravimetry-differential thermal thermal thermal analyzer
  • the shape of the surface-treated sol-gel silica particles was observed with an SEM (JSM-6060, manufactured by Nippon Denshi Datum Co., Ltd.) to determine the sphericity. Specifically, 1000 or more silica particles were observed, and the sphericity of each particle was measured using an image processing program (AnalySIS, manufactured by Soft Imaging System GmbH), and the average was determined. The sphericity was calculated by the following equation.
  • the amount of impurities of the surface-treated sol-gel silica was measured as follows. U and Th: Surface-treated sol-gel silica powder was heated and dissolved in hydrofluoric-nitric acid (a mixed solution of hydrofluoric acid: nitric acid 5: 1), and measured by ICP mass spectrometry (Agilent Technology, Agilent 4500).
  • the elements of iron, aluminum, chromium, nickel, sodium and chlorine were quantified by ICP emission spectrophotometry, atomic absorption spectrophotometry and ion chromatography.
  • the specific surface area (m 2 / g) was measured by the BET one-point method based on the nitrogen adsorption amount using a specific surface area measurement device SA-1000 manufactured by Shibata Scientific Instruments Industry.
  • the sol-gel silica powder before surface treatment after calcination was left in an atmosphere of 25 ° C. and 80% relative humidity for 45 days, and then the sample was dried at 120 ° C. for 12 hours.
  • the sample obtained after drying was dispersed in a methanol solvent, and the water content was measured using a Karl Fischer moisture meter MKS-210 manufactured by Kyoto Electronics Industry Co., Ltd.
  • a titration reagent "HYDRANAL COMPOSITE 5K" (manufactured by Riedel-deHaen) was used.
  • the amount of surface silanol groups was calculated according to the following equation from the amount of water measured by the above method and the specific surface area.
  • the surface carbon content (mass%) of the surface-treated sol-gel silica was measured by the combustion oxidation method (EMIA-511, manufactured by Horiba, Ltd.). Specifically, the surface-treated sol-gel silica material was heated to 1350 ° C. in an oxygen atmosphere, and the obtained amount of carbon was determined by converting it into 1 g of a sample. The surface-treated sol-gel silica to be subjected to the measurement is heated at 80 ° C.
  • the amount of surface polymerizable group is the amount of surface carbon, and the following is used Calculated from the equation.
  • n represents the number of carbon atoms in one molecule of surface treatment agent (excluding those contained in hydrolyzable groups (such as methoxy group).)
  • surface treatment agent 1 The number of polymerizable groups in the molecule is an average value, and the number of carbons in one molecule of the surface treatment agent is determined based on the average molecular weight.
  • the surface polymerizable group is derived from a polymer having an epoxy group
  • the amount of epoxy group per unit mass of surface-treated sol-gel silica ( ⁇ mol / ⁇ m / in accordance with JIS-K-7236 (method for determining the epoxy equivalent of epoxy resin) g) was determined, and then this value was calculated ( ⁇ mol / m 2 ) by dividing this value by the specific surface area of the surface-treated sol-gel silica.
  • the surface polymerizable group is derived from a polymer having a (meth) acrylic group
  • the amount of (meth) acrylic group per unit mass ( ⁇ mol / g) of the treated sol-gel silica was determined, and then this value was divided by the specific surface area of the surface-treated sol-gel silica to calculate ( ⁇ mol / m 2 ). Specifically, follow the procedure below.
  • sol-gel silica [hereinafter, also referred to as (meth) acrylic group-containing polymer-coated silica] coated with a (meth) acrylic group-containing polymer in a 25 mL sample tube, 3 mL chloroform, 200 ⁇ L to 700 ⁇ L of L ICl in acetic acid solution was added, and the mixture was shielded from light for 3 hours and stirred in a mix rotor. Next, 50 ⁇ L of an aqueous solution of 100 g / L potassium iodide and 4 mL of water were added and shaken well by hand.
  • the amount of (meth) acrylic groups per unit mass of the (meth) acrylic group-containing polymer-coated silica was determined using the following formula.
  • A (B ⁇ C) ⁇ D ⁇ 10 ⁇ 3 / 2
  • the hand-kneaded resin composition was pre-kneaded using a rotation and revolution mixer (manufactured by THINKY, Awatori Neritaro AR-500) (kneading: 1000 rpm, 8 minutes, defoaming: 2000 rpm, 2 minutes).
  • the resin composition after the preliminary kneading was kneaded using a three-roll mill (manufactured by IMEX Co., Ltd., BR-150 HCV roll diameter ⁇ 63.5).
  • the kneading conditions were such that the kneading temperature was room temperature, the distance between rolls was 20 ⁇ m, and the number of times of kneading was five.
  • Viscosity temporal change rate [%] ((22 / ⁇ 1) -1) ⁇ 100 (Flow mark) Twenty-five grams of the surface-treated sol-gel silica powder was added to 25 g of bisphenol A + F mixed epoxy resin (manufactured by Nippon Steel Sumikin Chemical Co., Ltd., ZX-1059) and hand-kneaded. The hand-kneaded resin composition was pre-kneaded using a rotation and revolution mixer (manufactured by THINKY, Awatori Neritaro AR-500) (kneading: 1000 rpm, 8 minutes, defoaming: 2000 rpm, 2 minutes).
  • the resin composition after the preliminary kneading was kneaded using a three-roll mill (manufactured by IMEX Co., Ltd., BR-150 HCV roll diameter ⁇ 63.5).
  • the kneading conditions were such that the kneading temperature was room temperature, the distance between rolls was 20 ⁇ m, and the number of times of kneading was five.
  • Example 1-1 ⁇ Manufacturing method (I)> (1) Sol-gel silica dispersion production process A reactor with Max Blend wings (blade diameter 345 mm) is used as a jacketed glass-lined reactor (inner diameter 1200 mm) with an internal volume of 1000 L, and 75 kg of methanol as a reaction medium and isopropanol 30 kg and 25 kg of aqueous ammonia (25% by mass) were charged (the amount of reaction medium: 150 L), the reaction temperature was set to 40 ° C., and the solution was stirred at 52 rpm.
  • the obtained surface-treated sol-gel silica powder had an average particle size of 0.8 ⁇ m, a variation coefficient of 26%, and a sphericity of 0.96.
  • coarse particles of 5 ⁇ m or more were not detected.
  • the amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter Counter method of the surface-treated sol-gel silica powder was less than 4 ppm and 8 ppm.
  • the residual amount on a wet sieve method using a test sieve with an aperture of 20 ⁇ m was less than 4 ppm.
  • the heating loss was 17% and the surface carbon content was 0.09% by mass.
  • the surface-treated sol-gel silica had an epoxy viscosity initial ( ⁇ 1) of 3.7 Pa ⁇ s, an epoxy viscosity of 1 week ( ⁇ 2) of 3.9 Pa ⁇ s, and a viscosity change with time of 5%. In addition, no flow marks were observed. Furthermore, the ⁇ dose of the surface-treated sol-gel silica powder is 0.002 c / (cm 2 ⁇ h), the amount of impurities is 0.01 ppb U, 0.01 ppb Th, 0.1 ppm Fe, and 0.1 ppm Al. 0.2 ppm, Na was 0.1 ppm, Ca was 0.1 ppm, Cr was 0.0 ppm, Ni was 0.0 ppm, Ti was 0.0 ppm, and Cl ⁇ was 0.1 ppm.
  • the processing conditions in the (2) dispersion liquid silica particle surface treatment step in this example are shown in Table 1. Moreover, among the results of performing various measurements according to the method described above using the obtained surface-treated silica, the ⁇ dose and the amount of impurities are shown in Table 2 and the other physical properties are shown in Table 3.
  • Example 1-2 ⁇ Manufacturing method (I)>
  • the surface treatment agent is changed to phenyltrimethoxysilane (manufactured by Shin-Etsu Silicone, KBM-103, hereinafter, PhTS), and 2720 g (relative to the amount of theoretical synthetic silica) in the sol-gel particle dispersion 100 ⁇ mol / g) was introduced.
  • the steps (1) to (5) were performed in the same manner as in Example 1-1 except for the above.
  • the obtained surface-treated sol-gel silica powder had an average particle size of 0.8 ⁇ m, a variation coefficient of 24%, and a sphericity of 0.96.
  • coarse particles of 5 ⁇ m or more were not detected.
  • the amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter Counter method of the surface-treated sol-gel silica powder was both less than 4 ppm.
  • the residual amount on a wet sieve method using a test sieve with an aperture of 20 ⁇ m was less than 4 ppm.
  • the heating loss was 19%, and the surface carbon content was 0.47% by mass.
  • the surface-treated sol-gel silica had an epoxy viscosity initial ( ⁇ 1) of 3.1 Pa ⁇ s, an epoxy viscosity of 1 week ( ⁇ 2) of 3.2 Pa ⁇ s, and a viscosity change with time of 3%. In addition, no flow marks were observed. Furthermore, the ⁇ dose of the surface-treated sol-gel silica powder is 0.002 c / (cm 2 ⁇ h), the amount of impurities is 0.02 ppb U, 0.01 ppb Th, 0.1 ppm Fe, and 0.1 ppm Al.
  • the processing conditions in the (2) dispersion liquid silica particle surface treatment step in this example are shown in Table 1. Moreover, among the results of performing various measurements according to the method described above using the obtained surface-treated silica, the ⁇ dose and the amount of impurities are shown in Table 2 and the other physical properties are shown in Table 3.
  • Example 1-3 Manufacturing method (I)>
  • the surface treatment agent was changed to acryloxypropyltrimethoxysilane (Shin-Etsu Silicone Co., Ltd., KBM-5103, hereinafter, AcPS), and 970 g (theoretically synthesized silica amount) was added to the sol-gel particle dispersion. (30 ⁇ mol / g).
  • the steps (1) to (5) were performed in the same manner as in Example 1-1 except for the above.
  • the obtained surface-treated sol-gel silica powder had an average particle size of 0.8 ⁇ m, a variation coefficient of 27%, and a sphericity of 0.95.
  • coarse particles of 5 ⁇ m or more were not detected.
  • the amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter Counter method of the surface-treated sol-gel silica powder was less than 4 ppm and 8 ppm.
  • the residual amount on a wet sieve method using a test sieve with an aperture of 20 ⁇ m was less than 4 ppm.
  • the heating loss was 17%.
  • the surface carbon content was 0.17% by mass, and the surface polymerizable group content calculated from the surface carbon content was 6 ⁇ mol / g.
  • the surface-treated sol-gel silica had an epoxy viscosity initial ( ⁇ 1) of 4.2 Pa ⁇ s, an epoxy viscosity of 1 week ( ⁇ 2) of 4.4 Pa ⁇ s, and a viscosity change with time of 5%. In addition, no flow marks were observed.
  • the ⁇ dose of the surface-treated sol-gel silica powder is 0.002 c / (cm 2 ⁇ h), the amount of impurities is 0.01 ppb U, 0.01 ppb Th, 0.1 ppm Fe, and 0.0 ppm Al.
  • 0.2 ppm Na was 0.1 ppm
  • Ca was 0.1 ppm
  • Cr was 0.0 ppm
  • Ni was 0.0 ppm
  • Ti 0.0 ppm
  • Cl ⁇ was 0.1 ppm.
  • the processing conditions in the (2) dispersion liquid silica particle surface treatment step in this example are shown in Table 1. Moreover, among the results of performing various measurements according to the method described above using the obtained surface-treated silica, the ⁇ dose and the amount of impurities are shown in Table 2 and the other physical properties are shown in Table 3.
  • the obtained surface-treated sol-gel silica powder had an average particle size of 0.8 ⁇ m, a variation coefficient of 29%, and a sphericity of 0.95.
  • coarse particles of 5 ⁇ m or more were not detected.
  • the amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter Counter method of the surface-treated sol-gel silica powder was 180 ppm and 25400 ppm.
  • the residual amount on a wet sieve method using a test sieve with an aperture of 20 ⁇ m was 10 ppm.
  • the heating loss was 18% and the surface carbon content was 0.09% by mass.
  • the surface-treated sol-gel silica had an epoxy viscosity initial ( ⁇ 1) of 3.9 Pa ⁇ s, an epoxy viscosity of 1 week ( ⁇ 2) of 4.8 Pa ⁇ s, and a viscosity change with time of 23%. In addition, flow marks were observed. Furthermore, the ⁇ dose of the surface-treated sol-gel silica powder is 0.002 c / (cm 2 ⁇ h), the amount of impurities is 0.01 ppb U, 0.01 ppb Th, 0.1 ppm Fe, and 0.1 ppm Al. 0.2 ppm of Na, 0.1 ppm of K, 0.0 ppm of Ca, 0.0 ppm of Cr, 0.0 ppm of Ni, 0.0 ppm of Ti, and 0.1 ppm of Cl ⁇ .
  • the processing conditions in the (2) dispersion liquid silica particle surface treatment step in the present comparative example are shown in Table 1. Moreover, among the results of performing various measurements according to the method described above using the obtained surface-treated silica, the ⁇ dose and the amount of impurities are shown in Table 2 and the other physical properties are shown in Table 3.
  • the obtained surface-treated sol-gel silica powder had an average particle size of 0.8 ⁇ m, a variation coefficient of 28%, and a sphericity of 0.96.
  • coarse particles of 5 ⁇ m or more were not detected.
  • the amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter Counter method of the surface-treated sol-gel silica powder was 40 ppm and 2200 ppm.
  • the residual amount on a wet sieve method using a test sieve with an aperture of 20 ⁇ m was less than 4 ppm.
  • the heating loss was 18% and the surface carbon content was 0.09% by mass.
  • the surface-treated sol-gel silica had an epoxy viscosity initial ( ⁇ 1) of 4.0 Pa ⁇ s, an epoxy viscosity of 1 week ( ⁇ 2) of 4.7 Pa ⁇ s, and a viscosity change with time of 18%. In addition, no flow marks were observed. Furthermore, the ⁇ dose of the surface-treated sol-gel silica powder is 0.002 c / (cm 2 ⁇ h), the amount of impurities is 0.01 ppb U, 0.01 ppb Th, 0.1 ppm Fe, and 0.1 ppm Al. 0.2 ppm of Na, 0.1 ppm of K, 0.0 ppm of Ca, 0.0 ppm of Cr, 0.0 ppm of Ni, 0.0 ppm of Ti, and 0.1 ppm of Cl ⁇ .
  • the processing conditions in the (2) dispersion liquid silica particle surface treatment step in the present comparative example are shown in Table 1. Moreover, among the results of performing various measurements according to the method described above using the obtained surface-treated silica, the ⁇ dose and the amount of impurities are shown in Table 2 and the other physical properties are shown in Table 3.
  • Example 2-1 Manufacturing method (II)> (1) Sol-gel silica dispersion production process A reactor with Max Blend wings (blade diameter 345 mm) is used as a jacketed glass-lined reactor (inner diameter 1200 mm) with an internal volume of 1000 L, and 75 kg of methanol as a reaction medium and isopropanol 30 kg and 25 kg of aqueous ammonia (25% by mass) were charged (the amount of reaction medium: 150 L), the reaction temperature was set to 40 ° C., and the solution was stirred at 52 rpm.
  • Max Blend wings blade diameter 345 mm
  • isopropanol 30 kg and 25 kg of aqueous ammonia (25% by mass
  • the surface-treated sol-gel silica powder obtained in the step (5) was fired at 800 ° C. for 10 hours in an air atmosphere in a firing furnace to obtain a fired sol-gel silica powder. There was no appearance that the calcined sol-gel silica particles were sintered, and 124 kg of calcined sol-gel silica powder was obtained.
  • the sol-gel silica powder is crushed using an orbital flow jet mill (manufactured by Seishin Enterprise, STJ-200) under the conditions of an air pressure of 0.6 MPa, an air amount of 2.8 m 3 / min and a supply rate of 10 kg / h I applied the treatment.
  • the obtained calcined sol-gel silica powder had an average particle size of 0.7 ⁇ m, and coarse particles of 5 ⁇ m or more were not detected by the laser diffraction scattering method.
  • the coarse particle amounts of 5 ⁇ m and 3 ⁇ m or more by the Coulter counter method were 5 ppm and 8 ppm.
  • the specific surface area was 4 m 2 / g, and the amount of surface silanol groups was 5 ⁇ mol / m 2 (3 pieces / nm 2 ).
  • a surface treatment mixer As a surface treatment mixer, one rotation shaft is installed on each inner wall of the end, and a stainless steel crushing blade (200 mm x 200 mm passing through the center of gravity of the blade at a position 2 cm from the wall of the shaft 80 kg of the sol-gel silica powder was charged in a double-cone type device (W-150, manufactured by Tokushu Kosakusho, Ltd.) having an inner volume of 340 L, each 20 mm ⁇ 2 mm attached, and the atmosphere was replaced with nitrogen.
  • W-150 manufactured by Tokushu Kosakusho, Ltd.
  • HMDS was dropped at 258 g (20 ⁇ mol / g) using a peristaltic pump.
  • the mixed surface-treated sol-gel silica powder was removed from the apparatus, divided into 10 kg portions, and heat-treated for 3 hours in a nitrogen-purged 150 ° C. dryer.
  • the cake of the surface-treated sol-gel silica recovered as described above was dried under reduced pressure at a temperature of 120 ° C. for 24 hours to obtain 4.8 kg of a dry surface-treated sol-gel silica powder.
  • the obtained surface-treated sol-gel silica powder had an average particle size of 0.7 ⁇ m, a variation coefficient of 24%, and a sphericity of 0.96.
  • coarse particles of 5 ⁇ m or more were not detected.
  • the amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter Counter method of the surface-treated sol-gel silica powder was less than 4 ppm and 8 ppm.
  • the residual amount on a wet sieve method using a test sieve with an aperture of 20 ⁇ m was less than 4 ppm.
  • the heating loss was 2%, and the surface carbon content was 0.07% by mass.
  • the surface-treated sol-gel silica had an epoxy viscosity initial ( ⁇ 1) of 3.2 Pa ⁇ s, an epoxy viscosity of 1 week ( ⁇ 2) of 3.3 Pa ⁇ s, and a viscosity change with time of 3%. In addition, no flow marks were observed. Furthermore, the ⁇ dose of the surface-treated sol-gel silica powder is 0.002 c / (cm 2 ⁇ h), the amount of impurities is 0.02 ppb U, 0.02 ppb Th, 1.5 ppm Fe, and 3.0 ppm Al.
  • the physical properties of the sol-gel silica obtained from the (6) firing step in the present example are shown in Table 4, the processing conditions in the (7) fired silica particle surface treatment step are shown in Table 5, and the obtained surface treated silica is used.
  • Table 6 shows the ⁇ dose and the amount of impurities
  • Table 7 shows the other physical properties.
  • Example 2-2 Manufacturing method (II)>
  • the surface treatment agent was changed to AcPS, and 375 g (20 ⁇ mol / g) was dropped using a peristaltic pump.
  • the steps (1) to (8) were performed in the same manner as in Example 2-1 except for the above.
  • the obtained surface-treated sol-gel silica powder had an average particle size of 0.7 ⁇ m, a variation coefficient of 22%, and a sphericity of 0.96.
  • coarse particles of 5 ⁇ m or more were not detected.
  • the amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter Counter method of the surface-treated sol-gel silica powder was less than 4 ppm and 8 ppm.
  • the residual amount on a wet sieve method using a test sieve with an aperture of 20 ⁇ m was less than 4 ppm.
  • the heating loss was 3%.
  • the surface carbon content was 0.14% by mass, and the surface polymerizable group content calculated from the surface carbon content was 19 ⁇ mol / g (5 ⁇ mol / m 2 ).
  • the surface-treated sol-gel silica had an epoxy viscosity initial ( ⁇ 1) of 3.8 Pa ⁇ s, an epoxy viscosity of 1 week ( ⁇ 2) of 4.2 Pa ⁇ s, and a viscosity change with time of 11%. In addition, no flow marks were observed. Furthermore, the ⁇ dose of the surface-treated sol-gel silica powder is 0.002 c / (cm 2 ⁇ h), the amount of impurities is 0.02 ppb U, 0.02 ppb Th, 1.5 ppm Fe, and 3.0 ppm Al.
  • the physical properties of the sol-gel silica obtained from the (6) firing step in the present example are shown in Table 4, the processing conditions in the (7) fired silica particle surface treatment step are shown in Table 5, and the obtained surface treated silica is used.
  • Table 6 shows the ⁇ dose and the amount of impurities
  • Table 7 shows the other physical properties.
  • Example 2-3 ⁇ Manufacturing method (II)>
  • the surface treatment agent was changed to AcPS, and 750 g (40 ⁇ mol / g) was dropped using a perister pump.
  • the steps (1) to (8) were performed in the same manner as in Example 2-1 except for the above.
  • the obtained surface-treated sol-gel silica powder had an average particle size of 0.7 ⁇ m, a variation coefficient of 24%, and a sphericity of 0.96.
  • coarse particles of 5 ⁇ m or more were not detected.
  • the amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter Counter method of the surface-treated sol-gel silica powder was less than 4 ppm and 8 ppm.
  • the residual amount on a wet sieve method using a test sieve with an aperture of 20 ⁇ m was less than 4 ppm.
  • the heating loss was 4%.
  • the surface carbon content was 0.28% by mass, and the surface polymerizable group content calculated from the surface carbon content was 39 ⁇ mol / g (10 ⁇ mol / m 2 ).
  • the surface-treated sol-gel silica had an epoxy viscosity initial ( ⁇ 1) of 3.9 Pa ⁇ s, an epoxy viscosity of 1 week ( ⁇ 2) of 4.0 Pa ⁇ s, and a viscosity change with time of 3%. In addition, no flow marks were observed.
  • the ⁇ dose of the surface-treated sol-gel silica powder is 0.002 c / (cm 2 ⁇ h), the amount of impurities is 0.02 ppb U, 0.01 ppb Th, 1.4 ppm Fe, and 2.8 ppm Al.
  • 0.2 ppm Na was 0.1 ppm
  • Ca was 0.1 ppm
  • Cr was 0.2 ppm
  • Ni was 0.1 ppm
  • Ti 0.0 ppm
  • Cl ⁇ was 0.1 ppm.
  • the physical properties of the sol-gel silica obtained from the (6) firing step in the present example are shown in Table 4, the processing conditions in the (7) fired silica particle surface treatment step are shown in Table 5, and the obtained surface treated silica is used.
  • Table 6 shows the ⁇ dose and the amount of impurities
  • Table 7 shows the other physical properties.
  • Example 2-4 ⁇ Manufacturing method (II)>
  • the surface treatment agent is changed to ⁇ -glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Silicone, KBM-403, hereinafter, ⁇ -GPS), and 378 g of 20 ⁇ mol / g) was dropped.
  • the steps (1) to (8) were performed in the same manner as in Example 2-1 except for the above.
  • the obtained surface-treated sol-gel silica powder had an average particle size of 0.7 ⁇ m, a variation coefficient of 22%, and a sphericity of 0.97.
  • coarse particles of 5 ⁇ m or more were not detected.
  • the amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter Counter method of the surface-treated sol-gel silica powder was both less than 4 ppm.
  • the residual amount on a wet sieve method using a test sieve with an aperture of 20 ⁇ m was less than 4 ppm.
  • the heating loss was 3%.
  • the surface carbon content was 0.13% by mass, and the surface polymerizable group content calculated from the surface carbon content was 18 ⁇ mol / g (5 ⁇ mol / m 2 ).
  • the surface-treated sol-gel silica had an epoxy viscosity initial ( ⁇ 1) of 4.3 Pa ⁇ s, an epoxy viscosity of 1 week ( ⁇ 2) of 4.6 Pa ⁇ s, and a viscosity change with time of 7%. In addition, no flow marks were observed. Furthermore, the ⁇ dose of the surface-treated sol-gel silica powder is 0.002 c / (cm 2 ⁇ h), the amount of impurities is 0.01 ppb U, 0.02 ppb Th, 1.5 ppm Fe, and 3.0 ppm Al.
  • the physical properties of the sol-gel silica obtained from the (6) firing step in the present example are shown in Table 4, the processing conditions in the (7) fired silica particle surface treatment step are shown in Table 5, and the obtained surface treated silica is used.
  • Table 6 shows the ⁇ dose and the amount of impurities
  • Table 7 shows the other physical properties.
  • Example 2-5 ⁇ Manufacturing method (II)>
  • the surface treatment agent was changed to ⁇ -GPS, and 756 g (40 ⁇ mol / g) was dropped using a perister pump.
  • the steps (1) to (8) were performed in the same manner as in Example 2-1 except for the above.
  • the obtained surface-treated sol-gel silica powder had an average particle size of 0.7 ⁇ m, a variation coefficient of 24%, and a sphericity of 0.96.
  • coarse particles of 5 ⁇ m or more were not detected.
  • the amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter Counter method of the surface-treated sol-gel silica powder was less than 4 ppm and 8 ppm.
  • the residual amount on a wet sieve method using a test sieve with an aperture of 20 ⁇ m was less than 4 ppm.
  • the heating loss was 3%.
  • the surface carbon content was 0.27% by mass, and the surface polymerizable group content calculated from the surface carbon content was 38 ⁇ mol / g (9 ⁇ mol / m 2 ).
  • the surface-treated sol-gel silica had an epoxy viscosity initial ( ⁇ 1) of 4.5 Pa ⁇ s, an epoxy viscosity of 1 week ( ⁇ 2) of 4.6 Pa ⁇ s, and a viscosity change with time of 2%. In addition, no flow marks were observed.
  • the ⁇ dose of the surface-treated sol-gel silica powder is 0.002 c / (cm 2 ⁇ h), the amount of impurities is 0.02 ppb U, 0.01 ppb Th, 1.6 ppm Fe, and 3.0 ppm Al.
  • the physical properties of the sol-gel silica obtained from the (6) firing step in the present example are shown in Table 4, the processing conditions in the (7) fired silica particle surface treatment step are shown in Table 5, and the obtained surface treated silica is used.
  • Table 6 shows the ⁇ dose and the amount of impurities
  • Table 7 shows the other physical properties.
  • Example 2-6 Manufacturing method (II)>
  • the surface treatment (resin coating treatment) agent was 230 g of glycidyl methacrylate (Kyoeisha Chemical, light ester G, hereinafter GMA), 40 g of divinylbenzene (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., hereinafter, DVB), and 40 g of t-butyl-oxy-2-ethylhexanoate (manufactured by NOF Corporation, Perbutyl O)
  • GMA glycidyl methacrylate
  • DVB divinylbenzene
  • t-butyl-oxy-2-ethylhexanoate manufactured by NOF Corporation, Perbutyl O
  • the obtained surface-treated sol-gel silica powder had an average particle size of 0.7 ⁇ m, a variation coefficient of 22%, and a sphericity of 0.96.
  • coarse particles of 5 ⁇ m or more were not detected.
  • the amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter Counter method of the surface-treated sol-gel silica powder was both less than 4 ppm.
  • the residual amount on a wet sieve method using a test sieve with an aperture of 20 ⁇ m was less than 4 ppm.
  • the heating loss was 4%.
  • the surface carbon content was 0.39% by mass, and the amount of surface polymerizable groups determined by the epoxy group (glycidyl group) determination method (in accordance with JIS K7236) was 5 ⁇ mol / m 2 .
  • the surface-treated sol-gel silica had an epoxy viscosity initial ( ⁇ 1) of 3.3 Pa ⁇ s, an epoxy viscosity of 1 week ( ⁇ 2) of 3.6 Pa ⁇ s, and a viscosity change with time of 9%. In addition, no flow marks were observed.
  • the ⁇ dose of the surface-treated sol-gel silica powder is 0.002 c / (cm 2 ⁇ h), the amount of impurities is 0.02 ppb U, 0.02 ppb Th, 1.6 ppm Fe, and 3.0 ppm Al.
  • the physical properties of the sol-gel silica obtained from the (6) firing step in the present example are shown in Table 4, the processing conditions in the (7) fired silica particle surface treatment step are shown in Table 5, and the obtained surface treated silica is used.
  • Table 6 shows the ⁇ dose and the amount of impurities
  • Table 7 shows the other physical properties.
  • Example 2-7 ⁇ Manufacturing method (II)>
  • the surface treatment (resin coating treatment) agent was glycidyl methacrylate 460 g (Kyoeisha Chemical, light ester G, hereinafter GMA), divinylbenzene 80 g (manufactured by Nippon Steel & Sumikin Chemical, hereinafter DVB), and t-butyl-oxy-2-ethylhexanoate 80 g (manufactured by NOF, Perbutyl O)
  • GMA Chemical, light ester G
  • DVB divinylbenzene 80 g
  • t-butyl-oxy-2-ethylhexanoate 80 g manufactured by NOF, Perbutyl O
  • the three chemical solutions of the above were changed to those previously mixed, and a total of 620 g (40 ⁇ mol / g as GMA) was dropped into the same reactor using a peristaltic pump and heat-treated at 150 ° C.
  • the obtained surface-treated sol-gel silica powder had an average particle size of 0.7 ⁇ m, a variation coefficient of 24%, and a sphericity of 0.96.
  • coarse particles of 5 ⁇ m or more were not detected.
  • the amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter Counter method of the surface-treated sol-gel silica powder was less than 4 ppm and 8 ppm.
  • the residual amount on a wet sieve method using a test sieve with an aperture of 20 ⁇ m was less than 4 ppm.
  • the heating loss was 5%.
  • the surface carbon content was 0.71% by mass, and the amount of surface polymerizable groups determined by the epoxy group (glycidyl group) determination method (in accordance with JIS K7236) was 9 ⁇ mol / m 2 .
  • the surface-treated sol-gel silica had an epoxy viscosity initial ( ⁇ 1) of 3.5 Pa ⁇ s, an epoxy viscosity of 1 week ( ⁇ 2) of 3.6 Pa ⁇ s, and a viscosity change with time of 3%. In addition, no flow marks were observed.
  • the ⁇ dose of the surface-treated sol-gel silica powder is 0.002 c / (cm 2 ⁇ h), the amount of impurities is 0.01 ppb U, 0.02 ppb Th, 1.5 ppm Fe, and 2.9 ppm Al.
  • 0.2 ppm Na was 0.1 ppm
  • Ca was 0.1 ppm
  • Cr was 0.2 ppm
  • Ni was 0.1 ppm
  • Ti 0.0 ppm
  • Cl ⁇ was 0.8 ppm.
  • the physical properties of the sol-gel silica obtained from the (6) firing step in the present example are shown in Table 4, the processing conditions in the (7) fired silica particle surface treatment step are shown in Table 5, and the obtained surface treated silica is used.
  • Table 6 shows the ⁇ dose and the amount of impurities
  • Table 7 shows the other physical properties.
  • Example 2-8 ⁇ Manufacturing method (II)>
  • the surface treatment (resin coating treatment) agent was 230 g of glycidyl methacrylate (Made by Tokyo Chemical Industry Co., Ltd., GMA below), 100 g of bisphenol F-type epoxy resin (made by Japan Epoxy Resin, JER 806), and 80 g of 4,4'-methylenebis (2-methylcyclohexaneamine) (made by Japan Epoxy Resin, JER 113)
  • the three types of chemical solutions were changed to those previously mixed, and a total of 410 g (20 ⁇ mol / g as GMA) was dropped into the same reactor using a peristaltic pump, and heat treatment was performed at 110 ° C.
  • the steps (1) to (8) were performed in the same manner as in Example 2-1 except for the above.
  • the obtained surface-treated sol-gel silica powder had an average particle size of 0.7 ⁇ m, a coefficient of variation of 25%, and a sphericity of 0.96.
  • coarse particles of 5 ⁇ m or more were not detected.
  • the amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter Counter method of the surface-treated sol-gel silica powder was less than 4 ppm and 8 ppm.
  • the residual amount on a wet sieve method using a test sieve with an aperture of 20 ⁇ m was less than 4 ppm.
  • the heating loss was 4%.
  • the surface carbon content was 0.59% by mass, and the amount of surface polymerizable groups determined by (meth) acrylic group determination was 5 ⁇ mol / m 2 .
  • the surface-treated sol-gel silica had an epoxy viscosity initial ( ⁇ 1) of 5.3 Pa ⁇ s, an epoxy viscosity of 1 week ( ⁇ 2) of 5.7 Pa ⁇ s, and a viscosity change with time of 8%. In addition, no flow marks were observed. Furthermore, the ⁇ dose of the surface-treated sol-gel silica powder is 0.002 c / (cm 2 ⁇ h), the amount of impurities is 0.02 ppb U, 0.02 ppb Th, 1.5 ppm Fe, and 3.1 ppm Al. Na was 0.2 ppm, K was 0.1 ppm, Ca was 0.1 ppm, Cr was 0.2 ppm, Ni was 0.2 ppm, Ti was 0.0 ppm, and Cl ⁇ was 0.4 ppm.
  • the physical properties of the sol-gel silica obtained from the (6) firing step in the present example are shown in Table 4, the processing conditions in the (7) fired silica particle surface treatment step are shown in Table 5, and the obtained surface treated silica is used.
  • Table 6 shows the ⁇ dose and the amount of impurities
  • Table 7 shows the other physical properties.
  • Example 2-9 ⁇ Manufacturing method (II)>
  • the surface treatment agent is changed to octamethylcyclotetrasiloxane (manufactured by Tokyo Chemical Industry Co., Ltd., hereinafter, D4), and 475 g (20 ⁇ mol / g) is dropped using a peristaltic pump, Heat-treated.
  • the steps (1) to (8) were performed in the same manner as in Example 2-1 except for the above.
  • the obtained surface-treated sol-gel silica powder had an average particle size of 0.7 ⁇ m, a variation coefficient of 22%, and a sphericity of 0.96.
  • coarse particles of 5 ⁇ m or more were not detected.
  • the amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter Counter method of the surface-treated sol-gel silica powder was both less than 4 ppm.
  • the residual amount on a wet sieve method using a test sieve with an aperture of 20 ⁇ m was less than 4 ppm.
  • the heating loss was 3%.
  • the surface carbon content was 0.21% by mass.
  • the surface-treated sol-gel silica had an epoxy viscosity initial ( ⁇ 1) of 4.7 Pa ⁇ s, an epoxy viscosity of 1 week ( ⁇ 2) of 5.0 Pa ⁇ s, and a viscosity change with time of 6%. In addition, no flow marks were observed. Furthermore, the ⁇ dose of the surface-treated sol-gel silica powder is 0.002 c / (cm 2 ⁇ h), the amount of impurities is 0.02 ppb U, 0.02 ppb Th, 1.5 ppm Fe, and 3.0 ppm Al.
  • Example 2-10 ⁇ Manufacturing method (II)>
  • the surface treatment agent is changed to dimethyl silicone oil having a dynamic viscosity of 5 cSt (manufactured by Shin-Etsu Silicone, KF-96L-5cs, hereinafter, 5csDS), and 6000 g (114 ⁇ mol / 114) using a peristaltic pump g) It dripped and heat-processed at 250 degreeC.
  • the steps (1) to (8) were performed in the same manner as in Example 2-1 except for the above.
  • the obtained surface-treated sol-gel silica powder had an average particle size of 0.7 ⁇ m, a variation coefficient of 24%, and a sphericity of 0.95.
  • coarse particles of 5 ⁇ m or more were not detected.
  • the amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter Counter method of the surface-treated sol-gel silica powder was both less than 4 ppm.
  • the residual amount on a wet sieve method using a test sieve with an aperture of 20 ⁇ m was less than 4 ppm.
  • the heating loss was 4%.
  • the surface carbon content was 0.52% by mass.
  • the surface-treated sol-gel silica had an epoxy viscosity initial ( ⁇ 1) of 4.3 Pa ⁇ s, an epoxy viscosity of 1 week ( ⁇ 2) of 4.5 Pa ⁇ s, and a viscosity change with time of 5%. In addition, no flow marks were observed.
  • the ⁇ dose of the surface-treated sol-gel silica powder is 0.002 c / (cm 2 ⁇ h), the amount of impurities is 0.02 ppb U, 0.02 ppb Th, 1.6 ppm Fe, and 3.2 ppm Al.
  • the physical properties of the sol-gel silica obtained from the (6) firing step in the present example are shown in Table 4, the processing conditions in the (7) fired silica particle surface treatment step are shown in Table 5, and the obtained surface treated silica is used.
  • Table 6 shows the ⁇ dose and the amount of impurities
  • Table 7 shows the other physical properties.
  • Example 2-11 ⁇ Manufacturing method (II)>
  • the surface treatment mixer is changed to a rocking mixer (RM-150, manufactured by Aichi Electric Co., Ltd., with an inner volume of 150 L), and the amount of sol gel silica powder charged is changed to 40 kg. The amount was changed to 129 g (20 ⁇ mol / g).
  • the steps (1) to (8) were performed in the same manner as in Example 2-1 except for the above.
  • the obtained surface-treated sol-gel silica powder had an average particle size of 0.7 ⁇ m, a variation coefficient of 24%, and a sphericity of 0.97.
  • coarse particles of 5 ⁇ m or more were not detected.
  • the amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter Counter method of the surface-treated sol-gel silica powder was both less than 4 ppm.
  • the residual amount on a wet sieve method using a test sieve with an aperture of 20 ⁇ m was less than 4 ppm.
  • the heating loss was 2%.
  • the surface carbon content was 0.07% by mass.
  • the surface-treated sol-gel silica had an epoxy viscosity initial ( ⁇ 1) of 3.4 Pa ⁇ s, an epoxy viscosity of 1 week ( ⁇ 2) of 3.5 Pa ⁇ s, and a viscosity change with time of 3%. In addition, no flow marks were observed. Furthermore, the ⁇ dose of the surface-treated sol-gel silica powder is 0.002 c / (cm 2 ⁇ h), the amount of impurities is 0.02 ppb U, 0.02 ppb Th, 1.5 ppm Fe, and 3.0 ppm Al.
  • the physical properties of the sol-gel silica obtained from the (6) firing step in the present example are shown in Table 4, the processing conditions in the (7) fired silica particle surface treatment step are shown in Table 5, and the obtained surface treated silica is used.
  • Table 6 shows the ⁇ dose and the amount of impurities
  • Table 7 shows the other physical properties.
  • Example 2-12 ⁇ Manufacturing method (II)>
  • the raw material after preparation of the seed particles of silica was changed to 90 kg of tetramethoxysilane, 25 kg of methanol and 40 kg of aqueous ammonia (25% by mass).
  • the calcined sol-gel silica powder obtained had an average particle size of 0.4 ⁇ m, and no coarse particles of 5 ⁇ m or more were detected by the laser diffraction scattering method.
  • the coarse particle amounts of 5 ⁇ m and 3 ⁇ m or more by the Coulter counter method were both less than 4 ppm.
  • the specific surface area was 7 m 2 / g, and the amount of surface silanol groups was 5 ⁇ mol / m 2 (3 pieces / nm 2 ).
  • step (7) the amount of HMDS was changed to 450 g (35 ⁇ mol / g).
  • the steps (1) to (8) were performed in the same manner as in Example 2-1 except for the above.
  • the obtained surface-treated sol-gel silica powder had an average particle size of 0.4 ⁇ m, a variation coefficient of 16%, and a sphericity of 0.98.
  • coarse particles of 5 ⁇ m or more were not detected.
  • the amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter Counter method of the surface-treated sol-gel silica powder was both less than 4 ppm.
  • the residual amount on a wet sieve method using a test sieve with an aperture of 20 ⁇ m was less than 4 ppm.
  • the heating loss was 3%.
  • the surface carbon content was 0.12% by mass.
  • the surface-treated sol-gel silica had an epoxy viscosity initial ( ⁇ 1) of 7.3 Pa ⁇ s, an epoxy viscosity of 1 week ( ⁇ 2) of 7.7 Pa ⁇ s, and a viscosity change with time of 5%. In addition, no flow marks were observed. Furthermore, the ⁇ dose of the surface-treated sol-gel silica powder is 0.002 c / (cm 2 ⁇ h), the amount of impurities is 0.01 ppb U, 0.02 ppb Th, 0.8 ppm Fe, and 2.2 ppm Al. 0.2 ppm, Na was 0.1 ppm, Ca was 0.1 ppm, Cr was 0.2 ppm, Ni was 0.1 ppm, Ti was 0.0 ppm, and Cl ⁇ was 0.1 ppm.
  • the physical properties of the sol-gel silica obtained from the (6) firing step in the present example are shown in Table 4, the processing conditions in the (7) fired silica particle surface treatment step are shown in Table 5, and the obtained surface treated silica is used.
  • Table 6 shows the ⁇ dose and the amount of impurities
  • Table 7 shows the other physical properties.
  • Example 2-13 ⁇ Manufacturing method (II)>
  • the reactor was changed to 4000 L, and the raw material particles after preparation of the silica seed particles were changed to 1750 kg of tetramethoxysilane, 500 kg of methanol and 750 kg of ammonia water (25 mass%) .
  • the obtained calcined sol-gel silica powder had an average particle diameter of 1.1 ⁇ m, and coarse particles of 5 ⁇ m or more were not detected in the laser diffraction scattering method.
  • the coarse particle amounts of 5 ⁇ m and 3 ⁇ m or more by the Coulter counter method were 8 ppm and 15 ppm.
  • the specific surface area was 3 m 2 / g, and the amount of surface silanol groups was 5 ⁇ mol / m 2 (3 pieces / nm 2 ).
  • the obtained surface-treated sol-gel silica powder had an average particle size of 1.1 ⁇ m, a variation coefficient of 28%, and a sphericity of 0.95.
  • coarse particles of 5 ⁇ m or more were not detected.
  • the amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter Counter method of the surface-treated sol-gel silica powder was 8 ppm and 12 ppm.
  • the residual amount on a wet sieve method using a test sieve with an aperture of 20 ⁇ m was less than 4 ppm.
  • the heating loss was 2%.
  • the surface carbon content was 0.05% by mass.
  • the surface-treated sol-gel silica had an epoxy viscosity initial ( ⁇ 1) of 2.8 Pa ⁇ s, an epoxy viscosity of 1 week ( ⁇ 2) of 2.8 Pa ⁇ s, and a viscosity change with time of 0%. In addition, no flow marks were observed. Furthermore, the ⁇ dose of the surface-treated sol-gel silica powder is 0.002 c / (cm 2 ⁇ h), the amount of impurities is 0.02 ppb U, 0.02 ppb Th, 1.6 ppm Fe, and 6.2 ppm Al. 0.2 ppm, Na was 0.1 ppm, Ca was 0.1 ppm, Cr was 0.4 ppm, Ni was 0.3 ppm, Ti was 0.0 ppm, and Cl ⁇ was 0.1 ppm.
  • the physical properties of the sol-gel silica obtained from the (6) firing step in the present example are shown in Table 4, the processing conditions in the (7) fired silica particle surface treatment step are shown in Table 5, and the obtained surface treated silica is used.
  • Table 6 shows the ⁇ dose and the amount of impurities
  • Table 7 shows the other physical properties.
  • Example 2-14 ⁇ Manufacturing method (II)> In the process of (1) of Example 2-1, the reactor was changed to 10000 L, and the raw material particles after preparation of the silica seed particles were changed to 4200 kg of tetramethoxysilane, 1200 kg of methanol and 1800 kg of ammonia water (25 mass%). .
  • the obtained calcined sol-gel silica powder had an average particle diameter of 1.5 ⁇ m, and no coarse particles of 5 ⁇ m or more were detected by the laser diffraction scattering method.
  • the coarse particle amounts of 5 ⁇ m and 3 ⁇ m or more by the Coulter counter method were 10 ppm and 20 ppm.
  • the residual amount on a wet sieve method using a test sieve with an aperture of 20 ⁇ m was less than 4 ppm.
  • the specific surface area was 2 m 2 / g, and the amount of surface silanol groups was 5 ⁇ mol / m 2 (3 pieces / nm 2 ).
  • the steps (1) to (8) were performed in the same manner as in Example 2-1 except for the above.
  • the obtained surface-treated sol-gel silica powder had an average particle size of 1.5 ⁇ m, a variation coefficient of 29%, and a sphericity of 0.95.
  • coarse particles of 5 ⁇ m or more were not detected.
  • the amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter Counter method of the surface-treated sol-gel silica powder was 8 ppm and 15 ppm.
  • the residual amount on a wet sieve method using a test sieve with an aperture of 20 ⁇ m was less than 4 ppm.
  • the heating loss was 2%.
  • the surface carbon content was 0.03% by mass.
  • the surface-treated sol-gel silica had an epoxy viscosity initial ( ⁇ 1) of 2.1 Pa ⁇ s, an epoxy viscosity of 1 week ( ⁇ 2) of 2.1 Pa ⁇ s, and a viscosity change with time of 0%. In addition, no flow marks were observed. Furthermore, the ⁇ dose of the surface-treated sol-gel silica powder is 0.002 c / (cm 2 ⁇ h), the amount of impurities is 0.02 ppb U, 0.02 ppb Th, 1.7 ppm Fe, and 6.4 ppm Al. 0.2 ppm, Na was 0.1 ppm, Ca was 0.1 ppm, Cr was 0.4 ppm, Ni was 0.3 ppm, Ti was 0.1 ppm, and Cl ⁇ was 0.1 ppm.
  • the physical properties of the sol-gel silica obtained from the (6) firing step in the present example are shown in Table 4, the processing conditions in the (7) fired silica particle surface treatment step are shown in Table 5, and the obtained surface treated silica is used.
  • Table 6 shows the ⁇ dose and the amount of impurities
  • Table 7 shows the other physical properties.
  • Example 2-15 ⁇ Manufacturing method (II)>
  • the filter used was changed to a polypropylene filter having a filtration pore size of 5 ⁇ m.
  • the steps (1) to (8) were performed in the same manner as in Example 2-1 except for the above.
  • the obtained surface-treated sol-gel silica powder had an average particle size of 0.7 ⁇ m, a variation coefficient of 26%, and a sphericity of 0.96.
  • coarse particles of 5 ⁇ m or more were not detected.
  • the amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter Counter method of the surface-treated sol-gel silica powder was 9 ppm and 120 ppm.
  • the residual amount on a wet sieve method using a test sieve with an aperture of 20 ⁇ m was less than 4 ppm.
  • the heating loss was 2%.
  • the surface carbon content was 0.07% by mass.
  • the surface-treated sol-gel silica had an epoxy viscosity initial ( ⁇ 1) of 3.3 Pa ⁇ s, an epoxy viscosity of 1 week ( ⁇ 2) of 3.5 Pa ⁇ s, and a viscosity change with time of 6%. In addition, no flow marks were observed. Furthermore, the ⁇ dose of the surface-treated sol-gel silica powder is 0.002 c / (cm 2 ⁇ h), the amount of impurities is 0.02 ppb U, 0.02 ppb Th, 1.4 ppm Fe, and 2.9 ppm Al.
  • the physical properties of the sol-gel silica obtained from the (6) firing step in the present example are shown in Table 4, the processing conditions in the (7) fired silica particle surface treatment step are shown in Table 5, and the obtained surface treated silica is used.
  • Table 6 shows the ⁇ dose and the amount of impurities
  • Table 7 shows the other physical properties.
  • the obtained surface-treated sol-gel silica powder had an average particle size of 0.7 ⁇ m, a variation coefficient of 27%, and a sphericity of 0.96.
  • coarse particles of 5 ⁇ m or more were not detected.
  • the amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter Counter method of the surface-treated sol-gel silica powder was 240 ppm and 28000 ppm.
  • the residual amount on a wet sieve method using a test sieve with an aperture of 20 ⁇ m was 10 ppm.
  • the heating loss was 2%.
  • the surface carbon content was 0.07% by mass.
  • the surface-treated sol-gel silica had an epoxy viscosity initial ( ⁇ 1) of 3.4 Pa ⁇ s, an epoxy viscosity of 1 week ( ⁇ 2) of 3.8 Pa ⁇ s, and a viscosity change with time of 12%. In addition, flow marks were observed. Furthermore, the ⁇ dose of the surface-treated sol-gel silica powder is 0.002 c / (cm 2 ⁇ h), the amount of impurities is 0.02 ppb U, 0.02 ppb Th, 1.5 ppm Fe, and 3.0 ppm Al.
  • Table 4 The physical properties of the sol-gel silica obtained from the (6) firing step in this comparative example are shown in Table 4, the processing conditions in the (7) fired silica particle surface treatment step are shown in Table 5, and the obtained surface treated silica is used.
  • Table 6 shows the ⁇ dose and the amount of impurities, and Table 7 shows the other physical properties.
  • the obtained surface-treated sol-gel silica powder had an average particle size of 0.7 ⁇ m, a variation coefficient of 27%, and a sphericity of 0.96.
  • coarse particles of 5 ⁇ m or more were not detected.
  • the amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter Counter method of the surface-treated sol-gel silica powder was 80 ppm and 6600 ppm.
  • the residual amount on a wet sieve method using a test sieve with an aperture of 20 ⁇ m was less than 4 ppm.
  • the heating loss was 3%.
  • the surface carbon content was 0.07% by mass.
  • the surface-treated sol-gel silica had an epoxy viscosity initial ( ⁇ 1) of 3.3 Pa ⁇ s, an epoxy viscosity of 1 week ( ⁇ 2) of 3.7 Pa ⁇ s, and a viscosity change with time of 12%. In addition, no flow marks were observed. Furthermore, the ⁇ dose of the surface-treated sol-gel silica powder is 0.002 c / (cm 2 ⁇ h), the amount of impurities is 0.02 ppb U, 0.02 ppb Th, 1.4 ppm Fe, and 2.9 ppm Al.
  • Table 4 The physical properties of the sol-gel silica obtained from the (6) firing step in this comparative example are shown in Table 4, the processing conditions in the (7) fired silica particle surface treatment step are shown in Table 5, and the obtained surface treated silica is used.
  • Table 6 shows the ⁇ dose and the amount of impurities, and Table 7 shows the other physical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

本発明の表面処理ゾルゲルシリカは、レーザー回折散乱法による平均粒子径が0.05μm以上2.0μm以下であるゾルゲルシリカと、前記ソルゲルシリカ表面に表面処理剤とを備え、エタノールの中に5質量%の量を、出力40W、照射時間10分という条件により超音波により分散させた分散液において、コールターカウンター法により得られた粒度分布では、粒子径が5μm以上である粒子の含有量が個数基準で10ppm以下であることを特徴とする。

Description

表面処理ゾルゲルシリカ及びその製造方法
 本発明は、半導体封止材、液晶シール剤及びフィルム用等の充填剤として好適に使用できる表面処理ゾルゲルシリカに関する。詳しくは、粗粒量が非常に少ない表面処理ゾルゲルシリカに関するものである。
 半導体封止材や液晶シール剤等の電子材料用、及びフィルム製造用等の各種樹脂組成物には、充填剤としてシリカが配合される。
 このうち半導体封止材では、デバイスの小型化、薄型化、高密度実装化の急速な進展に伴って、素子と基板間の狭ギャップ化が進み、更なる高熱伝導性、低熱膨張性、高い成形性が求められ、前記シリカは高充填化が求められている。その一方で、シリカを充填した樹脂組成物の低粘性も求められ、粗粒を含まず、単分散性に優れる予め表面処理されたシリカへの要求が高まっている。
 従来、単分散性が高いシリカとして、原料となるテトラエトキシシランなどの珪素アルコキシドを、加水分解触媒、水及び有機溶媒を含む反応液中に供給して、加水分解、重縮合させる、いわゆるゾル-ゲル法により作製したゾルゲルシリカがある。該方法においては、反応を行う際の反応条件を制御することにより粒子径や粒度分布をある程度制御できることが知られている。
 特許文献1には、ゾル-ゲル法における反応条件を調整することによって、粒子径や粒度分布を制御し、さらに癒着粒子や凝集塊等の粗粒の発生が抑えられ、単分散性の良いシリカの製造方法が記載されている。
 前記ゾル-ゲル法により得られたゾルゲルシリカ分散液中において、ゾルゲルシリカ粒子は微細な一次粒子として高度に分散しており、凝集塊は実質見られない。しかしながら、乾燥した粉末として取り出す場合、該分散液よりゾルゲルシリカを固液分離する工程、乾燥する工程、または、必要に応じて焼成する工程等が必要となり、これらの後工程においてシリカ粒子が強固に凝集した凝集塊が生成する。そして、一端強固に凝集したものを、一次粒子に解砕することは困難であり、結果として粗粒が増加する。
 而して、この様にシリカ中に粗粒が存在すると、これを配合した樹脂組成物では、その溶融時に該粗粒が樹脂の円滑な流れを阻害し流動性を低下させる。その結果、フィルム等の成形品の製造では、フィッシュアイや突起が発生する。そして、流動性が低い樹脂組成物を用いて前記半導体封止材や液晶シール剤としても、溶融樹脂が流れた後の模様、いわゆる「フローマーク」が生じたり、狭ギャップへの隙間浸透性が十分でなくなり、配線間での詰まりも生じ易くなる。
 これらから引用文献2では、ゾル-ゲル法により得られたゾルゲルシリカ分散液に、特定の化合物からなる凝析剤を添加し、該分散液を濃縮した後、濃縮物を乾燥することにより、ゾルゲルシリカを得る方法が開示されている。即ち、この方法によれば、後工程では、強固な凝集塊を生じさせることなく、緩やかな凝集体として生成させることができ、これは樹脂に分散させる際の分散機のシェア等により一次粒子まで容易に解砕できることが記載されている。即ち、この方法によれば、前記の如くにゾル-ゲル法を、シリカの単分散性に優れるよう制御して実施すれば、後工程で生成した凝集体は簡単な解砕処理で再び一次粒子に解せるため、シリカに粗粒は実質含まれなくなる。即ち、汎用レベルの粒度分布測定法、具体的には、レーザー回折散乱法で測定して、粒子径が5μmを超えるような粗粒は未検出になるシリカを得ることも可能である。
 このような粗粒生成を低減したシリカ製造工程に続き、乾燥して得られたシリカにシランカップリング剤等の表面処理剤を添加し、粒子表面に処理を施すことによって、樹脂への分散性を向上させたり、樹脂組成物の粘度を低減させたり、樹脂組成物の強度を上げたり、様々な機能を付与することが行われている(特許文献2の0079段落、0122~0125段落)。一般に、表面処理シリカは、撹拌羽根を有する混合装置を用いて、シリカと表面処理剤とを撹拌混合し加熱処理することによって得られる。
 前記表面処理シリカは、例えば、半導体封止材料の熱膨張率の低減や強度向上のため、充填材として好適に使用される。その際、該粉末中に凝集粒子や、粒子表面が不均一に表面処理された粒子が存在すると、樹脂への分散性低下や、樹脂の強度低下の原因となることが知られている。
 近年、半導体パッケージの小型化に伴い、従来にも増して、粗粒や凝集粒子が低減された、そして、粒子表面が均一に表面処理されたシリカへの需要が高まっている。
 しかしながら、従来の表面処理方法によれば、シリカと表面処理剤を混合して、表面処理を行う際に、粗粒低減措置を施したゾル-ゲル法シリカをもってしても、該表面処理時に前記強固な凝集塊が再び相当量生成し、凝集粒子の生成抑制には限界があった。特に、表面処理が乾式の表面処理である場合に凝集塊の生成は著しく、また、シリカ粒子表面に対して過剰量の表面処理剤を添加した場合、表面処理剤同士が架橋した強固な凝集塊の生成がより顕著であった。
特開2013-193950号公報 特開2012-6823号公報
 加えて、シリカの粒度測定として汎用されているレーザー回折散乱法による粒度測定によって、こうした粗粒としての凝集塊を実質含まないと判定された表面処理シリカを用いても、樹脂への充填剤として前記流動性の改善効果は、実際には今一歩満足できなかった。特に、前記半導体封止材や液晶シール剤等の電子材料用樹脂組成物用の充填剤とした場合には、上述した近年の半導体デバイスの小型化、薄型化、高密度実装化の進展に対して、狭ギャップへの隙間浸透性及び狭小化する配線間の詰まりの問題は年々顕在化してきており、更なる改善が望まれていた。
 以上から、表面処理シリカでは、前記電子材料用樹脂組成物に配合した場合でも、目的製品の生産性や歩留まりを低下させない、高度な流動性が得られるものを開発することが大きな課題であった。
 本発明者らは、前記課題を解決するため鋭意研究を重ねてきた。その結果、ゾル-ゲル法において、前記の如く単分散性に優れるよう制御してシリカ合成を実施し、さらには得られたゾルゲルシリカ分散液に特定の凝集剤を添加して、レーザー回折散乱法による粒度分布測定では未検出になるほどに、凝集塊としての粗粒が低減化されたゾルゲルシリカを得、さらにこのゾルゲルシリカを表面処理して得られた表面処理ゾルゲルシリカも、このものには前記レーザー回折散乱法よりも検出感度が高くなるコールターカウンター法で測定すると、粗粒が有意量存在する知見を得た。そして、この粗粒が、前記電子材料用樹脂組成物の充填剤に求められるような高度な流動性を獲得する上での阻害要因になっている事実を突き止めた。
 そして、更に検討を深めた結果、この粗粒は、前記シリカ原体乾燥工程等の後工程で生じる凝集塊ではなく、ゾル-ゲル法によるシリカ原体合成時に不可避的に生成する、粗大な独立一次粒子が主であること、及びこの粗大独立一次粒子はゾル-ゲル法による未処理シリカ(以後、ゾルゲルシリカと称す)合成後、得られるシリカ原体粒子分散液を湿式ろ過すれば効率的に除去できることを見出した。そして、さらに、前記得られた原体シリカを表面処理する際に生成する強固な凝集塊も、該表面処理されたゾルゲルシリカの分散液を前記湿式ろ過すれば同様に効率的に除去できることも見出した。斯様にして、一次粒子に解砕困難な強固な凝集塊を除去することにより、前記課題が解決された新規な表面処理ゾルゲルシリカを提案するに至った。
 即ち、本願発明は、ゾルゲルシリカ粒子の表面を表面処理剤によって改質しており、レーザー回折散乱法による平均粒子径が0.05μm以上2.0μm以下であり、エタノールの中に5質量%の量を、出力40W、照射時間10分という条件により超音波により分散させた分散液において、コールターカウンター法により得られた粒度分布では、粒子径が5μm以上である粒子の含有量が個数基準で10ppm以下であることを特徴とする、表面処理ゾルゲルシリカである。
 本発明の表面処理ゾルゲルシリカは、レーザー回折散乱法による平均粒子径が0.05~2μmであって、且つ粒度分布測定法として同レーザー回折散乱法よりも粗粒の検出感度が高いコールターカウンター法により得られた粒度分布において、粒子径が5μm以上である粒子の含有量が個数基準で10ppm以下であり、実質非含有である。従って、これを配合した樹脂組成物では、溶融時の流動性に高度に優れる。このためフィルム等の成形品の製造では、フィッシュアイや突起の発生が抑制される。
 そして、半導体封止材や液晶シール剤等の電子材料用樹脂組成物への充填用とした場合には、狭ギャップへの隙間浸透性に高度に優れ、同じく狭小化する配線間での詰まり防止性にも高度に優れる。この結果、目的とする電子材料部材の生産性や歩留まりが改善され、極めて有用である。
 本実施形態におけるゾルゲルシリカの粒子は、ゾル-ゲル法、即ち、反応媒体中で原料となる珪素アルコキシドを加水分解および重縮合してシリカゾルを生成させ、これをゲル化させたのち、生成した固形分を取り出し、乾燥して得られるシリカの粒子である。一般にゾル-ゲル法により得られるゾルゲルシリカ粒子は、球形度が0.9以上の独立球状粒子である。
 本実施形態における表面処理ゾルゲルシリカは、ゾルゲルシリカ粒子表面が、表面処理剤により改質されている。ここで、ゾルゲルシリカ粒子表面が表面処理剤により改質されるとは、該ゾルゲルシリカ粒子表面が、表面処理剤により処理されて、表面の形態、化学組成、化学反応性、樹脂への相溶性などが変化された状態を言う。好適には、ゾルゲルシリカ表面に炭素原子を導入することにより、樹脂への相溶性を向上させたり、撥水性を付与させた状態が該当する。斯様に樹脂への相溶性を向上させることにより、ゾルゲルシリカの樹脂への分散性が向上し、樹脂組成物の粘度が低減し、更には樹脂組成物の強度が向上する。また、ゾルゲルシリカに撥水性が付与されることにより、保存中の吸湿が抑制され、保存安静性等が向上する。
 前記ゾルゲルシリカ表面に炭素原子を導入することによる改質の程度は、ゾルゲルシリカ表面の炭素量による評価することができる。その表面炭素量の測定は、燃焼酸化法による微量炭素分析装置を用いて実施すれば良い。具体的には、表面処理ゾルゲルシリカ試料を酸素雰囲気中で1350℃に加熱し、得られた炭素量を試料1g当たりに換算して求める。なお、測定に供する表面処理ゾルゲルシリカは、前処理として80℃で加熱し、系内を減圧にすることによって空気中で吸着した水分等を除いた後、前記炭素含有量の測定に供する。斯様にして求められた表面処理ゾルゲルシリカの炭素量の値から、表面処理をせずに製造したゾルゲルシリカについて同様の炭素含有量の測定を実施して得られた値を減ずることにより、上記表面処理ゾルゲルシリカの表面炭素量を求めることができる。
 表面処理ゾルゲルシリカの表面炭素量は、0.01質量%以上1質量%以下であることが好ましく、0.03質量%以上0.8質量%以下であることがより好ましい。
 本発明の表面処理ゾルゲルシリカの具体的な態様として、ゾルゲルシリカ粒子表面が、シランカップリング剤及びシラザン類よりなる群から選択される少なくとも1種で処理されている形態、ゾルゲルシリカ粒子表面が樹脂によって被覆された形態、さらには、前記粒子表面が、シランカップリング剤及びシラザン類よりなる群から選択される少なくとも1種で処理された上からさらに、その表面が樹脂によって被覆された形態等を取りうる。
 前記表面処理剤としては、シリカ表面特定の機能を付与するため使用される公知のものであれば特に制限されないが、シリコーンオイル、シランカップリング剤、シロキサン類やシラザン類から選択される少なくとも1種の表面処理剤であることが好ましい。特には、シランカップリング剤及びシラザン類よりなる群から選択される少なくとも1種の表面処理剤であることが好ましい。また、表面処理剤は、シリカ表面を被覆する態様として、樹脂も使用できる。
 これら表面処理剤は、得られる表面処理ゾルゲルシリカに付与すべき改質性状に応じた官能基を有するものを選択するのが望ましい。半導体封止材や液晶シール剤等の電子材料用、及びフィルム製造用等の充填剤用途においては、エポキシ基または(メタ)アクリル基等の重合性基を有するものが好ましい。即ち、これら用途において、表面処理ゾルゲルシリカを配合させる樹脂は、エポキシ樹脂及び(メタ)アクリル樹脂が汎用的であるため、該表面処理ゾルゲルシリカは、これら樹脂の重合性基に応じた、前記エポキシ基や(メタ)アクリル基等の重合性基を有するものを用いれば、これら配合樹脂を硬化させる際に樹脂と強固に結合させることができ、高強度なものとすることができ好ましい。
 こうした表面処理剤により、ゾルゲルシリカ表面に重合性基を導入する場合、その導入量は、該ゾルゲルシリカ表面の比表面積当り5~25μmol/mであるのが好ましく、3~15μmol/mであるのがより好ましい。
 本実施形態において使用される表面処理剤の具体例を挙げれば、前記シリコーンオイルとして、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル、アルキル変性シリコーンオイル、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシル変性シリコーンオイル、カルビノール変性シリコーンオイル、メタクリル変性シリコーンオイル、ポリエーテル変性シリコーンオイル、フッ素変性シリコーンオイル等を挙げることができる。
 前記シランカップリング剤としては、メチルトリメトキシシラン、メチルトリエトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルトリエトキシシラン、3-アクリロイルオキシトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N,N-ジメチル-3-アミノプロピルトリメトキシシラン、N,N-ジエチル-3-アミノプロピルトリメトキシシラン、4-スチリルトリメトキシシラン等を挙げることができる。
 前記シロキサン類としては、ジシロキサン、ヘキサメチルジシロキサン、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン等、ポリジメチルシロキサン等のポリシロキサン類が挙げられる。
 前記シラザン類としては、通常用いられる公知のSi-N(珪素-窒素)結合を有する化合物を、特に制限なく使用することが可能であり、必要とする表面処理ゾルゲルシリカ粒子の性能等に応じて適宜選択して、使用すればよい。具体的には、ヘキサメチルジシラザン、1,3-ジビニル-1,1,3,3-テトラメチルジシラザン、オクタメチルトリシラザン、ヘキサ(t-ブチル)ジシラザン、ヘキサブチルジシラザン、ヘキサオクチルジシラザン、1,3-ジエチルテトラメチルジシラザン、1,3-ジ-n-オクチルテトラメチルジシラザン、1,3-ジフェニルテトラメチルジシラザン、1,3-ジメチルテトラフェニルジシラザン、1,3-ジエチルテトラメチルジシラザン、1,1,3,3-テトラフェニル-1,3-ジメチルジシラザン、1,3-ジプロピルテトラメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘキサフェニルジシラザン、ジメチルアミノトリメチルシラザン、トリシラザン、シクロトリシラザン、1,1,3,3,5,5-ヘキサメチルシクロトリシラザン等を挙げることができる。
 このうちシリカ表面との反応性の高さ等からアルキルジシラザン類が好ましく、詳細には下記一般式
Figure JPOXMLDOC01-appb-C000001
(式中、R~Rは、夫々に、水素原子、ハロゲン原子を有していても良い炭素数10以下(好ましくは炭素数1~3)のアルキル基、またはアリール基であり、R~Rの少なくとも一つはハロゲン原子を有していても良い炭素数10以下のアルキル基であり、Rは水素原子またはメチル基であり、R~Rは前記R~Rと同じである。)
で示される化合物であり、特に好ましくは、テトラメチルジシラザン、ヘキサメチルジシラザン、ヘプタメチルジシラザンである。
 また、表面処理がシリカ表面を被覆する態様の場合、被覆用の樹脂(以下、被覆樹脂ともいう。)としては、特に限定されるものではなく、樹脂を直接にゾルゲルシリカ表面の被覆に供するものであっても良い。好ましくは、重合性単量体を含有する重合性組成物をゾルゲルシリカ表面に被覆させ、これをゾルゲルシリカ表面上で重合させる形態のものが好ましい。また、高強度とするため樹脂は架橋重合体であるのが好ましい。架橋重合体の架橋は、安定性の観点から共有結合性であることが好適である。
 これらの被覆樹脂は、得られる表面処理ゾルゲルシリカに付与すべき改質性状に応じた官能基を有するものを選択するのが望ましく、半導体封止材や液晶シール剤等の電子材料用、及びフィルム製造用等の充填剤用途においては、前記した理由からエポキシ基または(メタ)アクリル基等の重合性基を有するものが好ましい。
 被覆樹脂として、エポキシ基を有する重合体を用いる場合、エポキシ基を有するラジカル重合性単量体(以下、「エポキシ基含有ラジカル重合性単量体」ともいう)を含有する重合性組成物を重合させたものが用いられる。このような単量体を用いることにより、重合体そのものがエポキシ基を有していることになる。ラジカル重合性基としては、(メタ)アクリル基、ビニル基等が好ましい。
 表面処理ゾルゲルシリカの製造が容易であると言う理由から(メタ)アクリル系のラジカル重合性単量体であることが好ましい。具体的には、グリシジル(メタ)アクリレート、(メタ)アクリルグリシジルエーテル等が挙げられる。これらエポキシ基含有ラジカル重合性単量体は、目的とする被覆樹脂に応じて、単独で用いても2種以上を併用してもよい。
 エポキシ基含有ラジカル重合性単量体を含有する重合性組成物は、重合体を架橋体とするため、架橋剤を含有するのが好ましい。架橋剤としては、1分子内に2つ以上のラジカル重合性基を有する化合物であれば特に限定なく用いることができる。例えば、ジビニルベンゼン、ジビニルビフェニル、トリビニルベンゼン、ジビニルナフタレン等の多官能の芳香族ビニル化合物類等の芳香族ビニル系の単量体類や、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、メチレンビス(メタ)アクリルアミド、ヘキサメチレンジ(メタ)アクリルアミド等の多官能の(メタ)アクリル系の単量体類、(メタ)アリル(メタ)アクリレート等が挙げられる。
 被覆樹脂として、(メタ)アクリル基を有する重合体を用いる場合、通常は、(メタ)アクリル基を有する非ラジカル重合性単量体を含有する重合性組成物を重合させたものが用いられる。このような(メタ)アクリル基を有する非ラジカル重合性単量体としては、(メタ)アクリル基と、非ラジカル重合性の重合性基としてエポキシ基を有する重合性単量体(以下、「(メタ)アクリル基・エポキシ基含有単量体」ともいう)が好ましく用いられる。このような単量体を用いることにより、重合体そのものが(メタ)アクリル基を有していることになる。エポキシ基は、開環カチオン重合により重合させても良く、エポキシ硬化剤の共存下で重付加反応により重合させても良い。
 (メタ)アクリル基・エポキシ基含有単量体は、具体的には、具体的には、グリシジルアクリレート、グリシジルメタクリレート、β-メチルグリシジルアクリレート、β-メチルグリシジルメタクリレート、ビスフェノールA-モノグリシジルエーテル-メタクリレート、4-グリシジルオキシブチルメタクリレート、3-(グリシジル-2-オキシエトキシ)-2-ヒドロキシプロピルメタクリレート、3-(グリシジルオキシ-1-イソプロピルオキシ)-2-ヒドロキシプロピルアクリレート、3-(グリシジルオキシ-2-ヒドロキシプロピルオキシ)-2-ヒドロキシプロピルアクリレート等が挙げられる。なかでもグリシジル(メタ)アクリレートが好ましく使用できる。これら(メタ)アクリル基・エポキシ基含有重合性単量体は、目的とする被覆樹脂に応じて、単独で用いても2種以上を併用してもよい。
 (メタ)アクリル基を有する非ラジカル重合性単量体を含有する重合性組成物は、重合体を架橋体とするため、架橋剤を含有させても良い。架橋剤としては、1分子内に2つ以上のエポキシ基を有する化合物を用いることができる。
 本実施形態における表面処理ゾルゲルシリカは、レーザー回折散乱法による平均粒子径が0.05μm以上2μm以下であることが好ましく、0.1μm以上1.5μm以下であることがより好ましい。前記範囲を超えて大きいと、後工程において凝集塊を精度良く低減するのが難しくなる他、電子材料用樹脂組成物への充填用として適さない大きさになる。また、一般に粒子径が小さく比表面積が大きい粒子は凝集しやすい性質があって、平均粒子径が前記範囲より小さい場合には、凝集塊の生成を抑えることが難しく、生成した凝集塊を解砕することが困難であり粗粒の原因となる。また、斯様な粒径の小さい粒子は、樹脂等に充填した際に粘度が上昇し流動性が低下する。
 また、本実施形態における表面処理ゾルゲルシリカは、コールターカウンター法により得られた粒度分布における、粒子径が5μm以上である粒子の含有量が個数基準で10ppm以下であり、6ppm以下とすることが好ましい。コールターカウンター法により得られた粒度分布における、粒子径が5μm以上である粒子の含有量が10ppmを超えて多い場合、これを配合した樹脂組成物の流動性が低下し、これを半導体封止材用途や液晶シール剤用途に用いた場合、粗粒により樹脂組成物の隙間浸透性が悪化し、配線間での詰まりも抑制できなくなる。
 更に同様の理由により、表面処理ゾルゲルシリカのコールターカウンター法により得られた粒度分布における、粒子径が3μm以上である粒子の含有量が10ppm以下であることが好ましく、6ppm以下であることがより好ましい。
 ここで、コールターカウンター法は、コールター原理と呼ばれる電気抵抗法によって粒子直径を測定する方法である。詳しくは、電解液中で、アパチャーチューブのアパチャー(細孔)の両側に電極を置いて電流を流し、電解液中に測定する粒子を懸濁させて、アパチャーチューブ内部よりマノメーターで電解液を吸引する。粒子がアパチャーを通過する際に、粒子体積に相当する電解液が置換され、両電極間に抵抗が生じるが、この抵抗変化量がアパチャーを通過する粒子の体積に比例するため、これを検知、計算して粒子直径の体積平均粒子径を求めるという方法である。
 一般に、μmオーダーのサイズの粗粒の含有量の定量法として、レーザー回折散乱法による粒度分布測定、SEM観察や電成篩を用いた湿式篩法等が挙げられる。前記SEM観察では、一度の視野に入る粒子の数に限りがあるため、数ppmオーダーの粗粒を観察して定量するのは非効率である。前記レーザー回折・散乱法による粒度分布測定は、多重散乱を避けるため測定に用いる試料のシリカ量に限界がある。また、該測定方法は、特開2008-19157号公報に記載の通り検出レベルがパーセントの程度で、検出感度が低いため、たとえば、本実施形態におけるようにシリカ微粒子中における微量の5μm以上の粒子量の定量には不適当である。
 なお、本実施形態における表面処理ゾルゲルシリカは、コールターカウンター法により得られた粒度分布における、粒子径が20μm以上である特に粗大な粒子の含有量は5ppm以下であることが好ましく、更には実質的非含有に近い4ppm以下であることがより好ましい。
 電成篩を用いた湿式篩法は、小粒子径の粗粒量を定量することはできるものの、その材質に由来して有機溶媒を嫌うため、疎水性の表面処理ゾルゲルシリカの粗粒測定に適さない。具体的には実施例に示すが、レーザー回折散乱法による粒度分布測定を行って粗粒が検出されない場合であっても、前記コールターカウンターを用いた粒度分布測定法で定量すると検出される粗粒の存在があって、本願は、斯様な粗粒の存在が、樹脂組成物の流動性を低下させ、半導体封止材や液晶シール剤用途において、歩留まり向上を妨げる要因になっていることを突き止めたものである。
 本実施形態における表面処理ゾルゲルシリカは、粒径分布の広がりを示す指標の1つである変動係数が40%以下であることが好ましく、25%以下であることがより好ましく、20%以下とすることが特に好ましい。変動係数が前記範囲を超えて大きいと、粒度分布がブロードとなり、同じ平均粒子径を有する粉末で比較すると微細粒子が増加する。微細粒子の増加は、先でも述べた通り、樹脂等に充填した際の粘度上昇に繋がる。一般にゾルゲルシリカにおける変動係数は、10%以上である。前記変動係数は、レーザー回折散乱法により測定することができる。
 本実施形態における表面処理ゾルゲルシリカは、一般的に、表面処理前のゾルゲルシリカの表面シラノール基量は、非焼成の場合は15~25μmol/m(9~15個/nm)であり、焼成を施した場合は5~8μmol/m(3~5個/nm)である。表面処理したゾルゲルシリカの表面シラノール基量は少ないほど保存中の吸湿を抑制し、経時安定性に優れるものにすることができるため好ましいが、非焼成の場合は通常、6~12個/nmであり、焼成を施した場合は通常、0~2個/nmである。
 本実施形態における表面処理ゾルゲルシリカは、α線量が0.002c/(cm・h)以下であることが好ましい。α線量が大きいと、これを電子材料用樹脂組成物への充填用として用いた場合には、メモリーセルの蓄積電荷の反転などソフトエラーの要因等に繋がることが知られている。半導体パッケージの微細化、高集積化や3D実装化が進む結果、充填剤由来のα線等による影響が大きくなってきており、低α線量の充填剤が求められる。
 このα線を放出する不純物としてウラン(U)やトリウム(Th)などが挙げられ、本実施形態における表面処理ゾルゲルシリカ粉末において、U含有量及びTh含有量が0.1ppb以下であることが好ましく、0.05ppb以下であることがより好ましく、0.02ppb以下であることが特に好ましい。前記ウランとトリウムの定量方法は、ICP質量分析法により測定した値であり、検出下限値は0.01ppbである。
 更に、本実施形態における表面処理ゾルゲルシリカは、Fe含有量が10ppm以下、Al含有量が10ppm以下、Na含有量が5ppm以下、K含有量が5ppm以下、且つ塩化物イオン含有量が1ppm以下であることが好ましい。更に、Ca含有量が5ppm以下、Cr含有量が5ppm以下、Ni含有量が5ppm以下、且つTi含有量が5ppm以下であることが好ましい。本実施形態における表面処理ゾルゲルシリカに含有される不純物量が前記範囲であることは、半導体封止材の充填剤として用いた際の、該シリカ粒子に起因する金属配線間の短絡や金属配線などの腐食を低減できる点で好適である。前記不純物の定量方法は、塩化物イオンについては、イオンクロマトグラフ法により測定した値であり、塩化物イオン以外の元素についてはICP発光分析法により測定した値である。
 前記不純物のうち、ウラン(U)、トリウム(Th)は原料に由来して含有され、Fe、Al、Cr、Ni、Tiは、原料由来だけでなく、反応容器、配管、解砕機器等の摩耗粉に由来するものも含まれる。なお、Na、K、Ca、塩化物イオンは、雰囲気に由来するものであることが多い。
 本実施形態における表面処理ゾルゲルシリカは粗粒を含まず、表面処理によって改質された性状に応じて、樹脂に充填した際の流動性に優れるため、電子材料用樹脂組成物への充填用として、特に半導体封止材用途や液晶シール剤用途に好適に用いることができる。さらに、樹脂組成物の溶融時の流動性が優れ、成形品にフィッシュアイや突起が生じ難い性状は、フィルム用途を始めとした、各種成形品用途にも好適に用いることができる。
 表面処理ゾルゲルシリカを配合する樹脂の種類は、特に限定されない。樹脂の種類は所望の用途により適宜選択すればよく、エポキシ樹脂、アクリル樹脂、シリコーン樹脂やオレフィン系樹脂、ポリイミド樹脂やポリエステル系樹脂等を挙げることができる。
 たとえば、半導体封止材用途や液晶シール剤用途であれば、エポキシ樹脂、アクリル樹脂、シリコーン樹脂等が好ましい。フィルム用途であれば、オレフィン系樹脂(ポリプロピレン、ポリエチレン、ポリスチレンなど)、ポリイミド樹脂やポリエステル系樹脂等が好ましい。
 樹脂組成物において、表面処理ゾルゲルシリカの配合量は、その用途と目的に応じて適宜調整されればよい。具体的には、半導体封止材用途に用いる場合、樹脂100質量部に対して65~900質量部の範囲、液晶シール剤用途に用いる場合、樹脂100質量部に対して1~40質量部の範囲、フィルム用途に用いる場合、樹脂100質量部に対して0.01~1質量部の範囲であることが好ましい。また、本実施形態における表面処理ゾルゲルシリカの他に別の充填剤を含んでいてもよい。
 さらに、本実施形態における表面処理ゾルゲルシリカは、粗粒を含まないためトナー用外添剤や歯科材料の充填剤としても好適に使用できる。
 <ゾルゲルシリカの製造方法>
 本実施形態におけるゾルゲルシリカは、ゾル-ゲル法により得られたゾルゲルシリカであり、前記規定した要件が満足されるものとして得られる限り、その製造方法は特定の方法に制限されるものではない。ここで、前記ゾル-ゲル法は、珪素アルコキシドを、触媒を含有する水と有機溶媒からなる反応媒体中において加水分解、重縮合させてシリカゾルを生成させ、これをゲル化させたのち、生成した固形分を取り出し、乾燥してゾルゲルシリカを得る方法を意味する。また、本実施形態において、乾燥して得られたゾルゲルシリカを、必要に応じて焼成することも出来る。
 具体的には、以下(1)~(5)の工程を含む製造方法(I)を好ましい態様として挙げることができる。
 (1)ゾル-ゲル法により、レーザー回折散乱法による平均粒子径0.05~2.0μmのゾルゲルシリカ粒子が分散する、ゾルゲルシリカ分散液を製造する工程(以下、ゾルゲルシリカ分散液製造工程ともいう)
 (2)前記ゾルゲルシリカ分散液に表面処理剤を添加して、ゾルゲルシリカ粒子表面を湿式で表面処理する工程(以下、分散液シリカ粒子表面処理工程ともいう)
 (3)前記ゾルゲルシリカ分散液を、ろ過孔径5μm以下のろ材により湿式ろ過する工程(以下、ゾルゲルシリカ分散液湿式ろ過工程ともいう)
 (4)湿式ろ過された後のゾルゲルシリカ分散液に、二酸化炭素、炭酸アンモニウム、炭酸水素アンモニウム及びカルバミン酸アンモニウムよりなる群から選択される少なくとも1種の化合物からなる凝析剤を添加し、シリカ粒子を凝析させて、ゾルゲルシリカ粒子が凝析した凝析シリカ分散液を得る工程(以下、凝析工程ともいう)
 (5)該凝析シリカ分散液からゾルゲルシリカ粒子を固液分離し乾燥する工程(以下、固液分離・乾燥工程ともいう)
 他に、焼成工程を含む態様として、以下(1)、(3)~(5)、及び(6)~(8)を含む製造方法(II)も好ましい態様として挙げることができる。
 (1)ゾル-ゲル法により、レーザー回折散乱法による平均粒子径0.05~2.0μmのゾルゲルシリカ粒子が分散するゾルゲルシリカ分散液を製造する工程
 (3)前記ゾルゲルシリカ分散液を、ろ過孔径5μm以下のろ材により湿式ろ過する工程
 (4)湿式ろ過された後のゾルゲルシリカ分散液に、二酸化炭素、炭酸アンモニウム、炭酸水素アンモニウム及びカルバミン酸アンモニウムよりなる群から選択される少なくとも1種の化合物からなる凝析剤を添加し、シリカ粒子を凝析させて、ゾルゲルシリカ粒子が凝析した凝析シリカ分散液を得る工程
 (5)該凝析シリカ分散液からゾルゲルシリカ粒子を固液分離し乾燥する工程
 (6)前記乾燥して得られたゾルゲルシリカ粒子を、さらに焼成し、焼成シリカ粒子を得る工程(以下、焼成工程ともいう)
 (7)該焼成シリカ粒子の表面を、表面処理剤を用いて乾式で表面処理し、表面が処理された焼成シリカ粒子を得る工程(以下、焼成シリカ粒子表面処理工程ともいう)
 (8)表面が処理された焼成シリカ粒子を溶媒に分散させて分散液とし、該分散液をろ過孔径5μm以下のろ材により湿式ろ過した後、ろ液から表面が処理された焼成シリカ粒子を固液分離して乾燥する工程(以下、焼成シリカ湿式ろ過・固液分離・乾燥工程ともいう)
 以下、本実施形態における表面処理ゾルゲルシリカの好適な製造方法について詳細に説明する。
 (1)ゾルゲルシリカ分散液製造工程
 本実施形態における製造方法において、ゾル-ゲル法により製造した、レーザー回折散乱法による平均粒子径0.05~2.0μmのゾルゲルシリカ粒子が分散する、ゾルゲルシリカ分散液を製造する。
 <珪素アルコキシド>
用いられる珪素アルコキシドとしては、ゾル-ゲル法の反応によるシリカ粒子の製造に用いられる化合物であれば、特に制限されず使用することができる。
 本実施形態において、珪素アルコキシド(アルコキシシラン)として、例えばメチルトリメトキシシラン、メチルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン等を挙げることができる。中でも、メチルトリメトキシシラン、テトラメトキシシラン及びテトラエトキシシランは、工業的に入手が容易であること及び取扱いが容易であることからより好ましい。これら珪素アルコキシドは、1種のみを使用してもよく、2種以上を併用してもよい。
 更に、不純物が低減されたゾルゲルシリカを得るため、該珪素アルコキシドの純度の高いものを使用することが好ましい。具体的には、原料の珪素アルコキシドとしてテトラメトキシシランを用いてU含有量及びTh含有量が0.1ppb以下のゾルゲルシリカを得る場合、U含有量、Th含有量がそれぞれ0.2ppb以下のテトラメトキシシランを用いることが好ましい。
 高純度の珪素アルコキシドを得るために予め蒸留等により原料を精製することもできる。
 珪素アルコキシドが常温常圧で液体である場合には、そのまま使用してもよく、後述する有機溶媒で希釈して使用してもよい。珪素アルコキシドが、常温常圧で固体である場合には、有機溶媒中に溶解又は分散して使用することができる。
 <触媒>
 ゾル-ゲル法によるシリカ粒子の製造においては、酸性触媒が用いられる場合もあるが、粒子径の揃った球状粒子を得ることが容易であるという点で、本実施形態では塩基性触媒を使用することが好ましい。また、先ず酸性触媒下で予備加水分解を行った後に粒子成長を行う場合には、粒子成長時に塩基性触媒を用いる方法が好ましく採用される。
 本実施形態において用いられる塩基性触媒としては特に限定されず、ゾル-ゲル法の反応によるシリカ粒子の製造に用いられる公知の塩基性触媒であれば、これを好適に使用することができる。
 このような塩基性触媒としては、例えば、アミン化合物、水酸化アルカリ金属等を挙げることができる。特に、目的とするゾルゲルシリカを構成する金属元素以外の金属を含有する不純物量が少なく、高純度のゾルゲルシリカが得られるという観点から、アミン化合物を用いることが好適である。このようなアミン化合物としては、例えばアンモニア、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジメチルアミン、トリメチルアミン等を挙げることができる。これらのうち、揮発性が高く除去し易いこと、ゾル-ゲル法の反応速度が速いこと等から、アンモニアを使用することが特に好ましい。
 前記塩基性触媒は、単独で使用してもよく、或いは2種以上を使用してもよい。
 前記塩基性触媒は、工業的に入手可能なものを、そのまま(市販されている形態のまま)使用することもできるし、例えばアンモニア水等のように、水や有機溶媒に希釈して使用することもできる。特に、反応の進行速度を制御しやすい点で、塩基性触媒を水に希釈し、必要に応じて濃度を調製した水溶液として使用することが好ましい。塩基性触媒として水溶液を使用する場合の濃度は、工業的に入手が容易であること、濃度調整が容易であること等から、1~30質量%の範囲とすることが好ましい。
 塩基性触媒の使用割合は、珪素アルコキシドの加水分解及び重縮合反応の反応速度等を勘案して適宜決定すればよい。塩基性触媒の使用割合としては、反応溶液中における塩基性触媒の存在量が、使用する珪素アルコキシドの質量に対して、0.1~60質量%とすることが好ましく、0.5~40質量%の範囲で使用することがより好ましい。
 <溶媒>
 本実施形態において前記珪素アルコキシドの加水分解及び重縮合反応に使用される溶媒としては、極性溶媒が好ましい。ここで極性溶媒とは、常温・常圧下で100g当たり10g以上の水を溶解する有機溶媒であるか、又は水である。水以外の有機溶媒を複数種混合して使用してもよく、この場合には、当該有機溶媒の混合物が、前記の要件を満たせばよい。
 前記水以外の極性溶媒である有機溶媒としては、例えばメタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール;テトラヒドロフラン、ジオキサン等のエーテル;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド化合物等を挙げることができる。
 アルコールはゾル-ゲル法の反応時に副生するものであるから、前記のうちメタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコールを使用することが、反応後のゾルゲルシリカ分散液中への不必要な不純物の混入を抑制する点、加熱によって容易に除去可能である点等から特に好ましい。
 前記有機溶媒及び水は、単独で用いることも、或いは2種以上の溶媒の混合物として用いることも可能である。
 有機溶媒又は水の使用割合は、目的とするゾルゲルシリカ粒子の粒径及びゾル-ゲル法の反応後のゾルゲルシリカ分散液におけるゾルゲルシリカ粒子の濃度の所望値に応じて適宜決定すればよい。例えば、有機溶媒としてアルコールを使用する場合、ゾル-ゲル法の反応により得られるゾルゲルシリカ分散液の質量(100質量%)におけるアルコールの割合として、好ましくは10~90質量%、より好ましくは15~80質量%の範囲となるように使用される。
 ゾル-ゲル法の反応には水が必須である(そのため前記のような水を溶解する極性溶媒を用いる)。前記の塩基性触媒を水溶液として添加する場合及び溶媒の一部若しくは全部として水を使用する場合は、反応液中に水を別途に添加する必要はない。しかし、これら以外の場合には、ゾル-ゲル反応に必要な水を別途に添加する必要がある。
 水の使用割合は、製造するゾルゲルシリカ粒子の粒径に応じて適宜調整して選択される。水の使用割合が少なすぎると反応速度が遅くなり、逆に多すぎると乾燥(溶媒除去)の際に長時間を要するため、水の使用割合はこれらの両要件を勘案して選択される。水の使用割合としては、ゾル-ゲル法の反応により得られるゾルゲルシリカ分散液の全質量に対して、2~50質量%の範囲とすることが好ましく、5~40質量%の範囲とすることがより好ましい。
 水は、反応溶媒の一部又は全部として使用してもよく、水以外の反応原料等を全部準備した後に反応液に加えてもよい。しかしながら、ゾル-ゲル法の反応を速やか且つ安定的に進行させるためには、水を溶媒の一部として使用すること、即ち溶媒として水と有機溶媒との混合物を用いること、が好ましい。ここでいう溶媒としての水とは、塩基性触媒の添加等に伴って添加される場合も含む。
 <ゾルゲルシリカ合成反応装置>
 本実施形態で使用する反応装置は、攪拌機を有する反応器であれば特に制限無く使用される。前記攪拌機の撹拌翼としても、公知のものが特に制限無く使用されるが、代表的なものを例示すれば、傾斜パドル翼、タービン翼、三枚後退翼、アンカー翼、フルゾーン翼、ツインスター翼、マックスブレンド翼などが挙げられる。
 また、このような攪拌機を有する反応器としては、半球状、または平底あるは丸底の円筒状の一般的な形状の反応器、更にこれら反応器内に邪魔板を設置したものが特に限定されずに使用できる。また、反応器の材質も特に限定されず、ガラス製、ステンレススチールなどの金属製(ガラスコートあるいは樹脂コートされたものを含む)、または樹脂製のものが使用できる。前述の不純物が低減されたゾルゲルシリカを得るため、耐摩耗性に優れる材質であることが好ましい。
 本実施形態で使用する反応器の攪拌効率は特に制限されるものではないが、反応器の攪拌効率の指標である無次元混合時間nθm(ここで、nは撹拌翼回転数(1/s)、θmは混合時間(s))が、100以下の反応器を使用することが望ましい。無次元混合時間nθmを前記範囲とすることにより反応時の反応液を均一に保つことができ、より粒径の揃った、粒度分布の狭いゾルゲルシリカを得ることができる。
 前記反応器の攪拌効率の範囲は、一般に、後述する工業的な実施において、50L以上反応液を扱う反応器の攪拌効率がこれに該当する場合が多い。
 前記無次元混合時間nθmは、攪拌翼回転数n(1/s)と混合時間θm(s)の積を意味し、攪拌レイノルズ数が一定であれば、反応器のスケールに因らず一義的に決まり、攪拌効率を示すのに非常に有用な指標である。また、θmは、一般に、トレーサー物質が均一に混合するまでの時間を意味するが、該混合時間θmは、反応器の形状、邪魔板の設置の有無やその配置状況、攪拌翼の種類や回転数、混合される液体の粘弾性特性などにより影響を受ける。
 無次元混合時間nθmが55より低い場合は、反応器の攪拌効率が高く、反応液の攪拌が十分可能であり、癒着粒子や凝集塊が生成しにくい。nθmが55~100の場合は、反応液中に珪素アルコキシド溶液を吐出線速度30mm/s~1000mm/sで供給することで癒着粒子や凝集塊の生成を抑えることができる。一方、無次元混合時間nθmが100を超える場合は、反応器の攪拌効率が極めて低くなり、混合が不十分であり、反応液が不均一となり癒着粒子や凝集塊が多く生成し易くなる。
 <ゾルゲルシリカ合成反応条件>
 本実施形態における加水分解及び重縮合反応(ゾル-ゲル法の反応)は、前記したように通常、塩基性触媒の存在下で行われる。反応条件としては公知の条件を採用することができ、珪素アルコキシドと塩基性触媒との接触方法も特に制限されず、反応装置の構成や反応スケールを勘案して、所望の粒径粒度分布を有するゾルゲルシリカ粉末が得られるよう、適宜選択して決定すればよい。
 ゾル-ゲル法の反応方法の一例を具体的に示すと、例えば以下の如くである。
 反応容器に水、水以外の極性溶媒(有機溶媒)及び塩基性触媒を仕込み、ここに珪素アルコキシド(又は珪素アルコキシドの有機溶媒溶液)と塩基性触媒の水溶液とを同時に添加する方法を挙げることができる。この方法によれば、反応効率が良好で、粒子径の揃った球状のシリカ粒子を、効率よく、且つ再現性よく製造することができ、好ましい。この場合、例えば、先に珪素アルコキシドの一部を添加した後に、残りの珪素アルコキシドと塩基性触媒とを同時に添加することも可能である。2種以上の珪素アルコキシドを併用する場合、各々を混合して同時に添加してもよく、或いは各々を順次に添加することも可能である。
 珪素アルコキシド及び塩基性触媒の添加は、反応液に液中投入することが好ましい。ここで液中投入とは、前記の原料を反応液中に投入する際、投入口の先端が反応液中に浸されていることをいう。さらに、投入口先端の位置は、攪拌羽根の近傍等の、攪拌が十分に行われ、投入物が反応液中に速やかに拡散することのできる位置とすることが望ましい。
 珪素アルコキシドと塩基性触媒の添加時間(添加開始から添加終了までの時間)は、粒径分布の幅の狭い粒子を製造するうえで非常に重要な因子である。この添加時間が短すぎると粒径分布幅が広くなる傾向にあり、逆に長すぎると安定した粒子成長ができない。従って、粒度分布幅が狭く、粒径が揃ったゾルゲルシリカ粒子を得るには、粒子が成長するのに適した添加時間を選択して採用する必要がある。特に、単分散性の良好なシリカ粒子を製造するには、珪素アルコキシド等の原料を吐出線速度30mm/s~1000mm/sで供給することが好ましい。このような観点から、前記添加時間としては、所望の粒子直径100nmあたり、0.2~8時間の範囲とすることが好ましい。
 反応温度は、用いる原料物質の種類に応じて、ゾル-ゲル法の反応が速やかに進行する温度であれば、特に制限されず、目的とするゾルゲルシリカ粒子の粒径に応じて適宜に選択すればよい。平均粒子径が0.05~2.0μmのゾルゲルシリカ粒子を得る場合、反応温度としては、-10~60℃の範囲で適宜選択すればよい。
 ゾル-ゲル法の反応を確実に進行させるために、珪素アルコキシド及び塩基性触媒の投入が終了した後、熟成(次の工程を行うまで暫く時間をおくこと)を行ってもよい。この場合、熟成温度としては反応温度と同程度の温度、即ち-10~60℃とすることが好ましく、熟成時間としては0.25~5時間とすることが好ましい。
 所望の粒径のゾルゲルシリカ粒子を得るために、熟成後に再度珪素アルコキシド及び塩基性触媒を添加し、ゾルゲルシリカ粒子の粒径を成長させる等の手法を用いてもよい。
 <ゾルゲルシリカ分散液>
 上述した方法によって、ゾル-ゲル法により製造した、レーザー回折散乱法による平均粒子径0.05~2.0μmのゾルゲルシリカ粒子が分散する、ゾルゲルシリカ分散液が得られる。該分散液においてゾルゲルシリカ粒子は、用いた極性溶媒と、珪素アルコキシドの加水分解により生じたアルコールとから構成される混合溶媒中に分散した状態として存在する。
 前記分散液中においてゾルゲルシリカ粒子は、癒着粒子や凝集塊を実質生じること無く均一に単分散しているが、局所的な過度の反応進行や凝集等の理由により、粒径が5μm以上の粗大な独立一次粒子(以下、このものを「粗大独立一次粒子」と略する)が若干量混存している。具体的には、粗大独立一次粒子は、得られるゾルゲルシリカに対して個数基準で15~1000ppm程度含まれており、これらが最終的な表面処理ゾルゲルシリカにまで残留すると、樹脂組成物の流動性低下や硬化樹脂組成物の強度低下の問題を引き起こす。
 当該ゾルゲルシリカ分散液中に含まれるゾルゲルシリカ粒子の割合が多すぎると、分散液の粘度が高くなるため、取り扱いが困難となる。一方、ゾルゲルシリカ粒子の割合が少なすぎると、1回の反応で得られるゾルゲルシリカの量が少なくなり、不経済である。このような観点から、得られるゾルゲルシリカ分散液中のシリカ粒子の濃度は、1~40質量%とすることが好ましく、特に2~25質量%とすることが好ましい。従って、ゾルゲルシリカ粒子の濃度が前記の範囲に調整されるよう、極性溶媒、特に水以外の極性溶媒の使用量を調整しておくことが好ましい。ゾル-ゲル法の反応によって得られた分散液中におけるゾルゲルシリカ粒子の割合が多すぎて取扱い性に難がある場合等には、後述する(3)分散液湿式ろ過工程の前に、または必要に応じて行う(2)分散液ゾルゲルシリカ粒子表面処理工程の前に、極性溶媒を添加して濃度調整を行うことが好ましい。
 (2)分散液シリカ粒子表面処理工程
 表面処理ゾルゲルシリカを製造するにあたって、製造方法(I)の態様において、前記(1)ゾルゲルシリカ分散液製造工程で得られたゾルゲルシリカ分散液に、表面処理剤を添加してシリカ粒子の表面処理を行う。表面処理剤としては、シリコーンオイル、シランカップリング剤、シロキサン類やシラザン類から選択される少なくとも1種のものが好ましい。
 後工程でシリカ粒子の焼成を行う製造方法(II)の態様においては、当該工程でゾルゲルシリカ表面に導入された表面処理剤は焼成の際に分解してなくなるため、当該工程は必須ではないが、後述する効果が得られるため、同様に設けるのが好適である。
 該工程で表面処理を施すことは、製造方法(I)の態様においてシリカ粒子に表面処理剤由来の性能を付与できるだけでなく、製造方法(II)の態様においても後述する固液分離工程を効率良く行うことができる点からも好ましい。また、乾燥時の強固な凝集塊の生成を抑制することができるため、得られたゾルゲルシリカ粒子は特段の解砕処理を行うことなく種々の用途に使用することが可能である。
 該表面処理工程は、ゾルゲル反応後のシリカ分散液において、粗大独立一次粒子が精度よく低減されるために(3)ゾルゲルシリカ分散液湿式ろ過工程の前に実施することが必要である。そうすることにより、当該工程で表面処理時に生成する凝集塊や表面処理剤の残渣も(3)ゾルゲルシリカ分散液湿式ろ過工程において取り除くことが可能である。
 前記シリコーンオイル、シランカップリング剤、シロキサン類及びシラザン類の具体的例は、前記説明したものの中から必要とする表面処理ゾルゲルシリカ粒子の性能等に応じて適宜選択して使用できる。
 シリコーンオイルの使用割合は特に制限はされないが、少なすぎると表面処理が不十分となり、多すぎると後処理が煩雑となる他、ゾルゲルシリカ表面に対する存在量が過剰になりすぎても凝集塊の生成量が増大するため、使用するゾルゲルシリカ粉末100質量部に対して、0.05~80質量部とすることが好ましく、0.1~60質量部とすることがより好ましく、1~20質量部とするのが最も好ましい。
 シランカップリング剤の使用割合は特に制限されないが、少なすぎると表面処理が不十分となり、多すぎると後処理が煩雑となる他、ゾルゲルシリカの表面に対する存在量が過剰になりすぎても凝集塊の生成量が増大するため、使用するゾルゲルシリカ粉末100質量部に対して、0.05~80質量部とすることが好ましく、0.1~40質量部とすることがより好ましく、0.5~5質量部とするのが最も好ましい。
 シロキサン類の使用割合は、特に制限はされないが、少なすぎると表面処理が不十分となり、多すぎると後処理が煩雑となる他、ゾルゲルシリカの表面に対する存在量が過剰になりすぎても凝集塊の生成量が増大するため、使用するゾルゲルシリカ粉末100質量部に対して、0.1~150質量部とすることが好ましく、1~120質量部とすることがより好ましく、2~60質量部とするのが最も好ましい。
 前記シラザン類としては、テトラメチルジシラザン、ヘキサメチルジシラザン、ヘプタメチルジシラザン等を好ましく挙げる事ができる。
 シラザン類の使用割合は、特に制限はされないが、少なすぎると表面処理が不十分となり、多すぎると後処理が煩雑となる他、ゾルゲルシリカの表面に対する存在量が過剰になりすぎても凝集塊の生成量が増大するため、使用するゾルゲルシリカ粉末100質量部に対して、0.1~150質量部とすることが好ましく、1~120質量部とすることがより好ましく、2~60質量部とするのが最も好ましい。
 前記の表面処理剤は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 前記のような表面処理剤のうち、得られる表面処理ゾルゲルシリカの流動性が優れ、さらに、後の固液分離工程を効率良く行うことができ、乾燥時の強固な凝集塊の生成も効果的に抑制できることから、シランカップリング剤及びシラザン類よりなる群から選択される少なくとも1種を使用することが好ましく、シラザン類を使用することがより好ましい。表面処理剤としてこれらシランカップリング剤及びシラザン類よりなる群から選択されるものを用いる場合、その使用割合は、凝集塊の生成量を特に低下させる観点から、ゾルゲルシリカの表面シラノール基量に対して0.2~2倍とするのが好ましく、0.5~1倍とするのがより好ましい。
 表面処理剤の添加方法は特に制限されない。表面処理剤が常温、常圧で低粘度の液体である場合は、これを分散液中に投入すればよい。表面処理剤が高粘度液体又は固体である場合には、これを適当な有機溶媒に添加して溶液又は分散液としたうえで、低粘度液体の場合と同様にして添加することができる。
 ここで使用される有機溶媒としては、使用する表面処理剤の官能基に影響を及ぼさない公知の溶媒が使用できる。具体的には、前記(1)ゾルゲルシリカ分散液製造工程で挙げた有機溶媒と同様のものを挙げることができる。
 また、表面処理剤が気体状である場合は、液中に微細な泡状となるように吹き込むことにより添加することができる。
 表面処理を行う際の処理温度は、使用する表面処理剤の反応性等を勘案して決定すればよいが、処理温度が低すぎると反応の進行が遅く、高すぎると操作が煩雑であるため、10~100℃とすることが好ましく、20~80℃とすることがより好ましい。
 表面処理を行う際の処理時間は特に制限はされず、使用する表面処理剤の反応性や処理温度等を勘案して決定すればよい。表面処理反応の十分な進行と、工程時間を短くすることの双方を考慮して、処理時間を0.1~48時間とすることが好ましく、0.5~24時間とすることがより好ましい。
 (3)表面処理ゾルゲルシリカ分散液の湿式ろ過工程
 本実施形態における方法においては、前記ゾルゲル反応後に得られたゾルゲルシリカ分散液を湿式でろ過し、前記含有される粗大独立一次粒子を除去し、ろ液として、粗大粒子が除去されたゾルゲルシリカ分散液を得る。即ち、ゾルゲルシリカ分散液を湿式ろ過することにより、ろ材上に、前記粗大独立一次粒子、更に癒着粒子や凝集塊が生じていれば、これも分離される。また、(2)分散液シリカ粒子表面処理工程を設ける場合、表面処理後に当該工程を設けることにより、表面処理時に生成する凝集塊や表面処理剤の残渣も分離される。
 ろ過に使用するろ材としては、ろ過孔径が5μm以下のものが特に限定されずに使用することができ、ろ過孔径が3μm以下のものが好ましい。あまりにろ過孔径が小さくなると、ろ過性が大きく低下するため、目的とするゾルゲルシリカ又は表面処理ゾルゲルシリカの平均粒子径にもよるがろ過孔径の下限は通常1μmである。
 なお、本実施形態において上記ろ材のろ過孔径は、粒子径標準粒子(各平均粒子径において、標準偏差が該平均粒子径×2%以下)を用いて測定する。各平均粒子径の標準粒子のうち、その99質量%以上を捕捉でき、それより小さい粒子径の標準粒子は前記99質量%より少なくしか補足できない孔径を意味する。この測定において、該当する粒子径標準粒子の捕捉率は、水濃度0.5質量%を1L/minで流してろ過した後、透過したスラリーを200℃で8h乾燥させて溶媒を除去し、残存する固形分量を測定し、スラリー量及び残存する固形分量から算出する。なお、粒子径標準粒子としては、Thermo Fisher製機能性ナノ・マイクロ粒子が好ましく、例えば、粒子径5μmであれば型番4205Aを使用され、粒子径3μmであれば型番4203Aを使用される。
 フィルターの材質は特に制限されないが、樹脂製(ポリプロピレン、PTFEなど)や金属製が挙げられる。金属不純物の混入を防ぐ観点から、樹脂製のフィルターを用いることが好ましい。
 なお、粗大粒子を除去する方法として、表面処理ゾルゲルシリカを得た後に、最終工程として乾式で篩にかける方法もあるが、数μmサイズのこれら粗粒を乾式篩で除去しようとすると、目詰まりが発生し効率が悪く工業的に行うことは困難である。
 また、焼成工程を含む製造方法(II)の態様においては、焼成シリカ粒子の表面処理後にも改めて湿式ろ過するものではあるが、この段階でも、先に、湿式ろ過して、前記(1)ゾルゲルシリカ分散液製造工程や(2)分散液シリカ粒子表面処理工程で生成した粗大独立一次粒子や強固な凝集塊を除去しておくことが大切である。焼成工程で、ゾルゲルシリカにこれら粗大粒子が混存していると、焼成シリカ粒子に施す再度の表面処理工程で、後述するようにこれを起点として強固な凝集塊がより激しく生成するようになる。その結果、焼成シリカ粒子に対する表面処理後の湿式ろ過で、前記小さい目開が目詰まりし易くなり、工業的に実施することが困難になる。
 (4)凝析工程
 本実施形態における方法においては、続いてろ液として得られたゾルゲルシリカ分散液の凝析を行う。
 該凝析工程は、前記湿式ろ過後得られたゾルゲルシリカ又は表面処理ゾルゲルシリカの分散液中に、二酸化炭素、炭酸アンモニウム、炭酸水素アンモニウム及びカルバミン酸アンモニウムよりなる群から選択される少なくとも1種の化合物からなる凝析剤が添加された状態で行われる。分散液中に前記の如き凝析剤を添加することにより、分散液中でゾルゲルシリカ又は表面処理ゾルゲルシリカ粒子の弱い凝集体が形成される。この凝集体は、分散液中に存在する凝析剤又はその誘導体の存在により、分散液中で安定に存在することが可能であり、従ってろ過により容易に回収することが可能となる。
 また、前記の凝析剤は、わずかの加熱により容易に分解・除去されるため、高純度のゾルゲルシリカ又は表面処理ゾルゲルシリカを容易に製造することができる利点がある。本実施形態における方法によると、得られるゾルゲルシリカ又は表面処理ゾルゲルシリカ中における、例えばナトリウム元素の含有割合を100ppm以下とすることができ、より好ましくは10ppm以下とすることが可能である。
 一方で、ゾルゲルシリカ又は表面処理ゾルシリカ粒子の分散液に金属塩を添加して粒子の凝集体を形成する技術は公知であるが、この方法によると、例えばナトリウム塩、カリウム塩等を使用した場合、得られるゾルゲルシリカ又は表面処理ゾルシリカにこれらの塩を構成する金属元素成分が混入してしまう可能性があり、これを除去するための洗浄(精製)操作が必要となり工業的に不利となる。また、凝集性も強くなり、簡単な解砕処理では一次粒子に解せず、ゾルゲルシリカ又は表面処理ゾルシリカに粗粒として残留する虞がある。
 凝析剤の使用割合及び添加方法は、使用する凝析剤の種類に応じて下記のように設定することができる。凝析剤の使用割合は、分散液中でのゾルゲルシリカ粒子又は表面処理ゾルゲルシリカ粒子の弱い凝集体の形成の程度と、不当に多量の原料を使用することの無駄とのバランスを勘案することによって設定される。以下における凝析剤の使用割合の基準としてのゾルゲルシリカ又は表面処理ゾルゲルシリカの質量は、用いた珪素アルコキシドがすべて加水分解及び重縮合してゾルゲルシリカ又は表面処理ゾルゲルシリカとなっていると仮定した場合の換算値である。
 前記凝析剤として二酸化炭素を使用する場合、その使用割合は、分散液中に含有されるゾルゲルシリカ又は表面処理ゾルゲルシリカ100質量部に対して、0.005質量部以上とすることが好ましく、0.005~300質量部とすることがより好ましい。ゾルゲルシリカに対して二酸化炭素の更に好ましい使用割合は、ゾルゲルシリカ粉末100質量部に対して、0.05質量部以上であり、0.05~300質量部とすることが特に好ましく、0.25~200質量部とすることがとりわけ好ましい。一方、表面処理ゾルゲルシリカに対して二酸化炭素の更に好ましい使用割合は、表面処理ゾルゲルシリカ粉末100質量部に対して、15質量部以上であり、15~300質量部とすることが特に好ましく、17~200質量部とすることがとりわけ好ましい。
 二酸化炭素の添加方法としては、気体の状態で分散液中に吹き込む方法、固体の状態(ドライアイス)で添加する方法等を挙げることができるが、固体の状態で添加することが、操作が簡単であることから好ましい。
 前記凝析剤として炭酸アンモニウム、炭酸水素アンモニウム又はカルバミン酸アンモニウムを使用する場合、その使用割合は、分散液中に含有されるゾルゲルシリカ又は表面処理ゾルゲルシリカ100質量部に対して、0.001質量部以上とすることが好ましく、0.001~80質量部とすることがより好ましい。具体的には、工程(2)において分散液シリカ粒子の表面処理を行わない場合、炭酸アンモニウム、炭酸水素アンモニウム又はカルバミン酸アンモニウムの更に好ましい使用割合は、ゾルゲルシリカ100質量部に対して、0.001~15質量部であることが好ましく、0.001~10質量部であることが特に好ましい。一方、工程(2)において分散液シリカ粒子の表面処理を行う場合、炭酸アンモニウム、炭酸水素アンモニウム又はカルバミン酸アンモニウムの更に好ましい使用割合は、表面処理ゾルゲルシリカ100質量部に対して、15質量部以上とすることがとりわけ好ましく、更には20~50質量部とすることが特に好ましい。
 炭酸アンモニウム、炭酸水素アンモニウム又はカルバミン酸アンモニウムは、固体の状態で添加してもよく、適当な溶媒に溶解した溶液状態で添加してもよい。これらを溶液状態で添加する場合に使用される溶媒としては、これらを溶解するものであれば特に制限されないが、溶解能力が高く、またろ過後の除去が容易であるとの観点から、水を使用することが好ましい。炭酸アンモニウム、炭酸水素アンモニウム又はカルバミン酸アンモニウム溶液の濃度は、これらが溶解する範囲ならば特に制限されないが、濃度が低すぎると溶液の使用量が多くなり、不経済であるため、2~15質量%とすることが好ましく、特に5~12質量%とすることが好ましい。
 前記の凝析剤は、1種のみを使用してもよく、2種以上を併用してもよい。
 特に、いわゆる「炭酸アンモニウム」として市販されている、炭酸水素アンモニウムとカルバミン酸アンモニウムとの混合物は、これをそのまま、或いは適当な溶媒に溶解した溶液として使用することができる。この場合における、炭酸水素アンモニウムとカルバミン酸アンモニウムとの合計の使用割合、これを溶液として添加する場合に使用される溶媒の種類及び溶液の濃度は、炭酸アンモニウム、炭酸水素アンモニウム又はカルバミン酸アンモニウムの場合として前記したところと同様である。
 凝析剤を添加する際のゾルゲルシリカ粒子又は表面処理ゾルゲルシリカ粒子の分散液のpHとしては、分散液中で凝析剤が好ましくない分解を起こさず、本実施形態における効果が有効に発揮できるpH領域を選択して設定することが望まれる。このような観点から、分散液のpHはアルカリ性領域とすることが好ましく、pH9以上とすることがより好ましい。
 凝析剤を添加する際のゾルゲルシリカ粒子又は表面処理ゾルゲルシリカ粒子分散液の温度は、凝析剤の添加によって生成するゾルゲルシリカ粒子又は表面処理ゾルゲルシリカ粒子の弱い凝集体が安定に存在できる温度を選択して設定することが望まれる。このような観点から、分散液の温度としては、ゾルゲル法の反応の際の反応温度と同じ-10~60℃とすることが好ましく、10~40℃とすることがより好ましい。
 凝析剤の添加後、熟成を行う、即ち次工程のろ過までに暫く間隔をおくことが好ましい。凝析剤添加後に熟成を行うことにより、前記したゾルゲルシリカ粒子又は表面処理ゾルゲルシリカ粒子の弱い凝集体の形成が促進されることとなり、好ましい。熟成時間は長いほどよいが、長すぎると不経済である。一方、熟成時間が短すぎると、ゾルゲルシリカ粒子又は表面処理ゾルゲルシリカ粒子の弱い凝集体の形成が不十分となる。そこで熟成時間としては、0.5~72時間とすることが好ましく、特に1~48時間とすることが好ましい。熟成の際の分散液の温度は特に制限されず、凝析剤添加の際の好ましい温度と同じ温度範囲で実施することができ、凝析剤の添加を行った際と同じ温度で実施すれば足りる。
 (5)固液分離・乾燥工程
 本実施形態における方法においては、前記のようにして凝析剤を添加し、好ましくは熟成した後の分散液から、ゾルゲルシリカ又は表面処理ゾルゲルシリカを回収し、さらに乾燥する工程である。
 前記凝析剤の添加によって弱い凝集体を形成したゾルゲルシリカ又は表面処理ゾルゲルシリカの固液分離の手段は特に限定されないが、ろ過によってろ物として容易に回収することができる。ろ過の方法は特に制限はされず、例えば減圧濾過、加圧ろ過、遠心ろ過等の公知の方法を適用することができる。
 前記ろ過で使用する、ろ紙やろ布等(以下、これらを包括して「ろ紙等」という。)は、工業的に入手可能なものであれば、特に制限なく使用することができ、分離装置(ろ過器)のスケールや回収するシリカの平均粒径等に応じて適宜選択すればよい。粒子径が0.05~2μmの表面処理ゾルゲルシリカの場合、ろ紙であれば保留粒子径が5μm以下、ろ布であれば通気率1.5cm/(cm・s)以下のろ紙等を使用することが好ましい。該固液分離により、表面処理ゾルゲルシリカがケークとして回収される。
 本実施形態によれば凝析剤の添加により一次粒子が弱く凝集した凝集体となっているため、ろ紙等の孔径は一次粒子径よりもはるかに大きくてよく、例えば平均粒子径が、0.05~2.0μmのゾルゲルシリカ粒子であれば、保留粒子径が5μm以下のもので十分である。このようにろ紙等の孔径が大きなものですむため、迅速にろ過することが可能である。
 ろ過により、ゾルゲルシリカ又は表面処理ゾルゲルシリカがケークとして回収される。
 前記の凝析工程において凝析剤として炭酸水素アンモニウム水溶液を使用した場合、得られたケークを、適当な溶媒、例えば水、アルコール等、でリンスすることにより、ゾル-ゲル法による反応で使用した溶媒、塩基性触媒、未反応の表面処理剤の分解乃至除去を行うことができる。
 次いで、前記ろ過工程によって回収したゾルゲルシリカ又は表面処理ゾルゲルシリカを乾燥させる。
 本実施形態においては、前記のようにして回収されたゾルゲルシリカ又は表面処理ゾルゲルシリカのケークは、35℃以上の温度で乾燥すると、その解砕性が更に向上する。従って本実施形態における乾燥工程における乾燥温度は、35℃以上の温度とすることが好ましい。この温度における加熱により、前記のろ過、リンス等によっても除去されずにケーク中に残存している凝析剤を、熱分解により容易に除去することができる。
 乾燥の方法は特に制限はされず、送風乾燥や減圧乾燥等の公知の方法を採用することが可能である。より解砕され易い傾向にあることから、減圧乾燥を採用することが好ましい。
 乾燥時の温度を高くする方が、凝析剤の分解効率の観点及びより解砕され易いゾルゲルシリカ又は表面処理ゾルゲルシリカとすることの観点からは有利である。しかしながら乾燥温度が高すぎると、表面処理によってゾルゲルシリカ粒子の表面に導入された反応性置換基により凝集塊が生成することがあり、好ましくない。従って、前記のバランスをとるために、乾燥の温度は35~200℃とすることが好ましく、50~200℃とすることがより好ましく、特に80~200℃とすることが好ましく、120~200℃とすることがとりわけ好ましい。
 乾燥時間は、特に制限はされず、乾燥時の条件、たとえば乾燥温度や圧力等により適宜選択すれば良いが、一般的に2~48時間程度とすることにより、ゾルゲルシリカ又は表面処理ゾルゲルシリカを十分に乾燥することができる。
 なお、本実施形態において、前記ゾルゲルシリカ又は表面処理ゾルゲルシリカ粒子の分散液からの分散媒の除去を、前記ろ過に替えて濃縮により行うことができる。すなわち、濃縮及び乾燥にわたって連続して行うことも可能である。例えば、ゾルゲルシリカ粒子又は表面処理ゾルゲルシリカ粒子分散液を加熱濃縮、あるいは減圧濃縮等によって分散媒を揮発させる方法によって行うことにより、ゾルゲルシリカ粒子又は表面処理ゾルゲルシリカ粒子分散液より分散媒が除去されたゾルゲルシリカ又は表面処理ゾルゲルシリカを直接得ることができる。この場合、分散媒を加熱による除去をする際、特定凝析剤由来の塩が消失し凝析効果薄れるため、係る場合には、濃縮、乾燥途中のゾルゲルシリカ粒子又は表面処理ゾルゲルシリカ粒子分散液の濃縮物に、特定凝析剤を適宜添加し、濃縮物中に前記塩が消失しないように行えば良い。
 本実施形態において、前記方法により得られたゾルゲルシリカ又は表面処理ゾルゲルシリカは、個々の粒子が弱い力で凝集した凝集体の形態を成す乾燥粉末として得られる。そして、係るゾルゲルシリカ又は表面処理ゾルゲルシリカは、解砕処理が困難な凝集塊が生成せず、容易に解砕が可能な、分散性に優れたものである。例えば、特段の解砕処理を行うことなく、樹脂や溶媒に分散させる際の分散機のシェアにより、容易に解砕され、該樹脂や溶媒中で均一に分散させることが可能であるし、コールターカウンター法における該シリカ粒子の粒径測定の際の試料調製においても、ゾルゲルシリカ又は表面処理ゾルゲルシリカ5質量%のエタノール分散液に出力40W・10分程度の超音波照射による分散処理を行った際に容易に解砕される。
 (6)焼成工程
 前記製造方法(I)の態様として、前記乾燥して得られたゾルゲルシリカのうち、(2)分散液シリカ粒子表面処理工程で表面処理されたものは、これをそのまま半導体封止材、液晶シール剤及びフィルム用の充填剤等の種々の用途に供しても良い。しかしながら、このものは粒子中に吸収された分散媒が完全に除去されておらず、シラノール基が残存し、また細孔が存在している。従って、(5)固液分離・乾燥工程で得られたゾルゲルシリカ又は表面処理ゾルゲルシリカは、粒子中の分散媒を高度に除去し、シラノール基をつぶして中実のゾルゲルシリカを得るために、用途に応じて、更に焼成処理を行い、その後に再度、表面処理を施すのが好ましい(製造方法(II)の態様)。
 即ち、該焼成工程において処理されたゾルゲルシリカは、粒子表面のシラノール基量が低減されるだけでなく、粒子中に残存する分散媒が除去されている点からも好ましい。粒子中に残存する溶媒は、樹脂の充填剤として用いた場合、加熱を施すと気泡等を発生し収率低下の原因となる。特に、充填率が高い半導体封止材用途や液晶シール剤用途において顕著となる。したがって、特に半導体封止材用途や液晶シール剤用途に用いる表面処理ゾルゲルシリカの製造において、当該工程を設けることが好ましい。
 本実施形態における表面処理ゾルゲルシリカは、700℃で5時間加熱した際の加熱減量が通常、0.1~20%であるが、焼成が施されたものは、前記粒子中に残存する分散媒が除去されて焼き固められていることから、同加熱減量が通常、5%以下であり、特には3%以下であることが好ましい。
 前記焼成処理時の焼成温度は、低すぎると分散媒成分の除去が困難であり、高すぎるとシリカ粒子の融着が生じるため、300~1300℃が好ましく、更には600~1200℃で行うことがより好ましい。
 焼成時間については、残存する分散媒が除去されれば特に制限されないが、あまり長すぎると生産性が落ちるため、目的とする焼成温度まで昇温した後、0.5~48時間が好ましく、より好ましくは、2~24時間の範囲で保持し焼成を行えば十分である。
 焼成時の雰囲気も特に制限はされず、アルゴンや窒素などの不活性ガス下、または大気雰囲気下で行うことができる。
 該焼成工程より得られるゾルゲルシリカも、前述の通り個々の粒子が弱い力で凝集した凝集体の形態を成す乾燥粉末として得られる。
 前記焼成して得られた乾燥粉末は、公知の解砕手段により解砕処理することで更に凝集塊を低減させることができる。公知の解砕手段としては、例えば、ボールミルやジェットミル等が挙げられる。
 (7)焼成シリカ粒子表面処理工程
 前記焼成工程より得られたゾルゲルシリカ粒子の表面を、表面処理剤を用いて処理する。この表面処理は、前記(2)分散液シリカ粒子表面処理工程の表面処理が、(1)ゾルゲルシリカ分散液製造工程で得られた分散液中のゾルゲルシリカに施すため湿式で行っていたのに対して、乾式で実施することになる。このため多様な表面処理剤に対して効率的に処理を施すことができる。
 ただし、乾式の表面処理は湿式の表面処理に比較して、表面処理剤同士の架橋が激しくなり、強固な凝集塊の生成はより顕著になる。特に、前記(1)ゾルゲルシリカ分散液製造工程や(2)分散液シリカ粒子表面処理工程で生成した粗大独立一次粒子や強固な凝集塊を、(3)表面処理ゾルゲルシリカ分散液の湿式ろ過工程で先に除去していない場合には、当該焼成シリカ粒子に施す表面処理工程で、これら粗大粒子を起点として強固な凝集塊がより激しく生成するようになる。その結果、続く、焼成シリカ粒子の表面処理後の湿式ろ過工程で、前記目開が小さくなると目詰まりが生じ、その工業的実施が困難になる。
 <表面処理剤および表面処理剤量>
 前記表面処理剤としては、前記(2)分散液シリカ粒子表面処理工程で示した表面処理剤が好ましく使用できる。すなわち、シリコーンオイル、シランカップリング剤、シロキサン類やシラザン類から選択される少なくとも1種のものが好ましい。
 焼成シリカ粒子に対する表面処理は、前記の通り乾式で行うため、表面処理剤として樹脂を適用することも容易である。被覆樹脂としては、特に限定されるものではなく、前記説明したエポキシ基または(メタ)アクリル基を有する重合体が好ましく用いられる。
 被覆樹脂が、エポキシ基を有する重合体を用いる場合、エポキシ基を有するラジカル重合性単量体を含有する重合性組成物において、該エポキシ基含有ラジカル重合性単量体は、ゾルゲルシリカ100質量部に対して0.01~5質量部の範囲で用いるのが好ましく、特に0.1~1質量部の範囲で用いるのが好ましい。また、架橋剤を用いる場合は、エポキシ基含有ラジカル重合性単量体に対し、モル比で0.001~1の範囲で用いるのが好ましく、特に0.01~0.3の範囲で用いるのが好ましい。エポキシ基を有するラジカル重合性単量体を含有する重合性組成物には、必要に応じて、その他のラジカル重合性単量体や、重合開始剤、重合禁止剤、重合抑制剤、紫外線吸収剤等の添加剤を加えてもよい。
 前記その他のラジカル重合性単量体は、エポキシ基含有ラジカル重合性単量体が原料粉末に吸収若しくは吸着され易くするという目的、エポキシ基含有ラジカル重合性単量体が常温、常圧下で固体の場合にこれらを溶解せしめるという目的、或いは被覆樹脂の物性を改良するという目的で添加されるものである。好適に使用されるその他のラジカル重合性単量体としては、スチレン、α-メチルスチレン、ビニルトルエン、2,4-ジメチルスチレン、p-tert-ブチルスチレン、クロロメチルスチレン、p-クロロスチレン、ビニルナフタレン等の芳香族ビニル系の単量体類、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸トリトリデシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェノキシエチル、 (メタ)アクリル酸ベンジル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、2-ヒドロキシエチル(メタ)アクリレート、ジアセトンメタクリルアミド、(メタ)アクリロニトリル、メタクリロレイン(メタ)アクリル酸トリフロロメチル、(メタ)アクリル酸ペンタフロロエチル、(メタ)アクリル酸パーフロロブチル、(メタ)アクリル酸パーフロロ2-エチルヘキシル、(メタ)アクリル酸パーフロロオクチルエチル等の(メタ)アクリル系の単量体類、酢酸ビニル、メチルビニルケトン、ビニルピロリドン、エチルビニルエーテル、ジビニルスルホン、フタル酸ジアリル等が挙げられる。
 その他のラジカル重合性単量体の添加量は、エポキシ基含有ラジカル重合性単量体に対し、モル比で0.001~1の範囲で用いるのが好ましく、特に0.01~0.3の範囲で用いるのが好ましい。
前記重合開始剤としては、用いるラジカル重合性単量体に応じて、公知の重合開始剤を適宜選択して用いれば良いが、エポキシ基の開環を防ぐためラジカル型の重合開始剤を使用するのが必要である。それらの中でも、加熱により重合開始能を発現するものであることが、操作がより簡便であり特に好ましい。例えば、オクタノイルパーオキシド、ラウロイルパーオキシド、t-ブチルパーオキシ-2-エチルヘキサノエート、ベンゾイルパーオキシド、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシラウレート、t-ヘキシルパーオキシベンゾエート、ジ-t-ブチルパーオキシド等の有機過酸化物や、2,2,-アゾビスイソブチロニトリルや2,2,-アゾビス-(2,4,-ジメルバレロニトリル)等のアゾビス系重合開始剤等が好適な重合開始剤として挙げられる。これら重合開始剤は、エポキシ基含有ラジカル重合性単量体100質量部に対して、0.1~20質量部、好ましくは0.5~10質量部である。前記その他のラジカル重合性単量体を添加する場合、その種類や添加量に応じて重合開始剤の量を増加することが好ましい。
 また必要に応じて、重合禁止剤や重合抑制剤、紫外線吸収剤等の添加剤を用いても良い。これらは特に限定されることなく、公知のものが使用できる。
 エポキシ基を有する重合体が固体の場合や、粘度が高い場合には、少量の溶媒を用いて液状のものとすることも可能である。この場合の溶媒として、エポキシ基を開環させず、重合に影響を及ぼさない溶媒であれば特に限定せず使用できる。具体的には有機溶媒が好ましく、特にアルコール類が好適に用いられる。具体的には、メチルアルコール、エチルアルコール、1-プロピルアルコール等が挙げられる。
 被覆樹脂が、(メタ)アクリル基を有する重合体を用いる場合、(メタ)アクリル基・エポキシ基含有単量体を含有する重合性組成物において、該(メタ)アクリル基・エポキシ基含有単量体は、ゾルゲルシリカ100質量部に対して0.01~5質量部の範囲で用いるのが好ましく、特に0.1~5質量部の範囲で用いるのが好ましい。
 また、架橋剤を用いる場合は、エポキシ基含有ラジカル重合性単量体に対し、モル比で0.001~1の範囲で用いるのが好ましく、特に0.01~0.3の範囲で用いるのが好ましい。
 (メタ)アクリル基・エポキシ基含有単量体を、エポキシ硬化剤の共存下で重付加反応させる場合において、エポキシ硬化剤は特に制限されず、公知のものが好適に使用できる。一例を示すと、有機酸ジヒドラジド化合物、イミダゾール及びその誘導体、芳香族アミン、ジシアンジアミド等が挙げられる。これらのうち一種類を単独で使用してもよく、2種類以上を組み合わせて使用してもよい。エポキシ硬化剤の量は使用するエポキシ硬化剤の付加官能基当量に応じて決定すればよい。一般的には、(メタ)アクリル基・エポキシ基含有単量体100質量部に対して20~200質量部、好ましくは40~100質量部である。
 前記(メタ)アクリル基・エポキシ基含有単量体を含有する重合性組成物は、必要に応じて、エポキシ樹脂や硬化促進剤等の添加剤を加えても良い。
 エポキシ樹脂は公知のものを特に制限なく使用することができる。一例を示すと、ビスフェノールA、ビスフェノールF等のビスフェノール型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂等が挙げられる。また、これら化合物にはモノマーやオリゴマーが含まれる。これらは単独で用いてもよいし、2種類以上を組み合わせて使用してもよい。エポキシ樹脂の量は使用するエポキシ樹脂のエポキシ当量に応じて決定すれば良いが、一般的に、(メタ)アクリル基・エポキシ基含有単量体100質量部に対して10~500質量部であることが好ましく、50~300質量部であることがより好ましい。
 エポキシ樹脂を加えることにより、該(メタ)アクリル基を有する重合体中のエポキシ基が増加し、結果として重合反応部が増加するため、重合反応性、反応率が高くなり、より強固なエポキシ重合体が生成できる
 前記硬化促進剤は公知のものを特に制限なく使用することができる。一例を示すと、イミダゾール、2-メチルイミダゾール等のイミダゾール系硬化促進剤、トリフェニルホスフィン、トリス-p-メトキシフェニルホスフィン、トリシクロヘキシルホスフィン等のホスフィン誘導体、1、8-ジアザビシクロ(5.4.0)ウンデカ-7-エン等のシクロアミジン誘導体等が挙げられる。硬化促進剤を加える場合、硬化促進剤の量は(メタ)アクリル基・エポキシ基含有単量体100質量部に対して好ましくは0.1~10質量部、より好ましくは0.5~5質量部である。硬化促進剤を添加することにより、反応時間が短縮でき生産効率を向上することができる。また、(メタ)アクリル基を有する重合体中にエポキシ樹脂を添加する場合は、エポキシ樹脂のエポキシ当量及び添加量から硬化促進剤の添加量を決定すればよい。一般的にエポキシ樹脂100質量部に対して硬化促進剤の添加量は1~50質量部程度である。
 前記被覆樹脂を用いてゾルゲルシリカ粒子の表面を処理する場合、必ずしもその全面を被覆する必要はなく、表面の一部が被覆樹脂により被覆されていればよい。しかしながら、被覆樹脂の安定性の観点から、表面の50%以上、より好ましくは70%以上、最も好ましくは全面が被覆されていることが好適である。また、被覆の状態は、該核粒子の表面に被覆樹脂が容易に脱離しない形で固定化されていれば特に限定されず、例えば核粒子が細孔を有している場合には、該細孔の壁面を覆った状態、あるいは該細孔を埋めるように存在している状態、あるいはそれらが組み合わさった状態で存在していてもよい。
 被覆樹脂が有する官能基量は、樹脂被覆表面処理ゾルゲルシリカ粒子表面積1m当り0.01~25(μmol)、特に0.1~15(μmol)であるのが好適である。
 被覆樹脂の使用割合は特に制限されないが、少なすぎると表面処理が不十分となり、多すぎると凝集が生成してしまうため、使用するゾルゲルシリカ粉末100質量部に対して、0.05~10質量部とすることが好ましく、0.1~2質量部とすることがより好ましい。
 前記の表面処理剤は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。例えば、被覆樹脂で表面処理を行う場合、予めシラザン類で表面処理し、シリカ表面のシラノール基を低減しておくことで、エポキシ基あるいは(メタ)アクリル基の安定性が向上するため好ましい。
 前記のような表面処理剤のうち、得られるゾルゲルシリカの流動性が優れることから、シランカップリング剤及びシラザン類よりなる群から選択される少なくとも1種を使用することが好ましく、シラザン類を使用することがより好ましい。
 <表面処理装置>
 本実施形態において、前記、ゾルゲルシリカと各種表面処理剤を混合してシリカ表面を乾式処理する。このときの前記混合の手段は、特に限定されないが、駆動部を有する回転体に因らない混合手段であることが好ましい。具体的には、容器本体の回転や揺動による混合やエアーによる気流混合などが挙げられる。このような混合手段を有する混合装置として、容器本体の回転や揺動により混合されるVブレンダー、ロッキングミキサーやダブルコーン型の混合装置、または、エアーにより気流混合するエアーブレンダー等が挙げられる。
 一方で、駆動部を有する回転体に因る混合手段である場合、ゾルゲルシリカが攪拌・混合羽根に衝突して受ける攪拌エネルギーが通常50J以上と大きいため、凝集粒子が生成しやすくなる。具体的な装置としては、攪拌羽根、混合羽根等が設置された混合装置であり、ヘンシェル型混合装置やレーディゲミキサー等が挙げられる。
 更に、本実施形態で用いる混合装置には、ゾルゲルシリカの表面処理前後の粒径を同等のものとするための手段として少なくとも1枚の解砕羽根を備えることが好ましい。当該解砕羽根は、解砕手段としての回転軸を有する回転体であって、軸が羽根の重心を通る、もしくは軸を羽根の一端とする、軸に対して垂直方向に伸びる少なくとも1枚の羽根である。同軸上に複数枚の解砕羽根を設置する場合は、混合容器の内壁、及び他の解砕羽根との間隙が十分であれば回転軸上の何れの箇所にでも設置することができ、一箇所に複数枚であっても、複数箇所に複数枚であってもよく、混合装置の内容量、ゾルゲルシリカの処理量、及び下記に示す解砕エネルギーとを勘案して、1本の回転軸に1~4枚設置することが好ましい。本実施形態において、前記解砕羽根の解砕エネルギーは0.3~10Jが好ましい。0.1J未満では凝集粒子を十分に解砕することができず凝集粒子が残存してしまう。一方、20Jを超えるとゾルゲルシリカが再凝集しやすくなるという問題が生じる。ここで、前記解砕エネルギーは、前記混合手段として用いられる攪拌・混合羽根の攪拌エネルギーが50J以上であるのに対して格段に小さく、従って、本実施形態における解砕羽根は、混合手段としての駆動部を有する回転体、即ち、攪拌・混合羽根とは明確に区別される。
 前記解砕エネルギーの算出方法の例について以下に具体的に述べる。前記解砕エネルギーは、回転軸1本毎に算出され、まず解砕羽根の慣性モーメントを求める。
 (軸が羽根の重心を通る場合)
 解砕羽根の、回転軸に対して垂直方向となる長辺の長さをa(m)、短辺の長さをb(m)、厚さをt(m)、及び重量をM(kg)とし、同軸上に設置された羽根の枚数をmとすると、軸が羽根の重心を通る羽根の慣性モーメント(Iz)は下記(式1)より算出される。
 Iz(kg・m)=(a +b)×M/12×m・・・(式1)
  (軸を羽根の一端とする場合)
 解砕羽根の、回転軸に対して垂直方向となる長辺の長さをa(m)、短辺の長さをb(m)、厚さをt(m)、及び重量をM(kg)とし、同軸上に設置された羽根の枚数をnとすると、軸を羽根の一端とする羽根の慣性モーメント(Iz)は下記(式2)より算出される。
 Iz(kg・m)=(a +b+12(a/2))×M/12×n・・・(式2)
 (軸が重心を通る羽根及び軸を一端とする羽根が混在する場合)
 解砕羽根の慣性モーメント(Iz)は下記(式3)より算出する。
 Iz(kg・m)=Iz+Iz・・・(式3)
 次に、解砕エネルギーE(J)は、(式1)、(式2)、(式3)より算出された慣性モーメントと解砕羽根の回転数ω(rad/s)を用いて、下記(式4)より算出される。
 解砕エネルギー E(J)=Iz×ω/2・・・・・(式4)
 また前記以外の形状の解砕羽根を有する場合にも、各々、その形状に応じて、公知の数式により解砕エネルギーを求めることができる。
 本実施形態における混合装置において、回転軸1本あたりの解砕エネルギーが前記範囲となればよいのであって、解砕羽根のついた回転軸を少なくとも1本設置していればよく、複数本設置することもできその際には、各々の回転軸が有する解砕羽根の解砕エネルギーを、0.3~10Jの範囲とすればよい。
 前記回転軸、及び解砕羽根の材質は、特に限定されないが、ステンレススチール等の金属、アルミニウム、ポリカーボネート、ポリプロピレン、アクリル等の樹脂類が挙げられ、なかでも金属、特にステンレススチールが、耐摩耗性に優れており好ましい。
 前記解砕羽根の形状は特に限定されず、公知のものが使用できる。例えば、水平形、L字形、円柱型等が挙げられる。
 解砕羽根の大きさは装置内に納まる大きさであって、解砕エネルギーが前記範囲となるのであれば特に制限されないが、回転中に内容物より局所的に負荷がかかった場合であっても、壁面や、他の解砕羽根に衝突しないよう十分な間隙を設けられて設置されればよい。
 該解砕羽根の長辺の長さは、短すぎると解砕効果が小さくなる(必要な解砕エネルギーを得るために高回転を要する)が、長すぎると回転するための大きな動力を要する。また、解砕羽根の長辺の長さが長いほど、解砕エネルギーが大きくなって前記範囲を超えてしまい、ゾルゲルシリカが再凝集しやすくなるため、解砕羽根の長辺の長さは、300mm以下としてやることが好ましい。
 砕羽根の厚さは特に制限されないが、1~5mmであることが好ましい。
 次に、解砕羽根の回転数も前記式の通り解砕エネルギーと直接関係してくる。前記した解砕羽根の大きさにもよるが、50~300(rad/s)であることが好ましい。回転数が遅すぎると解砕効果が小さくなり、逆に310(rad/s)を超えると解砕エネルギーが10Jを超えやすくなる。また回転数を小さい値とすることにより、機械的負荷が抑制される傾向にある。
 したがって、前記(式1)~(式4)等より得られる回転軸1本あたりの解砕エネルギーが0.3~10Jとなるよう、解砕羽根の材質、即ち重量を勘案し、長辺の長さ、短辺の長さ、厚さ、解砕羽根の枚数、及び回転数をそれぞれ前記範囲内で、相対的に選択すればよい。
 前記解砕羽根の回転軸の設置箇所は、解砕羽根が装置内の接粉部にあれば特に制限されない。たとえば、Vブレンダー、ロッキングミキサー、またはダブルコーン型の混合装置を用いる場合であれば、混合装置内の空間の何れの箇所にあっても粉末と接することが可能なので、胴部の内側面、および両端部の内壁面であれば何れの箇所にも設置することができる。エアーブレンダーを用いる場合は、気流によるゾルゲルシリカの流れを考慮し、解砕羽根が効率よく粉末に接触するように設置すればよいのであって、胴部の内側面、および天井部の内壁面の何れの箇所にも設置することができる。
 前記混合に用いる混合装置の大きさは特に制限されないが、一般に、内容積が10L~4mのものが好適に使用される。
 <表面処理法>
  前記表面処理装置を用いて、乾式で表面処理する方法ついて説明する。
 先ず、前記表面処理装置に、前記ゾルゲルシリカを供給する。ゾルゲルシリカの供給量は、供給されたゾルゲルシリカが混合可能な範囲であれば特に制限されないが、一般的な処理効率を考慮すれば、混合装置の内容積に対して好ましくは1~6割、更に好ましくは3~5割である。
 次に、ゾルゲルシリカが供給された前記混合装置に前記表面処理剤及び/又は被覆樹脂を供給する。該表面処理剤の供給量は、それぞれ前述のとおりである。
 前記表面処理剤は溶媒で希釈した後にゾルゲルシリカと混合してもよい。用いる溶媒は、表面処理剤が溶解するものであれば特に限定されない。表面処理剤の官能基に影響を及ぼさないものであれば特に制限されず、公知の溶媒が使用できる。具体的には有機溶媒が好ましく、特にアルコール類が好適に用いられる。具体的には、メチルアルコール、エチルアルコール、1-プロピルアルコール等が挙げられる。溶媒で希釈する際の希釈率は特に限定されないが、一般的に2~5倍程度希釈して用いられる。
 前記表面処理剤の供給は、ポンプ等を用いて滴下もしくは噴霧により供給することが好ましい。前記噴霧に際しては公知のスプレーノズル等が好適に使用できる。
 表面処理剤の供給方法は、一度に供給してもよいし、混合しながら、連続的、あるいは断続的に供給してもよい。特に処理量が多い場合には、混合しながら連続的、あるいは断続的に供給することが好ましい。
 表面処理剤を連続的、あるいは断続的に供給する場合、表面処理剤の供給速度は特に限定されないが、表面処理剤の供給量等を考慮して決定すればよい。一般的には、ゾルゲルシリカ粉末100g当たり1~20ml/minで供給されることが好ましい。特に表面処理剤の供給量が多い場合は、供給速度が遅いと処理時間が長くなるため生産性に劣り、表面処理剤を一度に供給もしくは、供給速度が速すぎると表面処理剤の液滴が大きくなり、ゾルゲルシリカ中に凝集粒子が生成しやすくなる。
 また、混合装置内の雰囲気は、特に限定されないが、窒素、ヘリウム、アルゴン等の不活性ガスが好ましく使用される。そうすることにより、水分による加水分解や酸素による酸化分解を抑制することができる。
 前記表面処理剤を供給し、ゾルゲルシリカと混合する際の温度条件は、特に限定されないが、温度が高すぎると表面処理剤が重合してしまうことや表面処理剤が急激に気化してしまうため、一般には-10~40℃程度である。
 前記混合は、表面処理剤がゾルゲルシリカに均一に混合されればよいのであって、混合にかかる時間は処理するゾルゲルシリカの処理量と用いる混合装置の能力に応じて適宜決定すればよい。例えば、内容積340Lのダブルコーン型混合機を用いて、ゾルゲルシリカ粉末を80kg処理する場合、3時間以内で十分に混合される。
 通常、該ゾルゲルシリカと表面処理剤との混合時において、表面処理剤の偏在や強い混合エネルギーにより凝集粒子が生成するが、駆動部を有する回転体に因らない混合手段とした場合、ゾルゲルシリカにおける凝集粒子の生成が抑制される。更に混合装置内に開催羽根を設置することにより、生成した凝集粒子は、強固な凝集粒子となる前に該解砕羽根により効率よく解砕されるため、凝集粒子が極めて低減されたゾルゲルシリカと表面処理剤との混合物が得られる。また、斯様な混合装置を用いた場合には、表面処理剤が過剰に供給された場合であっても、表面処理剤が粒子表面に一様に処理され、かつ、凝集粒子の生成が低減された表面処理ゾルゲルシリカが得られる。
 次に、凝集粒子が低減されたゾルゲルシリカと表面処理剤との混合物を加熱処理してゾルゲルシリカ表面に表面処理剤を被覆させる。前記加熱処理は、加熱手段を有する混合装置を用いる場合、混合しながら熱を加え加熱処理を行うこともできる。もしくは、表面処理剤と十分に混合されたゾルゲルシリカを取り出し、別の加熱装置にて加熱し、混合手段なしに加熱処理を行うこともできる。
 後者において、別の加熱装置内の雰囲気ガスは、特に制限されないが、前記混合装置内と同様に窒素、ヘリウム、アルゴン等の不活性ガス雰囲気とすることが好ましい。
 前記加熱処理を行う温度は、低すぎると反応の進行が遅くなるため生産効率が低下し、高すぎると表面処理剤の分解や急速な重合反応による凝集の生成を促進してしまう。従って、使用する表面処理剤にもよるが、一般に、40~300℃、好ましくは80~250℃で行うのが良い。この温度条件範囲において混合装置内おける表面処理剤の蒸気圧が1kPa以上であることが好ましく、さらには表面処理剤の蒸気圧が10kPa以上となる温度で加熱処理することが好ましい。このゾルゲルシリカの表面処理において、混合装置内の圧力は常圧、加圧、負圧のいずれでもよい。
 前記加熱処理時間は使用する表面処理剤の反応性に応じて適宜決定すればよい。通常24時間以内で十分な反応率を得ることが可能である。
 (8)焼成シリカ湿式ろ過・固液分離・乾燥工程
 前記焼成シリカ粒子表面処理工程より得られた表面処理ゾルゲルシリカには、癒着粒子や凝集塊等が含まれるため、これらを湿式ろ過により除去する。具体的には、表面処理ゾルゲルシリカを溶媒に分散させ、該分散液を湿式でろ過することにより粗大粒子を除去する。これにより、ろ材上に、表面処理反応残渣等とともに前記粗大粒子が分離され、粗大粒子が除去されたシリカ分散液をろ液として回収する。
 前記表面処理ゾルゲルシリカを分散液とするために使用する溶媒は、表面処理ゾルゲルシリカ表面の修飾基に影響を及ぼさない公知の溶媒が使用できる。具体的には、水やアルコール類などが挙げられ、表面処理ゾルゲルシリカが疎水性を示す場合には、アルコール類が好適に使用できる。
 当該表面処理ゾルゲルシリカ粒子分散液中に含まれる表面処理ゾルゲルシリカ粒子の割合が多すぎると、分散液の粘度が高くなるため、取り扱いが困難となる。一方、分散液中の表面処理ゾルゲルシリカ粒子の割合が少なすぎると、1回の操作で得られる表面処理ゾルゲルシリカ粒子の量が少なくなり、不経済である。このような観点から、得られる表面処理ゾルゲルシリカ粒子分散液中のシリカ粒子濃度は、1~60質量%とすることが好ましく、特に25~50質量%とすることが好ましい。該分散液中における表面処理ゾルゲルシリカ粒子の割合が多すぎて取扱い性に難がある場合には、次の分散液のろ過工程の前に、溶媒を添加して濃度調整を行うことが好ましい。
 このようにして表面処理された前記焼成シリカ粒子の分散液が得られたならば、これを用いて、前記「(3)表面処理ゾルゲルシリカ分散液の湿式ろ過工程」と同様にして湿式ろ過を実施すれば良い。そして、得られたろ液から、表面処理ゾルゲルシリカを固液分離して乾燥すれば良い。その方法も、前記「(5)固液分離・乾燥工程」で説明した方法と同様に実施すれば良い。
 以下、本実施形態における実施例を挙げて具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。
 以下実施例、比較例で評価に用いる各物性の評価方法は以下の通りである。
 (平均粒子径、変動係数及びレーザー回折散乱法における5μm以上の粗粒量)
 50mLのガラス瓶にゾルゲルシリカ粉末又は表面処理ゾルゲルシリカ粉末約0.1gを電子天秤ではかりとり、蒸留水あるいはエタノールを約40ml加え、超音波ホモジナイザー(BRANSON製、Sonifier250)を用いて、40W・10分の条件で分散させた後、表面処理ゾルゲルシリカ粉末の平均粒子径(μm)及び変動係数をレーザー回折散乱法粒度分布測定装置(ベックマンコールター社製、LS-230)により測定した。ここで言う平均粒子径(μm)は体積基準累積50%径を意味する。
 また、レーザー回折散乱法における5μm以上の粗粒に関し、5μm以上のシグナルの有無を確認した。
 (コールターカウンター法における5μm、3μm及び20μm以上の粗粒量)
 50mLのガラス瓶を5個準備し、それぞれに表面処理ゾルゲルシリカ粉末を1gずつ電子天秤ではかりとり、エタノールを19gずつ加え、超音波ホモジナイザー(BRANSON製、Sonifier250)を用いて、40W・10分の条件で分散させて、測定試料とした。コールターカウンター(ベックマンコールター社製、Multisizer3)により5μm、3μmの測定においてはアパチャー径30μm、20μmの測定においてはアパチャー径50μmを用いて、表面処理ゾルゲルシリカ粒子の個々の粒子径を測定した。このとき、1試料あたりの測定粒子数を約5万個とし、5試料合わせて約25万個について測定した。そのうち、粒径が5μm以上の粒子数、粒径が3μm以上の粒子数、及び粒径が20μm以上の粒子数をそれぞれ算出し、総測定個数に対するそれぞれの粗粒量(ppm)とした。
 (加熱減量)
 示差熱熱重量同時測定装置(TG-DTA、リガク社製、TG8120)を用い加熱減量を求めた。具体的には、表面処理ゾルゲルシリカ粉末を約10mg電子天秤ではかりとり、試料ホルダーに入れ、昇温速度20℃/minで700℃まで加熱し、700℃で5時間保持した。加熱前後の重量差から加熱減量を算出した。
 (球形度)
 表面処理ゾルゲルシリカ粒子の形状をSEM(日本電子データム社製、JSM-6060)で観察し、球形度を求めた。具体的には、1000個以上のシリカ粒子について観察し、画像処理プログラム(Soft Imaging System GmbH製、AnalySIS)を用いて各々の粒子について球形度を計測し、その平均を求めた。なお、球形度は次式により算出した。
 球形度=4π×(面積)/(周囲長)
 (α線量)
 低レベルα線測定装置(住化分析センター製、LACS-4000M)を用いて表面処理ゾルゲルシリカ粉末のα線量(c/(cm・h))を測定した。測定は試料面積1000cmで実施した。
 (不純物量)
 表面処理ゾルゲルシリカの不純物量を以下の通り測定した。
U及びTh:表面処理ゾルゲルシリカ粉末をフッ硝酸(フッ酸:硝酸が5:1の混合液)で加熱溶解させ、ICP質量分析法(アジレント・テクノロジー製、Agilent4500)で測定した。
 ICP発光分光光度法、原子吸光光度法およびイオンクロマト法により、鉄、アルミニウム、クロム、ニッケル、ナトリウムおよび塩素の元素について、定量した。
 Fe、Al、Na、K、Ca、Cr、Ni、Ti:表面処理ゾルゲルシリカ粉末をフッ硝酸で加熱溶解させ、ICP発光分析法(サーモサイエンティフィック製、iCAP 6500 DUO)で測定した。
 Cl:表面処理ゾルゲルシリカ粉末を超純水と混合し、加圧下100℃で熱処理する。処理後の溶液中のCl濃度(ppm)をイオンクロマトグラフ法(日本ダイオネクス製、ICS-2100)で測定した。
 (比表面積の測定)
 柴田科学器械工業製比表面積測定装置SA-1000を用い、窒素吸着量によるBET一点法により比表面積(m/g)を測定した。
 (表面シラノール基量)
 焼成後の表面処理前のゾルゲルシリカ粉末を25℃、相対湿度80%の雰囲気中に45日間放置した後、該試料を120℃で12時間乾燥した。乾燥後得られた試料をメタノール溶媒中に分散させて、京都電子工業社製カールフィッシャー水分計MKS-210を使用して水分量を測定した。滴定試薬には、「HYDRANAL COMPOSITE 5K」(Riedel-deHaen社製)を使用した。
 表面シラノール基量は、前記の方法で測定された水分量と前記比表面積から下記の式により算出した。
 表面シラノール基量(個/(nm))=668.9×水分量(質量%)÷比表面積(m/g)
 (表面炭素量)
 燃焼酸化法(堀場製作所社製、EMIA-511)により表面処理ゾルゲルシリカの表面炭素量(質量%)を測定した。具体的には、表面処理ゾルゲルシリカ資料を酸素雰囲気中で1350℃に加熱し、得られた炭素量を試料1g当たりに換算して求めた。なお、測定に供する表面処理ゾルゲルシリカは、前処理として80℃で加熱し、系内を減圧にすることによって空気中で吸着した水分等を除いた後、前記炭素含有量の測定に供する。斯様にして求められた表面処理ゾルゲルシリカの炭素量の値から、表面処理をせずに製造したゾルゲルシリカについて同様の炭素含有量の測定を実施して得られた値を減ずることにより、上記表面処理ゾルゲルシリカの表面炭素量を求めた。
 (表面重合性基量)
 シリカ粒子表面の処理が、重合性基を有するシリコーンオイル、シランカップリング剤、シロキサン類やシラザン類から選択されるものである場合には、表面重合性基量は、表面炭素量を用い、次式から算出した。
 表面重合性基量(μmol/m)=表面炭素量/100/(12×n)/(比表面積)×(表面処理剤1分子が有する重合性基の数)
ここでnは表面処理剤1分子中の炭素数〔(加水分解性基(メトキシ基等)に含まれるものは除く〕を表す。また、重合性基を有するシリコーンオイルの場合、表面処理剤1分子が有する重合性基の数は平均値を用い、表面処理剤1分子中の炭素数は平均分子量を基に求める。
 表面重合性基がエポキシ基を有する重合体由来である場合は、JIS-K-7236(エポキシ樹脂のエポキシ当量の求め方)に則り、表面処理ゾルゲルシリカの単位質量あたりのエポキシ基量(μmol/g)を測定し、次にこの値を該表面処理ゾルゲルシリカの比表面積で除することにより算出(μmol/m)した。
 表面重合性基が(メタ)アクリル基を有する重合体由来の場合は、(メタ)アクリル基量は、まず、ウィイス法により(メタ)アクリル基中のC=C結合量を測定して、表面処理ゾルゲルシリカの単位質量当りのメタ)アクリル基量(μmol/g)を求め、次にこの値を該表面処理ゾルゲルシリカの比表面積で除することにより算出(μmol/m)した。具体的には下記の手順による。
 25mLサンプル管に、(メタ)アクリル基含有重合体で被覆されたゾルゲルシリカ〔以下、(メタ)アクリル基含有重合体被覆シリカともいう〕を1g測り取り、クロロホルム3mL、ウィイス試薬(0.1mol/L ICl酢酸溶液)200μL~700μLを加えて、3時間遮光してミックスローターにて攪拌した。次に、100g/Lヨウ化カリウム水溶液50μLと水4mLを加え、よく手で振り混ぜた。最後にこれを0.01mol/Lチオ硫酸ナトリウム水溶液にて滴定し、(メタ)アクリル基含有重合体被覆シリカ1g中の(メタ)アクリル基量を求めた。
 また元々、ウィイス試薬に含まれるヨウ素を求めるために、同様に(メタ)アクリル基含有重合体被覆シリカを入れずに空試験を行った。
 (メタ)アクリル基含有重合体被覆シリカの単位質量当たりの(メタ)アクリル基量は次式を用いて求めた。
 A=(B-C)×D×10-3/2
 A:(メタ)アクリル基含有重合体被覆シリカ1g当たりの(メタ)アクリル基量(mol/g)
 B:空試験に用いたチオ硫酸ナトリウム溶液の量(mL)
 C:滴定に用いたチオ硫酸ナトリウム溶液の量(mL)
 D:チオ硫酸ナトリウムの濃度(0.01mol/L)
 (粘度測定用樹脂組成物調製法)
 表面処理ゾルゲルシリカ粉末10gをビスフェノールA+F型エポキシ樹脂(新日鉄住金化学製、ZX-1059)40gに加え、手練りした。手練りした樹脂組成物を自転公転式ミキサー(THINKY製、あわとり練太郎 AR-500)により予備混練した(混練:1000rpm、8分、脱泡:2000rpm、2分)。予備混練後の樹脂組成物を三本ロール(アイメックス社製、BR-150HCV ロール径φ63.5)を用いて混練した。混練条件は、混練温度を室温、ロール間距離を20μm、混練回数を5回として行った。
 (粘度)
 前記混練樹脂組成物をレオメータ(HAAKE社製、ReoStress)により回転速度2s-1における、初期粘度(η1)及び1週間後の粘度(η2)を測定した。なお、樹脂組成物は25℃恒温水槽内で保管した。
 (粘度経時変化率)
 樹脂組成物作製時の粘度(η1)及び1週間後の粘度(η2)を用い、次式から粘度経時変化率を算出した。
 粘度経時変化率[%]=((η2/η1)-1)×100
 (フローマーク)
 表面処理ゾルゲルシリカ粉末25gをビスフェノールA+F型混合エポキシ樹脂(新日鉄住金化学製、ZX-1059)25gに加え、手練りした。手練りした樹脂組成物を自転公転式ミキサー(THINKY製、あわとり練太郎 AR-500)により予備混練した(混練:1000rpm、8分、脱泡:2000rpm、2分)。予備混練後の樹脂組成物を三本ロール(アイメックス社製、BR-150HCV ロール径φ63.5)を用いて混練した。混練条件は、混練温度を室温、ロール間距離を20μm、混練回数を5回として行った。
 予め30μmのギャップになるように2枚のガラスを重ねて、100℃に加熱し、作製した混練樹脂組成物の高温侵入性試験を行った。混練樹脂組成物が20mmに到達するまで、もしくは侵入が止まるまで観察し、外観目視によるフローマークの有無を、以下の基準により評価した。
      無:フローマークは全く認められない
      粗方無:フローマークはほとんど認められない
      有:フローマークが有意に認められる
 実施例1-1
 <製造方法(I)>
 (1)ゾルゲルシリカ分散液製造工程
 内容積1000Lのジャケット付きガラスライニング製反応器(内径1200mm)に、マックスブレンド翼(翼径345mm)を有した反応器を使用し、反応媒体としてメタノール75kg、イソプロパノール30kgおよびアンモニア水(25質量%)25kgを仕込み(反応媒体量:150L)、反応温度を40℃に設定し、52rpmで攪拌した。その後、原料としてテトラエトキシシラン3.0kgとメタノール7.0kg、イソプロパノール2.0kgの混合物を反応媒体に投入し、シリカの種粒子を作製した。次にテトラメトキシシラン350kgとメタノール100kgの原料を51mm/sの吐出線速度で反応媒体中に供給し、同時に150kgのアンモニア水(25質量%)を0.8kg/minの速度で供給し、ゾルゲルシリカ粒子を成長、合成させた。このときの無次元混合時間nθmは78であった。
 (2)分散液シリカ粒子表面処理工程
 供給終了後1時間攪拌を続けた後、表面処理剤としてヘキサメチルジシラザン(信越シリコーン製、SZ-31、以下、HMDS)をゾルゲル粒子分散液中に4450g(理論合成シリカ量に対して200μmol/g)投入し、投入終了後2時間攪拌を続け、表面処理を施した。
 (3)ゾルゲルシリカ分散液湿式ろ過工程
 2時間経過後、ろ過孔径3μmのポリプロピレン製ろ過フィルターを通過させ、粗大粒子を除去した。その後、ドライアイス3kgを投入後、20時間放置した。
 (4)凝析工程
 20時間経過した段階でゾルゲルシリカ粒子は沈降しており、定量ろ紙(保留粒径5μm)を使用し、固液分離後、190kg(シリカ濃度74質量%)の濃縮物を得た。濾液は透明であり、ろ液漏れは確認されなかった。
 (5)固液分離・乾燥工程
 得られたゾルゲルシリカ濃縮物を100℃で15時間減圧乾燥を行い、132kgの表面処理ゾルゲルシリカ粉末を得た。
 得られた表面処理ゾルゲルシリカ粉末は、平均粒子径が0.8μm、変動係数26%、球形度0.96であった。レーザー回折散乱法において5μm以上の粗粒は検出されなかった。該表面処理ゾルゲルシリカ粉末のコールターカウンター法における5μm及び3μm以上の粗粒量は4ppm未満及び8ppmであった。目開き20μmの試験用篩を用いた湿式篩法での篩上残量は4ppm未満であった。加熱減量は17%であり、表面炭素量は0.09質量%であった。該表面処理ゾルゲルシリカのエポキシ粘度初期(η1)は3.7Pa・s、エポキシ粘度1週間後(η2)は3.9Pa・s、粘度経時変化は5%であった。加えて、フローマークは観測されなかった。また、該表面処理ゾルゲルシリカ粉末のα線量は0.002c/(cm・h)、不純物量は、Uが0.01ppb、Thが0.01ppb、Feが0.1ppm、Alが0.1ppm、Naが0.2ppm、Kが0.1ppm、Caが0.1ppm、Crが0.0ppm、Niが0.0ppm、Tiが0.0ppm、Clが0.1ppmであった。
 本実施例における(2)分散液シリカ粒子表面処理工程での処理条件を表1に示した。また、得られた表面処理シリカを用いて、前記の方法に従って各種測定を行った結果のうち、α線量及び不純物量については表2に、その他物性については表3に示した。
 実施例1-2
 <製造方法(I)>
 実施例1の(2)の工程において、表面処理剤をフェニルトリメトキシシラン(信越シリコーン製、KBM-103、以下、PhTS)に変え、ゾルゲル粒子分散液中に2720g(理論合成シリカ量に対して100μmol/g)投入した。それ以外は実施例1-1と同様に(1)~(5)の工程を実施した。
 得られた表面処理ゾルゲルシリカ粉末は、平均粒子径が0.8μm、変動係数24%、球形度0.96であった。レーザー回折散乱法において5μm以上の粗粒は検出されなかった。該表面処理ゾルゲルシリカ粉末のコールターカウンター法における5μm及び3μm以上の粗粒量は共に4ppm未満であった。目開き20μmの試験用篩を用いた湿式篩法での篩上残量は4ppm未満であった。加熱減量は19%であり、表面炭素量は0.47質量%であった。該表面処理ゾルゲルシリカのエポキシ粘度初期(η1)は3.1Pa・s、エポキシ粘度1週間後(η2)は3.2Pa・s、粘度経時変化は3%であった。加えて、フローマークは観測されなかった。また、該表面処理ゾルゲルシリカ粉末のα線量は0.002c/(cm・h)、不純物量は、Uが0.02ppb、Thが0.01ppb、Feが0.1ppm、Alが0.1ppm、Naが0.1ppm、Kが0.1ppm、Caが0.1ppm、Crが0.0ppm、Niが0.0ppm、Tiが0.0ppm、Clが0.1ppmであった。
 本実施例における(2)分散液シリカ粒子表面処理工程での処理条件を表1に示した。また、得られた表面処理シリカを用いて、前記の方法に従って各種測定を行った結果のうち、α線量及び不純物量については表2に、その他物性については表3に示した。
 実施例1-3
 <製造方法(I)>
 実施例1の(2)の工程において、表面処理剤をアクリロキシプロピルトリメトキシシラン(信越シリコーン製、KBM-5103、以下、AcPS)に変え、ゾルゲル粒子分散液中に970g(理論合成シリカ量に対して30μmol/g)投入した。それ以外は実施例1-1と同様に(1)~(5)の工程を実施した。
 得られた表面処理ゾルゲルシリカ粉末は、平均粒子径が0.8μm、変動係数27%、球形度0.95であった。レーザー回折散乱法において5μm以上の粗粒は検出されなかった。該表面処理ゾルゲルシリカ粉末のコールターカウンター法における5μm及び3μm以上の粗粒量は4ppm未満及び8ppmであった。目開き20μmの試験用篩を用いた湿式篩法での篩上残量は4ppm未満であった。加熱減量は17%であった。表面炭素量は0.17質量%であり、該表面炭素量から計算した表面重合性基量は6μmol/gであった。該表面処理ゾルゲルシリカのエポキシ粘度初期(η1)は4.2Pa・s、エポキシ粘度1週間後(η2)は4.4Pa・s、粘度経時変化は5%であった。加えて、フローマークは観測されなかった。また、該表面処理ゾルゲルシリカ粉末のα線量は0.002c/(cm・h)、不純物量は、Uが0.01ppb、Thが0.01ppb、Feが0.1ppm、Alが0.0ppm、Naが0.2ppm、Kが0.1ppm、Caが0.1ppm、Crが0.0ppm、Niが0.0ppm、Tiが0.0ppm、Clが0.1ppmであった。
 本実施例における(2)分散液シリカ粒子表面処理工程での処理条件を表1に示した。また、得られた表面処理シリカを用いて、前記の方法に従って各種測定を行った結果のうち、α線量及び不純物量については表2に、その他物性については表3に示した。
 比較例1-1
 <製造方法(I)>
 実施例1-1の(3)の工程において、分散液の湿式ろ過を実施しなかった。それ以外は実施例1-1と同様に(1)~(5)の工程を実施した。
 得られた表面処理ゾルゲルシリカ粉末は、平均粒子径が0.8μm、変動係数29%、球形度0.95であった。レーザー回折散乱法において5μm以上の粗粒は検出されなかった。該表面処理ゾルゲルシリカ粉末のコールターカウンター法における5μm及び3μm以上の粗粒量は180ppm及び25400ppmであった。目開き20μmの試験用篩を用いた湿式篩法での篩上残量は10ppmであった。加熱減量は18%であり、表面炭素量は0.09質量%であった。該表面処理ゾルゲルシリカのエポキシ粘度初期(η1)は3.9Pa・s、エポキシ粘度1週間後(η2)は4.8Pa・s、粘度経時変化は23%であった。加えて、フローマークは観測された。また、該表面処理ゾルゲルシリカ粉末のα線量は0.002c/(cm・h)、不純物量は、Uが0.01ppb、Thが0.01ppb、Feが0.1ppm、Alが0.1ppm、Naが0.2ppm、Kが0.1ppm、Caが0.0ppm、Crが0.0ppm、Niが0.0ppm、Tiが0.0ppm、Clが0.1ppmであった。
 本比較例における(2)分散液シリカ粒子表面処理工程での処理条件を表1に示した。また、得られた表面処理シリカを用いて、前記の方法に従って各種測定を行った結果のうち、α線量及び不純物量については表2に、その他物性については表3に示した。
 比較例1-2
 <製造方法(I)>
 実施例1-1の(1)の工程において、ゾルゲルシリカ粒子を成長、合成させた後、分散液の湿式ろ過を実施した。そして、(3)の工程において、分散液の湿式ろ過を実施しなかった。それ以外は実施例1-1と同様に(1)~(5)の工程を実施した。
 得られた表面処理ゾルゲルシリカ粉末は、平均粒子径が0.8μm、変動係数28%、球形度0.96であった。レーザー回折散乱法において5μm以上の粗粒は検出されなかった。該表面処理ゾルゲルシリカ粉末のコールターカウンター法における5μm及び3μm以上の粗粒量は40ppm及び2200ppmであった。目開き20μmの試験用篩を用いた湿式篩法での篩上残量は4ppm未満であった。加熱減量は18%であり、表面炭素量は0.09質量%であった。該表面処理ゾルゲルシリカのエポキシ粘度初期(η1)は4.0Pa・s、エポキシ粘度1週間後(η2)は4.7Pa・s、粘度経時変化は18%であった。加えて、フローマークは観測されなかった。また、該表面処理ゾルゲルシリカ粉末のα線量は0.002c/(cm・h)、不純物量は、Uが0.01ppb、Thが0.01ppb、Feが0.1ppm、Alが0.1ppm、Naが0.2ppm、Kが0.1ppm、Caが0.0ppm、Crが0.0ppm、Niが0.0ppm、Tiが0.0ppm、Clが0.1ppmであった。
 本比較例における(2)分散液シリカ粒子表面処理工程での処理条件を表1に示した。また、得られた表面処理シリカを用いて、前記の方法に従って各種測定を行った結果のうち、α線量及び不純物量については表2に、その他物性については表3に示した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例2-1
 <製造方法(II)>
 (1)ゾルゲルシリカ分散液製造工程
 内容積1000Lのジャケット付きガラスライニング製反応器(内径1200mm)に、マックスブレンド翼(翼径345mm)を有した反応器を使用し、反応媒体としてメタノール75kg、イソプロパノール30kgおよびアンモニア水(25質量%)25kgを仕込み(反応媒体量:150L)、反応温度を40℃に設定し、52rpmで攪拌した。その後、原料としてテトラエトキシシラン3.0kgとメタノール7.0kg、イソプロパノール2.0kgの混合物を反応媒体に投入し、シリカの種粒子を作製した。次にテトラメトキシシラン350kgとメタノール100kgの原料を51mm/sの吐出線速度で反応媒体中に供給し、同時に150kgのアンモニア水(25質量%)を0.8kg/minの速度で供給し、ゾルゲルシリカ粒子を成長、合成させた。このときの無次元混合時間nθmは78であった。
 (2)分散液シリカ粒子表面処理工程
 供給終了後1時間攪拌を続けた後、表面処理剤としてヘキサメチルジシラザン(信越シリコーン製、SZ-31、以下、HMDS)をゾルゲル粒子分散液中に4450g(理論合成シリカ量に対して200μmol/g)投入し、投入終了後2時間攪拌を続け、表面処理を施した。
 (3)ゾルゲルシリカ分散液湿式ろ過工程
 2時間経過後、ろ過孔径3μmのポリプロピレン製ろ過フィルターを通過させ、粗大粒子が除去された分散液を得た。
 (4)凝析工程
 分散液にドライアイス3kgを投入後、20時間放置した。20時間経過した段階でゾルゲルシリカ粒子は沈降しており、定量ろ紙(保留粒径5μm)を使用して固液分離した後、190kg(シリカ濃度74質量%)の濃縮物を得た。濾液は透明であり、ろ液漏れは確認されなかった。
 (5)固液分離・乾燥工程
 得られたゾルゲルシリカ濃縮物を100℃で15時間減圧乾燥を行い、132kgの表面処理ゾルゲルシリカ粉末を得た。
 (6)焼成工程
 (5)の工程で得た表面処理ゾルゲルシリカ粉末を空気雰囲気下、焼成炉により800℃で10時間焼成を行い、焼成ゾルゲルシリカ粉末を得た。焼成ゾルゲルシリカ粒子が焼結している様子はなく、124kgの焼成ゾルゲルシリカ粉末を得た。該ゾルゲルシリカ粉末を、旋回流型ジェットミル(セイシン企業製、STJ-200)を用いて、エアー圧0.6MPa、エアー量2.8m/min、供給速度10kg/hの条件にて解砕処理を施した。
 得られた焼成ゾルゲルシリカ粉末は、平均粒子径0.7μmであり、レーザー回折散乱法において5μm以上の粗粒は検出されなかった。コールターカウンター法による5μm及び3μm以上の粗粒量は5ppm及び8ppmであった。比表面積は4m/g、表面シラノール基量が5μmol/m(3個/nm)であった。
 (7)焼成シリカ粒子表面処理工程
 次に焼成ゾルゲルシリカ粉末の表面処理を実施した。
 表面処理混合器として、端部の内壁面に各々回転軸を1本ずつ設置し、該軸の壁面から2cmの位置に、軸が羽根の重心を通る、ステンレススチール製の解砕羽根(200mm×20mm×2mm)が各1枚付いた、内容積340Lのダブルコーン型装置(徳寿工作所製、W-150)に、前記ゾルゲルシリカ粉末を80kg仕込み、雰囲気を窒素で置換した。次に表面処理剤としてHMDSを、ペリスタポンプを用いて258g(20μmol/g)滴下した。表面処理剤を全量滴下後、ステンレススチール製の解砕羽根(質量63g)の回転数を157rad/s(1500rpm)(解砕エネルギー=2.6J)とし、混合器の回転数を0.3rpsで運転し常温で3時間混合を行った。
 次に、混合された表面処理ゾルゲルシリカ粉末を装置から取り出し、10kgずつ小分けし、窒素で置換された150℃の乾燥機内で3時間加熱処理した。
 (8)焼成シリカ湿式ろ過・固液分離・乾燥工程
 次に表面処理ゾルゲルシリカ粉末の湿式ろ過を実施した。
 内容積40リットルのSUS製容器にメタノール15kgを入れ、プロペラ式撹拌機にて撹拌速度100rpmで掻き混ぜながら該表面処理ゾルゲルシリカ粉末を5kg加え、60分間撹拌を継続し、スラリー濃度25質量%の分散液を調製した。次いで、該分散液をダイヤフラムポンプにて1L/minの速さで送液し、ろ過孔径3μmのポリプロピレン製ろ過フィルターを通過させ、粗大粒子を除去した。ろ過後の分散液は通気率0.6cm/(cm・s)のろ布により加圧ろ過し、表面処理ゾルゲルシリカ6kgがケークとして回収された。
 次いで、前記のようにして回収された表面処理ゾルゲルシリカのケークを温度120℃で24時間減圧乾燥し、4.8kgの乾燥表面処理ゾルゲルシリカ粉末を得た。
 得られた表面処理ゾルゲルシリカ粉末は、平均粒子径が0.7μm、変動係数24%、球形度0.96であった。レーザー回折散乱法において5μm以上の粗粒は検出されなかった。該表面処理ゾルゲルシリカ粉末のコールターカウンター法における5μm及び3μm以上の粗粒量は4ppm未満及び8ppmであった。目開き20μmの試験用篩を用いた湿式篩法での篩上残量は4ppm未満であった。加熱減量は2%であり、表面炭素量は0.07質量%であった。該表面処理ゾルゲルシリカのエポキシ粘度初期(η1)は3.2Pa・s、エポキシ粘度1週間後(η2)は3.3Pa・s、粘度経時変化は3%であった。加えて、フローマークは観測されなかった。また、該表面処理ゾルゲルシリカ粉末のα線量は0.002c/(cm・h)、不純物量は、Uが0.02ppb、Thが0.02ppb、Feが1.5ppm、Alが3.0ppm、Naが0.2ppm、Kが0.1ppm、Caが0.1ppm、Crが0.2ppm、Niが0.2ppm、Tiが0.0ppm、Clが0.1ppmであった。
 本実施例における(6)焼成工程より得られたゾルゲルシリカの物性を表4に、(7)焼成シリカ粒子表面処理工程における処理条件を表5に、また、得られた表面処理シリカを用いて、前記の方法に従って各種測定を行った結果のうち、α線量及び不純物量については表6に、その他物性については表7に示した。
 実施例2-2
 <製造方法(II)>
 実施例2-1の(7)の工程において、表面処理剤をAcPSに変え、ペリスタポンプを用いて375g(20μmol/g)滴下した。それ以外は実施例2-1と同様に(1)~(8)の工程を実施した。
 得られた表面処理ゾルゲルシリカ粉末は、平均粒子径が0.7μm、変動係数22%、球形度0.96であった。レーザー回折散乱法において5μm以上の粗粒は検出されなかった。該表面処理ゾルゲルシリカ粉末のコールターカウンター法における5μm及び3μm以上の粗粒量は4ppm未満及び8ppmであった。目開き20μmの試験用篩を用いた湿式篩法での篩上残量は4ppm未満であった。加熱減量は3%であった。表面炭素量は0.14質量%であり、表面炭素量から計算した表面重合性基量は19μmol/g(5μmol/m)であった。該表面処理ゾルゲルシリカのエポキシ粘度初期(η1)は3.8Pa・s、エポキシ粘度1週間後(η2)は4.2Pa・s、粘度経時変化は11%であった。加えて、フローマークは観測されなかった。また、該表面処理ゾルゲルシリカ粉末のα線量は0.002c/(cm・h)、不純物量は、Uが0.02ppb、Thが0.02ppb、Feが1.5ppm、Alが3.0ppm、Naが0.2ppm、Kが0.1ppm、Caが0.1ppm、Crが0.1ppm、Niが0.2ppm、Tiが0.0ppm、Clが0.1ppmであった。
 本実施例における(6)焼成工程より得られたゾルゲルシリカの物性を表4に、(7)焼成シリカ粒子表面処理工程における処理条件を表5に、また、得られた表面処理シリカを用いて、前記の方法に従って各種測定を行った結果のうち、α線量及び不純物量については表6に、その他物性については表7に示した。
  実施例2-3
 <製造方法(II)>
 実施例2-1の(7)の工程において、表面処理剤をAcPSに変え、ペリスタポンプを用いて750g(40μmol/g)滴下した。それ以外は実施例2-1と同様に(1)~(8)の工程を実施した。
 得られた表面処理ゾルゲルシリカ粉末は、平均粒子径が0.7μm、変動係数24%、球形度0.96であった。レーザー回折散乱法において5μm以上の粗粒は検出されなかった。該表面処理ゾルゲルシリカ粉末のコールターカウンター法における5μm及び3μm以上の粗粒量は4ppm未満及び8ppmであった。目開き20μmの試験用篩を用いた湿式篩法での篩上残量は4ppm未満であった。加熱減量は4%であった。表面炭素量は0.28質量%であり、表面炭素量から計算した表面重合性基量は39μmol/g(10μmol/m)であった。該表面処理ゾルゲルシリカのエポキシ粘度初期(η1)は3.9Pa・s、エポキシ粘度1週間後(η2)は4.0Pa・s、粘度経時変化は3%であった。加えて、フローマークは観測されなかった。また、該表面処理ゾルゲルシリカ粉末のα線量は0.002c/(cm・h)、不純物量は、Uが0.02ppb、Thが0.01ppb、Feが1.4ppm、Alが2.8ppm、Naが0.2ppm、Kが0.1ppm、Caが0.1ppm、Crが0.2ppm、Niが0.1ppm、Tiが0.0ppm、Clが0.1ppmであった。
 本実施例における(6)焼成工程より得られたゾルゲルシリカの物性を表4に、(7)焼成シリカ粒子表面処理工程における処理条件を表5に、また、得られた表面処理シリカを用いて、前記の方法に従って各種測定を行った結果のうち、α線量及び不純物量については表6に、その他物性については表7に示した。
 実施例2-4
 <製造方法(II)>
 実施例2-1の(7)の工程において、表面処理剤をγ-グリシドキシプロピルトリメトキシシラン(信越シリコーン製、KBM-403、以下、γ-GPS)に変え、ペリスタポンプを用いて378g(20μmol/g)滴下した。それ以外は実施例2-1と同様に(1)~(8)の工程を実施した。
 得られた表面処理ゾルゲルシリカ粉末は、平均粒子径が0.7μm、変動係数22%、球形度0.97であった。レーザー回折散乱法において5μm以上の粗粒は検出されなかった。該表面処理ゾルゲルシリカ粉末のコールターカウンター法における5μm及び3μm以上の粗粒量は共に4ppm未満であった。目開き20μmの試験用篩を用いた湿式篩法での篩上残量は4ppm未満であった。加熱減量は3%であった。表面炭素量は0.13質量%であり、表面炭素量から計算した表面重合性基量は18μmol/g(5μmol/m)であった。該表面処理ゾルゲルシリカのエポキシ粘度初期(η1)は4.3Pa・s、エポキシ粘度1週間後(η2)は4.6Pa・s、粘度経時変化は7%であった。加えて、フローマークは観測されなかった。また、該表面処理ゾルゲルシリカ粉末のα線量は0.002c/(cm・h)、不純物量は、Uが0.01ppb、Thが0.02ppb、Feが1.5ppm、Alが3.0ppm、Naが0.2ppm、Kが0.1ppm、Caが0.1ppm、Crが0.2ppm、Niが0.2ppm、Tiが0.0ppm、Clが0.1ppmであった。
 本実施例における(6)焼成工程より得られたゾルゲルシリカの物性を表4に、(7)焼成シリカ粒子表面処理工程における処理条件を表5に、また、得られた表面処理シリカを用いて、前記の方法に従って各種測定を行った結果のうち、α線量及び不純物量については表6に、その他物性については表7に示した。
 実施例2-5
 <製造方法(II)>
 実施例2-1の(7)の工程において、表面処理剤をγ-GPSに変え、ペリスタポンプを用いて756g(40μmol/g)滴下した。それ以外は実施例2-1と同様に(1)~(8)の工程を実施した。
 得られた表面処理ゾルゲルシリカ粉末は、平均粒子径が0.7μm、変動係数24%、球形度0.96であった。レーザー回折散乱法において5μm以上の粗粒は検出されなかった。該表面処理ゾルゲルシリカ粉末のコールターカウンター法における5μm及び3μm以上の粗粒量は4ppm未満及び8ppmであった。目開き20μmの試験用篩を用いた湿式篩法での篩上残量は4ppm未満であった。加熱減量は3%であった。表面炭素量は0.27質量%であり、表面炭素量から計算した表面重合性基量は38μmol/g(9μmol/m)であった。該表面処理ゾルゲルシリカのエポキシ粘度初期(η1)は4.5Pa・s、エポキシ粘度1週間後(η2)は4.6Pa・s、粘度経時変化は2%であった。加えて、フローマークは観測されなかった。また、該表面処理ゾルゲルシリカ粉末のα線量は0.002c/(cm・h)、不純物量は、Uが0.02ppb、Thが0.01ppb、Feが1.6ppm、Alが3.0ppm、Naが0.2ppm、Kが0.1ppm、Caが0.1ppm、Crが0.2ppm、Niが0.2ppm、Tiが0.0ppm、Clが0.1ppmであった。
 本実施例における(6)焼成工程より得られたゾルゲルシリカの物性を表4に、(7)焼成シリカ粒子表面処理工程における処理条件を表5に、また、得られた表面処理シリカを用いて、前記の方法に従って各種測定を行った結果のうち、α線量及び不純物量については表6に、その他物性については表7に示した。
 実施例2-6
 <製造方法(II)>
 実施例2-1の(7)の工程において、表面処理剤をHMDSを、ペリスタポンプを用いて258g(20μmol/g)滴下し表面処理した後、表面処理(樹脂被覆処理)剤を、グリシジルメタクリレート230g(共栄社化学製、ライトエステルG、以下、GMA)、ジビニルベンゼン40g(新日鉄住金化学製、以下、DVB)、およびt-ブチル-オキシ-2-エチルヘキサノエート40g(日油製、パーブチルO)の3種の薬液を予め混合したものに変え、同じ反応器内にペリスタポンプを用いて合計310g(GMAとして20μmol/g)滴下し、150℃で加熱処理した。それ以外は実施例2-1と同様に(1)~(8)の工程を実施した。
 得られた表面処理ゾルゲルシリカ粉末は、平均粒子径が0.7μm、変動係数22%、球形度0.96であった。レーザー回折散乱法において5μm以上の粗粒は検出されなかった。該表面処理ゾルゲルシリカ粉末のコールターカウンター法における5μm及び3μm以上の粗粒量は共に4ppm未満であった。目開き20μmの試験用篩を用いた湿式篩法での篩上残量は4ppm未満であった。加熱減量は4%であった。表面炭素量は0.39質量%であり、エポキシ基(グリシジル基)定量法(JIS K7236準拠)による表面重合性基量は5μmol/mであった。該表面処理ゾルゲルシリカのエポキシ粘度初期(η1)は3.3Pa・s、エポキシ粘度1週間後(η2)は3.6Pa・s、粘度経時変化は9%であった。加えて、フローマークは観測されなかった。また、該表面処理ゾルゲルシリカ粉末のα線量は0.002c/(cm・h)、不純物量は、Uが0.02ppb、Thが0.02ppb、Feが1.6ppm、Alが3.0ppm、Naが0.2ppm、Kが0.1ppm、Caが0.1ppm、Crが0.1ppm、Niが0.1ppm、Tiが0.0ppm、Clが0.4ppmであった。
 本実施例における(6)焼成工程より得られたゾルゲルシリカの物性を表4に、(7)焼成シリカ粒子表面処理工程における処理条件を表5に、また、得られた表面処理シリカを用いて、前記の方法に従って各種測定を行った結果のうち、α線量及び不純物量については表6に、その他物性については表7に示した。
 実施例2-7
 <製造方法(II)>
 実施例2-1の(7)の工程において、表面処理剤をHMDSを、ペリスタポンプを用いて258g(20μmol/g)滴下し表面処理した後、表面処理(樹脂被覆処理)剤を、グリシジルメタクリレート460g(共栄社化学製、ライトエステルG、以下、GMA)、ジビニルベンゼン80g(新日鉄住金化学製、以下、DVB)、およびt-ブチル-オキシ-2-エチルヘキサノエート80g(日油製、パーブチルO)の3種の薬液を予め混合したものに変え、同じ反応器内にペリスタポンプを用いて合計620g(GMAとして40μmol/g)滴下し、150℃で加熱処理した。それ以外は実施例2-1と同様に(1)~(8)の工程を実施した。
 得られた表面処理ゾルゲルシリカ粉末は、平均粒子径が0.7μm、変動係数24%、球形度0.96であった。レーザー回折散乱法において5μm以上の粗粒は検出されなかった。該表面処理ゾルゲルシリカ粉末のコールターカウンター法における5μm及び3μm以上の粗粒量は4ppm未満及び8ppmであった。目開き20μmの試験用篩を用いた湿式篩法での篩上残量は4ppm未満であった。加熱減量は5%であった。表面炭素量は0.71質量%であり、エポキシ基(グリシジル基)定量法(JIS K7236準拠)による表面重合性基量は9μmol/mであった。該表面処理ゾルゲルシリカのエポキシ粘度初期(η1)は3.5Pa・s、エポキシ粘度1週間後(η2)は3.6Pa・s、粘度経時変化は3%であった。加えて、フローマークは観測されなかった。また、該表面処理ゾルゲルシリカ粉末のα線量は0.002c/(cm・h)、不純物量は、Uが0.01ppb、Thが0.02ppb、Feが1.5ppm、Alが2.9ppm、Naが0.2ppm、Kが0.1ppm、Caが0.1ppm、Crが0.2ppm、Niが0.1ppm、Tiが0.0ppm、Clが0.8ppmであった。
 本実施例における(6)焼成工程より得られたゾルゲルシリカの物性を表4に、(7)焼成シリカ粒子表面処理工程における処理条件を表5に、また、得られた表面処理シリカを用いて、前記の方法に従って各種測定を行った結果のうち、α線量及び不純物量については表6に、その他物性については表7に示した。
 実施例2-8
 <製造方法(II)>
 実施例2-1の(7)の工程において、表面処理剤をHMDSを、ペリスタポンプを用いて258g(20μmol/g)滴下し表面処理した後、表面処理(樹脂被覆処理)剤を、グリシジルメタクリレート230g(東京化成工業製、以下、GMA)、ビスフェノールF型エポキシ樹脂100g(ジャパンエポキシレジン製、JER806)、および4,4‘-メチレンビス(2-メチルシクロヘキサンアミン)80g(ジャパンエポキシレジン製、JER113)の3種の薬液を予め混合したものに変え、同じ反応器内にペリスタポンプを用いて合計410g(GMAとして20μmol/g)滴下し、110℃で加熱処理した。それ以外は実施例2-1と同様に(1)~(8)の工程を実施した。
 得られた表面処理ゾルゲルシリカ粉末は、平均粒子径が0.7μm、変動係数25%、球形度0.96であった。レーザー回折散乱法において5μm以上の粗粒は検出されなかった。該表面処理ゾルゲルシリカ粉末のコールターカウンター法における5μm及び3μm以上の粗粒量は4ppm未満及び8ppmであった。目開き20μmの試験用篩を用いた湿式篩法での篩上残量は4ppm未満であった。加熱減量は4%であった。表面炭素量は0.59質量%であり、(メタ)アクリル基定量法による表面重合性基量は5μmol/mであった。該表面処理ゾルゲルシリカのエポキシ粘度初期(η1)は5.3Pa・s、エポキシ粘度1週間後(η2)は5.7Pa・s、粘度経時変化は8%であった。加えて、フローマークは観測されなかった。また、該表面処理ゾルゲルシリカ粉末のα線量は0.002c/(cm・h)、不純物量は、Uが0.02ppb、Thが0.02ppb、Feが1.5ppm、Alが3.1ppm、Naが0.2ppm、Kが0.1ppm、Caが0.1ppm、Crが0.2ppm、Niが0.2ppm、Tiが0.0ppm、Clが0.4ppmであった。
 本実施例における(6)焼成工程より得られたゾルゲルシリカの物性を表4に、(7)焼成シリカ粒子表面処理工程における処理条件を表5に、また、得られた表面処理シリカを用いて、前記の方法に従って各種測定を行った結果のうち、α線量及び不純物量については表6に、その他物性については表7に示した。
 実施例2-9
 <製造方法(II)>
 実施例2-1の(7)の工程において、表面処理剤をオクタメチルシクロテトラシロキサン(東京化成工業製、以下、D4)に変え、ペリスタポンプを用いて475g(20μmol/g)滴下し、200℃で加熱処理した。それ以外は実施例2-1と同様に(1)~(8)の工程を実施した。
 得られた表面処理ゾルゲルシリカ粉末は、平均粒子径が0.7μm、変動係数22%、球形度0.96であった。レーザー回折散乱法において5μm以上の粗粒は検出されなかった。該表面処理ゾルゲルシリカ粉末のコールターカウンター法における5μm及び3μm以上の粗粒量は共に4ppm未満であった。目開き20μmの試験用篩を用いた湿式篩法での篩上残量は4ppm未満であった。加熱減量は3%であった。表面炭素量は0.21質量%であった。該表面処理ゾルゲルシリカのエポキシ粘度初期(η1)は4.7Pa・s、エポキシ粘度1週間後(η2)は5.0Pa・s、粘度経時変化は6%であった。加えて、フローマークは観測されなかった。また、該表面処理ゾルゲルシリカ粉末のα線量は0.002c/(cm・h)、不純物量は、Uが0.02ppb、Thが0.02ppb、Feが1.5ppm、Alが3.0ppm、Naが0.2ppm、Kが0.1ppm、Caが0.1ppm、Crが0.2ppm、Niが0.2ppm、Tiが0.0ppm、Clが0.1ppmであった。
 実施例2-10
 <製造方法(II)>
 実施例2-1の(7)の工程において、表面処理剤を動粘度5cStのジメチルシリコーンオイル(信越シリコーン製、KF-96L-5cs、以下、5csDS)に変え、ペリスタポンプを用いて6000g(114μmol/g)滴下し、250℃で加熱処理した。それ以外は実施例2-1と同様に(1)~(8)の工程を実施した。
 得られた表面処理ゾルゲルシリカ粉末は、平均粒子径が0.7μm、変動係数24%、球形度0.95であった。レーザー回折散乱法において5μm以上の粗粒は検出されなかった。該表面処理ゾルゲルシリカ粉末のコールターカウンター法における5μm及び3μm以上の粗粒量は共に4ppm未満であった。目開き20μmの試験用篩を用いた湿式篩法での篩上残量は4ppm未満であった。加熱減量は4%であった。表面炭素量は0.52質量%であった。該表面処理ゾルゲルシリカのエポキシ粘度初期(η1)は4.3Pa・s、エポキシ粘度1週間後(η2)は4.5Pa・s、粘度経時変化は5%であった。加えて、フローマークは観測されなかった。また、該表面処理ゾルゲルシリカ粉末のα線量は0.002c/(cm・h)、不純物量は、Uが0.02ppb、Thが0.02ppb、Feが1.6ppm、Alが3.2ppm、Naが0.2ppm、Kが0.1ppm、Caが0.1ppm、Crが0.2ppm、Niが0.2ppm、Tiが0.0ppm、Clが0.1ppmであった。
 本実施例における(6)焼成工程より得られたゾルゲルシリカの物性を表4に、(7)焼成シリカ粒子表面処理工程における処理条件を表5に、また、得られた表面処理シリカを用いて、前記の方法に従って各種測定を行った結果のうち、α線量及び不純物量については表6に、その他物性については表7に示した。
 実施例2-11
 <製造方法(II)>
 実施例2-1の(7)の工程において、表面処理混合器を内容積150Lのロッキングミキサー(愛知電機製、RM-150)に変更するとともに、ゾルゲルシリカ粉末仕込み量を40kgに変え、HMDSの量を129g(20μmol/g)と変えた。それ以外は実施例2-1と同様に(1)~(8)の工程を実施した。
 得られた表面処理ゾルゲルシリカ粉末は、平均粒子径が0.7μm、変動係数24%、球形度0.97であった。レーザー回折散乱法において5μm以上の粗粒は検出されなかった。該表面処理ゾルゲルシリカ粉末のコールターカウンター法における5μm及び3μm以上の粗粒量は共に4ppm未満であった。目開き20μmの試験用篩を用いた湿式篩法での篩上残量は4ppm未満であった。加熱減量は2%であった。表面炭素量は0.07質量%であった。該表面処理ゾルゲルシリカのエポキシ粘度初期(η1)は3.4Pa・s、エポキシ粘度1週間後(η2)は3.5Pa・s、粘度経時変化は3%であった。加えて、フローマークは観測されなかった。また、該表面処理ゾルゲルシリカ粉末のα線量は0.002c/(cm・h)、不純物量は、Uが0.02ppb、Thが0.02ppb、Feが1.5ppm、Alが3.0ppm、Naが0.2ppm、Kが0.1ppm、Caが0.1ppm、Crが0.2ppm、Niが0.2ppm、Tiが0.0ppm、Clが0.1ppmであった。
 本実施例における(6)焼成工程より得られたゾルゲルシリカの物性を表4に、(7)焼成シリカ粒子表面処理工程における処理条件を表5に、また、得られた表面処理シリカを用いて、前記の方法に従って各種測定を行った結果のうち、α線量及び不純物量については表6に、その他物性については表7に示した。
 実施例2-12
 <製造方法(II)>
 実施例2-1の(1)の工程において、シリカの種粒子を作製後の原料を、テトラメトキシシラン90kg、メタノール25kg及びアンモニア水(25質量%)40kgと変えた。
 (6)の工程後、得られた焼成ゾルゲルシリカ粉末は、平均粒子径0.4μmであり、レーザー回折散乱法において5μm以上の粗粒は検出されなかった。コールターカウンター法による5μm及び3μm以上の粗粒量は共に4ppm未満であった。比表面積は7m/g、表面シラノール基量が5μmol/m(3個/nm)であった。
 (7)の工程において、HMDSの量を450g(35μmol/g)と変えた。それ以外は実施例2-1と同様に(1)~(8)の工程を実施した。
 得られた表面処理ゾルゲルシリカ粉末は、平均粒子径が0.4μm、変動係数16%、球形度0.98であった。レーザー回折散乱法において5μm以上の粗粒は検出されなかった。該表面処理ゾルゲルシリカ粉末のコールターカウンター法における5μm及び3μm以上の粗粒量は共に4ppm未満であった。目開き20μmの試験用篩を用いた湿式篩法での篩上残量は4ppm未満であった。加熱減量は3%であった。表面炭素量は0.12質量%であった。該表面処理ゾルゲルシリカのエポキシ粘度初期(η1)は7.3Pa・s、エポキシ粘度1週間後(η2)は7.7Pa・s、粘度経時変化は5%であった。加えて、フローマークは観測されなかった。また、該表面処理ゾルゲルシリカ粉末のα線量は0.002c/(cm・h)、不純物量は、Uが0.01ppb、Thが0.02ppb、Feが0.8ppm、Alが2.2ppm、Naが0.2ppm、Kが0.1ppm、Caが0.1ppm、Crが0.2ppm、Niが0.1ppm、Tiが0.0ppm、Clが0.1ppmであった。
 本実施例における(6)焼成工程より得られたゾルゲルシリカの物性を表4に、(7)焼成シリカ粒子表面処理工程における処理条件を表5に、また、得られた表面処理シリカを用いて、前記の方法に従って各種測定を行った結果のうち、α線量及び不純物量については表6に、その他物性については表7に示した。
 実施例2-13
 <製造方法(II)>
 実施例2-1の(1)の工程において、反応器を4000Lと変え、シリカの種粒子を作製後の原料を、テトラメトキシシラン1750kg、メタノール500kg及びアンモニア水(25質量%)750kgと変えた。
 (6)の工程後、得られた焼成ゾルゲルシリカ粉末は、平均粒子径1.1μmであり、レーザー回折散乱法において5μm以上の粗粒は検出されなかった。コールターカウンター法による5μm及び3μm以上の粗粒量は8ppm及び15ppmであった。比表面積は3m/g、表面シラノール基量が5μmol/m(3個/nm)であった。
 それ以外は実施例2-1と同様に(1)~(8)の工程を実施した。
 得られた表面処理ゾルゲルシリカ粉末は、平均粒子径が1.1μm、変動係数28%、球形度0.95であった。レーザー回折散乱法において5μm以上の粗粒は検出されなかった。該表面処理ゾルゲルシリカ粉末のコールターカウンター法における5μm及び3μm以上の粗粒量は8ppm及び12ppmであった。目開き20μmの試験用篩を用いた湿式篩法での篩上残量は4ppm未満であった。加熱減量は2%であった。表面炭素量は0.05質量%であった。該表面処理ゾルゲルシリカのエポキシ粘度初期(η1)は2.8Pa・s、エポキシ粘度1週間後(η2)は2.8Pa・s、粘度経時変化は0%であった。加えて、フローマークは観測されなかった。また、該表面処理ゾルゲルシリカ粉末のα線量は0.002c/(cm・h)、不純物量は、Uが0.02ppb、Thが0.02ppb、Feが1.6ppm、Alが6.2ppm、Naが0.2ppm、Kが0.1ppm、Caが0.1ppm、Crが0.4ppm、Niが0.3ppm、Tiが0.0ppm、Clが0.1ppmであった。
 本実施例における(6)焼成工程より得られたゾルゲルシリカの物性を表4に、(7)焼成シリカ粒子表面処理工程における処理条件を表5に、また、得られた表面処理シリカを用いて、前記の方法に従って各種測定を行った結果のうち、α線量及び不純物量については表6に、その他物性については表7に示した。
 実施例2-14
 <製造方法(II)>
 実施例2-1の(1)の工程において、反応器を10000Lと変え、シリカの種粒子を作製後の原料を、テトラメトキシシラン4200kg、メタノール1200kg及びアンモニア水(25質量%)1800kgと変えた。
 (6)の工程後、得られた焼成ゾルゲルシリカ粉末は、平均粒子径1.5μmであり、レーザー回折散乱法において5μm以上の粗粒は検出されなかった。コールターカウンター法による5μm及び3μm以上の粗粒量は10ppm及び20ppmであった。目開き20μmの試験用篩を用いた湿式篩法での篩上残量は4ppm未満であった。比表面積は2m/g、表面シラノール基量が5μmol/m(3個/nm)であった。それ以外は実施例2-1と同様に(1)~(8)の工程を実施した。
 得られた表面処理ゾルゲルシリカ粉末は、平均粒子径が1.5μm、変動係数29%、球形度0.95であった。レーザー回折散乱法において5μm以上の粗粒は検出されなかった。該表面処理ゾルゲルシリカ粉末のコールターカウンター法における5μm及び3μm以上の粗粒量は8ppm及び15ppmであった。目開き20μmの試験用篩を用いた湿式篩法での篩上残量は4ppm未満であった。加熱減量は2%であった。表面炭素量は0.03質量%であった。該表面処理ゾルゲルシリカのエポキシ粘度初期(η1)は2.1Pa・s、エポキシ粘度1週間後(η2)は2.1Pa・s、粘度経時変化は0%であった。加えて、フローマークは観測されなかった。また、該表面処理ゾルゲルシリカ粉末のα線量は0.002c/(cm・h)、不純物量は、Uが0.02ppb、Thが0.02ppb、Feが1.7ppm、Alが6.4ppm、Naが0.2ppm、Kが0.1ppm、Caが0.1ppm、Crが0.4ppm、Niが0.3ppm、Tiが0.1ppm、Clが0.1ppmであった。
 本実施例における(6)焼成工程より得られたゾルゲルシリカの物性を表4に、(7)焼成シリカ粒子表面処理工程における処理条件を表5に、また、得られた表面処理シリカを用いて、前記の方法に従って各種測定を行った結果のうち、α線量及び不純物量については表6に、その他物性については表7に示した。
 実施例2-15
 <製造方法(II)>
 実施例2-1の(8)の工程において、使用するフィルターをろ過孔径5μmのポリプロピレン製ろ過フィルターに変えた。それ以外は実施例2-1と同様に(1)~(8)の工程を実施した。
 得られた表面処理ゾルゲルシリカ粉末は、平均粒子径が0.7μm、変動係数26%、球形度0.96であった。レーザー回折散乱法において5μm以上の粗粒は検出されなかった。該表面処理ゾルゲルシリカ粉末のコールターカウンター法における5μm及び3μm以上の粗粒量は9ppm及び120ppmであった。目開き20μmの試験用篩を用いた湿式篩法での篩上残量は4ppm未満であった。加熱減量は2%であった。表面炭素量は0.07質量%であった。該表面処理ゾルゲルシリカのエポキシ粘度初期(η1)は3.3Pa・s、エポキシ粘度1週間後(η2)は3.5Pa・s、粘度経時変化は6%であった。加えて、フローマークは観測されなかった。また、該表面処理ゾルゲルシリカ粉末のα線量は0.002c/(cm・h)、不純物量は、Uが0.02ppb、Thが0.02ppb、Feが1.4ppm、Alが2.9ppm、Naが0.2ppm、Kが0.1ppm、Caが0.1ppm、Crが0.1ppm、Niが0.2ppm、Tiが0.0ppm、Clが0.1ppmであった。
 本実施例における(6)焼成工程より得られたゾルゲルシリカの物性を表4に、(7)焼成シリカ粒子表面処理工程における処理条件を表5に、また、得られた表面処理シリカを用いて、前記の方法に従って各種測定を行った結果のうち、α線量及び不純物量については表6に、その他物性については表7に示した。
 比較例2-1
 <製造方法(II)>
 実施例2-1の(8)の工程において、表面処理ゾルゲルシリカ粉末の湿式ろ過を実施しなかった。それ以外は実施例2-1と同様に(1)~(8)の工程を実施した。
 得られた表面処理ゾルゲルシリカ粉末は、平均粒子径が0.7μm、変動係数27%、球形度0.96であった。レーザー回折散乱法において5μm以上の粗粒は検出されなかった。該表面処理ゾルゲルシリカ粉末のコールターカウンター法における5μm及び3μm以上の粗粒量は240ppm及び28000ppmであった。目開き20μmの試験用篩を用いた湿式篩法での篩上残量は10ppmであった。加熱減量は2%であった。表面炭素量は0.07質量%であった。該表面処理ゾルゲルシリカのエポキシ粘度初期(η1)は3.4Pa・s、エポキシ粘度1週間後(η2)は3.8Pa・s、粘度経時変化は12%であった。加えて、フローマークは観測された。また、該表面処理ゾルゲルシリカ粉末のα線量は0.002c/(cm・h)、不純物量は、Uが0.02ppb、Thが0.02ppb、Feが1.5ppm、Alが3.0ppm、Naが0.2ppm、Kが0.1ppm、Caが0.1ppm、Crが0.2ppm、Niが0.2ppm、Tiが0.0ppm、Clが0.1ppmであった。
 本比較例における(6)焼成工程より得られたゾルゲルシリカの物性を表4に、(7)焼成シリカ粒子表面処理工程における処理条件を表5に、また、得られた表面処理シリカを用いて、前記の方法に従って各種測定を行った結果のうち、α線量及び不純物量については表6に、その他物性については表7に示した。
 比較例2-2
 <製造方法(II)>
 実施例2-1の(6)の工程において、ゾルゲルシリカ粉末を解砕処理した後、湿式ろ過を実施した。そして、(8)の工程において、表面処理ゾルゲルシリカ粉末の湿式ろ過を実施しなかった。それ以外は実施例2-1と同様に(1)~(8)の工程を実施した。
 得られた表面処理ゾルゲルシリカ粉末は、平均粒子径が0.7μm、変動係数27%、球形度0.96であった。レーザー回折散乱法において5μm以上の粗粒は検出されなかった。該表面処理ゾルゲルシリカ粉末のコールターカウンター法における5μm及び3μm以上の粗粒量は80ppm及び6600ppmであった。目開き20μmの試験用篩を用いた湿式篩法での篩上残量は4ppm未満であった。加熱減量は3%であった。表面炭素量は0.07質量%であった。該表面処理ゾルゲルシリカのエポキシ粘度初期(η1)は3.3Pa・s、エポキシ粘度1週間後(η2)は3.7Pa・s、粘度経時変化は12%であった。加えて、フローマークは観測されなかった。また、該表面処理ゾルゲルシリカ粉末のα線量は0.002c/(cm・h)、不純物量は、Uが0.02ppb、Thが0.02ppb、Feが1.4ppm、Alが2.9ppm、Naが0.2ppm、Kが0.1ppm、Caが0.1ppm、Crが0.1ppm、Niが0.2ppm、Tiが0.0ppm、Clが0.1ppmであった。
 本比較例における(6)焼成工程より得られたゾルゲルシリカの物性を表4に、(7)焼成シリカ粒子表面処理工程における処理条件を表5に、また、得られた表面処理シリカを用いて、前記の方法に従って各種測定を行った結果のうち、α線量及び不純物量については表6に、その他物性については表7に示した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008

Claims (14)

  1.  ゾルゲルシリカ粒子の表面を表面処理剤によって改質しており、
     レーザー回折散乱法による平均粒子径が0.05μm以上2.0μm以下であり、
     エタノールの中に5質量%の量を、出力40W、照射時間10分という条件により超音波により分散させた分散液において、コールターカウンター法により得られた粒度分布では、粒子径が5μm以上である粒子の含有量が個数基準で10ppm以下であることを特徴とする、表面処理ゾルゲルシリカ。
  2.  コールターカウンター法により得られた粒度分布では、粒子径が3μm以上である粒子の含有量が個数基準で10ppm以下であることを特徴とする、請求項1記載の表面処理ゾルゲルシリカ。
  3.  前記表面処理剤が、シランカップリング剤及びシラザン類よりなる群から選択される少なくとも1種であることを特徴とする、請求項1または2に記載の表面処理ゾルゲルシリカ。
  4.  前記表面処理剤が、エポキシ基あるいは(メタ)アクリル基を有する架橋重合体であることを特徴とする、請求項1または2に記載の表面処理ゾルゲルシリカ。
  5.  700℃で5時間加熱した際の加熱減量が5%以下であることを特徴とする、請求項1から4のいずれか1項に記載の表面処理ゾルゲルシリカ。
  6.  表面炭素量が0.01質量%以上1質量%以下であることを特徴とする、請求項1から5のいずれか1項に記載の表面処理ゾルゲルシリカ。
  7.  α線量が0.002c/cm・h以下であることを特徴とする、請求項1から6のいずれか1項に記載の表面処理ゾルゲルシリカ。
  8.  U含有量が0.1ppb以下、且つTh含有量が0.1ppb以下であることを特徴とする、請求項1から7のいずれか1項に記載の表面処理ゾルゲルシリカ。
  9.  Fe含有量が10ppm以下、Al含有量が10ppm以下、Na含有量が5ppm以下、K含有量が5ppm以下、且つ塩化物イオン含有量が1ppm以下であることを特徴とする、請求項1から8のいずれか1項に記載の表面処理ゾルゲルシリカ。
  10.  Ca含有量が5ppm以下、Cr含有量が5ppm以下、Ni含有量が5ppm以下、且つTi含有量が5ppm以下であることを特徴とする、請求項1から9のいずれか1項に記載の表面処理ゾルゲルシリカ。
  11.  ゾル-ゲル法により、レーザー回折散乱法による平均粒子径0.05μm以上2.0μm以下のゾルゲルシリカ粒子が分散する、ゾルゲルシリカ分散液を製造する工程と、
     前記ゾルゲルシリカ分散液に表面処理剤を添加して、ゾルゲルシリカ粒子表面を湿式で表面処理する工程と、
     前記ゾルゲルシリカ分散液を、ろ過孔径5μm以下のろ材により湿式ろ過する工程と、
     湿式ろ過された後の前記ゾルゲルシリカ分散液に、二酸化炭素、炭酸アンモニウム、炭酸水素アンモニウム及びカルバミン酸アンモニウムよりなる群から選択される少なくとも1種の化合物からなる凝析剤を添加し、前記ゾルゲルシリカ粒子を凝析させて、前記ゾルゲルシリカ粒子が凝析した凝析シリカ分散液を得る工程と、
     前記凝析シリカ分散液から前記ゾルゲルシリカ粒子を固液分離し乾燥する工程と
     を含む、表面処理ゾルゲルシリカの製造方法。
  12.  ゾル-ゲル法により、レーザー回折散乱法による平均粒子径0.05μm以上2.0μm以下のゾルゲルシリカ粒子が分散するゾルゲルシリカ分散液を製造する工程と、
     前記ゾルゲルシリカ分散液を、ろ過孔径5μm以下のろ材により湿式ろ過する工程と、
     湿式ろ過された後の前記ゾルゲルシリカ分散液に、二酸化炭素、炭酸アンモニウム、炭酸水素アンモニウム及びカルバミン酸アンモニウムよりなる群から選択される少なくとも1種の化合物からなる凝析剤を添加し、前記ゾルゲルシリカ粒子を凝析させて、前記ゾルゲルシリカ粒子が凝析した凝析シリカ分散液を得る工程と、
     前記凝析シリカ分散液からゾルゲルシリカ粒子を固液分離し乾燥する工程と、
     乾燥して得られた前記ゾルゲルシリカ粒子を、さらに焼成し、焼成シリカ粒子を得る工程と、
     前記焼成シリカ粒子の表面を、表面処理剤を用いて乾式で表面処理し、表面が処理された焼成シリカ粒子を得る工程と、
     前記表面が処理された焼成シリカ粒子を溶媒に分散させて分散液とし、該分散液をろ過孔径5μm以下のろ材により湿式ろ過した後、ろ液から表面が処理された焼成シリカ粒子を固液分離して乾燥する工程と
     を含む、表面処理ゾルゲルシリカの製造方法。
  13.  請求項1から10のいずれか1項に記載の表面処理ゾルゲルシリカが分散されてなる樹脂組成物。
  14.  請求項1から10いずれか1項に記載の表面処理ゾルゲルシリカからなる半導体封止材用充填剤。
PCT/JP2018/032023 2017-08-31 2018-08-29 表面処理ゾルゲルシリカ及びその製造方法 WO2019044929A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18851850.0A EP3674264A4 (en) 2017-08-31 2018-08-29 SURFACE TREATED SILICA SOL-GEL AND PROCESS FOR ITS PRODUCTION
CN201880054691.XA CN111094184A (zh) 2017-08-31 2018-08-29 表面处理溶胶凝胶二氧化硅及其制造方法
KR1020207008565A KR102142386B1 (ko) 2017-08-31 2018-08-29 표면 처리 졸겔 실리카 및 그 제조 방법
US16/643,542 US20200199371A1 (en) 2017-08-31 2018-08-29 Surface-treated sol-gel silica and method for producing same
JP2019519351A JP6564966B2 (ja) 2017-08-31 2018-08-29 表面処理ゾルゲルシリカ及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-166422 2017-08-31
JP2017166422 2017-08-31

Publications (1)

Publication Number Publication Date
WO2019044929A1 true WO2019044929A1 (ja) 2019-03-07

Family

ID=65527417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032023 WO2019044929A1 (ja) 2017-08-31 2018-08-29 表面処理ゾルゲルシリカ及びその製造方法

Country Status (7)

Country Link
US (1) US20200199371A1 (ja)
EP (1) EP3674264A4 (ja)
JP (1) JP6564966B2 (ja)
KR (1) KR102142386B1 (ja)
CN (1) CN111094184A (ja)
TW (1) TWI746885B (ja)
WO (1) WO2019044929A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071434A1 (ja) * 2022-09-30 2024-04-04 日鉄ケミカル&マテリアル株式会社 球状シリカ粒子、これを含有している樹脂複合組成物、および、これを製造する方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11932543B2 (en) 2018-03-15 2024-03-19 Tokuyama Corporation Composite oxide powder and method for production thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019157A (ja) 2006-06-09 2008-01-31 Tokuyama Corp 乾式シリカ微粒子
JP2012006823A (ja) 2010-02-19 2012-01-12 Tokuyama Corp 無機酸化物粒子分散液の濃縮物の製造方法、及び無機酸化物粒子の製造方法
JP2012171813A (ja) * 2011-02-18 2012-09-10 Tokuyama Corp 表面処理無機酸化物粒子の製造方法
JP2013193950A (ja) 2012-03-22 2013-09-30 Tokuyama Corp シリカの製造方法
WO2015016359A1 (ja) * 2013-08-01 2015-02-05 日揮触媒化成株式会社 解砕シリカ粒子の製造方法および該微粒子を含む樹脂組成物
JP2016190770A (ja) * 2015-03-31 2016-11-10 日揮触媒化成株式会社 シリカ粒子の製造方法
WO2018096876A1 (ja) * 2016-11-24 2018-05-31 株式会社トクヤマ ゾルゲルシリカ粉末、およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5459933B2 (ja) * 2003-05-28 2014-04-02 ウオーターズ・テクノロジーズ・コーポレイシヨン 新規ナノコンポジットとモノリスカラムとしてのそれらの利用
JP4431605B2 (ja) * 2007-08-09 2010-03-17 シャープ株式会社 トナーの製造方法、トナー、二成分現像剤、現像装置および画像形成装置
KR101757015B1 (ko) * 2010-02-19 2017-07-11 가부시끼가이샤 도꾸야마 무기 산화물 입자의 제조 방법
CN102532950B (zh) * 2010-12-17 2014-03-12 北京航天赛德科技发展有限公司 微粒型硅胶薄膜开口剂的制备方法
JP5698087B2 (ja) * 2011-07-14 2015-04-08 株式会社トクヤマ 無機酸化物粉体
CN102502663B (zh) * 2011-11-10 2013-08-21 河南大学 一种疏水性纳米二氧化硅的制备方法
CN105016349B (zh) * 2014-04-24 2017-05-17 苏州同玄新材料有限公司 二氧化硅气凝胶、其连续化常压干燥制备方法及系统
CN105110341B (zh) * 2015-09-02 2017-03-29 福建省上杭县九洲硅业有限公司 一种纳米二氧化硅气凝胶的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019157A (ja) 2006-06-09 2008-01-31 Tokuyama Corp 乾式シリカ微粒子
JP2012006823A (ja) 2010-02-19 2012-01-12 Tokuyama Corp 無機酸化物粒子分散液の濃縮物の製造方法、及び無機酸化物粒子の製造方法
JP2012171813A (ja) * 2011-02-18 2012-09-10 Tokuyama Corp 表面処理無機酸化物粒子の製造方法
JP2013193950A (ja) 2012-03-22 2013-09-30 Tokuyama Corp シリカの製造方法
WO2015016359A1 (ja) * 2013-08-01 2015-02-05 日揮触媒化成株式会社 解砕シリカ粒子の製造方法および該微粒子を含む樹脂組成物
JP2016190770A (ja) * 2015-03-31 2016-11-10 日揮触媒化成株式会社 シリカ粒子の製造方法
WO2018096876A1 (ja) * 2016-11-24 2018-05-31 株式会社トクヤマ ゾルゲルシリカ粉末、およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3674264A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071434A1 (ja) * 2022-09-30 2024-04-04 日鉄ケミカル&マテリアル株式会社 球状シリカ粒子、これを含有している樹脂複合組成物、および、これを製造する方法

Also Published As

Publication number Publication date
US20200199371A1 (en) 2020-06-25
TWI746885B (zh) 2021-11-21
KR20200037420A (ko) 2020-04-08
EP3674264A4 (en) 2021-06-02
EP3674264A1 (en) 2020-07-01
JP6564966B2 (ja) 2019-08-21
JPWO2019044929A1 (ja) 2019-11-07
KR102142386B1 (ko) 2020-08-07
CN111094184A (zh) 2020-05-01
TW201919999A (zh) 2019-06-01

Similar Documents

Publication Publication Date Title
US7824644B2 (en) Particulate silica
JP6323861B2 (ja) 表面修飾メソポーラスシリカナノ粒子の製造方法
WO2011102548A1 (ja) 無機酸化物粒子の製造方法
JP5811620B2 (ja) シリカ粒子の製造方法
WO2019044929A1 (ja) 表面処理ゾルゲルシリカ及びその製造方法
WO2021215285A1 (ja) 表面処理シリカ粉末の製造方法
WO2018096876A1 (ja) ゾルゲルシリカ粉末、およびその製造方法
JP5717462B2 (ja) 表面処理無機酸化物粒子の製造方法
JP4605864B2 (ja) 真球状シリカ粒子集合体の製造方法
JP6854589B2 (ja) 高誘電樹脂組成物、静電容量型センサおよび静電容量型センサの製造方法
JP5974986B2 (ja) シリカ付着珪素粒子及び焼結混合原料、ならびにシリカ付着珪素粒子及び疎水性球状シリカ微粒子の製造方法
JP6195524B2 (ja) 疎水性シリカ粉末およびその製造方法
JP6899495B2 (ja) 非晶質シリカチタニア複合酸化物粉末、樹脂組成物及び分散液
KR102666806B1 (ko) 복합 산화물 분말 및 그 제조 방법
JP5907092B2 (ja) 金属珪素粉末の製造方法
JP7507675B2 (ja) 球状シリカ粉末の製造方法
JP2018030759A (ja) 異形シリカ粉末、その製造方法、それを含有する樹脂組成物
CN103922397A (zh) 改性氧化锆微粒粉末、改性氧化锆微粒分散溶胶及其制造方法
JP2023110669A (ja) シリカ粒子の粒子径の調整方法およびシリカ粒子の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019519351

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207008565

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018851850

Country of ref document: EP

Effective date: 20200327