WO2018096876A1 - ゾルゲルシリカ粉末、およびその製造方法 - Google Patents

ゾルゲルシリカ粉末、およびその製造方法 Download PDF

Info

Publication number
WO2018096876A1
WO2018096876A1 PCT/JP2017/039251 JP2017039251W WO2018096876A1 WO 2018096876 A1 WO2018096876 A1 WO 2018096876A1 JP 2017039251 W JP2017039251 W JP 2017039251W WO 2018096876 A1 WO2018096876 A1 WO 2018096876A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppm
sol
less
silica powder
gel
Prior art date
Application number
PCT/JP2017/039251
Other languages
English (en)
French (fr)
Inventor
宏昌 藤岡
田中 修
浩昭 平
俊明 大谷
三上 直樹
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2018552480A priority Critical patent/JPWO2018096876A1/ja
Publication of WO2018096876A1 publication Critical patent/WO2018096876A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a sol-gel silica powder that can be suitably used as a filler for semiconductor sealing materials, liquid crystal sealants, films and the like. Specifically, the present invention relates to a sol-gel silica powder with a very small amount of coarse particles.
  • silica powder is blended as a filler.
  • the gap between the element and the substrate has progressed, further increasing the thermal conductivity, low thermal expansion, and high Formability is required, and the silica powder is required to be highly filled.
  • the low viscosity of the resin composition filled with silica powder is also required, and there is an increasing demand for silica powder that does not contain coarse particles and is excellent in monodispersity.
  • silicon alkoxide such as tetraethoxysilane as a raw material is supplied into a reaction solution containing a hydrolysis catalyst, water and an organic solvent, and hydrolysis and polycondensation are performed.
  • a so-called sol-gel method it is known that the particle size and the particle size distribution can be controlled to some extent by controlling the reaction conditions for carrying out the reaction.
  • Patent Document 1 by adjusting the reaction conditions in the sol-gel method, the particle size and particle size distribution are controlled, and the generation of coarse particles such as adhesion particles and aggregates is suppressed, and the monodispersibility is good.
  • a method for producing silica is described.
  • the silica particles are highly dispersed as fine primary particles, and no agglomerates are observed.
  • a step of solid-liquid separation of the sol-gel silica from the dispersion, a step of drying, or a step of firing as necessary is necessary. Agglomerated aggregates are formed. And it is difficult to crush what was aggregated firmly to primary particles, and as a result, coarse particles increase.
  • the coarse particles inhibit the smooth flow of the resin and lower the fluidity when melted.
  • a so-called “flow mark” is generated.
  • the semiconductor sealing material or the liquid crystal sealant is made of a resin composition having low fluidity such that a flow mark is generated, the gap penetration into a narrow gap is not sufficient, and clogging between wirings is caused. Is also likely to occur.
  • Cited Document 2 by adding a coagulant made of a specific compound to the silica particle dispersion obtained by the sol-gel method, in the post-process, without generating a strong agglomerate, It is described that it can be produced as a gentle aggregate, and this can be easily pulverized to primary particles by the share of the disperser when it is dispersed in the resin. That is, according to this method, if the sol-gel method is controlled so as to have excellent monodispersibility of silica as described above, the agglomerates formed in the subsequent steps can be regenerated into primary particles by a simple crushing treatment. Therefore, the silica powder does not substantially contain coarse particles. That is, it is possible to obtain a silica powder in which coarse particles having a particle diameter exceeding 5 ⁇ m are not detected by measurement by a general-purpose particle size distribution measurement method, specifically, a laser diffraction scattering method.
  • the present inventors have intensively studied to solve the above problems.
  • silica synthesis was performed by controlling so as to be excellent in monodispersity as described above, and a specific flocculant was added to the obtained silica particle dispersion to obtain a laser diffraction scattering method.
  • the wet sieving method which has higher detection sensitivity than the laser diffraction scattering method
  • the present inventors have found out that the coarse particles are an impediment to obtaining the high fluidity required for the filler of the resin composition for electronic materials.
  • the coarse particles are mainly aggregated primary particles that are inevitably produced during the synthesis of silica by the sol-gel method, not aggregates generated in subsequent steps such as the drying step. It was found that the coarse independent primary particles can be efficiently removed by wet filtration of the resulting silica particle dispersion after synthesizing the silica by the sol-gel method, and a novel sol-gel silica powder in which the above problems have been solved is obtained. I came to propose.
  • the sol-gel silica powder of the present invention has an average particle size of 0.05 ⁇ m or more and 2.0 ⁇ m or less by a laser diffraction scattering method, a coefficient of variation indicating the spread of the particle size distribution is 40% or less,
  • the residue on the screen when sieved by a wet sieving method using an electroformed sieve having an opening of 5 ⁇ m A sol-gel silica powder characterized in that the amount is 10 ppm or less.
  • the sol-gel silica powder of the present invention has an average particle size of 0.05 ⁇ m or more and 2.0 ⁇ m or less by laser diffraction scattering method, and has a detection sensitivity higher than that of the laser diffraction scattering method as a particle size distribution measurement method (The residual amount on the screen with a mesh sieve having an opening of 5 ⁇ m is also substantially reduced (10 ppm or less). Therefore, a resin composition containing this is highly excellent in fluidity at the time of melting. For this reason, in the production of a molded product such as a film, the generation of flow marks is suppressed.
  • the sol-gel silica powder of this embodiment is a sol-gel method, that is, a silicon alkoxide as a raw material is hydrolyzed and polycondensed in a reaction medium to form a silica sol, which is gelled, and then generated solid content.
  • a silica powder obtained by taking out and drying In the present embodiment, the silica powder obtained by drying can be fired as necessary.
  • silica particles obtained by a sol-gel method are independent spherical particles having a sphericity of 0.9 or more.
  • the average particle size of the sol-gel silica powder of this embodiment is preferably 0.05 ⁇ m or more and 2.0 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 1.5 ⁇ m or less by a laser diffraction scattering method.
  • it is larger than the above range, it becomes difficult to accurately reduce the agglomerates in the subsequent process, and the size is not suitable for filling the resin composition for electronic materials.
  • particles having a small particle size and a large specific surface area tend to aggregate.
  • the average particle size is smaller than the above range, it is difficult to suppress the formation of aggregates, and the generated aggregates are crushed. It is difficult to do and causes coarse grains.
  • such a small particle size increases in viscosity and decreases in fluidity when filled in a resin or the like.
  • the sol-gel silica powder of this embodiment is a dispersion liquid in which an amount of 5% by mass of silica powder in water is dispersed by ultrasonic waves under the conditions of an output of 40 W and an irradiation time of 10 minutes.
  • the remaining amount on the screen when sieving by wet sieving using an artificial sieve is 10 ppm or less, and preferably 5 ppm or less.
  • the sol-gel silica powder of the present embodiment is obtained by a manufacturing method described later, and even if individual silica particles are aggregated, since they are aggregates of weak force, simple crushing treatment Can be solved well.
  • the weak agglomerates can be pulverized into primary particles by ultrasonic dispersion at an output of 40 W and an irradiation time of 10 minutes. It means that it can be solved well by the share of the disperser when it is dispersed in a solvent.
  • the residual amount on the screen when sieving by a wet sieving method using an electroformed screen having a mesh size of 3 ⁇ m is preferably 10 ppm or less, and more preferably 5 ppm or less.
  • the above-mentioned electrogenic sieve is not particularly limited, and specifically, an electrogenic sieve manufactured by Iida Seisakusho may be mentioned.
  • the above-mentioned electrogenic sieve is made of nickel steel, and since an organic solvent containing alcohol cannot be used, water is used as a medium.
  • the remaining amount on the sieve is a value obtained when 20 g or more of the sol-gel silica powder is sieved as a sample amount.
  • the 5 mass% ultrasonic dispersion liquid can be prepared at one time or can be prepared by dividing. Specifically, 20 g of sol-gel silica powder is measured in one container, water is added so that the amount of silica is 5% by mass, and then ultrasonic waves with an output of 40 W may be irradiated for 10 minutes. 5 g may be measured in four containers, and after adding water so that the amount of silica becomes 5% by mass, ultrasonic waves with an output of 40 W may be irradiated for 10 minutes. In the sieving, the temperature of the 5% by mass ultrasonic dispersion is 20 to 40 ° C.
  • the measurement method has a detection level of about a percent as described in JP-A-2008-19157, and the detection sensitivity is low.
  • a small amount of particles exceeding 5 ⁇ m in the silica fine particles is used. Not suitable for quantification. Specifically, as shown in the examples, even when coarse particles are not detected by performing particle size distribution measurement by laser diffraction scattering method, the coarse particles detected when quantified by the wet sieving method using the electrode sieve In the present application, the presence of such coarse particles reduces the fluidity of the resin composition, and is a factor that hinders yield improvement in semiconductor sealing materials and liquid crystal sealant applications. It has been determined.
  • the coefficient of variation which is one of the indexes indicating the spread of the particle size distribution, is 40% or less, preferably 25% or less, and more preferably 20% or less.
  • the coefficient of variation is a value obtained by dividing the standard deviation by the average value.
  • the coefficient of variation is calculated using the standard deviation and average value of the measured particle diameter. If the coefficient of variation exceeds the above range, the particle size distribution becomes broad, and fine particles increase when compared with powders having the same average particle size. As described above, the increase in fine particles leads to an increase in viscosity when filled in a resin or the like.
  • the variation coefficient in sol-gel silica is 10% or more.
  • the coefficient of variation can be measured by a laser diffraction scattering method.
  • the amount of silanol groups on the surface of the silica particles is preferably 5 / nm 2 or less.
  • the sol-gel silica powder of this embodiment preferably has an ⁇ dose of 0.002 c / cm 2 ⁇ h or less. It is known that when the ⁇ dose is large, when this is used for filling the resin composition for electronic materials, it causes soft error factors such as reversal of accumulated charge in the memory cell. As miniaturization, high integration, and 3D mounting of semiconductor packages progress, the influence of alpha rays derived from fillers is increasing, and low alpha dose fillers are required.
  • Uranium (U), thorium (Th), and the like are listed as impurities that emit ⁇ rays.
  • the U content and the Th content are preferably 0.1 ppb or less. It is more preferably 0.05 ppb or less, and particularly preferably 0.02 ppb or less.
  • the uranium and thorium quantification method is a value measured by ICP mass spectrometry, and the lower limit of detection is 0.01 ppb.
  • the sol-gel silica powder of this embodiment has an Fe content of 10 ppm or less, an Al content of 10 ppm or less, an Na content of 5 ppm or less, a K content of 5 ppm or less, and a chloride ion content of 1 ppm or less. It is preferable. Furthermore, it is preferable that the Ca content is 5 ppm or less, the Cr content is 5 ppm or less, the Ni content is 5 ppm or less, and the Ti content is 5 ppm or less.
  • the amount of impurities contained in the sol-gel silica powder of the present embodiment is in the above range is that when used as a filler for a semiconductor encapsulant, a short circuit between metal wirings or corrosion of metal wirings caused by silica particles This is preferable in that it can be reduced.
  • the impurity quantification method is a value measured by ion chromatography for chloride ions, and a value measured by ICP emission analysis for elements other than chloride ions.
  • the sol-gel silica powder of this embodiment does not contain coarse particles and is excellent in fluidity when filled into a resin, it is particularly suitable for use as a semiconductor encapsulant or liquid crystal sealant for filling into a resin composition for electronic materials. It can be used suitably. Furthermore, the property that the resin composition is excellent in fluidity at the time of melting and hardly causes a flow mark in the molded product can be suitably used for various molded product applications including film applications.
  • the type of resin in which the sol-gel silica powder is blended is not particularly limited.
  • the type of the resin may be appropriately selected depending on the desired application, and examples thereof include an epoxy resin, an acrylic resin, a silicone resin, and an olefin resin.
  • an epoxy resin for example, an acrylic resin, a silicone resin or the like is preferable for a semiconductor sealing material application or a liquid crystal sealant application.
  • olefin resins polypropylene, polyethylene, polystyrene, etc. are preferred.
  • the filling amount of the sol-gel silica powder may be appropriately adjusted according to its use and purpose. Specifically, when used for a semiconductor encapsulant, it is in the range of 65 to 900 parts by weight with respect to 100 parts by weight of the resin, and when used for a liquid crystal sealant, it is 1 to 40 parts by weight with respect to 100 parts by weight of the resin. When used for a range or a film, it is preferably in the range of 0.01 to 1 part by mass with respect to 100 parts by mass of the resin.
  • another filler may be included.
  • sol-gel silica powder of this embodiment does not contain coarse particles, it can be suitably used as a toner filler.
  • sol-gel silica powder of the present embodiment is obtained by the sol-gel method so as to satisfy the above-mentioned requirements, the production method is not limited to a specific method, and any method may be used.
  • the sol-gel method silicon alkoxide is hydrolyzed and polycondensed in a reaction medium comprising water containing a catalyst and an organic solvent to form a silica sol, which is gelled, and then generated solid. It means a method of taking a minute and drying to obtain silica powder.
  • the silica powder obtained by drying can be fired as necessary.
  • the silica particle dispersion liquid with the average particle diameter of 0.05 micrometer or more and 2.0 micrometers or less by the laser diffraction scattering method manufactured by the sol-gel method will be 5 micrometers of openings.
  • a coagulant composed of at least one compound selected from the group consisting of carbon dioxide, ammonium carbonate, ammonium hydrogen carbonate and ammonium carbamate is added to coagulate the silica particles.
  • the silica particles are solid-liquid separated from the coagulated liquid and dried.
  • the silicon alkoxide used in the production method of the present embodiment is not particularly limited as long as it is a compound used for producing silica particles by a sol-gel method reaction.
  • examples of the silicon alkoxide include methyltrimethoxysilane, methyltriethoxysilane, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, and tetrabutoxysilane.
  • methyltrimethoxysilane, tetramethoxysilane, and tetraethoxysilane are more preferable because they are easily available industrially and are easy to handle.
  • These silicon alkoxides may be used alone or in combination of two or more.
  • sol-gel silica powder with reduced impurities it is preferable to use a silicon alkoxide having a high purity.
  • the U content and the Th content are each 0.2 ppb or less.
  • Tetramethoxysilane is preferably used.
  • the raw material can be purified in advance by distillation or the like.
  • the silicon alkoxide When the silicon alkoxide is liquid at normal temperature and pressure, it may be used as it is, or may be diluted with an organic solvent described later. When the silicon alkoxide is solid at normal temperature and pressure, it can be used by being dissolved or dispersed in an organic solvent.
  • ⁇ Basic catalyst> In the production of silica particles by the sol-gel method, an appropriate catalyst is preferably used.
  • an acidic catalyst may be used, but in this embodiment, a basic catalyst is used because it is easy to obtain spherical particles having a uniform particle size.
  • particle growth is often performed after first performing preliminary hydrolysis under an acidic catalyst, but in this embodiment, the use of an acidic catalyst during preliminary hydrolysis is excluded as described above. Instead, any method that uses a basic catalyst at the time of particle growth may be used.
  • the basic catalyst used in the present embodiment can be suitably used as long as it is a known basic catalyst used for producing silica particles by a sol-gel method reaction.
  • Examples of such basic catalysts include amine compounds and alkali metal hydroxides.
  • an amine compound from the viewpoint that the amount of impurities containing a metal other than the metal element constituting the target silica particles is small and high-purity silica particles can be obtained.
  • Examples of such amine compounds include ammonia, methylamine, dimethylamine, trimethylamine, ethylamine, dimethylamine, and trimethylamine. Of these, it is particularly preferable to use ammonia because it is highly volatile and easy to remove, and the reaction rate of the sol-gel method is high.
  • the above basic catalysts can be used alone or in combination of two or more.
  • the above basic catalyst an industrially available one can be used as it is (as it is in a commercially available form), or it is used after being diluted with water or an organic solvent such as ammonia water. You can also.
  • the concentration in the case of using an aqueous solution as the basic catalyst is preferably in the range of 1 to 30% by mass because it is easily available industrially and the concentration can be easily adjusted.
  • the usage ratio of the basic catalyst may be appropriately determined in consideration of the reaction rate of hydrolysis and polycondensation reaction of silicon alkoxide.
  • the proportion of the basic catalyst used is preferably such that the amount of the basic catalyst present in the reaction solution is 0.1 to 60% by mass, and 0.5 to 40% by mass with respect to the mass of the silicon alkoxide used. It is more preferable to use in the range of%.
  • the solvent used for the hydrolysis and polycondensation reaction of the silicon alkoxide is preferably a polar solvent.
  • the polar solvent is an organic solvent that dissolves 10 g or more of water per 100 g under normal temperature and normal pressure, or water.
  • a plurality of organic solvents other than water may be mixed and used. In this case, the mixture of the organic solvents only needs to satisfy the above requirements.
  • organic solvent that is a polar solvent other than water examples include alcohols such as methanol, ethanol, isopropyl alcohol, and butanol; ethers such as tetrahydrofuran and dioxane; amide compounds such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. be able to.
  • alcohol is a by-product during the reaction of the sol-gel method, it is unnecessary to use alcohol such as methanol, ethanol, isopropyl alcohol, butanol among the above in the silica particle dispersion after the reaction. This is particularly preferable from the viewpoint of suppressing the mixing of impurities and the point that it can be easily removed by heating.
  • the organic solvent and water can be used singly or as a mixture of two or more solvents.
  • the proportion of the organic solvent or water used may be appropriately determined according to the desired particle size of the target silica particles and the desired concentration of silica particles in the silica particle dispersion after the sol-gel method reaction.
  • the proportion of alcohol in the mass (100% by mass) of the silica particle dispersion obtained by the sol-gel method reaction is preferably 10 to 90% by mass, more preferably 15 to It is used so that it may become the range of 80 mass%.
  • Water is essential for the reaction of the sol-gel method (for this reason, a polar solvent that dissolves water as described above is used).
  • a polar solvent that dissolves water as described above is used.
  • the basic catalyst is added as an aqueous solution or when water is used as part or all of the solvent, it is not necessary to add water separately to the reaction solution. However, in other cases, it is necessary to add water necessary for the sol-gel reaction separately.
  • the proportion of water used is appropriately adjusted and selected according to the particle size of the silica particles to be produced. If the proportion of water used is too small, the reaction rate becomes slow. Conversely, if too much water is used, it takes a long time for drying (solvent removal). Therefore, the proportion of water used is selected in consideration of both of these requirements.
  • the proportion of water used is preferably in the range of 2 to 50% by mass, preferably in the range of 5 to 40% by mass, based on the total mass of the silica dispersion obtained by the sol-gel method reaction. More preferred.
  • Water may be used as a part or all of the reaction solvent, or may be added to the reaction solution after all reaction raw materials other than water are prepared. However, in order to make the sol-gel reaction proceed rapidly and stably, it is preferable to use water as a part of the solvent, that is, to use a mixture of water and an organic solvent as the solvent.
  • water as used herein includes a case where water is added along with the addition of a basic catalyst.
  • the reactor used in this embodiment is not particularly limited as long as it is a reactor having a stirrer.
  • the agitator blades of the agitator known ones can be used without any particular limitation. However, representative examples include a tilted paddle blade, a turbine blade, three retreat blades, an anchor blade, a full zone blade, and a twin star blade. , Max blend wings and the like.
  • the reactor having such a stirrer is particularly limited to a hemispherical or flat-bottomed or round-bottomed cylindrical reactor, and further a baffle plate installed in these reactors.
  • the material of the reactor is not particularly limited, and those made of glass, metal such as stainless steel (including those coated with glass or resin), or resin can be used.
  • a material having excellent wear resistance is preferable.
  • the stirring efficiency of the reactor used in this embodiment is not particularly limited, the dimensionless mixing time n ⁇ m (where n is the stirring blade rotation speed (1 / s)), which is an index of the stirring efficiency of the reactor.
  • ⁇ m is desirably a reactor having a mixing time (s) of 100 or less.
  • the range of the stirring efficiency of the reactor generally corresponds to the stirring efficiency of a reactor handling a reaction liquid of 50 L or more in industrial implementation described later.
  • the dimensionless mixing time n ⁇ m means the product of the stirring blade rotation speed n (1 / s) and the mixing time ⁇ m (s). If the stirring Reynolds number is constant, it is unambiguous regardless of the scale of the reactor. It is a very useful index for showing the stirring efficiency.
  • ⁇ m generally means the time until the tracer substance is uniformly mixed.
  • the mixing time ⁇ m is the shape of the reactor, the presence / absence of a baffle plate and its arrangement, the type and rotation of the stirring blades, and the like. It is influenced by the number and viscoelastic properties of the liquid to be mixed.
  • the dimensionless mixing time n ⁇ m is lower than 55, the stirring efficiency of the reactor is high, the reaction liquid can be sufficiently stirred, and adhesion particles and agglomerates are not easily generated.
  • n ⁇ m is 55 to 100, the formation of adhesion particles and aggregates can be suppressed by supplying the silicon alkoxide solution into the reaction solution at a discharge linear velocity of 30 mm / s to 1000 mm / s.
  • the dimensionless mixing time n ⁇ m exceeds 100, the stirring efficiency of the reactor becomes extremely low, the mixing is insufficient, the reaction solution becomes non-uniform, and many adhesion particles and agglomerates are easily generated.
  • the hydrolysis and polycondensation reaction (sol-gel method reaction) in this embodiment is usually performed in the presence of a basic catalyst as described above.
  • a basic catalyst as described above.
  • Known conditions can be adopted as the reaction conditions, and the contact method between the silicon alkoxide and the basic catalyst is not particularly limited, and has a desired particle size distribution in consideration of the configuration of the reactor and the reaction scale. What is necessary is just to select and determine suitably so that a silica powder may be obtained.
  • reaction method of the sol-gel method is specifically shown as follows, for example.
  • Examples include a method in which water, a polar solvent other than water (organic solvent), and a basic catalyst are charged into a reaction vessel, and a silicon alkoxide (or an organic solvent solution of silicon alkoxide) and an aqueous solution of a basic catalyst are added simultaneously. It can. According to this method, spherical silica particles having good reaction efficiency and uniform particle diameter can be produced efficiently and with good reproducibility, which is preferable. In this case, for example, after adding a part of silicon alkoxide first, the remaining silicon alkoxide and the basic catalyst can be added simultaneously. When two or more silicon alkoxides are used in combination, they may be mixed and added at the same time, or each may be added sequentially.
  • the silicon alkoxide and the basic catalyst are preferably added dropwise to the reaction solution.
  • dripping in the liquid means that the tip of the dripping port is immersed in the reaction liquid when the above raw material is dropped into the reaction liquid.
  • the position of the tip of the dropping port is a position where stirring is sufficiently performed, such as in the vicinity of the stirring blade, and the dripping material can quickly diffuse into the reaction solution.
  • the addition time of silicon alkoxide and basic catalyst (the time from the start of addition to the end of addition) is a very important factor in producing particles having a narrow particle size distribution. If this addition time is too short, the particle size distribution range tends to be widened. Conversely, if it is too long, stable particle growth cannot be achieved. Therefore, in order to obtain silica particles with a narrow particle size distribution width and uniform particle size, it is necessary to select and employ an addition time suitable for the growth of the particles. In particular, in order to produce sol-gel silica particles having good monodispersity, it is preferable to supply a raw material such as silicon alkoxide at a discharge linear velocity of 30 mm / s to 1000 mm / s. From such a viewpoint, the addition time is preferably in the range of 0.2 to 8 hours per desired particle diameter of 100 nm.
  • the reaction temperature is not particularly limited as long as the reaction of the sol-gel method proceeds rapidly according to the type of raw material used, and can be appropriately selected according to the particle size of the target silica particles. Good. When silica particles having an average particle diameter of 0.05 to 2 ⁇ m are obtained, the reaction temperature may be appropriately selected within the range of ⁇ 10 to 60 ° C.
  • ripening may be performed after the dropping of the silicon alkoxide and the basic catalyst is completed.
  • the aging temperature is preferably about the same as the reaction temperature, that is, ⁇ 10 to 60 ° C., and the aging time is preferably 0.25 to 5 hours.
  • silica particles having a desired particle diameter In order to obtain silica particles having a desired particle diameter, a method such as adding silicon alkoxide and a basic catalyst again after aging to grow the particle diameter of the silica particles may be used.
  • a silica particle dispersion liquid having an average particle size of 0.05 to 2.0 ⁇ m by a laser diffraction / scattering method manufactured by a sol-gel method can be obtained.
  • the silica particles are present in a dispersed state in a mixed solvent composed of the polar solvent used and an alcohol generated by hydrolysis of silicon alkoxide.
  • the silica particles are well monodispersed without substantially forming adhesion particles or agglomerates, but due to local excessive reaction progress, coarse independent primary particles (particle size exceeding 5 ⁇ m) Hereinafter, this is abbreviated as “coarse independent primary particles”). Specifically, coarse independent primary particles are contained in an amount of about 15 to 1000 ppm with respect to the silica particles. If these particles remain in the final silica powder as described above, there is a problem of a decrease in fluidity of the resin composition. cause.
  • the concentration of the silica particles in the obtained silica particle dispersion is preferably 1 to 40% by mass, and particularly preferably 2 to 25% by mass. Therefore, it is preferable to adjust the use amount of a polar solvent, particularly a polar solvent other than water, so that the concentration of the silica particles is adjusted to the above range.
  • the silica particles in the dispersion obtained by the sol-gel method reaction are too high in handling properties, etc., it is difficult to handle the dispersion before the dispersion filtration step described below or as necessary. It is preferable to adjust the concentration by adding a polar solvent before the surface treatment step.
  • the silica particle dispersion obtained after the sol-gel reaction is filtered by a wet method to remove the coarse independent primary particles contained therein. That is, by filtering the silica dispersion, if the coarse independent primary particles, further adhesion particles and agglomerates are generated on the filter medium together with the reaction residue and the like, these are also separated.
  • a filter having a mesh opening of 5 ⁇ m or less can be used without particular limitation, and a filter having a mesh opening of 3 ⁇ m or less can be used. If the aperture is too small, not only will the filterability be reduced, but the average particle size of the silica particles to be filtered will also vary from the above range, so depending on the average particle size of the target powder, The lower limit is usually 1 ⁇ m.
  • the material of the filter is not particularly limited, and examples thereof include resin (polypropylene, PTFE, etc.) and metal. From the viewpoint of preventing metal impurities from mixing, it is preferable to use a resin filter.
  • sol-gel silica powder is dispersed again in a solvent to obtain a dispersion, and wet filtration is performed.
  • the silica particles are collected and dried again.
  • the sol-gel method in the step of solid-liquid separation, the step of drying, or the step of firing as necessary, an aggregate in which silica particles are strongly aggregated is easily generated, and the generation of the aggregate is suppressed.
  • it is necessary to provide a coagulation step described later again. In any case, it is complicated, and increasing the number of processes in this way not only increases the risk of contamination from the environment, but also affects productivity, which is not efficient.
  • ⁇ Surface treatment process> In producing the sol-gel silica powder of this embodiment, at least one surface treatment selected from the group consisting of a silicone oil, a silane coupling agent, and a silazane is used as a dispersion before coagulating a silica particle dispersion described later. An agent may be added to perform surface treatment.
  • the solid-liquid separation process described later can be performed efficiently. Moreover, since it can suppress the production
  • the surface treatment process may be performed before the coagulation process in the dispersion after the sol-gel reaction, and may be either before or after the filtration process of the dispersion, but is dispersed in that the coarse independent primary particles are accurately reduced. It is preferable to carry out before the liquid filtration step. By doing so, agglomerates and surface treatment agent residues generated during the surface treatment in the step can also be removed in the dispersion filtration step.
  • silicone oil known silicone oils usually used for the surface treatment of silica particles can be used without particular limitation, and can be appropriately selected according to the required performance of the surface-treated silica particles. , Use it.
  • silicone oil examples include, for example, dimethyl silicone oil, methylphenyl silicone oil, methyl hydrogen silicone oil, alkyl-modified silicone oil, amino-modified silicone oil, epoxy-modified silicone oil, carboxyl-modified silicone oil, carbinol-modified silicone oil, Examples thereof include methacryl-modified silicone oil, polyether-modified silicone oil, and fluorine-modified silicone oil.
  • the ratio of the silicone oil used is not particularly limited, but if it is too small, the surface treatment will be insufficient, and if it is too much, the post-treatment will be complicated, so 0.05 to 80 parts by mass with respect to 100 parts by mass of the silica particles used. Parts, preferably 0.1 to 60 parts by mass.
  • silane coupling agent a known silane coupling agent usually used for surface treatment can be used without particular limitation, and is appropriately selected according to the performance of the surface-treated silica particles required. And use it.
  • silane coupling agent examples include, for example, methyltrimethoxysilane, methyltriethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, and 3-methacryloyloxy.
  • the use ratio of the silane coupling agent is not particularly limited, but if it is too small, the surface treatment becomes insufficient, and if it is too much, the post-treatment becomes complicated, so 0.05 to 80 parts per 100 parts by mass of the silica particles used.
  • the amount is preferably part by mass, more preferably 0.1 to 40 parts by mass.
  • silazane a known silazane usually used for surface treatment can be used without particular limitation.
  • silazane examples include tetramethyldisilazane, hexamethyldisilazane, heptamethyldisilazane, and the like.
  • hexamethyldisilazane is preferably used because of its good reactivity and good handling.
  • the amount of silazane used is not particularly limited, but if it is too small, the surface treatment will be insufficient, and if it is too large, post-treatment will be complicated, so 0.1 to 150 parts by mass with respect to 100 parts by mass of the silica particles used. Parts, preferably 1 to 120 parts by mass.
  • the above surface treatment agents may be used alone or in combination of two or more.
  • the surface treatment agents as described above it is preferable to use at least one selected from the group consisting of a silane coupling agent and a silazane because the fluidity of the obtained surface-treated silica particles is good, and silazane is used. More preferably.
  • the method for adding the surface treatment agent is not particularly limited.
  • the surface treating agent is a liquid having a low viscosity at normal temperature and pressure, it may be dropped into the dispersion.
  • the surface treatment agent is a high-viscosity liquid or solid, it can be added in the same manner as in the case of a low-viscosity liquid after it is added to an appropriate organic solvent to form a solution or dispersion.
  • an organic solvent used here the same thing as the said polar solvent can be mentioned.
  • the surface treatment agent when the surface treatment agent is in a gaseous state, it can be added by blowing it into the liquid so as to form a fine foam.
  • the treatment temperature when performing the surface treatment may be determined in consideration of the reactivity of the surface treatment agent to be used. However, if the treatment temperature is too low, the reaction proceeds slowly, and if too high, the operation is complicated. It is preferably 10 to 100 ° C, more preferably 20 to 80 ° C.
  • the treatment time for performing the surface treatment is not particularly limited, and may be determined in consideration of the reactivity of the surface treatment agent to be used. Considering both sufficient progress of the surface treatment reaction and shortening the process time, the treatment time is preferably 0.1 to 48 hours, more preferably 0.5 to 24 hours.
  • coagulation is performed after the dispersion is filtered.
  • the coagulation step is performed in a state where a coagulant composed of at least one compound selected from the group consisting of carbon dioxide, ammonium carbonate, ammonium hydrogen carbonate and ammonium carbamate is added to the dispersion.
  • a coagulant composed of at least one compound selected from the group consisting of carbon dioxide, ammonium carbonate, ammonium hydrogen carbonate and ammonium carbamate is added to the dispersion.
  • the coagulant used in the present embodiment is easily decomposed and removed by slight heating, so that there is an advantage that high-purity silica particles can be easily produced.
  • the content ratio of sodium element in the obtained silica particles can be 100 ppm or less, and more preferably 10 ppm or less.
  • the ratio and method of addition of the coagulant can be set as follows according to the type of coagulant used.
  • the use ratio of the coagulant is set by considering the balance between the degree of formation of weak aggregates of silica particles in the dispersion and the waste of using an excessively large amount of raw material.
  • the mass of the silica particles as a reference for the use ratio of the coagulant in the following is a conversion value when it is assumed that the silicon alkoxide used is all hydrolyzed and polycondensed to form silica particles.
  • the proportion used is preferably 0.005 parts by mass or more with respect to 100 parts by mass of silica particles contained in the dispersion, and is 0.005 to 300. It is more preferable to set it as a mass part.
  • a more preferable usage rate of carbon dioxide is 0.05 parts by mass or more and 0.05 to 300 parts by mass with respect to 100 parts by mass of the silica particles. Particularly preferred is 0.25 to 200 parts by mass.
  • a more preferable use ratio of carbon dioxide is 15 parts by mass or more, particularly preferably 15 to 300 parts by mass with respect to 100 parts by mass of the silica particles.
  • a content of 17 to 200 parts by mass is particularly preferable.
  • Examples of the method of adding carbon dioxide include a method of blowing into a dispersion in a gaseous state, a method of adding in a solid state (dry ice), etc., but adding in a solid state is easy to operate. Therefore, it is preferable.
  • ammonium carbonate, ammonium hydrogen carbonate or ammonium carbamate When ammonium carbonate, ammonium hydrogen carbonate or ammonium carbamate is used as the coagulant, the proportion used is 0.001 part by mass or more with respect to 100 parts by mass of silica particles contained in the dispersion. The amount is preferably 0.001 to 80 parts by mass. In the case where the surface treatment is not performed on the silica particles, a more preferable usage ratio of ammonium carbonate, ammonium hydrogen carbonate or ammonium carbamate is 0.001 to 15 parts by mass with respect to 100 parts by mass of the silica particles. Particularly preferred is 001 to 10 parts by mass.
  • a more preferable usage ratio of ammonium carbonate, ammonium hydrogen carbonate, or ammonium carbamate is 15 parts by mass or more and 15 to 80 parts by mass with respect to 100 parts by mass of the silica particles.
  • the content is particularly preferably 17 to 60 parts by mass, particularly preferably 20 to 50 parts by mass.
  • Ammonium carbonate, ammonium hydrogen carbonate or ammonium carbamate may be added in a solid state or in a solution state dissolved in an appropriate solvent.
  • the solvent used in the case of adding these in a solution state is not particularly limited as long as it dissolves them, but water is used from the viewpoint of high dissolving ability and easy removal after filtration. It is preferable to use it.
  • the concentration of the ammonium carbonate, ammonium hydrogen carbonate or ammonium carbamate solution is not particularly limited as long as these are in the range where they can be dissolved. %, Preferably 5 to 12% by mass.
  • the above coagulant may be used alone or in combination of two or more.
  • ammonium carbonate a mixture of ammonium hydrogen carbonate and ammonium carbamate commercially available as so-called “ammonium carbonate” can be used as it is or as a solution dissolved in an appropriate solvent.
  • the total use ratio of ammonium hydrogen carbonate and ammonium carbamate, the type of solvent used when adding this as a solution, and the concentration of the solution are ammonium carbonate, ammonium hydrogen carbonate or ammonium carbamate.
  • the coagulant in this embodiment it is preferable to use at least one selected from the group consisting of ammonium hydrogen carbonate and ammonium carbamate, more preferably ammonium hydrogen carbonate, and particularly ammonium hydrogen carbonate in an aqueous solution. It is preferable to add as.
  • the pH of the silica particle dispersion at the time of adding the coagulant is set by selecting a pH region in which the coagulant does not undesirably decompose in the dispersion and the effects of this embodiment can be effectively exhibited. It is desirable. From such a viewpoint, the pH of the dispersion is preferably in the alkaline region, more preferably 9 or more.
  • the temperature of the silica particle dispersion when adding the coagulant is desirably set by selecting a temperature at which weak aggregates of silica particles generated by the addition of the coagulant can stably exist. From such a viewpoint, the temperature of the dispersion is preferably ⁇ 10 to 60 ° C., more preferably 10 to 40 ° C., which is the same as the reaction temperature in the sol-gel process.
  • the aging time is preferably 0.5 to 72 hours, particularly preferably 1 to 48 hours.
  • the temperature of the dispersion during the aging is not particularly limited, and can be carried out in the same temperature range as the preferred temperature during the addition of the coagulant, if it is carried out at the same temperature as when the coagulant was added. It ’s enough.
  • the next step in the method of this embodiment is a separation step in which the silica particles are recovered by filtration from the dispersion after adding the coagulant and preferably aging as described above.
  • the silica particles that have formed weak aggregates by the addition of the coagulant can be easily recovered by separating the solid-liquid as a filtrate by filtration.
  • the filtration method is not particularly limited, and known methods such as vacuum filtration, pressure filtration, and centrifugal filtration can be applied.
  • filter paper used for filtration can be used without particular limitation as long as they are industrially available. What is necessary is just to select suitably according to the scale of an apparatus (filter).
  • the pore diameter of the filter paper or the like may be much larger than the primary particle diameter. For silica particles having a diameter of 01 to 5 ⁇ m, for example, those having a pore diameter of about 5 ⁇ m are sufficient. As described above, since the filter paper or the like has a large hole diameter, it can be quickly filtered.
  • the silica particles are recovered as a cake by filtration.
  • the resulting cake was rinsed with an appropriate solvent such as water, alcohol, etc., and used in a sol-gel reaction.
  • an appropriate solvent such as water, alcohol, etc.
  • the solvent, the basic catalyst, and the unreacted surface treatment agent can be decomposed or removed.
  • the drying temperature in the drying process of the present embodiment is preferably set to a temperature of 35 ° C. or higher.
  • the drying method is not particularly limited, and a known method such as blow drying or drying under reduced pressure can be employed.
  • a known method such as blow drying or drying under reduced pressure
  • the drying temperature is preferably 35 to 200 ° C, more preferably 50 to 200 ° C, particularly preferably 80 to 200 ° C, and 120 to 200 ° C. It is particularly preferable that
  • the drying time is not particularly limited, but by setting the drying time to about 2 to 48 hours, the silica particles can be sufficiently dried.
  • silica particles from which the dispersion medium has been removed from the silica particle dispersion can be obtained directly by performing a method of volatilizing the dispersion medium by heating concentration or vacuum concentration of the silica particle dispersion.
  • the salt derived from the specific coagulant may be lost.
  • the specific coagulant is added to the concentrate of the silica dispersion during concentration and drying. May be added as appropriate so that the salt does not disappear in the concentrate.
  • the silica particles obtained by the above method are obtained as a dry powder in the form of an aggregate in which individual particles are aggregated with a weak force. And the silica particle which does not produce
  • the silica powder is easily crushed by a dispersion treatment by ultrasonic irradiation with an output of about 40 W for 10 minutes in a 5% by mass aqueous solution of silica powder.
  • the dispersion medium absorbed in the particles is not completely removed, silanol groups remain, and pores exist.
  • the calcination temperature during the above calcination treatment is too low, it is difficult to remove the dispersion medium component, and if it is too high, silica particles will be fused, so that the calcination temperature is preferably 300 to 1300 ° C, more preferably 600 to 1200 ° C. .
  • the firing time is not particularly limited as long as the remaining dispersion medium is removed, but if it is too long, the productivity is lowered. Therefore, after raising the temperature to the intended firing temperature, 0.5 to 48 hours, more preferably It is sufficient to carry out the baking while maintaining for 2 to 24 hours.
  • the atmosphere at the time of firing is not particularly limited, and can be performed under an inert gas such as argon or nitrogen, or in an air atmosphere.
  • the silica particles obtained from the firing step can also be obtained as a dry powder in the form of an aggregate in which individual particles are aggregated with a weak force as described above.
  • the sol-gel silica powder of the present embodiment produced as described above does not contain coarse independent primary particles excessively grown at the time of synthesis or agglomerates in which the particles are strongly aggregated, and the silica powder 5 mass% ultrasonic dispersion liquid In (output 40 W, irradiation time 10 minutes), the residual amount on the screen when sieving by the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m is 10 ppm or less.
  • the sol-gel silica powder can be used for various applications without performing a special crushing treatment.
  • a known solution is used. It is also possible to use after crushing by crushing means. By performing the crushing treatment, the residual amount on the sieve by the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m can be reduced to 5 ppm or less.
  • Examples of known crushing means include a ball mill and a jet mill.
  • the particles when using in a resin or solvent without using a known crushing means, by using a high shear disperser, the particles can be crushed simultaneously with the dispersion in the resin or solvent. It can be carried out.
  • the measurement samples were prepared by weighing 5 g of sol-gel silica powder (20 g in total) in four 200 mL resin cups with an electronic balance, and adding 95 ml of distilled water. Each sample was dispersed under the condition of 40 W ⁇ 10 minutes using an ultrasonic homogenizer (manufactured by BRANSON, Sonifier 250), and then the total amount (20 g for sol-gel silica powder) was opened at 5 ⁇ m square holes or 3 ⁇ m square holes. Wet sieving was carried out using an electroformed sieve (manufactured by Iida Seisakusho, ⁇ 75 mm ⁇ 40 mmH), and the residue on the sieve mesh was quantified.
  • an electroformed sieve manufactured by Iida Seisakusho, ⁇ 75 mm ⁇ 40 mmH
  • sol-gel silica powder Average particle size, coefficient of variation, and coarse particle amount of 5 ⁇ m or more in the laser diffraction scattering method
  • About 0.1 g of sol-gel silica powder is weighed with an electronic balance in a 50 mL glass bottle, about 40 ml of distilled water is added, and dispersed using an ultrasonic homogenizer (BRANSON, Sonifier 250) under the conditions of 40 W and 10 minutes.
  • the average particle size ( ⁇ m) and coefficient of variation of the sol-gel silica powder were measured with a laser diffraction / scattering particle size distribution analyzer (LS-230, manufactured by Beckman Coulter, Inc.).
  • the average particle diameter ( ⁇ m) here means a volume-based cumulative 50% diameter ( ⁇ m).
  • LACS-4000M low level ⁇ ray measuring device
  • Sol-gel silica powder was dissolved by heating with hydrofluoric acid, and the residue was measured by ICP emission analysis (manufactured by Thermo Scientific, iCAP 6500 DUO).
  • the amount of surface silanol groups was calculated from the water content measured by the above method and the specific surface area according to the following formula.
  • Surface silanol groups (pieces / nm 2 ) 668.9 ⁇ water content (mass%) ⁇ specific surface area (m 2 / g) (Flow mark) 25 g of sol-gel silica fine powder was added to 25 g of bisphenol A + F type mixed epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., ZX-1059) and kneaded by hand.
  • the hand-kneaded resin composition was pre-kneaded with a rotating / revolving mixer (manufactured by THINKY, Awatori Kentaro AR-500) (kneading: 1000 rpm, 8 minutes, defoaming: 2000 rpm, 2 minutes).
  • the pre-kneaded resin composition was kneaded using three rolls (manufactured by IMEX, BR-150HCV roll diameter ⁇ 63.5).
  • the kneading conditions were such that the kneading temperature was room temperature, the distance between rolls was 20 ⁇ m, and the number of kneading was 5 times.
  • Two glass sheets were stacked in advance so as to have a gap of 30 ⁇ m and heated to 100 ° C., and the prepared kneaded resin composition was subjected to a high temperature penetration test. Observation was made until the kneaded resin composition reached 20 mm or until the penetration stopped, and the presence or absence of a flow mark was visually evaluated.
  • the number of measurement at one time is about 50,000, the measurement is performed five times, the total number of measurements (about 250,000) is measured, the number of particles having a particle size of 5 ⁇ m or more, and the particle size of 3 ⁇ m or more. The number of particles was calculated, and the amount of each coarse particle (ppm) relative to the total number measured.
  • Example 1 Using a reactor having a Max Blend blade (blade diameter 345 mm) in a jacketed glass-lined reactor (inner diameter 1200 mm) with an internal volume of 1000 L, methanol 75 kg, isopropanol 30 kg and aqueous ammonia (25 mass%) as reaction media 25 kg was charged (reaction medium amount: 150 L), the reaction temperature was set to 40 ° C., and the mixture was stirred at 52 rpm. Then, a mixture of 3.0 kg of tetraethoxysilane, 7.0 kg of methanol, and 2.0 kg of isopropanol as raw materials was added to the reaction medium to prepare silica seed particles.
  • the obtained sol-gel silica powder had an average particle size of 0.74 ⁇ m, a coefficient of variation of 20.7% and a sphericity of 0.96, and no coarse particles of 5 ⁇ m or more were detected by the laser diffraction scattering method. Moreover, the residual amount on the sieve by the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m and an opening of 3 ⁇ m was 5 ppm and 6 ppm, respectively. The amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter counter method was less than 4 ppm and 8 ppm.
  • ⁇ dose is 0.002 c / cm 2 ⁇ h
  • metal impurity amount is 0.02 ppb for U, 0.02 ppb for Th, 0.1 ppm for Fe, 0.1 ppm for Al, 0.2 ppm for Na, and 0 for K 0.0 ppm
  • Ca was 0.1 ppm
  • Cr was 0.0 ppm
  • Ni was 0.0 ppm
  • Ti was 0.0 ppm
  • Cl ⁇ was 0.0 ppm.
  • the specific surface area was 4 m 2 / g
  • the surface silanol group amount was 3 / nm 2 , and no flow mark was observed.
  • Example 2 The sol-gel silica powder obtained in Example 1 was crushed using a jet mill.
  • the obtained sol-gel silica powder had an average particle size of 0.73 ⁇ m, a coefficient of variation of 19.1% and a sphericity of 0.96, and no coarse particles of 5 ⁇ m or more were detected by the laser diffraction scattering method.
  • the residual amount on the sieve by the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m and an opening of 3 ⁇ m was both less than 5 ppm (less than the lower limit of determination).
  • the amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter counter method was less than 4 ppm.
  • ⁇ dose is 0.002c / cm 2 ⁇ h
  • metal impurity amount is 0.02ppb for U, 0.02ppb for Th, 0.4ppm for Fe, 2.1ppm for Al, 0.2ppm for Na
  • K is 0 0.0 ppm
  • the specific surface area was 4 m 2 / g
  • the surface silanol group amount was 3 / nm 2 , and no flow mark was observed.
  • Example 3 The sol-gel silica powder obtained in Example 1 was crushed using a ball mill.
  • the obtained sol-gel silica powder had an average particle size of 0.74 ⁇ m, a coefficient of variation of 21.6% and a sphericity of 0.95, and no coarse particles of 5 ⁇ m or more were detected by the laser diffraction scattering method.
  • the residual amount on the sieve by the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m and an opening of 3 ⁇ m was both less than 5 ppm (less than the lower limit of determination).
  • the amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter counter method was less than 4 ppm.
  • ⁇ dose is 0.002 c / cm 2 ⁇ h
  • metal impurity amount is 0.02 ppb for U, 0.02 ppb for Th, 0.2 ppm for Fe, 0.4 ppm for Al, 0.2 ppm for Na, and 0 for K 0.1 ppm, Ca 0.1 ppm, Cr 0.0 ppm, Ni 0.1 ppm, Ti 0.0 ppm, and Cl 2 ⁇ 0.1 ppm.
  • the specific surface area was 4 m 2 / g
  • the surface silanol group amount was 3 / nm 2 , and no flow mark was observed.
  • Example 4 In Example 1, the raw material discharge linear velocity was changed to 263 mm / s. Otherwise, sol-gel silica particles were synthesized and evaluated in the same manner as in Example 1. The sol-gel silica powder obtained after firing was 122 kg.
  • the obtained sol-gel silica powder had an average particle size of 0.75 ⁇ m, a coefficient of variation of 20.3%, a sphericity of 0.97, and no coarse particles of 5 ⁇ m or more were detected in the laser diffraction scattering method. Moreover, the residual amount on the sieve by the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m and an opening of 3 ⁇ m was less than 5 ppm (less than the lower limit of determination) and 6 ppm, respectively. The amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter counter method was less than 4 ppm and 8 ppm.
  • ⁇ dose is 0.001 c / cm 2 ⁇ h
  • metal impurity amount is 0.02 ppb for U, 0.01 ppb for Th, 0.1 ppm for Fe, 0.1 ppm for Al, 0.1 ppm for Na, 0 for K 0.0 ppm, Ca 0.1 ppm, Cr 0.0 ppm, Ni 0.0 ppm, Ti 0.0 ppm, and Cl 2 ⁇ 0.1 ppm.
  • the specific surface area was 4 m 2 / g, the surface silanol group amount was 3 / nm 2 , and no flow mark was observed.
  • Example 5 In Example 1, the dry ice was changed to 3 kg of ammonium bicarbonate. Otherwise, sol-gel silica particles were synthesized and evaluated in the same manner as in Example 1. The sol-gel silica powder obtained after firing was 122 kg.
  • the obtained sol-gel silica powder had an average particle size of 0.72 ⁇ m, a coefficient of variation of 18.1% and a sphericity of 0.97, and coarse particles of 5 ⁇ m or more were not detected by the laser diffraction scattering method. Moreover, the residual amount on the sieve by the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m and an opening of 3 ⁇ m was 5 ppm and 6 ppm, respectively. The amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter counter method was 5 ppm and 8 ppm.
  • the ⁇ dose is 0.001 c / cm 2 ⁇ h
  • the metal impurity amount is 0.01 ppb for U, 0.01 ppb for Th, 0.1 ppm for Fe, 0.1 ppm for Al, 0.1 ppm for Na, and 0 for K.
  • the specific surface area was 4 m 2 / g
  • the surface silanol group amount was 3 / nm 2 , and no flow mark was observed.
  • Example 6 In Example 1, the raw material after producing silica seed particles was changed to 90 kg of tetramethoxysilane, 25 kg of methanol, and 40 kg of aqueous ammonia (25% by mass). Otherwise, sol-gel silica particles were synthesized and evaluated in the same manner as in Example 1. The sol-gel silica powder obtained after firing was 35 kg.
  • the obtained sol-gel silica powder had an average particle size of 0.43 ⁇ m, a coefficient of variation of 14.8%, a sphericity of 0.98, and no coarse particles of 5 ⁇ m or more were detected by the laser diffraction scattering method. Moreover, the residual amount on the sieve by the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m and an opening of 3 ⁇ m was both less than 5 ppm (less than the lower limit of determination). The amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter counter method was less than 4 ppm.
  • the alpha dose is 0.002 c / cm 2 ⁇ h, and the amount of metal impurities is 0.01 ppb for U, 0.01 ppb for Th, 0.1 ppm for Fe, 0.1 ppm for Al, 0.1 ppm for Na, and 0 for K 0.0 ppm, Ca was 0.1 ppm, Cr was 0.0 ppm, Ni was 0.0 ppm, Ti was 0.0 ppm, and Cl ⁇ was 0.0 ppm.
  • the specific surface area was 7 m 2 / g, the amount of surface silanol groups was 3 / nm 2 , and no flow mark was observed.
  • Example 7 In Example 1, the reactor was changed to 4000 L, and the raw material after producing silica seed particles was changed to 1750 kg of tetramethoxysilane, 500 kg of methanol, and 750 kg of aqueous ammonia (25% by mass). Otherwise, sol-gel silica particles were synthesized and evaluated in the same manner as in Example 1. The sol-gel silica powder obtained after firing was 674 kg.
  • the obtained sol-gel silica powder had an average particle diameter of 1.14 ⁇ m, a coefficient of variation of 22.4% and a sphericity of 0.96, and no coarse particles of 5 ⁇ m or more were detected by the laser diffraction scattering method. Moreover, the residual amount on the screen by the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m and an opening of 3 ⁇ m was 6 ppm and 8 ppm, respectively. The amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter counter method was 8 ppm and 12 ppm.
  • ⁇ dose is 0.001c / cm 2 ⁇ h
  • metal impurity amount is 0.01ppb for U, 0.02ppb for Th, 0.1ppm for Fe, 0.1ppm for Al, 0.2ppm for Na, K for 0 0.1 ppm, Ca 0.1 ppm, Cr 0.0 ppm, Ni 0.0 ppm, Ti 0.0 ppm, and Cl 2 ⁇ 0.0 ppm.
  • the specific surface area was 3 m 2 / g
  • the surface silanol group amount was 3 / nm 2 , and no flow mark was observed.
  • Example 8 In Example 1, the reactor was changed to 10000 L, and the raw material after producing silica seed particles was changed to 4200 kg of tetramethoxysilane, 1200 kg of methanol, and 1800 kg of aqueous ammonia (25 mass%). Otherwise, sol-gel silica particles were synthesized and evaluated in the same manner as in Example 1. The sol-gel silica powder obtained after firing was 1608 kg.
  • the obtained sol-gel silica powder had an average particle size of 1.54 ⁇ m, a coefficient of variation of 24.3%, a sphericity of 0.96, and no coarse particles of 5 ⁇ m or more were detected by the laser diffraction scattering method. Moreover, the residual amount on the sieve by the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m and an opening of 3 ⁇ m was 8 ppm and 10 ppm, respectively. The amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter counter method was 8 ppm and 16 ppm.
  • the alpha dose is 0.001 c / cm 2 ⁇ h, and the amount of metal impurities is 0.01 ppb for U, 0.01 ppb for Th, 0.1 ppm for Fe, 0.1 ppm for Al, 0.2 ppm for Na, and 0 for K 0.0 ppm, Ca 0.1 ppm, Cr 0.0 ppm, Ni 0.0 ppm, Ti 0.0 ppm, and Cl 2 ⁇ 0.1 ppm.
  • the specific surface area was 2 m 2 / g, the amount of surface silanol groups was 3 / nm 2 , and no flow mark was observed.
  • Example 9 In Example 1, the firing step was not performed.
  • the obtained sol-gel silica powder had an average particle size of 0.82 ⁇ m, a coefficient of variation of 21.4%, and a sphericity of 0.97, and coarse particles of 5 ⁇ m or more were not detected by the laser diffraction scattering method. Moreover, the residual amount on the sieve by the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m and an opening of 3 ⁇ m was 5 ppm and 5 ppm, respectively. The amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter counter method was 4 ppm and 12 ppm.
  • ⁇ dose is 0.001 c / cm 2 ⁇ h
  • metal impurity amount is 0.01 ppb for U, 0.02 ppb for Th, 0.1 ppm for Fe, 0.1 ppm for Al, 0.3 ppm for Na, 0 for K 0.1 ppm, Ca 0.1 ppm, Cr 0.0 ppm, Ni 0.0 ppm, Ti 0.0 ppm, and Cl 2 ⁇ 0.0 ppm.
  • the specific surface area was 5 m 2 / g
  • the surface silanol group amount was 15 / nm 2 , and no flow mark was observed.
  • Example 1 solid-liquid separation was performed immediately after the synthesis of sol-gel silica without adding dry ice. Otherwise, sol-gel silica particles were synthesized and evaluated in the same manner as in Example 1. The filtrate was cloudy and a high concentration sol-gel silica dispersion flowed out. Furthermore, it dried under reduced pressure at 100 degreeC for 15 hours, and obtained 43 kg of sol-gel silica powder. Subsequently, baking was performed at 800 ° C. for 10 hours in an air atmosphere. After firing, it was sintered to form hard agglomerated particles, and 38 kg of sol-gel silica powder was obtained.
  • the obtained sol-gel silica powder had an average particle size of 0.94 ⁇ m, a coefficient of variation of 34.2% and a sphericity of 0.82, and no coarse particles of 5 ⁇ m or more were detected by the laser diffraction scattering method. Moreover, the residual amount on the sieve by the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m and an opening of 3 ⁇ m was 80 ppm and 2400 ppm, respectively. The amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter counter method was 120 ppm and 2600 ppm.
  • ⁇ dose is 0.002 c / cm 2 ⁇ h
  • metal impurity amount is 0.02 ppb for U, 0.02 ppb for Th, 0.1 ppm for Fe, 0.1 ppm for Al, 0.2 ppm for Na, and 0 for K 0.0 ppm, Ca 0.1 ppm, Cr 0.0 ppm, Ni 0.0 ppm, Ti 0.0 ppm, and Cl 2 ⁇ 0.1 ppm.
  • a specific surface area of 4 m 2 / g, a surface silanol group amount of 3 / nm 2 , and a flow mark were observed.
  • Example 2 Comparative Example 2 In Example 1, the dispersion was not filtered. Otherwise, sol-gel silica particles were synthesized and evaluated in the same manner as in Example 1. The sol-gel silica powder obtained after firing was 120 kg.
  • the obtained sol-gel silica powder had an average particle diameter of 0.75 ⁇ m, a coefficient of variation of 22.4% and a sphericity of 0.96, and no coarse particles of 5 ⁇ m or more were detected by the laser diffraction scattering method. Moreover, the residual amounts on the screen by the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m and an opening of 3 ⁇ m were 20 ppm and 210 ppm, respectively. The amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter counter method was 25 ppm and 240 ppm.
  • the alpha dose is 0.002 c / cm 2 ⁇ h, and the amount of metal impurities is 0.02 ppb for U, 0.01 ppb for Th, 0.1 ppm for Fe, 0.1 ppm for Al, 0.1 ppm for Na, and 0 for K 0.0 ppm, Ca was 0.1 ppm, Cr was 0.0 ppm, Ni was 0.0 ppm, Ti was 0.0 ppm, and Cl ⁇ was 0.0 ppm.
  • a specific surface area of 4 m 2 / g, a surface silanol group amount of 3 / nm 2 , and a flow mark were observed.
  • Example 6 solid ice was separated immediately after the synthesis of sol-gel silica without adding dry ice. Otherwise, sol-gel silica particles were synthesized and evaluated in the same manner as in Example 6. The filtrate was cloudy and a high concentration sol-gel silica dispersion flowed out. Furthermore, it dried under reduced pressure at 100 degreeC for 15 hours, and obtained 13 kg of sol-gel silica powder. Subsequently, baking was performed at 800 ° C. for 10 hours in an air atmosphere. After firing, it was sintered to form hard agglomerated particles, and 11 kg of sol-gel silica powder was obtained.
  • the obtained sol-gel silica powder had an average particle size of 0.68 ⁇ m, a coefficient of variation of 36.7% and a sphericity of 0.81, and no coarse particles of 5 ⁇ m or more were detected by the laser diffraction scattering method. Moreover, the residual amount on the sieve by the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m and an opening of 3 ⁇ m was 260 ppm and 8900 ppm, respectively. The amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter counter method was 240 ppm and 10400 ppm.
  • the ⁇ dose is 0.001 c / cm 2 ⁇ h
  • the metal impurity amount is 0.01 ppb for U, 0.01 ppb for Th, 0.1 ppm for Fe, 0.1 ppm for Al, 0.1 ppm for Na, and 0 for K.
  • a specific surface area of 7 m 2 / g, a surface silanol group amount of 3 / nm 2 , and a flow mark were observed.
  • Example 6 Comparative Example 4 In Example 6, the dispersion was not filtered. Otherwise, sol-gel silica particles were synthesized and evaluated in the same manner as in Example 6. The sol-gel silica powder obtained after firing was 34 kg.
  • the obtained sol-gel silica powder had an average particle size of 0.44 ⁇ m, a coefficient of variation of 15.2%, a sphericity of 0.98, and no coarse particles of 5 ⁇ m or more were detected by the laser diffraction scattering method. Moreover, the residual amount on the sieve by the wet sieving method using an electroformed sieve having an opening of 5 ⁇ m and an opening of 3 ⁇ m was 15 ppm and 200 ppm, respectively. The amount of coarse particles of 5 ⁇ m and 3 ⁇ m or more in the Coulter counter method was 20 ppm and 200 ppm.
  • the alpha dose is 0.002 c / cm 2 ⁇ h, and the amount of metal impurities is 0.01 ppb for U, 0.01 ppb for Th, 0.1 ppm for Fe, 0.1 ppm for Al, 0.1 ppm for Na, and 0 for K 0.0 ppm, Ca was 0.1 ppm, Cr was 0.0 ppm, Ni was 0.0 ppm, Ti was 0.0 ppm, and Cl ⁇ was 0.0 ppm.
  • a specific surface area of 7 m 2 / g, a surface silanol group amount of 3 / nm 2 , and a flow mark were observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

電子材料用樹脂組成物に配合した場合でも、目的製品の生産性や歩留まりを低下させない、高度な流動性が得られるゾルゲルシリカ粉末を提供する。本発明のゾルゲルシリカ粉末はレーザー回折散乱法による平均粒子径が05μm以上2.0μm以下であり、粒径分布の広がりを示す変動係数が40%以下であって、水の中に5質量%の量を、出力40W、照射時間10分という条件により超音波により分散させた分散液において、目開き5μmの電成篩を用いた湿式篩法により篩分けした際の篩上残量が10ppm以下になることを特徴とする、ゾルゲルシリカ粉末である。

Description

ゾルゲルシリカ粉末、およびその製造方法
 本発明は、半導体封止材、液晶シール剤及びフィルム用等の充填剤として好適に使用できるゾルゲルシリカ粉末に関する。詳しくは、粗粒量が非常に少ないゾルゲルシリカ粉末に関するものである。
 半導体封止材や液晶シール剤等の電子材料用、及びフィルム製造用等の各種樹脂組成物には、充填剤としてシリカ粉末が配合される。
 このうち半導体封止材では、デバイスの小型化、薄型化、高密度実装化の急速な進展に伴って、素子と基板間の狭ギャップ化が進み、更なる高熱伝導性、低熱膨張性、高い成形性が求められ、上記シリカ粉末は高充填化が求められている。その一方で、シリカ粉末を充填した樹脂組成物の低粘性も求められ、粗粒を含まず、単分散性に優れるシリカ粉末への要求が高まっている。
 従来、単分散性が高いシリカを製造する方法としては、原料となるテトラエトキシシランなどの珪素アルコキシドを、加水分解触媒、水及び有機溶媒を含む反応液中に供給して、加水分解、重縮合させる、いわゆるゾル-ゲル法がある。該方法においては、反応を行う際の反応条件を制御することにより粒子径や粒度分布をある程度制御できることが知られている。
 特許文献1には、ゾル-ゲル法における反応条件を調整することによって、粒子径や粒度分布を制御し、さらに癒着粒子や凝集塊等の粗粒の発生が抑えられた、単分散性の良いシリカの製造方法が記載されている。
 上記ゾル-ゲル法により得られたシリカ粒子分散液中において、シリカ粒子は微細な一次粒子として高度に分散しており、凝集塊は実質見られない。しかしながら、乾燥した粉末として取り出す場合、該分散液よりゾルゲルシリカを固液分離する工程、乾燥する工程、または、必要に応じて焼成する工程等が必要となり、これらの後工程においてシリカ粒子が強固に凝集した凝集塊が生成する。そして、一端強固に凝集したものを、一次粒子に解砕することは困難であり、結果として粗粒が増加する。
 而して、この様にシリカ粉末に粗粒が存在すると、これを配合した樹脂組成物では、その溶融時に該粗粒が樹脂の円滑な流れを阻害し流動性を低下させる。その結果、フィルム等の成形品の製造では、表面に溶融樹脂が流れた跡の模様、所謂、「フローマーク」が発生する。そして、このようにフローマークが生じるような流動性が低い樹脂組成物を用いて前記半導体封止材や液晶シール剤としても、狭ギャップへの隙間浸透性が十分でなくなり、配線間での詰まりも生じ易くなる。
 これらから引用文献2では、ゾル-ゲル法により得られたシリカ粒子分散液に、特定の化合物からなる凝析剤を添加することにより、前記後工程では、強固な凝集塊を生じさせることなく、緩やかな凝集体として生成させることができ、これは樹脂に分散させる際の分散機のシェア等により一次粒子まで容易に解砕できることが記載されている。即ち、この方法によれば、前記の如くにゾル-ゲル法を、シリカの単分散性に優れるよう制御して実施すれば、後工程で生成した凝集体は簡単な解砕処理で再び一次粒子に解せるため、シリカ粉末に粗粒は実質含まれなくなる。即ち、汎用レベルの粒度分布測定法、具体的には、レーザー回折散乱法で測定して、粒子径が5μmを超えるような粗粒は未検出になるシリカ粉末を得ることも可能である。
特開2013-193950号公報 特開2012-6823号公報
 しかしながら、こうした粗粒としての凝集塊を実質含まないシリカ粉末を用いても、樹脂への充填剤として前記流動性の改善効果は、実際には今一歩満足できなかった。特に、前記半導体封止材や液晶シール剤等の電子材料用樹脂組成物用の充填剤とした場合には、上述した近年の半導体デバイスの小型化、薄型化、高密度実装化の進展に対して、狭ギャップへの隙間浸透性及び狭小化する配線間の詰まりの問題は年々顕在化してきており、更なる改善が望まれていた。
 以上からゾルゲルシリカ粉末では、前記電子材料用樹脂組成物に配合した場合でも、目的製品の生産性や歩留まりを低下させない、高度な流動性が得られるものを開発することが、大きな課題であった。
 本発明者らは、上記課題を解決するため鋭意研究を重ねてきた。その結果、ゾル-ゲル法において、前記の如く単分散性に優れるよう制御してシリカ合成を実施し、さらには得られたシリカ粒子分散液に特定の凝集剤を添加して、レーザー回折散乱法による粒度分布測定では未検出になるほどに、凝集塊としての粗粒が低減化されたゾルゲルシリカ粉末を得ても、このものには上記レーザー回折散乱法よりも検出感度が高くなる湿式篩法(目開き5μmの電成篩使用)で測定すると、篩上残が有意量存在する知見を得た。そして、この粗粒が、前記電子材料用樹脂組成物の充填剤に求められるような高度な流動性を獲得する上での阻害要因になっている事実を突き止めた。
 そして、更に検討を深めた結果、この粗粒は、上記乾燥工程等の後工程で生じる凝集塊ではなく、ゾル-ゲル法によるシリカ合成時に不可避的に生成する、粗大な独立一次粒子が主であること、及びこの粗大独立一次粒子はゾル-ゲル法によるシリカ合成後、得られるシリカ粒子分散液を湿式ろ過すれば効率的に除去できることを見出し、上記課題が解決された新規なゾルゲルシリカ粉末を提案するに至った。
 即ち、本願発明のゾルゲルシリカ粉末は、レーザー回折散乱法による平均粒子径が0.05μm以上2.0μm以下であり、粒径分布の広がりを示す変動係数が40%以下であって、水の中に5質量%の量を、出力40W、照射時間10分という条件により超音波により分散させた分散液において、目開き5μmの電成篩を用いた湿式篩法により篩分けした際の篩上残量が10ppm以下であることを特徴とする、ゾルゲルシリカ粉末である。
 本発明のゾルゲルシリカ粉末は、レーザー回折散乱法による平均粒子径が0.05μm以上2.0μm以下であって、且つ粒度分布測定法として同レーザー回折散乱法よりも検出感度が高い湿式篩法(目開き5μmの電成篩使用)での篩上残量も実質未含有(10ppm以下)に低減化されている。従って、これを配合した樹脂組成物では、溶融時の流動性に高度に優れる。このためフィルム等の成形品の製造では、フローマークの発生が抑制される。
 そして、半導体封止材や液晶シール剤等の電子材料用樹脂組成物への充填用とした場合には、狭ギャップへの隙間浸透性に高度に優れ、同じく狭小化する配線間での詰まり防止性にも高度に優れる。この結果、目的とする電子材料部材の生産性や歩留まりが改善され、極めて有用である。
 (実施形態)
 本実施形態のゾルゲルシリカ粉末は、ゾル-ゲル法、即ち、反応媒体中で原料となる珪素アルコキシドを加水分解および重縮合してシリカゾルを生成させ、これをゲル化させたのち、生成した固形分を取り出し、乾燥して得られるシリカ粉末である。本実施形態において、乾燥して得られたシリカ粉末は、必要に応じて焼成することも出来る。一般にゾル-ゲル法により得られるシリカ粒子は、球形度が0.9以上の独立球状粒子である。
 本実施形態のゾルゲルシリカ粉末は、レーザー回折散乱法による平均粒子径が0.05μm以上2.0μm以下であることが好ましく、0.1μm以上1.5μm以下であることがより好ましい。上記範囲を超えて大きいと、後工程において凝集塊を精度良く低減するのが難しくなる他、電子材料用樹脂組成物への充填用として適さない大きさになる。また、一般に粒子径が小さく比表面積が大きい粒子は凝集しやすい性質があって、平均粒子径が上記範囲より小さい場合には、凝集塊の生成を抑えることが難しく、生成した凝集塊を解砕することが困難であり粗粒の原因となる。また、このような粒径の小さい粒子は、樹脂等に充填した際に粘度が上昇し流動性が低下する。
 また、本実施形態のゾルゲルシリカ粉末は、水の中にシリカ粉末を5質量%の量を、出力40W、照射時間10分という条件により超音波により分散させた分散液において、目開き5μmの電成篩を用いた湿式へ篩法により篩分けした際の篩上残量が10ppm以下であり、5ppm以下であることが好ましい。本実施形態のゾルゲルシリカ粉末は、後述する製造方法等により得られることに起因して、個々のシリカ粒子は凝集していたとしても、それは弱い力の凝集体であるため、簡単な解砕処理で良好に解すことができる。従って、上記シリカ粉末の5質量%分散液において、出力40W、照射時間10分の超音波分散で、該弱い凝集体は一次粒子に解砕でき、この条件で解砕できることは、例えば、樹脂や溶剤に分散させる際の分散機のシェアで良好に解せることを意味している。
 係るシリカ粉末の5質量%超音波分散液において、目開き5μmの電成篩の篩上残量が上記範囲を超えて多い場合、これを配合した樹脂組成物の流動性が低下し、これを半導体封止材用途や液晶シール剤用途に用いた場合に、粗粒による樹脂組成物の隙間浸透性が悪化し、配線間での詰まりも抑制できなくなる。
 更に同様の理由により、目開き3μmの電成篩を用いた湿式篩法により篩分けした際の篩上残量が、10ppm以下であることが好ましく、5ppm以下であることがより好ましい。
 本実施形態において、上記電成篩は特に制限されないが、具体的には、飯田製作所製電成篩が挙げられる。上記電成篩はニッケル綱で構成されており、アルコールを含む有機溶媒が使用できないため、媒体として水を用いる。
 なお、上記篩上残量は、試料量としてゾルゲルシリカ粉末20g以上を篩分けした際の値である。篩い分けに際し前記5質量%超音波分散液は、一度に調製することもできるし、分割して調製することもできる。具体的には、1つの容器にゾルゲルシリカ粉末20gを計りとり、シリカ量が5質量%となるよう水を加えたあと、出力40Wの超音波を10分照射してもよいし、後述の如く4つの容器に5gづつ計りとり、それぞれシリカ量が5質量%となるよう水を加えたあと、それぞれ出力40Wの超音波を10分照射してもよい。また、前記篩い分けに際し、上記5質量%超音波分散液の温度は、20~40℃とする。
 一般に、粗粒の含有量の定量法として、レーザー回折散乱法による粒度分布測定やSEM観察等が挙げられる。上記SEM観察では、一度の視野に入る粒子の数に限りがあるため、数ppmオーダーの粗粒を観察して定量するのは非効率である。上記レーザー回折・散乱法による粒度分布測定は、多重散乱を避けるため測定に用いる試料のシリカ量に限界がある。また、該測定方法は、特開2008-19157に記載の通り検出レベルがパーセントの程度で、検出感度が低いため、たとえば、本実施形態のようにシリカ微粒子中における微量の5μm超えの粒子量の定量には不適当である。具体的には実施例に示すが、レーザー回折散乱法による粒度分布測定を行って粗粒が検出されない場合であっても、前記電成篩を用いた湿式篩法で定量すると検出される粗粒の存在があって、本願は、このような粗粒の存在が、樹脂組成物の流動性を低下させ、半導体封止材や液晶シール剤用途において、歩留まり向上を妨げる要因になっていることを突き止めたものである。
 本実施形態のゾルゲルシリカ粉末は、粒径分布の広がりを示す指標の1つである変動係数が40%以下であり、25%以下であることが好ましく、20%以下とすることがより好ましい。変動係数は標準偏差を平均値で割った値のことであり、ここでは測定した粒径の標準偏差と平均値とを用いて算出している。変動係数が上記範囲を超えて大きいと、粒度分布がブロードとなり、同じ平均粒子径を有する粉末で比較すると微細粒子が増加する。微細粒子の増加は、先でも述べた通り、樹脂等に充填した際の粘度上昇に繋がる。一般にゾルゲルシリカにおける変動係数は、10%以上である。上記変動係数は、レーザー回折散乱法により測定することができる。
 本実施形態のゾルゲルシリカ粉末は、シリカ粒子表面のシラノール基量が、5個/nm以下であることが好ましい。シラノール基量が少ないほど保存中の吸湿を抑制することができるため好ましいが、通常1個/nm以上である。
 本実施形態のゾルゲルシリカ粉末は、α線量が0.002c/cm・h以下であることが好ましい。α線量が大きいと、これを電子材料用樹脂組成物への充填用として用いた場合には、メモリーセルの蓄積電荷の反転などソフトエラーの要因等に繋がることが知られている。半導体パッケージの微細化、高集積化や3D実装化が進む結果、充填剤由来のα線等による影響が大きくなってきており、低α線量の充填剤が求められる。
 このα線を放出する不純物としてウラン(U)やトリウム(Th)などが挙げられ、本実施形態のゾルゲルシリカ粉末において、U含有量及びTh含有量が0.1ppb以下であることが好ましく、0.05ppb以下であることがより好ましく、0.02ppb以下であることが特に好ましい。上記ウランとトリウムの定量方法は、ICP質量分析法により測定した値であり、検出下限値は0.01ppbである。
 更に、本実施形態のゾルゲルシリカ粉末は、Fe含有量が10ppm以下、Al含有量が10ppm以下、Na含有量が5ppm以下、K含有量が5ppm以下、且つ塩化物イオン含有量が1ppm以下であることが好ましい。更に、Ca含有量が5ppm以下、Cr含有量が5ppm以下、Ni含有量が5ppm以下、且つTi含有量が5ppm以下であることが好ましい。本実施形態のゾルゲルシリカ粉末に含有される不純物量が上記範囲であることは、半導体封止材の充填剤として用いた際の、シリカ粒子に起因する金属配線間の短絡や金属配線などの腐食を低減できる点で好適である。上記不純物の定量方法は、塩化物イオンについては、イオンクロマトグラフ法により測定した値であり、塩化物イオン以外の元素についてはICP発光分析法により測定した値である。
 上記不純物のうち、ウラン(U)、トリウム(Th)、原料に由来して含有され、Fe、Al、Cr、Ni、Tiは、原料由来だけでなく、反応容器、配管、解砕器等の摩耗粉に由来するものも含まれる。なお、Na、K、Ca、塩化物イオンは、雰囲気に由来するものであることが多い。
 本実施形態のゾルゲルシリカ粉末は粗粒を含まず、樹脂に充填した際の流動性に優れるため、電子材料用樹脂組成物への充填用として、特に半導体封止材用途や液晶シール剤用途に好適に用いることができる。さらに、樹脂組成物の溶融時の流動性が優れ、成形品にフローマークが生じ難い性状は、フィルム用途を始めとした、各種成形品用途にも好適に用いることができる。
 ゾルゲルシリカ粉末を配合する樹脂の種類は、特に限定されない。樹脂の種類は所望の用途により適宜選択すればよく、エポキシ樹脂、アクリル樹脂、シリコーン樹脂やオレフィン系樹脂等を挙げることができる。
 たとえば、半導体封止材用途や液晶シール剤用途であれば、エポキシ樹脂、アクリル樹脂、シリコーン樹脂等が好ましい。フィルム用途であれば、オレフィン系樹脂(ポリプロピレン、ポリエチレン、ポリスチレンなど)が好ましい。
 樹脂組成物において、ゾルゲルシリカ粉末の充填量は、その用途と目的に応じて適宜調整されればよい。具体的には、半導体封止材用途に用いる場合、樹脂100質量部に対して65~900質量部の範囲、液晶シール剤用途に用いる場合、樹脂100質量部に対して1~40質量部の範囲、フィルム用途に用いる場合、樹脂100質量部に対して0.01~1質量部の範囲であることが好ましい。また、本実施形態のゾルゲルシリカ粉末の他に別の充填剤を含んでいてもよい。
 さらに、本実施形態のゾルゲルシリカ粉末は、粗粒を含まないためトナー用充填剤としても好適に使用できる。
 <<ゾルゲルシリカ粉末の製造方法>>
 本実施形態のゾルゲルシリカ粉末は、ゾル-ゲル法により、前記規定した要件が満足されるものとして得られる限り、その製造方法は特定の方法に制限されるものではなく、如何なる方法によっても良い。ここで、ゾル-ゲル法は、珪素アルコキシドを、触媒を含有する水と有機溶媒からなる反応媒体中において加水分解、重縮合させてシリカゾルを生成させ、これをゲル化させたのち、生成した固形分を取り出し、乾燥してシリカ粉末を得る方法を意味する。本実施形態において、乾燥して得られたシリカ粉末は、必要に応じて焼成することも出来る。
 本実施形態のゾルゲルシリカ粉末の好適な製造方法を示せば、ゾル-ゲル法により製造した、レーザー回折散乱法による平均粒子径0.05μm以上2.0μm以下のシリカ粒子分散液を、目開き5μm以下のろ材により湿式ろ過した後、二酸化炭素、炭酸アンモニウム、炭酸水素アンモニウム及びカルバミン酸アンモニウムよりなる群から選択される少なくとも1種の化合物からなる凝析剤を添加して、前記シリカ粒子を凝析させ、凝析液から該シリカ粒子を固液分離し乾燥する方法である。以下、この製造方法について説明する。
 <珪素アルコキシド>
 本実施形態の製造方法において用いられる珪素アルコキシドとしては、ゾル-ゲル法の反応によるシリカ粒子の製造に用いられる化合物であれば、特に制限されず使用することができる。
 本実施形態において、珪素アルコキシド(アルコキシシラン)として、例えばメチルトリメトキシシラン、メチルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン等を挙げることができる。中でも、メチルトリメトキシシラン、テトラメトキシシラン及びテトラエトキシシランは、工業的に入手が容易であること及び取扱いが容易であることからより好ましい。これら珪素アルコキシドは、1種のみを使用してもよく、2種以上を併用してもよい。
 更に、前述の不純物が低減されたゾルゲルシリカ粉末を得るため、該珪素アルコキシドの純度の高いものを使用することが好ましい。具体的には、原料の珪素アルコキシドとしてテトラメトキシシランを用いてU含有量及びTh含有量が0.1ppb以下のゾルゲルシリカ粉末を得る場合、U含有量、Th含有量がそれぞれ0.2ppb以下のテトラメトキシシランを用いることが好ましい。
 高純度の珪素アルコキシドを得るために予め蒸留等により原料を精製することできる。
 珪素アルコキシドが常温常圧で液体である場合には、そのまま使用してもよく、後述する有機溶媒で希釈して使用してもよい。珪素アルコキシドが、常温常圧で固体である場合には、有機溶媒中に溶解又は分散して使用することができる。
 <塩基性触媒>
 ゾル-ゲル法によるシリカ粒子の製造においては、適当な触媒が好ましく使用される。ゾル-ゲル法においては、酸性触媒が用いられる場合もあるが、粒子径の揃った球状粒子を得ることが容易であるという点で、本実施形態では塩基性触媒を使用する。ただし、ゾル-ゲル法では先ず酸性触媒下で予備加水分解を行った後に粒子成長を行わせることも多いが、本実施形態では上記のように予備加水分解時に酸性触媒を用いることを排除するものではなく、粒子成長時に塩基性触媒を用いる方法であればよい。
 本実施形態において用いられる塩基性触媒としては、ゾル-ゲル法の反応によるシリカ粒子の製造に用いられる公知の塩基性触媒であれば、これを好適に使用することができる。
 このような塩基性触媒としては、例えば、アミン化合物、水酸化アルカリ金属等を挙げることができる。特に、目的とするシリカ粒子を構成する金属元素以外の金属を含有する不純物量が少なく、高純度のシリカ粒子が得られるという観点から、アミン化合物を用いることが好適である。このようなアミン化合物としては、例えばアンモニア、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジメチルアミン、トリメチルアミン等を挙げることができる。これらのうち、揮発性が高く除去し易いこと、ゾル-ゲル法の反応速度が速いこと等から、アンモニアを使用することが特に好ましい。
 上記塩基性触媒は、単独で使用することも、或いは2種以上を使用することも可能である。
 上記塩基性触媒は、工業的に入手可能なものを、そのまま(市販されている形態のまま)使用することもできるし、例えばアンモニア水等のように、水や有機溶媒に希釈して使用することもできる。特に、反応の進行速度を制御しやすい点で、塩基性触媒を水に希釈し、必要に応じて濃度を調整した水溶液として使用することが好ましい。塩基性触媒として水溶液を使用する場合の濃度は、工業的に入手が容易であること、濃度調整が容易であること等から、1~30質量%の範囲とすることが好ましい。
 塩基性触媒の使用割合は、珪素アルコキシドの加水分解及び重縮合反応の反応速度等を勘案して適宜決定すればよい。塩基性触媒の使用割合としては、反応溶液中における塩基性触媒の存在量が、使用する珪素アルコキシドの質量に対して、0.1~60質量%とすることが好ましく、0.5~40質量%の範囲で使用することがより好ましい。
 <溶媒>
 本実施形態において上記珪素アルコキシドの加水分解及び重縮合反応に使用される溶媒としては、極性溶媒が好ましい。ここで極性溶媒とは、常温・常圧下で100g当たり10g以上の水を溶解する有機溶媒であるか、又は水である。水以外の有機溶媒を複数種混合して使用してもよく、この場合には、当該有機溶媒の混合物が、上記の要件を満たせばよい。
 上記水以外の極性溶媒である有機溶媒としては、例えばメタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール;テトラヒドロフラン、ジオキサン等のエーテル;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド化合物等を挙げることができる。
 アルコールはゾル-ゲル法の反応時に副生するものであるから、上記のうちメタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコールを使用することが、反応後のシリカ粒子分散液中への不必要な不純物の混入を抑制する点、加熱によって容易に除去可能である点等から特に好ましい。
 上記有機溶媒及び水は、単独で用いることも、或いは2種以上の溶媒の混合物として用いることも可能である。
 有機溶媒又は水の使用割合は、目的とするシリカ粒子の粒径及びゾル-ゲル法の反応後のシリカ粒子分散液におけるシリカ粒子の濃度の所望値に応じて適宜決定すればよい。例えば、有機溶媒としてアルコールを使用する場合、ゾル-ゲル法の反応により得られるシリカ粒子分散液の質量(100質量%)におけるアルコールの割合として、好ましくは10~90質量%、より好ましくは15~80質量%の範囲となるように使用される。
 ゾル-ゲル法の反応には水が必須である(そのため上記のような水を溶解する極性溶媒を用いる)。前記の塩基性触媒を水溶液として添加する場合及び溶媒の一部若しくは全部として水を使用する場合は、反応液中に水を別途に添加する必要はない。しかし、これら以外の場合には、ゾル-ゲル反応に必要な水を別途に添加する必要がある。
 水の使用割合は、製造するシリカ粒子の粒径に応じて適宜調整して選択される。水の使用割合が少なすぎると反応速度が遅くなり、逆に多すぎると乾燥(溶媒除去)の際に長時間を要するため、水の使用割合はこれらの両要件を勘案して選択される。水の使用割合としては、ゾル-ゲル法の反応により得られるシリカ分散液の全質量に対して、2~50質量%の範囲とすることが好ましく、5~40質量%の範囲とすることがより好ましい。
 水は、反応溶媒の一部又は全部として使用してもよく、水以外の反応原料等を全部準備した後に反応液に加えてもよい。しかしながら、ゾル-ゲル法の反応を速やか且つ安定的に進行させるためには、水を溶媒の一部として使用すること、即ち溶媒として水と有機溶媒との混合物を用いること、が好ましい。ここでいう溶媒としての水とは、塩基性触媒の添加等に伴って添加される場合も含む。
 <反応装置>
 本実施形態で使用する反応装置は、攪拌機を有する反応器であれば特に制限無く使用される。上記攪拌機の撹拌翼としても、公知のものが特に制限無く使用されるが、代表的なものを例示すれば、傾斜パドル翼、タービン翼、三枚後退翼、アンカー翼、フルゾーン翼、ツインスター翼、マックスブレンド翼などが挙げられる。
 また、このような攪拌機を有する反応器としては、半球状、または平底あるは丸底の円筒状の一般的な形状の反応器、更にこれら反応器内に邪魔板を設置したものが特に限定されずに使用できる。また、反応器の材質も特に限定されず、ガラス製、ステンレススチールなどの金属製(ガラスコートあるいは樹脂コートされたものを含む)、または樹脂製のものが使用できる。前述の不純物が低減されたゾルゲルシリカ粉末を得るため、耐摩耗性に優れる材質であることが好ましい。
 本実施形態で使用する反応器の攪拌効率は特に制限されるものではないが、反応器の攪拌効率の指標である無次元混合時間nθm(ここで、nは撹拌翼回転数(1/s)、θmは混合時間(s))が、100以下の反応器を使用することが望ましい。無次元混合時間nθmを上記範囲とすることにより反応時の反応液を均一に保つことができ、より粒径の揃った、粒度分布の狭いゾルゲルシリカ粉末を得ることができる。
 前記反応器の攪拌効率の範囲は、一般に、後述する工業的な実施において、50L以上反応液を扱う反応器の攪拌効率がこれに該当する場合が多い。
 上記無次元混合時間nθmは、攪拌翼回転数n(1/s)と混合時間θm(s)の積を意味し、攪拌レイノルズ数が一定であれば、反応器のスケールに因らず一義的に決まり、攪拌効率を示すのに非常に有用な指標である。また、θmは、一般に、トレーサー物質が均一に混合するまでの時間を意味するが、該混合時間θmは、反応器の形状、邪魔板の設置の有無やその配置状況、攪拌翼の種類や回転数、混合される液体の粘弾性特性などにより影響を受ける。
 無次元混合時間nθmが55より低い場合は、反応器の攪拌効率が高く、反応液の攪拌が十分可能であり、癒着粒子や凝集塊が生成しにくい。nθmが55~100の場合は、反応液中に珪素アルコキシド溶液を吐出線速度30mm/s~1000mm/sで供給することで癒着粒子や凝集塊の生成を抑えることができる。一方、無次元混合時間nθmが100を超える場合は、反応器の攪拌効率が極めて低くなり、混合が不十分であり、反応液が不均一となり癒着粒子や凝集塊が多く生成し易くなる。
 <反応条件>
 本実施形態における加水分解及び重縮合反応(ゾル-ゲル法の反応)は、前記したように通常、塩基性触媒の存在下で行われる。反応条件としては公知の条件を採用することができ、珪素アルコキシドと塩基性触媒との接触方法も特に制限されず、反応装置の構成や反応スケールを勘案して、所望の粒径粒度分布を有するシリカ粉末が得られるよう、適宜選択して決定すればよい。
 ゾル-ゲル法の反応方法の一例を具体的に示すと、例えば以下の如くである。
 反応容器に水、水以外の極性溶媒(有機溶媒)及び塩基性触媒を仕込み、ここに珪素アルコキシド(又は珪素アルコキシドの有機溶媒溶液)と塩基性触媒の水溶液とを同時に添加する方法を挙げることができる。この方法によれば、反応効率が良好で、粒子径の揃った球状のシリカ粒子を、効率よく、且つ再現性よく製造することができ、好ましい。この場合、例えば、先に珪素アルコキシドの一部を添加した後に、残りの珪素アルコキシドと塩基性触媒とを同時に添加することも可能である。2種以上の珪素アルコキシドを併用する場合、各々を混合して同時に添加してもよく、或いは各々を順次に添加することも可能である。
 珪素アルコキシド及び塩基性触媒の添加は、反応液に液中滴下することが好ましい。ここで液中滴下とは、上記の原料を反応液中に滴下する際、滴下口の先端が反応液中に浸されていることをいう。さらに、滴下口先端の位置は、攪拌羽根の近傍等の、攪拌が十分に行われ、滴下物が反応液中に速やかに拡散することのできる位置とすることが望ましい。
 珪素アルコキシドと塩基性触媒の添加時間(添加開始から添加終了までの時間)は、粒径分布の幅の狭い粒子を製造するうえで非常に重要な因子である。この添加時間が短すぎると粒径分布幅が広くなる傾向にあり、逆に長すぎると安定した粒子成長ができない。従って、粒度分布幅が狭く、粒径が揃ったシリカ粒子を得るには、粒子が成長するのに適した添加時間を選択して採用する必要がある。特に、単分散性の良好なゾル-ゲルシリカ粒子を製造するには、珪素アルコキシド等の原料を吐出線速度30mm/s~1000mm/sで供給することが好ましい。このような観点から、上記添加時間としては、所望の粒子直径100nmあたり、0.2~8時間の範囲とすることが好ましい。
 反応温度は、用いる原料物質の種類に応じて、ゾル-ゲル法の反応が速やかに進行する温度であれば、特に制限されず、目的とするシリカ粒子の粒径に応じて適宜に選択すればよい。平均粒子径が0.05~2μmのシリカ粒子を得る場合、反応温度としては、-10~60℃の範囲で適宜選択すればよい。
 ゾル-ゲル法の反応を確実に進行させるために、珪素アルコキシド及び塩基性触媒の滴下が終了した後、熟成(次の工程を行うまで暫く時間をおくこと)を行ってもよい。この場合、熟成温度としては反応温度と同程度の温度、即ち-10~60℃とすることが好ましく、熟成時間としては0.25~5時間とすることが好ましい。
 所望の粒径のシリカ粒子を得るために、熟成後に再度珪素アルコキシド及び塩基性触媒を添加し、シリカ粒子の粒径を成長させる等の手法を用いてもよい。
 <シリカ粒子の分散液>
 上述した方法によって、ゾル-ゲル法により製造した、レーザー回折散乱法による平均粒子径0.05~2.0μmのシリカ粒子分散液が得られる。この分散液中にシリカ粒子は、用いた極性溶媒と、珪素アルコキシドの加水分解により生じたアルコールとから構成される混合溶媒中に分散した状態として存在する。
 上記分散液中においてシリカ粒子は、癒着粒子や凝集塊を実質生じること無く良好に単分散しているが、局所的な過度の反応進行により、粒径が5μmを越える、粗大な独立一次粒子(以下、このものを「粗大独立一次粒子」と略する)が若干量混存している。具体的には、粗大独立一次粒子は、シリカ粒子に対して15~1000ppm程度含まれており、これらが前記したように最終的なシリカ粉末にまで残留すると、樹脂組成物の流動性低下の問題を引き起こす。
 当該シリカ分散液中に含まれるシリカ粒子の割合が多すぎると、分散液の粘度が高くなるため、取り扱いが困難となる。一方、分散液中のシリカ粒子の割合が少なすぎると、1回の反応で得られるシリカ粒子の量が少なくなり、不経済である。このような観点から、得られるシリカ粒子分散液中のシリカ粒子の濃度は、1~40質量%とすることが好ましく、特に2~25質量%とすることが好ましい。従って、シリカ粒子の濃度が上記の範囲に調整されるよう、極性溶媒、特に水以外の極性溶媒の使用量を調整しておくことが好ましい。ゾル-ゲル法の反応によって得られた分散液中におけるシリカ粒子の割合が多すぎて取扱い性に難がある場合等には、次に説明する分散液のろ過工程の前に、または必要に応じて行う表面処理工程の前に、極性溶媒を添加して濃度調整を行うことが好ましい。
 <ろ過工程>
 本実施形態の方法においては、前記ゾルゲル反応後に得られたシリカ粒子分散液を湿式でろ過し、前記含有される粗大独立一次粒子を除去する。即ち、該シリカ分散液を前記ろ過することにより、ろ材上に、反応残渣等とともに、上記粗大独立一次粒子、更に癒着粒子や凝集塊が生じていれば、これも分離される。
 ろ材としては、湿式ろ過用フィルターにおいて、目開きが5μm以下のものが、種類を特に限定されずに使用することができ、好適には目開きが3μm以下のものを使用することもできる。あまりに目開きが小さくなると、ろ過性が低下するだけでなく、ろ過されるシリカ粒子の平均粒径も前記範囲から変動が大きくなるため、目的とする粉末の平均粒子径にもよるが目開きの下限は通常1μmである。
 フィルターの材質は特に制限されないが、樹脂製(ポリプロピレン、PTFEなど)や金属製が挙げられる。金属不純物の混入を防ぐ観点から、樹脂製のフィルターを用いることが好ましい。
 粗大独立一次粒子を除去する方法として、ゾルゲルシリカ粉末を得た後に、最終工程として乾式で篩にかける方法もあるが、数μmサイズのこれら粗粒を乾式篩で除去しようとすると、目詰まりが発生し効率が悪く工業的に行うことは困難である。
 また、ゾルゲルシリカ粉末を再度溶媒に分散させて分散液とし、湿式ろ過をする方法も挙げられるが、この場合、シリカ粒子を回収し、再度乾燥する工程を経ることとなる。ゾル-ゲル法において、固液分離する工程、乾燥する工程、または、必要に応じて焼成する工程等において、シリカ粒子が強固に凝集した凝集塊が生成しやすく、該凝集塊の生成を抑え、また分散液からろ過により容易に固形分を回収するために、後述の凝析工程を再度設ける必要がある。いずれにせよ煩雑であり、このように工程が増えることで環境からのコンタミ混入のリスクが高まるだけでなく、生産性にも影響が出てしまうため効率的ではない。
 <表面処理工程>
 本実施形態のゾルゲルシリカ粉末を製造するにあたって、後述のシリカ粒子分散液を凝析させる前の分散液に、シリコーンオイル、シランカップリング剤及びシラザンよりなる群から選択される少なくとも1種の表面処理剤を添加して表面処理を行ってもよい。
 表面処理を施すことにより、後述する固液分離工程を効率良く行うことが出来る。また、乾燥を行う際、強固な凝集塊の生成を抑えることができるため、得られたシリカ粒子は特段の解砕処理を行うことなく種々の用途に使用することが可能である。
 該表面処理工程は、ゾルゲル反応後の分散液において、凝析工程の前であればよく、分散液のろ過工程の前後どちらでも構わないが、粗大独立一次粒子が精度よく低減される点で分散液のろ過工程の前に実施することが好ましい。そうすることにより、該工程で表面処理時に生成する凝集塊や表面処理剤の残渣も分散液のろ過工程において取り除くことが可能である。
 上記シリコーンオイルとしては、通常、シリカ粒子の表面処理に用いられる公知のシリコーンオイルを、特に制限なく使用することが可能であり、必要とする表面処理シリカ粒子の性能等に応じて適宜選択して、使用すればよい。
 シリコーンオイルの具体例としては、例えばジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル、アルキル変性シリコーンオイル、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシル変性シリコーンオイル、カルビノール変性シリコーンオイル、メタクリル変性シリコーンオイル、ポリエーテル変性シリコーンオイル、フッ素変性シリコーンオイル等を挙げることができる。
 シリコーンオイルの使用割合は特に制限はされないが、少なすぎると表面処理が不十分となり、多すぎると後処理が煩雑となるので、使用するシリカ粒子100質量部に対して、0.05~80質量部とすることが好ましく、0.1~60質量部とすることがより好ましい。
 上記シランカップリング剤としては、表面処理に通常用いられている公知のシランカップリング剤を、特に制限なく使用することが可能であり、必要とする表面処理シリカ粒子の性能等に応じて適宜選択して、使用すればよい。
 シランカップリング剤の具体例としては、例えばメチルトリメトキシシラン、メチルトリエトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルトリエトキシシラン、3-アクリロイルオキシトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N,N-ジメチル-3-アミノプロピルトリメトキシシラン、N,N-ジエチル-3-アミノプロピルトリメトキシシラン、4-スチリルトリメトキシシラン等を挙げることができる。
 シランカップリング剤の使用割合は特に制限されないが、少なすぎると表面処理が不十分となり、多すぎると後処理が煩雑となるので、使用するシリカ粒子100質量部に対して、0.05~80質量部とすることが好ましく、0.1~40質量部とすることがより好ましい。
 上記シラザンとしては、通常表面処理に用いられる公知のシラザンを、特に制限なく使用することが可能である。
 シラザンの具体例としては、例えばテトラメチルジシラザン、ヘキサメチルジシラザン、ヘプタメチルジシラザン等を挙げることができる。上記のうち、反応性の良さ、取り扱いの良さ等から、ヘキサメチルジシラザンの使用が好適である。
 シラザンの使用割合は、特に制限はされないが、少なすぎると表面処理が不十分となり、多すぎると後処理が煩雑となるので、使用するシリカ粒子100質量部に対して、0.1~150質量部とすることが好ましく、1~120質量部とすることがより好ましい。
 上記の表面処理剤は、単独で1種のみ使用してもよいし、2種以上を組み合わせて使用してもよい。
 上記のような表面処理剤のうち、得られる表面処理シリカ粒子の流動性がよいことから、シランカップリング剤及びシラザンよりなる群から選択される少なくとも1種を使用することが好ましく、シラザンを使用することがより好ましい。
 表面処理剤の添加方法は特に制限されない。表面処理剤が常温、常圧で低粘度の液体である場合は、これを分散液中に滴下すればよい。表面処理剤が高粘度液体又は固体である場合には、これを適当な有機溶媒に添加して溶液又は分散液としたうえで、低粘度液体の場合と同様にして添加することができる。ここで使用される有機溶媒としては、前記の極性溶媒と同様のものを挙げることができる。更に、表面処理剤が気体状である場合は、液中に微細な泡状となるように吹き込むことにより添加することができる。
 表面処理を行う際の処理温度は、使用する表面処理剤の反応性等を勘案して決定すればよいが、処理温度が低すぎると反応の進行が遅く、高すぎると操作が煩雑であるため、10~100℃とすることが好ましく、20~80℃とすることがより好ましい。
 表面処理を行う際の処理時間は特に制限はされず、使用する表面処理剤の反応性等を勘案して決定すればよい。表面処理反応の十分な進行と、工程時間を短くすることの双方を考慮して、処理時間を0.1~48時間とすることが好ましく、0.5~24時間とすることがより好ましい。
 <凝析工程>
 本実施形態の方法においては、上記分散液のろ過を行った後に凝析を行う。
 該凝析工程は、分散液中に、二酸化炭素、炭酸アンモニウム、炭酸水素アンモニウム及びカルバミン酸アンモニウムよりなる群から選択される少なくとも1種の化合物からなる凝析剤が添加された状態で行われる。分散液中に上記の如き凝析剤を添加することにより、分散液中でシリカ粒子の弱い凝集体が形成される。この凝集体は、分散液中に存在する凝析剤又はその誘導体の存在により、分散液中で安定に存在することが可能であり、従ってろ過により容易に回収することができることとなる。
 シリカ粒子の分散液に金属塩を添加してシリカ粒子の凝集体を形成する技術は公知であるが、この方法によると、例えばナトリウム塩、カリウム塩等を使用した場合、得られるシリカ粒子にこれらの塩を構成する金属元素成分が混入してしまう可能性があり、これを除去するための洗浄(精製)操作が必要となり工業的に不利となる。また、凝集性も強くなり、簡単な解砕処理では一次粒子に解せず、ゾルゲルシリカ粉末に粗粒として残留する虞がある。
 これに対して本実施形態で使用される上記の凝析剤は、わずかの加熱により容易に分解・除去されるため、高純度のシリカ粒子を容易に製造することができる利点がある。本実施形態の方法によると、得られるシリカ粒子中における、例えばナトリウム元素の含有割合を100ppm以下とすることができ、より好ましくは10ppm以下とすることが可能である。
 凝析剤の使用割合及び添加方法は、使用する凝析剤の種類に応じて下記のように設定することができる。凝析剤の使用割合は、分散液中でのシリカ粒子の弱い凝集体の形成の程度と、不当に多量の原料を使用することの無駄とのバランスを勘案することによって設定される。以下における凝析剤の使用割合の基準としてのシリカ粒子の質量は、用いた珪素アルコキシドがすべて加水分解及び重縮合してシリカ粒子となっていると仮定した場合の換算値である。
 上記凝析剤として二酸化炭素を使用する場合、その使用割合は、分散液中に含有されるシリカ粒子100質量部に対して、0.005質量部以上とすることが好ましく、0.005~300質量部とすることがより好ましい。シリカ粒子に対して表面処理を行わない場合における二酸化炭素の更に好ましい使用割合は、シリカ粒子100質量部に対して、0.05質量部以上であり、0.05~300質量部とすることが特に好ましく、0.25~200質量部とすることがとりわけ好ましい。一方、シリカ粒子に対して表面処理を行う場合における二酸化炭素の更に好ましい使用割合は、シリカ粒子100質量部に対して、15質量部以上であり、15~300質量部とすることが特に好ましく、17~200質量部とすることがとりわけ好ましい。
 二酸化炭素の添加方法としては、気体の状態で分散液中に吹き込む方法、固体の状態(ドライアイス)で添加する方法等を挙げることができるが、固体の状態で添加することが、操作が簡単であることから好ましい。
 上記凝析剤として炭酸アンモニウム、炭酸水素アンモニウム又はカルバミン酸アンモニウムを使用する場合、その使用割合は、分散液中に含有されるシリカ粒子100質量部に対して、0.001質量部以上とすることが好ましく、0.001~80質量部とすることがより好ましい。シリカ粒子に対して表面処理を行わない場合における炭酸アンモニウム、炭酸水素アンモニウム又はカルバミン酸アンモニウムの更に好ましい使用割合は、シリカ粒子100質量部に対して、0.001~15質量部であり、0.001~10質量部とすることが特に好ましい。一方、シリカ粒子に対して表面処理を行う場合における炭酸アンモニウム、炭酸水素アンモニウム又はカルバミン酸アンモニウムの更に好ましい使用割合は、シリカ粒子100質量部に対して、15質量部以上であり、15~80質量部とすることが特に好ましく、17~60質量部とすることがとりわけ好ましく、更には20~50質量部とすることが好ましい。
 炭酸アンモニウム、炭酸水素アンモニウム又はカルバミン酸アンモニウムは、固体の状態で添加してもよく、適当な溶媒に溶解した溶液状態で添加してもよい。これらを溶液状態で添加する場合に使用される溶媒としては、これらを溶解するものであれば特に制限されないが、溶解能力が高く、またろ過後の除去が容易であるとの観点から、水を使用することが好ましい。炭酸アンモニウム、炭酸水素アンモニウム又はカルバミン酸アンモニウム溶液の濃度は、これらが溶解する範囲ならば特に制限されないが、濃度が低すぎると溶液の使用量が多くなり、不経済であるため、2~15質量%とすることが好ましく、特に5~12質量%とすることが好ましい。
 上記の凝析剤は、1種のみを使用してもよく、2種以上を併用してもよい。
 特に、いわゆる「炭酸アンモニウム」として市販されている、炭酸水素アンモニウムとカルバミン酸アンモニウムとの混合物は、これをそのまま、或いは適当な溶媒に溶解した溶液として使用することができる。この場合における、炭酸水素アンモニウムとカルバミン酸アンモニウムとの合計の使用割合、これを溶液として添加する場合に使用される溶媒の種類及び溶液の濃度は、炭酸アンモニウム、炭酸水素アンモニウム又はカルバミン酸アンモニウムの場合として上記したところと同様である。
 本実施形態における凝析剤としては、炭酸水素アンモニウム及びカルバミン酸アンモニウムよりなる群から選ばれる少なくとも1種を使用することが好ましく、炭酸水素アンモニウムを使用することがより好ましく、特に炭酸水素アンモニウムを水溶液として添加することが好ましい。
 凝析剤を添加する際のシリカ粒子分散液のpHとしては、分散液中で凝析剤が好ましくない分解を起こさず、本実施形態の効果が有効に発揮できるpH領域を選択して設定することが望まれる。このような観点から、分散液のpHはアルカリ性領域とすることが好ましく、pH9以上とすることがより好ましい。
 凝析剤を添加する際のシリカ粒子分散液の温度は、凝析剤の添加によって生成するシリカ粒子の弱い凝集体が安定に存在できる温度を選択して設定することが望まれる。このような観点から、分散液の温度としては、ゾルゲル法の反応の際の反応温度と同じ-10~60℃とすることが好ましく、10~40℃とすることがより好ましい。
 凝析剤の添加後、熟成を行う、即ち次工程のろ過までに暫く間隔をおくこと、が好ましい。凝析剤添加後に熟成を行うことにより、前記したシリカ粒子の弱い凝集体の形成が促進されることとなり、好ましい。熟成時間は長いほどよいが、長すぎると不経済である。一方、熟成時間が短すぎると、シリカ粒子の弱い凝集体の形成が不十分となる。そこで熟成時間としては、0.5~72時間とすることが好ましく、特に1~48時間とすることが好ましい。熟成の際の分散液の温度は特に制限されず、凝析剤添加の際の好ましい温度と同じ温度範囲で実施することができ、凝析剤の添加を行った際と同じ温度で実施すれば足りる。
 <分離工程>
 本実施形態の方法における次の工程は、上記のようにして凝析剤を添加し、好ましくは熟成した後の分散液から、シリカ粒子をろ過により回収する分離工程である。
 上記凝析剤の添加によって弱い凝集体を形成したシリカ粒子は、ろ過によってろ物として固液を分離させて容易に回収することができる。ろ過の方法は特に制限はされず、例えば減圧濾過、加圧ろ過、遠心ろ過等の公知の方法を適用することができる。
 ろ過で使用する、ろ紙やフィルター、ろ布等(以下、これらを包括して「ろ紙等」という。)は、工業的に入手可能なものであれば、特に制限なく使用することができ、分離装置(ろ過器)のスケールに応じて適宜選択すればよい。本実施形態によれば凝析剤の添加により一次粒子が弱く凝集した凝集体となっているため、ろ紙等の孔径は一次粒子径よりもはるかに大きくてよく、例えば平均粒子径が、0.01~5μmのシリカ粒子であれば、例えば孔径5μm程度のもので十分である。このようにろ紙等の孔径が大きなものですむため、迅速にろ過することが可能である。
 ろ過により、シリカ粒子がケークとして回収される。
 上記の凝析工程において凝析剤として炭酸水素アンモニウム水溶液を使用した場合、得られたケークを、適当な溶媒、例えば水、アルコール等、でリンスすることにより、ゾル-ゲル法による反応で使用した溶媒、塩基性触媒、未反応の表面処理剤の分解乃至除去を行うことができる。
 <乾燥工程>
 次いで、上記の分離工程によって回収したシリカ粒子を、本工程において乾燥させる。
 本実施形態においては、上記のようにして回収されたシリカ粒子のケークは、35℃以上の温度で乾燥させると、その解砕性が更に向上する。従って本実施形態の乾燥工程における乾燥温度は、35℃以上の温度とすることが好ましい。この温度における加熱により、上記のろ過、リンス等によっても除去されずにケーク中に残存している凝析剤を、熱分解により容易に除去することができる。このことも本実施形態の大きな利点の1つである。
 乾燥の方法は特に制限はされず、送風乾燥や減圧乾燥等の公知の方法を採用することが可能である。しかしながら、本発明者らの検討により、大気圧下で乾燥するよりも減圧下で乾燥する方が、より解砕され易くなる傾向にあることが明らかとなったため、減圧乾燥を採用することが好ましい。
 乾燥時の温度を高くする方が、凝析剤の分解効率の観点及びより解砕され易いシリカ粒子とすることの観点からは有利である。しかしながら乾燥温度が高すぎると、表面処理によってシリカ粒子の表面に導入された反応性置換基により凝集塊が生成することがあり、好ましくない。従って、上記のバランスをとるために、乾燥の温度は35~200℃とすることが好ましく、50~200℃とすることがより好ましく、特に80~200℃とすることが好ましく、120~200℃とすることがとりわけ好ましい。
 乾燥時間は、特に制限はされないが、2~48時間程度とすることにより、シリカ粒子を十分に乾燥することができる。
 なお、本実施形態において、前記シリカ粒子分散液からの分散媒の除去を、濃縮及び乾燥にわたって連続して行うことも可能である。例えば、シリカ粒子分散液を加熱濃縮、あるいは減圧濃縮等によって分散媒を揮発させる方法によって行うことにより、シリカ粒子分散液より分散媒が除去されたシリカ粒子を直接得ることができる。この場合、分散媒を加熱による除去をする際、特定凝析剤由来の塩が消失する虞があるため、係る場合には、濃縮、乾燥途中のシリカ分散液の濃縮物に、特定凝析剤を適宜添加し、濃縮物中に前記塩が消失しないように行えば良い。
 本実施形態において、上記方法により得られたシリカ粒子は、個々の粒子が弱い力で凝集した凝集体の形態を成す乾燥粉体として得られる。そして、係るシリカ粒子は、解砕処理が困難な凝集塊が生成せず、容易に解砕が可能な、分散性に優れたものである。特段の解砕処理を行うことなく、樹脂や溶剤に分散させる際の分散機のシェアにより、容易に解砕され、該樹脂や溶剤中で均一に分散させることが可能である。電成篩を用いた湿式篩法での篩上残量の測定においても、シリカ粉末5質量%水溶液に出力40W・10分程度の超音波照射による分散処理で容易に解砕される。
 <焼成工程>
 乾燥後のシリカ粒子は、粒子中に吸収された分散媒が完全に除去されておらず、シラノール基が残存し、また細孔が存在している。該粒子中の分散媒を高度に除去し、シラノール基をつぶして中実のシリカを得るために、用途に応じて、更に焼成処理を行うことが好ましい。即ち、該焼成工程において処理されたシリカ粒子は、粒子表面のシラノール基量が低減されるだけでなく、粒子中に残存する分散媒が除去されている点からも好ましい。粒子中に残存する溶媒は、樹脂の充填剤として用いた場合、加熱を施すと気泡等を発生し収率低下の原因となる。特に、充填率が高い半導体封止材用途や液晶シール剤用途において顕著となる。したがって、特に半導体封止材用途や液晶シール剤用途に用いるシリカ粒子の製造において、当該工程を設けることが好ましい。
 上記焼成処理時の焼成温度は、低すぎると分散媒成分の除去が困難であり、高すぎるとシリカ粒子の融着が生じるため、300~1300℃、更には600~1200℃で行うことが好ましい。
 焼成時間については、残存する分散媒が除去されれば特に制限されないが、あまり長すぎると生産性が落ちるため、目的とする焼成温度まで昇温した後、0.5~48時間、より好ましくは、2~24時間の範囲で保持し焼成を行えば十分である。
 焼成時の雰囲気も特に制限はされず、アルゴンや窒素などの不活性ガス下、または大気雰囲気下で行うことができる。
 該焼成工程より得られるシリカ粒子も、前述の通り個々の粒子が弱い力で凝集した凝集体の形態を成す乾燥粉体として得られる。
 <<シリカ粒子>>
 上記のようにして製造される本実施形態のゾルゲルシリカ粉末は、合成時に過度に成長した粗大独立一次粒子や粒子同士が強固に凝集した凝集塊を含まず、シリカ粉末5質量%超音波分散液(出力40W、照射時間10分)において、目開き5μmの電成篩を用いた湿式篩法により篩分けした際の篩上残量が10ppm以下である。
 本実施形態において、該ゾルゲルシリカ粉末は、特段の解砕処理を行うことなく種々の用途に使用することが可能であるが、目的に応じて、凝集塊を更に低減させるために、公知の解砕手段により解砕処理を行って使用することも可能である。解砕処理を施すことにより、目開き5μmの電成篩を用いた湿式篩法での篩上残量を5ppm以下とすることも可能である。
 公知の解砕手段としては、例えば、ボールミルやジェットミル等が挙げられる。また、公知の解砕手段を用いずとも、樹脂や溶剤等に分散して使用する場合には、高シェアの分散機を使用することによって、樹脂や溶剤への分散と同時に粒子の解砕を行うことができる。
 以下、本実施形態の実施例を挙げて具体的に説明するが、本願発明はこれらの実施例によって何ら制限されるものではない。
 以下実施例、比較例で評価に用いる各物性の評価方法は以下の通りである。
 (電成篩を用いた湿式篩法での篩上残量)
 測定試料の調製は、200mLの樹脂製カップ4個に各々ゾルゲルシリカ粉末5g(合計で20g)を電子天秤ではかりとり、各々蒸留水を95ml加えた。各々の試料を超音波ホモジナイザー(BRANSON製、Sonifier250)を用いて、40W・10分の条件で分散させた後、全量(ゾルゲルシリカ粉末で20g分)を目開き5μm・角孔または3μm・角孔の電成篩(飯田製作所製、φ75mm×40mmH)を用いて湿式篩を行い、篩網上の残留分を定量した。
 (平均粒子径、変動係数及びレーザー回折散乱法における5μm以上の粗粒量)
 50mLのガラス瓶にゾルゲルシリカ粉末約0.1gを電子天秤ではかりとり、蒸留水を約40ml加え、超音波ホモジナイザー(BRANSON製、Sonifier250)を用いて、40W・10分の条件で分散させた後、ゾルゲルシリカ粉末の平均粒子径(μm)及び変動係数をレーザー回折散乱法粒度分布測定装置(ベックマンコールター社製、LS-230)により測定した。ここで言う平均粒子径(μm)は体積基準累積50%径(μm)を意味する。
 また、レーザー回折散乱法における5μm以上の粗粒に関し、5μm以上のシグナルの有無を確認した。
 (球形度)
 シリカ粒子の形状をSEM(日本電子データム社製、JSM-6060)で観察し、球形度を求めた。具体的には、1000個以上のシリカ粒子について観察し、画像処理プログラム(Soft Imaging System GmbH製、AnalySIS)を用いて各々の粒子について球形度を計測し、その平均を求めた。なお、球形度は次式により算出した。
球形度=4π×(面積)/(周囲長)
 (α線量)
 低レベルα線測定装置(住化分析センター製、LACS-4000M)を用いてα線量を測定した。測定は試料面積1000cmで実施した。
 (金属不純物量)
 U及びTh:ゾルゲルシリカ粉末をフッ硝酸(フッ酸:硝酸が5:1の混合液)で加熱溶解させ、残渣をICP質量分析法(アジレント・テクノロジー製、Agilent4500)で測定した。
 Fe、Al、Na、K、Ca、Cr、Ni、Ti:ゾルゲルシリカ粉末をフッ硝酸で加熱溶解させ、残渣をICP発光分析法(サーモサイエンティフィック製、iCAP 6500 DUO)で測定した。
 Cl:ゾルゲルシリカ粉末を超純水と混合し、加圧下で熱処理する。処理後の溶液中のCl濃度をイオンクロマトグラフ法(日本ダイオネクス製、ICS-2100)で測定した。
 (比表面積の測定)
 柴田科学器械工業製比表面積測定装置SA-1000を用い、窒素吸着量によるBET一点法により測定した。
 (表面シラノール基量)
 試料を25℃、相対湿度80%の雰囲気中に45日間放置した後、試料を120℃で12時間乾燥した。この資料をメタノール溶媒中に分散し、京都電子工業社製カールフィッシャー水分計MKS-210を使用して水分量を測定した。滴定試薬には、「HYDRANAL COMPOSITE 5K」(Riedel-deHaen社製)を使用した。
 表面シラノール基量は、上記の方法で測定された水分量と前記比表面積から下記の式により算出した。
表面シラノール基(個/nm)=668.9×水分量(質量%)÷比表面積(m/g)
 (フローマーク)
 ゾルゲルシリカ微粉末25gをビスフェノールA+F型混合エポキシ樹脂(新日鉄住金化学製、ZX-1059)25gに加え、手練りした。手練りした樹脂組成物を自転公転式ミキサー(THINKY製、あわとり練太郎 AR-500)により予備混練した(混練:1000rpm、8分、脱泡:2000rpm、2分)。予備混練後の樹脂組成物を三本ロール(アイメックス社製、BR-150HCV ロール径φ63.5)を用いて混練した。混練条件は、混練温度を室温、ロール間距離を20μm、混練回数を5回として行った。
 予め30μmのギャップになるように2枚のガラスを重ねて、100℃に加熱し、作製した混練樹脂組成物の高温侵入性試験を行った。混練樹脂組成物が20mmに到達するまで、もしくは侵入が止まるまで観察し、外観目視によるフローマークの有無を評価した。
 (コールターカウンター法における5μm及び3μm以上の粗粒量)
 50mLのガラス瓶を5個準備し、それぞれにゾルゲルシリカ粉末を約0.1gずつ電子天秤ではかりとり、蒸留水を約40ml加え、超音波ホモジナイザー(BRANSON製、Sonifier250)を用いて、40W・10分の条件で分散させて、測定試料とした。コールターカウンター(ベックマンコールター社製、Multisizer3)によりアパチャー径30μmを用い、各試料中のゾルゲルシリカ粉末の粒子径を測定した。このとき、一回の測定個数を約5万個とし、5回測定を実施し、総測定個数(約25万個)について測定し、粒径が5μm以上の粒子数、及び粒径が3μm以上の粒子数をそれぞれ算出し、総測定個数に対するそれぞれの粗粒量(ppm)とした。
 実施例1
 内容積1000Lのジャケット付きガラスライニング製反応器(内径1200mm)に、マックスブレンド翼(翼径345mm)を有した反応器を使用し、反応媒体としてメタノール75kg、イソプロパノール30kgおよびアンモニア水(25質量%)25kgを仕込み(反応媒体量:150L)、反応温度を40℃に設定し、52rpmで攪拌した。その後、原料としてテトラエトキシシラン3.0kgとメタノール7.0kg、イソプロパノール2.0kgの混合物を反応媒体に投入し、シリカの種粒子を作製した。次にテトラメトキシシラン350kgとメタノール100kgの原料を51mm/sの吐出線速度で反応媒体中に供給し、同時に150kgのアンモニア水(25質量%)を0.8kg/minの速度で供給し、ゾルゲルシリカ粒子を成長、合成させた。このときの無次元混合時間nθmは78であった。
 供給終了後1時間攪拌を続けた後、このシリカ粒子分散液を、目開き3μmのポリプロピレン製ろ過フィルターを用いて湿式ろ過を行って粗大粒子を取り除いた。その後、ドライアイス3kgを投入後、20時間放置した。20時間経過した段階でゾルゲルシリカ粒子は沈降しており、定量ろ紙(保持粒径6μm)を使用し、固液分離後、190kg(シリカ濃度74質量%)の濃縮物を得た。ろ液は透明であり、ろ液漏れは確認されなかった。更に、100℃で15時間減圧乾燥を行い、132kgのゾルゲルシリカ粉末を得た。続けて、空気雰囲気下、800℃で10時間焼成を行った。焼成後に焼結している様子はなく、124kgのゾルゲルシリカ粉末を得た。
 得られたゾルゲルシリカ粉末は、平均粒子径0.74μm、変動係数20.7%、球形度0.96であり、レーザー回折散乱法において5μm以上の粗粒は検出されなかった。また、目開き5μm及び目開き3μmの電成篩を用いた湿式篩法での篩上残量はそれぞれ5ppm及び6ppmであった。コールターカウンター法における5μm及び3μm以上の粗粒量は4ppm未満及び8ppmであった。
 α線量は0.002c/cm・h、金属不純物量は、Uが0.02ppb、Thが0.02ppb、Feが0.1ppm、Alが0.1ppm、Naが0.2ppm、Kが0.0ppm、Caが0.1ppm、Crが0.0ppm、Niが0.0ppm、Tiが0.0ppm、Clが0.0ppmであった。比表面積が4m/g、表面シラノール基量が3個/nm、また、フローマークは見られなかった。
 実施例2
 実施例1で得られたゾルゲルシリカ粉末をジェットミルを用い、解砕処理を施した。得られたゾルゲルシリカ粉末は、平均粒子径0.73μm、変動係数19.1%、球形度0.96であり、レーザー回折散乱法において5μm以上の粗粒は検出されなかった。また、目開き5μm及び目開き3μmの電成篩を用いた湿式篩法での篩上残量は共に5ppm未満(定量下限未満)であった。コールターカウンター法における5μm及び3μm以上の粗粒量は共に4ppm未満であった。
 α線量は0.002c/cm・h、金属不純物量は、Uが0.02ppb、Thが0.02ppb、Feが0.4ppm、Alが2.1ppm、Naが0.2ppm、Kが0.0ppm、Caが0.1ppm、Crが0.0ppm、Niが0.1ppm、Tiが0.0ppm、Clが0.0ppmであった。比表面積が4m/g、表面シラノール基量が3個/nm、また、フローマークは見られなかった。
 実施例3
 実施例1で得られたゾルゲルシリカ粉末をボールミルを用い、解砕処理を施した。得られたゾルゲルシリカ粉末は、平均粒子径0.74μm、変動係数21.6%、球形度0.95であり、レーザー回折散乱法において5μm以上の粗粒は検出されなかった。また、目開き5μm及び目開き3μmの電成篩を用いた湿式篩法での篩上残量は共に5ppm未満(定量下限未満)であった。コールターカウンター法における5μm及び3μm以上の粗粒量は共に4ppm未満であった。
 α線量は0.002c/cm・h、金属不純物量は、Uが0.02ppb、Thが0.02ppb、Feが0.2ppm、Alが0.4ppm、Naが0.2ppm、Kが0.1ppm、Caが0.1ppm、Crが0.0ppm、Niが0.1ppm、Tiが0.0ppm、Clが0.1ppmであった。比表面積が4m/g、表面シラノール基量が3個/nm、また、フローマークは見られなかった。
 実施例4
 実施例1において、原料吐出線速度を263mm/sと変えた。他は実施例1と同様にしてゾルゲルシリカ粒子の合成および評価を行った。焼成後に得られたゾルゲルシリカ粉末は122kgであった。
 得られたゾルゲルシリカ粉末は、平均粒子径0.75μm、変動係数20.3%、球形度0.97であり、レーザー回折散乱法において5μm以上の粗粒は粗粒は検出されなかった。また、目開き5μm及び目開き3μmの電成篩を用いた湿式篩法での篩上残量はそれぞれ5ppm未満(定量下限未満)及び6ppmであった。コールターカウンター法における5μm及び3μm以上の粗粒量は4ppm未満及び8ppmであった。
 α線量は0.001c/cm・h、金属不純物量は、Uが0.02ppb、Thが0.01ppb、Feが0.1ppm、Alが0.1ppm、Naが0.1ppm、Kが0.0ppm、Caが0.1ppm、Crが0.0ppm、Niが0.0ppm、Tiが0.0ppm、Clが0.1ppmであった。比表面積が4m/g、表面シラノール基量が3個/nm、また、フローマークは見られなかった。
 実施例5
 実施例1において、ドライアイスを炭酸水素アンモニウム3kgと変えた。他は実施例1と同様にしてゾルゲルシリカ粒子の合成及び評価を行った。焼成後に得られたゾルゲルシリカ粉末は122kgであった。
 得られたゾルゲルシリカ粉末は、平均粒子径0.72μm、変動係数18.1%、球形度0.97であり、レーザー回折散乱法において5μm以上の粗粒は検出されなかった。また、目開き5μm及び目開き3μmの電成篩を用いた湿式篩法での篩上残量はそれぞれ5ppm及び6ppmであった。コールターカウンター法における5μm及び3μm以上の粗粒量は5ppm及び8ppmであった。
 α線量は0.001c/cm・h、金属不純物量は、Uが0.01ppb、Thが0.01ppb、Feが0.1ppm、Alが0.1ppm、Naが0.1ppm、Kが0.1ppm、Caが0.1ppm、Crが0.0ppm、Niが0.0ppm、Tiが0.0ppm、Clが0.0ppmであった。比表面積が4m/g、表面シラノール基量が3個/nm、また、フローマークは見られなかった。
 実施例6
 実施例1において、シリカの種粒子を作製後の原料を、テトラメトキシシラン90kg、メタノール25kg及びアンモニア水(25質量%)40kgと変えた。他は実施例1と同様にしてゾルゲルシリカ粒子の合成及び評価を行った。焼成後に得られたゾルゲルシリカ粉末は35kgであった。
 得られたゾルゲルシリカ粉末は、平均粒子径0.43μm、変動係数14.8%、球形度0.98であり、レーザー回折散乱法において5μm以上の粗粒は検出されなかった。また、目開き5μm及び目開き3μmの電成篩を用いた湿式篩法での篩上残量は共に5ppm未満(定量下限未満)であった。コールターカウンター法における5μm及び3μm以上の粗粒量は共に4ppm未満であった。
 α線量は0.002c/cm・h、金属不純物量は、Uが0.01ppb、Thが0.01ppb、Feが0.1ppm、Alが0.1ppm、Naが0.1ppm、Kが0.0ppm、Caが0.1ppm、Crが0.0ppm、Niが0.0ppm、Tiが0.0ppm、Clが0.0ppmであった。比表面積が7m/g、表面シラノール基量が3個/nm、また、フローマークは見られなかった。
 実施例7
 実施例1において、反応器を4000Lと変え、シリカの種粒子を作製後の原料を、テトラメトキシシラン1750kg、メタノール500kg及びアンモニア水(25質量%)750kgと変えた。他は実施例1と同様にしてゾルゲルシリカ粒子の合成及び評価を行った。焼成後に得られたゾルゲルシリカ粉末は674kgであった。
 得られたゾルゲルシリカ粉末は、平均粒子径1.14μm、変動係数22.4%、球形度0.96であり、レーザー回折散乱法において5μm以上の粗粒は検出されなかった。また、目開き5μm及び目開き3μmの電成篩を用いた湿式篩法での篩上残量はそれぞれ6ppm、8ppmであった。コールターカウンター法における5μm及び3μm以上の粗粒量は8ppm及び12ppmであった。
 α線量は0.001c/cm・h、金属不純物量は、Uが0.01ppb、Thが0.02ppb、Feが0.1ppm、Alが0.1ppm、Naが0.2ppm、Kが0.1ppm、Caが0.1ppm、Crが0.0ppm、Niが0.0ppm、Tiが0.0ppm、Clが0.0ppmであった。比表面積が3m/g、表面シラノール基量が3個/nm、また、フローマークは見られなかった。
 実施例8
 実施例1において、反応器を10000Lと変え、シリカの種粒子を作製後の原料を、テトラメトキシシラン4200kg、メタノール1200kg及びアンモニア水(25質量%)1800kgと変えた。他は実施例1と同様にしてゾルゲルシリカ粒子の合成及び評価を行った。焼成後に得られたゾルゲルシリカ粉末は1608kgであった。
 得られたゾルゲルシリカ粉末は、平均粒子径1.54μm、変動係数24.3%、球形度0.96であり、レーザー回折散乱法において5μm以上の粗粒は検出されなかった。また、目開き5μm及び目開き3μmの電成篩を用いた湿式篩法での篩上残量はそれぞれ8ppm、10ppmであった。コールターカウンター法における5μm及び3μm以上の粗粒量は8ppm及び16ppmであった。
 α線量は0.001c/cm・h、金属不純物量は、Uが0.01ppb、Thが0.01ppb、Feが0.1ppm、Alが0.1ppm、Naが0.2ppm、Kが0.0ppm、Caが0.1ppm、Crが0.0ppm、Niが0.0ppm、Tiが0.0ppm、Clが0.1ppmであった。比表面積が2m/g、表面シラノール基量が3個/nm、また、フローマークは見られなかった。
 実施例9
 実施例1において、焼成工程を実施しなかった。
 得られたゾルゲルシリカ粉末は、平均粒子径0.82μm、変動係数21.4%、球形度0.97であり、レーザー回折散乱法において5μm以上の粗粒は検出されなかった。また、目開き5μm及び目開き3μmの電成篩を用いた湿式篩法での篩上残量はそれぞれ5ppm及び5ppmであった。コールターカウンター法における5μm及び3μm以上の粗粒量は4ppm及び12ppmであった。
 α線量は0.001c/cm・h、金属不純物量は、Uが0.01ppb、Thが0.02ppb、Feが0.1ppm、Alが0.1ppm、Naが0.3ppm、Kが0.1ppm、Caが0.1ppm、Crが0.0ppm、Niが0.0ppm、Tiが0.0ppm、Clが0.0ppmであった。比表面積5m/g、表面シラノール基量が15個/nm、また、フローマークは見られなかった。
 比較例1
 実施例1において、ドライアイスを投入せず、ゾルゲルシリカ合成直後に固液分離した。他は実施例1と同様にしてゾルゲルシリカ粒子の合成及び評価を行った。濾液は白濁しており、高濃度のゾルゲルシリカ分散液が流れ出た。更に、100℃で15時間減圧乾燥を行い、43kgのゾルゲルシリカ粉末を得た。続けて、空気雰囲気下、800℃で10時間焼成を行った。焼成後は焼結し、硬い凝集粒となっており、38kgのゾルゲルシリカ粉末を得た。
 得られたゾルゲルシリカ粉末は、平均粒子径0.94μm、変動係数34.2%、球形度0.82であり、レーザー回折散乱法において5μm以上の粗粒は検出されなかった。また、目開き5μm及び目開き3μmの電成篩を用いた湿式篩法での篩上残量はそれぞれ、80ppm及び2400ppmであった。コールターカウンター法における5μm及び3μm以上の粗粒量は120ppm及び2600ppmであった。
 α線量は0.002c/cm・h、金属不純物量は、Uが0.02ppb、Thが0.02ppb、Feが0.1ppm、Alが0.1ppm、Naが0.2ppm、Kが0.0ppm、Caが0.1ppm、Crが0.0ppm、Niが0.0ppm、Tiが0.0ppm、Clが0.1ppmであった。比表面積4m/g、表面シラノール基量が3個/nm、また、フローマークは見られた。
 比較例2
 実施例1において、分散液のろ過を行わなかった。他は実施例1と同様にしてゾルゲルシリカ粒子の合成及び評価を行った。焼成後に得られたゾルゲルシリカ粉末は120kgであった。
 得られたゾルゲルシリカ粉末は、平均粒子径0.75μm、変動係数22.4%、球形度0.96であり、レーザー回折散乱法において5μm以上の粗粒は検出されなかった。また、目開き5μm及び目開き3μmの電成篩を用いた湿式篩法での篩上残量はそれぞれ、20ppm及び210ppmであった。コールターカウンター法における5μm及び3μm以上の粗粒量は25ppm及び240ppmであった。
 α線量は0.002c/cm・h、金属不純物量は、Uが0.02ppb、Thが0.01ppb、Feが0.1ppm、Alが0.1ppm、Naが0.1ppm、Kが0.0ppm、Caが0.1ppm、Crが0.0ppm、Niが0.0ppm、Tiが0.0ppm、Clが0.0ppmであった。比表面積4m/g、表面シラノール基量が3個/nm、また、フローマークは見られた。
 比較例3
 実施例6において、ドライアイスを投入せず、ゾルゲルシリカ合成直後に固液分離した。他は実施例6と同様にしてゾルゲルシリカ粒子の合成及び評価を行った。濾液は白濁しており、高濃度のゾルゲルシリカ分散液が流れ出た。更に、100℃で15時間減圧乾燥を行い、13kgのゾルゲルシリカ粉末を得た。続けて、空気雰囲気下、800℃で10時間焼成を行った。焼成後は焼結し、硬い凝集粒となっており、11kgのゾルゲルシリカ粉末を得た。
 得られたゾルゲルシリカ粉末は、平均粒子径0.68μm、変動係数36.7%、球形度0.81であり、レーザー回折散乱法において5μm以上の粗粒は検出されなかった。また、目開き5μm及び目開き3μmの電成篩を用いた湿式篩法での篩上残量はそれぞれ260ppm、8900ppmであった。コールターカウンター法における5μm及び3μm以上の粗粒量は240ppm及び10400ppmであった。
 α線量は0.001c/cm・h、金属不純物量は、Uが0.01ppb、Thが0.01ppb、Feが0.1ppm、Alが0.1ppm、Naが0.1ppm、Kが0.1ppm、Caが0.1ppm、Crが0.0ppm、Niが0.0ppm、Tiが0.0ppm、Clが0.0ppmであった。比表面積7m/g、表面シラノール基量が3個/nm、また、フローマークは見られた。
 比較例4
 実施例6において、分散液のろ過を行わなかった。他は実施例6と同様にしてゾルゲルシリカ粒子の合成及び評価を行った。焼成後に得られたゾルゲルシリカ粉末は34kgであった。
 得られたゾルゲルシリカ粉末は、平均粒子径0.44μm、変動係数15.2%、球形度0.98であり、レーザー回折散乱法において5μm以上の粗粒は検出されなかった。また、目開き5μm及び目開き3μmの電成篩を用いた湿式篩法での篩上残量はそれぞれ15ppm、200ppmであった。コールターカウンター法における5μm及び3μm以上の粗粒量は20ppm及び200ppmであった。
 α線量は0.002c/cm・h、金属不純物量は、Uが0.01ppb、Thが0.01ppb、Feが0.1ppm、Alが0.1ppm、Naが0.1ppm、Kが0.0ppm、Caが0.1ppm、Crが0.0ppm、Niが0.0ppm、Tiが0.0ppm、Clが0.0ppmであった。比表面積7m/g、表面シラノール基量が3個/nm、また、フローマークは見られた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (その他の実施形態)
 上述の実施形態は本願発明の例示であって、本願発明はこれらの例に限定されず、これらの例に周知技術や慣用技術、公知技術を組み合わせたり、一部置き換えたりしてもよい。また当業者であれば容易に思いつく改変発明も本願発明に含まれる。

Claims (11)

  1.  レーザー回折散乱法による平均粒子径が0.05μm以上2.0μm以下であり、粒径分布の広がりを示す変動係数が40%以下であって、
     水の中に5質量%の量を、出力40W、照射時間10分という条件により超音波により分散させた分散液において、目開き5μmの電成篩を用いた湿式篩法により篩分けした際の篩上残量が10ppm以下であることを特徴とする、ゾルゲルシリカ粉末。
  2.  目開き3μmの電成篩を用いた湿式篩法での篩上残量が10ppm以下であることを特徴とする、請求項1記載のゾルゲルシリカ粉末。
  3.  表面のシラノール基量が5個/nm以下であることを特徴とする、請求項1又は2に記載のゾルゲルシリカ粉末。
  4.  α線量が0.002c/cm・h以下であることを特徴とする、請求項1から3のいずれか1項に記載のゾルゲルシリカ粉末。
  5.  U含有量が0.1ppb以下、且つTh含有量が0.1ppb以下であることを特徴とする、請求項1から4のいずれか1項に記載のゾルゲルシリカ粉末。
  6.  Fe含有量が10ppm以下、Al含有量が10ppm以下、Na含有量が5ppm以下、K含有量が5ppm以下、且つ塩化物イオン含有量が1ppm以下であることを特徴とする、請求項1から5のいずれか1項に記載のゾルゲルシリカ粉末。
  7.  Ca含有量が5ppm以下、Cr含有量が5ppm以下、Ni含有量が5ppm以下、且つTi含有量が5ppm以下であることを特徴とする、請求項1から6のいずれか1項に記載のゾルゲルシリカ粉末。
  8.  請求項1に記載のゾルゲルシリカ粉末を製造する製造方法であって、
     レーザー回折散乱法による平均粒子径0.05μm以上2.0μm以下のシリカ粒子が水中に分散したシリカ粒子分散液をゾル-ゲル法により作成する分散液作成工程と、
     前記シリカ粒子分散液を目開き5μm以下のろ材により湿式ろ過するろ過工程と、
     二酸化炭素、炭酸アンモニウム、炭酸水素アンモニウム及びカルバミン酸アンモニウムよりなる群から選択される少なくとも1種の化合物からなる凝析剤をろ液に添加して、前記シリカ粒子を凝析させる凝析工程と、
     凝析液から前記シリカ粒子を分離させる分離工程と、
     分離させた前記シリカ粒子を乾燥させる乾燥工程と
     を含む、ゾルゲルシリカ粉末の製造方法。
  9.  さらに、前記シリカ粒子を焼成する焼成工程を含んでいる、請求項8に記載のゾルゲルシリカ粉末の製造方法。
  10.  請求項1から7のいずれか1項に記載のゾルゲルシリカ粉末が分散されてなる樹脂組成物。
  11.  請求項1から7のいずれか1項に記載のゾルゲルシリカ粉末からなる半導体封止材用充填剤。
PCT/JP2017/039251 2016-11-24 2017-10-31 ゾルゲルシリカ粉末、およびその製造方法 WO2018096876A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018552480A JPWO2018096876A1 (ja) 2016-11-24 2017-10-31 ゾルゲルシリカ粉末、およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016227422 2016-11-24
JP2016-227422 2016-11-24

Publications (1)

Publication Number Publication Date
WO2018096876A1 true WO2018096876A1 (ja) 2018-05-31

Family

ID=62194898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039251 WO2018096876A1 (ja) 2016-11-24 2017-10-31 ゾルゲルシリカ粉末、およびその製造方法

Country Status (3)

Country Link
JP (1) JPWO2018096876A1 (ja)
TW (1) TW201825399A (ja)
WO (1) WO2018096876A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044929A1 (ja) * 2017-08-31 2019-03-07 株式会社トクヤマ 表面処理ゾルゲルシリカ及びその製造方法
WO2022210102A1 (ja) * 2021-03-31 2022-10-06 デンカ株式会社 金属酸化物粉末及びその製造方法
WO2022210119A1 (ja) * 2021-03-31 2022-10-06 デンカ株式会社 二酸化ケイ素粉末
WO2024071434A1 (ja) * 2022-09-30 2024-04-04 日鉄ケミカル&マテリアル株式会社 球状シリカ粒子、これを含有している樹脂複合組成物、および、これを製造する方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006823A (ja) * 2010-02-19 2012-01-12 Tokuyama Corp 無機酸化物粒子分散液の濃縮物の製造方法、及び無機酸化物粒子の製造方法
JP2014214061A (ja) * 2013-04-26 2014-11-17 株式会社トクヤマ 疎水性無機酸化物粉末及びその製造方法
JP2016190770A (ja) * 2015-03-31 2016-11-10 日揮触媒化成株式会社 シリカ粒子の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006823A (ja) * 2010-02-19 2012-01-12 Tokuyama Corp 無機酸化物粒子分散液の濃縮物の製造方法、及び無機酸化物粒子の製造方法
JP2014214061A (ja) * 2013-04-26 2014-11-17 株式会社トクヤマ 疎水性無機酸化物粉末及びその製造方法
JP2016190770A (ja) * 2015-03-31 2016-11-10 日揮触媒化成株式会社 シリカ粒子の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044929A1 (ja) * 2017-08-31 2019-03-07 株式会社トクヤマ 表面処理ゾルゲルシリカ及びその製造方法
JPWO2019044929A1 (ja) * 2017-08-31 2019-11-07 株式会社トクヤマ 表面処理ゾルゲルシリカ及びその製造方法
EP3674264A4 (en) * 2017-08-31 2021-06-02 Tokuyama Corporation SURFACE TREATED SILICA SOL-GEL AND PROCESS FOR ITS PRODUCTION
WO2022210102A1 (ja) * 2021-03-31 2022-10-06 デンカ株式会社 金属酸化物粉末及びその製造方法
WO2022210119A1 (ja) * 2021-03-31 2022-10-06 デンカ株式会社 二酸化ケイ素粉末
WO2024071434A1 (ja) * 2022-09-30 2024-04-04 日鉄ケミカル&マテリアル株式会社 球状シリカ粒子、これを含有している樹脂複合組成物、および、これを製造する方法

Also Published As

Publication number Publication date
JPWO2018096876A1 (ja) 2019-10-17
TW201825399A (zh) 2018-07-16

Similar Documents

Publication Publication Date Title
WO2018096876A1 (ja) ゾルゲルシリカ粉末、およびその製造方法
US9079777B2 (en) Method for producing inorganic oxide particles
TW200948717A (en) Novel process for the preparation of precipitated silicas, precipitated silicas having specific morphology, specific particle size and specific porosity and their uses, in particular for the reinforcing of polymers
US20230125516A1 (en) Method for producing surface-treated silica powder, resin composition, and slurry
JP6440551B2 (ja) シリカ粒子の製造方法
JP2018108903A (ja) シリカ粒子分散液及びその製造方法
JP6462459B2 (ja) シリカ粒子の製造方法
JP2019116396A (ja) シリカ系粒子分散液及びその製造方法
JP2012171813A (ja) 表面処理無機酸化物粒子の製造方法
JP6564966B2 (ja) 表面処理ゾルゲルシリカ及びその製造方法
JP2012031045A (ja) 表面処理無機酸化物粒子の製造方法
US11306005B2 (en) Method for preparing nickel oxide nanoparticles and nickel oxide nanoparticles produced by using the same
EP3222704A1 (en) Iron soap, method of producing same and thermoplastic resin composition containing iron soap
EP3747831B1 (en) Composite oxide powder and method for production thereof
KR102666806B1 (ko) 복합 산화물 분말 및 그 제조 방법
JP7497488B2 (ja) 複合酸化物粉末の製造方法
JP6752658B2 (ja) 異形シリカ粉末、その製造方法、それを含有する樹脂組成物
TWI834643B (zh) 複合氧化物粉末之製造方法
JP2023110669A (ja) シリカ粒子の粒子径の調整方法およびシリカ粒子の製造方法
JP2022090679A (ja) 球状シリカ粉末の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874389

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018552480

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874389

Country of ref document: EP

Kind code of ref document: A1