WO2014136959A1 - 窒化ホウ素粉末及びこれを含有する樹脂組成物 - Google Patents

窒化ホウ素粉末及びこれを含有する樹脂組成物 Download PDF

Info

Publication number
WO2014136959A1
WO2014136959A1 PCT/JP2014/056034 JP2014056034W WO2014136959A1 WO 2014136959 A1 WO2014136959 A1 WO 2014136959A1 JP 2014056034 W JP2014056034 W JP 2014056034W WO 2014136959 A1 WO2014136959 A1 WO 2014136959A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
nitride powder
particles
boron
resin composition
Prior art date
Application number
PCT/JP2014/056034
Other languages
English (en)
French (fr)
Inventor
太樹 西
五十嵐 厚樹
光永 敏勝
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to CN201480012728.4A priority Critical patent/CN105026312B/zh
Priority to KR1020157024519A priority patent/KR102187240B1/ko
Priority to US14/773,264 priority patent/US9656868B2/en
Priority to EP14760169.4A priority patent/EP2966036A4/en
Priority to JP2015504426A priority patent/JP6296568B2/ja
Publication of WO2014136959A1 publication Critical patent/WO2014136959A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0648After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron

Definitions

  • the present invention relates to boron nitride powder and a resin composition containing the same.
  • the present invention is suitably used as a resin composition for transmitting heat of a heat-generating electronic component such as a power device to a heat radiating member.
  • the present invention relates to a boron nitride powder exhibiting high thermal conductivity and a resin composition containing the same, which are filled in an insulating layer of a printed wiring board and a resin composition of a thermal interface material.
  • heat-generating electronic components such as power devices, transistors, thyristors, and CPUs
  • heat dissipation measures include (1) increasing the thermal conductivity of the insulating layer of the printed wiring board on which the heat generating electronic components are mounted, and (2) the heat generating electronic components or the printed wiring on which the heat generating electronic components are mounted. It has been generally performed to attach a plate to a heat radiating member such as a heat sink via an electrically insulating thermal interface material (Thermal Interface Materials).
  • a resin composition of an insulating layer of a printed wiring board and a thermal interface material a silicone resin or an epoxy resin filled with ceramic powder having a high thermal conductivity is used.
  • hexagonal boron nitride (1) has excellent properties as an electrical insulating material such as (1) high thermal conductivity, (2) high insulation, and (3) low relative dielectric constant.
  • Hexagonal Boron Nitride powder is drawing attention.
  • the hexagonal boron nitride particles have a thermal conductivity in the in-plane direction (a-axis direction) of 400 W / (m ⁇ K), whereas the thermal conductivity in the thickness direction (c-axis direction) is 2 W / (M ⁇ K), which has a large anisotropy of thermal conductivity derived from the crystal structure and scale shape (Non-patent Document 1).
  • the particles are aligned in the same direction. Therefore, for example, when the thermal interface material is manufactured, the in-plane direction of the hexagonal boron nitride particles (a-axis direction) and the thickness direction of the thermal interface material are perpendicular to each other, and the in-plane direction of the hexagonal boron nitride particles (a-axis direction) ) could not be fully utilized.
  • Patent Document 1 proposes one in which the in-plane direction (a-axis direction) of hexagonal boron nitride particles is oriented in the thickness direction of the high thermal conductive sheet.
  • high thermal conductivity in the in-plane direction (a-axis direction) of hexagonal boron nitride particles can be utilized.
  • (2) The sheet is cut into thin sheets after lamination and curing. There is a problem that it is difficult to ensure the dimensional accuracy of the thickness of the sheet.
  • Patent Documents 2 and 3 propose the use of boron nitride powder in which hexagonal boron nitride particles as primary particles are aggregated without being oriented in the same direction. According to the techniques proposed in Patent Documents 2 and 3, the anisotropy of thermal conductivity can be suppressed.
  • the aggregated boron nitride powder has a pinecone shape (for example, see Patent Document 2: Paragraph [0020] FIG. 6) or a block shape (for example, Patent Document 3: Paragraph [0037] (See FIGS. 3 to 5). Since the average sphericity is small, there is a limit in filling the resin, and there is a limit in improving the thermal conductivity.
  • Patent Document 4 proposes the use of boron nitride powder having high average sphericity, in which borate particles are coated with hexagonal boron nitride particles. According to the technique proposed in Patent Document 4, a certain effect can be obtained in suppressing the anisotropy of the thermal conductivity and improving the filling property into the resin. However, the technique proposed in Patent Document 4 has a high content of borate particles having low thermal conductivity (see, for example, paragraphs [0020] and [0028]), and thus high heat of hexagonal boron nitride particles. There was a problem that the conductivity could not be fully utilized.
  • the thermal conductivity of epoxy resin and silicone resin is significantly lower than the thermal conductivity in the in-plane direction (a-axis direction) of hexagonal boron nitride particles. Therefore, the thermal conductivity of the resin composition in which the boron nitride particles with suppressed thermal conductivity anisotropy are filled in the resin is greatly influenced by the contact thermal resistance between the boron nitride particles and the resin interface. That is, in order to obtain a resin composition having a high thermal conductivity, it is necessary to reduce the contact thermal resistance at the interface between the resin and the boron nitride particles as well as suppressing the anisotropy of the thermal conductivity of the boron nitride particles.
  • Methods for reducing the contact thermal resistance at the interface between the resin and the boron nitride particles include (1) increasing the average particle size of the boron nitride particles (reducing the total number of boron nitride particles and the resin interface), and (2) a silane coupling agent. (3) The boron nitride particles are brought into surface contact with each other, but the effect of (3) is the greatest.
  • Patent Documents 5 and 6 propose boron nitride particles in which primary particles of hexagonal boron nitride are isotropically aggregated, and a heat conductive sheet obtained by dispersing the particles in a thermosetting resin. According to the techniques proposed in Patent Documents 5 and 6, a certain effect can be obtained in suppressing the anisotropy of the thermal conductivity and improving the filling property into the resin. However, the techniques proposed in Patent Documents 5 and 6 do not consider the reduction of contact thermal resistance due to the surface contact between boron nitride particles, so that the high thermal conductivity of hexagonal boron nitride particles can be fully utilized. There was a problem that could not.
  • Patent Document 7 proposes a heat conductive sheet characterized in that secondary particles composed of primary particles of boron nitride are in surface contact. According to the technique proposed in Patent Document 7, certain effects can be obtained in suppressing the anisotropy of the thermal conductivity, improving the filling property into the resin, and reducing the contact thermal resistance. However, Patent Document 7 does not show that a sintering aid necessary for bonding hexagonal boron nitride of primary particles is blended (for example, paragraph [0017]), and is proposed in Patent Document 7 In the conventional technology, since the porosity is as small as 50% by volume or less (for example, paragraph [0014]), it is difficult to achieve both improvement in strength of secondary particles and ease of deformation (low elastic modulus). As a result, the technique proposed in Patent Document 7 has a limit in improving the thermal conductivity by reducing the contact thermal resistance, and further technical development has been awaited.
  • the present invention is suitably used as a resin composition for transmitting heat of a heat-generating electronic component such as a power device to a heat radiating member in view of the above-described conventional technology, and particularly for an insulating layer and a thermal interface material of a printed wiring board. It is an object of the present invention to provide a boron nitride powder that fills a resin composition and exhibits high thermal conductivity by suppressing anisotropy of thermal conductivity and reducing contact thermal resistance, and a resin composition containing the same.
  • Boron nitride powder containing boron nitride particles bonded with primary particles of hexagonal boron nitride, and having an average sphericity of 0.70 or more and an average particle diameter of 20 to 100 ⁇ m.
  • Boron nitride powder having a porosity of 50 to 80%, an average pore diameter of 0.10 to 2.0 ⁇ m, a maximum pore diameter of 10 ⁇ m or less, and a calcium content of 500 to 5000 ppm.
  • a resin composition comprising the boron nitride powder according to any one of (1) to (3) and a resin.
  • the boron nitride powder of the present invention improves both the particle strength of the boron nitride particles and the ease of deformation of the particles (low elastic modulus). Therefore, the boron nitride powder of the present invention can suppress the thermal conductivity anisotropy and reduce the contact thermal resistance, thereby exhibiting a high thermal conductivity.
  • the resin composition containing the boron nitride powder of the present invention contains the boron nitride powder of the present invention described above, it can exhibit high thermal conductivity.
  • the horizontal axis indicates the pore diameter ( ⁇ m)
  • the left vertical axis indicates the cumulative pore volume (cm 3 ⁇ g ⁇ 1 )
  • the right vertical axis indicates the differential pore volume (cm 3 ⁇ g ⁇ 1 ).
  • the SEM photograph of the cross section of the resin composition of this invention In the figure, the upper right scale bar indicates 50 ⁇ m.
  • primary particles are defined as “hexagonal boron nitride particles”, and a state in which two or more primary particles are aggregated in a state of being bonded together by sintering is defined as “boron nitride particles”.
  • An aggregate of the “boron nitride particles” is defined as “boron nitride powder”.
  • Bonding between primary particles by sintering forms a continuous structure at the bonding portion between the primary particles of the cross section of boron nitride particles using a scanning electron microscope (for example, “JSM-6010LA” (manufactured by JEOL Ltd.)). It can be evaluated by observing what is being done.
  • the primary particles are bonded by sintering when the bonded portion of the primary particles is observed when the continuous structure is formed at 50% or more.
  • the observation places were arbitrary 100 places.
  • boron nitride particles were embedded in a resin, processed by CP (cross section polisher) method, fixed on a sample stage, and then coated with osmium. The observation magnification is 1000 times.
  • the boron nitride powder of the present invention has a specific calcium content, porosity, average pore diameter, maximum pore diameter, average sphericity, average particle diameter, crystallinity, and orientation, which cannot be achieved by conventional techniques.
  • the resin composition containing the boron nitride powder of the present invention can reduce the contact thermal resistance, it can exhibit high thermal conductivity that could not be achieved by the conventional technique.
  • the boron nitride powder of the present invention has an average sphericity of 0.70 or more, an average particle diameter of 20 to 100 ⁇ m, a porosity of 50 to 80%, an average pore diameter of 0.10 to 2.0 ⁇ m, and a maximum pore diameter of 10 ⁇ m.
  • the calcium content is 500 to 5000 ppm.
  • the boron nitride powder of the present invention preferably has a graphitization index of 1.6 to 4.0 by the powder X-ray diffraction method, and peaks of the (002) plane and the (100) plane by the powder X-ray diffraction method.
  • the intensity ratio I (002) / I (100) is preferably 9.0 or less.
  • Particle strength that can withstand the shear stress of kneading when filling the resin and compressive stress (especially during heat and pressure molding) between the boron nitride particles and surface deformation between the boron nitride particles. Ensuring ease (low elastic modulus), that is, ease of surface contact between boron nitride particles is a very important factor for obtaining a resin composition having high thermal conductivity. There has never been a boron nitride powder designed as in the present invention.
  • the calcium content is 500 to 5000 ppm. If the calcium content is less than 500 ppm, the bonding between the primary particles becomes insufficient, the shear stress of kneading when filling the resin, and the compressive stress (especially heating and pressing) during the surface contact between the boron nitride particles It is not possible to obtain a particle strength that can withstand molding). If the calcium content is higher than 5000 ppm, the elastic modulus of the boron nitride particles becomes high, so that the surface contact between the boron nitride particles becomes insufficient, and the thermal conductivity of the resin composition decreases.
  • a preferable range of the calcium content is 1000 to 3000 ppm.
  • the calcium content can be measured using, for example, a wavelength dispersive X-ray fluorescence analyzer “ZSX Primus II” (manufactured by RIGAKU).
  • ZSX Primus II manufactured by RIGAKU.
  • boron nitride powder was press-molded.
  • the X-ray tube is an Rh tube
  • the X-ray tube power 3.0 kW
  • the porosity is 50 to 80%.
  • the elastic modulus of the boron nitride particles becomes high, so that the surface contact between the boron nitride particles becomes insufficient, and the thermal conductivity of the resin composition decreases.
  • the particle strength of the boron nitride particles decreases, so that the spherical structure is destroyed by the shear stress received during kneading into the resin and the compressive stress during the surface contact between the boron nitride particles, and the primary particles Hexagonal boron nitride particles are oriented in the same direction.
  • the porosity is a value obtained by measuring the total pore volume using a mercury porosimeter in accordance with JIS R 1655.
  • the total pore volume using a mercury porosimeter can be measured using, for example, “PASCAL 140-440” (manufactured by FISON INSTRUMENTS).
  • ⁇ g is the porosity (%) of the boron nitride particles
  • V g is the cumulative pore volume (cm 3 / g) of the intra-particle voids 2 (see reference numeral 5 in FIG. 1)
  • ⁇ t is the density of primary particles of hexagonal boron nitride particles of 2.34 (g / cm 3 ).
  • V g can be determined as a total pore volume 3 minus the cumulative pore volume of the interparticle voids 1 (see FIG. 1) (reference numeral 4 in FIG. 1).
  • FIG. 1 shows an example of the measurement result.
  • the average pore diameter is 0.10 to 2.0 ⁇ m.
  • the average pore diameter is larger than 2.0 ⁇ m, it is impossible to obtain a particle strength that can withstand the shear stress of kneading that is applied when the resin is filled and the compressive stress at the time of surface contact between the boron nitride particles.
  • the average pore diameter is smaller than 0.10 ⁇ m, the elastic modulus of the boron nitride particles becomes high, so that the surface contact between the boron nitride particles becomes insufficient, and the thermal conductivity of the resin composition decreases.
  • the average pore diameter is a value obtained by measuring the total pore volume using a mercury porosimeter in accordance with JIS R 1655.
  • the total pore volume using a mercury porosimeter can be measured using, for example, “PASCAL 140-440” (manufactured by FISON INSTRUMENTS).
  • the average pore diameter in FIG. 1 is obtained by subtracting the interparticle void 1 (see FIG. 1) from the accumulated pore volume, and V g (the value obtained by subtracting the interparticle void 1 from the total pore volume 3 (in FIG. 1).
  • the pore diameter is 50% of the reference number 4)).
  • the maximum pore diameter is 10 ⁇ m or less.
  • the maximum pore diameter is larger than 10 ⁇ m, it is impossible to obtain a particle strength that can withstand the shear stress of kneading that is applied when filling the resin and the compressive stress at the time of surface contact between the boron nitride particles.
  • the lower limit is not particularly limited.
  • the hexagonal boron nitride particles of the primary particles have a distribution, it is difficult to make the pore diameters completely uniform, and about twice the average pore diameter is practical.
  • the maximum pore diameter is a value determined by measuring the total pore volume using a mercury porosimeter in accordance with JIS R 1655.
  • the pore volume using a mercury porosimeter can be measured using, for example, “PASCAL 140-440” (manufactured by FISON INSTRUMENTS).
  • the maximum pore diameter is a pore diameter in which a value obtained by subtracting the interparticle void 1 (see FIG. 1) from the accumulated pore volume is 0 in FIG.
  • the average sphericity is 0.70 or more.
  • the friction resistance between the resin and the boron nitride surface increases when the boron nitride powder is kneaded with the resin. Therefore, the viscosity of the resin composition becomes high, and it becomes difficult to highly fill the boron nitride powder.
  • the upper limit is not particularly limited. However, since the hexagonal boron nitride particles of the primary particles have a scale shape, it is difficult to set the average sphericity to 1.0, and an upper limit of about 0.98 is practical. is there.
  • the average particle size is 20 to 100 ⁇ m.
  • the thermal conductivity decreases due to an increase in contact thermal resistance with an increase in the total number of boron nitride particles and the resin interface.
  • the average particle size is larger than 100 ⁇ m, the particle strength of the boron nitride particles decreases, so that the spherical structure is destroyed by the shear stress received during kneading into the resin, and the hexagonal boron nitride particles as primary particles are oriented in the same direction.
  • the average particle size is a particle size having a cumulative value of 50% in the particle size distribution measurement by the laser diffraction light scattering method.
  • a particle size distribution analyzer for example, “MT3300EX” (manufactured by Nikkiso Co., Ltd.) can be used for measurement.
  • water was used as a solvent
  • hexametaphosphoric acid was used as a dispersant
  • a pretreatment was performed for 30 seconds using a homogenizer with an output of 20 W for dispersion treatment.
  • the refractive index of water was 1.33
  • the refractive index of boron nitride powder was 1.80.
  • the measurement time per time is 30 seconds.
  • ⁇ Peak intensity ratio I (002) / I (100)> In the boron nitride powder of the present invention, it is preferable that the thermal conductivity anisotropy is suppressed, that is, the orientation is small.
  • the orientation is a ratio I (002) / I (100) between the peak intensity I (002) of the (002) plane diffraction line and the peak intensity I (100) of the (100) plane diffraction line by the powder X-ray diffraction method. ) Can be measured.
  • the thickness direction of the hexagonal boron nitride particles coincides with the crystallographic (002) plane, that is, the c-axis direction, and the in-plane direction coincides with the (100) plane, that is, the a-axis direction.
  • I (002) / I (100) ⁇ 6.7 (“JCPDS [powder X Line Diffraction Database] ”No. 34-0421 [BN] crystal density value [Dx]).
  • I (002) / I (100) is generally greater than 20.
  • the peak intensity ratio I (002) / I (100) between the (002) plane and the (100) plane is preferably 9.0 or less. If the peak intensity ratio I (002) / I (100) between the (002) plane and the (100) plane is larger than 9.0, the thermal conductivity of the resin composition may decrease due to the orientation of the hexagonal boron nitride particles. is there.
  • the lower limit is not particularly limited, but the hexagonal boron nitride particles as the primary particles have a scaly shape, so that the peak intensity ratio I (002) / I (100) between the (002) plane and the (100) plane is set to 0. It is difficult to set to 0, and about 2.0 is practical as the lower limit.
  • the orientation that is, the measurement of I (002) / I (100) by the powder X-ray diffraction method can be measured using, for example, “D8 ADVANCE Super Speed” (manufactured by Bruker AXS).
  • X-rays were irradiated so as to be symmetric with respect to the normal line of the plane in the in-plane direction of the molded body.
  • CuK ⁇ ray is used as the X-ray source, the tube voltage is 45 kV, and the tube current is 360 mA.
  • (GI) is 1.60.
  • the particles are easy to be oriented. Becomes even smaller.
  • GI is an index of crystallinity of the scale-shaped hexagonal boron nitride powder, and the smaller this value, the higher the crystallinity.
  • GI is preferably 1.6 to 4.0.
  • the crystallinity of the hexagonal boron nitride particles as the primary particles is low, and thus high thermal conductivity may not be obtained.
  • the GI is smaller than 1.6, the scale shape is too developed, so that it may be difficult to maintain the spherical structure, and the particle strength may be reduced.
  • GI graphitization index
  • the GI can be measured using, for example, “D8 ADVANCE Super Speed” (manufactured by Bruker AXS).
  • the boron nitride powder was crushed to obtain primary hexagonal boron nitride powder, and then press molded.
  • X-rays were irradiated so as to be symmetric with respect to the normal line of the plane in the in-plane direction of the molded body.
  • CuK ⁇ ray is used as the X-ray source, the tube voltage is 45 kV, and the tube current is 360 mA.
  • the boron nitride purity (BN purity) is preferably 95% by mass or more.
  • the BN purity can be measured by subjecting the boron nitride powder to alkali decomposition followed by steam distillation by the Kjeldahl method and neutralizing the total nitrogen in the distillate.
  • amorphous boron nitride and hexagonal boron nitride powder are used as raw materials.
  • the average particle size of the amorphous boron nitride is preferably 2 to 6 ⁇ m.
  • the average particle size of hexagonal boron nitride is preferably 8 to 16 ⁇ m.
  • the blending ratio of amorphous boron nitride is less than 60, the porosity of boron nitride particles increases, and the shear stress of kneading when filling the resin and the compressive stress at the time of surface contact between the boron nitride particles (especially heat and pressure molding) Particle strength that can withstand If the blending ratio of amorphous boron nitride is greater than 90, it is not possible to obtain ease of deformation (low elastic modulus).
  • the elastic modulus of the boron nitride particles is preferably 5 to 35 MPa. If the elastic modulus of the boron nitride particles is less than 5 MPa, the spherical structure is destroyed by the compressive stress (particularly during heat and pressure molding) when the boron nitride particles are in contact with each other, and the hexagonal boron nitride particles of the primary particles are in the same direction. Orient. As a result, the anisotropy of thermal conductivity is increased. If the elastic modulus of the boron nitride particles is larger than 35 MPa, the surface contact between the boron nitride particles becomes insufficient, and the thermal conductivity of the resin composition is lowered.
  • the elastic modulus (E: MPa) of the boron nitride particles was calculated from a test force-displacement curve at the time of particle strength measurement according to JIS R1639-5.
  • a micro compression tester for example, “MCT-W500” manufactured by Shimadzu Corporation
  • P the crushing test force
  • d the particle diameter
  • Y the displacement amount during crushing
  • the Poisson's ratio
  • a resin composition containing the boron nitride powder of the present invention a resin composition containing the boron nitride powder of the present invention will be described.
  • the proportion of boron nitride powder in the resin composition is preferably 20 to 80% by volume.
  • various ceramic mix powders having an average particle size smaller than that of the boron nitride powder of the present invention such as aluminum nitride, hexagonal boron nitride, boron nitride, silicon nitride, aluminum oxide, zinc oxide, magnesium oxide, magnesium hydroxide, silicon dioxide
  • silicon carbide powder may be added as appropriate.
  • the appropriate average particle size of the various ceramic powders varies depending on the average particle size of the boron nitride powder of the present invention.
  • the average particle size of the various ceramic powders is 50 ⁇ m
  • the average particle size of the various ceramic powders The diameter is preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less. Since the packing structure of the particles can be made denser, the packing property is improved, and as a result, the thermal conductivity of the resin composition can be remarkably improved.
  • Examples of the resin used in the resin composition of the present invention include an epoxy resin, a silicone resin, a silicone rubber, an acrylic resin, a phenol resin, a melamine resin, a urea resin, an unsaturated polyester, a fluororesin, a polyimide, a polyamideimide, and a polyether.
  • Polyamide such as imide, polyester such as polybutylene terephthalate, polyethylene terephthalate, polyphenylene ether, polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber) ⁇ Styrene) resin, AES (acrylonitrile, ethylene, propylene, diene rubber-styrene) resin, polyglycolic acid resin, polyphthalamide, It can be used re acetal, nylon resin or the like.
  • polyester such as polybutylene terephthalate, polyethylene terephthalate, polyphenylene ether, polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber) ⁇ Styrene) resin, A
  • thermosetting resins especially thermosetting resins, curing agents, inorganic fillers, silane coupling agents, as well as improving wettability and leveling properties and promoting viscosity reduction, will cause defects during heat and pressure molding.
  • Additives to reduce can be included. Examples of such additives include an antifoaming agent, a surface conditioner, and a wetting and dispersing agent.
  • Epoxy resin is suitable as an insulating layer for printed wiring boards because of its excellent heat resistance and adhesive strength to copper foil circuits.
  • silicone resins and silicone rubbers are suitable as thermal interface materials because of their excellent heat resistance, flexibility, and adhesion to heat sinks.
  • ⁇ Solvent> When the boron nitride powder is dispersed in the resin, it may be diluted with a solvent if necessary.
  • the solvent include alcohols such as ethanol and isopropanol, 2-methoxyethanol, 1-methoxyethanol, 2-ethoxyethanol, 1-ethoxy-2-propanol, 2-butoxyethanol, 2- (2-methoxyethoxy) Ethers such as ethanol, 2- (2-ethoxyethoxy) ethanol and 2- (2-butoxyethoxy) ethanol, glycol ethers such as ethylene glycol monomethyl ether and ethylene glycol monobutyl ether, acetone, methyl ethyl ketone, methyl isobutyl ketone and Examples include ketones such as diisobutyl ketone ketone, and hydrocarbons such as toluene and xylene. These solvents may be used alone or in combination of two or more.
  • the boron nitride powders are in surface contact.
  • the surface “the boron nitride powders are in surface contact” means a flat surface and a curved surface, and the contact means that it is difficult to distinguish the outer edge portions of the boron nitride powders. Since the degree of surface contact varies depending on the desired thermal conductivity, it is difficult to define it uniquely. However, in order to achieve high thermal conductivity that could not be achieved by the conventional technology, for example, as shown in FIG. 2 (SEM image taken by the following method), it is desirable to make surface contact with a plurality of surfaces.
  • the surface contact between the boron nitride powders is obtained by observing the surface contact between the boron nitride powders in the cross section of the resin composition using a scanning electron microscope (for example, “JSM-6010LA” (manufactured by JEOL Ltd.)). Can be evaluated.
  • a scanning electron microscope for example, “JSM-6010LA” (manufactured by JEOL Ltd.)
  • JSM-6010LA manufactured by JEOL Ltd.
  • the resin composition was embedded with a resin, processed by a CP (cross section polisher) method, fixed on a sample stage, and then coated with osmium.
  • the observation magnification is 1000 times.
  • amorphous boron nitride powder (amorphous BN in Table 1) having an oxygen content of 2.4%, a BN purity of 96.3%, and a calcium content of 67 ppm, an oxygen content of 0.1% and a BN purity of 98.
  • a Henschel mixer 8% hexagonal boron nitride powder (hexagonal BN in Table 1) having a calcium content of 8 ppm, calcium carbonate (“PC-700” manufactured by Shiroishi Kogyo Co., Ltd.) as a sintering aid, and water are used.
  • the mixture was pulverized with a ball mill to obtain a water slurry. Furthermore, after adding 0.5 parts by mass of polyvinyl alcohol resin (“GOHSENOL” manufactured by Nippon Synthetic Chemical Co., Ltd.) to 100 parts by mass of the water slurry, the mixture is heated and stirred at 50 ° C. until dissolved, and then dried by a spray dryer. Spheroidization was performed at a temperature of 230 ° C. A rotary atomizer was used as the spheroidizing device for the spray dryer. The obtained processed product was fired in a batch type high frequency furnace, and then the fired product was crushed and classified to obtain boron nitride powder.
  • polyvinyl alcohol resin (“GOHSENOL” manufactured by Nippon Synthetic Chemical Co., Ltd.)
  • Table 1 the raw material composition, ball mill grinding conditions (grinding time (hr)), spray drying conditions (atomizer rotation speed (rpm)), and firing conditions (firing temperature (° C.)) were adjusted, and Table 2 ( Examples) and 25 types of powders A to Y shown in Table 3 (comparative examples) were produced.
  • Table 2 Examples and 25 types of powders A to Y shown in Table 3 (comparative examples) were produced.
  • the binding state of the primary particles of the obtained powders A to Y was measured with a scanning electron microscope. Was confirmed to be bound.
  • the thermal diffusivity was determined by a laser flash method by processing a sheet as a measurement sample into a width of 10 mm ⁇ 10 mm ⁇ thickness of 0.5 mm.
  • a xenon flash analyzer (“LFA447 NanoFlash” manufactured by NETZSCH) was used.
  • Specific gravity was determined using the Archimedes method.
  • the specific heat capacity was determined using DSC (“ThermoPlus Evo DSC8230” manufactured by Rigaku Corporation).
  • the thing whose heat conductivity is 7 W / (m * K) or more was evaluated as excellent (it is high heat conductivity).
  • the boron nitride powder of the present invention exhibits a relatively high particle strength and a low elastic modulus.
  • the boron nitride powder of the present invention has a relatively high particle strength, it can withstand the shear stress of kneading that is applied when filling the resin and the compressive stress at the time of surface contact between the boron nitride particles. Since the elastic modulus was low, sufficient surface contact between the boron nitride particles could be obtained. Therefore, the resin composition containing the boron nitride powder of the present invention was able to obtain an unprecedented excellent thermal conductivity.
  • the boron nitride powder of the present invention is used as a filler for resin.
  • the resin composition containing the boron nitride powder of the present invention is used as an insulating layer and a thermal interface material of a printed wiring board.
  • Interparticle void 2 Interparticle void 3 Total pore volume 4 Cumulative pore volume of interparticle void 5

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Ceramic Products (AREA)

Abstract

パワーデバイスなどの発熱性電子部品の熱を放熱部材に伝達するための樹脂組成物として好適に用いられ、特にプリント配線板の絶縁層及び熱インターフェース材の樹脂組成物に充填される、熱伝導率の異方性の抑制と接触熱抵抗の低減により高熱伝導率を発現する窒化ホウ素粉末を提供する。六方晶窒化ホウ素の一次粒子が結合した窒化ホウ素粒子を含有し、前記窒化ホウ素粒子の集合体である窒化ホウ素粉末が、0.70以上の平均球形度、20~100μmの平均粒径、50~80%の空隙率、0.10~2.0μmの平均細孔径、10μm以下の最大細孔径、及び500~5000ppmのカルシウム含有率である窒化ホウ素粉末。粉末X線回折法による黒鉛化指数が1.6~4.0、(002)面と(100)面のピーク強度比I(002)/I(100)が9.0以下であることが好ましい。

Description

窒化ホウ素粉末及びこれを含有する樹脂組成物
 本発明は、窒化ホウ素粉末及びこれを含有する樹脂組成物に関する。詳しくは、本発明は、パワーデバイスなどの発熱性電子部品の熱を、放熱部材に伝達するための樹脂組成物として好適に用いられる。特に、本発明は、プリント配線板の絶縁層及び熱インターフェース材の樹脂組成物に充填される、高熱伝導率を発現する窒化ホウ素粉末及びこれを含有する樹脂組成物に関する。
 パワーデバイス、トランジスタ、サイリスタ、CPU等の発熱性電子部品においては、使用時に発生する熱を如何に効率的に放熱するかが重要な課題となっている。従来から、このような放熱対策としては、(1)発熱性電子部品を実装するプリント配線板の絶縁層を高熱伝導化する、(2)発熱性電子部品又は発熱性電子部品を実装したプリント配線板を電気絶縁性の熱インターフェース材(Thermal Interface Materials)を介してヒートシンク等の放熱部材に取り付ける、ことが一般的に行われてきた。プリント配線板の絶縁層及び熱インターフェース材の樹脂組成物としては、シリコーン樹脂やエポキシ樹脂に熱伝導率の高いセラミックス粉末を充填させたものが使用されている。
 近年、電子機器の軽薄短小化に伴う高密度実装技術の急激な進展により、発熱性電子部品内の回路の高速・高集積化、及び発熱性電子部品のプリント配線板への実装密度の増加が進行している。そのため、電子機器内部の発熱密度は年々増加しており、従来にも増して高熱伝導性を発現するセラミックス粉末が求められてきている。
 以上のような背景により、(1)高熱伝導率、(2)高絶縁性、(3)比誘電率が低いこと等、電気絶縁材料として優れた性質を有している、六方晶窒化ホウ素(hexagonal Boron Nitride)粉末が注目されている。しかし、六方晶窒化ホウ素粒子は、面内方向(a軸方向)の熱伝導率が400W/(m・K)であるのに対して、厚み方向(c軸方向)の熱伝導率が2W/(m・K)であり、結晶構造と鱗片形状に由来する熱伝導率の異方性が大きい(非特許文献1)。さらに、六方晶窒化ホウ素粉末を樹脂に充填すると、粒子同士が同一方向に揃って配向する。そのため、例えば、熱インターフェース材の製造時に、六方晶窒化ホウ素粒子の面内方向(a軸方向)と熱インターフェース材の厚み方向が垂直になり、六方晶窒化ホウ素粒子の面内方向(a軸方向)の高熱伝導率を十分に活かすことができなかった。
 このような問題を解決するため、特許文献1では、六方晶窒化ホウ素粒子の面内方向(a軸方向)を高熱伝導シートの厚み方向に配向させたものが提案されている。特許文献1に提案されている技術によれば、六方晶窒化ホウ素粒子の面内方向(a軸方向)の高熱伝導率を活かすことができる。しかし、特許文献1に提案されている技術には、(1)配向したシートを次工程にて積層する必要があり製造工程が煩雑になり易い、(2)積層・硬化後にシート状に薄く切断する必要があり、シートの厚みの寸法精度を確保することが困難という問題があった。また、特許文献1に提案されている技術には、六方晶窒化ホウ素粒子の形状が鱗片形状であるため、樹脂への充填時に粘度が増加し、流動性が悪くなるので、高充填が困難であった。これらを改善するため、六方晶窒化ホウ素粒子の熱伝導率の異方性を抑制した種々の形状の窒化ホウ素粉末が提案されている。
 例えば、特許文献2及び3では、一次粒子の六方晶窒化ホウ素粒子が同一方向に配向せずに凝集した窒化ホウ素粉末の使用が提案されている。特許文献2及び3に提案されている技術によれば、熱伝導率の異方性を抑制することができる。しかし、特許文献2及び3に提案されている技術には、凝集した窒化ホウ素粉末の形状が松ぼっくり状(例えば、特許文献2:段落[0020]図6参照)や塊状(例えば、特許文献3:段落[0037]図3~5参照)であり、平均球形度が小さいため、樹脂への充填に限界があり、熱伝導率の向上には限界があった。
 また、特許文献4では、ホウ酸塩粒子を六方晶窒化ホウ素粒子で被覆した、平均球形度の高い窒化ホウ素粉末の使用が提案されている。特許文献4に提案されている技術によれば、熱伝導率の異方性の抑制と樹脂への充填性の向上には一定の効果を得ることができる。しかし、特許文献4に提案されている技術には、熱伝導率の低いホウ酸塩粒子の含有率が高いため(例えば、段落[0020]、[0028]参照)、六方晶窒化ホウ素粒子の高熱伝導率を十分に活かすことができないという問題があった。
 さらに、エポキシ樹脂やシリコーン樹脂の熱伝導率は、六方晶窒化ホウ素粒子の面内方向(a軸方向)の熱伝導率と比べて大幅に低いことが知られている。そのため、熱伝導率の異方性を抑制した窒化ホウ素粒子を樹脂に充填した樹脂組成物の熱伝導率は、窒化ホウ素粒子と樹脂界面の接触熱抵抗に大きな影響を受ける。すなわち、熱伝導率の高い樹脂組成物を得るためには、窒化ホウ素粒子の熱伝導率の異方性の抑制とともに、樹脂と窒化ホウ素粒子界面の接触熱抵抗を小さくすることが必要である。
 樹脂と窒化ホウ素粒子界面の接触熱抵抗を小さくする手法としては、(1)窒化ホウ素粒子の平均粒径を大きくする(窒化ホウ素粒子と樹脂界面の総数を減らす)、(2)シランカップリング剤を添加することで樹脂と窒化ホウ素粒子のなじみを向上させる、(3)窒化ホウ素粒子同士を面接触させる、ことが挙げられるが、(3)の効果が最も大きい。
 例えば、特許文献5及び6では、六方晶窒化ホウ素の一次粒子が等方的に凝集した窒化ホウ素粒子や、それを熱硬化性樹脂中に分散してなる熱伝導性シートが提案されている。特許文献5及び6に提案されている技術によれば、熱伝導率の異方性の抑制と樹脂への充填性の向上には一定の効果を得ることができる。しかし、特許文献5及び6に提案されている技術では、窒化ホウ素粒子同士の面接触による接触熱抵抗の低減については考慮されていないため、六方晶窒化ホウ素粒子の高熱伝導率を十分に活かすことができないという問題があった。
 また、特許文献7では、窒化ホウ素の一次粒子から構成される二次粒子が面接触していることを特徴とする熱伝導性シートが提案されている。特許文献7に提案されている技術によれば、熱伝導率の異方性の抑制、樹脂への充填性の向上、及び接触熱抵抗の低減には一定の効果を得ることができる。しかし、特許文献7には、一次粒子の六方晶窒化ホウ素の結合に必要な焼結助剤を配合することは示されておらず(例えば、段落[0017])、且つ、特許文献7に提案されている技術は、空隙率が50体積%以下と小さい(例えば、段落[0014])ため、二次粒子の強度向上と変形のし易さ(低弾性率)の両立は困難であった。その結果、特許文献7に提案されている技術には、接触熱抵抗の低減による熱伝導率の向上には限界があり、さらなる技術開発が待たれていた。
特開2000-154265号公報 特開平9-202663号公報 特開2011-98882号公報 特開2001-122615号公報 特開2010-157563号公報 特開2012-171842号公報 国際公開第2012/070289号パンフレット
R. F. Hill, P. H. Supancic, J. Am. Ceram. Soc., 85, 851(2002)
 本発明は、上記の従来技術に鑑み、パワーデバイスなどの発熱性電子部品の熱を放熱部材に伝達するための樹脂組成物として好適に用いられ、特にプリント配線板の絶縁層及び熱インターフェース材の樹脂組成物に充填される、熱伝導率の異方性の抑制と接触熱抵抗の低減により高熱伝導率を発現する窒化ホウ素粉末及びこれを含有する樹脂組成物を提供することを課題とする。
 上記の課題を解決するために、本発明においては、以下の手段を採用する。
(1)六方晶窒化ホウ素の一次粒子が結合した窒化ホウ素粒子を含有し、前記窒化ホウ素粒子の集合体である窒化ホウ素粉末が、0.70以上の平均球形度、20~100μmの平均粒径、50~80%の空隙率、0.10~2.0μmの平均細孔径、10μm以下の最大細孔径、及び500~5000ppmのカルシウム含有率であることを特徴とする窒化ホウ素粉末。
(2)粉末X線回折法による黒鉛化指数が1.6~4.0、(002)面と(100)面のピーク強度比I(002)/I(100)が9.0以下であることを特徴とする前記(1)に記載の窒化ホウ素粉末。
(3)原料として、平均粒径が2~6μmのアモルファス窒化ホウ素と、平均粒径が8~16μmの前記六方晶窒化ホウ素と、を用い、且つ、これらの配合比を質量基準で、前記アモルファス窒化ホウ素:前記六方晶窒化ホウ素が60:40から90:10としたことを特徴とする前記(1)に記載の窒化ホウ素粉末。
(4)前記(1)から(3)のいずれか1つに記載の窒化ホウ素粉末と、樹脂と、を含有することを特徴とする樹脂組成物。
(5)前記窒化ホウ素粒子の弾性率が5~35MPa、前記窒化ホウ素粒子同士が面接触していることを特徴とする前記(4)に記載の樹脂組成物。
 本発明の窒化ホウ素粉末は、窒化ホウ素粒子の粒子強度及び粒子の変形のし易さ(低弾性率)を向上させ、両立させたものである。そのため、本発明の窒化ホウ素粉末は、熱伝導率の異方性の抑制と接触熱抵抗の低減とを図ることができ、これにより高熱伝導率を発現することができる。
 また、本発明の窒化ホウ素粉末を含有してなる樹脂組成物は、前記した本発明の窒化ホウ素粉末を含有しているので、高熱伝導率を発現することができる。
本発明の窒化ホウ素粉末の空隙率、平均細孔径、最大細孔径の測定結果の一例である。なお、同図中、横軸は細孔径(μm)を示し、左縦軸は積算細孔容積(cm3・g-1)を示し、右縦軸は微分細孔容積(cm3・g-1)を示す。 本発明の樹脂組成物の断面のSEM写真の一例である。なお、同図中、右上のスケールバーは50μmを示す。
<六方晶窒化ホウ素粒子と窒化ホウ素粒子の用語の定義>
 本発明では、一次粒子を「六方晶窒化ホウ素粒子」、一次粒子同士が焼結により結合した状態で2個以上集合した状態を「窒化ホウ素粒子」と定義する。この「窒化ホウ素粒子」が集まった集合体を「窒化ホウ素粉末」と定義する。焼結による一次粒子同士の結合は、走査型電子顕微鏡(例えば、「JSM-6010LA」(日本電子社製))を用いて、窒化ホウ素粒子の断面の一次粒子同士の結合部分に連続組織が形成されていることを観察することにより評価することができる。一次粒子が焼結により結合しているとは、一次粒子の結合部分を観察した場合、連続組織が50%以上の箇所で形成されている場合とする。観察箇所は任意の100箇所とした。観察の前処理として、窒化ホウ素粒子を樹脂で包埋後、CP(クロスセクションポリッシャー)法により加工し、試料台に固定した後にオスミウムコーティングを行った。観察倍率は1000倍である。
 本発明の窒化ホウ素粉末は、特定のカルシウム含有率、空隙率、平均細孔径、最大細孔径、平均球形度、平均粒径、結晶性、配向性を有することにより、従来の技術では達成できなかった、窒化ホウ素粒子の粒子強度及び粒子の変形のし易さ(低弾性率)を両立させた、優れた窒化ホウ素粉末を得ることができる。また、本発明の窒化ホウ素粉末を含有してなる樹脂組成物は、接触熱抵抗を低減させることが可能であるので、従来の技術では達成できなかった高熱伝導率を発現することができる。
 本発明の窒化ホウ素粉末は、平均球形度が0.70以上、平均粒径が20~100μm、空隙率が50~80%、平均細孔径が0.10~2.0μm、最大細孔径が10μm以下、カルシウム含有率が500~5000ppmである。
 また、本発明の窒化ホウ素粉末は、粉末X線回折法による黒鉛化指数が1.6~4.0であることが好ましく、粉末X線回折法による(002)面と(100)面のピーク強度比I(002)/I(100)が9.0以下であることが好ましい。
 樹脂に充填する際の混練の剪断応力と窒化ホウ素粒子同士の面接触時の圧縮応力(特に加熱加圧成形時)に耐えうる粒子強度と、さらに窒化ホウ素粒子同士の面接触時の変形のし易さ(低弾性率)、つまり、窒化ホウ素粒子同士の面接触のし易さと、を確保することは、高熱伝導率の樹脂組成物を得るために非常に重要な因子である。本発明のように設計された窒化ホウ素粉末はこれまで存在しない。
<カルシウムの含有率及びその評価方法>
 本発明の窒化ホウ素粉末において特に重要なことは、カルシウムの含有率を500~5000ppmとしたことである。カルシウムの含有率が500ppmより小さいと、一次粒子同士の焼結による結合が不十分となり、樹脂へ充填する際の混練の剪断応力と窒化ホウ素粒子同士の面接触時の圧縮応力(特に加熱加圧成形時)に耐えうる粒子強度を得ることができない。カルシウムの含有率が5000ppmより大きいと、窒化ホウ素粒子の弾性率が高くなるため、窒化ホウ素粒子同士の面接触が不十分になり、樹脂組成物の熱伝導率が低下する。カルシウムの含有率の好ましい範囲は、1000~3000ppmである。カルシウムの含有率は、例えば、波長分散型蛍光X線分析装置「ZSX PrimusII」(RIGAKU社製)を用いて測定できる。前処理として、窒化ホウ素粉末をプレス成型した。測定時は、X線管球はRh管球を用い、X線管電力は3.0kW、測定径はΦ=30mmである。
<空隙率>
 本発明の窒化ホウ素粉末においては、空隙率が50~80%である。空隙率が50%より小さいと、窒化ホウ素粒子の弾性率が高くなるため、窒化ホウ素粒子同士の面接触が不十分になり、樹脂組成物の熱伝導率が低下する。空隙率が80%を超えると、窒化ホウ素粒子の粒子強度が低下するため、樹脂への混練時に受ける剪断応力や窒化ホウ素粒子同士の面接触時の圧縮応力により球状構造が破壊され、一次粒子の六方晶窒化ホウ素粒子が同一方向に配向する。
<空隙率の評価方法>
 空隙率は、JIS R 1655に準拠し、水銀ポロシメーターを用いて全細孔容積を測定することにより求めた値である。水銀ポロシメーターを用いた全細孔容積としては、例えば、「PASCAL 140-440」(FISONS INSTRUMENTS社製)を用いて測定することができる。この測定の原理は、式εg=Vg/(Vg+1/ρt)×100に基づいている。式中、εgは、窒化ホウ素粒子の空隙率(%)であり、Vgは、粒子内空隙2の積算細孔容積(cm3/g)であり(図1における符号5参照)、ρtは、一次粒子の六方晶窒化ホウ素粒子の密度2.34(g/cm3)である。なお、Vgは、全細孔容積3(図1参照)から粒子間空隙1の積算細孔容積を差し引いた値(図1における符号4参照)として求めることができる。図1に測定結果の一例を示す。
<平均細孔径>
 本発明の窒化ホウ素粉末においては、平均細孔径が0.10~2.0μmである。平均細孔径が2.0μmより大きくなると樹脂へ充填する際に受ける混練の剪断応力や窒化ホウ素粒子同士の面接触時の圧縮応力に耐えうる粒子強度を得ることができない。平均細孔径が0.10μmより小さいと窒化ホウ素粒子の弾性率が高くなるため、窒化ホウ素粒子同士の面接触が不十分になり、樹脂組成物の熱伝導率が低下する。
<平均細孔径の評価方法>
 平均細孔径は、JIS R 1655に準拠し、水銀ポロシメーターを用いて全細孔容積を測定することにより求めた値である。水銀ポロシメーターを用いた全細孔容積としては、例えば、「PASCAL 140-440」(FISONS INSTRUMENTS社製)を用いて測定することができる。平均細孔径は、図1において、積算細孔容積から粒子間空隙1(図1参照)を差し引いた値が、Vg(全細孔容積3から粒子間空隙1を差し引いた値(図1における符号4参照))の50%となる細孔径である。
<最大細孔径>
 本発明の窒化ホウ素粉末においては、最大細孔径が10μm以下である。最大細孔径が10μmより大きくなると樹脂へ充填する際に受ける混練の剪断応力や窒化ホウ素粒子同士の面接触時の圧縮応力に耐えうる粒子強度を得ることができない。下限については、特に制限はないが、一次粒子の六方晶窒化ホウ素粒子の粒径は分布を持つため、細孔径を完全にそろえることは難しく、平均細孔径の2倍程度が実際的である。
<最大細孔径の評価方法>
 最大細孔径は、JIS R 1655に準拠し、水銀ポロシメーターを用いて全細孔容積を測定することにより求めた値である。水銀ポロシメーターを用いた細孔体積としては、例えば、「PASCAL 140-440」(FISONS INSTRUMENTS社製)を用いて測定することができる。最大細孔径は、図1において、積算細孔容積から粒子間空隙1(図1参照)を差し引いた値が0となる細孔径である。
<平均球形度>
 本発明の窒化ホウ素粉末においては、平均球形度が0.70以上である。平均球形度が0.70より小さくなると、樹脂に窒化ホウ素粉末を混練する際に、樹脂と窒化ホウ素表面の摩擦抵抗が高くなる。そのため、樹脂組成物の粘度が高くなり、窒化ホウ素粉末を高充填することが困難になる。上限については、特に制限はないが、一次粒子の六方晶窒化ホウ素粒子は鱗片形状であるため、平均球形度を1.0にすることは難しく、上限としては、0.98程度が実際的である。
<平均球形度の定義・評価方法>
 平均球形度は、試料台上の導電性両面テープに固定した窒化ホウ素粉末を、走査型電子顕微鏡、例えば、「JSM-6010LA」(日本電子社製)にて撮影し、得られた粒子像を画像解析ソフトウェア、例えば、「A像くん」(旭化成エンジニアリング社製)に取り込み、次のようにして測定することができる。写真から粒子の投影面積(A)と周囲長(PM)を測定する。周囲長(PM)に対応する真円の面積を(B)とすると、その粒子の真円度はA/Bとして表示できる。そこで、試料粒子の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πr2であるから、B=π×(PM/2π)2となり、個々の粒子の球形度は、球形度=A/B=A×4π/(PM)2として算出することができる。この際の画像の倍率は100倍、画像解析の画素数は1510万画素であった。このようにして得られた任意の粒子100個の球形度を求めその平均値を平均球形度とした。
<平均粒径>
 本発明の窒化ホウ素粉末においては、平均粒径が20~100μmである。平均粒径が20μmより小さいと、窒化ホウ素粒子と樹脂界面の総数の増加にともなう接触熱抵抗の増加により熱伝導率が低下する。平均粒径が100μmより大きいと、窒化ホウ素粒子の粒子強度が低下するため、樹脂への混練時に受ける剪断応力により球状構造が破壊され、一次粒子の六方晶窒化ホウ素粒子が同一方向に配向する。
<平均粒径の定義・評価方法>
 平均粒径は、レーザー回折光散乱法による粒度分布測定において、累積粒度分布の累積値50%の粒径である。粒度分布測定機としては、例えば、「MT3300EX」(日機装社製)にて測定することができる。測定に際しては、溶媒には水、分散剤としてはヘキサメタリン酸を用い、前処理として、30秒間、ホモジナイザーを用いて20Wの出力をかけて分散処理させた。水の屈折率には1.33を用い、窒化ホウ素粉末の屈折率については1.80を用いた。一回当たりの測定時間は30秒である。
<ピーク強度比I(002)/I(100)>
 本発明の窒化ホウ素粉末においては、熱伝導率の異方性が抑制されていること、つまり配向性が小さいことが好ましい。配向性は、粉末X線回折法による(002)面の回折線のピーク強度I(002)と(100)面の回折線のピーク強度I(100)との比I(002)/I(100)で測定することができる。六方晶窒化ホウ素粒子の厚み方向は結晶学的な(002)面すなわちc軸方向、面内方向は(100)面すなわちa軸方向にそれぞれ一致している。窒化ホウ素粒子を構成する一次粒子の六方晶窒化ホウ素粒子が、完全にランダムな配向(無配向)で有る場合、I(002)/I(100)≒6.7になる(「JCPDS[粉末X線回折データベース]」No.34-0421[BN]の結晶密度値[Dx])。高結晶の六方晶窒化ホウ素ではI(002)/I(100)は一般に20より大きい。
 本発明の窒化ホウ素粉末においては、(002)面と(100)面のピーク強度比I(002)/I(100)は9.0以下が好ましい。(002)面と(100)面のピーク強度比I(002)/I(100)が9.0より大きいと、六方晶窒化ホウ素粒子の配向により樹脂組成物の熱伝導率が減少する恐れがある。下限については、特に制限はないが、一次粒子の六方晶窒化ホウ素粒子は鱗片形状であるため、(002)面と(100)面のピーク強度比I(002)/I(100)を0.0にすることは難しく、下限としては、2.0程度が実際的である。
<ピーク強度比I(002)/I(100)の評価方法>
 配向性、すなわち粉末X線回折法によるI(002)/I(100)の測定は、例えば、「D8 ADVANCE Super Speed」(ブルカー・エイエックスエス社製)を用いて測定できる。前処理として、窒化ホウ素粉末をプレス成型した後、X線を成型体の面内方向の平面の法線に対して、互いに対称となるように照射した。測定時は、X線源はCuKα線を用い、管電圧は45kV、管電流は360mAである。
<黒鉛化指数(GI)>
 黒鉛化指数(GI:Graphitization Index)はX線回折図の(100)面、(101)面及び(102)面のピークの積分強度比すなわち面積比を、GI=〔面積{(100)+(101)}〕/〔面積(102)〕、によって求めることができる(J.Thomas,et.al,J.Am.Chem.Soc.84,4619(1962))。完全に結晶化したものでは、(GI)1.60になるとされているが、高結晶性でかつ粒子が十分に成長した鱗片形状の六方晶窒化ホウ素粉末の場合、粒子が配向しやすいためGIはさらに小さくなる。すなわち、GIは鱗片形状の六方晶窒化ホウ素粉末の結晶性の指標であり、この値が小さいほど結晶性が高い。本発明の窒化ホウ素粉末においては、GIが1.6~4.0が好ましい。GIが4.0より大きいと、一次粒子の六方晶窒化ホウ素粒子の結晶性が低いため、高熱伝導率を得ることができない場合がある。また、GIが1.6より小さいと、鱗片形状が発達しすぎているため、球状構造の維持が難しくなる場合があり、粒子強度が低下する恐れがある。
<黒鉛化指数(GI)の評価方法>
 GIの測定は、例えば、「D8 ADVANCE Super Speed」(ブルカー・エイエックスエス社製)を用いて測定できる。前処理として、窒化ホウ素粉末に解砕処理を行い、一次粒子の六方晶窒化ホウ素粉末を得た後、プレス成型した。X線は、成型体の面内方向の平面の法線に対して、互いに対称となるように照射した。測定時は、X線源はCuKα線を用い、管電圧は45kV、管電流は360mAである。
<BN純度及びその評価方法>
 本発明の窒化ホウ素粉末においては、その窒化ホウ素純度(BN純度)が95質量%以上であることが好ましい。BN純度は、窒化ホウ素粉末をアルカリ分解後ケルダール法による水蒸気蒸留を行い、留出液中の全窒素を中和適定することによって測定することができる。
<原料のアモルファス窒化ホウ素及び六方晶窒化ホウ素粉末>
 本発明の窒化ホウ素粉末においては、原料としてアモルファス窒化ホウ素と六方晶窒化ホウ素粉末を使用する。アモルファス窒化ホウ素の平均粒径は2~6μmが好ましい。六方晶窒化ホウ素の平均粒径は8~16μmが好ましい。
<原料のアモルファス窒化ホウ素及び六方晶窒化ホウ素粉末の配合比>
 本発明の窒化ホウ素粉末においては、原料のアモルファス窒化ホウ素と六方晶窒化ホウ素粉末の配合比は、質量基準でアモルファス窒化ホウ素:六方晶窒化ホウ素=60:40~90:10であることが好ましい。アモルファス窒化ホウ素の配合割合が60より小さいと、窒化ホウ素粒子の空隙率が大きくなり、樹脂へ充填する際の混練の剪断応力と窒化ホウ素粒子同士の面接触時の圧縮応力(特に加熱加圧成形時)に耐えうる粒子強度を得ることができない。アモルファス窒化ホウ素の配合割合が90より大きいと、変形のし易さ(低弾性率)を得ることができない。
<弾性率>
 本発明の窒化ホウ素粉末においては、窒化ホウ素粒子の弾性率が5~35MPaであることが好ましい。窒化ホウ素粒子の弾性率が5MPaより小さいと、窒化ホウ素粒子同士の面接触時の圧縮応力(特に加熱加圧成形時)により球状構造が破壊され、一次粒子の六方晶窒化ホウ素粒子が同一方向に配向する。そのため、熱伝導率の異方性が大きくなってしまう。窒化ホウ素粒子の弾性率が35MPaより大きいと窒化ホウ素粒子同士の面接触が不十分になり、樹脂組成物の熱伝導率が低下する。
<弾性率の評価方法>
 窒化ホウ素粒子の弾性率(E:MPa)は、JIS R1639-5に準じた粒子強度測定時の試験力-変位曲線より算出した。測定装置としては、微小圧縮試験器(例えば、「MCT-W500」島津製作所社製)を用いた。
 圧壊試験力(P:N)と粒子径(d:mm)と圧壊時の変位量(Y:mm)とポアソン比(ν)からP=(4×E×(d/2)1/2×(Y)3/2)/(3×(1-ν2))の式(田中,物性研究.85(4),499-518(2006))を用いて算出した。なお、ポアソン比は0.13と仮定した。
<窒化ホウ素粉末を含有してなる樹脂組成物>
 つぎに、本発明の窒化ホウ素粉末を含有してなる樹脂組成物について説明する。樹脂組成物中の窒化ホウ素粉末の割合は20~80体積%であることが好ましい。また、本発明の窒化ホウ素粉末より平均粒径の小さい各種セラミックミックス粉末、例えば、窒化アルミニウム、六方晶窒化ホウ素、窒化ホウ素、窒化ケイ素、酸化アルミニウム、酸化亜鉛、酸化マグネシウム、水酸化マグネシウム、二酸化ケイ素、炭化ケイ素粉末を1種類以上適宜添加してもよい。各種セラミックス粉末の適切な平均粒径は、本発明の窒化ホウ素粉末の平均粒径によって変化するが、例えば、本発明の窒化ホウ素粉末の平均粒径が50μmの場合は、各種セラミックス粉末の平均粒径は20μm以下が好ましく、10μm以下がさらに好ましい。粒子の充填構造をより密にすることができるので、充填性が向上し、結果として樹脂組成物の熱伝導率を著しく向上させることができる。
<樹脂>
 本発明の樹脂組成物に用いられる樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、シリコーンゴム、アクリル樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンエーテル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS樹脂、AAS(アクリロニトリル-アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂、ポリグリコール酸樹脂、ポリフタルアミド、ポリアセタール、ナイロン樹脂等を用いることができる。これらの樹脂、特に熱硬化性樹脂には適宜、硬化剤、無機フィラー、シランカップリング剤、さらには濡れ性やレベリング性の向上及び粘度低下を促進して加熱加圧成形時の欠陥の発生を低減する添加剤を含有することができる。このような添加剤としては、例えば、消泡剤、表面調整剤、湿潤分散剤等がある。また、エポキシ樹脂は、耐熱性と銅箔回路への接着強度が優れていることから、プリント配線板の絶縁層として好適である。さらに、シリコーン樹脂及びシリコーンゴムは耐熱性、柔軟性及びヒートシンク等への密着性が優れていることから熱インターフェース材として好適である。
<溶剤>
 樹脂へ窒化ホウ素粉末を分散する際には、必要に応じて溶剤で希釈して使用してもよい。溶剤としては、例えば、エタノール及びイソプロパノール等のアルコール類、2-メトキシエタノール、1-メトキシエタノール、2-エトキシエタノール、1-エトキシ-2-プロパノール、2-ブトキシエタノール、2-(2-メトキシエトキシ)エタノール、2-(2-エトキシエトキシ)エタノール及び2-(2-ブトキシエトキシ)エタノール等のエーテルアルコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル等のグリコールエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン及びジイソブチルケトンケトン等のケトン類、トルエン及びキシレン等の炭化水素類が挙げられる。なお、これらの溶剤は、単独で使用しても、2種以上を混合して使用してもよい。
<窒化ホウ素粉末同士の面接触>
 本発明の窒化ホウ素粉末を含有してなる樹脂組成物においては、窒化ホウ素粉末同士は面接触する。「窒化ホウ素粉末同士が面接触する」の面とは、平面及び曲面を意味し、接触とは、窒化ホウ素粉末同士の外縁部の区別が困難になることを意味する。面接触の程度については、所望の熱伝導率により異なるため一義的に定義することは困難である。しかし、従来の技術では達成できなかった高熱伝導率を達成するためには、例えば、図2(下記の方法にて撮影したSEM画像)に示すように、複数の面で面接触することが望ましい。窒化ホウ素粉末同士の面接触は、走査型電子顕微鏡(例えば、「JSM-6010LA」(日本電子社製))を用いて、樹脂組成物の断面の窒化ホウ素粉末同士の面接触を観察することにより評価することができる。観察の前処理として、樹脂組成物を樹脂で包埋後、CP(クロスセクションポリッシャー)法により加工し、試料台に固定した後にオスミウムコーティングを行った。観察倍率は1000倍である。
<機械的強度>
 さらに、本発明の樹脂組成物の機械的強度を向上させる必要がある場合は、ガラスクロス、ガラス不織布、アラミド繊維不織布、液晶ポリマー不織布等と複合化させることができる。
 以下、本発明を実施例、比較例を挙げてさらに具体的に説明する。
<実施例1~14、比較例1~11>
 酸素含有量が2.4%、BN純度が96.3%、カルシウム含有量が67ppmであるアモルファス窒化ホウ素粉末(表1ではアモルファスBN)、酸素含有量が0.1%、BN純度が98.8%、カルシウム含有量が8ppmである六方晶窒化ホウ素粉末(表1では六方晶BN)、焼結助剤の炭酸カルシウム(「PC-700」白石工業社製)及び水を、ヘンシェルミキサーを用いて混合した後、ボールミルで粉砕し、水スラリーを得た。さらに、水スラリー100質量部に対して、ポリビニルアルコール樹脂(「ゴーセノール」日本合成化学社製)を0.5質量部添加し、溶解するまで50℃で加熱撹拌した後、噴霧乾燥機にて乾燥温度230℃で球状化処理を行った。なお、噴霧乾燥機の球状化装置としては、回転式アトマイザーを使用した。得られた処理物をバッチ式高周波炉にて焼成した後、焼成物に解砕及び分級処理を行い、窒化ホウ素粉末を得た。表1に示すように、原料配合、ボールミル粉砕条件(粉砕時間(hr))、噴霧乾燥条件(アトマイザー回転数(rpm))、焼成条件(焼成温度(℃))を調整して、表2(実施例)及び表3(比較例)に示す25種類の粉末A~Yを製造した。得られた粉末A~Yの一次粒子の結合状態を、前記した[発明を実施するための形態]で説明したように、走査型電子顕微鏡で測定した結果、いずれの窒化ホウ素粉末についても一次粒子が結合していることが確認された。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
<樹脂への充填>
 得られた窒化ホウ素粉末A~Yの樹脂への充填材としての特性を評価するため、エポキシ樹脂(「エピコート807」三菱化学社製)と硬化剤(「アクメックスH-84B」日本合成化工社製)に対して窒化ホウ素粉末が60体積%となるように混合した。そして、PET製シートの上に厚みが1.0mmになるように当該混合したもの(混合物)を塗布した後、500Paの減圧脱泡を10分間行った。その後、温度150℃、圧力160kg/cm2条件で60分間のプレス加熱加圧を行って0.5mmのシートとした。なお、混合後のスラリーの流動性が悪く、塗布ができない場合は、表3中に「充填不可」と表記した。また、表3中において、熱伝導率を「-」としているものは、充填不可であったために熱伝導率の測定をすることができなかったことを示す。
 得られた窒化ホウ素粉末の粒子強度及びシートの熱伝導率を次に示す方法に従って評価した。それらの結果を表2(実施例)、表3(比較例)に示す。
<粒子強度評価法>
 JIS R 1639-5に準じて測定を実施した。測定装置としては、微小圧縮試験器(「MCT-W500」島津製作所社製)を用い、試験力-変位曲線を求めた。粒子強度(σ:MPa)は、粒子内の位置によって変化する無次元数(α=2.48)と圧壊試験力(P:N)と粒子径(d:mm)からσ=α×P/(π×d2)の式を用いて算出した。
<熱伝導率評価法>
 熱伝導率(H:W/(m・K))は、熱拡散率(A:m2/sec)、密度(B:kg/m3)及び比熱容量(C:J/(kg・K))から、H=A×B×Cとして、算出した。熱拡散率は、測定用試料としてシートを幅10mm×10mm×厚み0.5mmに加工し、レーザーフラッシュ法により求めた。測定装置は、キセノンフラッシュアナライザ(「LFA447 NanoFlash」NETZSCH社製)を用いた。比重は、アルキメデス法を用いて求めた。比熱容量は、DSC(「ThermoPlus Evo DSC8230」リガク社製)を用いて求めた。なお、熱伝導率が7W/(m・K)以上であるものを優れている(高熱伝導率である)と評価した。
 なお、実施例1~14及び比較例1~10(粉末A~X)のカルシウム含有率、空隙率、平均細孔径、最大細孔径、平均球形度、平均粒径、ピーク強度比、黒鉛化指数、及び、窒化ホウ素粒子の弾性率は、前記した[発明を実施するための形態]で説明した内容にて測定や評価等を行った。
 実施例と比較例の対比から明らかなように、本発明の窒化ホウ素粉末は比較的高い粒子強度と低弾性率を示している。このように、本発明の窒化ホウ素粉末は、粒子強度が比較的高いので、樹脂へ充填する際に受ける混練の剪断応力や窒化ホウ素粒子同士の面接触時の圧縮応力に耐えることができ、また、低弾性率であったので窒化ホウ素粒子同士の面接触を十分得ることができた。そのため、本発明の窒化ホウ素粉末を含有してなる樹脂組成物は、従来にない優れた熱伝導率を得ることができた。
 本発明の窒化ホウ素粉末は、樹脂への充填材として使用される。また、本発明の窒化ホウ素粉末を含有した樹脂組成物は、プリント配線板の絶縁層及び熱インターフェース材として使用される。
  1   粒子間空隙
 2   粒子内空隙
 3   全細孔容積
 4   粒子間空隙の累積細孔容積
 5   Vg=粒子内空隙の積算細孔容積=全細孔容積から粒子間空隙の積算細孔容積を差し引いた値
 6   窒化ホウ素粒子
 7~12 6の窒化ホウ素粒子と面接触している窒化ホウ素粒子

Claims (5)

  1.  六方晶窒化ホウ素の一次粒子が結合した窒化ホウ素粒子を含有し、前記窒化ホウ素粒子の集合体である窒化ホウ素粉末が、0.70以上の平均球形度、20~100μmの平均粒径、50~80%の空隙率、0.10~2.0μmの平均細孔径、10μm以下の最大細孔径、及び500~5000ppmのカルシウム含有率であることを特徴とする窒化ホウ素粉末。
  2.  粉末X線回折法による黒鉛化指数が1.6~4.0、(002)面と(100)面のピーク強度比I(002)/I(100)が9.0以下であることを特徴とする請求項1に記載の窒化ホウ素粉末。
  3.  原料として、平均粒径が2~6μmのアモルファス窒化ホウ素と、平均粒径が8~16μmの前記六方晶窒化ホウ素と、を用い、且つ、
     これらの配合比を質量基準で、前記アモルファス窒化ホウ素:前記六方晶窒化ホウ素が60:40から90:10としたことを特徴とする請求項1に記載の窒化ホウ素粉末。
  4.  請求項1から請求項3のいずれか1項に記載の窒化ホウ素粉末と、樹脂と、を含有することを特徴とする樹脂組成物。
  5.  前記窒化ホウ素粒子の弾性率が5~35MPa、前記窒化ホウ素粒子同士が面接触していることを特徴とする請求項4に記載の樹脂組成物。
PCT/JP2014/056034 2013-03-07 2014-03-07 窒化ホウ素粉末及びこれを含有する樹脂組成物 WO2014136959A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480012728.4A CN105026312B (zh) 2013-03-07 2014-03-07 氮化硼粉末及含有该氮化硼粉末的树脂组合物
KR1020157024519A KR102187240B1 (ko) 2013-03-07 2014-03-07 질화 붕소 분말 및 이를 함유하는 수지 조성물
US14/773,264 US9656868B2 (en) 2013-03-07 2014-03-07 Boron-nitride powder and resin composition containing same
EP14760169.4A EP2966036A4 (en) 2013-03-07 2014-03-07 BORON NITRIDE POWDER AND RESIN COMPOSITION CONTAINING THE SAME
JP2015504426A JP6296568B2 (ja) 2013-03-07 2014-03-07 窒化ホウ素粉末及びこれを含有する樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013044900 2013-03-07
JP2013-044900 2013-03-07

Publications (1)

Publication Number Publication Date
WO2014136959A1 true WO2014136959A1 (ja) 2014-09-12

Family

ID=51491466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056034 WO2014136959A1 (ja) 2013-03-07 2014-03-07 窒化ホウ素粉末及びこれを含有する樹脂組成物

Country Status (7)

Country Link
US (1) US9656868B2 (ja)
EP (1) EP2966036A4 (ja)
JP (1) JP6296568B2 (ja)
KR (1) KR102187240B1 (ja)
CN (1) CN105026312B (ja)
TW (1) TWI505985B (ja)
WO (1) WO2014136959A1 (ja)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027144A (ja) * 2014-07-02 2016-02-18 住友ベークライト株式会社 熱伝導性シート、熱伝導性シートの硬化物および半導体装置
JP2016027142A (ja) * 2014-07-02 2016-02-18 住友ベークライト株式会社 熱伝導性シート、熱伝導性シートの硬化物および半導体装置
JP2016027143A (ja) * 2014-07-02 2016-02-18 住友ベークライト株式会社 熱伝導性シート、熱伝導性シートの硬化物および半導体装置
US20160122503A1 (en) * 2014-11-05 2016-05-05 Sumitomo Bakelite Co., Ltd. Resin composition for thermally conductive sheet, base material-attached resin layer, thermally conductive sheet, and semiconductor device
JP2016127046A (ja) * 2014-12-26 2016-07-11 住友ベークライト株式会社 造粒粉、放熱用樹脂組成物、放熱シート、半導体装置、および放熱部材
WO2016203164A1 (fr) 2015-06-17 2016-12-22 Saint-Gobain Centre De Recherches Et D'etudes Europeen Poudre d'agregats a base de nitrure de bore
JP2017028128A (ja) * 2015-07-23 2017-02-02 住友ベークライト株式会社 パワーモジュール用基板、パワーモジュール用回路基板およびパワーモジュール
JP2017028130A (ja) * 2015-07-23 2017-02-02 住友ベークライト株式会社 パワーモジュール用基板、パワーモジュール用回路基板およびパワーモジュール
JP2017028129A (ja) * 2015-07-23 2017-02-02 住友ベークライト株式会社 パワーモジュール用基板、パワーモジュール用回路基板およびパワーモジュール
JP2017036190A (ja) * 2015-08-12 2017-02-16 三菱化学株式会社 窒化ホウ素凝集粒子組成物、bn凝集粒子含有樹脂組成物及びそれらの成形体、並びに窒化ホウ素凝集粒子の製造方法、
JP2017082091A (ja) * 2015-10-28 2017-05-18 デンカ株式会社 エポキシ樹脂組成物、エポキシ樹脂シート、およびそれを用いた金属ベース回路基板
JP2017128476A (ja) * 2016-01-20 2017-07-27 積水化学工業株式会社 複合フィラー及び熱硬化性材料
JP2017128475A (ja) * 2016-01-20 2017-07-27 積水化学工業株式会社 複合フィラー及び熱硬化性材料
JP2017165609A (ja) * 2016-03-15 2017-09-21 デンカ株式会社 六方晶窒化ホウ素の一次粒子凝集体、樹脂組成物及びその用途
JP2017222522A (ja) * 2016-06-13 2017-12-21 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法
JP2018020932A (ja) * 2016-08-03 2018-02-08 デンカ株式会社 六方晶窒化ホウ素一次粒子凝集体及び樹脂組成物とその用途
JPWO2017034003A1 (ja) * 2015-08-26 2018-06-14 デンカ株式会社 熱伝導性樹脂組成物
JP2019001849A (ja) * 2017-06-12 2019-01-10 株式会社フジミインコーポレーテッド フィラー、成形体、及び放熱材料
WO2019049707A1 (ja) * 2017-09-06 2019-03-14 デンカ株式会社 熱伝導性シート
US10526492B2 (en) 2016-05-27 2020-01-07 Saint-Gobain Ceramics & Plastics, Inc. Process for manufacturing boron nitride agglomerates
WO2020175377A1 (ja) * 2019-02-27 2020-09-03 三菱ケミカル株式会社 窒化ホウ素凝集粉末、放熱シート及び半導体デバイス
JP2020164365A (ja) * 2019-03-29 2020-10-08 デンカ株式会社 窒化ホウ素粉末及び樹脂組成物
JP2021116204A (ja) * 2020-01-24 2021-08-10 デンカ株式会社 六方晶窒化ホウ素焼結体
WO2021200725A1 (ja) * 2020-03-31 2021-10-07 デンカ株式会社 窒化ホウ素焼結体及びその製造方法、並びに複合体及びその製造方法
WO2021200724A1 (ja) * 2020-03-31 2021-10-07 デンカ株式会社 窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材
CN113710616A (zh) * 2019-03-28 2021-11-26 电化株式会社 氮化硼粉末及其制造方法、以及复合材料及散热构件
WO2022050415A1 (ja) * 2020-09-07 2022-03-10 デンカ株式会社 絶縁性樹脂組成物、絶縁性樹脂硬化体、積層体及び回路基板
KR20220088418A (ko) 2019-10-23 2022-06-27 덴카 주식회사 질화 붕소 분말 및 그의 제조 방법, 탄질화 붕소 분말, 및 복합재 및 방열 부재
JPWO2022202825A1 (ja) * 2021-03-25 2022-09-29
WO2022202824A1 (ja) * 2021-03-25 2022-09-29 デンカ株式会社 窒化ホウ素粉末及び樹脂組成物

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10322975B2 (en) * 2013-03-01 2019-06-18 Kyoto University Method for producing liquid dispersion of ceramic microparticles
JP6588731B2 (ja) * 2015-05-07 2019-10-09 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置
US20180354792A1 (en) * 2016-02-22 2018-12-13 Showa Denko K.K. Hexagonal boron nitride powder, production method therefor, resin composition and resin sheet
KR102305674B1 (ko) * 2016-07-05 2021-09-27 나믹스 가부시끼가이샤 필름용 수지 조성물, 필름, 기재 부착 필름, 금속/수지 적층체, 수지 경화물, 반도체 장치 및 필름 제조 방법
JP6682644B2 (ja) 2016-10-07 2020-04-15 デンカ株式会社 窒化ホウ素塊状粒子、その製造方法及びそれを用いた熱伝導樹脂組成物
US10752503B2 (en) * 2016-10-21 2020-08-25 Denka Company Limited Spherical boron nitride fine powder, method for manufacturing same and thermally conductive resin composition using same
JP6822836B2 (ja) * 2016-12-28 2021-01-27 昭和電工株式会社 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
EP3575368A4 (en) * 2017-01-30 2020-07-22 Sekisui Chemical Co., Ltd. RESIN AND LAMINATE MATERIAL
US11827766B2 (en) * 2017-01-30 2023-11-28 Sekisui Chemical Co., Ltd. Resin material and laminate
US10457001B2 (en) 2017-04-13 2019-10-29 Infineon Technologies Ag Method for forming a matrix composite layer and workpiece with a matrix composite layer
US10121723B1 (en) * 2017-04-13 2018-11-06 Infineon Technologies Austria Ag Semiconductor component and method for producing a semiconductor component
CN107414084B (zh) * 2017-07-04 2019-07-09 富耐克超硬材料股份有限公司 聚晶立方氮化硼烧结体及其制备方法与应用
JP7220150B2 (ja) * 2017-08-10 2023-02-09 デンカ株式会社 低誘電率熱伝導性放熱部材
JP6698953B2 (ja) * 2017-10-13 2020-05-27 デンカ株式会社 窒化ホウ素粉末、その製造方法及びそれを用いた放熱部材
JP7069485B2 (ja) * 2017-12-27 2022-05-18 昭和電工株式会社 六方晶窒化ホウ素粉末及びその製造方法、並びにそれを用いた組成物及び放熱材
CN111492474B (zh) * 2018-02-26 2023-04-14 电化株式会社 绝缘散热片
CN108504077B (zh) * 2018-03-08 2020-07-31 广东纳路纳米科技有限公司 白石墨烯改性聚苯醚复合材料及其制备方法
US11760697B2 (en) * 2018-03-30 2023-09-19 Fujimi Incorporated Dispersion for silicon carbide sintered body, green sheet for silicon carbide sintered body and prepreg material for silicon carbide sintered body using the same, and manufacturing method thereof
CN108847489B (zh) 2018-05-04 2019-04-09 宁德时代新能源科技股份有限公司 负极极片及电池
EP3647265A4 (en) * 2018-09-07 2020-09-16 Showa Denko K.K. HEXAGONAL BORON NITRIDE POWDER, ITS PRODUCTION PROCESS, COMPOSITION AND HEAT DISSIPATING MATERIAL USING IT
JP6963100B2 (ja) * 2018-11-16 2021-11-05 富士高分子工業株式会社 熱伝導性シート及びその製造方法
TWI832979B (zh) * 2019-03-01 2024-02-21 日商德山股份有限公司 六方晶氮化硼粉末、樹脂組合物、樹脂片及六方晶氮化硼粉末的製造方法
JP7101871B2 (ja) * 2019-03-27 2022-07-15 デンカ株式会社 塊状窒化ホウ素粒子、熱伝導樹脂組成物及び放熱部材
EP3951860A4 (en) * 2019-03-29 2022-05-18 Denka Company Limited COMPOSITE
JP7066654B2 (ja) * 2019-04-10 2022-05-13 信越化学工業株式会社 低誘電放熱フィルム用組成物及び低誘電放熱フィルム
JP7235708B2 (ja) * 2020-10-14 2023-03-08 矢崎総業株式会社 熱伝導シートの製造方法
WO2023218449A1 (en) * 2022-05-09 2023-11-16 Elbit Systems Ltd. Heat spreading coating for electronic assemblies

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09202663A (ja) 1996-01-24 1997-08-05 Denki Kagaku Kogyo Kk ほう酸メラミン粒子とその製造方法及び用途、並びに六方晶窒化ほう素粉末の製造方法
JP2000154265A (ja) 1998-11-18 2000-06-06 Denki Kagaku Kogyo Kk 高熱伝導性シート
JP2001122615A (ja) 1999-10-27 2001-05-08 Denki Kagaku Kogyo Kk 窒化ホウ素被覆球状ホウ酸塩粒子とそれを含む混合粉末、及びそれらの製造方法
JP2010157563A (ja) 2008-12-26 2010-07-15 Mitsubishi Electric Corp 熱伝導性シート及びパワーモジュール
WO2011021366A1 (ja) * 2009-08-20 2011-02-24 株式会社カネカ 球状化窒化ほう素の製造法
WO2011043082A1 (ja) * 2009-10-09 2011-04-14 水島合金鉄株式会社 六方晶窒化ホウ素粉末およびその製造方法
WO2012070289A1 (ja) 2010-11-26 2012-05-31 三菱電機株式会社 熱伝導性シート及びパワーモジュール
JP2012171842A (ja) 2011-02-23 2012-09-10 Denki Kagaku Kogyo Kk ホウ酸メラミンと窒化ホウ素の複合粒子、及びそれを用いた窒化ホウ素粒子の製造方法。
JP2014040341A (ja) * 2012-08-22 2014-03-06 Denki Kagaku Kogyo Kk 窒化ホウ素粉末及びその用途

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256308A (ja) * 1985-05-10 1987-03-12 Kawasaki Steel Corp 焼結特性の優れた六方晶窒化硼素粉末およびその製造方法
JPH0735304B2 (ja) * 1987-10-16 1995-04-19 昭和電工株式会社 窒化ホウ素焼結体の製造法
JP3839539B2 (ja) * 1997-01-20 2006-11-01 修 山本 結晶性乱層構造窒化硼素粉末とその製造方法
US6348179B1 (en) * 1999-05-19 2002-02-19 University Of New Mexico Spherical boron nitride process, system and product of manufacture
US7976941B2 (en) * 1999-08-31 2011-07-12 Momentive Performance Materials Inc. Boron nitride particles of spherical geometry and process for making thereof
US6713088B2 (en) * 1999-08-31 2004-03-30 General Electric Company Low viscosity filler composition of boron nitride particles of spherical geometry and process
US6794435B2 (en) * 2000-05-18 2004-09-21 Saint Gobain Ceramics & Plastics, Inc. Agglomerated hexagonal boron nitride powders, method of making, and uses thereof
US6645612B2 (en) 2001-08-07 2003-11-11 Saint-Gobain Ceramics & Plastics, Inc. High solids hBN slurry, hBN paste, spherical hBN powder, and methods of making and using them
US7494635B2 (en) * 2003-08-21 2009-02-24 Saint-Gobain Ceramics & Plastics, Inc. Boron nitride agglomerated powder
EP2074058B1 (en) * 2006-10-07 2012-08-29 Momentive Performance Materials Inc. Mixed boron nitride composition and method for making thereof
JP5184543B2 (ja) 2007-09-26 2013-04-17 三菱電機株式会社 熱伝導性シート及びパワーモジュール
JP4848434B2 (ja) * 2009-01-30 2011-12-28 日東電工株式会社 熱伝導性粘着剤組成物および熱伝導性粘着シート
JP5340202B2 (ja) * 2010-02-23 2013-11-13 三菱電機株式会社 熱硬化性樹脂組成物、bステージ熱伝導性シート及びパワーモジュール
JP2012070289A (ja) 2010-09-27 2012-04-05 Sanyo Electric Co Ltd 記録再生装置
CN105947997B (zh) * 2011-11-29 2018-12-21 三菱化学株式会社 氮化硼凝聚粒子、含有该粒子的组合物、及具有包含该组合物的层的三维集成电路
KR102033987B1 (ko) * 2013-08-14 2019-10-18 덴카 주식회사 질화 붕소-수지 복합체 회로 기판, 질화 붕소-수지 복합체 방열판 일체형 회로 기판

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09202663A (ja) 1996-01-24 1997-08-05 Denki Kagaku Kogyo Kk ほう酸メラミン粒子とその製造方法及び用途、並びに六方晶窒化ほう素粉末の製造方法
JP2000154265A (ja) 1998-11-18 2000-06-06 Denki Kagaku Kogyo Kk 高熱伝導性シート
JP2001122615A (ja) 1999-10-27 2001-05-08 Denki Kagaku Kogyo Kk 窒化ホウ素被覆球状ホウ酸塩粒子とそれを含む混合粉末、及びそれらの製造方法
JP2010157563A (ja) 2008-12-26 2010-07-15 Mitsubishi Electric Corp 熱伝導性シート及びパワーモジュール
WO2011021366A1 (ja) * 2009-08-20 2011-02-24 株式会社カネカ 球状化窒化ほう素の製造法
WO2011043082A1 (ja) * 2009-10-09 2011-04-14 水島合金鉄株式会社 六方晶窒化ホウ素粉末およびその製造方法
JP2011098882A (ja) 2009-10-09 2011-05-19 Mizushima Ferroalloy Co Ltd 六方晶窒化ホウ素粉末およびその製造方法
WO2012070289A1 (ja) 2010-11-26 2012-05-31 三菱電機株式会社 熱伝導性シート及びパワーモジュール
JP2012171842A (ja) 2011-02-23 2012-09-10 Denki Kagaku Kogyo Kk ホウ酸メラミンと窒化ホウ素の複合粒子、及びそれを用いた窒化ホウ素粒子の製造方法。
JP2014040341A (ja) * 2012-08-22 2014-03-06 Denki Kagaku Kogyo Kk 窒化ホウ素粉末及びその用途

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J. THOMAS, J. AM. CHEM. SOC., vol. 84, 1962, pages 4619
R.F. HILL; P.H. SUPANCIC, J. AM. CERAM. SOC., vol. 85, 2002, pages 851
See also references of EP2966036A4 *
TANAKA, PHYSICS RESEARCH, vol. 85, no. 4, 2006, pages 499 - 518

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027144A (ja) * 2014-07-02 2016-02-18 住友ベークライト株式会社 熱伝導性シート、熱伝導性シートの硬化物および半導体装置
JP2016027142A (ja) * 2014-07-02 2016-02-18 住友ベークライト株式会社 熱伝導性シート、熱伝導性シートの硬化物および半導体装置
JP2016027143A (ja) * 2014-07-02 2016-02-18 住友ベークライト株式会社 熱伝導性シート、熱伝導性シートの硬化物および半導体装置
JP2016094599A (ja) * 2014-11-05 2016-05-26 住友ベークライト株式会社 熱伝導性シート用樹脂組成物、基材付き樹脂層、熱伝導性シートおよび半導体装置
US20160122503A1 (en) * 2014-11-05 2016-05-05 Sumitomo Bakelite Co., Ltd. Resin composition for thermally conductive sheet, base material-attached resin layer, thermally conductive sheet, and semiconductor device
JP2016127046A (ja) * 2014-12-26 2016-07-11 住友ベークライト株式会社 造粒粉、放熱用樹脂組成物、放熱シート、半導体装置、および放熱部材
KR102601497B1 (ko) 2015-06-17 2023-11-14 생-고뱅 생트레 드 레체르체 에 데투드 유로삐엔 질화붕소 응집체 분말
FR3037579A1 (fr) * 2015-06-17 2016-12-23 Saint-Gobain Centre De Rech Et D'Etudes Europeen Poudre d'agregats a base de nitrure de bore
WO2016203164A1 (fr) 2015-06-17 2016-12-22 Saint-Gobain Centre De Recherches Et D'etudes Europeen Poudre d'agregats a base de nitrure de bore
KR20180019554A (ko) * 2015-06-17 2018-02-26 생-고뱅 생트레 드 레체르체 에 데투드 유로삐엔 질화붕소 응집체 분말
CN107735437B (zh) * 2015-06-17 2021-04-20 欧洲技术研究圣戈班中心 基于氮化硼的聚集体的粉末
US10280284B2 (en) 2015-06-17 2019-05-07 Saint-Gobain Centre De Recherches Et D'etudes Europeen Boron nitride aggregate powder
JP2018519235A (ja) * 2015-06-17 2018-07-19 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン 窒化ホウ素凝集体粉末
CN107735437A (zh) * 2015-06-17 2018-02-23 欧洲技术研究圣戈班中心 基于氮化硼的聚集体的粉末
JP2017028128A (ja) * 2015-07-23 2017-02-02 住友ベークライト株式会社 パワーモジュール用基板、パワーモジュール用回路基板およびパワーモジュール
JP2017028130A (ja) * 2015-07-23 2017-02-02 住友ベークライト株式会社 パワーモジュール用基板、パワーモジュール用回路基板およびパワーモジュール
JP2017028129A (ja) * 2015-07-23 2017-02-02 住友ベークライト株式会社 パワーモジュール用基板、パワーモジュール用回路基板およびパワーモジュール
JP2017036190A (ja) * 2015-08-12 2017-02-16 三菱化学株式会社 窒化ホウ素凝集粒子組成物、bn凝集粒子含有樹脂組成物及びそれらの成形体、並びに窒化ホウ素凝集粒子の製造方法、
JPWO2017034003A1 (ja) * 2015-08-26 2018-06-14 デンカ株式会社 熱伝導性樹脂組成物
JP2017082091A (ja) * 2015-10-28 2017-05-18 デンカ株式会社 エポキシ樹脂組成物、エポキシ樹脂シート、およびそれを用いた金属ベース回路基板
JP2017128475A (ja) * 2016-01-20 2017-07-27 積水化学工業株式会社 複合フィラー及び熱硬化性材料
JP2017128476A (ja) * 2016-01-20 2017-07-27 積水化学工業株式会社 複合フィラー及び熱硬化性材料
JP2017165609A (ja) * 2016-03-15 2017-09-21 デンカ株式会社 六方晶窒化ホウ素の一次粒子凝集体、樹脂組成物及びその用途
US10526492B2 (en) 2016-05-27 2020-01-07 Saint-Gobain Ceramics & Plastics, Inc. Process for manufacturing boron nitride agglomerates
US11254820B2 (en) 2016-05-27 2022-02-22 Saint-Gobain Ceramics & Plastics, Inc. Process for manufacturing boron nitride agglomerates
JP2017222522A (ja) * 2016-06-13 2017-12-21 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法
JP2018020932A (ja) * 2016-08-03 2018-02-08 デンカ株式会社 六方晶窒化ホウ素一次粒子凝集体及び樹脂組成物とその用途
JP2019001849A (ja) * 2017-06-12 2019-01-10 株式会社フジミインコーポレーテッド フィラー、成形体、及び放熱材料
WO2019049707A1 (ja) * 2017-09-06 2019-03-14 デンカ株式会社 熱伝導性シート
WO2020175377A1 (ja) * 2019-02-27 2020-09-03 三菱ケミカル株式会社 窒化ホウ素凝集粉末、放熱シート及び半導体デバイス
TWI832978B (zh) * 2019-02-27 2024-02-21 日商三菱化學股份有限公司 氮化硼凝集粉末、散熱片及半導體裝置
CN113710616A (zh) * 2019-03-28 2021-11-26 电化株式会社 氮化硼粉末及其制造方法、以及复合材料及散热构件
JP7273587B2 (ja) 2019-03-29 2023-05-15 デンカ株式会社 窒化ホウ素粉末及び樹脂組成物
JP2020164365A (ja) * 2019-03-29 2020-10-08 デンカ株式会社 窒化ホウ素粉末及び樹脂組成物
KR20220088418A (ko) 2019-10-23 2022-06-27 덴카 주식회사 질화 붕소 분말 및 그의 제조 방법, 탄질화 붕소 분말, 및 복합재 및 방열 부재
JP7349921B2 (ja) 2020-01-24 2023-09-25 デンカ株式会社 六方晶窒化ホウ素焼結体
JP2021116204A (ja) * 2020-01-24 2021-08-10 デンカ株式会社 六方晶窒化ホウ素焼結体
CN115298150B (zh) * 2020-03-31 2024-02-09 电化株式会社 氮化硼烧结体及其制造方法、以及复合体及其制造方法
WO2021200724A1 (ja) * 2020-03-31 2021-10-07 デンカ株式会社 窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材
CN115298150A (zh) * 2020-03-31 2022-11-04 电化株式会社 氮化硼烧结体及其制造方法、以及复合体及其制造方法
WO2021200725A1 (ja) * 2020-03-31 2021-10-07 デンカ株式会社 窒化ホウ素焼結体及びその製造方法、並びに複合体及びその製造方法
WO2022050415A1 (ja) * 2020-09-07 2022-03-10 デンカ株式会社 絶縁性樹脂組成物、絶縁性樹脂硬化体、積層体及び回路基板
JPWO2022202824A1 (ja) * 2021-03-25 2022-09-29
JP7303950B2 (ja) 2021-03-25 2023-07-05 デンカ株式会社 窒化ホウ素粉末及び樹脂組成物
JP7289019B2 (ja) 2021-03-25 2023-06-08 デンカ株式会社 窒化ホウ素粉末及び樹脂組成物
WO2022202825A1 (ja) * 2021-03-25 2022-09-29 デンカ株式会社 窒化ホウ素粉末及び樹脂組成物
WO2022202824A1 (ja) * 2021-03-25 2022-09-29 デンカ株式会社 窒化ホウ素粉末及び樹脂組成物
JPWO2022202825A1 (ja) * 2021-03-25 2022-09-29

Also Published As

Publication number Publication date
CN105026312B (zh) 2018-03-20
JPWO2014136959A1 (ja) 2017-02-16
KR102187240B1 (ko) 2020-12-04
US20160060112A1 (en) 2016-03-03
KR20150127614A (ko) 2015-11-17
TW201438984A (zh) 2014-10-16
CN105026312A (zh) 2015-11-04
JP6296568B2 (ja) 2018-03-20
EP2966036A4 (en) 2016-11-02
US9656868B2 (en) 2017-05-23
EP2966036A1 (en) 2016-01-13
TWI505985B (zh) 2015-11-01

Similar Documents

Publication Publication Date Title
JP6296568B2 (ja) 窒化ホウ素粉末及びこれを含有する樹脂組成物
JP5969314B2 (ja) 窒化ホウ素粉末及びその用途
JP6351585B2 (ja) 樹脂含浸窒化ホウ素焼結体およびその用途
TWI700243B (zh) 六方晶氮化硼粉末及其製造方法以及使用其之組成物及散熱材
TWI644855B (zh) 六方晶體氮化硼粉末、其製造方法、樹脂組成物及樹脂薄片
JP6125273B2 (ja) 窒化ホウ素成形体、その製造方法及び用途
JP6704271B2 (ja) 六方晶窒化ホウ素の一次粒子凝集体、樹脂組成物及びその用途
JP6023474B2 (ja) 熱伝導性絶縁シート、金属ベース基板及び回路基板、及びその製造方法
JP6875854B2 (ja) 六方晶窒化ホウ素一次粒子凝集体及びその用途
JP6720014B2 (ja) 六方晶窒化ホウ素一次粒子凝集体及び樹脂組成物とその用途
JP6125282B2 (ja) 窒化ホウ素複合粉末及びそれを用いた熱硬化性樹脂組成物
JP6815152B2 (ja) 六方晶窒化ホウ素一次粒子凝集体
JP6285155B2 (ja) 放熱部材およびその用途

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480012728.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760169

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504426

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14773264

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014760169

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157024519

Country of ref document: KR

Kind code of ref document: A