WO2022202825A1 - 窒化ホウ素粉末及び樹脂組成物 - Google Patents

窒化ホウ素粉末及び樹脂組成物 Download PDF

Info

Publication number
WO2022202825A1
WO2022202825A1 PCT/JP2022/013233 JP2022013233W WO2022202825A1 WO 2022202825 A1 WO2022202825 A1 WO 2022202825A1 JP 2022013233 W JP2022013233 W JP 2022013233W WO 2022202825 A1 WO2022202825 A1 WO 2022202825A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
particles
boron
nitride powder
less
Prior art date
Application number
PCT/JP2022/013233
Other languages
English (en)
French (fr)
Inventor
祐輔 佐々木
建治 宮田
智成 宮崎
貴子 新井
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2022575475A priority Critical patent/JP7303950B2/ja
Priority to CN202280022951.1A priority patent/CN117043099A/zh
Priority to US18/283,479 priority patent/US20240217819A1/en
Priority to KR1020237035741A priority patent/KR20230156792A/ko
Publication of WO2022202825A1 publication Critical patent/WO2022202825A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0648After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron

Definitions

  • the present disclosure relates to boron nitride powders and resin compositions.
  • Boron nitride powder which has properties such as high thermal conductivity, high insulation, and low relative dielectric constant, has attracted attention as a ceramic powder.
  • the shape of the aggregate is made more spherical to improve the packing property, and the strength of the powder is improved.
  • a hexagonal boron nitride powder that achieves improved and stabilized withstand voltage the ratio of the major diameter and thickness of primary particles is on average 5 to 10, and the size of aggregates of primary particles is 2 ⁇ m in average particle diameter (D50).
  • a hexagonal boron nitride powder characterized by having a particle size of 200 ⁇ m or less and a bulk density of 0.5 to 1.0 g/cm 3 is disclosed.
  • the main object of the present invention is to provide a boron nitride powder capable of realizing a heat dissipating material having excellent thermal conductivity.
  • One aspect of the present invention is a boron nitride powder that is an aggregate of boron nitride particles, and for each of 20 boron nitride particles A selected from the boron nitride powder, a load of 0.7 mN / sec in any direction
  • ( ⁇ m) ratio is 0.20 or more, boron nitride powder.
  • the average value Y of the displacement amount may be 14 ⁇ m or more.
  • the boron nitride powder may have an average value of crushing strength of 8 MPa or more.
  • the boron nitride particles may be composed of a plurality of boron nitride pieces, and the plurality of boron nitride pieces may be chemically bonded to each other.
  • Another aspect of the present invention is a resin composition containing the boron nitride powder and a resin.
  • boron nitride powder capable of realizing a heat dissipating material having excellent thermal conductivity.
  • FIG. 1 is a cross-sectional SEM image of boron nitride particles in the boron nitride powder of Example 1.
  • FIG. 1 is an SEM image of the surface of boron nitride particles in the boron nitride powder of Example 1.
  • FIG. 4 is an SEM image of the surface of boron nitride particles in the boron nitride powder of Comparative Example 1.
  • FIG. 1 is a SEM image of a cross section of a sheet produced using the boron nitride powder of Example 1.
  • FIG. 4 is a SEM image of a cross section of a sheet produced using the boron nitride powder of Comparative Example 1.
  • FIG. 1 is a cross-sectional SEM image of boron nitride particles in the boron nitride powder of Example 1.
  • FIG. 1 is an SEM image of the surface of boron nitride particles in the boron n
  • One embodiment of the present invention is a boron nitride powder that is an aggregate of boron nitride particles (powder composed of a plurality of boron nitride particles), and 20 boron nitride particles A selected from boron nitride powder
  • the average particle size X ( ⁇ m) of the boron nitride powder before applying a load It is a boron nitride powder in which the ratio of the average value Y ( ⁇ m) of the amount of displacement in the direction of the boron nitride particles A is 0.20 or more.
  • the boron nitride particles may be composed of a plurality of boron nitride pieces made of boron nitride, and the boron nitride pieces may have, for example, a scale-like shape.
  • the longitudinal length of the boron nitride pieces may be, for example, 1 ⁇ m or more and 10 ⁇ m or less.
  • a plurality of boron nitride pieces may be chemically bonded to each other from the viewpoint of realizing a heat dissipating material with superior thermal conductivity.
  • the fact that a plurality of boron nitride pieces are chemically bonded to each other can be confirmed by using a scanning electron microscope (SEM) by observing no boundary between the boron nitride pieces at the bonding portion between the boron nitride pieces.
  • SEM scanning electron microscope
  • the average thickness of the boron nitride pieces may be 0.30 ⁇ m or less, 0.25 ⁇ m or less, less than 0.25 ⁇ m, 0.20 ⁇ m or less, or 0.15 ⁇ m or less, and may be 0.05 ⁇ m or more, or 0.10 ⁇ m or more. good.
  • the average thickness of the boron nitride pieces is obtained by using a scanning electron microscope (SEM) to observe the surface of the boron nitride particles at a magnification of 10000 times. ) and defined as the average thickness of 40 boron nitride strips measured in the SEM image.
  • SEM scanning electron microscope
  • the average major axis of the boron nitride pieces may be 0.5 ⁇ m or more, 1.0 ⁇ m or more, or 1.5 ⁇ m or more, and 4.0 ⁇ m or less, from the viewpoint of realizing a heat dissipating material having superior thermal conductivity. It may be 5 ⁇ m or less or 3.0 ⁇ m or less.
  • the major axis means the maximum length in the direction perpendicular to the thickness direction.
  • the average major axis of the boron nitride pieces is obtained by using a scanning electron microscope (SEM) to obtain an SEM image obtained by observing the surface of the boron nitride particles at a magnification of 10,000 times. ) and defined as the average of the major diameters of 40 boron nitride pieces measured in the SEM image.
  • SEM scanning electron microscope
  • the average aspect ratio of the boron nitride pieces is 7.0 or more, 8.0 or more, 9.0 or more, 9.5 or more, 10.0 or more, or It may be 10.5 or more.
  • the boron nitride pieces may have an average aspect ratio of 20.0 or less, 17.0 or less, or 15.0 or less.
  • the average aspect ratio of the boron nitride pieces is defined as the average value of aspect ratios (length/thickness) calculated from the length and thickness of each boron nitride piece for 40 boron nitride pieces.
  • the boron nitride particles may consist essentially of boron nitride. That the boron nitride particles consist essentially of boron nitride can be confirmed by detecting only a peak derived from boron nitride in the X-ray diffraction measurement.
  • the average particle size X of the boron nitride powder may be, for example, 20 ⁇ m or more, 40 ⁇ m or more, 50 ⁇ m or more, 60 ⁇ m or more, 70 ⁇ m or more, or 80 ⁇ m or more, and may be 150 ⁇ m or less, 120 ⁇ m or less, 110 ⁇ m or less, or 100 ⁇ m or less.
  • the average particle size X of the boron nitride powder can be measured by a laser diffraction scattering method.
  • the average particle size X of the boronitride powder may be regarded as the average particle size of 20 boron nitride particles A selected from the boron nitride powder.
  • the crushing of the boron nitride particles is performed by using a microcompression tester (for example, Shimadzu Corporation's "MCT- 211”). Specifically, boron nitride particles A are placed on a sample stage, and an indenter (eg, an indenter diameter of 200 ⁇ m) of a microcompression tester (eg, MCT-211 manufactured by Shimadzu Corporation) is applied to the boron nitride particles on the sample stage. Gradually load and collapse the boron nitride particles A at a loading rate of 0.7 mN/sec by dropping toward each of A.
  • a microcompression tester for example, Shimadzu Corporation's "MCT- 211”.
  • the amount of displacement of the boron nitride particles A in the load direction until they are crushed (unit: ⁇ m, the absolute value of the difference between the particle diameter in the load direction and the particle diameter in the load direction immediately before crushing) is measured.
  • the amount of displacement of the boron nitride particles A is, for example, a microcompression tester (e.g., MCT-211, manufactured by Shimadzu Corporation) by observing the boron nitride particles A using a microscope attached to the observed image using image analysis software (for example, the measurement can be performed by importing software attached to the microcompression tester.
  • a microcompression tester e.g., MCT-211, manufactured by Shimadzu Corporation
  • the average value Y of the amount of displacement of the boron nitride particles A may be 14 ⁇ m or more, 17 ⁇ m or more, 20 ⁇ m or more, or 23 ⁇ m or more from the viewpoint of realizing a heat dissipation material having better thermal conductivity.
  • the average value Y of the amount of displacement of the boron nitride particles A may be 40 ⁇ m or less, 30 ⁇ m or less, or 27 ⁇ m or less from the viewpoint of realizing a heat dissipating material having superior thermal conductivity.
  • Y/X is calculated from the average particle size X of the boron nitride powder and the average value Y of the amount of displacement of the boron nitride particles A, and Y/X of 20 boron nitride particles A is calculated.
  • Y/X of the boron nitride particles A is 0.20 or more, 0.22 or more, 0.24 or more, 0.25 or more, 0.26 or more from the viewpoint of realizing a heat dissipation material having better thermal conductivity. , 0.28 or greater, or 0.29 or greater.
  • Y/X of the boron nitride particles A may be 0.50 or less, 0.40 or less, or 0.30 or less from the viewpoint of realizing a heat dissipating material having superior thermal conductivity.
  • the average value of the crushing strength of the boron nitride powder is that when the boron nitride powder (boron nitride particles) is mixed with the resin, the boron nitride particles are less likely to crumble, making it possible to realize a heat dissipating material with superior thermal conductivity. From a viewpoint, it may be 8 MPa or more, 9 MPa or more, 10 MPa or more, or 12 MPa or more.
  • the average crushing strength of the boron nitride powder may be 17 MPa or less, 15 MPa or less, or 13 MPa or less from the viewpoint of realizing a heat dissipating material having superior thermal conductivity.
  • the average value of the crushing strength of the boron nitride powder is obtained by using a microcompression tester (for example, Shimadzu Corporation's "MCT- 211”) to measure the crushing strength.
  • the amount of nitrogen defects in the boron nitride powder may be 1.0 ⁇ 10 14 /g or more, and 1.0 ⁇ 10 18 /g or less from the viewpoint of realizing a heat dissipation material having better thermal conductivity.
  • the amount of nitrogen defects in the boron nitride powder is obtained by filling 60 mg of the boron nitride powder in a quartz glass sample tube and performing electron spin resonance (ESR) measurement using a "JEM FA-200 type electron spin resonance apparatus" manufactured by JEOL Ltd. measured.
  • Sweep time 15min
  • the inventors speculate as follows about the reason why a heat dissipating material having excellent thermal conductivity can be realized by using the boron nitride powder described above. That is, due to the large Y/X of the boron nitride particles A in the boron nitride powder, when a load is applied to the boron nitride particles A, the boron nitride particles A easily deform in the direction of the load before being crushed. It can be said. Therefore, even if an external force is applied to the boron nitride particles A, the deformation of the boron nitride particles A makes it difficult to crush them.
  • the boron nitride particles in the boron nitride powder are less likely to collapse, and in addition, the particles are appropriately deformed. Since the percolation is formed on the surface, it is thought that efficient heat transfer paths can be easily formed and maintained by the boron nitride particles in the heat dissipating material. .
  • the reason why a heat dissipating material having excellent thermal conductivity can be realized is not limited to the above reason.
  • the above boron nitride powder can be obtained, for example, by nitriding particles containing boron carbide (hereinafter sometimes referred to as "boron carbide particles”) to obtain particles containing boron carbonitride (hereinafter sometimes referred to as "boron carbonitride particles").
  • boron carbide particles nitriding particles containing boron carbide
  • boron carbonitride particles particles containing boron carbonitride
  • a nitriding step of obtaining a a filling step of filling a container with a mixture containing particles containing boron carbonitride, and a boron source containing at least one selected from the group consisting of boric acid and boron oxide; a decarburization step of decarburizing the particles containing boron carbonitride by pressurizing and heating the mixture in a state of increased airtightness, wherein boron source can be produced by a production method in which the amount of boron atoms in is 1.0 to 2.2 mol. That is, another embodiment of the present invention is a method for producing the boron nitride powder described above.
  • the boron carbide particles in the nitriding step may be powdery (boron carbide powder), for example.
  • Boron carbide powder can be produced by a known production method.
  • a method for producing boron carbide particles (boron carbide powder) for example, after mixing boric acid and acetylene black, in an inert gas (for example, nitrogen gas or argon gas) atmosphere at 1800 to 2400 ° C.
  • an inert gas for example, nitrogen gas or argon gas
  • a method of obtaining massive boron carbide particles by heating for 1 to 10 hours may be mentioned.
  • Boron carbide powder can be obtained by appropriately performing pulverization, sieving, washing, impurity removal, drying, and the like on the aggregated boron carbide particles obtained by this method.
  • the average particle size of the boron carbide powder can be adjusted by adjusting the pulverization time of the lumpy carbon boron particles.
  • the average particle size of the boron carbide powder may be 5 ⁇ m or more, 7 ⁇ m or more, or 10 ⁇ m or more, and may be 100 ⁇ m or less, 90 ⁇ m or less, 80 ⁇ m or less, or 70 ⁇ m or less.
  • the average particle size of boron carbide powder can be measured by a laser diffraction scattering method.
  • boron carbide particles are filled in a container (for example, a carbon crucible), and pressurized and heated in an atmosphere in which the nitriding reaction proceeds, thereby nitriding the boron carbide particles to form boron carbonitride particles. Obtainable.
  • the atmosphere for advancing the nitriding reaction in the nitriding step may be a nitriding gas atmosphere for nitriding the boron carbide particles.
  • Nitrogen gas, ammonia gas, or the like may be used as the nitriding gas. Nitrogen gas may be used from the viewpoint of easy nitridation of the boron carbide particles and from the viewpoint of cost.
  • the nitriding gas may be used alone or in combination of two or more, and the ratio of nitrogen gas in the nitriding gas is 95.0% by volume or more, 99.0% by volume or more, or 99.9% by volume or more. you can
  • the pressure in the nitriding step may be 0.6 MPa or higher or 0.7 MPa or higher.
  • the pressure in the nitriding step may be 1.0 MPa or less or 0.9 MPa or less.
  • the heating temperature in the nitriding step may be 1800° C. or higher or 1900° C. or higher from the viewpoint of sufficiently nitriding the boron carbide particles.
  • the heating temperature in the nitriding step may be 2400° C. or lower or 2200° C. or lower.
  • the time for pressurization and heating in the nitriding step may be 3 hours or more, 5 hours or more, or 8 hours or more from the viewpoint of sufficiently nitriding the boron carbide particles.
  • the time for pressurizing and heating in the nitriding step may be 30 hours or less, 20 hours or less, or 10 hours or less.
  • the container is filled with a mixture containing the boron carbonitride particles obtained in the nitriding step and a boron source containing at least one selected from the group consisting of boric acid and boron oxide.
  • the container in the filling process may be, for example, a boron nitride crucible.
  • the mixture may be filled to the bottom of the container.
  • the opening of the container may be covered with a lid, and a part or all of the gap between the container and the lid may be filled with the resin.
  • the filling resin may be, for example, an epoxy resin, and the resin may contain a curing agent.
  • the resin to be filled may be a resin having a high viscosity from the viewpoint of suppressing the flow of the resin.
  • the amount of boron atoms of the boron source in the mixture in the filling step may be 1.0 to 2.2 mol with respect to 1 mol of boron carbonitride in the mixture.
  • the amount of boron atoms is 2.0 mol or less, 1.9 mol or less, 1 .8 mol or less, 1.7 mol or less, 1.6 mol or less, 1.5 mol or less, 1.4 mol or less, or 1.3 mol or less.
  • the amount of boron atoms may be 1.1 mol or more or 1.2 mol or more with respect to 1 mol of boron carbonitride in the mixture.
  • a mixture containing boron carbonitride particles and a boron source is heated in an atmosphere of normal pressure or higher to decarburize the boron carbonitride particles and obtain boron nitride particles (boron nitride powder). be able to.
  • the atmosphere in the decarburization step may be a nitrogen gas atmosphere, and may be a normal pressure (atmospheric pressure) or pressurized nitrogen gas atmosphere.
  • the pressure in the decarburization step may be 0.5 MPa or less or 0.3 MPa or less from the viewpoint of sufficiently decarburizing the boron carbonitride particles.
  • the heating in the decarburization step may be performed, for example, by raising the temperature to a predetermined temperature (decarburization start temperature) and then further raising the temperature to a predetermined temperature (holding temperature) at a predetermined heating rate.
  • the rate of temperature increase from the decarburization start temperature to the holding temperature may be, for example, 5° C./min or less, 3° C./min or less, or 2° C./min or less.
  • the decarburization start temperature may be 1000°C or higher or 1100°C or higher from the viewpoint of sufficiently decarburizing the boron carbonitride particles.
  • the decarburization initiation temperature may be 1500° C. or lower or 1400° C. or lower.
  • the holding temperature may be 1800°C or higher or 2000°C or higher.
  • the holding temperature may be 2200° C. or lower or 2100° C. or lower.
  • the heating time at the holding temperature may be 0.5 hours or longer, 1 hour or longer, 3 hours or longer, 5 hours or longer, or 10 hours or longer.
  • the time of heating at the holding temperature may be 40 hours or less, 30 hours or less, or 20 hours or less.
  • a step of classifying boron nitride powder having a desired particle size with a sieve may be performed on the boron nitride powder obtained as described above.
  • the boron nitride powder obtained as described above can be used, for example, as a resin composition by mixing with a resin. That is, another embodiment of the present invention is a resin composition containing the above boron nitride powder and a resin.
  • resins include epoxy resins, silicone resins, silicone rubbers, acrylic resins, phenol resins, melamine resins, urea resins, unsaturated polyesters, fluororesins, polyimides, polyamideimides, polyetherimides, polybutylene terephthalate, polyethylene terephthalate, Polyphenylene ether, polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS (acrylonitrile-butadiene-styrene) resin, AAS (acrylonitrile-acrylic rubber/styrene) resin, AES (acrylonitrile) Ethylene/propylene/diene rubber-styrene) resin can be used.
  • ABS acrylonitrile-butadiene-styrene
  • AAS acrylonitrile-acrylic rubber/styrene
  • AES acrylonitrile
  • the content of the boron nitride powder is 30% by volume or more, 40% by volume or more, 50% by volume or more, or 60% by volume, based on the total volume of the resin composition, from the viewpoint of realizing a heat dissipation material having better thermal conductivity. It may be vol% or more.
  • the content of the boron nitride powder is based on the total volume of the resin composition, from the viewpoint of suppressing the generation of voids when molding the heat dissipating material and suppressing the deterioration of the insulating properties and mechanical strength of the heat dissipating material. It may be 85% by volume or less, or 80% by volume or less.
  • the resin content may be adjusted as appropriate according to the application and required properties of the resin composition.
  • the content of the resin, based on the total volume of the resin composition may be 15% by volume or more, 20% by volume or more, 30% by volume or more, or 40% by volume or more, and 70% by volume or less, 60% by volume or less, or It may be 50% by volume or less.
  • the resin composition may further contain a curing agent that cures the resin.
  • a curing agent is appropriately selected depending on the type of resin. Curing agents used together with epoxy resins include phenol novolak compounds, acid anhydrides, amino compounds, imidazole compounds, and the like.
  • the content of the curing agent may be 0.5 parts by mass or more or 1.0 parts by mass or more and may be 15 parts by mass or less or 10 parts by mass or less with respect to 100 parts by mass of the resin.
  • the resin composition may further contain other components.
  • Other components may be, for example, curing accelerators (curing catalysts), coupling agents, wetting and dispersing agents, and surface control agents.
  • Curing accelerators include phosphorus-based curing accelerators such as tetraphenylphosphonium tetraphenylborate and triphenylphosphate, imidazole-based curing accelerators such as 2-phenyl-4,5-dihydroxymethylimidazole, and trifluoride. Amine-based curing accelerators such as boron monoethylamine are included.
  • coupling agents examples include silane-based coupling agents, titanate-based coupling agents, and aluminate-based coupling agents.
  • Chemical bonding groups contained in these coupling agents include vinyl groups, epoxy groups, amino groups, methacryl groups, mercapto groups, and the like.
  • Wetting and dispersing agents include phosphate salts, carboxylic acid esters, polyesters, acrylic copolymers, block copolymers, and the like.
  • surface modifiers examples include acrylic surface modifiers, silicone-based surface modifiers, vinyl-based modifiers, fluorine-based surface modifiers, and the like.
  • the resin composition is produced by, for example, a method for producing a resin composition comprising a step of preparing boron nitride powder according to one embodiment (preparing step) and a step of mixing boron nitride powder with a resin (mixing step). can be manufactured. That is, another embodiment of the present invention is a method for producing the above resin composition. In the mixing step, in addition to the boron nitride powder and resin, the above-described curing agent and other components may be further mixed.
  • the method for producing a resin composition may further include a step of pulverizing the boron nitride powder (pulverization step).
  • the pulverization step may be performed between the preparation step and the mixing step, or may be performed at the same time as the mixing step (the boron nitride powder may be pulverized at the same time as the boron nitride powder is mixed with the resin).
  • the above resin composition can be used, for example, as a heat dissipation material.
  • the heat dissipation material can be produced, for example, by curing a resin composition.
  • a method for curing the resin composition is appropriately selected according to the type of resin (and curing agent used as necessary) contained in the resin composition. For example, if the resin is an epoxy resin and the curing agent described above is used together, the resin can be cured by heating.
  • Example 1 Boron carbonitride particles were obtained by filling a carbon crucible with boron carbide particles having an average particle size of 55 ⁇ m and heating the carbon crucible under conditions of 2000° C. and 0.8 MPa for 20 hours in a nitrogen gas atmosphere. 100 parts by mass of the obtained boron carbonitride particles and 66.7 parts by mass of boric acid were mixed using a Henschel mixer, and the amount of boron atoms of the boron source was 1.0 parts per 1 mol of boron carbonitride in the mixture. A mixture of 2 mol was obtained.
  • the resulting mixture was filled into a boron nitride crucible, the crucible was covered, and the entire gap between the crucible and the lid was filled with epoxy resin.
  • Coarse boron nitride particles were obtained by heating the boron nitride crucible filled with the mixture in a carbon case placed in a resistance heating furnace under normal pressure, a nitrogen gas atmosphere, and a holding temperature of 2000 ° C. for 10 hours. .
  • the obtained coarse boron nitride particles were pulverized in a mortar for 10 minutes and classified with a nylon sieve having a sieve mesh of 109 ⁇ m to obtain boron nitride particles (boron nitride powder).
  • FIG. 1 A cross-sectional SEM image of the obtained boron nitride particles is shown in FIG. 1 As can be seen from FIG. 1, in the boron nitride particles, a plurality of boron nitride pieces were chemically bonded together.
  • Example 2 Boron nitride particles (boron nitride powder) was obtained. When the cross section of the obtained boron nitride particles was confirmed by SEM, it was confirmed that a plurality of boron nitride pieces were chemically bonded to each other.
  • Example 3 Boron nitride particles (boron nitride powder) was obtained. When the cross section of the obtained boron nitride particles was confirmed by SEM, it was confirmed that a plurality of boron nitride pieces were chemically bonded to each other.
  • Example 4 Boron nitride particles (boron nitride powder) was obtained. When the cross section of the obtained boron nitride particles was confirmed by SEM, it was confirmed that a plurality of boron nitride pieces were chemically bonded to each other.
  • the average particle size X of the boron nitride powder was measured using a Beckman Coulter laser diffraction scattering particle size distribution analyzer (LS-13 320). Table 1 shows the measurement results of the average particle size X.
  • the crushing strength of 20 boron nitride particles in each obtained boron nitride powder was measured according to JIS R 1639-5:2007.
  • a microcompression tester (“MCT-211" manufactured by Shimadzu Corporation) was used.
  • the crushing strength of 20 boron nitride particles was measured and the average values are shown in Table 1.
  • the thickness and major axis of 40 boron nitride pieces were measured, and the average thickness and average major axis of the boron nitride particles constituting the boron nitride particles were calculated from the measured thickness and major axis. Also, the aspect ratio (major axis/thickness) of each boron nitride piece was calculated from the measured thickness and major axis, and the average aspect ratio was calculated from the aspect ratios of the 40 boron nitride pieces. Table 1 shows the calculation results of the average thickness, average length, and average aspect ratio. SEM images of the surfaces of the boron nitride particles of Example 1 and Comparative Example 1 are shown in FIGS. 2 and 3, respectively.
  • a measurement sample with a size of 10 mm ⁇ 10 mm is cut out from the prepared heat dissipation material, and the thermal diffusivity A ( m / sec) of the measurement sample is measured by a laser flash method using a xenon flash analyzer (LFA447NanoFlash, manufactured by NETZSCH). was measured. Also, the specific gravity B (kg/m 3 ) of the measurement sample was measured by the Archimedes method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Ceramic Products (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

窒化ホウ素粒子の集合体である窒化ホウ素粉末であって、前記窒化ホウ素粉末から選ばれる20個の窒化ホウ素粒子Aのそれぞれについて、任意の方向に0.7mN/秒の負荷速度で徐々に負荷をかけて圧壊させたときに、負荷をかける前の前記窒化ホウ素粉末の平均粒子径X(μm)に対する、圧壊するまでの前記窒化ホウ素粒子Aの前記方向における変位量の平均値Y(μm)の比が0.20以上である、窒化ホウ素粉末。

Description

窒化ホウ素粉末及び樹脂組成物
 本開示は、窒化ホウ素粉末及び樹脂組成物に関する。
 パワーデバイス、トランジスタ、サイリスタ、CPU等の電子部品においては、使用時に発生する熱を効率的に放熱することが課題となっている。この課題に対して、従来、電子部品を実装するプリント配線板の絶縁層の高熱伝導化や、電子部品又はプリント配線板を電気絶縁性の熱インターフェース材を介してヒートシンクに取り付けることが行われてきた。このような絶縁層及び熱インターフェース材には、熱伝導率が高いセラミックス粉末が用いられる。
 セラミックス粉末としては、高熱伝導率、高絶縁性、低比誘電率等の特性を有している窒化ホウ素粉末が注目されている。例えば、特許文献1には、凝集体の形状を一層球状化して充填性を高めると共に、粉末強度の向上を図り、さらには高純度化により、当該粉末を充填した伝熱シート等の絶縁性の向上および耐電圧の安定化を達成した六方晶窒化ホウ素粉末として、一次粒子の長径と厚みの比が平均で5~10で、一次粒子の凝集体の大きさが平均粒径(D50)で2μm以上200μm以下で、嵩密度が0.5~1.0g/cmであることを特徴とする六方晶窒化ホウ素粉末が開示されている。
特開2011-98882号公報
 ところで、近年、電子部品内の回路の高速化及び高集積化や、電子部品のプリント配線板への実装密度の増加に伴って、放熱の重要性が更に高まっている。そのため、従来にも増して高い熱伝導率を有する放熱材が求められている。
 そこで、本発明の主な目的は、優れた熱伝導率を有する放熱材を実現できる窒化ホウ素粉末を提供することである。
 本発明の一側面は、窒化ホウ素粒子の集合体である窒化ホウ素粉末であって、窒化ホウ素粉末から選ばれる20個の窒化ホウ素粒子Aのそれぞれについて、任意の方向に0.7mN/秒の負荷速度で徐々に負荷をかけて圧壊させたときに、負荷をかける前の窒化ホウ素粉末の平均粒子径X(μm)に対する、圧壊するまでの窒化ホウ素粒子Aの当該方向における変位量の平均値Y(μm)の比が0.20以上である、窒化ホウ素粉末である。
 上記変位量の平均値Yは、14μm以上であってよい。
 上記窒化ホウ素粉末において、圧壊強度の平均値が8MPa以上であってよい。
 上記窒化ホウ素粒子は、複数の窒化ホウ素片により構成されており、上記複数の窒化ホウ素片同士が化学的に結合していてよい。
 本発明の他の一側面は、上記窒化ホウ素粉末と、樹脂とを含む、樹脂組成物である。
 本発明によれば、優れた熱伝導率を有する放熱材を実現できる窒化ホウ素粉末を提供することができる。
実施例1の窒化ホウ素粉末中の窒化ホウ素粒子の断面のSEM画像である。 実施例1の窒化ホウ素粉末中の窒化ホウ素粒子の表面のSEM画像である。 比較例1の窒化ホウ素粉末中の窒化ホウ素粒子の表面のSEM画像である。 実施例1の窒化ホウ素粉末を用いて作製したシートの断面のSEM画像である。 比較例1の窒化ホウ素粉末を用いて作製したシートの断面のSEM画像である。
 以下、本発明の実施形態について詳細に説明する。
 本発明の一実施形態は、窒化ホウ素粒子の集合体(複数の窒化ホウ素粒子で構成される粉体)である窒化ホウ素粉末であって、窒化ホウ素粉末から選ばれる20個の窒化ホウ素粒子Aのそれぞれについて、任意の方向に0.7mN/秒の負荷速度で徐々に負荷をかけて圧壊させたときに、負荷をかける前の窒化ホウ素粉末の平均粒子径X(μm)に対する、圧壊するまでの窒化ホウ素粒子Aの当該方向における変位量の平均値Y(μm)の比が0.20以上である、窒化ホウ素粉末である。
 窒化ホウ素粒子は、窒化ホウ素により形成される複数の窒化ホウ素片により構成されていてよく、窒化ホウ素片は、例えば鱗片状の形状を有するものであってよい。この場合、窒化ホウ素片の長手方向の長さは、例えば、1μm以上であってよく、10μm以下であってよい。
 窒化ホウ素粒子においては、より優れた熱伝導率を有する放熱材を実現できる観点から、複数の窒化ホウ素片同士が化学的に結合していてよい。複数の窒化ホウ素片同士が化学的に結合していることは、走査型電子顕微鏡(SEM)を用いて、窒化ホウ素片同士の結合部分に窒化ホウ素片間の境界が観察されないことにより確認できる。
 窒化ホウ素片の平均厚さは、0.30μm以下、0.25μm以下、0.25μm未満、0.20μm以下又は0.15μm以下であってよく、0.05μm以上又は0.10μm以上であってよい。窒化ホウ素片の平均厚さは、走査型電子顕微鏡(SEM)を用いて、倍率10000倍で窒化ホウ素粒子の表面を観察したSEM画像を画像解析ソフトウェア(例えば、株式会社マウンテック製の「Mac-view」)に取り込み、当該SEM画像において測定される40個の窒化ホウ素片の厚さの平均値として定義される。
 窒化ホウ素片の平均長径は、より優れた熱伝導率を有する放熱材を実現できる観点から、0.5μm以上、1.0μm以上又は1.5μm以上であってよく、4.0μm以下、3.5μm以下又は3.0μm以下であってよい。長径とは、厚さ方向に対して垂直方向の最大長さを意味する。窒化ホウ素片の平均長径は、走査型電子顕微鏡(SEM)を用いて、倍率10000倍で窒化ホウ素粒子の表面を観察したSEM画像を画像解析ソフトウェア(例えば、株式会社マウンテック製の「Mac-view」)に取り込み、当該SEM画像において測定される40個の窒化ホウ素片の長径の平均値として定義される。
 窒化ホウ素片の平均アスペクト比は、より優れた熱伝導率を有する放熱材を実現できる観点から、7.0以上、8.0以上、9.0以上、9.5以上、10.0以上又は10.5以上であってよい。窒化ホウ素片の平均アスペクト比は、20.0以下、17.0以下又は15.0以下であってよい。窒化ホウ素片の平均アスペクト比は、40個の窒化ホウ素片について、各窒化ホウ素片の長径と厚さから算出されるアスペクト比(長径/厚さ)の平均値として定義される。
 窒化ホウ素粒子は、実質的に窒化ホウ素のみからなってよい。窒化ホウ素粒子が実質的に窒化ホウ素のみからなることは、X線回折測定において、窒化ホウ素に由来するピークのみが検出されることにより確認できる。
 窒化ホウ素粉末の平均粒子径Xは、例えば、20μm以上、40μm以上、50μm以上、60μm以上、70μm以上又は80μm以上であってよく、150μm以下、120μm以下、110μm以下又は100μm以下であってよい。窒化ホウ素粉末の平均粒子径Xは、レーザー回折散乱法により測定することができる。窒化ホウ素粉末の平均粒子径Xを窒化ホウ素粉末から選ばれる20個の窒化ホウ素粒子Aの平均粒子径とみなしてよい。
 窒化ホウ素粒子の圧壊は、窒化ホウ素粉末から選ばれる20個の窒化ホウ素粒子Aのそれぞれについて、JIS R1639-5:2007に準拠して、微小圧縮試験機(例えば、島津製作所社製の「MCT-211」)を用いて行う。具体的には、試料台に窒化ホウ素粒子Aを設置し、微小圧縮試験機(例えば、株式会社島津製作所製、MCT-211)の圧子(例えば圧子径200μm)を、試料台上の窒化ホウ素粒子Aのそれぞれに向けて降下させて、0.7mN/秒の負荷速度で、窒化ホウ素粒子Aに徐々に負荷をかけて圧壊させる。このとき、圧壊するまでの窒化ホウ素粒子Aの負荷方向の変位量(単位:μm。負荷方向の粒子径と圧壊する直前の負荷方向の粒子径との差の絶対値)が測定される。
 窒化ホウ素粒子Aの変位量は、例えば、微小圧縮試験機(例えば、株式会社島津製作所製、MCT-211)に付属の顕微鏡を用いて窒化ホウ素粒子Aを観察し、観察画像を画像解析ソフトウェア(例えば、微小圧縮試験機に付属のソフトウェア)に取り込んで測定することができる。
 窒化ホウ素粒子Aの変位量の平均値Yは、より優れた熱伝導率を有する放熱材を実現できる観点から、14μm以上、17μm以上、20μm以上又は23μm以上であってよい。窒化ホウ素粒子Aの変位量の平均値Yは、より優れた熱伝導率を有する放熱材を実現できる観点から、40μm以下、30μm以下又は27μm以下であってよい。
 窒化ホウ素粉末の平均粒子径Xと、窒化ホウ素粒子Aの変位量の平均値YからY/Xを算出し、20個の窒化ホウ素粒子AのY/Xが算出される。窒化ホウ素粒子AのY/Xは、より優れた熱伝導率を有する放熱材を実現できる観点から、0.20以上、0.22以上、0.24以上、0.25以上、0.26以上、0.28以上又は0.29以上であってよい。窒化ホウ素粒子AのY/Xは、より優れた熱伝導率を有する放熱材を実現できる観点から、0.50以下、0.40以下又は0.30以下であってよい。
 窒化ホウ素粉末の圧壊強度の平均値は、窒化ホウ素粉末(窒化ホウ素粒子)を樹脂と混合する際に、窒化ホウ素粒子が崩れにくくなることで、より優れた熱伝導率を有する放熱材を実現できる観点から、8MPa以上、9MPa以上、10MPa以上又は12MPa以上であってよい。窒化ホウ素粉末の圧壊強度の平均値は、より優れた熱伝導率を有する放熱材を実現できる観点から、17MPa以下、15MPa以下又は13MPa以下であってよい。窒化ホウ素粉末の圧壊強度の平均値は、窒化ホウ素粉末中の20個の窒化ホウ素粒子について、JIS R1639-5:2007に準拠して、微小圧縮試験機(例えば、島津製作所社製の「MCT-211」)を用いて圧壊強度を測定したときの平均値である。
 窒化ホウ素粉末の窒素欠陥量は、より優れた熱伝導率を有する放熱材を実現できる観点から、1.0×1014個/g以上であってよく、1.0×1018個/g以下であってよい。窒化ホウ素の熱伝導率は欠陥により低下するため、窒素欠陥量を少なくすることにより、より優れた熱伝導率を有する放熱材を実現できると考えられる。窒化ホウ素粉末の窒素欠陥量は、窒化ホウ素粉末60mgを石英ガラス製試料管に充填し、日本電子社製の「JEM FA-200型電子スピン共鳴装置」を使用した電子スピン共鳴(ESR)測定により測定される。より具体的には、下記の測定条件によるESR測定において、g値を求めた上で、g=2.00±0.04に確認できるESRシグナルの積分強度を窒素欠陥量として定義する。
[測定条件]
磁場掃引範囲:0~3290gauss(0~329mT)
磁場変調:5gauss(0.5mT)
時定数:0.3s
照射電磁波:0.5mW、約9.16GHz(照射電磁波の周波数は、共鳴周波数となるように測定ごとに微調整する)
掃引時間:15min
アンプゲイン:200
Mnマーカー:750
測定環境:室温(25℃)
標準試料:日本電子社製Coal標準試料(スピン量:3.56×1013個/g)
 以上説明した窒化ホウ素粉末を用いることで、優れた熱伝導率を有する放熱材を実現できる理由について、本発明者らは次のように推察する。すなわち、窒化ホウ素粉末中の窒化ホウ素粒子Aの上記Y/Xが大きいことにより、窒化ホウ素粒子Aに負荷がかけられた際に、窒化ホウ素粒子Aが圧壊するまでにその負荷方向に変形しやすいといえる。そのため、窒化ホウ素粒子Aに外力が加えられたとしても、窒化ホウ素粒子Aが変形することで、圧壊しにくくなると考えられる。このような窒化ホウ素粒子Aを含む窒化ホウ素粉末(窒化ホウ素粒子)と樹脂を混合して放熱材を成形することで、窒化ホウ素粉末中の窒化ホウ素粒子が崩れにくく、加えて適度に変形し粒子同士のパーコレーションが面で形成されることから、放熱材において窒化ホウ素粒子による効率的な伝熱経路を形成・維持しやすいと考えられるため、放熱材は優れた熱伝導率を有すると推察される。但し、優れた熱伝導率を有する放熱材を実現できる理由は、上記理由に限定されない。
 上記の窒化ホウ素粉末は、例えば、炭化ホウ素を含む粒子(以下「炭化ホウ素粒子」という場合がある)を窒化して、炭窒化ホウ素を含む粒子(以下「炭窒化ホウ素粒子」という場合がある)を得る窒化工程と、炭窒化ホウ素を含む粒子と、ホウ酸及び酸化ホウ素からなる群より選ばれる少なくとも1種を含むホウ素源と、を含有する混合物を容器に充填する充填工程と、容器内の気密性を高めた状態で混合物を加圧及び加熱することにより炭窒化ホウ素を含む粒子を脱炭する脱炭工程と、を備え、充填工程における混合物中の炭窒化ホウ素1molに対して、ホウ素源のホウ素原子の量が1.0~2.2molである、製造方法により製造することができる。すなわち、本発明の他の一実施形態は、上記の窒化ホウ素粉末の製造方法である。
 上記の製造方法において、窒化工程における炭化ホウ素粒子は、例えば粉末状(炭化ホウ素粉末)であってよい。炭化ホウ素粉末は、公知の製造方法により製造することができる。炭化ホウ素粒子(炭化ホウ素粉末)の製造方法としては、例えば、ホウ酸とアセチレンブラックとを混合した後、不活性ガス(例えば、窒素ガス又はアルゴンガス)雰囲気中で、1800~2400℃にて、1~10時間加熱し、塊状の炭化ホウ素粒子を得る方法が挙げられる。この方法により得られた塊状の炭化ホウ素粒子を、粉砕、篩分け、洗浄、不純物除去、乾燥等を適宜行うことで炭化ホウ素粉末を得ることができる。
 塊状の炭素ホウ素粒子の粉砕時間を調整することによって、炭化ホウ素粉末の平均粒子径を調整することができる。炭化ホウ素粉末の平均粒子径は、5μm以上、7μm以上又は10μm以上であってよく、100μm以下、90μm以下、80μm以下又は70μm以下であってよい。炭化ホウ素粉末の平均粒子径は、レーザー回折散乱法により測定することができる。
 窒化工程では、炭化ホウ素粒子を容器(例えば、カーボンルツボ)に充填し、窒化反応を進行させる雰囲気にした状態で加圧及び加熱することにより、炭化ホウ素粒子を窒化させて、炭窒化ホウ素粒子を得ることができる。
 窒化工程における窒化反応を進行させる雰囲気は、炭化ホウ素粒子を窒化する窒化ガス雰囲気であってよい。窒化ガスとしては、窒素ガス、アンモニアガス等であってよく、炭化ホウ素粒子を窒化しやすい観点及びコストの観点から、窒素ガスであってよい。窒化ガスは、1種単独又は2種以上を組合せて用いてよく、窒化ガス中の窒素ガスの割合は、95.0体積%以上、99.0体積%以上又は99.9体積%以上であってよい。
 窒化工程における圧力は、炭化ホウ素粒子を充分に窒化させる観点から、0.6MPa以上又は0.7MPa以上であってよい。窒化工程における圧力は、1.0MPa以下又は0.9MPa以下であってよい。
 窒化工程における加熱温度は、炭化ホウ素粒子を充分に窒化させる観点から、1800℃以上又は1900℃以上であってよい。窒化工程における加熱温度は、2400℃以下又は2200℃以下であってよい。
 窒化工程における加圧及び加熱を行う時間は、炭化ホウ素粒子を充分に窒化させる観点から、3時間以上、5時間以上又は8時間以上であってよい。窒化工程における加圧及び加熱を行う時間は、30時間以下、20時間以下又は10時間以下であってよい。
 充填工程では、窒化工程において得られた炭窒化ホウ素粒子と、ホウ酸及び酸化ホウ素からなる群より選ばれる少なくとも1種を含むホウ素源と、を含有する混合物を容器に充填する。
 充填工程における容器は、例えば、窒化ホウ素ルツボであってよい。充填工程では、例えば、混合物を容器内の底部に充填してよい。充填工程では、容器の気密性を高める観点から、容器の開口部に蓋をしてよく、容器と蓋との隙間の一部又は全てに樹脂を充填してもよい。充填する樹脂は、例えば、エポキシ樹脂であってよく、樹脂は硬化剤を含んでもよい。充填する樹脂は、樹脂が流動するのを抑制する観点から、粘度が大きい樹脂であってよい。
 充填工程における混合物中のホウ素源のホウ素原子の量は、混合物中の炭窒化ホウ素1molに対して、1.0~2.2molであってよい。ホウ素原子の量は、得られる窒化ホウ素粉末によってより優れた熱伝導率を有する放熱材を実現できる観点から、混合物中の炭窒化ホウ素1molに対して、2.0mol以下、1.9mol以下、1.8mol以下、1.7mol以下、1.6mol以下、1.5mol以下、1.4mol以下又は1.3mol以下であってよい。ホウ素原子の量は、窒化ホウ素片の平均厚さを大きくする観点から、混合物中の炭窒化ホウ素1molに対して、1.1mol以上又は1.2mol以上であってもよい。
 脱炭工程では、炭窒化ホウ素粒子とホウ素源とを含有する混合物を常圧以上の雰囲気で、加熱をすることで、炭窒化ホウ素粒子を脱炭し、窒化ホウ素粒子(窒化ホウ素粉末)を得ることができる。
 脱炭工程における雰囲気は、窒素ガス雰囲気であってよく、常圧(大気圧)又は加圧された窒素ガス雰囲気であってよい。脱炭工程における圧力は、炭窒化ホウ素粒子を充分に脱炭させる観点から、0.5MPa以下又は0.3MPa以下であってよい。
 脱炭工程における加熱は、例えば、所定の温度(脱炭開始温度)まで昇温した後に、所定の昇温速度で所定の温度(保持温度)まで更に昇温して行ってよい。脱炭開始温度から保持温度まで昇温する際の昇温速度は、例えば、5℃/分以下、3℃/分以下又は2℃/分以下であってよい。
 脱炭開始温度は、炭窒化ホウ素粒子を充分に脱炭させる観点から、1000℃以上又は1100℃以上であってよい。脱炭開始温度は、1500℃以下又は1400℃以下であってよい。
 保持温度は、炭窒化ホウ素粒子を充分に脱炭させる観点から、1800℃以上又は2000℃以上であってよい。保持温度は、2200℃以下又は2100℃以下であってよい。
 保持温度で加熱する時間は、炭窒化ホウ素粒子を充分に脱炭させる観点から、0.5時間以上、1時間以上、3時間以上、5時間以上又は10時間以上であってよい。保持温度で加熱する時間は、40時間以下、30時間以下又は20時間以下であってよい。
 以上のようにして得られる窒化ホウ素粉末に対して、篩によって所望の粒子径を有する窒化ホウ素粉末を分級する工程(分級工程)を実施してもよい。
 以上のようにして得られる窒化ホウ素粉末は、例えば、樹脂と混合して樹脂組成物として用いることができる。すなわち、本発明の他の一実施形態は、上記の窒化ホウ素粉末と、樹脂と、を含有する樹脂組成物である。
 樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、シリコーンゴム、アクリル樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンエーテル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、AAS(アクリロニトリル-アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂を用いることができる。
 窒化ホウ素粉末の含有量は、より優れた熱伝導率を有する放熱材を実現できる観点から、樹脂組成物の全体積を基準として、30体積%以上、40体積%以上、50体積%以上又は60体積%以上であってよい。窒化ホウ素粉末の含有量は、放熱材の成形するときに空隙が発生することを抑制し、放熱材の絶縁性及び機械強度の低下を抑制できる観点から、樹脂組成物の全体積を基準として、85体積%以下又は80体積%以下であってよい。
 樹脂の含有量は、樹脂組成物の用途、要求特性などに応じて適宜調整してよい。樹脂の含有量は、樹脂組成物の全体積を基準として、15体積%以上、20体積%以上、30体積%以上又は40体積%以上であってよく、70体積%以下、60体積%以下又は50体積%以下であってよい。
 樹脂組成物は、樹脂を硬化させる硬化剤を更に含有していてよい。硬化剤は、樹脂の種類によって適宜選択される。エポキシ樹脂と共に用いられる硬化剤としては、フェノールノボラック化合物、酸無水物、アミノ化合物、イミダゾール化合物等が挙げられる。硬化剤の含有量は、樹脂100質量部に対して、0.5質量部以上又は1.0質量部以上であってよく、15質量部以下又は10質量部以下であってよい。
 樹脂組成物は、その他の成分を更に含有してもよい。その他の成分は、例えば、硬化促進剤(硬化触媒)、カップリング剤、湿潤分散剤、表面調整剤であってよい。
 硬化促進剤(硬化触媒)としては、テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルフォスフェイト等のリン系硬化促進剤、2-フェニル-4,5-ジヒドロキシメチルイミダゾール等のイミダゾール系硬化促進剤、三フッ化ホウ素モノエチルアミン等のアミン系硬化促進剤などが挙げられる。
 カップリング剤としては、シラン系カップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤等が挙げられる。これらのカップリング剤に含まれる化学結合基としては、ビニル基、エポキシ基、アミノ基、メタクリル基、メルカプト基等が挙げられる。
 湿潤分散剤としては、リン酸エステル塩、カルボン酸エステル、ポリエステル、アクリル共重合物、ブロック共重合物等が挙げられる。
 表面調整剤としては、アクリル系表面調整剤、シリコーン系表面調整剤、ビニル系調整剤、フッ素系表面調整剤等が挙げられる。
 樹脂組成物は、例えば、一実施形態に係る窒化ホウ素粉末を用意する工程(用意工程)と、窒化ホウ素粉末を樹脂と混合する工程(混合工程)と、を備える、樹脂組成物の製造方法により製造することができる。すなわち、本発明の他の一実施形態は、上記の樹脂組成物の製造方法である。混合工程では、窒化ホウ素粉末及び樹脂に加えて、上述した硬化剤やその他の成分を更に混合してもよい。
 一実施形態に係る樹脂組成物の製造方法は、窒化ホウ素粉末を粉砕する工程(粉砕工程)を更に備えてよい。粉砕工程は、用意工程と混合工程との間に行われてよく、混合工程と同時に行われてもよい(窒化ホウ素粉末を樹脂と混合すると同時に、窒化ホウ素粉末を粉砕してもよい)。
 上記の樹脂組成物は、例えば、放熱材として用いることができる。放熱材は、例えば、樹脂組成物を硬化させることにより製造することができる。樹脂組成物を硬化させる方法は、樹脂組成物が含有する樹脂(及び必要に応じて用いられる硬化剤)の種類に応じて適宜選択される。例えば、樹脂がエポキシ樹脂であり、上述した硬化剤が共に用いられる場合、加熱により樹脂を硬化させることができる。
 以下、実施例により本発明を具体的に説明する。但し、本発明は下記の実施例に限定されるものではない。
 (実施例1)
 平均粒子径55μmの炭化ホウ素粒子をカーボンルツボに充填し、カーボンルツボを窒素ガス雰囲気下で、2000℃、0.8MPaの条件で20時間加熱することにより炭窒化ホウ素粒子を得た。得られた炭窒化ホウ素粒子100質量部と、ホウ酸66.7質量部とをヘンシェルミキサーを用いて混合し、混合物中の炭窒化ホウ素1molに対して、ホウ素源のホウ素原子の量が1.2molである混合物を得た。得られた混合物を窒化ホウ素ルツボに充填し、ルツボに蓋をして、ルツボと蓋との隙間の全てにエポキシ樹脂を充填した。混合物を充填した窒化ホウ素ルツボを抵抗加熱炉内に配置したカーボンケース内で、常圧、窒素ガス雰囲気下、保持温度2000℃の条件で10時間加熱することにより、粗大な窒化ホウ素粒子を得た。得られた粗大な窒化ホウ素粒子を乳鉢により10分間解砕し、篩目109μmのナイロン篩にて分級を行って、窒化ホウ素粒子(窒化ホウ素粉末)を得た。
 得られた窒化ホウ素粒子の断面のSEM画像を図1に示す。図1から分かるとおり、窒化ホウ素粒子においては、複数の窒化ホウ素片同士が化学的に結合していた。
 (実施例2)
 混合物中の炭窒化ホウ素1molに対して、ホウ素源のホウ素原子の量が1.4molとなるようにホウ酸の量を変更した以外は、実施例1と同様の条件で窒化ホウ素粒子(窒化ホウ素粉末)を得た。得られた窒化ホウ素粒子の断面をSEMで確認したところ、複数の窒化ホウ素片同士が化学的に結合していることが確認された。
 (実施例3)
 混合物中の炭窒化ホウ素1molに対して、ホウ素源のホウ素原子の量が1.6molとなるようにホウ酸の量を変更した以外は、実施例1と同様の条件で窒化ホウ素粒子(窒化ホウ素粉末)を得た。得られた窒化ホウ素粒子の断面をSEMで確認したところ、複数の窒化ホウ素片同士が化学的に結合していることが確認された。
 (実施例4)
 混合物中の炭窒化ホウ素1molに対して、ホウ素源のホウ素原子の量が1.8molとなるようにホウ酸の量を変更した以外は、実施例1と同様の条件で窒化ホウ素粒子(窒化ホウ素粉末)を得た。得られた窒化ホウ素粒子の断面をSEMで確認したところ、複数の窒化ホウ素片同士が化学的に結合していることが確認された。
 (実施例5)
 混合物中の炭窒化ホウ素1molに対して、ホウ素源のホウ素原子の量が1.1molとなるようにホウ酸の量を変更した以外は、実施例1と同様の条件で窒化ホウ素粒子(窒化ホウ素粉末)を得た。
 (比較例1)
 混合物中の炭窒化ホウ素1molに対して、ホウ素源のホウ素原子の量が2.7molとなるようにホウ酸の量を変更した以外は、実施例1と同様の条件で窒化ホウ素粒子(窒化ホウ素粉末)を得た。
[平均粒子径Xの測定]
 ベックマンコールター製レーザー回折散乱法粒度分布測定装置(LS-13 320)を用いて、窒化ホウ素粉末の平均粒子径Xを測定した。平均粒子径Xの測定結果を表1に示す。
[変位量の平均値Y及びY/Xの測定]
 得られた各窒化ホウ素粉末中の20個の窒化ホウ素粒子について、JIS R 1639-5:2007に準拠して、微小圧縮試験機(株式会社島津製作所製、MCT-211)を用いて、20個の窒化ホウ素粒子の各窒化ホウ素粒子に0.7mN/秒の負荷速度で徐々に負荷をかけて圧壊させた。20個の窒化ホウ素粒子の各窒化ホウ素粒子について、負荷をかける前から圧壊するまでの負荷方向の変位量を微小圧縮試験機に付属の顕微鏡及び画像解析ソフトウェアを用いて測定して、変位量の平均値Yを算出し、平均粒子径Xと変位量の平均値YからY/Xを算出した。変位量の平均値Y及びY/Xを表1に示す。
[圧壊強度の測定]
 得られた各窒化ホウ素粉末中の20個の窒化ホウ素粒子について、JIS R 1639-5:2007に準拠して圧壊強度を測定した。測定装置としては、微小圧縮試験機(島津製作所社製、「MCT-211」)を用いた。各窒化ホウ素粒子の圧壊強度σ(単位:MPa)は、粒子内の位置によって変化する無次元数α(=2.48)と圧壊試験力P(単位:N)と平均粒子径d(単位:μm)から、σ=α×P/(π×d)の式を用いて算出した。20個の窒化ホウ素粒子について圧壊強度を測定し、その平均値を表1に示す。
[窒化ホウ素片の厚さ、長径及びアスペクト比の測定]
 走査型電子顕微鏡(日本電子株式会社製、JSM-7001F)を用いて、観察倍率10000倍で、得られた窒化ホウ素粉末中の窒化ホウ素粒子の表面を観察した。窒化ホウ素粒子の表面のSEM画像を画像解析ソフトウェア(株式会社マウンテック製、Mac-view)に取り込み、窒化ホウ素粒子の表面に配置されている窒化ホウ素片の厚さ及び長径(厚さ方向に対して垂直方向の最大長さ)を測定した。40個の窒化ホウ素片の厚さ及び長径をそれぞれ測定し、測定した厚さ及び長径から窒化ホウ素粒子を構成する窒化ホウ素片の平均厚さ及び平均長径を算出した。また、測定した厚さ及び長径から各窒化ホウ素片のアスペクト比(長径/厚さ)を算出し、40個の窒化ホウ素片のアスペクト比から平均アスペクト比を算出した。平均厚さ、平均長径及び平均アスペクト比の算出結果を表1に示す。実施例1及び比較例1の窒化ホウ素粒子の表面のSEM画像を図2及び3にそれぞれ示す。
[熱伝導率の測定]
 ナフタレン型エポキシ樹脂(DIC社製、HP4032)100質量部と、硬化剤としてイミダゾール化合物(四国化成社製、2E4MZ-CN)10質量部とを混合し、次いで、各実施例及び比較例において得られた窒化ホウ素粉末81質量部を更に混合して樹脂組成物を得た。この樹脂組成物を、500Paの減圧脱泡を10分間行い、PET製シート上に厚みが1.0mmになるように塗布した。その後、温度150℃、圧力160kg/cm条件で60分間のプレス加熱加圧を行って、0.5mmのシート状の放熱材を作製した。作製した放熱材から10mm×10mmの大きさの測定用試料を切り出し、キセノンフラッシュアナライザ(NETZSCH社製、LFA447NanoFlash)を用いたレーザーフラッシュ法により、測定用試料の熱拡散率A(m/秒)を測定した。また、測定用試料の比重B(kg/m)をアルキメデス法により測定した。また、測定用試料の比熱容量C(J/(kg・K))を、示差走査熱量計(株式会社リガク製、ThermoPlusEvoDSC8230)を用いて測定した。これらの各物性値を用いて、熱伝導率H(W/(m・K))をH=A×B×Cの式から求めた。熱伝導率の測定結果を表1に示す。実施例1及び比較例1の窒化ホウ素粉末を用いて作製した放熱材の断面のSEM画像を図4及び5にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000001

Claims (5)

  1.  窒化ホウ素粒子の集合体である窒化ホウ素粉末であって、
     前記窒化ホウ素粉末から選ばれる20個の窒化ホウ素粒子Aのそれぞれについて、任意の方向に0.7mN/秒の負荷速度で徐々に負荷をかけて圧壊させたときに、負荷をかける前の前記窒化ホウ素粉末の平均粒子径X(μm)に対する、圧壊するまでの前記窒化ホウ素粒子Aの前記方向における変位量の平均値Y(μm)の比が0.20以上である、窒化ホウ素粉末。
  2.  前記変位量の平均値Yが、14μm以上である、請求項1に記載の窒化ホウ素粉末。
  3.  圧壊強度の平均値が、8MPa以上である、請求項1又は2に記載の窒化ホウ素粉末。
  4.  前記窒化ホウ素粒子が複数の窒化ホウ素片により構成されており、前記複数の窒化ホウ素片同士が化学的に結合している、請求項1~3のいずれか一項に記載の窒化ホウ素粉末。
  5.  請求項1~4のいずれか一項に記載の窒化ホウ素粉末と、樹脂とを含有する、樹脂組成物。
PCT/JP2022/013233 2021-03-25 2022-03-22 窒化ホウ素粉末及び樹脂組成物 WO2022202825A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022575475A JP7303950B2 (ja) 2021-03-25 2022-03-22 窒化ホウ素粉末及び樹脂組成物
CN202280022951.1A CN117043099A (zh) 2021-03-25 2022-03-22 氮化硼粉末及树脂组合物
US18/283,479 US20240217819A1 (en) 2021-03-25 2022-03-22 Boron nitride powder and resin composition
KR1020237035741A KR20230156792A (ko) 2021-03-25 2022-03-22 질화붕소 분말 및 수지 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021051878 2021-03-25
JP2021-051878 2021-03-25

Publications (1)

Publication Number Publication Date
WO2022202825A1 true WO2022202825A1 (ja) 2022-09-29

Family

ID=83395655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013233 WO2022202825A1 (ja) 2021-03-25 2022-03-22 窒化ホウ素粉末及び樹脂組成物

Country Status (6)

Country Link
US (1) US20240217819A1 (ja)
JP (1) JP7303950B2 (ja)
KR (1) KR20230156792A (ja)
CN (1) CN117043099A (ja)
TW (1) TW202300446A (ja)
WO (1) WO2022202825A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136959A1 (ja) * 2013-03-07 2014-09-12 電気化学工業株式会社 窒化ホウ素粉末及びこれを含有する樹脂組成物
WO2016092952A1 (ja) * 2014-12-08 2016-06-16 昭和電工株式会社 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
JP2017165609A (ja) * 2016-03-15 2017-09-21 デンカ株式会社 六方晶窒化ホウ素の一次粒子凝集体、樹脂組成物及びその用途
WO2018012484A1 (ja) * 2016-07-13 2018-01-18 積水化学工業株式会社 複合粒子及び液晶表示装置
JP2018052782A (ja) * 2016-09-30 2018-04-05 デンカ株式会社 六方晶窒化ホウ素一次粒子凝集体
JP2018104253A (ja) * 2016-12-28 2018-07-05 デンカ株式会社 六方晶窒化ホウ素一次粒子凝集体及びその用途
JP2018115275A (ja) * 2017-01-19 2018-07-26 積水化学工業株式会社 硬化性材料、硬化性材料の製造方法及び積層体
WO2020004600A1 (ja) * 2018-06-29 2020-01-02 デンカ株式会社 塊状窒化ホウ素粒子、窒化ホウ素粉末、窒化ホウ素粉末の製造方法、樹脂組成物、及び放熱部材
WO2020175377A1 (ja) * 2019-02-27 2020-09-03 三菱ケミカル株式会社 窒化ホウ素凝集粉末、放熱シート及び半導体デバイス
WO2022039240A1 (ja) * 2020-08-20 2022-02-24 デンカ株式会社 窒化ホウ素粒子、窒化ホウ素粉末、樹脂組成物、及び樹脂組成物の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102574684B (zh) 2009-10-09 2015-04-29 水岛合金铁株式会社 六方氮化硼粉末及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136959A1 (ja) * 2013-03-07 2014-09-12 電気化学工業株式会社 窒化ホウ素粉末及びこれを含有する樹脂組成物
WO2016092952A1 (ja) * 2014-12-08 2016-06-16 昭和電工株式会社 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
JP2017165609A (ja) * 2016-03-15 2017-09-21 デンカ株式会社 六方晶窒化ホウ素の一次粒子凝集体、樹脂組成物及びその用途
WO2018012484A1 (ja) * 2016-07-13 2018-01-18 積水化学工業株式会社 複合粒子及び液晶表示装置
JP2018052782A (ja) * 2016-09-30 2018-04-05 デンカ株式会社 六方晶窒化ホウ素一次粒子凝集体
JP2018104253A (ja) * 2016-12-28 2018-07-05 デンカ株式会社 六方晶窒化ホウ素一次粒子凝集体及びその用途
JP2018115275A (ja) * 2017-01-19 2018-07-26 積水化学工業株式会社 硬化性材料、硬化性材料の製造方法及び積層体
WO2020004600A1 (ja) * 2018-06-29 2020-01-02 デンカ株式会社 塊状窒化ホウ素粒子、窒化ホウ素粉末、窒化ホウ素粉末の製造方法、樹脂組成物、及び放熱部材
WO2020175377A1 (ja) * 2019-02-27 2020-09-03 三菱ケミカル株式会社 窒化ホウ素凝集粉末、放熱シート及び半導体デバイス
WO2022039240A1 (ja) * 2020-08-20 2022-02-24 デンカ株式会社 窒化ホウ素粒子、窒化ホウ素粉末、樹脂組成物、及び樹脂組成物の製造方法

Also Published As

Publication number Publication date
US20240217819A1 (en) 2024-07-04
JPWO2022202825A1 (ja) 2022-09-29
JP7303950B2 (ja) 2023-07-05
KR20230156792A (ko) 2023-11-14
TW202300446A (zh) 2023-01-01
CN117043099A (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
JP6698953B2 (ja) 窒化ホウ素粉末、その製造方法及びそれを用いた放熱部材
CN112334408B (zh) 块状氮化硼粒子、氮化硼粉末、氮化硼粉末的制造方法、树脂组合物、及散热构件
KR102400206B1 (ko) 질화붕소 응집 입자, 질화붕소 응집 입자의 제조 방법, 그 질화붕소 응집 입자 함유 수지 조성물, 성형체, 및 시트
TWI838500B (zh) 塊狀氮化硼粒子、熱傳導樹脂組成物、以及散熱構件
TW201927689A (zh) 六方晶氮化硼粉末及其製造方法以及使用其之組成物及散熱材
JP7273587B2 (ja) 窒化ホウ素粉末及び樹脂組成物
JP7291304B2 (ja) 窒化ホウ素粉末、放熱シート及び放熱シートの製造方法
WO2020158758A1 (ja) 窒化ホウ素粉末及び樹脂組成物
JP7541090B2 (ja) 熱伝導性樹脂組成物及び放熱シート
WO2022202825A1 (ja) 窒化ホウ素粉末及び樹脂組成物
WO2022202824A1 (ja) 窒化ホウ素粉末及び樹脂組成物
WO2022202827A1 (ja) 窒化ホウ素粒子、その製造方法、及び樹脂組成物
JP7273586B2 (ja) 窒化ホウ素粉末及び樹脂組成物
JP7124249B1 (ja) 放熱シート及び放熱シートの製造方法
JP7158634B2 (ja) 中空部を有する窒化ホウ素粒子を含有するシート
WO2024048377A1 (ja) シートの製造方法及びシート
JP7362839B2 (ja) 凝集窒化ホウ素粒子、窒化ホウ素粉末、熱伝導性樹脂組成物及び放熱シート
JP2024022830A (ja) 窒化ホウ素粉末、及び、窒化ホウ素粉末の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775608

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022575475

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280022951.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18283479

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237035741

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237035741

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775608

Country of ref document: EP

Kind code of ref document: A1