WO2022039240A1 - 窒化ホウ素粒子、窒化ホウ素粉末、樹脂組成物、及び樹脂組成物の製造方法 - Google Patents
窒化ホウ素粒子、窒化ホウ素粉末、樹脂組成物、及び樹脂組成物の製造方法 Download PDFInfo
- Publication number
- WO2022039240A1 WO2022039240A1 PCT/JP2021/030451 JP2021030451W WO2022039240A1 WO 2022039240 A1 WO2022039240 A1 WO 2022039240A1 JP 2021030451 W JP2021030451 W JP 2021030451W WO 2022039240 A1 WO2022039240 A1 WO 2022039240A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- boron nitride
- nitride particles
- load
- unloading
- particles
- Prior art date
Links
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims abstract description 273
- 229910052582 BN Inorganic materials 0.000 title claims abstract description 271
- 239000002245 particle Substances 0.000 title claims abstract description 239
- 239000000843 powder Substances 0.000 title claims description 57
- 239000011342 resin composition Substances 0.000 title claims description 29
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 238000012360 testing method Methods 0.000 claims abstract description 13
- 229920005989 resin Polymers 0.000 claims description 30
- 239000011347 resin Substances 0.000 claims description 30
- 238000011068 loading method Methods 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 18
- 238000002156 mixing Methods 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000010298 pulverizing process Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 description 29
- 238000006073 displacement reaction Methods 0.000 description 23
- 229910052580 B4C Inorganic materials 0.000 description 19
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 17
- 229910052799 carbon Inorganic materials 0.000 description 15
- 230000005489 elastic deformation Effects 0.000 description 13
- 239000000203 mixture Substances 0.000 description 10
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 9
- 239000004327 boric acid Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 7
- 239000003575 carbonaceous material Substances 0.000 description 6
- 239000007822 coupling agent Substances 0.000 description 6
- -1 for example Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- UUQQGGWZVKUCBD-UHFFFAOYSA-N [4-(hydroxymethyl)-2-phenyl-1h-imidazol-5-yl]methanol Chemical compound N1C(CO)=C(CO)N=C1C1=CC=CC=C1 UUQQGGWZVKUCBD-UHFFFAOYSA-N 0.000 description 1
- PPWPWBNSKBDSPK-UHFFFAOYSA-N [B].[C] Chemical compound [B].[C] PPWPWBNSKBDSPK-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- HVABKWYVQHSGHW-UHFFFAOYSA-N boron;ethanamine Chemical compound [B].CCN HVABKWYVQHSGHW-UHFFFAOYSA-N 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
- C01B21/064—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
- C01B21/064—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
- C01B21/0648—After-treatment, e.g. grinding, purification
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/74—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/45—Aggregated particles or particles with an intergrown morphology
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/90—Other properties not specified above
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
- C08K2003/382—Boron-containing compounds and nitrogen
- C08K2003/385—Binary compounds of nitrogen with boron
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/004—Additives being defined by their length
Definitions
- the present disclosure relates to boron nitride particles, boron nitride powder, a resin composition, and a method for producing a resin composition.
- Boron nitride has lubricity, high thermal conductivity, and insulating properties, and various types such as solid lubricants, mold release materials, raw materials for cosmetics, heat dissipation materials, and sintered bodies having heat resistance and insulating properties. It is used for the purpose of.
- Patent Document 1 comprises primary particles of hexagonal boron nitride as hexagonal boron nitride powder capable of imparting high thermal conductivity and high insulating strength to a resin composition obtained by filling with a resin. It contains agglomerated particles, has a BET specific surface area of 0.7 to 1.3 m 2 / g, and has an oil absorption amount of 80 g / 100 g or less as measured based on JIS K 5101-13-1. Hexagonal boron nitride powder is disclosed.
- the boron nitride particles when used, for example, as a heat radiating material (heat radiating sheet), it is desirable that the boron nitride particles have an elongated shape in order to enhance the thermal conductivity in a specific direction. Further, when the boron nitride particles are mixed with the resin and molded into a sheet shape and used as a heat radiating material, the boron nitride particles may be deformed due to a load applied during the mixing with the resin or the molding of the heat radiating material. It is desirable for the boron nitride particles to return to their original shape, or as close as possible to it, when the load is removed.
- a main object of the present invention is to provide new boron nitride particles and boron nitride powder.
- One aspect of the present invention is a boron nitride particle having an elongated shape, which is gradually loaded from 0.2 mN to 20 mN at a load rate of 0.27 mN / sec in the lateral direction of the boron nitride particle to be compressed.
- a load unloading test including a load step and a unloading step of gradually unloading to 0.2 mN at a unloading rate of 0.27 mN / sec is provided in this order, the load process is compressed.
- Boron nitride particles in which at least a part of the length in the lateral direction of the boron nitride particles is returned in the unloading step.
- D 1 When the amount of the boron nitride particles displaced in the lateral direction in the loading step is D 1 , and the amount of the boron nitride particles displaced in the lateral direction in the unloading step is D 2 , D 2 /.
- D 1 may be 0.2 or more.
- the boron nitride particles may have an outer shell portion formed by boron nitride and a hollow portion surrounded by the outer shell portion.
- Another aspect of the present invention is a boron nitride powder which is an aggregate of boron nitride particles having an elongated shape, and the following steps (1) to (3): (1) Each of the 10 boron nitride particles A selected from the boron nitride powder is required to be crushed by applying a load at a load rate of 0.27 mN / sec in the lateral direction of the boron nitride particles A. Calculation step of measuring the magnitude of the load and calculating the average value F of the magnitude of the load (2) In the lateral direction of the boron nitride particles B selected from the boron nitride powder separately from the boron nitride particles A.
- the above-mentioned boron nitride particles B compressed in the loading step when subjected to a load unloading test including an unloading step of gradually unloading to 0.2 mN at a unloading rate of .27 mN / sec.
- the average value of the amount of the boron nitride particles B displaced in the lateral direction in the loading step is D 3
- the average value of the amount of the boron nitride particles B displaced in the lateral direction in the unloading step is D 4 .
- D 4 / D 3 may be 0.2 or more.
- the boron nitride powder may be an aggregate of boron nitride particles having an outer shell portion formed by boron nitride and a hollow portion surrounded by the outer shell portion.
- Another aspect of the present invention is a resin composition containing the above-mentioned boron nitride particles or the above-mentioned boron nitride powder and a resin.
- Another aspect of the present invention is a method for producing a resin composition, comprising a step of preparing the boron nitride particles or the boron nitride powder and a step of mixing the boron nitride particles or the boron nitride powder with the resin.
- the method for producing this resin composition may further include a step of pulverizing the boron nitride particles or the boron nitride powder.
- novel boron nitride particles and boron nitride powder can be provided.
- FIG. 6 is a graph showing the relationship between the load amount and the displacement amount of the boron nitride particles when the boron nitride particles B (particle No. 1) of Example 1 are subjected to a load unloading test.
- One embodiment (first embodiment) of the present invention is boron nitride particles having an elongated shape.
- Boron nitride particles having an elongated shape may have, for example, an aspect ratio of 1.5 or more.
- the aspect ratio of the boron nitride particles may be 1.6 or more, 1.7 or more, 1.8 or more, 1.9 or more, 2.0 or more, 2.5 or more, or 3.0 or more. It may be 0 or less, 10.0 or less, 9.5 or less, 9.0 or less, and 8.0 or less.
- the aspect ratio of the boron nitride particles is the ratio ( La ) of the maximum length of the boron nitride particles ( La) to the maximum length of the boron nitride particles (L b ) in the direction perpendicular to the direction having the maximum length. / L b ) is defined.
- the maximum length of the boron nitride particles (La) means the length that is the maximum of the linear distance between any two points on one boron nitride particle when the boron nitride particles are observed under a microscope. do.
- the microscope may be, for example, a microscope attached to a microcompression tester (for example, MCT series manufactured by Shimadzu Corporation).
- the measurement of the maximum length ( La ) may be performed by incorporating the observed image into image analysis software (for example, software attached to the microcompression tester).
- image analysis software for example, software attached to the microcompression tester.
- the maximum length (L b ) of the boron nitride particles in the direction perpendicular to the direction having the maximum length can be measured in the same manner as the maximum length ( La ).
- the maximum length ( La ) of the boron nitride particles may be 80 ⁇ m or more, 100 ⁇ m or more, 125 ⁇ m or more, 150 ⁇ m or more, 175 ⁇ m or more, 200 ⁇ m or more, 225 ⁇ m or more, 250 ⁇ m or more, 275 ⁇ m or more, or 300 ⁇ m or more, and 500 ⁇ m or less. Alternatively, it may be 400 ⁇ m or less.
- the maximum length (L b ) of the boron nitride particles in the direction perpendicular to the direction having the maximum length ( La ) of the boron nitride particles may be 50 ⁇ m or more, 60 ⁇ m or more, 70 ⁇ m or more, or 80 ⁇ m or more, and may be 300 ⁇ m. Hereinafter, it may be 200 ⁇ m or less, 150 ⁇ m or less, or 100 ⁇ m or less.
- the external shape of the boron nitride particles is not particularly limited as long as it is an elongated shape.
- the boron nitride particles may be fixed or amorphous.
- Examples of the external shape of the boron nitride particles include a spheroid shape, a rod shape, and a dumbbell shape.
- the boron nitride particles may have, for example, a branched structure that branches in two or more directions.
- Boron nitride particles may be solid or hollow.
- the boron nitride particles may have an outer shell portion formed by the boron nitride and a hollow portion surrounded by the outer shell portion.
- the hollow portion may extend along the longitudinal direction of the boron nitride particles. That is, the boron nitride particles may be tubular.
- at least one of the ends of the boron nitride particles in the longitudinal direction may be an open end, and all the ends may be an open end. The open end may communicate with the hollow portion described above.
- the boron nitride particles are hollow and at least one of the ends in the longitudinal direction of the boron nitride particles is an open end, for example, when the boron nitride particles are mixed with a resin and used as a heat radiating material, the boron nitride particles By filling the hollow portion with a lighter resin, the heat conductivity of the heat radiating material can be improved, and the weight of the heat radiating material can be expected to be reduced.
- the boron nitride particles of the present embodiment have a loading step of gradually applying a load from 0.2 mN to 20 mN at a load rate of 0.27 mN / sec in the lateral direction of the boron nitride particles to compress the boron nitride particles, and 0.27 mN / sec. At least the length of the boron nitride particles compressed in the loading step in the lateral direction when subjected to a load unloading test including a unloading step of gradually unloading to 0.2 mN at a unloading speed in this order. Some are boron nitride particles that return during the unloading process.
- boron nitride particles are installed on the sample table. At this time, the boron nitride particles are installed so that the longitudinal direction of the boron nitride particles is along the installation surface of the sample table. Subsequently, an indenter (for example, an indenter diameter of 200 ⁇ m) of a microcompression tester (for example, MCT series manufactured by Shimadzu Corporation) is lowered toward one boron nitride particle on the sample table to 0.27 mN / sec. Gradually load the boron nitride particles from 0.2 mN to 20 mN at the loading rate of. At this time, the magnitude of displacement (displacement amount) of the boron nitride particles with respect to the applied load (load amount) is measured.
- an indenter for example, an indenter diameter of 200 ⁇ m
- MCT series manufactured by Shimadzu Corporation
- the load (20 mN) in the loading step is applied to the boron nitride particles, and the load is gradually unloaded to 0.2 mN at a unloading rate of 0.27 mN / sec. Also at this time, the displacement amount of the boron nitride particles with respect to the load amount is measured.
- the time for starting the unloading step after the loading step is completed is 5 seconds or less.
- FIG. 1 shows an example of the relationship between the load amount and the displacement amount of the boron nitride particles when the boron nitride particles are subjected to this load unloading test.
- the displacement amount of the boron nitride particles is X
- the load amount is Y
- the displacement amount X and the load amount Y of the boron nitride particles in the loading process are as shown in the load curve L1.
- the relationship is such that the displacement amount X and the load amount Y of the boron nitride particles in the unloading step have a relationship like the unloading curve L2.
- the loading process Assuming that the amount of the boron nitride particles displaced in the lateral direction (absolute value) in the loading process is D 1 and the amount of the boron nitride particles displaced in the lateral direction in the unloading step (absolute value) is D 2 , the loading process
- the fact that at least a part of the length of the compressed boron nitride particles in the lateral direction returns in the unloading step means that D 2 > 0.
- the recovery rate (D 2 / D 1 ) may be, for example, 0.2 or more, 0.25 or more, 0.3 or more, 0.35 or more, or 0.4 or more.
- a large restoration rate can be rephrased as a large elastic deformation work ratio of boron nitride particles. That is, the larger the elastic deformation work ratio of the boron nitride particles, the easier it is for the boron nitride particles to return to their original shape even if they are compressed.
- the elastic deformation work ratio of the boron nitride particles may be, for example, 0.1 or more, 0.15 or more, 0.2 or more, 0.25 or more, 0.3 or more, or 0.35 or more.
- the boron nitride particles according to the embodiment are deformed by an external load, they return to a shape close to the original shape when the load is removed. Therefore, for example, when the boron nitride particles are mixed with the resin to form a heat-dissipating material, even if the boron nitride particles are deformed during the mixing with the resin or the molding of the heat-dissipating material, after that. The boron nitride particles return to a shape close to the original shape. Therefore, the boron nitride particles are more likely to maintain a heat conduction path in the heat radiating material than the conventional boron nitride particles.
- the boron nitride particles have an elongated shape, it is possible to particularly enhance the thermal conductivity in a specific direction in the heat radiating material. Therefore, the boron nitride particles can be suitably used as a heat radiating material. Although a heat radiating material has been exemplified as an application of the boron nitride particles, the boron nitride particles can be used not only for the heat radiating material but also for various purposes.
- Another embodiment (second embodiment) of the present invention is a boron nitride powder which is an aggregate of boron nitride particles having an elongated shape (powder composed of boron nitride particles having a plurality of elongated shapes). ..
- each boron nitride particle may be the boron nitride particle according to the first embodiment described above.
- the boron nitride powder according to the second embodiment is obtained from the following steps (1) to (3): (1) For each of the 10 boron nitride particles A selected from the boron nitride powder, the load required to crush each of the 10 boron nitride particles A by applying a load at a load rate of 0.27 mN / sec in the lateral direction of the boron nitride particles A. Calculation step of measuring the size and calculating the average value F of the load size (2) 0.27 mN in each lateral direction of the boron nitride particle B selected from the boron nitride powder separately from the boron nitride particle A.
- boron nitride particles selected from the boron nitride powder are placed on the sample table.
- the boron nitride particles are installed so that the longitudinal direction of each boron nitride particle is along the installation surface of the sample table.
- an indenter for example, an indenter diameter of 200 ⁇ m
- a microcompression tester for example, MCT series manufactured by Shimadzu Corporation
- the magnitude of the load when the displacement amount of the boron nitride particles in the lateral direction suddenly increases is measured as the magnitude of the load required to crush the boron nitride particles.
- This measurement is performed in the same manner for 10 boron nitride particles (the boron nitride particles are called boron nitride particles A), and the average value F (mN) of the magnitude of the load required to crush the boron nitride particles A is determined. calculate.
- the boron nitride particles (the boron nitride particles are referred to as boron nitride particles B) selected from the boron nitride powder separately from the boron nitride particles A are loaded in the same manner as described in the first embodiment. Is carried out. However, in the loading step in the second embodiment, the boron nitride particles B are gradually loaded from 0.2 mN to 50% of the average value F (mN) calculated in the above calculation step at a loading rate of 0.27 mN / sec. It is different from the loading process in the first embodiment in that it is applied.
- the unloading step is carried out on the boron nitride particles B in the same manner as described in the first embodiment.
- the displacement amount of the boron nitride particles B with respect to the loading amount is measured in the same manner as described in the first embodiment.
- FIG. 1 An example of the relationship between the load amount and the displacement amount of the boron nitride particles B when the boron nitride particles B are subjected to the load unloading test is shown in FIG. 1 as described in the first embodiment.
- the displacement amount of the boron nitride particles B is X and the load amount is Y
- the displacement amount X and the load amount Y of the boron nitride particles B in the loading step are on the load curve L1.
- the displacement amount X and the load amount Y of the boron nitride particles B in the unloading step have a relationship like the unloading curve L2.
- the average value (average displacement amount) of the amount (absolute value) of the boron nitride particles B displaced in the lateral direction in the loading process is D3 , and the amount of the boron nitride particles B displaced in the lateral direction (absolute value) in the unloading process. ) Is D 4 , and the larger the average recovery rate (D 4 / D 3 ) is, the more preferable.
- the average recovery rate (D 4 / D 3 ) may be, for example, 0.2 or more, 0.25 or more, 0.3 or more, 0.35 or more, or 0.4 or more.
- the average displacement D 3 and the average displacement D 4 are the average values of the displacement D 1 and the displacement D 2 measured in the same manner as described in the first embodiment for the ten boron nitride particles B, respectively. Means.
- a large average restoration rate can be rephrased as a large average elastic deformation work ratio of the boron nitride particles B. That is, the larger the average elastic deformation work ratio of the boron nitride particles B, the easier it is for the boron nitride particles B to return to their original shape even if they are compressed.
- the average elastic deformation work ratio of the boron nitride particles B may be, for example, 0.1 or more, 0.15 or more, 0.2 or more, 0.25 or more, 0.3 or more, or 0.35 or more.
- the average elastic deformation work ratio means the average value of the elastic deformation work ratio ( WE / WT ) measured for 10 boron nitride particles B in the same manner as described in the first embodiment.
- the above-mentioned boron nitride particles are, for example, a step (arrangement step) of arranging a mixture containing boron carbide and boric acid and a base material formed of a carbon material in a container made of a carbon material, and a container. It can be produced by a method for producing boron nitride particles, which comprises a step (generation step) of generating boron nitride particles on a substrate by heating and pressurizing the inside in a nitrogen atmosphere. Another embodiment of the present invention is a method for producing such boron nitride particles.
- the container made of carbon material is a container that can accommodate the above mixture and base material.
- the container may be, for example, a carbon crucible.
- the container is preferably a container whose airtightness can be enhanced by covering the opening.
- the mixture may be placed at the bottom of the container and the substrate may be placed so as to be fixed to the side wall surface in the container or the inside of the lid.
- the base material formed of the carbon material may be, for example, a sheet, a plate, or a rod.
- the base material formed of the carbon material may be, for example, a carbon sheet (graphite sheet), a carbon plate, or a carbon rod.
- the boron carbide in the mixture may be, for example, powder (boron carbide powder).
- the boric acid in the mixture may be, for example, in the form of powder (boric acid powder).
- the mixture is obtained, for example, by mixing boron carbide powder, boron nitride powder, and boric acid powder by a known method.
- Boron carbide powder can be produced by a known production method.
- a method for producing boron carbide powder for example, boric acid and acetylene black are mixed and then heated at 1800 to 2400 ° C. for 1 to 10 hours in an atmosphere of an inert gas (for example, nitrogen gas) to form a lump.
- an inert gas for example, nitrogen gas
- a method for obtaining boron carbide particles can be mentioned.
- Boron carbide powder can be obtained by appropriately pulverizing, sieving, washing, removing impurities, drying and the like from the massive boron carbide particles obtained by this method.
- the average particle size of the boron carbide powder can be adjusted by adjusting the crushing time of the agglomerated carbon boron particles.
- the average particle size of the boron carbide powder may be 5 ⁇ m or more, 7 ⁇ m or more, or 10 ⁇ m or more, and may be 100 ⁇ m or less, 90 ⁇ m or less, 80 ⁇ m or less, or 70 ⁇ m or less.
- the average particle size of the boron carbide powder can be measured by a laser diffraction / scattering method.
- the mixing ratio of boron carbide and boric acid can be appropriately selected.
- the content of boric acid in the mixture is preferably 2 parts by mass or more, more preferably 5 parts by mass or more, still more preferably 5 parts by mass or more, based on 100 parts by mass of boron carbide, from the viewpoint that the boron nitride particles tend to be large. Is 8 parts by mass or more, and may be 100 parts by mass or less, 90 parts by mass or less, or 80 parts by mass or less.
- the mixture containing boron carbide and boric acid may further contain other components.
- other components include silicon carbide, carbon, iron oxide and the like.
- the inside of the container has a nitrogen atmosphere containing, for example, 95% by volume or more of nitrogen gas.
- the content of nitrogen gas in the nitrogen atmosphere is preferably 95% by volume or more, more preferably 99.9% by volume or more, and may be substantially 100% by volume.
- Ammonia gas or the like may be contained in the nitrogen atmosphere in addition to nitrogen gas.
- the heating temperature is preferably 1450 ° C. or higher, more preferably 1600 ° C. or higher, still more preferably 1800 ° C. or higher, from the viewpoint that the boron nitride particles tend to become large.
- the heating temperature may be 2400 ° C or lower, 2300 ° C or lower, or 2200 ° C or lower.
- the pressure at the time of pressurization is preferably 0.3 MPa or more, more preferably 0.6 MPa or more, from the viewpoint that the boron nitride particles tend to be large.
- the pressure at the time of pressurization may be 1.0 MPa or less, or 0.9 MPa or less.
- the time for heating and pressurizing is preferably 3 hours or more, more preferably 5 hours or more, from the viewpoint that the boron nitride particles tend to grow in size.
- the time for heating and pressurizing may be 40 hours or less, or 30 hours or less.
- the above-mentioned boron nitride particles are generated on a base material formed of a carbon material. Therefore, the boron nitride particles can be obtained by recovering the boron nitride particles on the substrate.
- the fact that the particles generated on the substrate are boron nitride particles means that a part of the particles generated on the substrate is recovered from the substrate, and the recovered particles are subjected to X-ray diffraction measurement to obtain a peak derived from boron nitride. Can be confirmed by detecting.
- the boron nitride particles obtained as described above may be classified so that only the boron nitride particles having the maximum length in a specific range can be obtained (classification step).
- the boron nitride particles obtained as described above can be mixed with a resin and used as a resin composition. That is, another embodiment of the present invention is a resin composition containing the above-mentioned boron nitride particles and a resin.
- Resins include epoxy resin, silicone resin, silicone rubber, acrylic resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyimide, polyamideimide, polyetherimide, polybutylene terephthalate, polyethylene terephthalate, and polyphenylene ether.
- Polyphenylene sulfide total aromatic polyester, polysulfone, liquid crystal polymer, polyether sulfone, polycarbonate, maleimide modified resin, ABS (acrylonitrile-butadiene-styrene) resin, AAS (acrylonitrile-acrylic rubber / styrene) resin, AES (acrylonitrile / ethylene) -Propin / diene rubber-styrene) resin and the like can be mentioned.
- the content of boron nitride particles is 15 based on the total volume of the resin composition from the viewpoint of improving the thermal conductivity of the heat radiating material and easily obtaining excellent heat radiating performance when the resin composition is used as the heat radiating material. It may be 50% by volume or more, 20% by volume or more, 30% by volume or more, 40% by volume or more, 50% by volume or more, or 60% by volume or more.
- the content of the boron nitride particles is from the viewpoint of suppressing the generation of voids when the resin composition is formed into the sheet-shaped heat-dissipating material, and suppressing the deterioration of the insulating property and the mechanical strength of the sheet-shaped heat-dissipating material. It may be 85% by volume or less or 80% by volume or less based on the total volume of the resin composition.
- the resin content may be appropriately adjusted according to the use of the resin composition, the required characteristics, and the like.
- the content of the resin is, for example, 15% by volume or more, 20% by volume or more, 30% by volume or more, 40% by volume or more, 50% by volume or more, or 60% by volume or more based on the total volume of the resin composition. It may be 85% by volume or less, 70% by volume or less, 60% by volume or less, 50% by volume or less, or 40% by volume or less.
- the resin composition may further contain a curing agent that cures the resin.
- the curing agent is appropriately selected according to the type of resin.
- examples of the curing agent used together with the epoxy resin include phenol novolac compounds, acid anhydrides, amino compounds, imidazole compounds and the like.
- the content of the curing agent may be, for example, 0.5 parts by mass or more or 1.0 part by mass or more, and may be 15 parts by mass or less or 10 parts by mass or less with respect to 100 parts by mass of the resin.
- the resin composition may further contain other components.
- Other components may be a curing accelerator (curing catalyst), a coupling agent, a wet dispersant, a surface conditioner and the like.
- curing accelerator examples include phosphorus-based curing accelerators such as tetraphenylphosphonium tetraphenylborate and triphenylphosphate, imidazole-based curing accelerators such as 2-phenyl-4,5-dihydroxymethylimidazole, and triphenyl.
- phosphorus-based curing accelerators such as tetraphenylphosphonium tetraphenylborate and triphenylphosphate
- imidazole-based curing accelerators such as 2-phenyl-4,5-dihydroxymethylimidazole
- triphenyl examples include amine-based curing accelerators such as boron monoethylamine.
- Examples of the coupling agent include a silane-based coupling agent, a titanate-based coupling agent, an aluminate-based coupling agent, and the like.
- Examples of the chemical bonding group contained in these coupling agents include a vinyl group, an epoxy group, an amino group, a methacryl group, a mercapto group and the like.
- wet dispersant examples include phosphate ester salts, carboxylic acid esters, polyesters, acrylic copolymers, block copolymers and the like.
- Examples of the surface conditioner include an acrylic surface conditioner, a silicone type surface conditioner, a vinyl type surface conditioner, and a fluorine type surface conditioner.
- the resin composition is, for example, a step of preparing boron nitride particles according to one embodiment (preparation step) and a step of mixing boron nitride particles or boron nitride powder with a resin (mixing step). ), And can be produced by the method for producing a resin composition.
- Another embodiment of the present invention is a method for producing such a resin composition.
- the mixing step in addition to the boron nitride particles and the resin, the above-mentioned curing agent and other components may be further mixed.
- the method for producing the resin composition according to the embodiment may further include a step (grinding step) of crushing the boron nitride particles or the boron nitride powder.
- the pulverization step may be performed between the preparation step and the mixing step, and may be performed at the same time as the mixing step (boron nitride particles or boron nitride powder is mixed with the resin, and at the same time, the boron nitride particles or boron nitride powder is mixed. May be crushed).
- the above resin composition can be used as a heat radiating material, for example.
- the heat radiating material can be produced, for example, by curing the resin composition.
- the method for curing the resin composition is appropriately selected depending on the type of the resin (and the curing agent used as necessary) contained in the resin composition. For example, when the resin is an epoxy resin and the above-mentioned curing agent is used together, the resin can be cured by heating.
- boron nitride particles (powder)
- the lumpy boron carbide particles were pulverized by a pulverizer to obtain a boron carbide powder having an average particle diameter of 10 ⁇ m.
- 100 parts by mass of the obtained boron carbide powder and 9 parts by mass of boric acid are mixed, the obtained mixture is filled in a carbon crucible, the opening of the carbon crucible is covered with a carbon sheet (manufactured by NeoGraf), and the carbon crucible is used.
- the carbon sheet was fixed by sandwiching the carbon sheet between the lid and the carbon crucible.
- Particles were generated on the carbon sheet by heating the covered carbon rubbing pot in a resistance heating furnace in a nitrogen gas atmosphere at 2000 ° C. and 0.85 MPa for 10 hours.
- each of the 10 boron nitride particles B other than the boron nitride particles A in the obtained boron nitride powder was observed with a microscope attached to a microcompression tester (manufactured by Shimadzu Corporation, MCT series).
- MCT series microcompression tester
- the maximum length ( La ) and the maximum length (L b ) of the boron nitride particles in the direction perpendicular to the direction having the maximum length ( La ) were measured.
- the aspect ratio ( La / L b ) was calculated from the measured maximum lengths La and L b . The results are shown in Table 1.
- FIG. 4 shows the relationship between the load amount and the displacement amount of the boron nitride particles in the load unloading test for one of the boron nitride particles B (particle No. 1) subjected to the load unloading test.
- WP be the area of the region E surrounded by the unloading curve L2, the straight line L3, and the straight line L4 parallel to the Y axis connecting the intersection of the load curve L1 and the unloading curve L2 and the straight line L3.
- the elastic deformation work ratio WE / WT was calculated when WE was used and the total of WP and WE ( WP + WE ) was taken as the total work amount WT .
- Table 1 The results are shown in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
(1)上記窒化ホウ素粉末から選ばれる10個の窒化ホウ素粒子Aのそれぞれについて、上記窒化ホウ素粒子Aの短手方向に0.27mN/秒の負荷速度で負荷をかけて圧壊させるために必要な負荷の大きさを測定し、上記負荷の大きさの平均値Fを算出する算出工程
(2)上記窒化ホウ素粒子Aとは別に上記窒化ホウ素粉末から選ばれる窒化ホウ素粒子Bの短手方向に、0.27mN/秒の負荷速度で0.2mNから上記負荷の大きさの平均値Fの50%の大きさまで徐々に負荷をかけて圧縮する負荷工程
(3)上記窒化ホウ素粒子Bに対し、0.27mN/秒の除荷速度で0.2mNまで徐々に除荷する除荷工程
をこの順に備える負荷除荷試験に供されたときに、上記負荷工程で圧縮された上記窒化ホウ素粒子Bの上記短手方向の長さの少なくとも一部が上記除荷工程で戻る、窒化ホウ素粉末である。
本発明の一実施形態(第一実施形態)は、細長形状を有する窒化ホウ素粒子である。細長形状を有する窒化ホウ素粒子は、例えば、1.5以上のアスペクト比を有してよい。窒化ホウ素粒子のアスペクト比は、1.6以上、1.7以上、1.8以上、1.9以上、2.0以上、2.5以上、又は3.0以上であってよく、12.0以下、10.0以下、9.5以下、9.0以下、8.0以下であってよい。
本発明の他の一実施形態(第二実施形態)は、細長形状を有する窒化ホウ素粒子の集合体(複数の細長形状を有する窒化ホウ素粒子で構成される粉体)である窒化ホウ素粉末である。第二実施形態に係る窒化ホウ素粉末において、各窒化ホウ素粒子は、上述した第一実施形態に係る窒化ホウ素粒子であってよい。
(1)窒化ホウ素粉末から選ばれる10個の窒化ホウ素粒子Aのそれぞれについて、窒化ホウ素粒子Aの短手方向に0.27mN/秒の負荷速度で負荷をかけて圧壊させるために必要な負荷の大きさを測定し、負荷の大きさの平均値Fを算出する算出工程
(2)窒化ホウ素粒子Aとは別に窒化ホウ素粉末から選ばれる窒化ホウ素粒子Bのそれぞれの短手方向に、0.27mN/秒の負荷速度で0.2mNから負荷の大きさの平均値Fの50%の大きさまで徐々に負荷をかけて圧縮する負荷工程
(3)0.27mN/秒の除荷速度で0.2mNまで徐々に除荷する除荷工程
をこの順に備える負荷除荷試験に供されたときに、負荷工程で圧縮された窒化ホウ素粒子Bの短手方向の長さの少なくとも一部が除荷工程で戻る、窒化ホウ素粉末であってよい。
塊状の炭化ホウ素粒子を粉砕機により粉砕し、平均粒子径が10μmである炭化ホウ素粉末を得た。得られた炭化ホウ素粉末100質量部と、ホウ酸9質量部とを混合し、得られた混合物をカーボンルツボに充填し、カーボンルツボの開口部をカーボンシート(NeoGraf社製)で覆い、カーボンルツボの蓋とカーボンルツボとでカーボンシートを挟むことで、カーボンシートを固定した。蓋をしたカーボンルツボを抵抗加熱炉内で、窒素ガス雰囲気下で、2000℃、0.85MPaの条件で10時間加熱することで、カーボンシート上に粒子が生成した。
得られた窒化ホウ素粉末中の10個の窒化ホウ素粒子Aについて、微小圧縮試験機(株式会社島津製作所製、MCTシリーズ)を使用して、窒化ホウ素粒子Aのそれぞれに対して、短手方向に0.27mN/秒の負荷速度で徐々に負荷をかけて圧壊させた。各窒化ホウ素粒子Aを圧壊させるのに必要な負荷の大きさの平均値Fは40mNであった。
Claims (9)
- 細長形状を有する窒化ホウ素粒子であって、
前記窒化ホウ素粒子の短手方向に0.27mN/秒の負荷速度で0.2mNから20mNまで徐々に負荷をかけて圧縮する負荷工程と、0.27mN/秒の除荷速度で0.2mNまで徐々に除荷する除荷工程とをこの順に備える負荷除荷試験に供されたときに、前記負荷工程で圧縮された前記窒化ホウ素粒子の前記短手方向の長さの少なくとも一部が前記除荷工程で戻る、窒化ホウ素粒子。 - 前記負荷工程において前記窒化ホウ素粒子が前記短手方向に変位した量をD1、前記除荷工程において前記窒化ホウ素粒子が前記短手方向に変位した量をD2としたときに、D2/D1が0.2以上である、請求項1に記載の窒化ホウ素粒子。
- 窒化ホウ素により形成される外殻部と、前記外殻部に囲われた中空部と、を有する、請求項1又は2に記載の窒化ホウ素粒子。
- 細長形状を有する窒化ホウ素粒子の集合体である窒化ホウ素粉末であって、
下記(1)~(3)の工程:
(1)前記窒化ホウ素粉末から選ばれる10個の窒化ホウ素粒子Aのそれぞれについて、前記窒化ホウ素粒子Aの短手方向に0.27mN/秒の負荷速度で負荷をかけて圧壊させるために必要な負荷の大きさを測定し、前記負荷の大きさの平均値Fを算出する算出工程
(2)前記窒化ホウ素粒子Aとは別に前記窒化ホウ素粉末から選ばれる窒化ホウ素粒子Bの短手方向に、0.27mN/秒の負荷速度で0.2mNから前記負荷の大きさの平均値Fの50%の大きさまで徐々に負荷をかけて圧縮する負荷工程
(3)前記窒化ホウ素粒子Bに対し、0.27mN/秒の除荷速度で0.2mNまで徐々に除荷する除荷工程
をこの順に備える負荷除荷試験に供されたときに、前記負荷工程で圧縮された前記窒化ホウ素粒子Bの前記短手方向の長さの少なくとも一部が前記除荷工程で戻る、窒化ホウ素粉末。 - 前記負荷工程において前記窒化ホウ素粒子Bが前記短手方向に変位した量の平均値をD3、前記除荷工程において前記窒化ホウ素粒子Bが前記短手方向に変位した量の平均値をD4としたときに、D4/D3が0.2以上である、請求項4に記載の窒化ホウ素粉末。
- 前記細長形状を有する窒化ホウ素粒子が、窒化ホウ素により形成される外殻部と、前記外殻部に囲われた中空部と、を有する、請求項4又は5に記載の窒化ホウ素粉末。
- 請求項1~3のいずれか一項に記載の窒化ホウ素粒子又は請求項4~6のいずれか一項に記載の窒化ホウ素粉末と、樹脂と、を含有する樹脂組成物。
- 請求項1~3のいずれか一項に記載の窒化ホウ素粒子又は請求項4~6のいずれか一項に記載の窒化ホウ素粉末を用意する工程と、
前記窒化ホウ素粒子又は前記窒化ホウ素粉末を樹脂と混合する工程と、を備える、樹脂組成物の製造方法。 - 前記窒化ホウ素粒子又は前記窒化ホウ素粉末を粉砕する工程を更に備える、請求項8に記載の樹脂組成物の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/040,588 US20240253989A1 (en) | 2020-08-20 | 2021-08-19 | Boron nitride particle, boron nitride powder, resin composition, and resin composition production method |
JP2022544005A JP7259137B2 (ja) | 2020-08-20 | 2021-08-19 | 窒化ホウ素粒子、窒化ホウ素粉末、樹脂組成物、及び樹脂組成物の製造方法 |
KR1020237005815A KR20230051670A (ko) | 2020-08-20 | 2021-08-19 | 질화 붕소 입자, 질화 붕소 분말, 수지 조성물, 및 수지 조성물의 제조 방법 |
CN202180035668.8A CN115605428A (zh) | 2020-08-20 | 2021-08-19 | 氮化硼粒子、氮化硼粉末、树脂组合物及树脂组合物的制造方法 |
JP2023061189A JP2023083333A (ja) | 2020-08-20 | 2023-04-05 | 窒化ホウ素粒子、窒化ホウ素粉末、樹脂組成物、及び樹脂組成物の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020139486 | 2020-08-20 | ||
JP2020-139486 | 2020-08-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022039240A1 true WO2022039240A1 (ja) | 2022-02-24 |
Family
ID=80323556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/030451 WO2022039240A1 (ja) | 2020-08-20 | 2021-08-19 | 窒化ホウ素粒子、窒化ホウ素粉末、樹脂組成物、及び樹脂組成物の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240253989A1 (ja) |
JP (2) | JP7259137B2 (ja) |
KR (1) | KR20230051670A (ja) |
CN (1) | CN115605428A (ja) |
WO (1) | WO2022039240A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022202825A1 (ja) * | 2021-03-25 | 2022-09-29 | デンカ株式会社 | 窒化ホウ素粉末及び樹脂組成物 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008214130A (ja) * | 2007-03-05 | 2008-09-18 | Teijin Ltd | 窒化ホウ素ナノチューブ分散液、及びそれより得られる不織布 |
WO2018139644A1 (ja) * | 2017-01-30 | 2018-08-02 | 積水化学工業株式会社 | 樹脂材料及び積層体 |
JP2019043792A (ja) * | 2017-08-31 | 2019-03-22 | デンカ株式会社 | 六方晶窒化ホウ素粉末及び化粧料 |
CN109704296A (zh) * | 2019-02-22 | 2019-05-03 | 中国科学院苏州纳米技术与纳米仿生研究所 | 柔性氮化硼纳米带气凝胶及其制备方法 |
US20190276310A1 (en) * | 2018-03-07 | 2019-09-12 | Rogers Corporation | Method for preparing hexagonal boron nitride by templating |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3269682B1 (en) * | 2011-11-29 | 2020-01-01 | Mitsubishi Chemical Corporation | Agglomerated boron nitride particles, composition containing said particles, and three-dimensional integrated circuit having layer comprising said composition |
EP2868641B1 (en) * | 2012-06-27 | 2020-01-15 | Mizushima Ferroalloy Co., Ltd. | Sintered spherical bn particles with concave part, method for producing same, and polymer material comprising them |
JP6447205B2 (ja) * | 2015-02-09 | 2019-01-09 | 住友電気工業株式会社 | 立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法 |
JP6516509B2 (ja) | 2015-03-02 | 2019-05-22 | 株式会社トクヤマ | 六方晶窒化ホウ素粉末及びその製造方法 |
WO2018139642A1 (ja) * | 2017-01-30 | 2018-08-02 | 積水化学工業株式会社 | 樹脂材料及び積層体 |
JP6942894B2 (ja) | 2018-10-29 | 2021-09-29 | 日立金属株式会社 | 窒化ホウ素ナノ物質の製造方法および窒化ホウ素ナノ物質、複合材料の製造方法および複合材料、ならびに窒化ホウ素ナノ物質の精製方法 |
-
2021
- 2021-08-19 WO PCT/JP2021/030451 patent/WO2022039240A1/ja active Application Filing
- 2021-08-19 CN CN202180035668.8A patent/CN115605428A/zh active Pending
- 2021-08-19 KR KR1020237005815A patent/KR20230051670A/ko unknown
- 2021-08-19 JP JP2022544005A patent/JP7259137B2/ja active Active
- 2021-08-19 US US18/040,588 patent/US20240253989A1/en active Pending
-
2023
- 2023-04-05 JP JP2023061189A patent/JP2023083333A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008214130A (ja) * | 2007-03-05 | 2008-09-18 | Teijin Ltd | 窒化ホウ素ナノチューブ分散液、及びそれより得られる不織布 |
WO2018139644A1 (ja) * | 2017-01-30 | 2018-08-02 | 積水化学工業株式会社 | 樹脂材料及び積層体 |
JP2019043792A (ja) * | 2017-08-31 | 2019-03-22 | デンカ株式会社 | 六方晶窒化ホウ素粉末及び化粧料 |
US20190276310A1 (en) * | 2018-03-07 | 2019-09-12 | Rogers Corporation | Method for preparing hexagonal boron nitride by templating |
CN109704296A (zh) * | 2019-02-22 | 2019-05-03 | 中国科学院苏州纳米技术与纳米仿生研究所 | 柔性氮化硼纳米带气凝胶及其制备方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022202825A1 (ja) * | 2021-03-25 | 2022-09-29 | デンカ株式会社 | 窒化ホウ素粉末及び樹脂組成物 |
Also Published As
Publication number | Publication date |
---|---|
US20240253989A1 (en) | 2024-08-01 |
JP7259137B2 (ja) | 2023-04-17 |
JP2023083333A (ja) | 2023-06-15 |
KR20230051670A (ko) | 2023-04-18 |
CN115605428A (zh) | 2023-01-13 |
JPWO2022039240A1 (ja) | 2022-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022039240A1 (ja) | 窒化ホウ素粒子、窒化ホウ素粉末、樹脂組成物、及び樹脂組成物の製造方法 | |
WO2022039237A1 (ja) | 窒化ホウ素粒子、樹脂組成物、及び樹脂組成物の製造方法 | |
JP7521021B2 (ja) | 窒化ホウ素粒子、樹脂組成物、及び樹脂組成物の製造方法 | |
WO2022039234A1 (ja) | 窒化ホウ素粒子、窒化ホウ素粒子の製造方法、樹脂組成物、及び樹脂組成物の製造方法 | |
JP7241248B2 (ja) | 窒化ホウ素粒子、樹脂組成物、及び樹脂組成物の製造方法 | |
JP7390684B2 (ja) | 黒鉛材料成形品の製造方法 | |
JP7158634B2 (ja) | 中空部を有する窒化ホウ素粒子を含有するシート | |
JP7555438B2 (ja) | 複合材料、放熱材及び放熱材の製造方法 | |
JP7301920B2 (ja) | 特定の窒化ホウ素粒子を含む粉末、放熱シート及び放熱シートの製造方法 | |
JP7357181B1 (ja) | 窒化ホウ素粒子及び放熱シート | |
WO2024048376A1 (ja) | 窒化ホウ素粒子、窒化ホウ素粒子の製造方法、及び樹脂組成物 | |
WO2024048377A1 (ja) | シートの製造方法及びシート | |
WO2024048375A1 (ja) | 窒化ホウ素粉末及び樹脂組成物 | |
JP7303950B2 (ja) | 窒化ホウ素粉末及び樹脂組成物 | |
Mou’ad et al. | Hybridization of a Thermoplastic Natural Rubber Composite with Multi-Walled Carbon Nanotubes/Silicon Carbide Nanoparticles and the Effects on Morphological, Thermal, and Mechanical Properties | |
JPH04139013A (ja) | 超微細炭素質粉末の製造方法 | |
Drzal | Graphite nanoreinforcements for aerospace nanocomposites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21858384 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022544005 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18040588 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20237005815 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21858384 Country of ref document: EP Kind code of ref document: A1 |