WO2020158758A1 - 窒化ホウ素粉末及び樹脂組成物 - Google Patents

窒化ホウ素粉末及び樹脂組成物 Download PDF

Info

Publication number
WO2020158758A1
WO2020158758A1 PCT/JP2020/003043 JP2020003043W WO2020158758A1 WO 2020158758 A1 WO2020158758 A1 WO 2020158758A1 JP 2020003043 W JP2020003043 W JP 2020003043W WO 2020158758 A1 WO2020158758 A1 WO 2020158758A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
nitride powder
less
boron
resin
Prior art date
Application number
PCT/JP2020/003043
Other languages
English (en)
French (fr)
Inventor
祐輔 佐々木
黒川 史裕
市川 恒希
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2020569656A priority Critical patent/JPWO2020158758A1/ja
Priority to CN202080010063.9A priority patent/CN113329970A/zh
Priority to US17/423,256 priority patent/US20220073698A1/en
Priority to KR1020217026197A priority patent/KR20210114506A/ko
Publication of WO2020158758A1 publication Critical patent/WO2020158758A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0646Preparation by pyrolysis of boron and nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/5073Amines heterocyclic containing only nitrogen as a heteroatom having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape

Definitions

  • the present invention relates to a boron nitride powder and a resin composition.
  • the challenge is to efficiently dissipate the heat generated during use.
  • the insulating layer of the printed wiring board that mounts the electronic component has high thermal conductivity, and the electronic component or the printed wiring board is attached to the heat sink via electrically insulating thermal interface materials (Thermal Interface Materials). Things have been done. Ceramic powder having high thermal conductivity is used for the insulating layer and the thermal interface material.
  • Boron nitride powder which has characteristics such as high thermal conductivity, high insulation, and low relative dielectric constant, has been attracting attention as the ceramic powder.
  • the shape of the agglomerate is made more spherical to improve the filling property, the powder strength is improved, and the purification is performed to improve the insulating property of the heat transfer sheet or the like filled with the powder.
  • a hexagonal boron nitride powder that has achieved improvement and stabilization of withstand voltage, the ratio of the major axis of the primary particles to the thickness is 5 to 10 on average, and the size of the aggregate of primary particles is 2 ⁇ m in terms of the average particle diameter (D50).
  • a hexagonal boron nitride powder having a bulk density of 0.5 to 1.0 g/cm 3 in a range of 200 ⁇ m or less.
  • the present invention aims to improve the thermal conductivity of the boron nitride powder.
  • the present inventors have studied to solve the above problems, in addition to increasing the average diameter of the boron nitride powder is effective, surprisingly, in the boron nitride powder having a large average diameter. Found that the average sphericity smaller than a predetermined value is advantageous for improving the thermal conductivity.
  • one aspect of the present invention is a boron nitride powder obtained by aggregating primary particles of boron nitride, the boron nitride powder having an average diameter of 40 ⁇ m or more and an average sphericity of less than 0.70. ..
  • the crushing strength of the boron nitride powder may be 5 MPa or more.
  • Another aspect of the present invention is a resin composition containing a resin and the above boron nitride powder.
  • the thermal conductivity of boron nitride powder can be improved.
  • the boron nitride powder is a boron nitride powder formed by aggregating primary particles of boron nitride.
  • the boron nitride powder contains a plurality of lumped boron nitride particles, and each lumped boron nitride particle is an aggregate of a plurality of boron nitride primary particles.
  • the primary particles of boron nitride may be, for example, flaky hexagonal boron nitride particles.
  • the length of the primary particles of boron nitride in the longitudinal direction may be, for example, 1 ⁇ m or more and 10 ⁇ m or less.
  • Boron nitride powder has an average diameter (average particle diameter) of 40 ⁇ m or more.
  • the average diameter of the boron nitride powder means the volume average diameter measured by the laser diffraction scattering method.
  • the average diameter of the boron nitride powder is preferably 50 ⁇ m or more, more preferably 55 ⁇ m or more, 60 ⁇ m or more, or 65 ⁇ m or more, more preferably 70 ⁇ m or more, 75 ⁇ m or more, from the viewpoint of further improving the thermal conductivity. Alternatively, it is 80 ⁇ m or more, particularly preferably 85 ⁇ m or more.
  • the average diameter of the boron nitride powder may be, for example, 150 ⁇ m or less, 120 ⁇ m or less, or 100 ⁇ m or less.
  • the thermal conductivity can be improved by setting the average sphericity to less than 0.70.
  • the particle size of boron nitride measured by the total particle measurement is 5 in cumulative frequency. Only lumped boron nitride particles having a particle size equal to or greater than the particle size (5% cumulative size) to be used are used in calculating the average sphericity.
  • the average sphericity of the boron nitride powder is preferably 0.65 or less, more preferably 0.60 or less, still more preferably 0.55 or less, and particularly preferably 0. 5 or less from the viewpoint that the thermal conductivity can be further improved. It is 50 or less.
  • the average sphericity of the boron nitride powder may be, for example, 0.30 or more, 0.35 or more, or 0.40 or more.
  • the crushing strength of the boron nitride powder is, for example, when using the boron nitride powder mixed with a resin, the boron nitride powder collapses due to stress during kneading or pressing with the resin, and from the viewpoint of suppressing a decrease in thermal conductivity. , Preferably 5.0 MPa or more, more preferably 5.5 MPa or more, still more preferably 6.0 MPa or more.
  • the crush strength of the boron nitride powder means the crush strength (particle strength, also referred to as single granule crush strength) measured according to JIS R1639-5:2007.
  • the boron nitride powder having the above average diameter and average sphericity is, for example, a pulverizing step of pulverizing massive boron carbide and a nitriding step of nitriding the pulverized boron carbide to obtain boron carbonitride. And a decarburizing step of decarburizing boron carbonitride.
  • lumpy carbon boron (boron carbide lump) is crushed using a general crusher or crusher.
  • boron carbide powder having an average diameter of 40 ⁇ m or more and an average sphericity of less than 0.70 is obtained.
  • the average diameter and the average sphericity of the boron carbide powder are measured in the same manner as the average diameter and the average sphericity of the boron nitride powder described above.
  • the average diameter (particle size distribution) and average sphericity (particle shape) of the boron carbide powder are adjusted. can do.
  • boron carbonitride is obtained by firing the boron carbide powder under an atmosphere for promoting the nitriding reaction and under a pressure condition.
  • the atmosphere in the nitriding step is an atmosphere in which the nitriding reaction proceeds, and may be, for example, nitrogen gas, ammonia gas, or the like, and may be one kind alone or a combination of two or more kinds.
  • the atmosphere is preferably nitrogen gas from the viewpoint of nitridability and cost.
  • the nitrogen gas content in the atmosphere is preferably 95% by volume or more, more preferably 99.9% by volume or more.
  • the pressure in the nitriding step is preferably 0.6 MPa or more, more preferably 0.7 MPa or more, preferably 1.0 MPa or less, more preferably 0.9 MPa or less.
  • the pressure is more preferably 0.7 to 1.0 MPa.
  • the firing temperature in the nitriding step is preferably 1800°C or higher, more preferably 1900°C or higher, preferably 2400°C or lower, more preferably 2200°C or lower.
  • the firing temperature is more preferably 1800 to 2200°C.
  • the pressure conditions and the firing temperature are preferably 1800° C. or higher and 0.7 to 1.0 MPa, because nitriding of boron carbide is further favorably performed and the conditions are industrially appropriate.
  • the firing time in the nitriding step is appropriately selected within a range where nitriding proceeds sufficiently, and is preferably 6 hours or longer, more preferably 8 hours or longer, preferably 30 hours or shorter, and more preferably 20 hours or shorter.
  • the boron carbonitride obtained in the nitriding process is subjected to a heat treatment in which it is held at a predetermined holding temperature for a certain time in an atmosphere of atmospheric pressure or higher.
  • the atmosphere in the decarburization process is a normal pressure (atmospheric pressure) atmosphere or a pressurized atmosphere.
  • the pressure may be, for example, 0.5 MPa or less, preferably 0.3 MPa or less.
  • the temperature is raised to a predetermined temperature (the temperature at which decarburization can be started) and then further raised to the holding temperature at a predetermined rate.
  • the predetermined temperature (the temperature at which decarburization can start) can be set according to the system, and for example, may be 1000°C or higher, 1500°C or lower, and preferably 1200°C or lower.
  • the rate of raising the temperature from the predetermined temperature (temperature at which decarburization can be started) to the holding temperature may be, for example, 5° C./min or less, preferably 4° C./min or less, 3° C./min or less, or 2° C. It may be less than or equal to /minute.
  • the holding temperature is preferably 1800° C. or higher, more preferably 2000° C. or higher from the viewpoint that grain growth is likely to occur easily and the thermal conductivity of the obtained boron nitride powder can be further improved.
  • the holding temperature may be preferably 2200°C or lower, more preferably 2100°C or lower.
  • the holding time at the holding temperature is appropriately selected within a range where crystallization is sufficiently advanced, and may be, for example, more than 0.5 hours, and preferably 1 hour or more, more preferably from the viewpoint of favorably causing grain growth. Is 3 hours or more, more preferably 5 hours or more, particularly preferably 10 hours or more.
  • the holding time at the holding temperature may be, for example, less than 40 hours, and it is possible to reduce the decrease in the grain strength due to excessive progress of grain growth. Further, from the viewpoint of reducing industrial inconvenience, preferably 30 hours or less, It is more preferably 20 hours or less.
  • a boron source may be mixed for decarburization and crystallization.
  • Boron sources include boric acid, boron oxide, or mixtures thereof. In this case, other additives used in the technical field may be further used if necessary.
  • the mixing ratio of boron carbonitride and boron source is appropriately selected.
  • the ratio of boric acid or boron oxide may be, for example, 100 parts by mass or more, and preferably 150 parts by mass or more, relative to 100 parts by mass of boron carbonitride. Further, it may be, for example, 300 parts by mass or less, preferably 250 parts by mass or less.
  • the step (classifying step) of classifying the boron nitride powder obtained as described above into a boron nitride powder having a desired size (diameter) by a sieve may be carried out.
  • a boron nitride powder having a desired size (diameter) in a range where the average diameter is 40 ⁇ m or more can be obtained more suitably.
  • the boron nitride powder described above is suitable for use as a heat dissipation member, for example.
  • the boron nitride powder is used for a heat dissipation member, it is used as a resin composition mixed with a resin, for example.
  • another embodiment of the present invention is a resin composition containing a resin and the above boron nitride powder.
  • the resin examples include epoxy resin, silicone resin, silicone rubber, acrylic resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyimide, polyamideimide, polyetherimide, polybutylene terephthalate, polyethylene terephthalate, Polyphenylene ether, polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyether sulfone, polycarbonate, maleimide modified resin, ABS (acrylonitrile-butadiene-styrene) resin, AAS (acrylonitrile-acrylic rubber/styrene) resin, AES (acrylonitrile) -Ethylene/propylene/diene rubber-styrene) resin or the like can be used.
  • ABS acrylonitrile-butadiene-styrene
  • AAS acrylonitrile-acrylic rubber/styrene
  • AES acrylonitrile
  • the resin is preferably an epoxy resin, more preferably a bisphenol A type epoxy resin or a naphthalene type, from the viewpoint of excellent heat resistance and adhesive strength to a circuit. It is an epoxy resin.
  • the resin composition is used as a thermal interface material, the resin is preferably a silicone resin from the viewpoint of excellent heat resistance, flexibility and adhesion to a heat sink and the like.
  • the content of the resin may be, for example, 15% by volume or more, 20% by volume or more, 30% by volume or more, or 40% by volume or more, and 70% by volume or less, 60% by volume, based on the total volume of the resin composition. % Or less, or 50% by volume or less.
  • the content of the boron nitride powder is preferably 30% by volume or more, more preferably from the viewpoint of improving the thermal conductivity of the resin composition and easily obtaining excellent heat dissipation performance, based on the total volume of the resin composition. It is 40% by volume or more, more preferably 50% by volume or more, particularly preferably 60% by volume or more, and preferably 85% by volume or less from the viewpoint of suppressing the occurrence of voids during molding and the deterioration of insulating properties and mechanical strength. , And more preferably 80% by volume or less.
  • the resin composition may further contain a curing agent that cures the resin.
  • the curing agent is appropriately selected depending on the type of resin.
  • a curing agent used together with an epoxy resin a phenol novolac compound, an acid anhydride, an amino compound, an imidazole compound and the like can be mentioned, and an imidazole compound is preferably used.
  • the content of the curing agent may be, for example, 0.5 parts by mass or more or 1.0 parts by mass or more, and 15 parts by mass or less or 10 parts by mass or less with respect to 100 parts by mass of the resin.
  • Example 1 A carbon crucible was filled with boron carbide powder having an average diameter of 55 ⁇ m and an average sphericity of less than 0.70, and carbonitriding was performed by using a resistance heating furnace and heating in a nitrogen gas atmosphere at 2000° C. and 0.8 MPa for 20 hours. Boron (B 4 CN 4 ) was obtained. 100 parts by mass of the obtained boron carbonitride and 200 parts by mass of boric acid were mixed using a Henschel mixer, and then the mixture was charged into a boron nitride crucible, and a resistance heating furnace was used under a normal pressure and a nitrogen gas atmosphere. By heating at a holding temperature of 2000° C.
  • boron nitride particles in which primary particles were aggregated and formed into lumps were obtained.
  • the obtained boron nitride particles were crushed in a mortar for 10 minutes, and then classified with a nylon sieve having a mesh size of 109 ⁇ m.
  • lumpy boron nitride particles boron nitride powder in which primary particles were aggregated to form lumps were obtained.
  • Example 2 A boron nitride powder having an average diameter of 30 ⁇ m and an average sphericity of less than 0.70 was used, and the boron nitride powder was classified under the same conditions as in Example 1 except that the size of the sieve when classifying the boron nitride powder was changed to 75 ⁇ m. Obtained.
  • Example 3 A boron nitride powder having an average diameter of 33 ⁇ m and an average sphericity of less than 0.70 was used, and the boron nitride powder was prepared under the same conditions as in Example 1, except that the sieve opening of the sieve when classifying the boron nitride powder was changed to 86 ⁇ m. Obtained.
  • Example 4 A boron nitride powder having an average diameter of 37 ⁇ m and an average sphericity of less than 0.70 was used, and the boron nitride powder was prepared under the same conditions as in Example 1 except that the size of the sieve when classifying the boron nitride powder was changed to 86 ⁇ m. Obtained.
  • a hexagonal boron nitride powder having a particle size of 12.8 ⁇ m, calcium carbonate (“PC-700” manufactured by Shiraishi Industry Co., Ltd.) and water were mixed using a Henschel mixer, and then pulverized with a ball mill to obtain a water slurry. ..
  • the average diameter (volume average diameter) of each of the obtained boron nitride powders was measured using a laser diffraction/scattering particle size distribution analyzer (LS-13320) manufactured by Beckman Coulter.
  • the particle size of boron nitride measured by the total particle measurement is 5 in cumulative frequency. Only lumped boron nitride particles having a particle size equal to or larger than the particle size (5% cumulative size) to be used were used when calculating the average sphericity.
  • the crush strength of each of the obtained boron nitride powders was measured according to JIS R1639-5:2007.
  • a micro compression tester (“MCT-W500”, manufactured by Shimadzu Corporation) was used.
  • a measurement sample having a size of 10 mm ⁇ 10 mm was cut out from the obtained sheet, and a thermal diffusivity A (m 2 /sec) of the measurement sample was measured by a laser flash method using a xenon flash analyzer (NETZSCH, LFA447NanoFlash).
  • NETZSCH xenon flash analyzer
  • the specific gravity B (kg/m 3 ) of the measurement sample was measured by the Archimedes method.
  • the specific heat capacity C (J/(kg ⁇ K)) of the measurement sample was measured using a differential scanning calorimeter (DSC; ThermoPlusEvo DSC8230, manufactured by Rigaku Corporation).
  • DSC differential scanning calorimeter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明の一側面は、窒化ホウ素の一次粒子が凝集してなる窒化ホウ素粉末であって、平均径が40μm以上であり、平均球形度が0.70未満である、窒化ホウ素粉末である。

Description

窒化ホウ素粉末及び樹脂組成物
 本発明は、窒化ホウ素粉末及び樹脂組成物に関する。
 パワーデバイス、トランジスタ、サイリスタ、CPU等の電子部品においては、使用時に発生する熱を効率的に放熱することが課題となっている。この課題に対して、従来、電子部品を実装するプリント配線板の絶縁層の高熱伝導化や、電子部品又はプリント配線板を電気絶縁性の熱インターフェース材(Thermal Interface Materials)を介してヒートシンクに取り付けることが行われてきた。このような絶縁層及び熱インターフェース材には、熱伝導率が高いセラミックス粉末が用いられる。
 セラミックス粉末としては、高熱伝導率、高絶縁性、低比誘電率等の特性を有している窒化ホウ素粉末が注目されている。例えば、特許文献1には、凝集体の形状を一層球状化して充填性を高めると共に、粉末強度の向上を図り、さらには高純度化により、当該粉末を充填した伝熱シート等の絶縁性の向上および耐電圧の安定化を達成した六方晶窒化ホウ素粉末として、一次粒子の長径と厚みの比が平均で5~10で、一次粒子の凝集体の大きさが平均粒径(D50)で2μm以上200μm以下で、嵩密度が0.5~1.0g/cmであることを特徴とする六方晶窒化ホウ素粉末が開示されている。
特開2011-98882号公報
 ところで、近年、電子部品内の回路の高速化及び高集積化や、電子部品のプリント配線板への実装密度の増加に伴って、放熱の重要性が更に高まっている。そのため、従来にも増して高い熱伝導率を有する窒化ホウ素粉末が求められている。
 そこで、本発明は、窒化ホウ素粉末の熱伝導率を向上させることを目的とする。
 本発明者らは、上記の課題を解決するために検討した結果、窒化ホウ素粉末の平均径を大きくすることが有効であることに加えて、驚くべきことに、平均径が大きい窒化ホウ素粉末においては、平均球形度が所定の値よりも小さいほうが熱伝導率の向上に有利であることを見出した。
 すなわち、本発明の一側面は、窒化ホウ素の一次粒子が凝集してなる窒化ホウ素粉末であって、平均径が40μm以上であり、平均球形度が0.70未満である、窒化ホウ素粉末である。窒化ホウ素粉末の圧壊強度は、5MPa以上であってよい。
 本発明の他の一側面は、樹脂と、上記の窒化ホウ素粉末と、を含有する樹脂組成物である。
 本発明によれば、窒化ホウ素粉末の熱伝導率を向上させることができる。
 以下、本発明の実施形態について詳細に説明する。
 一実施形態に係る窒化ホウ素粉末は、窒化ホウ素の一次粒子が凝集してなる窒化ホウ素粉末である。言い換えれば、窒化ホウ素粉末は、複数の塊状窒化ホウ素粒子を含んでおり、各塊状窒化ホウ素粒子は、複数の窒化ホウ素の一次粒子の凝集体となっている。窒化ホウ素の一次粒子は、例えば鱗片状の六方晶窒化ホウ素粒子であってよい。この場合、窒化ホウ素の一次粒子の長手方向の長さは、例えば、1μm以上であってよく、10μm以下であってよい。
 窒化ホウ素粉末は、40μm以上の平均径(平均粒子径)を有している。窒化ホウ素粉末の平均径は、レーザー回折散乱法により測定される体積平均径を意味する。窒化ホウ素粉末の平均径は、熱伝導率を更に向上させることができる観点から、好ましくは50μm以上、より好ましくは、55μm以上、60μm以上、又は65μm以上、更に好ましくは、70μm以上、75μm以上、又は80μm以上、特に好ましくは85μm以上である。窒化ホウ素粉末の平均径は、例えば、150μm以下、120μm以下、又は100μm以下であってよい。
 以上のような平均径を有する窒化ホウ素粉末において、平均球形度を0.70未満とすることにより、熱伝導率の向上が図られる。窒化ホウ素粉末の平均球形度は、粒子像分析装置(例えば、粒子形状画像解析装置「PITA-4」(セイシン企業社製))を用いて、5000個の塊状窒化ホウ素粒子について円形度を自動計測し、下記式:
 球形度=(円形度)
に従って求められる各塊状窒化ホウ素粒子の球形度の平均値として算出される。
 ただし、粒子像分析装置を用いた測定では、塊状窒化ホウ素粒子から脱離した窒化ホウ素の一次粒子も測定対象となるため、全粒子測定により測定される窒化ホウ素の粒子径が頻度の累積で5%になる粒子径(5%累積径)以上の粒子径を有する塊状窒化ホウ素粒子のみを、平均球形度を算出する際に使用する。
 窒化ホウ素粉末の平均球形度は、熱伝導率を更に向上させることができる観点から、好ましくは0.65以下、より好ましくは0.60以下、更に好ましくは0.55以下、特に好ましくは0.50以下である。窒化ホウ素粉末の平均球形度は、例えば、0.30以上、0.35以上、又は0.40以上であってよい。
 窒化ホウ素粉末の圧壊強度は、例えば窒化ホウ素粉末を樹脂と混合して用いる場合に、樹脂との混練時又はプレス時に応力で窒化ホウ素粉末が崩れ、熱伝導率が低下することを抑制する観点から、好ましくは5.0MPa以上、より好ましくは5.5MPa以上、更に好ましくは6.0MPa以上である。窒化ホウ素粉末の圧壊強度は、JIS R1639-5:2007に従って測定される圧壊強度(粒子強度、単一顆粒圧壊強さとも呼ばれる)を意味する。より具体的には、圧壊強度(σ:MPa)は、粒子内の位置によって変化する無次元数(α=2.48:-)と圧壊試験力(P:N)と粒子径(d:μm)から、σ=α×P/(π×d)の式を用いて算出される。
 上記の平均径及び平均球形度(更には圧壊強度)を有する窒化ホウ素粉末は、例えば、塊状の炭化ホウ素を粉砕する粉砕工程と、粉砕された炭化ホウ素を窒化して炭窒化ホウ素を得る窒化工程と、炭窒化ホウ素を脱炭させる脱炭工程とを備える製造方法により製造することができる。
 粉砕工程では、塊状の炭素ホウ素(炭化ホウ素塊)を一般的な粉砕機又は解砕機を用いて粉砕する。このとき、粉砕時間の短縮及び炭化ホウ素塊の仕込み量の増加により、平均径が40μm以上かつ平均球形度が0.70未満の炭化ホウ素粉末を得る。なお、炭化ホウ素粉末の平均径及び平均球形度は、上述した窒化ホウ素粉末の平均径及び平均球形度と同様に測定される。このように、炭化ホウ素粉末の平均径(粒度分布)及び平均球形度(粒子形状)を調整することにより、得られる窒化ホウ素粉末の平均径(粒度分布)及び平均球形度(粒子形状)を調整することができる。
 続いて、窒化工程では、窒化反応を進行させる雰囲気下かつ加圧条件下で、炭化ホウ素粉末を焼成することにより、炭窒化ホウ素を得る。
 窒化工程における雰囲気は、窒化反応を進行させる雰囲気であり、例えば、窒素ガス及びアンモニアガス等であってよく、これらの一種単独又は2種以上の組合せであってよい。当該雰囲気は、窒化のしやすさとコストの観点から、好ましくは窒素ガスである。当該雰囲気中の窒素ガスの含有量は、好ましくは95体積%以上、より好ましくは99.9体積%以上である。
 窒化工程における圧力は、好ましくは0.6MPa以上、より好ましくは0.7MPa以上であり、好ましくは1.0MPa以下、より好ましくは0.9MPa以下である。当該圧力は、更に好ましくは0.7~1.0MPaである。窒化工程における焼成温度は、好ましくは1800℃以上、より好ましくは1900℃以上であり、好ましくは2400℃以下、より好ましくは2200℃以下である。焼成温度は、更に好ましくは1800~2200℃である。圧力条件及び焼成温度は、炭化ホウ素の窒化を更に好適に進行させ、工業的にも適切な条件であることから、好ましくは、1800℃以上かつ0.7~1.0MPaである。
 窒化工程における焼成時間は、窒化が十分に進む範囲で適宜選定され、好ましくは6時間以上、より好ましくは8時間以上であり、好ましくは30時間以下、より好ましくは20時間以下である。
 脱炭工程では、窒化工程にて得られた炭窒化ホウ素を、常圧以上の雰囲気にて、所定の保持温度で一定時間保持する熱処理を行う。これにより、脱炭かつ結晶化された窒化ホウ素の一次粒子(一次粒子が鱗片状の六方晶窒化ホウ素)が凝集してなる塊状窒化ホウ素粒子(窒化ホウ素粉末)を得ることができる。
 脱炭工程における雰囲気は、常圧(大気圧)の雰囲気又は加圧された雰囲気である。加圧された雰囲気の場合、圧力は、例えば0.5MPa以下、好ましくは0.3MPa以下であってよい。
 脱炭工程では、例えば、まず、所定の温度(脱炭開始可能な温度)まで昇温した後に、所定の速度で保持温度まで更に昇温する。所定の温度(脱炭開始可能な温度)は、系に応じて設定可能であり、例えば、1000℃以上であってよく、1500℃以下であってよく、好ましくは1200℃以下である。所定の温度(脱炭開始可能な温度)から保持温度へ昇温する速度は、例えば5℃/分以下であってよく、好ましくは、4℃/分以下、3℃/分以下、又は2℃/分以下であってもよい。
 保持温度は、粒成長が良好に起こりやすく、得られる窒化ホウ素粉末の熱伝導率を更に向上できる観点から、好ましくは1800℃以上、より好ましくは2000℃以上である。保持温度は、好ましくは2200℃以下、より好ましくは2100℃以下であってよい。
 保持温度で保持する時間は、結晶化が十分に進む範囲で適宜選定され、例えば、0.5時間超えであってよく、粒成長が良好に起こりやすい観点から、好ましくは1時間以上、より好ましくは3時間以上、更に好ましくは5時間以上、特に好ましくは10時間以上である。保持温度における保持時間は、例えば40時間未満であってよく、粒成長が進みすぎて粒子強度が低下することを低減でき、また、工業的な不都合も低減できる観点から、好ましくは30時間以下、より好ましくは20時間以下である。
 脱炭工程においては、原料として、窒化工程で得られた炭窒化ホウ素に加えて、ホウ素源を混合して、脱炭及び結晶化を行ってもよい。ホウ素源としては、ホウ酸、酸化ホウ素、又はその混合物が挙げられる。この場合、必要に応じて当該技術分野で用いられるその他の添加物を更に用いてもよい。
 炭窒化ホウ素とホウ素源との混合割合は、適宜選定される。ホウ素源としてホウ酸又は酸化ホウ素を用いる場合、ホウ酸又は酸化ホウ素の割合は、炭窒化ホウ素100質量部に対して、例えば100質量部以上であってよく、好ましくは150質量部以上であり、また、例えば300質量部以下であってよく、好ましくは250質量部以下である。
 以上のようにして得られる窒化ホウ素粉末に対して、篩によって所望の大きさ(径)を有する窒化ホウ素粉末を分級する工程(分級工程)を実施してもよい。これにより、平均径が40μm以上となる範囲で、所望の大きさ(径)を有する窒化ホウ素粉末が更に好適に得られる。
 以上説明した窒化ホウ素粉末は、例えば、放熱部材に好適に用いられる。窒化ホウ素粉末は、放熱部材に用いられる場合、例えば樹脂と共に混合された樹脂組成物として用いられる。すなわち、本発明の他の一実施形態は、樹脂と、上記の窒化ホウ素粉末とを含有する樹脂組成物である。
 樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、シリコーンゴム、アクリル樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンエーテル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、AAS(アクリロニトリル-アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂等を用いることができる。
 樹脂組成物がプリント配線板の絶縁層に用いられる場合、樹脂は、耐熱性及び回路への接着強度に優れる観点から、好ましくはエポキシ樹脂であり、より好ましくは、ビスフェノールA型エポキシ樹脂又はナフタレン型エポキシ樹脂である。樹脂組成物が熱インターフェース材に用いられる場合、樹脂は、耐熱性、柔軟性及びヒートシンク等への密着性に優れる観点から、好ましくはシリコーン樹脂である。
 樹脂の含有量は、樹脂組成物の全体積を基準として、例えば、15体積%以上、20体積%以上、30体積%以上、又は40体積%以上であってよく、70体積%以下、60体積%以下、又は50体積%以下であってよい。
 窒化ホウ素粉末の含有量は、樹脂組成物の全体積を基準として、樹脂組成物の熱伝導率を向上させ、優れた放熱性能が得られやすい観点から、好ましくは30体積%以上、より好ましくは40体積%以上、更に好ましくは50体積%以上、特に好ましくは60体積%以上であり、成形時に空隙の発生、並びに、絶縁性及び機械強度の低下を抑制できる観点から、好ましくは85体積%以下、より好ましくは80体積%以下である。
 樹脂組成物は、樹脂を硬化させる硬化剤を更に含有していてよい。硬化剤は、樹脂の種類によって適宜選択される。例えばエポキシ樹脂と共に用いられる硬化剤としては、フェノールノボラック化合物、酸無水物、アミノ化合物、イミダゾール化合物等が挙げられ、イミダゾール化合物が好適に用いられる。硬化剤の含有量は、樹脂100質量部に対して、例えば、0.5質量部以上又は1.0質量部以上であってよく、15質量部以下又は10質量部以下であってよい。
 以下、実施例に基づき本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)
 平均径55μm、平均球形度0.70未満の炭化ホウ素粉末をカーボンルツボに充填し、抵抗加熱炉を用い、窒素ガス雰囲気で、2000℃、0.8MPaの条件で20時間加熱することにより炭窒化ホウ素(BCN)を得た。得られた炭窒化ホウ素100質量部と、ホウ酸200質量部とをヘンシェルミキサーを用いて混合した後、混合物を窒化ホウ素ルツボに充填し、抵抗加熱炉を用いて、常圧、窒素ガス雰囲気で、保持温度2000℃、保持時間10時間で加熱することにより、一次粒子が凝集して塊状になった窒化ホウ素粒子を得た。得られた窒化ホウ素粒子を乳鉢により10分間解砕した後、篩目109μmのナイロン篩にて分級を行った。これにより、一次粒子が凝集して塊状になった塊状窒化ホウ素粒子(窒化ホウ素粉末)を得た。
(実施例2)
 平均径30μm、平均球形度0.70未満の炭化ホウ素粉末を用い、窒化ホウ素粉末を分級する際の篩の篩い目を75μmに変更した以外は、実施例1と同様の条件で窒化ホウ素粉末を得た。
(実施例3)
 平均径33μm、平均球形度0.70未満の炭化ホウ素粉末を用い、窒化ホウ素粉末を分級する際の篩の篩い目を86μmに変更した以外は、実施例1と同様の条件で窒化ホウ素粉末を得た。
(実施例4)
 平均径37μm、平均球形度0.70未満の炭化ホウ素粉末を用い、窒化ホウ素粉末を分級する際の篩の篩い目を86μmに変更した以外は、実施例1と同様の条件で窒化ホウ素粉末を得た。
(比較例1)
酸素含有量が2.4%、窒化ホウ素純度96.3%、及び平均粒径が3.8μmであるアモルファス窒化ホウ素粉末、酸素含有量が0.1%、BN純度98.8%、及び平均粒径が12.8μmである六方晶窒化ホウ素粉末、炭酸カルシウム(「PC-700」白石工業社製)及び水を、ヘンシェルミキサーを用いて混合した後、ボールミルで粉砕し、水スラリーを得た。さらに、水スラリー100質量部に対して、ポリビニルアルコール樹脂(「ゴーセノール」日本合成化学工業社製)を0.5質量部添加し、溶解するまで50℃で加熱撹拌した後、噴霧乾燥機にて乾燥温度230℃で球状化処理を行った。なお、噴霧乾燥機の球状化装置としては、回転式アトマイザーを使用した。得られた処理物をバッチ式高周波炉にて焼成した後、焼成物に解砕及び分級処理を行い、窒化ホウ素粉末を得た。
[平均径の測定]
 得られた各窒化ホウ素粉末について、ベックマンコールター製レーザー回折散乱法粒度分布測定装置(LS-13 320)を用いて、平均径(体積平均径)を測定した。
[平均径、平均球形度及び圧壊強度の測定]
 得られた各窒化ホウ素粉末について、粒子像分析装置(「PITA-4」(セイシン企業社製))を用いて、5000個の塊状窒化ホウ素粒子について円形度を自動計測し、下記式:
 球形度=(円形度)
に従って求められる各塊状窒化ホウ素粒子の球形度の平均値として、窒化ホウ素粉末の平均球形度を算出した。
 ただし、粒子像分析装置を用いた測定では、塊状窒化ホウ素粒子から脱離した窒化ホウ素の一次粒子も測定対象となるため、全粒子測定により測定される窒化ホウ素の粒子径が頻度の累積で5%になる粒子径(5%累積径)以上の粒子径を有する塊状窒化ホウ素粒子のみを、平均球形度を算出する際に使用した。
[圧壊強度の測定]
 得られた各窒化ホウ素粉末について、JIS R1639-5:2007に従って圧壊強度を測定した。測定装置としては、微小圧縮試験器(「MCT-W500」、島津製作所社製)を用いた。圧壊強度(σ:MPa)は、粒子内の位置によって変化する無次元数(α=2.48:-)と圧壊試験力(P:N)と粒子径(d:μm)から、σ=α×P/(π×d)の式を用いて算出した。
[熱伝導率の測定]
 ナフタレン型エポキシ樹脂(DIC社製、HP4032)100質量部と、硬化剤としてイミダゾール類(四国化成社製、2E4MZ-CN)10質量部との混合物に対し、得られた窒化ホウ素粉末を50体積%となるように混合して樹脂組成物を得た。この樹脂組成物を、PET製シート上に厚みが1.0mmになるように塗布した後、500Paの減圧脱泡を10分間行った。その後、温度150℃、圧力160kg/cm条件で60分間のプレス加熱加圧を行って、0.5mmのシートを作製した。
 得られたシートから10mm×10mmの大きさの測定用試料を切り出し、キセノンフラッシュアナライザ(NETZSCH社製、LFA447NanoFlash)を用いたレーザーフラッシュ法により、測定用試料の熱拡散率A(m/秒)を測定した。また、測定用試料の比重B(kg/m)をアルキメデス法により測定した。また、測定用試料の比熱容量C(J/(kg・K))を、示差走査熱量計(DSC;リガク社製、ThermoPlusEvo DSC8230)を用いて測定した。これらの各物性値を用いて、熱伝導率H(W/(m・K))をH=A×B×Cの式から求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001

Claims (3)

  1.  窒化ホウ素の一次粒子が凝集してなる窒化ホウ素粉末であって、
     平均径が40μm以上であり、平均球形度が0.70未満である、窒化ホウ素粉末。
  2.  圧壊強度が5MPa以上である、請求項1に記載の窒化ホウ素粉末。
  3.  樹脂と、請求項1又は2に記載の窒化ホウ素粉末と、を含有する樹脂組成物。
PCT/JP2020/003043 2019-01-29 2020-01-28 窒化ホウ素粉末及び樹脂組成物 WO2020158758A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020569656A JPWO2020158758A1 (ja) 2019-01-29 2020-01-28 窒化ホウ素粉末及び樹脂組成物
CN202080010063.9A CN113329970A (zh) 2019-01-29 2020-01-28 氮化硼粉末及树脂组合物
US17/423,256 US20220073698A1 (en) 2019-01-29 2020-01-28 Boron nitride powder and resin composition
KR1020217026197A KR20210114506A (ko) 2019-01-29 2020-01-28 질화 붕소 분말 및 수지 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019013379 2019-01-29
JP2019-013379 2019-01-29

Publications (1)

Publication Number Publication Date
WO2020158758A1 true WO2020158758A1 (ja) 2020-08-06

Family

ID=71841802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003043 WO2020158758A1 (ja) 2019-01-29 2020-01-28 窒化ホウ素粉末及び樹脂組成物

Country Status (5)

Country Link
US (1) US20220073698A1 (ja)
JP (1) JPWO2020158758A1 (ja)
KR (1) KR20210114506A (ja)
CN (1) CN113329970A (ja)
WO (1) WO2020158758A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020256005A1 (ja) * 2019-06-21 2021-09-13 住友ベークライト株式会社 熱硬化性樹脂組成物、樹脂シートおよび金属ベース基板
WO2022071240A1 (ja) * 2020-09-29 2022-04-07 デンカ株式会社 炭窒化ホウ素粉末及びその製造方法、粉末組成物、窒化ホウ素焼結体及びその製造方法、並びに複合体及びその製造方法
WO2022186191A1 (ja) * 2021-03-02 2022-09-09 株式会社トクヤマ 六方晶窒化ホウ素凝集粒子および六方晶窒化ホウ素粉末、樹脂組成物、樹脂シート
WO2023127729A1 (ja) * 2021-12-27 2023-07-06 デンカ株式会社 窒化ホウ素粒子及び放熱シート

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193504A (ja) * 2014-03-31 2015-11-05 ナガセケムテックス株式会社 窒化ホウ素粒子、樹脂組成物および熱伝導性シート
JP2016044098A (ja) * 2014-08-21 2016-04-04 住友ベークライト株式会社 造粒粉、放熱用樹脂組成物、放熱シート、半導体装置、および放熱部材
WO2016093248A1 (ja) * 2014-12-08 2016-06-16 日立化成株式会社 エポキシ樹脂組成物、樹脂シート、プリプレグ、樹脂付金属箔、金属基板、及びパワー半導体装置
JP2016522298A (ja) * 2013-06-19 2016-07-28 スリーエム イノベイティブ プロパティズ カンパニー ポリマー/窒化ホウ素化合物から生成される構成部品、かかる構成部品を生成するためのポリマー/窒化ホウ素化合物、及びそれらの使用
JP2017165609A (ja) * 2016-03-15 2017-09-21 デンカ株式会社 六方晶窒化ホウ素の一次粒子凝集体、樹脂組成物及びその用途
JP2018104260A (ja) * 2016-12-28 2018-07-05 昭和電工株式会社 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043082A1 (ja) 2009-10-09 2011-04-14 水島合金鉄株式会社 六方晶窒化ホウ素粉末およびその製造方法
JP5969314B2 (ja) * 2012-08-22 2016-08-17 デンカ株式会社 窒化ホウ素粉末及びその用途
JP6875854B2 (ja) * 2016-12-28 2021-05-26 デンカ株式会社 六方晶窒化ホウ素一次粒子凝集体及びその用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016522298A (ja) * 2013-06-19 2016-07-28 スリーエム イノベイティブ プロパティズ カンパニー ポリマー/窒化ホウ素化合物から生成される構成部品、かかる構成部品を生成するためのポリマー/窒化ホウ素化合物、及びそれらの使用
JP2015193504A (ja) * 2014-03-31 2015-11-05 ナガセケムテックス株式会社 窒化ホウ素粒子、樹脂組成物および熱伝導性シート
JP2016044098A (ja) * 2014-08-21 2016-04-04 住友ベークライト株式会社 造粒粉、放熱用樹脂組成物、放熱シート、半導体装置、および放熱部材
WO2016093248A1 (ja) * 2014-12-08 2016-06-16 日立化成株式会社 エポキシ樹脂組成物、樹脂シート、プリプレグ、樹脂付金属箔、金属基板、及びパワー半導体装置
JP2017165609A (ja) * 2016-03-15 2017-09-21 デンカ株式会社 六方晶窒化ホウ素の一次粒子凝集体、樹脂組成物及びその用途
JP2018104260A (ja) * 2016-12-28 2018-07-05 昭和電工株式会社 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020256005A1 (ja) * 2019-06-21 2021-09-13 住友ベークライト株式会社 熱硬化性樹脂組成物、樹脂シートおよび金属ベース基板
WO2022071240A1 (ja) * 2020-09-29 2022-04-07 デンカ株式会社 炭窒化ホウ素粉末及びその製造方法、粉末組成物、窒化ホウ素焼結体及びその製造方法、並びに複合体及びその製造方法
JPWO2022071240A1 (ja) * 2020-09-29 2022-04-07
JP7228752B2 (ja) 2020-09-29 2023-02-24 デンカ株式会社 炭窒化ホウ素粉末及びその製造方法、粉末組成物、窒化ホウ素焼結体及びその製造方法、並びに複合体及びその製造方法
WO2022186191A1 (ja) * 2021-03-02 2022-09-09 株式会社トクヤマ 六方晶窒化ホウ素凝集粒子および六方晶窒化ホウ素粉末、樹脂組成物、樹脂シート
WO2023127729A1 (ja) * 2021-12-27 2023-07-06 デンカ株式会社 窒化ホウ素粒子及び放熱シート
JP7357180B1 (ja) 2021-12-27 2023-10-05 デンカ株式会社 窒化ホウ素粒子及び放熱シート

Also Published As

Publication number Publication date
CN113329970A (zh) 2021-08-31
US20220073698A1 (en) 2022-03-10
KR20210114506A (ko) 2021-09-23
JPWO2020158758A1 (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
WO2020004600A1 (ja) 塊状窒化ホウ素粒子、窒化ホウ素粉末、窒化ホウ素粉末の製造方法、樹脂組成物、及び放熱部材
KR102619752B1 (ko) 질화붕소 분말, 그 제조 방법 및 그것을 사용한 방열 부재
WO2020158758A1 (ja) 窒化ホウ素粉末及び樹脂組成物
JP7104503B2 (ja) 塊状窒化ホウ素粉末の製造方法及びそれを用いた放熱部材
TWI644855B (zh) 六方晶體氮化硼粉末、其製造方法、樹脂組成物及樹脂薄片
JP6357247B2 (ja) 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
JP7273587B2 (ja) 窒化ホウ素粉末及び樹脂組成物
WO2016092952A1 (ja) 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
JP7015971B2 (ja) 窒化ホウ素粉末及びその製造方法、炭窒化ホウ素粉末、並びに、複合材及び放熱部材
JP2001158610A (ja) 樹脂充填用窒化アルミニウム粉末及びその用途
JP2001158609A (ja) 樹脂充填用窒化アルミニウム粉末及びその用途
JP7273586B2 (ja) 窒化ホウ素粉末及び樹脂組成物
JP2022178471A (ja) 窒化ホウ素粉末、及び窒化ホウ素粉末の製造方法、並びに、樹脂組成物
JP3764083B2 (ja) 窒化アルミニウム粉末の製造方法
JP7124249B1 (ja) 放熱シート及び放熱シートの製造方法
WO2021200877A1 (ja) 塊状窒化ホウ素粒子及びその製造方法
WO2022202825A1 (ja) 窒化ホウ素粉末及び樹脂組成物
WO2022202824A1 (ja) 窒化ホウ素粉末及び樹脂組成物
JP2023147855A (ja) 窒化ホウ素粉末
WO2021251494A1 (ja) 熱伝導性樹脂組成物及び放熱シート
WO2022202827A1 (ja) 窒化ホウ素粒子、その製造方法、及び樹脂組成物
JP2023108717A (ja) 窒化ホウ素粉末、樹脂組成物、樹脂組成物の硬化物及び窒化ホウ素粉末の製造方法
JP2024022830A (ja) 窒化ホウ素粉末、及び、窒化ホウ素粉末の製造方法
JP2024031217A (ja) 樹脂シート、及び、積層シート
JP2022106118A (ja) 放熱シート及び放熱シートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20747841

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569656

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217026197

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20747841

Country of ref document: EP

Kind code of ref document: A1