WO2021251494A1 - 熱伝導性樹脂組成物及び放熱シート - Google Patents

熱伝導性樹脂組成物及び放熱シート Download PDF

Info

Publication number
WO2021251494A1
WO2021251494A1 PCT/JP2021/022360 JP2021022360W WO2021251494A1 WO 2021251494 A1 WO2021251494 A1 WO 2021251494A1 JP 2021022360 W JP2021022360 W JP 2021022360W WO 2021251494 A1 WO2021251494 A1 WO 2021251494A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic filler
particle size
resin composition
heat
boron nitride
Prior art date
Application number
PCT/JP2021/022360
Other languages
English (en)
French (fr)
Inventor
光祐 和田
清隆 藤
佳孝 谷口
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to US18/008,631 priority Critical patent/US20230220263A1/en
Priority to JP2022530640A priority patent/JPWO2021251494A1/ja
Priority to EP21821028.4A priority patent/EP4148091A4/en
Priority to CN202180041089.4A priority patent/CN115698187A/zh
Publication of WO2021251494A1 publication Critical patent/WO2021251494A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/07Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to a heat conductive resin composition containing boron nitride particles and a heat radiating sheet obtained by molding the heat conductive resin composition.
  • heat-generating electronic components such as power devices, transistors, thyristors, and CPUs
  • heat-generating electronic components such as power devices, transistors, thyristors, and CPUs
  • (1) the insulating layer of the printed wiring board on which the heat-generating electronic component is mounted is made highly thermally conductive
  • the heat-generating electronic component or the printed wiring on which the heat-generating electronic component is mounted is mounted.
  • a silicone resin or an epoxy resin filled with ceramic powder is used as the insulating layer and thermal interface material of the printed wiring board.
  • hexagonal boron nitride powder which has excellent properties as an electrical insulating material such as high thermal conductivity, high insulation, and low relative permittivity, has attracted attention. There is.
  • the hexagonal boron nitride particles have a thermal conductivity of 400 W / (m ⁇ K) in the in-plane direction (a-axis direction), whereas the thermal conductivity in the thickness direction (c-axis direction) is 2 W / (m ⁇ K). It is (m ⁇ K), and the anisotropy of the thermal conductivity derived from the crystal structure and the scaly shape is large.
  • the hexagonal boron nitride powder is filled in the resin, the particles are aligned and oriented in the same direction. Then, the thickness direction (c-axis direction) of the hexagonal boron nitride particles in the resin will be aligned.
  • the in-plane direction (a-axis direction) of the hexagonal boron nitride particles and the thickness direction of the thermal interface material become perpendicular to each other, and the in-plane direction (a-axis direction) of the hexagonal boron nitride particles. )
  • the in-plane direction (a-axis direction) of the hexagonal boron nitride particles could not fully utilize the high thermal conductivity.
  • Patent Document 1 proposes the use of boron nitride powder in which hexagonal boron nitride particles as primary particles are aggregated without being oriented in the same direction.
  • the hexagonal boron nitride particles of the primary particles do not orient in the same direction, and the anisotropy of thermal conductivity can be suppressed.
  • a boron nitride powder in which hexagonal boron nitride particles of primary particles are aggregated without being oriented in the same direction in addition to those described in Patent Document 1, spherical boron nitride produced by a spray-drying method (Patent Document 2) and carbide are carbonized.
  • Boron nitride which is an aggregate produced from boron as a raw material (Patent Document 3), and aggregated boron nitride produced by repeatedly pressing and crushing (Patent Document 4) are known.
  • the doctor blade method is known as a method for continuously obtaining a thin molded body composed of a ceramic raw material powder and an organic component.
  • the doctor blade method is a method in which a uniform slurry is thinly spread on a carrier film to obtain a molded product.
  • the doctor blade method is widely used for ceramic substrates for electronic devices, ceramic packages for ICs, multilayer ceramic packages, multilayer ceramic circuit boards, ceramic capacitors and the like. From the viewpoint of mass production of thin heat dissipation sheets, it is desirable to manufacture thin heat dissipation sheets by the doctor blade method. However, it is difficult to produce a thin heat dissipation sheet while maintaining a high level of thermal conductivity.
  • an object of the present invention is to provide a heat conductive resin composition having excellent heat conductivity suitable for producing a thin molded body and a heat dissipation sheet obtained by molding the heat conductive resin composition. And.
  • the present inventors have conducted diligent research to achieve the above object, and found that when a slurry was prepared using conventional aggregated boron nitride, the boron nitride particles were peeled off from the aggregated boron nitride during the slurry preparation. It has been found that the boron nitride particles increase the viscosity of the slurry and adhere to the carrier film.
  • the present invention is based on the above findings, and the gist thereof is as follows.
  • a heat conductive resin composition obtained by blending an inorganic filler component and a resin component, wherein the inorganic filler component contains a first inorganic filler and a second inorganic filler, and the particle size distribution of the inorganic filler component is It has a first maximum point due to the first inorganic filler and a second maximum point due to the second inorganic filler, and the particle size of the first maximum point is 15 ⁇ m or more and the second maximum point.
  • the particle size of the points is two-thirds or less of the particle size of the first maximum point, and the integrated amount of the frequency from the peak start to the peak end at the peak having the first maximum point is 50% or more.
  • the first inorganic filler is a thermally conductive resin composition in which hexagonal boron nitride primary particles are aggregated and the crushing strength is 6 MPa or more.
  • the second inorganic filler is massive boron nitride particles in which hexagonal boron nitride primary particles are aggregated and the crushing strength is 6 MPa or more.
  • thermoforming a heat conductive resin composition having excellent heat conductivity suitable for producing a thin molded body and a heat dissipation sheet obtained by molding the heat conductive resin composition. ..
  • FIG. 1 is a diagram showing an example of the particle size distribution of the inorganic filler component.
  • the thermally conductive resin composition of the present invention is formed by blending an inorganic filler component and a resin component.
  • the inorganic filler component includes a first inorganic filler and a second inorganic filler.
  • the particle size distribution of the inorganic filler component has a first maximum point due to the first inorganic filler and a second maximum point due to the second inorganic filler, and the particle size of the first maximum point is Frequency between peak start and peak end at peaks of 15 ⁇ m or greater, the particle size of the second local maximum is less than two-thirds of the particle size of the first local maximum, and the peak has the first local maximum.
  • the accumulated amount of is 50% or more.
  • the particle size distribution of the inorganic filler component in the heat conductive resin composition can be measured, for example, as follows.
  • Components other than the inorganic filler component of the heat conductive resin composition are dissolved by using a solvent such as toluene, xylene, and a chlorine-based hydrocarbon, and the components other than the inorganic filler component are removed from the heat conductive composition. Then, the particle size distribution of the remaining inorganic filler component is measured using a laser diffraction / scattering method particle size distribution measuring device (LS-13 320) manufactured by Beckman Coulter Co., Ltd. When there are three or more peaks, the peak with the highest frequency of maxima is the peak having the maxima caused by the first inorganic filler, and the peak with the next highest frequency is the second. The peak has a maximum point due to the inorganic filler of. The unit of frequency in the particle size distribution is volume%.
  • the first inorganic filler is massive boron nitride particles in which hexagonal boron nitride primary particles are aggregated and have a crushing strength of 6 MPa or more.
  • the crushing strength of the lumpy boron nitride particles is less than 6 MPa, when the heat conductive resin composition is made into a slurry, a part of the lumpy boron nitride particles is peeled off from the lumpy boron nitride particles, and the viscosity of the heat conductive resin composition is high.
  • the crushing strength of the massive boron nitride particles is preferably 7 MPa or more, more preferably 8 MPa or more, still more preferably 9 MPa or more, still more preferably 10 MPa or more, and particularly preferably. It is 11 MPa or more.
  • the upper limit of the crushing strength of the massive boron nitride particles is not particularly limited, but is, for example, 30 MPa or less.
  • the crushing strength of the first inorganic filler can be measured according to JIS R1639-5. Specifically, the crushing strength of the first inorganic filler can be measured as follows. Components other than the inorganic filler component of the heat conductive resin composition are dissolved by using a solvent such as toluene, xylene, and a chlorine-based hydrocarbon, and the components other than the inorganic filler component are removed from the heat conductive resin composition. Then, the particle size distribution of the remaining inorganic filler component is measured using a laser diffraction / scattering method particle size distribution measuring device (LS-13 320) manufactured by Beckman Coulter Co., Ltd.
  • LS-13 320 laser diffraction / scattering method particle size distribution measuring device manufactured by Beckman Coulter Co., Ltd.
  • the particle size is. Five inorganic filler components having a particle size within the range of ⁇ 5 ⁇ m of the first maximum point are selected, and a compression test is performed one by one.
  • the crushing strengths of the five inorganic filler components are weibull plotted according to JIS R1625, and the crushing strength at which the cumulative fracture rate is 63.2% is defined as the crushing strength of the first inorganic filler.
  • the particle size of the first maximum point due to the first inorganic filler is 15 ⁇ m or more. If the particle size of the first maximum point due to the first inorganic filler is less than 15 ⁇ m, the thermally conductive resin composition cannot contain the first inorganic filler with a high filling, and the thermally conductive resin composition.
  • the thermal conductivity of a heat-dissipating sheet made from an object may be low. From such a viewpoint, the particle size of the first maximum point is preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, still more preferably 40 ⁇ m or more, and particularly preferably 50 ⁇ m or more.
  • the particle size of the first maximum point is preferably 100 ⁇ m or less.
  • the particle size of the first maximum point is 100 ⁇ m or less, a thin heat radiating sheet can be produced by using the heat conductive resin composition. From such a viewpoint, the particle size of the first maximum point is more preferably 90 ⁇ m or less, still more preferably 80 ⁇ m or less.
  • the particle size of the first local maximum point for example, can be adjusted by adjusting the average particle size of the first inorganic filler with a grain size of B 4 C as a raw material of the bulk boron nitride particles.
  • the particle size of B 4 C which is the raw material of the massive boron nitride particles
  • the particle size of B 4 C is decreased
  • the particle size of the first maximum point is increased.
  • the particle size becomes smaller.
  • the fact that the particle size of the first maximum point is caused by the first inorganic filler means that the maximum point of the particle size distribution of the first inorganic filler appears as the first maximum point in the particle size distribution of the inorganic filler component. .. Due to the influence of the particle size distribution of the inorganic filler components other than the first inorganic filler, the particle size of the first maximum point may be slightly different from the particle size of the maximum point of the particle size distribution of the first inorganic filler.
  • the integrated amount of frequency between the peak start and the peak end at the peak having the first maximum point is 50% or more. If the integrated amount is less than 50%, the viscosity of the thermally conductive resin composition increases due to the inorganic filler other than the first inorganic filler, and a thin molded product cannot be produced by the doctor blade method. Inorganic fillers other than the first inorganic filler may adhere to the carrier film. From such a viewpoint, the integrated amount is preferably 60% or more, more preferably 70% or more. Further, the integrated amount is preferably 90% or less, more preferably 80% or less, so that the effect of containing the second inorganic filler described later can be exhibited by the inorganic filler component.
  • the integrated amount of the frequency between the peak start and the peak end at the peak having the first maximum point is generally the content (volume%) of the first inorganic filler in the inorganic filler component. Therefore, by analyzing the composition of the inorganic filler component, the inorganic filler corresponding to the first maximum point can be determined.
  • FIG. 1 is a diagram showing an example of the particle size distribution of the inorganic filler component.
  • the horizontal axis is logarithmic.
  • Reference numeral M1 indicates a first maximum point
  • reference numeral M2 indicates a second maximum point.
  • PS indicates a peak start
  • PE indicates a peak end.
  • the integrated amount of the shaded portion of the peak having the first maximum point (M1) is the frequency between the peak start (PS) and the peak end (PE) in the peak having the first maximum point (M1). It is an integrated amount.
  • the peak valley is the peak end.
  • Hexagonal boron nitride primary particles are aggregated, and the massive boron nitride particles having a crushing strength of 6 MPa or more are obtained by synthesizing boron carbide using, for example, boron and acetylene black as raw materials, with respect to the obtained boron carbide ( Bulk boron nitride particles can be produced by carrying out 1) a pressure nitride firing step and (2) a decarburization crystallization step. Hereinafter, each step will be described in detail.
  • (1) Pressurized nitriding firing step In the pressure nitriding firing step, boron carbide having an average particle size of 6 to 55 ⁇ m and a carbon content of 18 to 21% is pressure nitriding and firing. This makes it possible to obtain boron nitride suitable as a raw material for the massive boron nitride particles of the present invention.
  • the average particle size of the raw material boron carbide is preferably 6 ⁇ m or more, more preferably 7 ⁇ m or more, further preferably 10 ⁇ m or more, and preferably 55 ⁇ m or less, more preferably 50 ⁇ m or less. More preferably, it is 45 or less ⁇ m.
  • the average particle size of the raw material boron carbide is preferably 7 to 50 ⁇ m, more preferably 10 to 45 ⁇ m.
  • the average particle size of boron carbide can be measured using a laser diffraction / scattering method particle size distribution measuring device (LS-13 320) manufactured by Beckman Coulter Co., Ltd.
  • Pressurizing the carbon content of the raw material of boron carbide for use in-pressure step is desirably less than B 4 C on the composition (21.7%), it is preferable to use a boron carbide having a carbon content of 18-21% ..
  • the carbon content of boron carbide is preferably 18% or more, more preferably 19% or more, and preferably 21% or less, more preferably 20.5% or less.
  • the carbon content of boron carbide is preferably 18 to 20.5%, more preferably 19 to 20.5%.
  • the reason why the carbon content of boron carbide is set in such a range is that the smaller the carbon content generated during the decarburization crystallization step described later, the more dense agglomerated boron nitride particles are produced, and finally. This is also to reduce the carbon content of the formed massive boron nitride particles. Further, it is difficult to produce stable boron carbide having a carbon content of less than 18% because the deviation from the theoretical composition becomes too large.
  • the method for producing boron carbide as a raw material is that boric acid and acetylene black are mixed and then heated in an atmosphere at 1800 to 2400 ° C. for 1 to 10 hours to obtain a boron carbide mass.
  • Boron carbide powder can be prepared by pulverizing this raw mass, sieving it, washing it, removing impurities, drying it, and the like as appropriate.
  • the mixing of boric acid, which is a raw material for boron carbide, and acetylene black is preferably 25 to 40 parts by mass with respect to 100 parts by mass of boric acid.
  • the atmosphere for producing the boron carbide is preferably an inert gas, and examples of the inert gas include argon gas and nitrogen gas, which can be used alone or in combination as appropriate. Of these, argon gas is preferable.
  • a general crusher or crusher can be used, for example, crushing is performed for about 0.5 to 3 hours. It is preferable that the pulverized boron carbide is sieved to a particle size of 75 ⁇ m or less using a sieve net. By adjusting the average particle size of the pulverized boron carbide, the average particle size of the massive boron nitride particles can be adjusted.
  • Pressurized nitriding firing is performed in an atmosphere of a specific firing temperature and pressurizing conditions.
  • the firing temperature in the pressure nitriding firing is preferably 1700 ° C. or higher, more preferably 1800 ° C. or higher, and preferably 2400 ° C. or lower, more preferably 2200 ° C. or lower.
  • the firing temperature in the pressure nitriding firing is more preferably 1800 to 2200 ° C.
  • the pressure in the pressure nitriding firing is preferably 0.6 MPa or more, more preferably 0.7 MPa or more, and preferably 1.0 MPa or less, more preferably 0.9 MPa or less.
  • the pressure in the pressure nitriding firing is preferably 0.6 to 1.0 MPa, more preferably 0.7 to 0.9 MPa.
  • the firing temperature is preferably 1800 ° C. or higher and the pressure is 0.7 to 1.0 MPa.
  • the firing temperature is 1800 ° C. and the pressure is 0.7 MPa or more, the nitriding of boron carbide can be sufficiently promoted.
  • a gas in which the nitriding reaction proceeds is required, and examples thereof include nitrogen gas and ammonia gas, which can be used alone or in combination of two or more. Of these, nitrogen gas is suitable for nitriding and in terms of cost.
  • the concentration of nitrogen gas in the atmosphere is preferably 95% (V / V) or more, more preferably 99.9% (V / V) or more.
  • the firing time in the pressure nitriding firing is preferably 6 to 30 hours, more preferably 8 to 20 hours.
  • the boron carbide obtained in the pressure sintering step is (a) in an atmosphere above normal pressure and (b) at a specific temperature rise temperature (b). c) The temperature is raised until the firing temperature reaches a specific temperature range, and (d) the heat treatment is performed to keep the firing temperature at the firing temperature for a certain period of time.
  • agglomerated boron nitride particles in which primary particles (hexagonal boron nitride in which the primary particles are scaly) are aggregated into agglomerates.
  • the crushing strength can be 6 MPa or more.
  • the boron nitride obtained from the prepared boron carbide as described above is decarbonized and aggregated into lumpy boron nitride particles while forming scales of a predetermined size. do.
  • boron nitride obtained in the pressure sintering and calcination step is mixed with 65 to 130 parts by mass of at least one compound of boron oxide and boric acid.
  • a mixture is prepared, the obtained mixture is raised to a temperature at which decarburization can be started, and then the temperature is raised to a firing temperature of 1950 to 2100 ° C. at a heating temperature of 5 ° C./min or less until the firing temperature is 1950 to 2100 ° C.
  • Perform a heat treatment that holds for more than 0.5 hours and less than 20 hours. By performing such a heat treatment, the crushing strength can be increased to 6 MPa or more.
  • a decarburization crystallization step preferably, after raising the temperature to a temperature at which decarburization can be started in an atmosphere of normal pressure or higher, until the calcination temperature reaches 1950 to 2100 ° C. at a temperature rise temperature of 5 ° C./min or less. It is a heat treatment that raises the temperature and keeps it at this firing temperature for more than 0.5 hours and less than 20 hours.
  • the calcination temperature is 2000 to 2080 ° C. at a temperature rise temperature of 5 ° C./min or less after raising the temperature to a temperature at which decarburization can be started in an atmosphere of normal pressure or higher. The temperature is raised until the temperature reaches the maximum, and the heat treatment is performed so that the temperature is maintained at this firing temperature for 2 to 8 hours.
  • the boron nitride obtained in the pressure nitride firing step is mixed with at least one compound of boron oxide and boric acid (and, if necessary, another raw material) to prepare a mixture. After that, it is desirable to decarburize and crystallize the obtained mixture.
  • the mixing ratio of boron nitride with at least one compound of boron oxide and boric acid is preferably boron oxide and 100 parts by mass of boron nitride. 65 to 130 parts by mass of at least one compound of boric acid, more preferably 70 to 120 parts by mass of at least one compound of boron oxide and boric acid. In the case of boron oxide, it is a mixing ratio converted to boric acid.
  • the pressure condition of "(a) atmosphere above normal pressure” in the decarburization and crystallization step is preferably normal pressure or higher, more preferably 0.1 MPa or higher.
  • the upper limit of the pressure condition of the atmosphere is not particularly limited, but is preferably 1 MPa or less, more preferably 0.5 MPa or less, and further preferably 0.3 MPa or less.
  • the pressure condition of the atmosphere is preferably 0.1 to 1 MPa, more preferably 0.1 to 0.5 MPa, and further preferably 0.1 to 0.3 MPa.
  • Nitrogen gas is suitable for the above-mentioned "atmosphere" in the decarburization and crystallization step, and the concentration of nitrogen gas in the atmosphere is preferably 90% (V / V) or more, and more preferably, the nitrogen gas is a high-purity nitrogen gas. (Nitrogen concentration 99.9% (V / V) or more).
  • the temperature rise of "(b) specific temperature rise temperature” in the decarburization crystallization step may be one-step or multi-step. It is desirable to select multiple stages in order to shorten the time required to raise the temperature to the temperature at which decarburization can be started.
  • As the "first stage temperature rise” in multiple stages it is preferable to raise the temperature to a "temperature at which decarburization can be started”.
  • the “temperature at which decarburization can be started” is not particularly limited, and may be any temperature that is normally used, for example, about 800 to 1200 ° C. (preferably about 1000 ° C.).
  • the “first stage temperature rise” can be performed, for example, in the range of 5 to 20 ° C./min, preferably 8 to 12 ° C./min.
  • the "second stage temperature rise” is "(c) temperature rise to a firing temperature in a specific temperature range” in the decarburization crystallization step.
  • the "second stage temperature rise” is preferably 5 ° C./min or less, more preferably 4 ° C./min or less, still more preferably 3 ° C./min or less, still more preferably 2 ° C./min or less.
  • the "second stage temperature rise” is preferably 0.1 ° C./min or higher, more preferably 0.5 ° C./min or higher, and even more preferably 1 ° C./min or higher.
  • the “second stage temperature rise” is preferably 0.1 to 5 ° C./min.
  • the specific temperature range (firing temperature after temperature rise) in the above "(c) temperature rise to a firing temperature in a specific temperature range” is preferably 1950 ° C. or higher, more preferably 1960 ° C. or higher, still more preferably 2000. ° C. or higher, preferably 2100 ° C. or lower, more preferably 2080 ° C. or lower.
  • the fixed time holding (baking time after raising the temperature) of the above “(d) holding at the firing temperature for a certain time” is preferably more than 0.5 hours and less than 20 hours.
  • the "baking time” is more preferably 1 hour or longer, still more preferably 3 hours or longer, still more preferably 5 hours or longer, particularly preferably 10 hours or longer, and even more preferably 18 hours or shorter, still more preferably. 16 hours or less. If the firing time after the temperature rise is more than 0.5 hours, the grain growth occurs well, and if it is less than 20 hours, it is possible to reduce the grain growth from progressing too much and the particle strength to decrease, and the firing time. It is possible to reduce industrial disadvantages due to the long time.
  • the massive boron nitride particles of the present invention can be obtained through the pressure nitriding firing step and the decarburization crystallization step. Further, in the case of loosening the weak aggregation between the massive boron nitride particles, it is desirable to pulverize or crush the massive boron nitride particles obtained in the decarburization crystallization step and further classify them.
  • the crushing and crushing are not particularly limited, and a commonly used crusher and crusher may be used, and the classification is performed by a general sieving method having an average particle size of 20 ⁇ m or more. It may be used. For example, a method of crushing with a Henschel mixer or a mortar and then classifying with a vibrating sieve can be mentioned.
  • the particle size of the second maximum point due to the second inorganic filler is two-thirds or less of the particle size of the first maximum point.
  • the thermally conductive resin composition cannot contain the inorganic filler component with high filling, and the inorganic filler component cannot be contained.
  • a part of the heat-dissipating sheet may adhere to the carrier film, or the heat-dissipating sheet produced by using the heat-conducting resin composition may have a low thermal conductivity.
  • the particle size of the second maximum point is preferably 60% or less of the particle size of the first maximum point, and more preferably 55% of the particle size of the first maximum point. It is not more than the particle size of, and more preferably 52% or less of the particle size of the first maximum point.
  • the lower limit of the particle size of the second maximum point is, for example, 20% or more, preferably 30% or more or 40% or more of the particle size of the first maximum point.
  • the second maximum point can be measured in the same manner as the first maximum point. There may be a plurality of second maximum points.
  • the integrated amount of the frequency between the peak start and the peak end at the peak having the second maximum point is generally the content (% by volume) in the inorganic component of the second inorganic filler. Therefore, by analyzing the composition of the inorganic filler component, the inorganic filler corresponding to the second maximum point can be determined.
  • the cumulative amount of frequency between the peak start and the peak end at the peak having the second maximum point is 50% or less, may be 45% or less, may be 40% or less, and may be 35% or less. good.
  • the lower limit may be 10% or more, 15% or more, 20% or more, and 25% or more.
  • the second inorganic filler examples include alumina particles, aluminum nitride particles, and boron nitride particles. These second inorganic fillers can be used alone or in combination of two or more. Of these, the second inorganic filler is preferably boron nitride particles. When the second inorganic filler is boron nitride particles, the thermal conductivity of the heat radiating sheet produced by using the thermally conductive resin composition can be further increased.
  • the second inorganic filler is more preferably massive boron nitride particles in which hexagonal boron nitride primary particles are aggregated and the crushing strength is 6 MPa or more.
  • the slurry of the heat conductive resin composition when the slurry of the heat conductive resin composition is produced, a part of the second inorganic filler is peeled off from the second inorganic filler, and the viscosity of the slurry of the heat conductive resin composition increases. Can be further suppressed, and the adhesion of a part of the second inorganic filler to the carrier film can be further suppressed.
  • the lumpy boron nitride particles of the second inorganic filler can be produced by the same method as the lumpy boron nitride particles of the first inorganic filler.
  • the particle size of the second maximum point due to the second inorganic filler can be divided into three minutes of the particle size of the first maximum point. It can be 2 or less.
  • the crushing strength of the second inorganic filler can be measured according to JIS R1639-5. Specifically, the crushing strength of the second inorganic filler can be measured as follows. Components other than the inorganic filler component of the heat conductive resin composition are dissolved by using a solvent such as toluene, xylene, and a chlorine-based hydrocarbon, and the components other than the inorganic filler component are removed from the heat conductive resin composition. Then, the particle size distribution of the remaining inorganic filler component is measured using a laser diffraction / scattering method particle size distribution measuring device (LS-13 320) manufactured by Beckman Coulter Co., Ltd.
  • LS-13 320 laser diffraction / scattering method particle size distribution measuring device manufactured by Beckman Coulter Co., Ltd.
  • the particle size is.
  • Five inorganic filler components having a particle size within the range of ⁇ 5 ⁇ m of the second maximum point are selected, and a compression test is performed one by one.
  • the crushing strengths of the five inorganic filler components are weibull plotted according to JIS R1625, and the crushing strength at which the cumulative fracture rate is 63.2% is defined as the crushing strength of the second inorganic filler.
  • the integrated amount of the frequency of the particle size of 0 to 15 ⁇ m is preferably less than 60%. Then, the content of the inorganic filler having a particle size of 15 ⁇ m or more in the inorganic filler component becomes approximately 40% by volume or more, and the heat conductive resin composition can contain the inorganic filler component with a high filling, so that the heat conductive resin can be contained. The thermal conductivity of the heat dissipation sheet produced by using the composition can be further increased.
  • the integrated amount of the frequency of the particle size of 0 to 15 ⁇ m is more preferably less than 50%, further preferably less than 40%, still more preferably 30. Less than%.
  • resin component examples include epoxy resin, silicone resin (including silicone rubber), acrylic resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, and polyamide (for example, polyimide, polyamideimide, and polyether).
  • polyester eg, polybutylene terephthalate, polyethylene terephthalate, etc.
  • polyphenylene ether polyphenylene sulfide, total aromatic polyester, polysulfone, liquid crystal polymer, polyether sulfone, polycarbonate, maleimide-modified resin, ABS resin, AAS (acrylonitrile- Acrylic rubber / styrene) resin, AES (acrylonitrile / ethylene / propylene / diene rubber-styrene) resin and the like
  • silicone resin is preferable from the viewpoint of heat resistance, flexibility, and adhesion to a heat sink or the like.
  • the silicone resin is preferably one that is vulcanized with an organic peroxide and cured.
  • the viscosity of the thermally conductive resin composition at 25 ° C. is, for example, 100,000 cp or more from the viewpoint of improving the flexibility of the sheet-shaped molded product.
  • the content of the inorganic filler component in the total 100% by volume of the inorganic filler component and the resin component is preferably 30 to 85% by volume, more preferably 40 to 80% by volume.
  • the content of the inorganic filler component is 30% by volume or more, the thermal conductivity is improved and sufficient heat dissipation performance can be easily obtained.
  • the content of the inorganic filler component is 85% by volume or less, it is possible to reduce the tendency for voids to occur during molding, and it is possible to reduce the deterioration of insulating properties and mechanical strength.
  • the content of the resin component in 100% by volume of the heat conductive resin composition is preferably 15 to 70% by volume, more preferably 20 to 60% by volume.
  • the heat conductive resin composition may further contain a solvent.
  • the solvent is not particularly limited as long as it can dissolve the resin component and is easily removed from the applied heat conductive resin composition after the heat conductive resin composition is applied.
  • examples of the solvent include toluene, xylene, chlorine-based hydrocarbons, and the like. Toluene is preferred among these solvents from the viewpoint of easy removal.
  • the content of the solvent can be appropriately selected depending on the desired viscosity of the thermally conductive resin composition.
  • the content of the solvent is, for example, 40 to 200 parts by mass with respect to 100 parts by mass of the components other than the solvent of the heat conductive resin composition.
  • the thermally conductive resin composition may contain components other than the inorganic filler component, the resin component and the solvent.
  • the other components are additives, impurities, etc., and the content of the other components is preferably 5 parts by mass or less, more preferably 3 parts by mass, based on 100 parts by mass of the total of the inorganic filler component and the resin component. It is less than or equal to, more preferably 1 part by mass or less.
  • the heat dissipation sheet of the present invention is formed by molding the heat conductive resin composition of the present invention.
  • the thickness of the heat radiating sheet of the present invention is preferably 0.35 mm or less.
  • the thickness of the heat radiating sheet is more preferably 0.30 mm or less, further preferably 0.25 ⁇ m or less, still more preferably 0.20 ⁇ m or less, still more preferably 0. It is 15 mm or less, more preferably 0.12 mm or less, and particularly preferably 0.10 mm or less.
  • the heat dissipation sheet preferably contains a base material having a thickness of 0.05 mm or less.
  • the base material is not particularly limited as long as it can hold the heat conductive resin composition layer, has appropriate strength, has a thickness of 0.05 mm or less, and has flexibility.
  • Examples of the base material include paper, cloth, film, non-woven fabric, metal foil and the like. Among these, the viewpoint that the adhesiveness with the heat conductive resin composition layer is good and that the inhibition of heat conduction of the heat conductive resin composition by the base material can be suppressed by providing the opening portion.
  • cloth is preferable, and glass cloth and polyamide-imide fiber cloth are more preferable, and glass cloth is further preferable, from the viewpoint that the strength of the base material can be maintained to some extent even if the base material is thinned and the opening is widened. ..
  • the thickness of the base material is more preferably 0.03 mm or less.
  • the thickness of the base material is preferably 0.005 mm or more.
  • the heat dissipation sheet can be manufactured by the doctor blade method.
  • the heat dissipation sheet can be manufactured as follows. Raw materials other than the solvent such as the inorganic filler component and the resin component are dispersed in the solvent to prepare a slurry-like heat conductive resin composition.
  • the slurry-like thermally conductive resin composition may be simply referred to as “slurry”. Since the massive boron nitride particles used as the first inorganic filler have a high crushing strength of 6 MPa, the hexagonal boron nitride primary particles are hardly peeled off from the massive boron nitride particles when a raw material other than the solvent is dispersed in the solvent. ..
  • the viscosity of the slurry can also be reduced by increasing the amount of solvent.
  • the heat conductive resin composition when the heat conductive resin composition is molded into a sheet shape, the heat conductive resin composition foams, or when the solvent is removed from the molded body formed into the sheet shape, the heat conductive resin composition is contained. Since additives such as the vulcanizing agent and the curing agent may expire, it is desirable to reduce the viscosity of the slurry without increasing the amount of the solvent.
  • the inorganic filler dispersed after dispersing the raw materials other than the solvent of the heat conductive resin composition in the solvent. It is possible to prevent the components from aggregating and making the slurry non-uniform. If the average particle size of the inorganic filler is very small, the dispersed inorganic filler may aggregate and the slurry may become non-uniform.
  • the prepared slurry is supplied to the doctor blade device.
  • the doctor blade device flows out the slurry from the gap between the blade and the carrier film to form the thermally conductive resin composition into a sheet.
  • the thickness of the molded product can be accurately controlled by adjusting the dimensions between the blade and the carrier film and the moving speed of the carrier film. Further, in order to control the pressure of the slurry more accurately and control the thickness of the molded product more accurately, a doctor blade device having two blades may be used.
  • the slurry flowing out from the gap between the blade and the carrier film moves in the doctor blade device together with the carrier film, and while moving, it dries and solidifies to become a sheet-shaped molded product.
  • the obtained sheet-shaped molded product is, for example, pressurized and heated to be cured to obtain a heat-dissipating sheet.
  • a release agent may be applied to the surface of the carrier film so that the heat dissipation sheet can be easily peeled off from the carrier film.
  • the release agent include a silicone-based release agent, an alkyl pendant-based release agent, and a condensed wax-based release agent.
  • the heat dissipation sheet contains a base material
  • the heat dissipation sheet is manufactured as follows.
  • a laminated body is obtained by sandwiching a base material with two sheet-shaped molded bodies having a carrier film obtained by the doctor blade method.
  • the layer structure of the laminated body at this time is a carrier film / a heat conductive resin composition / a base material / a heat conductive resin composition / a carrier film.
  • the laminate is pressurized and heated, and the carrier film is peeled off to form a heat dissipation sheet.
  • a release agent may be applied to the surface of the carrier film so that the heat dissipation sheet can be easily peeled off from the carrier film.
  • the heat dissipation sheet can also be made by calendar processing.
  • the sheet-shaped heat conductive resin composition passes through the calendar roll, a part of the lumpy boron nitride particles may be peeled off from the lumpy boron nitride particles in the heat conductive resin composition. Therefore, it is preferable to manufacture the heat dissipation sheet by the doctor blade method.
  • particle size distribution Toluene was used to dissolve components other than the inorganic filler component of the heat conductive resin composition, and components other than the inorganic filler component were removed from the heat conductive resin composition.
  • the particle size distribution of the remaining inorganic filler component was measured using a laser diffraction / scattering method particle size distribution measuring device (LS-13 320) manufactured by Beckman Coulter Co., Ltd. Then, from the obtained particle size distribution, the first maximum value and the second maximum value, and the integrated amount of the frequency from the peak start to the peak end at the peak having the first maximum point were obtained.
  • the crushing strengths of the five inorganic filler components were weibull plotted according to JIS R1625, and the crushing strength at which the cumulative fracture rate was 63.2% was defined as the crushing strength of the first inorganic filler.
  • the crushing strength of the second inorganic filler was also measured by the same method.
  • Integrated amount of frequency of particle size of 0 to 15 ⁇ m Toluene was used to dissolve components other than the inorganic filler component of the heat conductive resin composition, and components other than the inorganic filler component were removed from the heat dissipation sheet. Then, the cumulative particle size of the remaining inorganic filler component was measured using a laser diffraction / scattering method particle size distribution measuring device manufactured by Beckman Coulter Co., Ltd. (LS-13 320). Then, the integrated amount of the frequency of the particle size of 0 to 15 ⁇ m was calculated from the obtained particle size integration.
  • Thermal resistance of the heat dissipation sheet was measured by applying a load of 1 MPa according to ASTM D5470.
  • Example 1 massive boron nitride particles were produced by boron carbide synthesis, pressure nitriding step, and decarburization crystallization step as follows.
  • Boric acid orthoboric acid
  • HS100 acetylene black
  • the synthesized boron carbide mass is pulverized with a ball mill for 1 hour, sieved to a particle size of 75 ⁇ m or less using a sieve net, washed with an aqueous nitrate solution to remove impurities such as iron, and then filtered and dried to have an average particle size of 20 ⁇ m.
  • Boron carbide powder was prepared. The carbon content of the obtained boron carbide powder was 20.0%.
  • Boron nitride (B 4 ) is obtained by filling the synthesized boron carbide into a crucible nitride and then heating it in a nitrogen gas atmosphere at 2000 ° C. and 9 atm (0.8 MPa) for 10 hours using a resistance heating furnace. CN 4 ) was obtained.
  • the synthesized massive boron nitride particles were decomposed and crushed by 15 with a Henshell mixer, and then classified with a nylon sieve having a sieve mesh of 150 ⁇ m using a sieve net. By crushing and classifying the fired product, agglomerated boron nitride particles 1 in which the primary particles were aggregated and agglomerated were obtained.
  • the average particle diameter (D50) of the obtained massive boron nitride particles 1 measured by the laser scattering method was 40 ⁇ m.
  • the crushing strength of the massive boron nitride particles 1 was 12 MPa.
  • Hardener (2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, chemical agent Nourion Co., Ltd., trade name “Trigonox 101”), massive boron nitride particles, aggregated boron nitride particles and scaly nitride 0.5% by mass of silane coupling agent with respect to 100 parts by mass of total boron particles (dimethyldimethoxysilane, manufactured by Dow Toray Co., Ltd., trade name "DOWNSIL Z-6329 Silane", viscosity at 25 ° C.: 1 cp).
  • a slurry of the heat conductive resin composition was prepared by mixing for 15 hours using a turbine type stirring blade. The viscosity of the slurry was 10000 cp. Then, by the doctor blade method, the slurry is coated on a pet film (carrier film) having a thickness of 0.05 mm to a thickness of 0.2 mm, dried at 75 ° C. for 5 minutes, and formed into a sheet with a pet film.
  • the body was made.
  • a laminated body was prepared by sandwiching the glass cloth with a sheet-shaped molded body with a pet film so that the coated surface of the heat conductive resin composition was in contact with both sides of the glass cloth (thickness: 0.025 mm).
  • the layer structure of the laminated body was a pet film / a heat conductive resin composition / a glass cloth / a heat conductive resin composition / a pet film.
  • the obtained laminate was heated and pressed for 25 minutes under the conditions of a temperature of 150 ° C. and a pressure of 160 kg / cm 2 , and the pet films on both sides were peeled off to obtain a sheet having a thickness of 0.09 mm. Then, it was subjected to secondary heating at normal pressure at 150 ° C. for 4 hours to obtain a heat dissipation sheet of Example 1.
  • Example 2 The same as in Example 1 except that the blending amount of toluene was changed from 110 parts by mass to 60 parts by mass and the coating conditions of the doctor blade method were changed to prepare a heat radiating sheet having a thickness of 0.20 mm.
  • the heat dissipation sheet of No. 2 was produced.
  • the viscosity of the slurry was 7000 cp.
  • Example 3 The same as in Example 1 except that the blending amount of toluene was changed from 110 parts by mass to 50 parts by mass and the coating conditions of the doctor blade method were changed to prepare a heat radiating sheet having a thickness of 0.31 mm.
  • the heat dissipation sheet of No. 3 was produced.
  • the viscosity of the slurry was 8000 cp.
  • Example 4 Instead of blending 45% by volume of the massive boron nitride particles 1 having an average particle diameter of 40 ⁇ m and a crushing strength of 12 MPa, 42% by volume of the massive boron nitride particles 2 having an average particle diameter of 75 ⁇ m and a crushing strength of 12 MPa are blended. However, instead of blending 12% by volume of aggregated boron nitride particles, 11% by volume of massive boron nitride particles 3 having an average particle diameter of 38 ⁇ m and a crushing strength of 12 MPa were blended, and no scaly boron nitride particles were blended.
  • the heat radiating sheet of Example 4 was produced in the same manner as in Example 1 except that a heat radiating sheet having a thickness of 0.10 mm was produced.
  • the average particle size of the boron carbide powder was changed by changing the pulverization time of the synthesized boron carbide mass by a ball mill. It was produced by the same method as the massive boron nitride particles 1 used for the heat dissipation sheet of 1.
  • the viscosity of the slurry was 10000 cp.
  • Example 5 The heat radiating sheet of Example 5 was produced in the same manner as in Example 4 except that the coating conditions of the doctor blade method were changed to produce a heat radiating sheet having a thickness of 0.20 mm.
  • Example 6 The heat radiating sheet of Example 6 was produced in the same manner as in Example 4 except that the coating conditions of the doctor blade method were changed to produce a heat radiating sheet having a thickness of 0.27 mm.
  • Example 7 Instead of the massive boron nitride particles 2, the massive boron nitride particles 4 having an average particle diameter of 55 ⁇ m and a crushing strength of 10 MPa were blended, and the coating conditions of the doctor blade method were changed to dissipate heat with a thickness of 0.10 mm.
  • the heat dissipation sheet of Example 7 was produced in the same manner as in Example 1 except that the sheet was produced.
  • the massive boron nitride particles 4 used for the heat dissipation sheet of Example 7 were of Example 1 except that the crushing time of the synthesized boron carbide mass by a ball mill was changed to change the average particle size of the boron carbide powder. It was produced by the same method as the massive boron nitride particles 1 used for the heat dissipation sheet.
  • the viscosity of the slurry was 9500 cp.
  • Example 8 The heat radiating sheet of Example 8 was produced in the same manner as in Example 7 except that the coating conditions of the doctor blade method were changed to produce a heat radiating sheet having a thickness of 0.20 mm.
  • Example 9 The heat radiating sheet of Example 9 was produced in the same manner as in Example 7 except that the coating conditions of the doctor blade method were changed to produce a heat radiating sheet having a thickness of 0.28 mm.
  • Comparative Example 1 The point that the lumpy boron nitride particles 1 and the scaly boron nitride particles were not blended, the point that the blending amount of the aggregated boron nitride particles was changed from 12% by volume to 60% by volume, and the blending amount of the silane coupling agent was 0.5% by mass. Comparative Example 1 in the same manner as in Example 1 except that the portion was changed to 0.2 parts by mass and the coating conditions of the doctor blade method were changed to produce a heat radiating sheet having a thickness of 0.20 mm. A heat dissipation sheet was prepared. The viscosity of the slurry was 12000 cp. Further, since the viscosity of the slurry was high, it was not possible to produce a heat radiating sheet having a thickness of 0.15 mm or less.
  • Comparative Example 2 The heat radiating sheet of Comparative Example 2 was produced in the same manner as in Comparative Example 1 except that the coating conditions of the doctor blade method were changed to produce a heat radiating sheet having a thickness of 0.30 mm.
  • Example 3 A slurry was prepared in the same manner as in Example 7 except that the massive boron nitride particles 3 were changed to the massive boron nitride particles 1. However, since the viscosity of the slurry was as high as 16000 cp, it was not possible to produce a heat radiating sheet having a thickness of 0.20 mm.
  • Example 4 Same as Example 1 except that the blending amount of the massive boron nitride particles 1 was changed from 45% by volume to 12% by volume and the blending amount of the aggregated boron nitride particles was changed from 12% by volume to 45% by volume. To prepare a slurry. However, since the viscosity of the slurry was as high as 18000 cp, it was not possible to produce a heat radiating sheet having a thickness of 0.20 mm.
  • Table 1 shows the evaluation results of the heat dissipation sheets of Examples 1 to 9 and Comparative Examples 1 to 4.
  • Example 10 The silicone resin CF3110 was changed to an epoxy resin (bisphenol type epoxy resin manufactured by Mitsubishi Chemical Co., Ltd., model number; JER-807), and the curing agent Trigonox 101 (1 part by mass) was replaced with a curing agent MEH-8005 (manufactured by Meiwa Kasei Co., Ltd., 10).
  • a 0.2 mm heat dissipation sheet was prepared in the same manner as in Example 5 except that 2PHZ-PW (manufactured by Shikoku Kasei Co., Ltd., 1 material section) was added as a curing accelerator. It was measured by the method described above.
  • Example 10 Comparing the thermal resistance of Example 10 and the thermal resistance of Comparative Example 5, the thermal resistance of Example 10 was lower, which was a good result. Therefore, the effect obtained by combining a specific inorganic filler can be obtained regardless of the type of resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本発明は、無機フィラー成分と樹脂成分とを配合してなる熱伝導性樹脂組成物であって、無機フィラー成分は第1の無機フィラー及び第2の無機フィラーを含み、無機フィラー成分の粒度分布は、第1の無機フィラーに起因する第1の極大点(M1)及び第2の無機フィラーに起因する第2の極大点(M2)を有し、第1の極大点(M2)の粒径が15μm以上であり、第2の極大点(M2)の粒径が第1の極大点(M1)の粒径の3分の2以下であり、第1の極大点(M1)を有するピークにおけるピークスタート(PS)からピークエンド(PE)までの間の頻度の積算量が50%以上であり、第1の無機フィラーが、六方晶窒化ホウ素一次粒子が凝集してなり、圧壊強度が6MPa以上である。本発明の放熱シートは本発明の熱伝導性樹脂組成物を成形してなるものである。本発明によれば、薄い成形体を作製するのに好適な優れた熱伝導性を有する熱伝導性樹脂組成物及びその熱伝導性樹脂組成物を成形してなる放熱シートを提供することができる。

Description

熱伝導性樹脂組成物及び放熱シート
 本発明は、窒化ホウ素粒子を含む熱伝導性樹脂組成物及びその熱伝導性樹脂組成物を成形してなる放熱シートに関する。
 パワーデバイス、トランジスタ、サイリスタ、CPU等の発熱性電子部品においては、使用時に発生する熱を如何に効率的に放熱するかが重要な課題となっている。従来から、このような放熱対策としては、(1)発熱性電子部品を実装するプリント配線板の絶縁層を高熱伝導化する、(2)発熱性電子部品又は発熱性電子部品を実装したプリント配線板を電気絶縁性の熱インターフェース材(Thermal Interface Materials)を介してヒートシンクに取り付ける、ことが一般的に行われてきた。プリント配線板の絶縁層及び熱インターフェース材としては、シリコーン樹脂やエポキシ樹脂にセラミックス粉末を充填させたものが使用されている。
 近年、発熱性電子部品内の回路の高速・高集積化、及び発熱性電子部品のプリント配線板への実装密度の増加に伴って、電子機器内部の発熱密度は年々増加している。そのため、従来にも増して高い熱伝導率を有するセラミックス粉末が求められてきている。
 以上のような背景により、高熱伝導率、高絶縁性、比誘電率が低いこと等、電気絶縁材料として優れた性質を有している、六方晶窒化ホウ素(Hexagonal Boron Nitride)粉末が注目されている。
 しかしながら、六方晶窒化ホウ素粒子は、面内方向(a軸方向)の熱伝導率が400W/(m・K)であるのに対して、厚み方向(c軸方向)の熱伝導率が2W/(m・K)であり、結晶構造と鱗片状に由来する熱伝導率の異方性が大きい。さらに、六方晶窒化ホウ素粉末を樹脂に充填すると、粒子同士が同一方向に揃って配向する。そうすると、樹脂中の六方晶窒化ホウ素粒子の厚み方向(c軸方向)がそろうことになる。
 そのため、例えば、熱インターフェース材の製造時に、六方晶窒化ホウ素粒子の面内方向(a軸方向)と熱インターフェース材の厚み方向が垂直になり、六方晶窒化ホウ素粒子の面内方向(a軸方向)の高熱伝導率を十分に活かすことができなかった。
 特許文献1では、一次粒子の六方晶窒化ホウ素粒子が同一方向に配向せずに凝集した窒化ホウ素粉末の使用が提案されている。この窒化ホウ素粉末を樹脂に充填すると、一次粒子の六方晶窒化ホウ素粒子が同一方向に配向せず、熱伝導率の異方性を抑制することができる。一次粒子の六方晶窒化ホウ素粒子が同一方向に配向せずに凝集した窒化ホウ素粉末として、特許文献1に記載されたもの以外に、スプレードライ法で作製した球状窒化ホウ素(特許文献2)、炭化ホウ素を原料として製造した凝集体の窒化ホウ素(特許文献3)、プレスと破砕を繰り返し製造した凝集窒化ホウ素(特許文献4)などが知られている。
特開平9-202663号公報 特開2014-40341号公報 特開2011-98882号公報 特表2007-502770号公報
 近年、発熱性電子部品の小型化に伴い、薄い放熱シートが求められている。ところで、セラミック原料粉末と有機質系成分とから構成された薄い成形体を連続して得る方法としてドクターブレード法が知られている。ドクターブレード法は、均一なスラリーをキャリアフィルムの上に薄く延ばして成形体を得る方法である。ドクターブレード法は、電子機器用のセラミック基板、IC用のセラミックパッケージ、多層セラミックパッケージ、多層セラミック回路基板、セラミックコンデンサー等に広く使用されている。薄い放熱シートを量産するという観点から、薄い放熱シートもドクターブレード法で作製することが望ましい。しかし、熱伝導性を高い水準で維持しつつ、薄い放熱シートを作製するのは困難である。
 従来の凝集窒化ホウ素を使用してスラリーを作製すると、スラリーの粘度が高くなるので、従来の凝集窒化ホウ素を使用して、ドクターブレード法により薄い成形体を得ることが難しかった。また、従来の凝集窒化ホウ素を使用してドクターブレード法により薄い成形体を作製し、薄い成形体からキャリアフィルムを剥がすと、剥がしたキャリアフィルムに窒化ホウ素粒子が付着してしまうという問題も生じた。
 そこで、本発明は、薄い成形体を作製するのに好適な優れた熱伝導性を有する熱伝導性樹脂組成物及びその熱伝導性樹脂組成物を成形してなる放熱シートを提供することを目的とする。
 本発明者らは、上記の目的を達成すべく鋭意研究を進めたところ、従来の凝集窒化ホウ素を使用してスラリーを作製すると、スラリー作製中に凝集窒化ホウ素から窒化ホウ素粒子が剥がれ、剥がれた窒化ホウ素粒子が、スラリーの粘度を増加させたり、キャリアフィルムに付着したりすることを見出した。
 本発明は、上記の知見に基づくものであり、以下を要旨とする。
[1]無機フィラー成分と樹脂成分とを配合してなる熱伝導性樹脂組成物であって、無機フィラー成分は第1の無機フィラー及び第2の無機フィラーを含み、無機フィラー成分の粒度分布は、第1の無機フィラーに起因する第1の極大点及び第2の無機フィラーに起因する第2の極大点を有し、第1の極大点の粒径が15μm以上であり、第2の極大点の粒径が第1の極大点の粒径の3分の2以下であり、第1の極大点を有するピークにおけるピークスタートからピークエンドまでの間の頻度の積算量が50%以上であり、第1の無機フィラーが、六方晶窒化ホウ素一次粒子が凝集してなり、圧壊強度が6MPa以上である熱伝導性樹脂組成物。
[2]第2の無機フィラーが窒化ホウ素粒子である上記[1]に記載の熱伝導性樹脂組成物。
[3]第2の無機フィラーが、六方晶窒化ホウ素一次粒子が凝集してなり、圧壊強度が6MPa以上である塊状窒化ホウ素粒子である上記[2]に記載の熱伝導性樹脂組成物。
[4]無機フィラー成分の粒度累積において、0~15μmの粒径の頻度の積算量が60%未満である上記[1]~[3]のいずれか1つに記載の熱伝導性樹脂組成物。
[5]上記[1]~[4]のいずれか1つに記載の熱伝導性樹脂組成物を成形してなる放熱シート。
[6]厚さが0.35mm以下である上記[5]に記載の放熱シート。
[7]厚さが0.05mm以下の基材をさらに含む上記[5]又は[6]に記載の放熱シート。
 本発明によれば、薄い成形体を作製するのに好適な優れた熱伝導性を有する熱伝導性樹脂組成物及びその熱伝導性樹脂組成物を成形してなる放熱シートを提供することができる。
図1は、無機フィラー成分の粒度分布の一例を示す図である。
[熱伝導性樹脂組成物]
 本発明の熱伝導性樹脂組成物は無機フィラー成分と樹脂成分とを配合してなるものである。
(無機フィラー成分)
 無機フィラー成分は第1の無機フィラーと第2の無機フィラーとを含む。そして、無機フィラー成分の粒度分布は、第1の無機フィラーに起因する第1の極大点及び第2の無機フィラーに起因する第2の極大点を有し、第1の極大点の粒径が15μm以上であり、第2の極大点の粒径が第1の極大点の粒径の3分の2以下であり、第1の極大点を有するピークにおけるピークスタートからピークエンドまでの間の頻度の積算量が50%以上である。なお、熱伝導性樹脂組成物中の無機フィラー成分の粒度分布は、例えば、以下のようにして測定できる。トルエン、キシレン、塩素系炭化水素など溶剤を用いて熱伝導性樹脂組成物の無機フィラー成分以外の成分を溶かし出して、熱伝導性組成物から無機フィラー成分以外の成分を除く。そして、残った無機フィラー成分の粒度分布を、ベックマン・コールター株式会社製レーザー回折散乱法粒度分布測定装置(LS-13 320)を用いて測定する。また、3つ以上のピークが存在する場合は、極大点の頻度が最も高いピークを第1の無機フィラーに起因する極大点を有するピークとし、その次に極大点の頻度が高いピークを第2の無機フィラーに起因する極大点を有するピークとする。なお、粒度分布における頻度の単位は体積%である。
<第1の無機フィラー>
 第1の無機フィラーは、六方晶窒化ホウ素一次粒子が凝集してなり、圧壊強度が6MPa以上である塊状窒化ホウ素粒子である。塊状窒化ホウ素粒子の圧壊強度が6MPa未満であると、熱伝導性樹脂組成物をスラリー状にするとき、塊状窒化ホウ素粒子の一部が塊状窒化ホウ素粒子から剥がれ、熱伝導性樹脂組成物の粘度が増加して、ドクターブレード法により薄い成形体を作製することができなかったり、塊状窒化ホウ素粒子の一部がキャリアフィルムに付着したりする場合がある。このような観点から、塊状窒化ホウ素粒子の圧壊強度は、好ましくは7MPa以上であり、より好ましくは8MPa以上であり、さらに好ましくは9MPa以上であり、よりさらに好ましくは10MPa以上であり、特に好ましくは11MPa以上である。なお、塊状窒化ホウ素粒子の圧壊強度の上限値は、特に限定されないが、例えば30MPa以下である。
 第1の無機フィラーの圧壊強度はJIS R1639-5に準じて測定することができる。具体的には、第1の無機フィラーの圧壊強度は、以下のようにして測定することができる。トルエン、キシレン、塩素系炭化水素など溶剤を用いて熱伝導性樹脂組成物の無機フィラー成分以外の成分を溶かし出して、熱伝導性樹脂組成物から無機フィラー成分以外の成分を除く。そして、残った無機フィラー成分の粒度分布をベックマン・コールター株式会社製レーザー回折散乱法粒度分布測定装置、(LS-13 320)を用いて測定する。次に、無機フィラー成分を微小圧縮試験器(「MCT-W500」株式会社島津製作所製)の試料台に散布後、無機フィラー成分のX方向及びY方向の径を測ってその平均を無機フィラー成分の粒径とする。第1の極大点の粒径±5μmの範囲内の粒径を有する無機フィラー成分を5個選び出し、1粒ずつ圧縮試験を行う。圧壊強度(σ:MPa)は、粒子内の位置によって変化する無次元数(α=2.48)と圧壊試験力(P:N)と粒径(d:μm)からσ=α×P/(π×d)の式を用いて算出する。JIS R1625に準じて5個の無機フィラー成分の圧壊強度をワイブルプロットし、累積破壊率が63.2%となる圧壊強度を第1の無機フィラーの圧壊強度とする。
 第1の無機フィラーに起因する第1の極大点の粒径は15μm以上である。第1の無機フィラーに起因する第1の極大点の粒径が15μm未満であると、熱伝導性樹脂組成物が第1の無機フィラーを高充填で含むことができなくなり、熱伝導性樹脂組成物を用いて作製した放熱シートの熱伝導率が低くなる場合がある。このような観点から、第1の極大点の粒径は、好ましくは20μm以上であり、より好ましくは30μm以上であり、よりさらに好ましくは40μm以上であり、とくに好ましくは50μm以上である。また、第1の極大点の粒径は、好ましくは100μm以下である。第1の極大点の粒径が100μm以下であると、熱伝導性樹脂組成物を用いて薄い放熱シートを作製できる。このような観点から、第1の極大点の粒径は、より好ましくは90μm以下であり、さらに好ましくは80μm以下である。なお、第1の極大点の粒径は、例えば、塊状窒化ホウ素粒子の原料であるBCの粒径で第1の無機フィラーの平均粒径を調整することにより調節することができる。すなわち、塊状窒化ホウ素粒子の原料であるBCの粒径を大きくすれば、第1の極大点の粒径は大きくなり、BCの粒径を小さくすれば、第1の極大点の粒径は小さくなる。また、第1の極大点の粒径が第1の無機フィラーに起因するとは、第1の無機フィラーの粒度分布の極大点が無機フィラー成分の粒度分布に第1の極大点として現れることをいう。なお、第1の無機フィラー以外の無機フィラー成分の粒度分布の影響で、第1の極大点の粒径が第1の無機フィラーの粒度分布の極大点の粒径から若干異なる場合がある。
 第1の極大点を有するピークにおけるピークスタートからピークエンドの間の頻度の積算量は50%以上である。上記積算量が50%未満であると、第1の無機フィラー以外の無機フィラーにより、熱伝導性樹脂組成物の粘度が増加して、ドクターブレード法により薄い成形体を作製することができなかったり、第1の無機フィラー以外の無機フィラーがキャリアフィルムに付着したりする場合がある。このような観点から、上記積算量は、好ましくは60%以上であり、より好ましくは70%以上である。また、無機フィラー成分が後述の第2の無機フィラーを含有することによる効果を発現できるようにするために、上記積算量は、好ましくは90%以下であり、より好ましくは80%以下である。特に強度の高い大きめの第1の無機フィラーと、後述する第2の無機フィラーとの組み合わせにより、製造性を改善するとともに、無機フィラーが密に詰まった放熱シートにすることができる。なお、第1の極大点を有するピークにおけるピークスタートからピークエンドの間の頻度の積算量は、概ね、第1の無機フィラーの無機フィラー成分における含有量(体積%)である。したがって、無機フィラー成分の組成を分析することにより、第1の極大点に該当する無機フィラーを判別することができる。
 図1を参照して、第1の極大点を有するピークにおけるピークスタートからピークエンドの間の頻度の積算量を説明する。図1は、無機フィラー成分の粒度分布の一例を示す図である。横軸は対数である。符号M1は第1の極大点を示し、符号M2は第2の極大点を示す。また、PSはピークスタートを示し、PEはピークエンドを示す。なお、図1に示すように、隣り合うピークの裾が重なる場合は、ピークの谷になる位置がピークスタート(PS)となる。そして、第1の極大点(M1)を有するピークの斜線の部分の積算量が、第1の極大点(M1)を有するピークにおけるピークスタート(PS)からピークエンド(PE)の間の頻度の積算量となる。また、ピークエンド側で隣り合うピークの裾が重なる場合は、ピークの谷になる位置がピークエンドとなる。
 六方晶窒化ホウ素一次粒子が凝集してなり、圧壊強度が6MPa以上である塊状窒化ホウ素粒子は、例えば、ホウ素とアセチレンブラックとを原料として炭化ホウ素を合成し、得られた炭化ホウ素に対して(1)加圧窒化焼成工程及び(2)脱炭結晶化工程を実施することにより塊状窒化ホウ素粒子を製造することができる。以下、各工程を詳細に説明する。
(1)加圧窒化焼成工程
 加圧窒化焼成工程では、平均粒子径が6~55μmで炭素量18~21%の炭化ホウ素を加圧窒化焼成する。これにより、本発明の塊状窒化ホウ素粒子の原料として好適な炭窒化ホウ素を得ることができる。
(i)加圧窒化工程に使用する原料の炭化ホウ素
 加圧窒化工程で使用する原料の炭化ホウ素の粒径が最終的にできる塊状窒化ホウ素粒子に強く影響するため、適切な粒径のものを選択する必要があり、平均粒子径6~55μmの炭化ホウ素を原料として使用することが望ましい。その際、不純物のホウ酸や遊離炭素が少ないことが望ましい。
 原料の炭化ホウ素の平均粒子径は、好ましくは6μm以上であり、より好ましくは7μm以上であり、さらに好ましくは10μm以上であり、そして、好ましくは55μm以下であり、より好ましくは50μm以下であり、さらに好ましくは45以下μmである。また、原料の炭化ホウ素の平均粒子径は、好ましくは7~50μmであり、より好ましくは10~45μmである。なお、炭化ホウ素の平均粒子径は、ベックマン・コールター株式会社製レーザー回折散乱法粒度分布測定装置(LS-13 320)を用いて測定することができる。
 加圧窒化工程で使用する原料の炭化ホウ素の炭素量は組成上のBC(21.7%)より低いことが望ましく、18~21%の炭素量を有する炭化ホウ素を使用することが望ましい。炭化ホウ素の炭素量は、好ましくは18%以上であり、より好ましくは19%以上であり、そして、好ましくは21%以下であり、より好ましくは20.5%以下である。また、炭化ホウ素の炭素量は、好ましくは18~20.5%であり、より好ましくは19~20.5%である。炭化ホウ素の炭素量をこのような範囲にするのは、後述の脱炭結晶化工程の際に発する炭素量が少ない方が、緻密な塊状窒化ホウ素粒子が生成されるためであり、最終的にできる塊状窒化ホウ素粒子の炭素量を低くするためでもある。また炭素量18%未満の安定な炭化ホウ素を作製することは理論組成との乖離が大きくなり過ぎて困難である。
 原料の炭化ホウ素を製造する方法は、ホウ酸とアセチレンブラックとを混合したのち、雰囲気中、1800~2400℃にて、1~10時間加熱し、炭化ホウ素塊を得ることができる。この素塊を、粉砕後、篩分けし、洗浄、不純物除去、乾燥等を適宜行い、炭化ホウ素粉末を作製することができる。炭化ホウ素の原料であるホウ酸とアセチレンブラックとの混合は、ホウ酸100質量部に対して、アセチレンブラック25~40質量部であるのが好適である。
 炭化ホウ素を製造する際の雰囲気は、不活性ガスが好ましく、不活性ガスとして、例えば、アルゴンガス及び窒素ガスが挙げられ、これらを適宜単独で又は組み合わせて使用することができる。このうち、アルゴンガスが好ましい。
 また、炭化ホウ素塊の粉砕は、一般的な粉砕機又は解砕機を用いることができ、例えば0.5~3時間程度粉砕を行う。粉砕後の炭化ホウ素は、篩網を用いて粒径75μm以下に篩分けすることが好適である。なお、粉砕後の炭化ホウ素の平均粒径を調整することにより、塊状窒化ホウ素粒子の平均粒径を調整することができる。
(ii)加圧窒化焼成
 加圧窒化焼成は、特定の焼成温度及び加圧条件の雰囲気にて行う。
 加圧窒化焼成における焼成温度は、好ましくは1700℃以上であり、より好ましくは1800℃以上であり、そして、好ましくは2400℃以下であり、より好ましくは2200℃以下である。また、加圧窒化焼成における焼成温度は、より好ましくは、1800~2200℃である。
 加圧窒化焼成における圧力は、好ましくは0.6MPa以上であり、より好ましくは0.7MPa以上であり、そして、好ましくは1.0MPa以下であり、より好ましくは0.9MPa以下である。また、加圧窒化焼成における圧力は、好ましくは0.6~1.0MPaであり、より好ましくは0.7~0.9MPaである。
 加圧窒化焼成における焼成温度及び圧力条件の組み合わせとして、好ましくは、焼成温度1800℃以上で、圧力0.7~1.0MPaである。これは焼成温度1800℃で、圧力0.7MPa以上の場合、炭化ホウ素の窒化を十分進ませることができる。また、工業的には1.0MPa以下の圧力で生産を行う方が望ましい。
 加圧窒化焼成における雰囲気として、窒化反応が進行するガスが求められ、例えば、窒素ガス及びアンモニアガス等が挙げられ、これらを単独で又は2種以上組み合わせて使用することができる。このうち、窒素ガスが窒化のため、またコスト的に好適である。雰囲気中の窒素ガスの濃度は好ましくは95%(V/V)以上であり、より好ましくは99.9%(V/V)以上である。
 加圧窒化焼成における焼成時間は、好ましくは6~30時間であり、より好ましくは8~20時間である。
(2)脱炭結晶化工程
 脱炭結晶化工程では、加圧窒化工程にて得られた炭窒化ホウ素を、(a)常圧以上の雰囲気にて、(b)特定の昇温温度で(c)特定の温度範囲の焼成温度になるまで昇温を行い、(d)焼成温度で一定時間保持する熱処理を行う。これにより、一次粒子(一次粒子が鱗片状の六方晶窒化ホウ素)が凝集して塊状になった塊状窒化ホウ素粒子を得ることができる。とくに上記熱処理の条件を後述する範囲にすれば、圧壊強度を6MPa以上とすることができる。
 この脱炭結晶化工程において、上述の如き、調製された炭化ホウ素から得られた炭窒化ホウ素を、脱炭化させるとともに、所定の大きさの鱗片状にさせつつ、凝集させて塊状窒化ホウ素粒子とする。
 より具体的には、脱炭結晶化工程では、加圧窒化焼成工程で得られた炭窒化ホウ素100質量部と、酸化ホウ素及びホウ酸の少なくとも一方の化合物65~130質量部とを混合して混合物を作製し、得られた混合物を脱炭開始可能な温度に上昇させた後、昇温温度5℃/min以下で1950~2100℃の焼成温度になるまで昇温を行い、上記焼成温度で0.5時間超20時間未満保持する熱処理を行う。このような熱処理を行うことにより、圧壊強度を6MPa以上とすることができる。
 脱炭結晶化工程として、好適には、常圧以上の雰囲気にて、脱炭開始可能な温度に上昇させた後、昇温温度5℃/min以下で1950~2100℃の焼成温度になるまで昇温を行い、この焼成温度で0.5時間超20時間未満保持する熱処理を行うことである。さらに、脱炭結晶化工程として、より好適には、常圧以上の雰囲気にて、脱炭開始可能な温度に上昇させた後、昇温温度5℃/min以下で2000~2080℃の焼成温度になるまで昇温を行い、この焼成温度で2~8時間保持する熱処理を行うことである。
 脱炭結晶化工程において、加圧窒化焼成工程で得られた炭窒化ホウ素と、酸化ホウ素及びホウ酸の少なくとも一方の化合物(さらに、必要に応じて他の原料)とを混合して混合物を作製した後、得られた混合物を脱炭結晶化することが望ましい。塊状窒化ホウ素粒子の圧壊強度を6MPa以上とする観点から、炭窒化ホウ素と酸化ホウ素及びホウ酸の少なくとも一方の化合物との混合割合は、炭窒化ホウ素100質量部に対して、好ましくは酸化ホウ素及びホウ酸の少なくとも一方の化合物65~130質量部、より好ましくは酸化ホウ素及びホウ酸の少なくとも一方の化合物70~120質量部である。なお、酸化ホウ素の場合は、ホウ酸に換算した混合割合である。
 脱炭結晶化工程おける「(a)常圧以上の雰囲気」の圧力条件は、好ましくは常圧以上であり、より好ましくは0.1MPa以上である。また、雰囲気の圧力条件の上限値は、特に限定されないが、好ましくは1MPa以下であり、より好ましくは0.5MPa以下であり、さらに好ましくは0.3MPa以下である。また、雰囲気の圧力条件は、好ましくは0.1~1MPaであり、より好ましくは0.1~0.5MPaであり、さらに好ましくは0.1~0.3MPaである。
 脱炭結晶化工程における上記「雰囲気」は、窒素ガスが好適であり、雰囲気中窒素ガスの濃度は90%(V/V)以上が好適であり、より好ましくは、窒素ガスは高純度窒素ガス(窒素濃度99.9%(V/V)以上)である。
 脱炭結晶化工程における「(b)特定の昇温温度」の昇温は、1段階又は多段階のいずれでもよい。脱炭開始可能な温度にまで上昇させる時間を短縮するため、多段階を選択することが望ましい。多段階における「第1段階の昇温」として、「脱炭開始可能な温度」にまで昇温を行うことが好ましい。「脱炭開始可能な温度」は、特に限定されず、通常行っている温度であればよく、例えば800~1200℃程度(好適には、約1000℃)であればよい。「第1段階の昇温」は、例えば、5~20℃/minの範囲で行うことができ、好適には8~12℃/minである。
 第1段階の昇温後に、第2段階の昇温を行うことが好ましい。上記「第2段階の昇温」は、脱炭結晶化工程における「(c)特定の温度範囲の焼成温度になるまで昇温」を行うことが、より好ましい。
 上記「第2段階の昇温」は、好ましくは5℃/min以下、より好ましくは4℃/min以下、さらに好ましくは3℃/min以下、よりさらに好ましくは2℃/min以下である。第2段階の昇温速度が5℃/min以下の場合、粒成長がさらに均一になり、塊状窒化ホウ素粒子が均一な構造になるので、圧壊強度がさらに高くなる。また、上記「第2段階の昇温」は、好ましくは0.1℃/min以上であり、より好ましくは0.5℃/min以上であり、さらに好ましくは1℃/min以上である。「第2段階の昇温」が0.1℃/min以上の場合、製造時間を短縮できるので、製造コストを低減できる。「第2段階の昇温」は、好適には、0.1~5℃/minである。
 上記「(c)特定の温度範囲の焼成温度になるまで昇温」における特定の温度範囲(昇温後の焼成温度)は、好ましくは1950℃以上、より好ましくは1960℃以上、さらに好ましくは2000℃以上であり、そして、好ましくは2100℃以下、より好ましくは2080℃以下である。
 上記「(d)焼成温度で一定時間保持」の一定時間保持(昇温後の焼成時間)は、好ましくは、0.5時間超え20時間未満である。上記「焼成時間」は、より好ましくは1時間以上、さらに好ましくは3時間以上、よりさらに好ましくは5時間以上、とくに好ましくは10時間以上であり、そして、より好ましくは18時間以下、さらに好ましくは16時間以下である。昇温後の焼成時間が0.5時間超の場合は粒成長が良好に起こり、20時間未満であると、粒成長が進みすぎて粒子強度が低下することを低減でき、また、焼成時間が長いことで工業的にも不利になることも低減できる。
 そして、上記加圧窒化焼成工程及び上記脱炭結晶化工程を経て、本発明の塊状窒化ホウ素粒子を得ることができる。さらに、塊状窒化ホウ素粒子間の弱い凝集をほぐす場合には、脱炭結晶化工程にて得られた塊状窒化ホウ素粒子を、粉砕又は解砕し、さらに分級することが望ましい。粉砕及び解砕は、特に限定されず、一般的に使用されている粉砕機及び解砕機を用いればよく、また、分級は、平均粒子径が20μm以上になるような一般的な篩分け方法を用いればよい。例えば、ヘンシェルミキサーや乳鉢により解砕をおこなった後、振動篩機による分級をする方法などが挙げられる。
<第2の無機フィラー>
 第2の無機フィラーに起因する第2の極大点の粒径は第1の極大点の粒径の3分の2以下である。第2の極大点の粒径が第1の極大点の粒径の3分の2よりも大きいと、熱伝導性樹脂組成物は無機フィラー成分を高充填で含むことができず、無機フィラー成分の一部がキャリアフィルムに付着したり、熱伝導性樹脂組成物を用いて作製した放熱シートの熱伝導率が低くなったりする場合がある。このような観点から、第2の極大点の粒径は、好ましくは第1の極大点の粒径の60%の粒径以下であり、より好ましくは第1の極大点の粒径の55%の粒径以下であり、さらに好ましくは第1の極大点の粒径の52%の粒径以下である。なお、第2の極大点の粒径の下限値は、例えば、第1の極大点の粒径の20%以上であり、30%以上又は40%以上が好ましい。また、第2の極大点は、第1の極大点と同様にして測定することができる。なお、第2の極大点は複数あってもよい。また、第2の極大点を有するピークにおけるピークスタートからピークエンドの間の頻度の積算量は、概ね、第2の無機フィラーの無機成分における含有量(体積%)である。したがって、無機フィラー成分の組成を分析することにより、第2の極大点に該当する無機フィラーを判別することができる。
 第2の極大点を有するピークにおけるピークスタートからピークエンドの間の頻度の積算量は50%以下であり、45%以下であってよく、40%以下であってよく、35%以下であってよい。下限は10%以上であってよく、15%以上であってよく、20%以上であってよく、25%以上であってよい。
 第2の無機フィラーには、例えば、アルミナ粒子、窒化アルミニウム粒子、窒化ホウ素粒子などが挙げられる。これらの第2の無機フィラーは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらの中で、第2の無機フィラーは好ましくは窒化ホウ素粒子である。第2の無機フィラーが窒化ホウ素粒子であると、熱伝導性樹脂組成物を用いて作製した放熱シートの熱伝導率をさらに高くすることができる。また、第2の無機フィラーは、より好ましくは六方晶窒化ホウ素一次粒子が凝集してなり、圧壊強度が6MPa以上である塊状窒化ホウ素粒子である。これにより、熱伝導性樹脂組成物のスラリーを作製しているとき、第2の無機フィラーの一部が第2の無機フィラーから剥がれて、熱伝導性樹脂組成物のスラリーの粘度が増加することをさらに抑制できるとともに、第2の無機フィラーの一部がキャリアフィルムに付着したりすることをさらに抑制できる。なお、第2の無機フィラーの塊状窒化ホウ素粒子は、第1の無機フィラーの塊状窒化ホウ素粒子と同様な方法で作製することができる。また、塊状窒化ホウ素粒子の原料であるBCの粒径を調整することにより、第2の無機フィラーに起因する第2の極大点の粒径を第1の極大点の粒径の3分の2以下とすることができる。
 第2の無機フィラーの圧壊強度はJIS R1639-5に準じて測定することができる。具体的には、第2の無機フィラーの圧壊強度は、以下のようにして測定することができる。トルエン、キシレン、塩素系炭化水素など溶剤を用いて熱伝導性樹脂組成物の無機フィラー成分以外の成分を溶かし出して、熱伝導性樹脂組成物から無機フィラー成分以外の成分を除く。そして、残った無機フィラー成分の粒度分布をベックマン・コールター株式会社製レーザー回折散乱法粒度分布測定装置、(LS-13 320)を用いて測定する。次に、無機フィラー成分を微小圧縮試験器(「MCT-W500」株式会社島津製作所製)の試料台に散布後、無機フィラー成分のX方向及びY方向の径を測ってその平均を無機フィラー成分の粒径とする。第2の極大点の粒径±5μmの範囲内の粒径を有する無機フィラー成分を5個選び出し、1粒ずつ圧縮試験を行う。圧壊強度(σ:MPa)は、粒子内の位置によって変化する無次元数(α=2.48)と圧壊試験力(P:N)と粒径(d:μm)からσ=α×P/(π×d)の式を用いて算出する。JIS R1625に準じて5個の無機フィラー成分の圧壊強度をワイブルプロットし、累積破壊率が63.2%となる圧壊強度を第2の無機フィラーの圧壊強度とする。
 無機フィラー成分の粒度累積において、0~15μmの粒径の頻度の積算量が60%未満である好ましい。そうすると、無機フィラー成分における粒径が15μm以上である無機フィラーの含有量が、概ね40体積%以上となり、熱伝導性樹脂組成物が無機フィラー成分を高充填で含むことができ、熱伝導性樹脂組成物を用いて作製した放熱シートの熱伝導率をさらに高くすることができる。このような観点から、無機フィラー成分の粒度累積において、0~15μmの粒径の頻度の積算量は、より好ましくは50%未満であり、さらに好ましくは40%未満であり、よりさらに好ましくは30%未満である。
(樹脂成分)
 樹脂成分の樹脂には、例えばエポキシ樹脂、シリコーン樹脂(シリコーンゴムを含む)、アクリル樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリアミド(例えば、ポリイミド、ポリアミドイミド、ポリエーテルイミド等)、ポリエステル(例えば、ポリブチレンテレフタレート、ポリエチレンテレフタレート等)、ポリフェニレンエーテル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS樹脂、AAS(アクリロニトリル-アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂などが挙げられる。これらの中で、耐熱性、柔軟性及びヒートシンク等への密着性の観点から、シリコーン樹脂が好ましい。シリコーン樹脂は有機過酸化物による加硫して硬化するものが好ましい。熱伝導性樹脂組成物の25℃における粘度は、シート状の成形体の柔軟性を改善する観点から、例えば、100,000cp以上である。
 無機フィラー成分および樹脂成分の合計100体積%中の無機フィラー成分の含有量は、30~85体積%が好ましく、40~80体積%がより好ましい。無機フィラー成分の含有量が30体積%以上の場合、熱伝導率が向上し、十分な放熱性能が得られやすい。また、無機フィラー成分の含有量が85体積%以下の場合、成形時に空隙が生じやすくなることを低減でき、絶縁性や機械強度が低下することを低減できる。また、熱伝導性樹脂組成物100体積%中の樹脂成分の含有量は、15~70体積%が好ましく、20~60体積%がより好ましい。
(溶媒)
 熱伝導性樹脂組成物の粘度を調節するために、熱伝導性樹脂組成物は溶媒をさらに含んでもよい。溶媒は、樹脂成分を溶解でき、熱伝導性樹脂組成物を塗布したのち、塗布した熱伝導性樹脂組成物から容易に除去されるものであれば特に限定されない。樹脂成分がシリコーン樹脂である場合、溶媒には、例えば、トルエン、キシレン、塩素系炭化水素などが挙げられる。除去が容易であるという観点から、これらの溶媒の中でトルエンが好ましい。溶媒の含有量は、熱伝導性樹脂組成物の目的とする粘度により適宜選択することができる。溶媒の含有量は、例えば、熱伝導性樹脂組成物の溶媒以外の成分100質量部に対して40~200質量部である。
 なお、熱伝導性樹脂組成物は、無機フィラー成分、樹脂成分および溶媒以外の成分が含まれてもよい。その他の成分は添加剤、不純物等であり、その他の成分の含有量は、無機フィラー成分および樹脂成分の合計100質量部に対して、好ましくは5質量部以下であり、より好ましくは3質量部以下であり、さらに好ましくは1質量部以下である。
[放熱シート]
 本発明の放熱シートは本発明の熱伝導性樹脂組成物を成形してなるものである。本発明の熱伝導性樹脂組成物を用いることにより、ドクターブレード法によって、薄い放熱シートを容易に作製することができる。本発明の放熱シートの厚さは、好ましくは0.35mm以下である。放熱シートの厚さが0.35mm以下であると、発熱性電子部品の小型化に伴う放熱シートの厚さの要求に応えることができる。このような観点から、放熱シートの厚さは、より好ましくは0.30mm以下であり、さらに好ましくは0.25μm以下であり、よりさらに好ましくは0.20μm以下であり、よりさらに好ましくは0.15mm以下であり、よりさらに好ましくは0.12mm以下であり、特に好ましくは0.10mm以下である。
 放熱シートは、厚さが0.05mm以下の基材を含むことが好ましい。これにより、放熱シートを薄くできるとともに、放熱シートの取扱い中に放熱シートが破損することを抑制できる。基材は、熱伝導性樹脂組成物層を保持でき、適度な強度を有し、厚さが0.05mm以下であり、柔軟性を有するものであれば特に限定されない。基材には、例えば、紙、布、フィルム、不織布、金属箔などが挙げられる。これらの中で、熱伝導性樹脂組成物層との接着性が良好であり、また、目開き部分を設けることで、基材による熱伝導性樹脂組成物の熱伝導の阻害を抑制できるという観点から、布が好ましく、基材を薄くし、かつ目開きを大きくしても基材の強度をある程度、維持できるという観点から、ガラスクロス及びポリアミド-イミド繊維クロスがより好ましく、ガラスクロスがさらに好ましい。また、放熱シートを薄くできるという観点から、基材の厚さはより好ましくは0.03mm以下である。また、基材の強度の観点から、基材の厚さは好ましくは0.005mm以上である。基材がガラスクロスである場合、熱伝導性樹脂組成物とガラスクロスとの間に隙間ができることを抑制するために、ガラスクロスにシランカップリング処理を施してもよい。
 放熱シートはドクターブレード法で作製することができる。例えば、放熱シートは以下のように作製することができる。無機フィラー成分、樹脂成分などの溶媒以外の原料を溶媒に分散させてスラリー状の熱伝導性樹脂組成物を作製する。なお、以下、スラリー状の熱伝導性樹脂組成物を、単に、「スラリー」と呼ぶ場合がある。なお、第1の無機フィラーとして用いられる塊状窒化ホウ素粒子は圧壊強度が6MPaと高いので、溶媒以外の原料を溶媒に分散させるとき、六方晶窒化ホウ素一次粒子は塊状窒化ホウ素粒子から、ほとんど剥がれない。これにより、熱伝導性樹脂組成物の溶媒以外の原料を溶媒に分散させるとき、スラリーの粘度が上昇することを抑制できる。溶媒量を増やすことにより、スラリーの粘度を低下させることもできる。しかし、この場合、熱伝導性樹脂組成物をシート状に成形する際、熱伝導性樹脂組成物が発泡したり、シート状に成形した成形体から溶媒を除去する際、熱伝導性組成物中の加硫剤、硬化剤等の添加剤が失効したりすることがあるので、溶媒量を増やすことなく、スラリーの粘度を低下させることが望ましい。また、第1の無機フィラーとして用いられる塊状窒化ホウ素粒子の平均粒子径は20μm以上と比較的大きいので、熱伝導性樹脂組成物の溶媒以外の原料を溶媒に分散させた後、分散した無機フィラー成分が凝集してスラリーが不均一になることを抑制できる。なお、無機フィラーの平均粒子径が非常に小さいと、分散した無機フィラーが凝集してスラリーが不均一になる場合がある。
 作製したスラリーはドクターブレード装置に供給される。ドクターブレード装置は、ブレードとキャリアフィルムとの間隙からスラリーを流出して、熱伝導性樹脂組成物をシート状に成形する。なお、成形体の厚さは、ブレードとキャリアフィルムとの間の寸法及びキャリアフィルムの移動速度を調節することにより、精度よくコントロールすることができる。また、スラリーの圧力をより精度よく制御して、成形体の厚さをさらに精度よくコントロールするために、2枚のブレードを持つドクターブレード装置を用いてもよい。
 ブレードとキャリアフィルムとの間隙から流出したスラリーは、キャリアフィルムと一緒にドクターブレード装置内を移動し、移動している間に乾燥して固化してシート状の成形体となる。得られたシート状の成形体は、例えば、加圧及び加熱し硬化させて放熱シートとなる。なお、放熱シートをキャリアフィルムから容易に剥離できるようにするために、キャリアフィルムの表面に剥離剤を塗布してもよい。剥離剤には、例えば、シリコーン系剥離剤、アルキルペンダント系剥離剤、縮合ワックス系剥離剤などが挙げられる。
 放熱シートが基材を含む場合は、例えば、放熱シートは以下のように作製される。ドクターブレード法により得られた、キャリアフィルムの付いた2枚のシート状の成形体で基材をサンドイッチして積層体を得る。このときの積層体の層構造は、キャリアフィルム/熱伝導性樹脂組成物/基材/熱伝導性樹脂組成物/キャリアフィルムとなる。そして、積層体は加圧及び加熱され、キャリアフィルムを剥がして、放熱シートとなる。なお、この場合も、放熱シートをキャリアフィルムから容易に剥離できるようにするために、キャリアフィルムの表面に剥離剤を塗布してもよい。
 放熱シートはカレンダー加工によっても作製することができる。しかし、シート状の熱伝導性樹脂組成物がカレンダーロールを通過する際、熱伝導性樹脂組成物中の塊状窒化ホウ素粒子から塊状窒化ホウ素粒子の一部が剥がれるおそれがある。したがって、放熱シートはドクターブレード法により作製することが好ましい。
 以下、本発明について、実施例及び比較例により、詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。
 実施例及び比較例の熱伝導性樹脂組成物に対して以下の評価を行った。
(スラリーの粘度)
 実施例及び比較例の放熱シートの作製に使用したスラリーの粘度は、B型粘度計を用いて、静置後30秒後のスラリーの粘度を回転速度20rpmで測定した。
(粒度分布)
 トルエンを用いて熱伝導性樹脂組成物の無機フィラー成分以外の成分を溶かし出して、熱伝導性樹脂組成物から無機フィラー成分以外の成分を除いた。残った無機フィラー成分の粒度分布をベックマン・コールター株式会社製レーザー回折散乱法粒度分布測定装置、(LS-13 320)を用いて測定した。そして、得られた粒度分布から第1の極大値及び第2の極大値、並びに第1の極大点を有するピークにおけるピークスタートからピークエンドまでの間の頻度の積算量を求めた。
(圧壊強度)
 トルエン、キシレン、塩素系炭化水素など溶剤を用いて熱伝導性樹脂組成物の無機フィラー成分以外の成分を溶かし出して、熱伝導性樹脂組成物から無機フィラー成分以外の成分を除いた。そして、残った無機フィラー成分の粒度分布をベックマン・コールター株式会社製レーザー回折散乱法粒度分布測定装置、(LS-13 320)を用いて測定した。次に、無機フィラー成分を微小圧縮試験器(「MCT-W500」株式会社島津製作所製)の試料台に散布後、無機フィラー成分のX方向及びY方向の径を測ってその平均を無機フィラー成分の粒径とした。第1の極大点の粒径±5μmの範囲内の粒径を有する無機フィラー成分を5個選び出し、1粒ずつ圧縮試験を行った。圧壊強度(σ:MPa)は、粒子内の位置によって変化する無次元数(α=2.48)と圧壊試験力(P:N)と粒径(d:μm)からσ=α×P/(π×d)の式を用いて算出した。JIS R1625に準じて5個の無機フィラー成分の圧壊強度をワイブルプロットし、累積破壊率が63.2%となる圧壊強度を第1の無機フィラーの圧壊強度とした。同様な方法で、第2の無機フィラーの圧壊強度も測定した。
(0~15μmの粒径の頻度の積算量)
 トルエンを用いて熱伝導性樹脂組成物の無機フィラー成分以外の成分を溶かし出して、放熱シートから無機フィラー成分以外の成分を除いた。そして、残った無機フィラー成分の粒度累積をベックマン・コールター株式会社製レーザー回折散乱法粒度分布測定装置、(LS-13 320)を用いて測定した。そして、得られた粒度積算から0~15μmの粒径の頻度の積算量を算出した。
 実施例及び比較例の放熱シートに対して以下の評価を行った。
(熱抵抗)
 ASTM D5470に準拠して1MPaの荷重をかけて放熱シートの熱抵抗を測定した。
(相対密度)
 アルキメデス法にて放熱シートの密度を理論密度で割り算した相対密度を算出した。
〔実施例1〕
 実施例1は、以下のように、炭化ホウ素合成、加圧窒化工程、脱炭結晶化工程にて、塊状窒化ホウ素粒子を作製した。
(炭化ホウ素合成)
 新日本電工株式会社製オルトホウ酸(以下ホウ酸)100質量部と、デンカ株式会社製アセチレンブラック(HS100)35質量部とをヘンシェルミキサーを用いて混合したのち、黒鉛ルツボ中に充填し、アーク炉にて、アルゴン雰囲気で、2200℃にて5時間加熱し炭化ホウ素(BC)を合成した。合成した炭化ホウ素塊をボールミルで1時間粉砕し、篩網を用いて粒径75μm以下に篩分け、更に硝酸水溶液で洗浄して鉄分等不純物を除去後、濾過・乾燥して平均粒子径20μmの炭化ホウ素粉末を作製した。得られた炭化ホウ素粉末の炭素量は20.0%であった。
(加圧窒化工程)
 合成した炭化ホウ素を窒化ホウ素ルツボに充填した後、抵抗加熱炉を用い、窒素ガスの雰囲気で、2000℃、9気圧(0.8MPa)の条件で10時間加熱することにより炭窒化ホウ素(BCN)を得た。
(脱炭結晶化工程)
 合成した炭窒化ホウ素100質量部と、ホウ酸90質量部とをヘンシェルミキサーを用いて混合したのち、窒化ホウ素ルツボに充填し、抵抗加熱炉を用い0.2MPaの圧力条件で、窒素ガスの雰囲気で、室温から1000℃までの昇温速度を10℃/min、1000℃からの昇温速度を2℃/minで昇温し、焼成温度2020℃、保持時間10時間で加熱することにより、一次粒子が凝集して塊状になった塊状窒化ホウ素粒子を合成した。合成した塊状窒化ホウ素粒子をヘンシェルミキサーにより15分解砕をおこなった後、篩網を用いて、篩目150μmのナイロン篩にて分級を行った。焼成物を解砕及び分級することより、一次粒子が凝集して塊状になった塊状窒化ホウ素粒子1を得た。
 得られた塊状窒化ホウ素粒子1のレーザー散乱法により測定した平均粒子径(D50)は40μmであった。また、塊状窒化ホウ素粒子1の圧壊強度は12MPaであった。
(放熱シートの作製)
 得られた塊状窒化ホウ素粒子1、凝集窒化ホウ素粒子(デンカ株式会社製、商品名「SGPS」、平均粒子径:20μm、圧壊強度:1.5MPa)、鱗片状窒化ホウ素粒子(デンカ株式会社製、商品名「SP―3―7」、平均粒子径:3μm)及び液状シリコーン樹脂1(メチルビニルポリシロキサン、ダウ・東レ株式会社製、商品名「CF-3110」)の合計100体積%に対して、45体積%の塊状窒化ホウ素粒子1、12体積%の凝集窒化ホウ素粒子、3体積%の鱗片状窒化ホウ素粒子及び40体積%のシリコーン樹脂1、シリコーン樹脂100質量部に対して1質量部の硬化剤(2,5-ジメチルー2,5-ビス(t-ブチルパーオキシ)ヘキサン、化薬ヌーリオン株式会社製、商品名「トリゴノックス101」)、塊状窒化ホウ素粒子、凝集窒化ホウ素粒子及び鱗片状窒化ホウ素粒子の合計100質量部に対して0.5質量%のシランカップリング剤(ジメチルジメトキシシラン、ダウ・東レ株式会社製、商品名「DOWSIL Z-6329 Silane」、25℃における粘度:1cp)、シランカップリング剤100質量部に対して15質量部の水、並びに上述の原料の合計100質量部に対して110質量部のトルエンを攪拌機(HEIDON社製、商品名「スリーワンモーター」)に投入し、タービン型撹拌翼を用いて15時間混合して熱伝導性樹脂組成物のスラリーを作製した。スラリーの粘度は10000cpであった。
 そして、ドクターブレード法により、上記スラリーを厚さ0.05mmのペットフィルム(キャリアフィルム)上に厚さ0.2mmで塗工し、75℃で5分乾燥させて、ペットフィルム付きのシート状成形体を作製した。ガラスクロス(厚さ:0.025mm)の両面に熱伝導性樹脂組成物の塗工面が接するように、ガラスクロスをペットフィルム付きのシート状成形体でサンドイッチし、積層体を作製した。なお、積層体の層構造はペットフィルム/熱伝導性樹脂組成物/ガラスクロス/熱伝導性樹脂組成物/ペットフィルムであった。次いで、得られた積層体に対して、温度150℃、圧力160kg/cmの条件で25分間の加熱プレスを行い、両面のペットフィルムを剥離して厚さ0.09mmのシートとした。次いで、それを常圧、150℃で4時間の2次加熱を行い、実施例1の放熱シートとした。
〔実施例2〕
 トルエンの配合量を110質量部から60質量部に変更し、ドクターブレード法の塗工条件を変更して厚さ0.20mmの放熱シートを作製した以外は実施例1と同様にして、実施例2の放熱シートを作製した。なお、スラリーの粘度は7000cpであった。
〔実施例3〕
 トルエンの配合量を110質量部から50質量部に変更し、ドクターブレード法の塗工条件を変更して厚さ0.31mmの放熱シートを作製した以外は実施例1と同様にして、実施例3の放熱シートを作製した。なお、スラリーの粘度は8000cpであった。
〔実施例4〕
 平均粒子径が40μmであり圧壊強度が12MPaである塊状窒化ホウ素粒子1を45体積%配合する代わりに、平均粒子径が75μmであり圧壊強度が12MPaである塊状窒化ホウ素粒子2を42体積%配合した点、凝集窒化ホウ素粒子を12体積%配合する代わりに平均粒子径が38μmであり圧壊強度が12MPaである塊状窒化ホウ素粒子3を11体積%配合した点、鱗片状窒化ホウ素粒子を配合しなかった点、シリコーン樹脂1の配合量を40体積%から47体積%に変更した点、トルエンの配合量を110質量部から100質量部に変更した点及びドクターブレード法の塗工条件を変更して厚さ0.10mmの放熱シートを作製した点を除いて、実施例1と同様にして、実施例4の放熱シートを作製した。なお、実施例4の放熱シートに用いた塊状窒化ホウ素粒子2,3は、合成した炭化ホウ素塊のボールミルによる粉砕時間を変更して、炭化ホウ素粉末の平均粒子径を変更した以外は、実施例1の放熱シートに用いた塊状窒化ホウ素粒子1と同様な方法で作製した。また、スラリーの粘度は10000cpであった。
〔実施例5〕
 ドクターブレード法の塗工条件を変更して厚さ0.20mmの放熱シートを作製した以外は実施例4と同様にして、実施例5の放熱シートを作製した。
〔実施例6〕
 ドクターブレード法の塗工条件を変更して厚さ0.27mmの放熱シートを作製した以外は実施例4と同様にして、実施例6の放熱シートを作製した。
〔実施例7〕
 塊状窒化ホウ素粒子2の代わりに平均粒子径が55μmであり圧壊強度が10MPaである塊状窒化ホウ素粒子4を配合した点、及びドクターブレード法の塗工条件を変更して厚さ0.10mmの放熱シートを作製した点を除いて、実施例1と同様にして、実施例7の放熱シートを作製した。なお、実施例7の放熱シートに用いた塊状窒化ホウ素粒子4は、合成した炭化ホウ素塊のボールミルによる粉砕時間を変更して、炭化ホウ素粉末の平均粒子径を変更した以外は、実施例1の放熱シートに用いた塊状窒化ホウ素粒子1と同様な方法で作製した。また、スラリーの粘度は9500cpであった。
〔実施例8〕
 ドクターブレード法の塗工条件を変更して厚さ0.20mmの放熱シートを作製した以外は実施例7と同様にして、実施例8の放熱シートを作製した。
〔実施例9〕
 ドクターブレード法の塗工条件を変更して厚さ0.28mmの放熱シートを作製した以外は実施例7と同様にして、実施例9の放熱シートを作製した。
〔比較例1〕
 塊状窒化ホウ素粒子1及び鱗片状窒化ホウ素粒子を配合しなかった点、凝集窒化ホウ素粒子の配合量を12体積%から60体積%に変更した点、シランカップリング剤の配合量を0.5質量部から0.2質量部に変更した点、及びドクターブレード法の塗工条件を変更して厚さ0.20mmの放熱シートを作製した点以外は、実施例1と同様にして、比較例1の放熱シートを作製した。なお、スラリーの粘度は12000cpであった。また、スラリーの粘度が高かったため、0.15mm以下の厚さを有する放熱シートを作製することはできなかった。
〔比較例2〕
 ドクターブレード法の塗工条件を変更して厚さ0.30mmの放熱シートを作製した点以外は、比較例1と同様にして、比較例2の放熱シートを作製した。
〔比較例3〕
 塊状窒化ホウ素粒子3を塊状窒化ホウ素粒子1に変更した以外は、実施例7と同様にして、スラリーを作製した。しかし、スラリーの粘度が16000cpと高かったため、0.20mmの厚さを有する放熱シートを作製することはできなかった。
〔比較例4〕
 塊状窒化ホウ素粒子1の配合量を45体積%から12体積%に変更した点、及び凝集窒化ホウ素粒子の配合量を12体積%から45体積%に変更した点を除いて、実施例1と同様にして、スラリーを作製した。しかし、スラリーの粘度が18000cpと高かったため、0.20mmの厚さを有する放熱シートを作製することはできなかった。
 実施例1~9及び比較例1~4の放熱シートの評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 以上の評価結果から、実施例1~9の放熱シートを作製するために使用したスラリーの粘度は比較例1~4の放熱シートを作製するために使用したスラリーの粘度よりも低いことがわかった。これより、実施例1~9の放熱シートを作製するために使用したスラリーは、比較例1~4の放熱シートを作製するために使用したスラリーに比べて、薄いシートを作製できることがわかった。また、実施例1~9の放熱シートの熱抵抗は比較例1及び2の放熱シートの熱抵抗よりも低いことがわかった。これは、実施例1~9の放熱シートでは、シート状の成形体からペットフィルムを剥がした際、剥がしたペットフィルムに窒化ホウ素粒子が付着していなかったため、放熱シートの表面が平滑であったためと考えられる。一方、比較例1及び2の放熱シートでは、シート状の成形体からペットフィルムを剥がした際、剥がしたペットフィルムに窒化ホウ素粒子が付着したため、放熱シートの表面が粗くなり、これにより、比較例1及び2の放熱シートの熱抵抗が高くなったものと考えられる。
〔実施例10〕
 シリコーン樹脂CF3110をエポキシ樹脂(三菱ケミカル株式会社製ビスフェノール型エポキシ樹脂、型番;JER-807)に変更し、硬化剤トリゴノックス101(1質量部)を硬化剤MEH-8005(明和化成株式会社製、10質量部)に変更し、硬化促進剤として2PHZ-PW(四国化成社製、1資料部)を添加した以外は、実施例5と同様にして0.2mmの放熱シートを作製し、熱抵抗を上述の方法で測定した。
〔比較例5〕
 シリコーン樹脂CF3110をエポキシ樹脂(三菱ケミカル株式会社製ビスフェノール型エポキシ樹脂、型番;JER-807)に変更し、硬化剤トリゴノックス101(1質量部)を硬化剤MEH-8005(明和化成株式会社製、10質量部)に変更し、硬化促進剤として2PHZ-PW(四国化成工業株式会社製、1資料部)を添加した以外は、比較例1と同様にして0.2mmの放熱シートを作製し、熱抵抗を上述の方法で測定した。
 実施例10の熱抵抗と比較例5の熱抵抗を比較すると実施例10の方が熱抵抗が低く、良好な結果であった。したがって、特定の無機フィラーを組み合わせて得られる効果は、樹脂の種類によらずに得られる。

Claims (7)

  1.  無機フィラー成分と樹脂成分とを配合してなる熱伝導性樹脂組成物であって、
     前記無機フィラー成分は第1の無機フィラー及び第2の無機フィラーを含み、
     前記無機フィラー成分の粒度分布は、前記第1の無機フィラーに起因する第1の極大点及び前記第2の無機フィラーに起因する第2の極大点を有し、
     前記第1の極大点の粒径が15μm以上であり、前記第2の極大点の粒径が前記第1の極大点の粒径の3分の2以下であり、
     前記第1の極大点を有するピークにおけるピークスタートからピークエンドまでの間の頻度の積算量が50%以上であり、
     前記第1の無機フィラーが、六方晶窒化ホウ素一次粒子が凝集してなり、圧壊強度が6MPa以上である熱伝導性樹脂組成物。
  2.  前記第2の無機フィラーが窒化ホウ素粒子である請求項1に記載の熱伝導性樹脂組成物。
  3.  前記第2の無機フィラーが、六方晶窒化ホウ素一次粒子が凝集してなり、圧壊強度が6MPa以上である塊状窒化ホウ素粒子である請求項2に記載の熱伝導性樹脂組成物。
  4.  前記無機フィラー成分の粒度累積において、0~15μmの粒径の頻度の積算量が60%未満である請求項1~3のいずれか1項に記載の熱伝導性樹脂組成物。
  5.  請求項1~4のいずれか1項に記載の熱伝導性樹脂組成物を成形してなる放熱シート。
  6.  厚さが0.35mm以下である請求項5に記載の放熱シート。
  7.  厚さが0.05mm以下の基材をさらに含む請求項5又は6に記載の放熱シート。
PCT/JP2021/022360 2020-06-12 2021-06-11 熱伝導性樹脂組成物及び放熱シート WO2021251494A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/008,631 US20230220263A1 (en) 2020-06-12 2021-06-11 Heat-conductive resin composition and heat dissipation sheet
JP2022530640A JPWO2021251494A1 (ja) 2020-06-12 2021-06-11
EP21821028.4A EP4148091A4 (en) 2020-06-12 2021-06-11 THERMALLY CONDUCTIVE RESIN COMPOSITION AND HEAT DISSIPATION SHEET
CN202180041089.4A CN115698187A (zh) 2020-06-12 2021-06-11 导热性树脂组合物和散热片

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-102302 2020-06-12
JP2020102302 2020-06-12

Publications (1)

Publication Number Publication Date
WO2021251494A1 true WO2021251494A1 (ja) 2021-12-16

Family

ID=78846138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022360 WO2021251494A1 (ja) 2020-06-12 2021-06-11 熱伝導性樹脂組成物及び放熱シート

Country Status (5)

Country Link
US (1) US20230220263A1 (ja)
EP (1) EP4148091A4 (ja)
JP (1) JPWO2021251494A1 (ja)
CN (1) CN115698187A (ja)
WO (1) WO2021251494A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116354705A (zh) * 2023-04-17 2023-06-30 天津巴莫科技有限责任公司 一种导热耐火泥及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014210857A (ja) * 2013-04-18 2014-11-13 電気化学工業株式会社 熱伝導性シート
JP2017092322A (ja) * 2015-11-12 2017-05-25 デンカ株式会社 高熱伝導性、高絶縁性放熱シート
WO2017135237A1 (ja) * 2016-02-01 2017-08-10 バンドー化学株式会社 熱伝導性樹脂成型品
WO2018066277A1 (ja) * 2016-10-07 2018-04-12 デンカ株式会社 窒化ホウ素塊状粒子、その製造方法及びそれを用いた熱伝導樹脂組成物
WO2019073690A1 (ja) * 2017-10-13 2019-04-18 デンカ株式会社 窒化ホウ素粉末、その製造方法及びそれを用いた放熱部材
JP2019073409A (ja) * 2017-10-13 2019-05-16 デンカ株式会社 塊状窒化ホウ素粉末の製造方法及びそれを用いた放熱部材

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286809A (ja) * 2006-10-23 2009-12-10 Denki Kagaku Kogyo Kk 樹脂組成物
US10308856B1 (en) * 2013-03-15 2019-06-04 The Research Foundation For The State University Of New York Pastes for thermal, electrical and mechanical bonding
CN105308125B (zh) * 2013-06-14 2017-12-19 三菱电机株式会社 热固性树脂组合物、导热性片材的制造方法及电源模块
JP2015193504A (ja) * 2014-03-31 2015-11-05 ナガセケムテックス株式会社 窒化ホウ素粒子、樹脂組成物および熱伝導性シート
JP6822836B2 (ja) * 2016-12-28 2021-01-27 昭和電工株式会社 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
EP3761355B1 (en) * 2018-02-26 2022-04-27 Denka Company Limited Insulating heat dissipation sheet
US11078080B2 (en) * 2018-09-07 2021-08-03 Showa Denko K.K. Hexagonal boron nitride powder and method for producing the same, and composition and heat dissipation material using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014210857A (ja) * 2013-04-18 2014-11-13 電気化学工業株式会社 熱伝導性シート
JP2017092322A (ja) * 2015-11-12 2017-05-25 デンカ株式会社 高熱伝導性、高絶縁性放熱シート
WO2017135237A1 (ja) * 2016-02-01 2017-08-10 バンドー化学株式会社 熱伝導性樹脂成型品
WO2018066277A1 (ja) * 2016-10-07 2018-04-12 デンカ株式会社 窒化ホウ素塊状粒子、その製造方法及びそれを用いた熱伝導樹脂組成物
WO2019073690A1 (ja) * 2017-10-13 2019-04-18 デンカ株式会社 窒化ホウ素粉末、その製造方法及びそれを用いた放熱部材
JP2019073409A (ja) * 2017-10-13 2019-05-16 デンカ株式会社 塊状窒化ホウ素粉末の製造方法及びそれを用いた放熱部材

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116354705A (zh) * 2023-04-17 2023-06-30 天津巴莫科技有限责任公司 一种导热耐火泥及其制备方法

Also Published As

Publication number Publication date
EP4148091A4 (en) 2023-11-01
US20230220263A1 (en) 2023-07-13
EP4148091A1 (en) 2023-03-15
JPWO2021251494A1 (ja) 2021-12-16
CN115698187A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
JP7207384B2 (ja) 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、成形体、及びシート
JP7069314B2 (ja) 塊状窒化ホウ素粒子、窒化ホウ素粉末、窒化ホウ素粉末の製造方法、樹脂組成物、及び放熱部材
TWI644855B (zh) 六方晶體氮化硼粉末、其製造方法、樹脂組成物及樹脂薄片
CN111212811B (zh) 氮化硼粉末、其制造方法及使用其的散热构件
WO2020196643A1 (ja) 塊状窒化ホウ素粒子、熱伝導樹脂組成物及び放熱部材
TW201827383A (zh) 氮化硼塊狀粒子、其製造方法及使用其之熱傳導樹脂組成物
JP7273587B2 (ja) 窒化ホウ素粉末及び樹脂組成物
JPWO2020175377A1 (ja) 窒化ホウ素凝集粉末、放熱シート及び半導体デバイス
JP2022106113A (ja) 窒化ホウ素粉末、熱伝導性樹脂組成物、放熱シート及び電子部品構造体
JP6379579B2 (ja) 窒化ホウ素シート
WO2021251494A1 (ja) 熱伝導性樹脂組成物及び放熱シート
JP7291304B2 (ja) 窒化ホウ素粉末、放熱シート及び放熱シートの製造方法
JP2020138903A (ja) 窒化ホウ素凝集粉末、放熱シート及び半導体デバイス
WO2021251495A1 (ja) 放熱シート
WO2020196644A1 (ja) 塊状窒化ホウ素粒子、熱伝導樹脂組成物及び放熱部材
JP7124249B1 (ja) 放熱シート及び放熱シートの製造方法
JP7362839B2 (ja) 凝集窒化ホウ素粒子、窒化ホウ素粉末、熱伝導性樹脂組成物及び放熱シート
JP2015189609A (ja) 窒化ホウ素シートの製造方法
JP2022106118A (ja) 放熱シート及び放熱シートの製造方法
WO2022149553A1 (ja) 凝集窒化ホウ素粒子、窒化ホウ素粉末、熱伝導性樹脂組成物及び放熱シート
JP2022106117A (ja) 放熱シート及び放熱シートの製造方法
TWI838500B (zh) 塊狀氮化硼粒子、熱傳導樹脂組成物、以及散熱構件
WO2023085326A1 (ja) 放熱シート
WO2023085322A1 (ja) 窒化ホウ素粉末
JP7273586B2 (ja) 窒化ホウ素粉末及び樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530640

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021821028

Country of ref document: EP

Effective date: 20221208

NENP Non-entry into the national phase

Ref country code: DE