WO2022202824A1 - 窒化ホウ素粉末及び樹脂組成物 - Google Patents
窒化ホウ素粉末及び樹脂組成物 Download PDFInfo
- Publication number
- WO2022202824A1 WO2022202824A1 PCT/JP2022/013230 JP2022013230W WO2022202824A1 WO 2022202824 A1 WO2022202824 A1 WO 2022202824A1 JP 2022013230 W JP2022013230 W JP 2022013230W WO 2022202824 A1 WO2022202824 A1 WO 2022202824A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- boron nitride
- boron
- less
- nitride powder
- particles
- Prior art date
Links
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims abstract description 160
- 229910052582 BN Inorganic materials 0.000 title claims abstract description 158
- 239000000843 powder Substances 0.000 title claims abstract description 84
- 239000011342 resin composition Substances 0.000 title claims abstract description 23
- 239000002245 particle Substances 0.000 claims abstract description 89
- 229920005989 resin Polymers 0.000 claims abstract description 32
- 239000011347 resin Substances 0.000 claims abstract description 32
- 239000011148 porous material Substances 0.000 claims description 19
- 230000002776 aggregation Effects 0.000 abstract 1
- 238000004220 aggregation Methods 0.000 abstract 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 28
- 239000000463 material Substances 0.000 description 26
- 229910052796 boron Inorganic materials 0.000 description 23
- 238000005121 nitriding Methods 0.000 description 23
- 238000005259 measurement Methods 0.000 description 22
- 229910052580 B4C Inorganic materials 0.000 description 21
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 15
- 239000000203 mixture Substances 0.000 description 12
- 238000001878 scanning electron micrograph Methods 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 10
- 229910001873 dinitrogen Inorganic materials 0.000 description 10
- 238000011049 filling Methods 0.000 description 10
- 238000005261 decarburization Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000017525 heat dissipation Effects 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000007822 coupling agent Substances 0.000 description 6
- 239000003822 epoxy resin Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229920000647 polyepoxide Polymers 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- -1 fluororesins Polymers 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 5
- 239000003607 modifier Substances 0.000 description 5
- 238000010298 pulverizing process Methods 0.000 description 5
- 238000004435 EPR spectroscopy Methods 0.000 description 4
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 4
- 239000004327 boric acid Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000012546 transfer Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 2
- 229910052810 boron oxide Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 238000000790 scattering method Methods 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- ZQXCQTAELHSNAT-UHFFFAOYSA-N 1-chloro-3-nitro-5-(trifluoromethyl)benzene Chemical compound [O-][N+](=O)C1=CC(Cl)=CC(C(F)(F)F)=C1 ZQXCQTAELHSNAT-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 238000007088 Archimedes method Methods 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- UUQQGGWZVKUCBD-UHFFFAOYSA-N [4-(hydroxymethyl)-2-phenyl-1h-imidazol-5-yl]methanol Chemical compound N1C(CO)=C(CO)N=C1C1=CC=CC=C1 UUQQGGWZVKUCBD-UHFFFAOYSA-N 0.000 description 1
- PPWPWBNSKBDSPK-UHFFFAOYSA-N [B].[C] Chemical compound [B].[C] PPWPWBNSKBDSPK-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- HVABKWYVQHSGHW-UHFFFAOYSA-N boron;ethanamine Chemical compound [B].CCN HVABKWYVQHSGHW-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- GOAJGXULHASQGJ-UHFFFAOYSA-N ethene;prop-2-enenitrile Chemical group C=C.C=CC#N GOAJGXULHASQGJ-UHFFFAOYSA-N 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
- C01B21/064—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
- C01B21/064—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
- C01B21/0646—Preparation by pyrolysis of boron and nitrogen containing compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/583—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/08—Materials not undergoing a change of physical state when used
- C09K5/14—Solid materials, e.g. powdery or granular
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/50—Agglomerated particles
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/54—Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/16—Pore diameter
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/21—Attrition-index or crushing strength of granulates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/32—Thermal properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
- C08K2003/382—Boron-containing compounds and nitrogen
- C08K2003/385—Binary compounds of nitrogen with boron
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/005—Additives being defined by their particle size in general
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/006—Additives being defined by their surface area
Definitions
- the present disclosure relates to boron nitride powders and resin compositions.
- Boron nitride powder which has properties such as high thermal conductivity, high insulation, and low relative dielectric constant, has attracted attention as a ceramic powder.
- the shape of the aggregate is made more spherical to improve the packing property, and the strength of the powder is improved.
- a hexagonal boron nitride powder that achieves improved and stabilized withstand voltage the ratio of the major diameter and thickness of primary particles is on average 5 to 10, and the size of aggregates of primary particles is 2 ⁇ m in average particle diameter (D50).
- a hexagonal boron nitride powder characterized by having a particle size of 200 ⁇ m or less and a bulk density of 0.5 to 1.0 g/cm 3 is disclosed.
- the main object of the present invention is to provide a boron nitride powder capable of realizing a heat dissipating material having excellent thermal conductivity.
- One aspect of the present invention is a boron nitride powder that is an aggregate of boron nitride particles, and has a BET specific surface area of 4.6 m 2 /g or more and an average pore size of 0.65 ⁇ m or less. is.
- the boron nitride particles may be composed of a plurality of boron nitride pieces, and the plurality of boron nitride pieces may be chemically bonded to each other.
- the boron nitride powder may have an average value of crushing strength of 8 MPa or more.
- Another aspect of the present invention is a resin composition containing the boron nitride powder and a resin.
- boron nitride powder capable of realizing a heat dissipating material having excellent thermal conductivity.
- FIG. 1 is a cross-sectional SEM image of boron nitride particles in the boron nitride powder of Example 1.
- FIG. 1 is an SEM image of the surface of boron nitride particles in the boron nitride powder of Example 1.
- FIG. 4 is an SEM image of the surface of boron nitride particles in the boron nitride powder of Comparative Example 1.
- FIG. 1 is a SEM image of a cross section of a sheet produced using the boron nitride powder of Example 1.
- FIG. 4 is a SEM image of a cross section of a sheet produced using the boron nitride powder of Comparative Example 1.
- FIG. 1 is a cross-sectional SEM image of boron nitride particles in the boron nitride powder of Example 1.
- FIG. 1 is an SEM image of the surface of boron nitride particles in the boron n
- a boron nitride powder according to an embodiment of the present invention is an aggregate of boron nitride particles (powder composed of a plurality of boron nitride particles) and has a BET specific surface area of 4.6 m 2 /g or more, A boron nitride powder having an average pore size of 0.65 ⁇ m or less.
- the boron nitride particles are composed of, for example, a plurality of boron nitride pieces made of boron nitride, and the plurality of boron nitride pieces form a plurality of pores satisfying the average pore diameter.
- the boron nitride flakes may, for example, have a scale-like shape. In this case, the longitudinal length of the boron nitride pieces may be, for example, 1 ⁇ m or more and 10 ⁇ m or less.
- a plurality of boron nitride pieces may be chemically bonded to each other from the viewpoint of realizing a heat dissipating material with superior thermal conductivity.
- the fact that a plurality of boron nitride pieces are chemically bonded to each other can be confirmed by using a scanning electron microscope (SEM) by observing no boundary between the boron nitride pieces at the bonding portion between the boron nitride pieces.
- SEM scanning electron microscope
- the average thickness of the boron nitride pieces may be 0.30 ⁇ m or less, 0.25 ⁇ m or less, less than 0.25 ⁇ m, 0.20 ⁇ m or less, or 0.15 ⁇ m or less, and may be 0.05 ⁇ m or more, or 0.10 ⁇ m or more. good.
- the average thickness of the boron nitride pieces is obtained by using a scanning electron microscope (SEM) to observe the surface of the boron nitride particles at a magnification of 10000 times. ) and defined as the average thickness of 40 boron nitride strips measured in the SEM image.
- SEM scanning electron microscope
- the average major axis of the boron nitride pieces may be 0.5 ⁇ m or more, 1.0 ⁇ m or more, or 1.5 ⁇ m or more, and 4.0 ⁇ m or less, from the viewpoint of realizing a heat dissipating material having superior thermal conductivity. It may be 5 ⁇ m or less or 3.0 ⁇ m or less.
- the major axis means the maximum length in the direction perpendicular to the thickness direction.
- the average major axis of the boron nitride pieces is obtained by using a scanning electron microscope (SEM) to obtain an SEM image obtained by observing the surface of the boron nitride particles at a magnification of 10,000 times. ) and defined as the average of the major diameters of 40 boron nitride pieces measured in the SEM image.
- SEM scanning electron microscope
- the average aspect ratio of the boron nitride pieces is 7.0 or more, 8.0 or more, 9.0 or more, 9.5 or more, 10.0 or more, or It may be 10.5 or more.
- the boron nitride pieces may have an average aspect ratio of 20.0 or less, 17.0 or less, or 15.0 or less.
- the average aspect ratio of the boron nitride pieces is defined as the average value of aspect ratios (length/thickness) calculated from the length and thickness of each boron nitride piece for 40 boron nitride pieces.
- the BET specific surface area of boron nitride powder can be measured by the BET multipoint method using nitrogen gas in accordance with JIS Z 8830:2013.
- the BET specific surface area of the boron nitride powder is 5.0 m 2 /g or more, 5.5 m 2 /g or more, 6.0 m 2 /g or more, 7 .0 m 2 /g or more, or 8.0 m 2 /g or more.
- the BET specific surface area of the boron nitride powder is 30.0 m 2 /g or less, 20.0 m 2 /g or less, 15.0 m 2 /g or less, 12 0 m 2 /g or less, 11.0 m 2 /g or less, 10.0 m 2 /g or less, or 9.0 m 2 /g or less.
- the average pore size of the boron nitride powder is a pore size distribution (horizontal axis: pore size , vertical axis: cumulative pore volume), it means the pore diameter at which the cumulative pore volume reaches 50% of the total pore volume.
- the measurement range is 0.03 to 4000 atmospheres, and the measurement is performed while gradually increasing the pressure.
- the average pore size of the boron nitride powder is 0.65 ⁇ m or less, and may be 0.50 ⁇ m or less, 0.40 ⁇ m or less, or 0.30 ⁇ m or less.
- the BET specific surface area of the boron nitride powder is a predetermined value (for example, 4.6 m 2 /g) or more, and the average pore diameter of the boron nitride powder is within the above range, so that the boron nitride powder is dense. It is believed to be an aggregate of boron nitride particles having a structure. Such boron nitride powder has excellent crushing strength and is moderately deformable. It is possible to fill the resin while suppressing the collapse of the resin.
- the average pore size of the boron nitride powder may be 0.10 ⁇ m or more or 0.15 ⁇ m or more from the viewpoint of realizing a heat dissipating material having superior thermal conductivity.
- the boron nitride powder may have an average pore size of 0.20 ⁇ m or more.
- the BET specific surface area of the boron nitride powder is a predetermined value (for example, 4.6 m 2 /g) or more, and the average pore diameter of the boron nitride powder is within the above range, so that the boron nitride particles are moderately It is easy to deform, and when the boron nitride powder and the resin are kneaded, the filling property of the resin is excellent. Therefore, it is presumed that such a heat dissipating material has an excellent heat transfer coefficient because it becomes easy to suppress the occurrence of voids in the heat dissipating material. However, the reason why a heat dissipating material having excellent thermal conductivity can be realized is not limited to the above reason.
- the average particle size of the boron nitride powder may be, for example, 20 ⁇ m or more, 40 ⁇ m or more, 50 ⁇ m or more, 60 ⁇ m or more, 70 ⁇ m or more, or 80 ⁇ m or more, and may be 150 ⁇ m or less, 120 ⁇ m or less, 110 ⁇ m or less, or 100 ⁇ m or less.
- the average particle size of boron nitride powder can be measured by a laser diffraction scattering method.
- the average value of the crushing strength of the boron nitride powder is that when the boron nitride powder (boron nitride particles) is mixed with the resin, the boron nitride particles are less likely to crumble, making it possible to realize a heat dissipating material with superior thermal conductivity. From a viewpoint, it may be 8 MPa or more, 9 MPa or more, 10 MPa or more, or 12 MPa or more.
- the average crushing strength of the boron nitride powder may be 17 MPa or less, 15 MPa or less, or 13 MPa or less from the viewpoint of realizing a heat dissipating material having superior thermal conductivity.
- the average value of the crushing strength of the boron nitride powder is obtained by using a microcompression tester (for example, Shimadzu Corporation's "MCT- 211”) to measure the crushing strength.
- the amount of nitrogen defects in the boron nitride powder may be 1.0 ⁇ 10 14 /g or more, and 1.0 ⁇ 10 18 /g or less from the viewpoint of realizing a heat dissipation material having better thermal conductivity.
- the amount of nitrogen defects in the boron nitride powder is obtained by filling 60 mg of the boron nitride powder in a quartz glass sample tube and performing electron spin resonance (ESR) measurement using a "JEM FA-200 type electron spin resonance apparatus" manufactured by JEOL Ltd. measured.
- Sweep time 15min
- the boron nitride particles may consist essentially of boron nitride. That the boron nitride particles consist essentially of boron nitride can be confirmed by detecting only a peak derived from boron nitride in the X-ray diffraction measurement.
- the above boron nitride powder can be obtained, for example, by nitriding particles containing boron carbide (hereinafter sometimes referred to as "boron carbide particles”) to obtain particles containing boron carbonitride (hereinafter sometimes referred to as "boron carbonitride particles").
- boron carbide particles nitriding particles containing boron carbide
- boron carbonitride particles particles containing boron carbonitride
- a nitriding step of obtaining a a filling step of filling a container with a mixture containing particles containing boron carbonitride, and a boron source containing at least one selected from the group consisting of boric acid and boron oxide; a decarburization step of decarburizing the particles containing boron carbonitride by pressurizing and heating the mixture in a state of increased airtightness, wherein boron source can be produced by a production method in which the amount of boron atoms in is 1.0 to 2.2 mol. That is, another embodiment of the present invention is a method for producing the boron nitride powder described above.
- the boron carbide particles in the nitriding step may be powdery (boron carbide powder), for example.
- Boron carbide powder can be produced by a known production method.
- a method for producing boron carbide particles (boron carbide powder) for example, after mixing boric acid and acetylene black, in an inert gas (for example, nitrogen gas or argon gas) atmosphere at 1800 to 2400 ° C.
- an inert gas for example, nitrogen gas or argon gas
- a method of obtaining massive boron carbide particles by heating for 1 to 10 hours may be mentioned.
- Boron carbide powder can be obtained by appropriately performing pulverization, sieving, washing, impurity removal, drying, and the like on the aggregated boron carbide particles obtained by this method.
- the average particle size of the boron carbide powder can be adjusted by adjusting the pulverization time of the lumpy carbon boron particles.
- the average particle size of the boron carbide powder may be 5 ⁇ m or more, 7 ⁇ m or more, or 10 ⁇ m or more, and may be 100 ⁇ m or less, 90 ⁇ m or less, 80 ⁇ m or less, or 70 ⁇ m or less.
- the average particle size of boron carbide powder can be measured by a laser diffraction scattering method.
- boron carbide particles are filled in a container (for example, a carbon crucible), and pressurized and heated in an atmosphere in which the nitriding reaction proceeds, thereby nitriding the boron carbide particles to form boron carbonitride particles. Obtainable.
- the atmosphere for advancing the nitriding reaction in the nitriding step may be a nitriding gas atmosphere for nitriding the boron carbide particles.
- Nitrogen gas, ammonia gas, or the like may be used as the nitriding gas. Nitrogen gas may be used from the viewpoint of easy nitridation of the boron carbide particles and from the viewpoint of cost.
- the nitriding gas may be used alone or in combination of two or more, and the ratio of nitrogen gas in the nitriding gas is 95.0% by volume or more, 99.0% by volume or more, or 99.9% by volume or more. you can
- the pressure in the nitriding step may be 0.6 MPa or higher or 0.7 MPa or higher.
- the pressure in the nitriding step may be 1.0 MPa or less or 0.9 MPa or less.
- the heating temperature in the nitriding step may be 1800° C. or higher or 1900° C. or higher from the viewpoint of sufficiently nitriding the boron carbide particles.
- the heating temperature in the nitriding step may be 2400° C. or lower or 2200° C. or lower.
- the time for pressurization and heating in the nitriding step may be 3 hours or more, 5 hours or more, or 8 hours or more from the viewpoint of sufficiently nitriding the boron carbide particles.
- the time for pressurizing and heating in the nitriding step may be 30 hours or less, 20 hours or less, or 10 hours or less.
- the container is filled with a mixture containing the boron carbonitride particles obtained in the nitriding step and a boron source containing at least one selected from the group consisting of boric acid and boron oxide.
- the container in the filling process may be, for example, a boron nitride crucible.
- the mixture may be filled to the bottom of the container.
- the opening of the container may be covered with a lid, and a part or all of the gap between the container and the lid may be filled with the resin.
- the filling resin may be, for example, an epoxy resin, and the resin may contain a curing agent.
- the resin to be filled may be a resin having a high viscosity from the viewpoint of suppressing the resin from flowing.
- the amount of boron atoms of the boron source in the mixture in the filling step may be 1.0 to 2.2 mol with respect to 1 mol of boron carbonitride in the mixture.
- the amount of boron atoms is 2.0 mol or less, 1.9 mol or less, 1 .8 mol or less, 1.7 mol or less, 1.6 mol or less, 1.5 mol or less, 1.4 mol or less, or 1.3 mol or less.
- the amount of boron atoms may be 1.1 mol or more or 1.2 mol or more with respect to 1 mol of boron carbonitride in the mixture.
- a mixture containing boron carbonitride particles and a boron source is heated in an atmosphere of normal pressure or higher to decarburize the boron carbonitride particles and obtain boron nitride particles (boron nitride powder). be able to.
- the atmosphere in the decarburization step may be a nitrogen gas atmosphere, and may be a normal pressure (atmospheric pressure) or pressurized nitrogen gas atmosphere.
- the pressure in the decarburization step may be 0.5 MPa or less or 0.3 MPa or less from the viewpoint of sufficiently decarburizing the boron carbonitride particles.
- the heating in the decarburization step may be performed, for example, by raising the temperature to a predetermined temperature (decarburization start temperature) and then further raising the temperature to a predetermined temperature (holding temperature) at a predetermined heating rate.
- the rate of temperature increase from the decarburization start temperature to the holding temperature may be, for example, 5° C./min or less, 3° C./min or less, or 2° C./min or less.
- the decarburization start temperature may be 1000°C or higher or 1100°C or higher from the viewpoint of sufficiently decarburizing the boron carbonitride particles.
- the decarburization initiation temperature may be 1500° C. or lower or 1400° C. or lower.
- the holding temperature may be 1800°C or higher or 2000°C or higher.
- the holding temperature may be 2200° C. or lower or 2100° C. or lower.
- the heating time at the holding temperature may be 0.5 hours or longer, 1 hour or longer, 3 hours or longer, 5 hours or longer, or 10 hours or longer.
- the time of heating at the holding temperature may be 40 hours or less, 30 hours or less, or 20 hours or less.
- a step of classifying boron nitride powder having a desired particle size with a sieve may be performed on the boron nitride powder obtained as described above.
- the boron nitride powder obtained as described above can be used, for example, as a resin composition by mixing with a resin. That is, another embodiment of the present invention is a resin composition containing the above boron nitride powder and a resin.
- resins include epoxy resins, silicone resins, silicone rubbers, acrylic resins, phenol resins, melamine resins, urea resins, unsaturated polyesters, fluororesins, polyimides, polyamideimides, polyetherimides, polybutylene terephthalate, polyethylene terephthalate, Polyphenylene ether, polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS (acrylonitrile-butadiene-styrene) resin, AAS (acrylonitrile-acrylic rubber/styrene) resin, AES (acrylonitrile) Ethylene/propylene/diene rubber-styrene) resin can be used.
- ABS acrylonitrile-butadiene-styrene
- AAS acrylonitrile-acrylic rubber/styrene
- AES acrylonitrile
- the content of the boron nitride powder is 30% by volume or more, 40% by volume or more, 50% by volume or more, or 60% by volume, based on the total volume of the resin composition, from the viewpoint of realizing a heat dissipation material having better thermal conductivity. It may be vol% or more.
- the content of the boron nitride powder is based on the total volume of the resin composition, from the viewpoint of suppressing the generation of voids when molding the heat dissipating material and suppressing the deterioration of the insulating properties and mechanical strength of the heat dissipating material. It may be 85% by volume or less, or 80% by volume or less.
- the resin content may be adjusted as appropriate according to the application and required properties of the resin composition.
- the content of the resin, based on the total volume of the resin composition may be 15% by volume or more, 20% by volume or more, 30% by volume or more, or 40% by volume or more, and 70% by volume or less, 60% by volume or less, or It may be 50% by volume or less.
- the resin composition may further contain a curing agent that cures the resin.
- a curing agent is appropriately selected depending on the type of resin. Curing agents used together with epoxy resins include phenol novolak compounds, acid anhydrides, amino compounds, imidazole compounds, and the like.
- the content of the curing agent may be 0.5 parts by mass or more or 1.0 parts by mass or more and may be 15 parts by mass or less or 10 parts by mass or less with respect to 100 parts by mass of the resin.
- the resin composition may further contain other components.
- Other components may be, for example, curing accelerators (curing catalysts), coupling agents, wetting and dispersing agents, and surface control agents.
- Curing accelerators include phosphorus-based curing accelerators such as tetraphenylphosphonium tetraphenylborate and triphenylphosphate, imidazole-based curing accelerators such as 2-phenyl-4,5-dihydroxymethylimidazole, and trifluoride. Amine-based curing accelerators such as boron monoethylamine are included.
- coupling agents examples include silane-based coupling agents, titanate-based coupling agents, and aluminate-based coupling agents.
- Chemical bonding groups contained in these coupling agents include vinyl groups, epoxy groups, amino groups, methacryl groups, mercapto groups, and the like.
- Wetting and dispersing agents include phosphate salts, carboxylic acid esters, polyesters, acrylic copolymers, block copolymers, and the like.
- surface modifiers examples include acrylic surface modifiers, silicone-based surface modifiers, vinyl-based modifiers, fluorine-based surface modifiers, and the like.
- the resin composition is produced by, for example, a method for producing a resin composition comprising a step of preparing boron nitride powder according to one embodiment (preparing step) and a step of mixing boron nitride powder with a resin (mixing step). can be manufactured. That is, another embodiment of the present invention is a method for producing the above resin composition. In the mixing step, in addition to the boron nitride powder and resin, the above-described curing agent and other components may be further mixed.
- the method for producing a resin composition may further include a step of pulverizing the boron nitride powder (pulverizing step).
- the pulverization step may be performed between the preparation step and the mixing step, or may be performed at the same time as the mixing step (the boron nitride powder may be pulverized at the same time as the boron nitride powder is mixed with the resin).
- the above resin composition can be used, for example, as a heat dissipation material.
- the heat dissipation material can be produced, for example, by curing a resin composition.
- a method for curing the resin composition is appropriately selected according to the type of resin (and curing agent used as necessary) contained in the resin composition. For example, if the resin is an epoxy resin and the curing agent described above is used together, the resin can be cured by heating.
- Example 1 Boron carbonitride particles were obtained by filling a carbon crucible with boron carbide particles having an average particle size of 55 ⁇ m and heating the carbon crucible under conditions of 2000° C. and 0.8 MPa for 20 hours in a nitrogen gas atmosphere. 100 parts by mass of the obtained boron carbonitride particles and 66.7 parts by mass of boric acid were mixed using a Henschel mixer, and the amount of boron atoms of the boron source was 1.0 parts per 1 mol of boron carbonitride in the mixture. A mixture of 2 mol was obtained.
- the resulting mixture was filled into a boron nitride crucible, the crucible was covered, and the entire gap between the crucible and the lid was filled with epoxy resin.
- Coarse boron nitride particles were obtained by heating the boron nitride crucible filled with the mixture in a carbon case placed in a resistance heating furnace under normal pressure, a nitrogen gas atmosphere, and a holding temperature of 2000 ° C. for 10 hours. .
- the obtained coarse boron nitride particles were pulverized in a mortar for 10 minutes and classified with a nylon sieve having a sieve mesh of 109 ⁇ m to obtain boron nitride particles (boron nitride powder).
- FIG. 1 A cross-sectional SEM image of the obtained boron nitride particles is shown in FIG. 1 As can be seen from FIG. 1, in the boron nitride particles, a plurality of boron nitride pieces were chemically bonded together.
- Example 2 Boron nitride particles (boron nitride powder) was obtained. When the cross section of the obtained boron nitride particles was confirmed by SEM, it was confirmed that a plurality of boron nitride pieces were chemically bonded to each other.
- Example 3 Boron nitride particles (boron nitride powder) was obtained. When the cross section of the obtained boron nitride particles was confirmed by SEM, it was confirmed that a plurality of boron nitride pieces were chemically bonded to each other.
- Example 4 Boron nitride particles (boron nitride powder) was obtained. When the cross section of the obtained boron nitride particles was confirmed by SEM, it was confirmed that a plurality of boron nitride pieces were chemically bonded to each other.
- the average particle size of the boron nitride powder was measured using a Beckman Coulter laser diffraction scattering particle size distribution analyzer (LS-13 320). Table 1 shows the measurement results of the average particle size.
- the BET specific surface area of the boron nitride powder was measured by the BET multipoint method using nitrogen gas according to JIS Z 8830:2013. Table 1 shows the measurement results.
- the thickness and major axis of 40 boron nitride pieces were measured, and the average thickness and average major axis of the boron nitride particles constituting the boron nitride particles were calculated from the measured thickness and major axis. Also, the aspect ratio (major axis/thickness) of each boron nitride piece was calculated from the measured thickness and major axis, and the average aspect ratio was calculated from the aspect ratios of the 40 boron nitride pieces. Table 1 shows the calculation results of the average thickness, average length, and average aspect ratio. SEM images of the surfaces of the boron nitride particles of Example 1 and Comparative Example 1 are shown in FIGS. 2 and 3, respectively.
- the crushing strength of 20 boron nitride particles in each obtained boron nitride powder was measured according to JIS R 1639-5:2007.
- a microcompression tester (MCT-211, manufactured by Shimadzu Corporation) was used as a measuring device.
- the crushing strength of 20 boron nitride particles was measured and the average values are shown in Table 1.
- a measurement sample with a size of 10 mm ⁇ 10 mm is cut out from the prepared heat dissipation material, and the thermal diffusivity A ( m / sec) of the measurement sample is measured by a laser flash method using a xenon flash analyzer (LFA447NanoFlash, manufactured by NETZSCH). was measured. Also, the specific gravity B (kg/m 3 ) of the measurement sample was measured by the Archimedes method.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Ceramic Products (AREA)
Abstract
Description
[測定条件]
磁場掃引範囲:0~3290gauss(0~329mT)
磁場変調:5gauss(0.5mT)
時定数:0.3s
照射電磁波:0.5mW、約9.16GHz(照射電磁波の周波数は、共鳴周波数となるように測定ごとに微調整する)
掃引時間:15min
アンプゲイン:200
Mnマーカー:750
測定環境:室温(25℃)
標準試料:日本電子社製Coal標準試料(スピン量:3.56×1013個/g)
平均粒子径55μmの炭化ホウ素粒子をカーボンルツボに充填し、カーボンルツボを窒素ガス雰囲気下で、2000℃、0.8MPaの条件で20時間加熱することにより炭窒化ホウ素粒子を得た。得られた炭窒化ホウ素粒子100質量部と、ホウ酸66.7質量部とをヘンシェルミキサーを用いて混合し、混合物中の炭窒化ホウ素1molに対して、ホウ素源のホウ素原子の量が1.2molである混合物を得た。得られた混合物を窒化ホウ素ルツボに充填し、ルツボに蓋をして、ルツボと蓋との隙間の全てにエポキシ樹脂を充填した。混合物を充填した窒化ホウ素ルツボを抵抗加熱炉内に配置したカーボンケース内で、常圧、窒素ガス雰囲気下、保持温度2000℃の条件で10時間加熱することにより、粗大な窒化ホウ素粒子を得た。得られた粗大な窒化ホウ素粒子を乳鉢により10分間解砕し、篩目109μmのナイロン篩にて分級を行って、窒化ホウ素粒子(窒化ホウ素粉末)を得た。
混合物中の炭窒化ホウ素1molに対して、ホウ素源のホウ素原子の量が1.4molとなるようにホウ酸の量を変更した以外は、実施例1と同様の条件で窒化ホウ素粒子(窒化ホウ素粉末)を得た。得られた窒化ホウ素粒子の断面をSEMで確認したところ、複数の窒化ホウ素片同士が化学的に結合していることが確認された。
混合物中の炭窒化ホウ素1molに対して、ホウ素源のホウ素原子の量が1.6molとなるようにホウ酸の量を変更した以外は、実施例1と同様の条件で窒化ホウ素粒子(窒化ホウ素粉末)を得た。得られた窒化ホウ素粒子の断面をSEMで確認したところ、複数の窒化ホウ素片同士が化学的に結合していることが確認された。
混合物中の炭窒化ホウ素1molに対して、ホウ素源のホウ素原子の量が1.8molとなるようにホウ酸の量を変更した以外は、実施例1と同様の条件で窒化ホウ素粒子(窒化ホウ素粉末)を得た。得られた窒化ホウ素粒子の断面をSEMで確認したところ、複数の窒化ホウ素片同士が化学的に結合していることが確認された。
混合物中の炭窒化ホウ素1molに対して、ホウ素源のホウ素原子の量が1.1molとなるようにホウ酸の量を変更した以外は、実施例1と同様の条件で窒化ホウ素粒子(窒化ホウ素粉末)を得た。
混合物中の炭窒化ホウ素1molに対して、ホウ素源のホウ素原子の量が2.7molとなるようにホウ酸の量を変更した以外は、実施例1と同様の条件で窒化ホウ素粒子(窒化ホウ素粉末)を得た。
ベックマンコールター製レーザー回折散乱法粒度分布測定装置(LS-13 320)を用いて、窒化ホウ素粉末の平均粒子径を測定した。平均粒子径の測定結果を表1に示す。
JIS R 1655:2003に準拠して水銀ポロシメーター(株式会社島津製作所製、オートポアIV9500)によって窒化ホウ素粉末の平均細孔径を測定した。測定結果を表1に示す。
JIS Z 8830:2013に準拠して窒素ガスを使用してBET多点法により窒化ホウ素粉末のBET比表面積を測定した。測定結果を表1に示す。
走査型電子顕微鏡(日本電子株式会社製、JSM-7001F)を用いて、観察倍率10000倍で、窒化ホウ素粒子の表面を観察した。得られた窒化ホウ素粉末中の窒化ホウ素粒子の表面のSEM画像を画像解析ソフトウェア(株式会社マウンテック製、Mac-view)に取り込み、窒化ホウ素粒子の表面に配置されている窒化ホウ素片の厚さ及び長径(厚さ方向に対して垂直方向の最大長さ)を測定した。40個の窒化ホウ素片の厚さ及び長径をそれぞれ測定し、測定した厚さ及び長径から窒化ホウ素粒子を構成する窒化ホウ素片の平均厚さ及び平均長径を算出した。また、測定した厚さ及び長径から各窒化ホウ素片のアスペクト比(長径/厚さ)を算出し、40個の窒化ホウ素片のアスペクト比から平均アスペクト比を算出した。平均厚さ、平均長径及び平均アスペクト比の算出結果を表1に示す。実施例1及び比較例1の窒化ホウ素粒子の表面のSEM画像を図2及び3にそれぞれ示す。
得られた各窒化ホウ素粉末中の20個の窒化ホウ素粒子について、JIS R 1639-5:2007に準拠して圧壊強度を測定した。測定装置としては、微小圧縮試験機(島津製作所社製、MCT-211)を用いた。各窒化ホウ素粒子の圧壊強度σ(単位:MPa)は、粒子内の位置によって変化する無次元数α(=2.48)と圧壊試験力P(単位:N)と平均粒子径d(単位:μm)から、σ=α×P/(π×d2)の式を用いて算出した。20個の窒化ホウ素粒子について圧壊強度を測定し、その平均値を表1に示す。
ナフタレン型エポキシ樹脂(DIC社製、HP4032)100質量部と、硬化剤としてイミダゾール化合物(四国化成社製、2E4MZ-CN)10質量部とを混合し、次いで、各実施例及び比較例において得られた窒化ホウ素粉末81質量部を更に混合して樹脂組成物を得た。この樹脂組成物を、500Paの減圧脱泡を10分間行い、PET製シート上に厚みが1.0mmになるように塗布した。その後、温度150℃、圧力160kg/cm2条件で60分間のプレス加熱加圧を行って、0.5mmのシート状の放熱材を作製した。作製した放熱材から10mm×10mmの大きさの測定用試料を切り出し、キセノンフラッシュアナライザ(NETZSCH社製、LFA447NanoFlash)を用いたレーザーフラッシュ法により、測定用試料の熱拡散率A(m2/秒)を測定した。また、測定用試料の比重B(kg/m3)をアルキメデス法により測定した。また、測定用試料の比熱容量C(J/(kg・K))を、示差走査熱量計(株式会社リガク製、ThermoPlusEvoDSC8230)を用いて測定した。これらの各物性値を用いて、熱伝導率H(W/(m・K))をH=A×B×Cの式から求めた。熱伝導率の測定結果を表1に示す。実施例1及び比較例1の窒化ホウ素粉末を用いて作製した放熱材の断面のSEM画像を図4及び5にそれぞれ示す。
Claims (4)
- 窒化ホウ素粒子の集合体である窒化ホウ素粉末であって、
BET比表面積が4.6m2/g以上であり、平均細孔径が0.65μm以下である、窒化ホウ素粉末。 - 前記窒化ホウ素粒子が複数の窒化ホウ素片により構成されており、前記複数の窒化ホウ素片同士が化学的に結合している、請求項1に記載の窒化ホウ素粉末。
- 圧壊強度の平均値が8MPa以上である、請求項1又は2に記載の窒化ホウ素粉末。
- 請求項1~3のいずれか一項に記載の窒化ホウ素粉末と、樹脂とを含有する、樹脂組成物。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280022941.8A CN117098721A (zh) | 2021-03-25 | 2022-03-22 | 氮化硼粉末及树脂组合物 |
KR1020237035740A KR20230156791A (ko) | 2021-03-25 | 2022-03-22 | 질화붕소 분말 및 수지 조성물 |
JP2022575455A JP7289019B2 (ja) | 2021-03-25 | 2022-03-22 | 窒化ホウ素粉末及び樹脂組成物 |
US18/283,482 US20240174908A1 (en) | 2021-03-25 | 2022-03-22 | Boron nitride powder and resin composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-051877 | 2021-03-25 | ||
JP2021051877 | 2021-03-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022202824A1 true WO2022202824A1 (ja) | 2022-09-29 |
Family
ID=83395845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/013230 WO2022202824A1 (ja) | 2021-03-25 | 2022-03-22 | 窒化ホウ素粉末及び樹脂組成物 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240174908A1 (ja) |
JP (1) | JP7289019B2 (ja) |
KR (1) | KR20230156791A (ja) |
CN (1) | CN117098721A (ja) |
TW (1) | TW202300445A (ja) |
WO (1) | WO2022202824A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014136959A1 (ja) * | 2013-03-07 | 2014-09-12 | 電気化学工業株式会社 | 窒化ホウ素粉末及びこれを含有する樹脂組成物 |
WO2016092952A1 (ja) * | 2014-12-08 | 2016-06-16 | 昭和電工株式会社 | 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート |
WO2017155110A1 (ja) * | 2016-03-10 | 2017-09-14 | デンカ株式会社 | セラミックス樹脂複合体 |
WO2018181606A1 (ja) * | 2017-03-29 | 2018-10-04 | デンカ株式会社 | 伝熱部材及びこれを含む放熱構造体 |
WO2020004600A1 (ja) * | 2018-06-29 | 2020-01-02 | デンカ株式会社 | 塊状窒化ホウ素粒子、窒化ホウ素粉末、窒化ホウ素粉末の製造方法、樹脂組成物、及び放熱部材 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01179763A (ja) * | 1988-01-05 | 1989-07-17 | Showa Denko Kk | 窒化ホウ素と窒化ケイ素の複合焼結体の製造方法 |
CA2774842C (en) | 2009-10-09 | 2015-07-14 | Mizushima Ferroalloy Co., Ltd. | Hexagonal boron nitride powder and method for producing same |
CN104470873B (zh) * | 2012-06-27 | 2016-11-02 | 水岛合金铁株式会社 | 带凹部的bn球状烧结粒子及其制造方法以及高分子材料 |
WO2016092951A1 (ja) * | 2014-12-08 | 2016-06-16 | 昭和電工株式会社 | 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート |
EP3257810B1 (en) * | 2016-06-16 | 2019-11-13 | 3M Innovative Properties Company | Formed hexagonal boron nitride body, hexagonal boron nitride granulates for making the same, and process for producing the same |
CN110494038B (zh) * | 2017-03-29 | 2021-03-12 | 株式会社贵亚特丝 | 包含日本纸纱线的针织品或纺织品的农园艺用材料 |
JP7104503B2 (ja) * | 2017-10-13 | 2022-07-21 | デンカ株式会社 | 塊状窒化ホウ素粉末の製造方法及びそれを用いた放熱部材 |
JP7145315B2 (ja) * | 2019-03-27 | 2022-09-30 | デンカ株式会社 | 塊状窒化ホウ素粒子、熱伝導樹脂組成物及び放熱部材 |
US20220204830A1 (en) * | 2019-03-28 | 2022-06-30 | Denka Company Limited | Boron nitride powder, method for producing same, composite material, and heat dissipation member |
-
2022
- 2022-03-22 WO PCT/JP2022/013230 patent/WO2022202824A1/ja active Application Filing
- 2022-03-22 JP JP2022575455A patent/JP7289019B2/ja active Active
- 2022-03-22 US US18/283,482 patent/US20240174908A1/en active Pending
- 2022-03-22 KR KR1020237035740A patent/KR20230156791A/ko unknown
- 2022-03-22 CN CN202280022941.8A patent/CN117098721A/zh active Pending
- 2022-03-24 TW TW111110960A patent/TW202300445A/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014136959A1 (ja) * | 2013-03-07 | 2014-09-12 | 電気化学工業株式会社 | 窒化ホウ素粉末及びこれを含有する樹脂組成物 |
WO2016092952A1 (ja) * | 2014-12-08 | 2016-06-16 | 昭和電工株式会社 | 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート |
WO2017155110A1 (ja) * | 2016-03-10 | 2017-09-14 | デンカ株式会社 | セラミックス樹脂複合体 |
WO2018181606A1 (ja) * | 2017-03-29 | 2018-10-04 | デンカ株式会社 | 伝熱部材及びこれを含む放熱構造体 |
WO2020004600A1 (ja) * | 2018-06-29 | 2020-01-02 | デンカ株式会社 | 塊状窒化ホウ素粒子、窒化ホウ素粉末、窒化ホウ素粉末の製造方法、樹脂組成物、及び放熱部材 |
Also Published As
Publication number | Publication date |
---|---|
CN117098721A (zh) | 2023-11-21 |
JPWO2022202824A1 (ja) | 2022-09-29 |
TW202300445A (zh) | 2023-01-01 |
KR20230156791A (ko) | 2023-11-14 |
JP7289019B2 (ja) | 2023-06-08 |
US20240174908A1 (en) | 2024-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7069314B2 (ja) | 塊状窒化ホウ素粒子、窒化ホウ素粉末、窒化ホウ素粉末の製造方法、樹脂組成物、及び放熱部材 | |
JP6698953B2 (ja) | 窒化ホウ素粉末、その製造方法及びそれを用いた放熱部材 | |
KR102400206B1 (ko) | 질화붕소 응집 입자, 질화붕소 응집 입자의 제조 방법, 그 질화붕소 응집 입자 함유 수지 조성물, 성형체, 및 시트 | |
TWI838500B (zh) | 塊狀氮化硼粒子、熱傳導樹脂組成物、以及散熱構件 | |
JP7273587B2 (ja) | 窒化ホウ素粉末及び樹脂組成物 | |
JP2017178719A (ja) | 窒化アルミニウム−窒化ホウ素複合凝集粒子およびその製造方法 | |
JP7291304B2 (ja) | 窒化ホウ素粉末、放熱シート及び放熱シートの製造方法 | |
JP7541090B2 (ja) | 熱伝導性樹脂組成物及び放熱シート | |
WO2022202824A1 (ja) | 窒化ホウ素粉末及び樹脂組成物 | |
WO2022202827A1 (ja) | 窒化ホウ素粒子、その製造方法、及び樹脂組成物 | |
JP7303950B2 (ja) | 窒化ホウ素粉末及び樹脂組成物 | |
JP7273586B2 (ja) | 窒化ホウ素粉末及び樹脂組成物 | |
JP7124249B1 (ja) | 放熱シート及び放熱シートの製造方法 | |
JP7158634B2 (ja) | 中空部を有する窒化ホウ素粒子を含有するシート | |
WO2021200877A1 (ja) | 塊状窒化ホウ素粒子及びその製造方法 | |
JP2024022830A (ja) | 窒化ホウ素粉末、及び、窒化ホウ素粉末の製造方法 | |
JP2022125061A (ja) | 凝集窒化ホウ素粒子、窒化ホウ素粉末、熱伝導性樹脂組成物及び放熱シート | |
JP2023147855A (ja) | 窒化ホウ素粉末 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22775607 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022575455 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280022941.8 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18283482 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20237035740 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020237035740 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22775607 Country of ref document: EP Kind code of ref document: A1 |