WO2021200725A1 - 窒化ホウ素焼結体及びその製造方法、並びに複合体及びその製造方法 - Google Patents

窒化ホウ素焼結体及びその製造方法、並びに複合体及びその製造方法 Download PDF

Info

Publication number
WO2021200725A1
WO2021200725A1 PCT/JP2021/013054 JP2021013054W WO2021200725A1 WO 2021200725 A1 WO2021200725 A1 WO 2021200725A1 JP 2021013054 W JP2021013054 W JP 2021013054W WO 2021200725 A1 WO2021200725 A1 WO 2021200725A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
sintered body
nitride sintered
particles
resin
Prior art date
Application number
PCT/JP2021/013054
Other languages
English (en)
French (fr)
Inventor
五十嵐 厚樹
敦也 鈴木
西村 浩二
武田 真
小橋 聖治
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2022512151A priority Critical patent/JPWO2021200725A1/ja
Priority to US17/907,515 priority patent/US20230146575A1/en
Priority to CN202180022041.9A priority patent/CN115298150B/zh
Priority to EP21781629.7A priority patent/EP4101812A4/en
Publication of WO2021200725A1 publication Critical patent/WO2021200725A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0645Preparation by carboreductive nitridation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62836Nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • C04B38/0074Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores expressed as porosity percentage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/4853Epoxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • C04B41/83Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/788Aspect ratio of the grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness

Definitions

  • the present disclosure relates to a boron nitride sintered body and a method for producing the same, and a composite and a method for producing the same.
  • Boron nitride which is a type of ceramic, has excellent lubricity, thermal conductivity, and insulation. Therefore, it has been studied to use boron nitride and a material obtained by combining it with other materials as the above-mentioned insulating layer and thermal interface material.
  • the boron nitride molded product is composited with a resin, and the degree of orientation and graphitization index of boron nitride are set within a predetermined range to reduce the anisotropy of thermal conductivity while having excellent thermal conductivity.
  • Technology has been proposed.
  • the present disclosure provides a boron nitride sintered body capable of forming a composite having excellent adhesiveness to other members, and a method for producing the same.
  • the present disclosure also provides a complex having excellent adhesiveness to other members and a method for producing the complex.
  • the present disclosure is a boron nitride sintered body having a porous structure, which comprises massive particles having a particle size of 15 ⁇ m or more formed by agglomeration of primary particles of boron nitride.
  • a boron nitride sintered body has a porous structure, a composite can be produced by impregnating the resin composition. Since the primary particles aggregate to form massive particles having a particle size equal to or larger than a predetermined value, the flow of the resin inside the boron nitride sintered body is less likely to be obstructed by the primary particles. Therefore, the flow of the resin can be smoothed. Therefore, when a composite containing the boron nitride sintered body and the resin is formed, the amount of the resin exuded at the time of connection with other members increases, and the adhesiveness can be improved.
  • the number of agglomerate particles having a particle size of 15 ⁇ m or more contained in a rectangular field of view of 180 ⁇ m ⁇ 255 ⁇ m is 5 on average. It may be more than one.
  • the flow of the resin inside the boron nitride sintered body can be further smoothed, and the amount of resin exuded from the complex at the time of connection with other members can be further increased. Therefore, the adhesiveness of the complex can be further improved.
  • the average value of the aspect ratios of the agglomerate particles may be 1 to 6.
  • the agglomerate particles may have a core portion in which the primary particles of boron nitride aggregate and a shell portion surrounding the core portion.
  • the orientation index of the boron nitride sintered body may be 10 or more.
  • the boron nitride sintered body contains a plurality of lumpy particles, and at least one of the plurality of lumpy particles may have through holes.
  • a through hole By having such a through hole, the flow of the resin is further facilitated, and the amount of the resin exuded from the complex at the time of connection with other members can be further increased. Therefore, the adhesiveness of the complex can be further improved.
  • the present disclosure has, in one aspect, a core portion in which a raw material powder containing boron nitride is calcined in an atmosphere containing nitrogen to agglomerate primary particles of boron nitride, and a shell portion surrounding the core portion.
  • a nitriding step of obtaining a calcined product containing agglomerate particles and molding and heating of a compound containing a calcined product containing agglomerate particles and a sintering aid are performed to obtain a porous structure and the agglomerate particles of boron nitride.
  • a method for producing a boron nitride sintered body which comprises a firing step for obtaining a boron nitride sintered body containing the same.
  • a firing step is performed using a fired product containing massive particles having a core portion and a shell portion. Therefore, in the firing step, a boron nitride sintered body containing sufficiently large boron nitride lump particles can be obtained. Since such a boron nitride sintered body has a porous structure, a composite can be produced by impregnating the resin composition. Since it contains sufficiently large lumpy particles, the flow of the resin is less likely to be hindered inside the boron nitride sintered body. Therefore, the flow of the resin can be smoothed. Therefore, when a composite containing the boron nitride sintered body and the resin is formed, the amount of the resin exuded at the time of connection with other members is increased, and the adhesiveness can be improved.
  • the above-mentioned massive particles are formed by aggregating primary particles of boron nitride, and may have a particle size of 15 ⁇ m or more. As a result, the flow of the resin inside the boron nitride sintered body is less likely to be obstructed by the primary particles, and the amount of resin seeping out when connected to other members can be further increased.
  • the specific surface area of at least one of the calcined product and the compound used in the calcining step may be less than 12 m 2 / g. This makes it possible to form sufficiently large agglomerate particles in the boron nitride sintered body. This makes it possible to further smooth the flow of the resin inside the boron nitride sintered body.
  • the present disclosure provides, in one aspect, a complex comprising any of the above-mentioned boron nitride sintered bodies and a resin that fills the pores of the boron nitride sintered body. Since such a complex includes the above-mentioned boron nitride sintered body, the flow of the resin can be smoothed and the amount of resin exuded can be sufficiently increased. Therefore, the adhesiveness with other members can be improved.
  • the present disclosure comprises a boron nitride sintered body and the boron nitride sintered body, which comprises an impregnation step of impregnating the pores of the boron nitride sintered body obtained by any of the above-mentioned production methods with a resin composition.
  • a method for producing a composite having a resin filled in at least a part of the pores of the body Since the above-mentioned boron nitride sintered body is used in this production method, the flow of the resin in the obtained complex can be smoothed and the amount of resin exuded can be sufficiently increased. Such a complex can improve the adhesiveness with other members.
  • the above manufacturing method may include a semi-curing step of semi-curing the resin composition impregnated in the pores of the boron nitride sintered body.
  • boron nitride sintered body capable of forming a composite having excellent adhesiveness to other members and a method for producing the same. Further, it is possible to provide a composite having excellent adhesiveness to other members and a method for producing the same.
  • FIG. 1 is a diagram schematically showing a cross section of boron nitride lumpy particles contained in the boron nitride sintered body of one embodiment.
  • FIG. 2 is an SEM (scanning electron microscope) photograph showing an example of a cross section of the boron nitride sintered body of one embodiment.
  • FIG. 3 is an SEM photograph showing an example of lumpy particles of boron nitride obtained in the nitriding step.
  • FIG. 4 is an SEM photograph showing an example of a cross section of the molded product.
  • FIG. 5 is an SEM photograph of a cross section of the massive particles contained in the fired product.
  • FIG. 6 is an SEM photograph of the boron nitride powder obtained by pulverizing the fired product in Comparative Example 1.
  • FIG. 7 is an SEM photograph showing a cross section of the boron nitride sintered body of Comparative Example 1.
  • the boron nitride sintered body according to the first embodiment has a porous structure and contains lumpy particles of boron nitride formed by agglomeration of primary particles of boron nitride. Since the boron nitride sintered body has a porous structure, the composite can be produced by impregnating the resin composition.
  • the particle size of the agglomerate particles is 15 ⁇ m or more.
  • the particle size of the agglomerate particles may be 20 ⁇ m or more, and may be 25 ⁇ m or more.
  • FIG. 1 is a diagram schematically showing a cross section of boron nitride agglomerated particles contained in a boron nitride sintered body. Such a cross-sectional image can be observed by magnifying the cross-section of the boron nitride sintered body by 500 times using a scanning electron microscope. As shown in FIG. 1, a first line segment L1 and a second line segment L2, which are orthogonal to each other, can be drawn on the agglomerate particles 10. Both the first line segment L1 and the second line segment L2 are virtual line segments. The first line segment L1 and the second line segment L2 are drawn by the following procedure.
  • the line segment connecting these two points is the first line segment L1. Further, in the direction orthogonal to the first line segment L1, another two points on the outer edge having the largest interval are selected. The line segment connecting these two points is the second line segment L2.
  • the particle size of the agglomerate particles in the present specification is calculated by the formula (La + Lb) / 2.
  • La and Lb indicate the lengths of the first line segment L1 and the second line segment L2, respectively. Therefore, La and Lb have a relationship of La> Lb.
  • La Lb.
  • the measurement of La and Lb may be performed by importing the observation image as shown in FIG. 1 into image analysis software (for example, "Mac-view” manufactured by Mountech Co., Ltd.).
  • the average value of the aspect ratios of the agglomerated particles 10 may be 1 to 6, may be 1 to 5, or may be 1 to 4.
  • the aspect ratio in the present specification is calculated by La / Lb.
  • the average value of the aspect ratio in the present specification is obtained as the arithmetic mean of the aspect ratio calculated by La / Lb.
  • FIG. 2 is an SEM photograph showing an example of a cross section of the boron nitride sintered body of the present embodiment.
  • the cross-sectional image of the boron nitride sintered body shown in FIG. 2 contains lumpy particles of boron nitride formed by agglomeration of primary particles. As shown in the image, the boron nitride sintered body has a porous structure.
  • the cross-sectional image of the boron nitride sintered body shown in FIG. 2 contains a plurality of agglomerate particles having a particle size of 15 ⁇ m or more (for example, agglomerate particles 13, 14, 15).
  • the boron nitride sintered body has a rectangular visual field of 180 ⁇ m ⁇ 255 ⁇ m (length ⁇ width) in an image showing a cross section observed by a scanning electron microscope (SEM) magnified 500 times.
  • the number of agglomerate particles contained in the particles having a particle size of 15 ⁇ m or more may be 5 or more on average.
  • the number of agglomerate particles having a particle size of 15 ⁇ m or more included in the field of view may be 7 or more, 8 or more, or 9 or more on average.
  • the average value of the number of agglomerate particles is obtained by averaging the numbers measured in five or more visual fields.
  • the number of particles in each field of view is preferably 100 or more. This is intended to exclude that the number of agglomerate particles having a predetermined particle size or more is counted less than the actual number by arbitrarily selecting only a field of view that does not contain agglomerate particles or has a small number of agglomerate particles. be.
  • the agglomerated particles having a particle size of 15 ⁇ m or more may be 5 or more, 8 or more, or 9 or more on average.
  • the boron nitride agglomerate particles may have a core portion in which the primary particles of boron nitride aggregate and a shell portion surrounding the core portion.
  • the orientation index of the boron nitride sintered body of the present embodiment may be 10 or more, and may be 12 or more.
  • the orientation index can be calculated by the peak intensity ratio [I (002) / I (100)] of the (002) plane and the (100) plane of boron nitride measured by an X-ray diffractometer.
  • the shape of the boron nitride sintered body is not particularly limited, and may be, for example, a sheet shape (thin plate shape) or a block shape.
  • the boron nitride sintered body can be used for an insulating layer, a thermal interface material, and the like.
  • the boron nitride sintered body and the lumpy particles contained therein contain boron nitride as a main component, and may contain an auxiliary component other than boron nitride. Examples of the sub-ingredients include boron carbide, boron nitride, carbon, and calcium compounds.
  • the content ratio of boron nitride in the boron nitride sintered body may be 90% by mass or more, 95% by mass or more, or 98% by mass or more.
  • the content ratio of boron nitride can be measured by, for example, X-ray diffraction measurement.
  • the boron nitride sintered body thus obtained can form a complex having excellent adhesiveness to other members.
  • a complex is a boron nitride sintered body filled with a resin.
  • the complex can be suitably used as a member of various devices such as a semiconductor device.
  • the boron nitride sintered body having a porous structure may contain both closed pores and open pores.
  • the porosity of the boron nitride sintered body may be 45 to 65% by volume, and may be 50 to 60% by volume. Porosity can be determined based on the theoretical density and bulk density of the boron nitride sintered body.
  • the composite according to one embodiment has the above-mentioned boron nitride sintered body and the resin filled in the pores of the boron nitride sintered body. Since this composite includes the above-mentioned boron nitride sintered body, the flow of the resin can be smoothed and the amount of resin exuded when crimped to another member (adhesive body) can be sufficiently increased. Therefore, the adhesiveness with other members is excellent. It is not necessary that all the pores of the boron nitride sintered body are filled with resin, and some of the pores may not be filled with resin.
  • the complex may include both closed and open pores.
  • the content of the resin in the complex may be 20% by mass or more, 25% by mass or more, or 35% by mass or more from the viewpoint of sufficiently increasing the adhesive force.
  • the content of the resin in the complex may be 45% by mass or less, or 40% by mass or less.
  • the resin may be a resin composition, or may be a semi-cured product obtained by semi-curing the resin composition.
  • Semi-hardening (B stage) means that it can be further hardened by a subsequent curing treatment. Utilizing the fact that it is in a semi-cured state, it may be temporarily crimped to another member such as a metal substrate and then heated to adhere to the other member. By further curing the semi-cured product, it can be in a "completely cured" (also referred to as C stage) state. Whether or not the resin is in a semi-cured state can be confirmed by, for example, a differential scanning calorimeter.
  • the resin may be a thermosetting resin composition and / or a photocurable resin composition, and may be a semi-cured product thereof.
  • the thermosetting resin composition may contain at least one compound selected from the group consisting of a compound having a cyanate group, a compound having a bismaleimide group, and a compound having an epoxy group, and a curing agent.
  • Examples of the compound having a cyanate group include dimethylmethylenebis (1,4-phenylene) biscyanate and bis (4-cyanatephenyl) methane.
  • Dimethylmethylenebis (1,4-phenylene) biscyanate is commercially available, for example, as TACN (manufactured by Mitsubishi Gas Chemical Company, Inc., trade name).
  • Compounds having a bismaleimide group include, for example, N, N'-[(1-methylethylidene) bis [(p-phenylene) oxy (p-phenylene)]] bismaleimide, and 4,4'-diphenylmethane bismaleimide. And so on.
  • N, N'-[(1-methylethylidene) bis [(p-phenylene) oxy (p-phenylene)]] bismaleimide is commercially available, for example, as BMI-80 (manufactured by Keiai Kasei Co., Ltd., trade name). Is available.
  • Examples of the compound having an epoxy group include bisphenol F type epoxy resin, bisphenol A type epoxy resin, biphenyl type epoxy resin, and polyfunctional epoxy resin.
  • bisphenol F type epoxy resin bisphenol A type epoxy resin
  • biphenyl type epoxy resin biphenyl type epoxy resin
  • polyfunctional epoxy resin examples include 1,6-bis (2,3-epoxypropane-1-yloxy) naphthalene, which is commercially available as HP-4032D (manufactured by DIC Corporation, trade name), may be used.
  • the curing agent may contain a phosphine-based curing agent and an imidazole-based curing agent.
  • the phosphine-based curing agent can promote the triazine formation reaction by the trimerization of the compound having a cyanate group or the cyanate resin.
  • Examples of the phosphine-based curing agent include tetraphenylphosphonium tetra-p-tolylborate and tetraphenylphosphonium tetraphenylborate. Tetraphenylphosphonium tetra-p-tolylborate is commercially available, for example, as TPP-MK (manufactured by Hokuko Chemical Industry Co., Ltd., trade name).
  • the imidazole-based curing agent produces oxazoline and promotes the curing reaction of a compound having an epoxy group or an epoxy resin.
  • Examples of the imidazole-based curing agent include 1- (1-cyanomethyl) -2-ethyl-4-methyl-1H-imidazole and 2-ethyl-4-methylimidazole.
  • 1- (1-Cyanomethyl) -2-ethyl-4-methyl-1H-imidazole is commercially available, for example, as 2E4MZ-CN (manufactured by Shikoku Chemicals Corporation, trade name).
  • the content of the phosphine-based curing agent is, for example, 5 parts by mass or less, 4 parts by mass or less, or 3 parts by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. It may be less than or equal to a mass part.
  • the content of the phosphine-based curing agent is, for example, 0.1 part by mass or more or 0.5 part by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group and the compound having an epoxy group. It may be more than one part.
  • the content of the imidazole-based curing agent is, for example, 0.1 part by mass or less, 0.05 mass by mass, based on 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. It may be less than a part or 0.03 part by mass or less.
  • the content of the imidazole-based curing agent is, for example, 0.001 part by mass or more or 0.005 part by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group and the compound having an epoxy group. It may be more than one part.
  • the resin composition is not limited to the above, and a resin composition that can be impregnated with the boron nitride sintered body can be appropriately used.
  • a raw material powder containing boron carbide is fired in an atmosphere containing nitrogen to surround a core portion in which primary particles of boron nitride are aggregated and a core portion.
  • Boron nitride having a porous structure is subjected to a nitriding step of obtaining a calcined product containing a lumpy particle having a shell portion, and molding and heating of a compound containing the calcined product containing the lumpy particle and a sintering aid. It has a firing step of obtaining a sintered body.
  • the powder containing boron carbide can be prepared, for example, by the following procedure. After mixing boric acid and acetylene black, the mixture is heated at 1800 to 2400 ° C. for 1 to 10 hours in an inert gas atmosphere to obtain a lump containing boron carbide. This mass can be prepared by pulverizing, washing, removing impurities, and drying.
  • the powder containing boron carbide is calcined in an atmosphere containing nitrogen to obtain a calcined product containing boron nitride (B 4 CN 4).
  • the firing temperature in the nitriding step may be 1800 ° C. or higher, and may be 1900 ° C. or higher. Further, the firing temperature may be 2400 ° C. or lower, and may be 2200 ° C. or lower. The firing temperature may be, for example, 1800 to 2400 ° C.
  • the nitrogen partial pressure in the nitriding step may be 0.6 MPa or more, and may be 0.7 MPa or more.
  • the nitrogen partial pressure may be 1.0 MPa or less, and may be 0.9 MPa or less.
  • the nitrogen partial pressure may be, for example, 0.6 to 1.0 MPa. If the nitrogen partial pressure is too low, nitriding of boron carbide tends to be difficult to proceed. On the other hand, if the pressure is too high, the manufacturing cost tends to increase.
  • the pressure in the present disclosure is an absolute pressure.
  • the nitrogen gas concentration in the nitrogen-containing atmosphere in the nitriding step may be 95% by volume or more, and may be 99.9% by volume or more.
  • the firing time in the nitriding step is not particularly limited as long as the nitriding of boron carbide proceeds sufficiently, and may be, for example, 6 to 30 hours or 8 to 20 hours.
  • FIG. 3 is an SEM photograph showing an example of lumpy particles of boron nitride obtained in the nitriding step.
  • the massive particles 20 shown in FIG. 3 have a core portion 21 in which a plurality of primary particles of boron nitride are aggregated, and a shell portion 22 surrounding the core portion 21.
  • the shell portion 22 forms the contour of the agglomerate particles 20 over the entire circumference of the agglomerate particles 20.
  • the massive particles of another example may have a through hole in the central portion of the core portion.
  • the calcined product and the sintering aid are mixed to prepare a formulation and calcined so as to maintain the through-holes of the massive particles.
  • a boron nitride sintered body containing lumpy particles of boron nitride having through holes can be obtained.
  • the flow of the resin in the boron nitride sintered body can be further facilitated.
  • the sintering aid has a function of generating boron nitride from boron nitride and promoting densification of boron nitride.
  • the sintering aid may contain a boron compound having oxygen as a constituent element and a calcium compound.
  • the content of boron nitride in the formulation may be 70% by mass or more, or 80% by mass or more, from the viewpoint of obtaining a boron nitride sintered body having few impurities.
  • the compound may contain 1 to 50 parts by mass of the boron compound and the calcium compound in total with respect to 100 parts by mass of the calcined product, may contain 3 to 47 parts by mass, or may contain 5 to 45 parts by mass.
  • the content of the sintering aid in the formulation becomes excessive, the grain growth of the primary particles of boron nitride tends to proceed too much.
  • the content of the sintering aid in the formulation is too small, the formation of boron nitride and the growth of grains are difficult to proceed, and the thermal conductivity of the boron nitride sintered body tends to be low.
  • the formulation may contain 0.5 to 70 atomic% of calcium constituting the calcium compound and 1 to 69 atomic% of calcium constituting the boron compound with respect to 100 atomic% of boron constituting the boron compound.
  • Examples of the boron compound having oxygen as a constituent element include boric acid, boron oxide, borax, diboron trioxide and the like.
  • Examples of the calcium compound include calcium carbonate and calcium oxide.
  • the sintering aid may contain components other than the boron compound and calcium carbonate. Examples of such a component include carbonates of alkali metals such as lithium carbonate and sodium carbonate.
  • a binder may be added to the compound. Examples of the binder include an acrylic compound and the like.
  • the calcined product and the sintering aid may be blended using a mixer such as a Henschel mixer.
  • a mixer such as a Henschel mixer.
  • the mixing conditions may be made mild by mixing at a low rotation speed for a short time or the like.
  • the degree of destruction of the shell portion of the massive particles of boron nitride can be evaluated by the specific surface area of the calcined product and / or the compound containing the calcined product and the sintering aid.
  • the specific surface area of the calcined product and / or the compound containing the calcined product and the sintering aid may be less than 12 m 2 / g and may be less than 11.5 m 2 / g. Thereby, the particle size of the boron nitride lump particles contained in the boron nitride sintered body can be sufficiently increased.
  • the specific surface area in the present disclosure is measured by the BET 1-point method.
  • the specific surface area may be 5 m 2 / g or more, 7 m 2 / g or more, or 9 m 2 / g or more from the viewpoint of promoting the formation and densification of boron nitride in the firing step. good.
  • the fired product containing boron nitride obtained in the nitriding step may be crushed using a crusher.
  • the compound obtained by blending the fired product and the sintering aid by powder pressing or mold molding may be used as a block-shaped or sheet-shaped molded product.
  • the above-mentioned compound may be formed into a sheet-shaped molded product by the doctor blade method.
  • the molding pressure may be, for example, 5 to 350 MPa.
  • FIG. 4 is an SEM photograph showing an example of a cross section of the molded product.
  • the molded product contains a plurality of boron nitride lump particles and pores between the lump particles.
  • Such a molded product is heated and fired in, for example, an electric furnace.
  • the heating temperature in the firing step may be, for example, 1800 ° C. or higher, or 1900 ° C. or higher.
  • the heating temperature may be, for example, 2200 ° C. or lower, or 2100 ° C. or lower. If the heating temperature is too low, grain growth tends not to proceed sufficiently.
  • the heating time may be 0.5 hours or more, and may be 1 hour or more, 3 hours or more, 5 hours or more, or 10 hours or more.
  • the heating time may be 40 hours or less, 30 hours or less, or 20 hours or less.
  • the heating time may be, for example, 0.5 to 40 hours, or 1 to 30 hours. If the heating time is too short, grain growth tends not to proceed sufficiently. On the other hand, if the heating time is too long, the manufacturing cost tends to increase.
  • the heating atmosphere may be, for example, an atmosphere of an inert gas such as nitrogen, helium, or argon.
  • a binder When a binder is added to the formulation, it may be degreased by calcination at a temperature and atmosphere at which the binder decomposes before the above-mentioned heating.
  • the method for producing a complex includes an impregnation step of impregnating the boron nitride sintered body obtained by the above-mentioned production method with a resin composition.
  • the impregnation step is performed by adhering the resin composition to the boron nitride sintered body.
  • the boron nitride sintered body may be immersed in the resin composition. It may be carried out under pressurization or depressurization conditions in the immersed state. In this way, the pores of the boron nitride sintered body can be filled with the resin.
  • the resin composition the above-mentioned thermosetting resin composition may be used. Since the boron nitride sintered body has a porous structure and contains lumpy particles having a particle size of a predetermined value or more, impregnation of the resin composition can proceed smoothly. Therefore, the resin content can be sufficiently increased.
  • the impregnation step may be performed in an impregnation device provided with a closed container.
  • the pressure in the impregnating device may be increased to be higher than the atmospheric pressure and impregnated under pressurized conditions.
  • the depressurization condition and the pressurization condition may be repeated a plurality of times.
  • the impregnation step may be performed while heating.
  • the solvent may volatilize or the curing or semi-curing may proceed. In this way, a composite having a boron nitride sintered body and a resin filled in its pores is obtained.
  • the impregnation step there may be a semi-curing step of semi-curing the resin filled in the pores.
  • the resin-filled composite is removed from the impregnation device and heated and / or light-irradiated, depending on the type of resin composition (or curing agent added as needed).
  • the resin composition is semi-cured.
  • the complex thus obtained is in the form of a sheet and has a thin thickness. Therefore, it is thin and lightweight, and when it is used as a member of an electronic component or the like, it is possible to reduce the size and weight of the electronic component or the like. Further, since the pores of the boron nitride sintered body are sufficiently filled with the resin, the insulating property is also excellent. However, its application is not limited to the heat radiating member.
  • a boron nitride sintered body may be obtained by hot pressing in which molding and heating are performed at the same time.
  • Example 1 [Boron Nitride Sintered Body] (Example 1) ⁇ Preparation of boron nitride powder> 100 parts by mass of orthoboric acid manufactured by Nippon Denko Co., Ltd. and 35 parts by mass of acetylene black (trade name: HS100) manufactured by Denka Co., Ltd. were mixed using a Henschel mixer. The resulting mixture was filled in a graphite crucible using an arc furnace, under an atmosphere of argon gas, was heated for 5 hours at 2200 ° C., to obtain a lump of boron carbide (B 4 C). The resulting agglomerates to obtain coarse powder having boron carbide (B 4 C) was coarsely crushed by a jaw crusher.
  • This coarse powder was further pulverized by a ball mill having a silicon carbide ball ( ⁇ 10 mm) to obtain a pulverized powder.
  • the carbon content of the obtained boron carbide powder was 19.9% by mass.
  • the amount of carbon was measured with a carbon / sulfur simultaneous analyzer.
  • the prepared boron carbide powder was filled in a crucible made of boron nitride. Then, using a resistance heating furnace, the mixture was heated in a nitrogen gas atmosphere at 2000 ° C. and 0.85 MPa for 10 hours. In this way, a fired product containing boron nitride (B 4 CN 4) was obtained.
  • the content of boron nitride in the calcined product containing boron nitride is as follows from the measured value D [mass%] of the nitrogen content and the theoretical nitrogen content (50.4% by mass) in the boron nitride. It was calculated by the formula (1).
  • Boron nitride content (% by mass) D / 50.4 ⁇ 100 (1)
  • the measured value D of the nitrogen content was measured using an oxygen / nitrogen analyzer (trade name: EMGA-920) manufactured by HORIBA, Ltd.
  • the content of boron nitride according to the calculation formula (1) was 98% by mass.
  • FIG. 5 is an SEM photograph of a cross section of the massive particles contained in the fired product. As shown in FIG. 5, it was confirmed that the massive particles contained in the fired product had a core portion 21 in which the primary particles of boron nitride aggregated and a shell portion 22 surrounding the core portion 21. Images as shown in FIG.
  • each of the agglomerate particles had a core portion in which the primary particles of boron nitride aggregated and a shell portion surrounding the core portion.
  • a sintering aid was prepared by blending powdered boric acid and calcium carbonate. In the preparation, 1.9 parts by mass of calcium carbonate was added to 100 parts by mass of boric acid. At this time, the atomic ratio of boron to calcium was 1.2 atomic% of calcium with respect to 100 atomic% of boron. 19 parts by mass of the sintering aid was added to 100 parts by mass of the calcined product containing the above-mentioned lumpy particles of boron nitride, and the mixture was mixed at 740 rpm for 3 minutes using a Henschel mixer to obtain a mixture. The specific surface area of the obtained compound was measured in the same manner as the measurement of the specific surface area of the fired product. The results are as shown in Table 1.
  • the molded product was placed in a boron nitride container and introduced into a batch type high frequency furnace. In a batch type high frequency furnace, heating was performed under the conditions of normal pressure, nitrogen flow rate of 5 L / min, and 2000 ° C. for 5 hours. Then, the boron nitride sintered body was taken out from the boron nitride container. In this way, a square columnar boron nitride sintered body was obtained. The thickness of the boron nitride sintered body was 53 mm.
  • the orientation index [I (002) / I (100)] of the boron nitride sintered body was determined using an X-ray diffractometer (manufactured by Rigaku Co., Ltd., trade name: ULTIMA-IV).
  • the measurement sample (boron nitride sintered body) set in the sample holder of the X-ray diffractometer was irradiated with X-rays to perform baseline correction. Then, the peak intensity ratio of the (002) plane and the (100) plane of boron nitride was calculated. This was defined as the orientation index [I (002) / I (100)].
  • the results are as shown in Table 1.
  • FIG. 2 is an SEM photograph showing a cross section of the boron nitride sintered body of Example 1.
  • Example 2 A sintering aid was prepared by blending powdered boric acid and calcium carbonate. In the preparation, 95.6 parts by mass of calcium carbonate was added to 100 parts by mass of boric acid. 44.3 parts by mass of this sintering aid was added to 100 parts by mass of a fired product containing lumpy particles of boron nitride prepared in the same procedure as in Example 1, and mixed at 740 rpm for 3 minutes using a Henschel mixer. To obtain the formulation. A boron nitride sintered body was produced in the same manner as in Example 1 except that this compound was used. In the same manner as in Example 1, the specific surface areas of the fired product and the compound were measured, and the boron nitride sintered body was measured and SEM observed.
  • Example 3 The fired product containing boron nitride (B 4 CN 4 ) obtained in Example 1 was pulverized for 2 hours using a ball mill to form a powder.
  • SEM observation of the powdered fired product was carried out in the same manner as in Example 1, it contained massive particles having a core portion 21 in which primary particles of boron nitride aggregated and a shell portion 22 surrounding the core portion 21. It was confirmed that The specific surface area of this powdery fired product was measured in the same manner as in Example 1. The measurement results are as shown in the column of "fired product" in Table 1.
  • the calcined product and the sintering aid were mixed at 740 rpm for 3 minutes using a Henschel mixer to prepare a formulation.
  • a boron nitride sintered body was produced using this formulation in the same manner as in Example 1.
  • the specific surface area of the compound was measured, and the boron nitride sintered body was measured and SEM observed.
  • Example 1 A fired product containing boron nitride (B 4 CN 4 ) was prepared in the same procedure as in Example 1. When the specific surface area of the fired product was measured in the same manner as in Example 1, the measurement results were as shown in Table 1. This fired product was pulverized for 16 hours using a ball mill to form a powder. The SEM photograph of the boron nitride powder obtained by pulverizing the fired product was as shown in FIG. As shown in FIG. 6, in the boron nitride powder obtained by crushing the fired product, it was confirmed that the shell portion disappeared in all the agglomerate particles and the primary particles were exposed on the outer edge of the agglomerate particles. rice field.
  • the boron nitride powder thus obtained and the sintering aid were mixed using a Henschel mixer to prepare a formulation.
  • a boron nitride sintered body was produced using this formulation in the same manner as in Example 1.
  • the specific surface area of the compound was measured, and the boron nitride sintered body was measured and SEM observed.
  • the results of each measurement are as shown in Table 1.
  • An SEM photograph of a cross section of the boron nitride sintered body is as shown in FIG. When the cross section of the boron nitride sintered body as shown in FIG.
  • the boron nitride sintered body of Comparative Example 1 was in the form of a lump having a particle size of 15 ⁇ m or more. It did not contain any particles.
  • the laminate was heated and pressurized for 5 minutes under the conditions of 200 ° C. and 5 MPa and pressure-bonded, and then heat-treated for 2 hours under the conditions of 200 ° C. and atmospheric pressure.
  • a boron nitride sintered body capable of forming a complex having excellent adhesiveness to other members and a method for producing the same are provided. Further, a composite having excellent adhesiveness to other members and a method for producing the same are provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Products (AREA)

Abstract

多孔質構造を有する窒化ホウ素焼結体であって、窒化ホウ素の一次粒子が凝集して形成される粒径15μm以上である塊状粒子を含む、窒化ホウ素焼結体を提供する。炭化ホウ素を含む原料粉末を、窒素を含む雰囲気下で焼成して、炭窒化ホウ素の一次粒子が凝集するコア部と、コア部を取り囲むシェル部と、を有する塊状粒子を含む焼成物を得る窒化工程と、塊状粒子を含む焼成物と焼結助剤とを含有する配合物の成形及び加熱を行って、多孔質構造を有するとともに窒化ホウ素の塊状粒子を含む窒化ホウ素焼結体を得る焼成工程と、を有する、窒化ホウ素焼結体の製造方法を提供する。

Description

窒化ホウ素焼結体及びその製造方法、並びに複合体及びその製造方法
 本開示は、窒化ホウ素焼結体及びその製造方法、並びに複合体及びその製造方法に関する。
 パワーデバイス、トランジスタ、サイリスタ、CPU等の部品においては、使用時に発生する熱を効率的に放熱することが求められる。このような要請から、従来、電子部品を実装するプリント配線板の絶縁層の高熱伝導化を図ったり、電子部品又はプリント配線板を、電気絶縁性を有する熱インターフェース材(Thermal Interface Materials)を介してヒートシンクに取り付けたりすることが行われてきた。このような絶縁層及び熱インターフェース材として、セラミックが用いられている。
 セラミックの一種である窒化ホウ素は、潤滑性、熱伝導性及び絶縁性に優れている。このため、窒化ホウ素及びこれを他の材料と複合化した材料を上述のような絶縁層及び熱インターフェース材として用いることが検討されている。例えば、特許文献1では、窒化ホウ素成形体を樹脂と複合化するとともに、窒化ホウ素の配向度及び黒鉛化指数を所定の範囲にして、熱伝導率に優れつつ熱伝導率の異方性を低減する技術が提案されている。
特開2014-162697号公報
 近年の半導体装置等のデバイスにおける回路の高集積化に伴って、デバイスを構成する各種部材は、高い位置精度で搭載され、高い信頼性を有することが求められる。そこで、本開示は、他部材との接着性に優れる複合体を形成することが可能な窒化ホウ素焼結体及びその製造方法を提供する。また、本開示は、他部材との接着性に優れる複合体及びその製造方法を提供する。
 本開示は、一つの側面において、多孔質構造を有する窒化ホウ素焼結体であって、窒化ホウ素の一次粒子が凝集して形成される粒径15μm以上である塊状粒子を含む、窒化ホウ素焼結体を提供する。このような窒化ホウ素焼結体は、多孔質構造を有することから、樹脂組成物を含浸して複合体を製造することができる。そして、一次粒子が凝集して所定以上の粒径を有する塊状粒子を形成していることから、窒化ホウ素焼結体の内部において樹脂の流動が一次粒子に妨げられ難くなる。このため樹脂の流動を円滑にすることができる。このため、窒化ホウ素焼結体と樹脂を含む複合体を形成したときに、他部材との接続時における樹脂の染み出し量が多くなり、接着性を向上することができる。
 走査型電子顕微鏡で観察される窒化ホウ素焼結体の断面を500倍に拡大して示す画像において、180μm×255μmの長方形の視野に含まれる粒径15μm以上である塊状粒子の個数は平均で5個以上であってよい。これによって、窒化ホウ素焼結体の内部における樹脂の流動を一層円滑にして、他部材との接続時における複合体からの樹脂の染み出し量を一層多くすることができる。したがって、複合体の接着性を一層向上することができる。
 上記塊状粒子のアスペクト比の平均値は1~6であってよい。これによって、樹脂の流動の異方性及び偏流が低減され、複合体からの樹脂の染み出し量を一層多くすることができる。したがって、複合体の接着性を一層向上することができる。
 上記塊状粒子は、窒化ホウ素の一次粒子が凝集するコア部と、コア部を取り囲むシェル部と、を有してよい。これによって、塊状粒子の表面付近において樹脂の流動が妨げられ難くなり、樹脂の流動性を一層向上することができる。
 窒化ホウ素焼結体の配向性指数は10以上であってよい。これによって、樹脂組成物を含浸させる際の異方性が低減され、窒化ホウ素焼結体の内部に高い均一性で樹脂を充填することができる。このため、複合体の電気絶縁性を一層向上することができる。
 窒化ホウ素焼結体は塊状粒子を複数含み、複数の塊状粒子のうちの少なくとも一つは貫通孔を有していてもよい。このような貫通孔を有することによって、樹脂の流通が一層円滑化され、他部材との接続時における複合体からの樹脂の染み出し量をより一層多くすることができる。したがって、複合体の接着性をより一層向上することができる。
 本開示は、一つの側面において、炭化ホウ素を含む原料粉末を、窒素を含む雰囲気下で焼成して、炭窒化ホウ素の一次粒子が凝集するコア部と、コア部を取り囲むシェル部と、を有する塊状粒子を含む焼成物を得る窒化工程と、塊状粒子を含む焼成物と焼結助剤とを含有する配合物の成形及び加熱を行って、多孔質構造を有するとともに、窒化ホウ素の塊状粒子を含む窒化ホウ素焼結体を得る焼成工程と、を有する、窒化ホウ素焼結体の製造方法を提供する。
 上記製造方法では、コア部とシェル部とを有する塊状粒子を含む焼成物を用いて焼成工程を行っている。このため、焼成工程では、十分に大きい窒化ホウ素の塊状粒子を含む窒化ホウ素焼結体を得ることができる。このような窒化ホウ素焼結体は、多孔質構造を有することから、樹脂組成物を含浸して複合体を製造することができる。そして、十分に大きい塊状粒子を含むことから、窒化ホウ素焼結体の内部において樹脂の流動が妨げられ難くなる。このため樹脂の流動を円滑にすることができる。したがって、窒化ホウ素焼結体と樹脂を含む複合体を形成したときに、他部材との接続時における樹脂の染み出し量が多くなり、接着性を向上することができる。
 上記塊状粒子は窒化ホウ素の一次粒子が凝集して形成され、15μm以上の粒径を有していてよい。これによって、窒化ホウ素焼結体の内部における樹脂の流動が一次粒子に妨げられ難くなり、他部材との接続時における樹脂の染み出し量を一層多くすることができる。
 上記焼成工程で用いられる焼成物及び配合物の少なくとも一方の比表面積は12m/g未満であってよい。これによって、窒化ホウ素焼結体中に、十分に大きな塊状粒子を形成することができる。これによって、窒化ホウ素焼結体の内部における樹脂の流動を一層円滑にすることができる。
 本開示は、一つの側面において、上述のいずれかの窒化ホウ素焼結体と、当該窒化ホウ素焼結体の気孔に充填されている樹脂と、を含む、複合体を提供する。このような複合体は、上述の窒化ホウ素焼結体を備えるため、樹脂の流動を円滑にして、樹脂の染み出し量を十分に多くすることができる。このため、他部材との接着性を向上することができる。
 本開示は、一つの側面において、上述のいずれかの製造方法で得られた窒化ホウ素焼結体の気孔に樹脂組成物を含浸させる含浸工程を有する、窒化ホウ素焼結体と当該窒化ホウ素焼結体の気孔の少なくとも一部に充填された樹脂とを有する複合体の製造方法を提供する。この製造方法では、上述の窒化ホウ素焼結体を用いるため、得られる複合体における樹脂の流動を円滑にして、樹脂の染み出し量を十分に多くすることができる。このような複合体は、他部材との接着性を向上することができる。
 上記製造方法は、窒化ホウ素焼結体の気孔に含浸させた樹脂組成物を半硬化させる半硬化工程を有してよい。これによって、他部材に対して圧着して接続する際の樹脂の染み出し量を十分に確保しつつ、窒化ホウ素焼結体の内部における樹脂の充填量を維持することができる。
 他部材との接着性に優れる複合体を形成することが可能な窒化ホウ素焼結体及びその製造方法を提供することができる。また、他部材との接着性に優れる複合体及びその製造方法を提供することができる。
図1は、一実施形態の窒化ホウ素焼結体に含まれる窒化ホウ素の塊状粒子の断面を模式的に示す図である。 図2は、一実施形態の窒化ホウ素焼結体の断面の一例を示すSEM(走査型電子顕微鏡)写真である。 図3は、窒化工程で得られる炭窒化ホウ素の塊状粒子の一例を示すSEM写真である。 図4は、成形体の断面の一例を示すSEM写真である。 図5は、焼成物に含まれる塊状粒子の断面のSEM写真である。 図6は、比較例1において、焼成物を粉砕して得た炭窒化ホウ素粉末のSEM写真である。 図7は、比較例1の窒化ホウ素焼結体の断面を示すSEM写真である。
 以下、場合により図面を参照して、本開示の実施形態を説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。
 一実施形態に係る窒化ホウ素焼結体は、多孔質構造を有し、窒化ホウ素の一次粒子が凝集して形成される窒化ホウ素の塊状粒子を含む。窒化ホウ素焼結体は、多孔質構造を有することから、樹脂組成物を含浸して複合体を製造することができる。塊状粒子の粒径は15μm以上である。これによって、窒化ホウ素焼結体と樹脂を含む複合体を形成したときに、他部材との接続時における樹脂の染み出し量が多くなり、接着性を向上することができる。窒化ホウ素焼結体の内部における樹脂の流動を一層円滑にする観点から、塊状粒子の粒径は20μm以上であってよく、25μm以上であってもよい。
 図1は、窒化ホウ素焼結体に含まれる窒化ホウ素の塊状粒子の断面を模式的に示す図である。このような断面画像は、走査型電子顕微鏡を用いて窒化ホウ素焼結体の断面を500倍に拡大して観察することができる。図1に示すように、塊状粒子10には、互いに直交する、第1線分L1と、第2線分L2とを描くことができる。第1線分L1及び第2線分L2はともに仮想線分である。第1線分L1と、第2線分L2は、以下の手順で描かれる。塊状粒子10の画像において、もっとも間隔が大きくなるような塊状粒子10の外縁上の2点を選択する。この2点を結ぶ線分が第1線分L1となる。また、この第1線分L1と直交する方向において、もっとも間隔が大きくなるような外縁上の別の2点を選択する。この2点を結ぶ線分が第2線分L2となる。
 本明細書における塊状粒子の粒径は、(La+Lb)/2の計算式で求められる。La及びLbは、それぞれ、第1線分L1及び第2線分L2の長さを示している。したがって、LaとLbは、La>Lbの関係にある。なお、図1の要領で描かれる2つの線分の長さが同じ場合はLa=Lbとなる。La及びLbの測定は、図1に示すような観察画像を画像解析ソフトウェア(例えば、株式会社マウンテック製の「Mac-view」等)に取り込んで行ってもよい。
 塊状粒子10のアスペクト比の平均値は1~6であってよく、1~5であってよく、1~4であってもよい。これによって、樹脂の流動の異方性及び偏流が低減され、複合体からの樹脂の染み出し量が一層多くすることができる。したがって、複合体の接着性を一層向上することができる。本明細書におけるアスペクト比は、La/Lbで算出される。本明細書におけるアスペクト比の平均値は、La/Lbで算出されるアスペクト比の算術平均として求められる。
 図2は、本実施形態の窒化ホウ素焼結体の断面の一例を示すSEM写真である。図2に示す窒化ホウ素焼結体の断面の画像は、一次粒子が凝集して形成される窒化ホウ素の塊状粒子を含む。当該画像に示されるように、窒化ホウ素焼結体は、多孔質構造を有する。図2に示す窒化ホウ素焼結体の断面の画像には、粒径15μm以上の塊状粒子を複数含む(例えば、塊状粒子13,14,15)。
 図2に示すように、窒化ホウ素焼結体は、走査型電子顕微鏡(SEM)で観察される断面を500倍に拡大して示す画像において、180μm×255μm(縦×横)の長方形の視野に含まれる粒径15μm以上である塊状粒子の個数が平均で5個以上であってよい。これによって、窒化ホウ素焼結体の内部における樹脂の流動を一層円滑にして、他部材との接続時における複合体からの樹脂の染み出し量を一層多くすることができる。したがって、複合体の接着性を一層向上することができる。上記視野に含まれる粒径15μm以上である塊状粒子の個数が平均で7個以上であってよく、8個以上であってよく、9個以上であってもよい。
 走査型電子顕微鏡による断面観察は、互いに異なる5箇所以上の視野で行う。そして、各視野において観察された粒径15μm以上の塊状粒子の個数の平均を求める。これによって、視野の選択によって生じるばらつきを十分に低減することができる。塊状粒子の個数の平均値は、5箇所以上の視野において測定される個数を平均して求められる。各視野における粒子数は、100個以上であることが好ましい。これは、塊状粒子を含まない、又は塊状粒子の数が少ない視野のみを恣意的に選択して、所定の粒径以上を有する塊状粒子の個数が実態よりも少なくカウントされることを除く趣旨である。
 なお、図2に示す塊状粒子16のように一部のみが映し出された塊状粒子であっても、映し出された部分で粒径を測定して15μm以上であれば、粒径15μm以上の塊状粒子としてカウントする。同様の観点から、粒径30μm以上である塊状粒子の個数が平均で5個以上であってよく、8個以上であってよく、9個以上であってもよい。
 窒化ホウ素の塊状粒子は、窒化ホウ素の一次粒子が凝集するコア部と、コア部を取り囲むシェル部と、を有してよい。これによって、窒化ホウ素焼結体から複合体を得たときに、塊状粒子の表面付近において樹脂の流動が妨げられ難くなり、樹脂の流動性を一層向上することができる。
 本実施形態の窒化ホウ素焼結体の配向性指数は10以上であってよく、12以上であってもよい。これによって、樹脂組成物を含浸させる際の異方性が低減され、窒化ホウ素焼結体の内部に高い均一性で樹脂を充填することができる。このため、複合体の電気絶縁性を一層向上することができる。配向性指数は、X線回折装置で測定される窒化ホウ素の(002)面と(100)面のピーク強度比[I(002)/I(100)]で算出することができる。
 窒化ホウ素焼結体の形状は特に限定されず、例えばシート状(薄板形状)であってよく、ブロック状であってもよい。窒化ホウ素焼結体は、絶縁層、及び、熱インターフェース材等に用いることができる。窒化ホウ素焼結体及びこれに含まれる塊状粒子は、主成分として窒化ホウ素を含んでおり、窒化ホウ素以外の副成分を含んでいてよい。副成分としては、炭化ホウ素、炭窒化ホウ素、炭素、及びカルシウム化合物等が挙げられる。窒化ホウ素焼結体における窒化ホウ素の含有比率は90質量%以上であってよく、95質量%以上であってよく、98質量%以上であってもよい。窒化ホウ素の含有比率は、例えばX線回折測定によって測定することができる。
 このようにして得られた窒化ホウ素焼結体は、他部材との接着性に優れる複合体を形成することができる。このような複合体は、窒化ホウ素焼結体に樹脂が充填されたものである。複合体は、半導体装置等の各種デバイスの部材として好適に用いることができる。多孔質構造を有する窒化ホウ素焼結体は、閉気孔と開気孔の両方を含んでいてよい。窒化ホウ素焼結体の気孔率は45~65体積%であってよく、50~60体積%であってもよい。気孔率は、窒化ホウ素焼結体の理論密度とかさ密度に基づいて求めることができる。
 一実施形態に係る複合体は、上述の窒化ホウ素焼結体と、窒化ホウ素焼結体の気孔に充填されている樹脂とを有する。この複合体は上述の窒化ホウ素焼結体を備えることから、樹脂の流動を円滑にして、他部材(被着体)に圧着する際の樹脂の染み出し量を十分に多くすることができる。このため、他部材との接着性に優れる。窒化ホウ素焼結体の気孔の全てに樹脂が充填されている必要はなく、一部の気孔には樹脂が充填されていなくてもよい。複合体は、閉気孔と開気孔の両方を含んでいてよい。
 複合体における樹脂の含有量は、接着力を十分に高くする観点から、20質量%以上であってよく、25質量%以上であってよく、35質量%以上であってもよい。一方、複合体の熱伝導率を十分に高く維持する観点から、複合体における樹脂の含有量は、45質量%以下であってよく、40質量%以下であってもよい。
 樹脂は、樹脂組成物であってよく、樹脂組成物を半硬化して得られる半硬化物であってよい。半硬化(Bステージ)とは、その後の硬化処理によって、更に硬化させることができることを意味する。半硬化の状態であることを利用し金属基板等の他部材へ仮圧着して、その後加熱することによって他部材と接着してもよい。半硬化物にさらに硬化処理を施すことで「完全硬化」(Cステージともいう)の状態となり得る。樹脂が半硬化の状態にあるか否かは、例えば、示差走査熱量計によって確認することができる。
 樹脂は、熱硬化性樹脂組成物及び/又は光硬化性樹脂組成物であってよく、その半硬化物であってもよい。熱硬化性樹脂組成物は、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物からなる群より選択される少なくとも1種の化合物と、硬化剤と、を含有してよい。
 シアネート基を有する化合物としては、例えば、ジメチルメチレンビス(1,4-フェニレン)ビスシアナート、及びビス(4-シアネートフェニル)メタン等が挙げられる。ジメチルメチレンビス(1,4-フェニレン)ビスシアナートは、例えば、TACN(三菱ガス化学株式会社製、商品名)として商業的に入手可能である。
 ビスマレイミド基を有する化合物としては、例えば、N,N’-[(1-メチルエチリデン)ビス[(p-フェニレン)オキシ(p-フェニレン)]]ビスマレイミド、及び4,4’-ジフェニルメタンビスマレイミド等が挙げられる。N,N’-[(1-メチルエチリデン)ビス[(p-フェニレン)オキシ(p-フェニレン)]]ビスマレイミドは、例えば、BMI-80(ケイ・アイ化成株式会社製、商品名)として商業的に入手可能である。
 エポキシ基を有する化合物としては、ビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、及び多官能エポキシ樹脂等が挙げられる。例えば、HP-4032D(DIC株式会社製、商品名)として商業的に入手可能である1,6-ビス(2,3-エポキシプロパン-1-イルオキシ)ナフタレン等であってもよい。
 硬化剤は、ホスフィン系硬化剤及びイミダゾール系硬化剤を含有してもよい。ホスフィン系硬化剤はシアネート基を有する化合物又はシアネート樹脂の三量化によるトリアジン生成反応を促進し得る。ホスフィン系硬化剤としては、例えば、テトラフェニルホスホニウムテトラ-p-トリルボレート、及びテトラフェニルホスホニウムテトラフェニルボレート等が挙げられる。テトラフェニルホスホニウムテトラ-p-トリルボレートは、例えば、TPP-MK(北興化学工業株式会社製、商品名)として商業的に入手可能である。
 イミダゾール系硬化剤はオキサゾリンを生成し、エポキシ基を有する化合物又はエポキシ樹脂の硬化反応を促進する。イミダゾール系硬化剤としては、例えば、1-(1-シアノメチル)-2-エチル-4-メチル-1H-イミダゾール、及び2-エチル-4-メチルイミダゾール等が挙げられる。1-(1-シアノメチル)-2-エチル-4-メチル-1H-イミダゾールは、例えば、2E4MZ-CN(四国化成工業株式会社製、商品名)として商業的に入手可能である。
 ホスフィン系硬化剤の含有量は、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、5質量部以下、4質量部以下又は3質量部以下であってよい。ホスフィン系硬化剤の含有量は、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、0.1質量部以上又は0.5質量部以上であってよい。
 イミダゾール系硬化剤の含有量は、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、0.1質量部以下、0.05質量部以下又は0.03質量部以下であってよい。イミダゾール系硬化剤の含有量は、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、0.001質量部以上又は0.005質量部以上であってよい。
 樹脂組成物は上述のものに限定されず、窒化ホウ素焼結体に含浸できるものを適宜用いることができる。
 一実施形態に係る窒化ホウ素焼結体の製造方法は、炭化ホウ素を含む原料粉末を、窒素を含む雰囲気下で焼成して、炭窒化ホウ素の一次粒子が凝集するコア部と、コア部を取り囲むシェル部と、を有する塊状粒子を含む焼成物を得る窒化工程と、塊状粒子を含む焼成物と焼結助剤とを含有する配合物の成形及び加熱を行って、多孔質構造を有する窒化ホウ素焼結体を得る焼成工程と、を有する。
 炭化ホウ素を含む粉末は、例えば、以下の手順で調製することができる。ホウ酸とアセチレンブラックとを混合した後、不活性ガス雰囲気中、1800~2400℃にて、1~10時間加熱し、炭化ホウ素を含む塊状物を得る。この塊状物を、粉砕し、洗浄、不純物除去、及び乾燥を行って調製することができる。
 窒化工程では、炭化ホウ素を含む粉末を、窒素を含む雰囲気下で焼成して炭窒化ホウ素(BCN)を含む焼成物を得る。窒化工程における焼成温度は、1800℃以上であってよく、1900℃以上であってもよい。また、当該焼成温度は、2400℃以下であってよく、2200℃以下であってもよい。当該焼成温度は、例えば、1800~2400℃であってよい。
 窒化工程における窒素分圧は、0.6MPa以上であってよく、0.7MPa以上であってもよい。窒素分圧は、1.0MPa以下であってよく、0.9MPa以下であってもよい。窒素分圧は、例えば、0.6~1.0MPaであってよい。窒素分圧が低過ぎると、炭化ホウ素の窒化が進行し難くなる傾向がある。一方、当該圧力が高過ぎると、製造コストが上昇する傾向にある。なお、本開示における圧力は絶対圧である。
 窒化工程における窒素を含む雰囲気の窒素ガス濃度は95体積%以上であってよく、99.9体積%以上であってもよい。窒化工程における焼成時間は、炭化ホウ素の窒化が十分進む範囲であれば特に限定されず、例えば6~30時間であってよく、8~20時間であってもよい。
 図3は、窒化工程で得られる炭窒化ホウ素の塊状粒子の一例を示すSEM写真である。図3に示す塊状粒子20は、複数の炭窒化ホウ素の一次粒子が凝集するコア部21と、コア部21を取り囲むシェル部22とを有する。シェル部22は、塊状粒子20の全周に亘って塊状粒子20の輪郭を形成している。このような塊状粒子20のシェル部22を維持しつつ焼成工程を行うことによって、塊状粒子を含む窒化ホウ素焼結体を得ることができる。
 別の例の塊状粒子は、コア部の中央部に貫通孔を有していてもよい。塊状粒子の貫通孔を維持するように、焼成物と焼結助剤と混合して配合物を調製し焼成する。これによって貫通孔を有する窒化ホウ素の塊状粒子を含む窒化ホウ素焼結体を得ることができる。このような貫通孔を有する塊状粒子を含むことによって、窒化ホウ素焼結体における樹脂の流通を一層円滑化することができる。
 焼結助剤は、炭窒化ホウ素から窒化ホウ素を生成させるとともに、窒化ホウ素の緻密化を促進する機能を有する。焼結助剤は、構成元素として酸素を有するホウ素化合物と、カルシウム化合物とを含んでよい。配合物における炭窒化ホウ素の含有量は、不純物の少ない窒化ホウ素焼結体を得る観点から、70質量%以上であってよく、80質量%以上であってもよい。配合物は、焼成物100質量部に対してホウ素化合物及びカルシウム化合物を合計で1~50質量部含んでよく、3~47質量部含んでよく、5~45質量部含んでもよい。配合物における焼結助剤の含有量が過剰になると、窒化ホウ素の一次粒子の粒成長が進み過ぎる傾向にある。一方、配合物における焼結助剤の含有量が過小になると、窒化ホウ素の生成及び粒成長が進み難くなり、窒化ホウ素焼結体の熱伝導率が低くなる傾向にある。
 配合物は、ホウ素化合物を構成するホウ素100原子%に対して、カルシウム化合物を構成するカルシウムを0.5~70原子%含んでよく1~69原子%含んでもよい。このような比率でホウ素及びカルシウムを含有することによって、粒成長を促進して窒化ホウ素焼結体の熱伝導率を高くすることができる。
 構成元素として酸素を有するホウ素化合物としては、ホウ酸、酸化ホウ素、ホウ砂、三酸化二ホウ素等が挙げられる。カルシウム化合物としては、炭酸カルシウム、及び、酸化カルシウム等が挙げられる。焼結助剤は、ホウ素化合物及び炭酸カルシウム以外の成分を含んでいてもよい。そのような成分としては、例えば、炭酸リチウム、炭酸ナトリウム等のアルカリ金属の炭酸塩が挙げられる。また、成形性向上のため、配合物にバインダを配合してもよい。バインダとしては、アクリル化合物等が挙げられる。
 焼成物と焼結助剤の配合は、例えばヘンシェルミキサー等の混合機を用いて行ってよい。このとき、炭窒化ホウ素の塊状粒子のシェル部が破壊されることを抑制するため、低回転速度で短時間混合する等によって、混合条件をマイルドにすればよい。炭窒化ホウ素の塊状粒子のシェル部の破壊の程度は、焼成物、及び/又は焼成物と焼結助剤を含む配合物の比表面積で評価することができる。焼成物、及び/又は焼成物と焼結助剤を含む配合物の比表面積は12m/g未満であってよく、11.5m/g未満であってもよい。これによって、窒化ホウ素焼結体に含まれる窒化ホウ素の塊状粒子の粒径を十分に大きくすることができる。本開示における比表面積は、BET1点法によって測定される。上記比表面積は、焼成工程において窒化ホウ素の生成及び緻密化を促進する観点から、5m/g以上であってよく、7m/g以上であってよく、9m/g以上であってもよい。なお、窒化工程で得られた炭窒化ホウ素を含む焼成物は、粉砕機を用いて粉砕してもよい。
 粉末プレス又は金型成形によって、焼成物と焼結助剤とを配合して得られた配合物をブロック状又はシート状の成形体としてもよい。或いは、ドクターブレード法によって、上記配合物をシート状の成形体としてもよい。成形圧力は、例えば5~350MPaであってよい。
 図4は、成形体の断面の一例を示すSEM写真である。図4に示すように、成形体は、複数の炭窒化ホウ素の塊状粒子と、当該塊状粒子の間に気孔を含む。このような成形体を、例えば電気炉中で加熱して焼成する。焼成工程における加熱温度は、例えば1800℃以上であってよく、1900℃以上であってもよい。当該加熱温度は、例えば2200℃以下であってよく、2100℃以下であってもよい。加熱温度が低すぎると、粒成長が十分に進行しない傾向にある。加熱時間は、0.5時間以上であってよく、1時間以上、3時間以上、5時間以上、又は10時間以上であってもよい。当該加熱時間は、40時間以下であってよく、30時間以下、又は20時間以下であってもよい。当該加熱時間は、例えば、0.5~40時間であってよく、1~30時間であってもよい。加熱時間が短すぎると粒成長が十分に進行しない傾向にある。一方、加熱時間が長すぎると製造コストが上昇する傾向にある。加熱雰囲気は、例えば、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気であってよい。配合物にバインダを配合する場合、上述の加熱の前に、バインダが分解する温度と雰囲気で仮焼して脱脂してもよい。以上の製造方法によって、多孔質構造を有し、窒化ホウ素の塊状粒子を含有する窒化ホウ素焼結体を得ることができる。
 一実施形態に係る複合体の製造方法は、上述の製造方法で得られた窒化ホウ素焼結体に樹脂組成物を含浸させる含浸工程を有する。含浸工程は、窒化ホウ素焼結体に樹脂組成物を付着させて行う。例えば、窒化ホウ素焼結体を樹脂組成物に浸漬して行ってよい。浸漬した状態で加圧又は減圧条件として行ってもよい。このようにして、窒化ホウ素焼結体の気孔に樹脂を充填することができる。樹脂組成物としては、上述の熱硬化性樹脂組成物を用いてよい。窒化ホウ素焼結体は多孔質構造を有するとともに、粒径が所定値以上である塊状粒子を含むことから、樹脂組成物の含浸も円滑に進めることができる。このため、樹脂の含有量も十分に高くすることができる。
 含浸工程は、密閉容器を備える含浸装置内を用いて行ってもよい。一例として、含浸装置内で減圧条件にて含浸を行った後、含浸装置内の圧力を上げて大気圧よりも高くして加圧条件で含浸を行ってもよい。このように減圧条件と加圧条件の両方を行うことによって、窒化ホウ素焼結体の気孔に樹脂を十分に充填することができる。減圧条件と加圧条件とを複数回繰り返し行ってもよい。含浸工程は、加温しながら行ってもよい。窒化ホウ素焼結体の気孔に含浸した樹脂組成物は、溶剤が揮発したり硬化又は半硬化が進行したりしてよい。このようにして、窒化ホウ素焼結体とその気孔に充填された樹脂とを有する複合体が得られる。
 含浸工程の後に、気孔内に充填された樹脂を半硬化させる半硬化工程を有していてもよい。半硬化工程では、例えば、含浸装置から樹脂が充填された複合体を取り出し、樹脂組成物(又は必要に応じて添加される硬化剤)の種類に応じて、加熱、及び/又は光照射によって、樹脂組成物を半硬化させる。
 このようにして得られた複合体は、シート状であり、薄い厚みを有する。このため、薄型且つ軽量であり、電子部品等の部材として用いられたときに電子部品等の小型化及び軽量化を図ることができる。また、窒化ホウ素焼結体の気孔に樹脂が十分に充填されていることから、絶縁性にも優れる。ただし、その用途は放熱部材に限定されるものではない。
 以上、幾つかの実施形態を説明したが、本開示は上記実施形態に何ら限定されるものではない。例えば、焼成工程では、成形と加熱を同時に行うホットプレスによって窒化ホウ素焼結体を得てもよい。
 実施例及び比較例を参照して本開示の内容をより詳細に説明するが、本開示は下記の実施例に限定されるものではない。
[窒化ホウ素焼結体]
(実施例1)
<炭窒化ホウ素粉末の調製>
 新日本電工株式会社製のオルトホウ酸100質量部と、デンカ株式会社製のアセチレンブラック(商品名:HS100)35質量部とをヘンシェルミキサーを用いて混合した。得られた混合物を、黒鉛製の坩堝中に充填し、アーク炉を用いて、アルゴンガスの雰囲気下、2200℃にて5時間加熱し、塊状の炭化ホウ素(BC)を得た。得られた塊状物を、ジョークラッシャーで粗粉砕して炭化ホウ素(BC)の粗粉を得た。この粗粉を、炭化ケイ素製のボール(φ10mm)を有するボールミルによってさらに粉砕して粉砕粉を得た。得られた炭化ホウ素粉末の炭素量は19.9質量%であった。炭素量は、炭素/硫黄同時分析計にて測定した。
 調製した炭化ホウ素粉末を、窒化ホウ素製の坩堝に充填した。その後、抵抗加熱炉を用い、窒素ガス雰囲気下で、2000℃、0.85MPaの条件で10時間加熱した。このようにして炭窒化ホウ素(BCN)を含む焼成物を得た。
<比表面積の測定>
 炭窒化ホウ素を含む焼成物の比表面積を、株式会社マウンテック製の比表面積測定装置(商品名:Macsorb HM Model-1200)を用いてBET1点法で測定した。測定結果は表1に示すとおりであった。
<炭窒化ホウ素の含有量の測定>
 炭窒化ホウ素を含む焼成物の炭窒化ホウ素の含有量を、窒素含有量の実測値D[質量%]と、炭窒化ホウ素中の理論窒素含有量(50.4質量%)とから、以下の計算式(1)によって求めた。
  炭窒化ホウ素の含有量(質量%)=D/50.4×100   (1)
 窒素含有量の実測値Dは、株式会社堀場製作所製の酸素・窒素分析装置(商品名:EMGA-920)を用いて測定した。計算式(1)による炭窒化ホウ素の含有量は98質量%であった。
<走査型電子顕微鏡(SEM)による観察>
 炭窒化ホウ素(BCN)を含む焼成物を、イオンミリング装置を用いて切断して断面を得た。走査型電子顕微鏡(株式会社日立ハイテク製、装置名:SU6600)を用いて、焼成物の断面を500倍に拡大して観察した。図5は、焼成物に含まれる塊状粒子の断面のSEM写真である。図5に示されるように、焼成物に含まれる塊状粒子は、炭窒化ホウ素の一次粒子が凝集するコア部21と、コア部21を取り囲むシェル部22とを有することが確認された。互いに異なる20視野において図5に示すような画像をそれぞれ撮影し、各SEM写真に含まれる各塊状粒子を観察した。その結果、いずれの塊状粒子においても、炭窒化ホウ素の一次粒子が凝集するコア部と、当該コア部を取り囲むシェル部とを有することが確認された。
<窒化ホウ素焼結体の製造>
 粉末状のホウ酸と炭酸カルシウムを配合して焼結助剤を調製した。調製にあたっては、100質量部のホウ酸に対して、炭酸カルシウムを1.9質量部配合した。このときのホウ素とカルシウムの原子比率は、ホウ素100原子%に対してカルシウムが1.2原子%であった。上述の炭窒化ホウ素の塊状粒子を含む焼成物100質量部に対して焼結助剤を19質量部配合し、ヘンシェルミキサーを用いて740rpmで3分間混合して配合物を得た。得られた配合物の比表面積を、焼成物の比表面積の測定と同様にして測定した。結果は表1に示すとおりであった。
 配合物を、粉末プレス機を用いて、150MPaで30秒間加圧して、四角柱状(縦×横×厚さ=50mm×50mm×50mm)の成形体を得た。成形体を窒化ホウ素製容器に入れ、バッチ式高周波炉に導入した。バッチ式高周波炉において、常圧、窒素流量5L/分、2000℃の条件で5時間加熱した。その後、窒化ホウ素容器から窒化ホウ素焼結体を取り出した。このようにして、四角柱状の窒化ホウ素焼結体を得た。窒化ホウ素焼結体の厚みは53mmであった。
<気孔率の測定>
 かさ密度Bと窒化ホウ素の理論密度(2280kg/m)とから、以下の計算式(2)によって気孔率を求めた。気孔率は表1に示すとおりであった。
  気孔率(体積%)=[1-(B/2280)]×100   (2)
<配向性指数の測定>
 X線回折装置(株式会社リガク製、商品名:ULTIMA-IV)を用いて、窒化ホウ素焼結体の配向性指数[I(002)/I(100)]を求めた。X線回折装置の試料ホルダーにセットした測定試料(窒化ホウ素焼結体)にX線を照射して、ベースライン補正を行った。その後、窒化ホウ素の(002)面と(100)面のピーク強度比を算出した。これを配向性指数[I(002)/I(100)]とした。結果は、表1に示すとおりであった。
<走査型電子顕微鏡(SEM)による断面観察>
 窒化ホウ素焼結体を、CP研磨機を用いて厚さ方向に沿って切断して断面を得た。この断面を、500倍に拡大して走査型電子顕微鏡(株式会社日立ハイテク製、装置名:SU6600)で観察した。図2は、実施例1の窒化ホウ素焼結体の断面を示すSEM写真である。互いに異なる5視野(縦×横=180μm×255μm)で、図2に示すような窒化ホウ素焼結体の断面を観察したところ、粒径15μm以上の塊状粒子を平均で5個以上含むことが確認された。粒径15μm以上の塊状粒子のアスペクト比の平均値は2であった。表1中の「SEM観察」の欄には、180μm×255μmの長方形の視野に含まれる粒径15μm以上の塊状粒子の個数(平均値)を示した。
(実施例2)
 粉末状のホウ酸と炭酸カルシウムを配合して焼結助剤を調製した。調製にあたっては、100質量部のホウ酸に対して、炭酸カルシウムを95.6質量部配合した。実施例1と同じ手順で調製した炭窒化ホウ素の塊状粒子を含む焼成物100質量部に対して、この焼結助剤を44.3質量部配合し、ヘンシェルミキサーを用いて740rpmで3分間混合して配合物を得た。この配合物を用いたこと以外は実施例1と同様にして窒化ホウ素焼結体を製造した。実施例1と同様にして、焼成物及び配合物の比表面積の測定、並びに、窒化ホウ素焼結体の各測定及びSEM観察を行った。
 互いに異なる5視野(縦×横=180μm×255μm)で、図2に示すような窒化ホウ素焼結体の断面を観察したところ、粒径15μm以上の塊状粒子を平均で5個以上含むことが確認された。粒径15μm以上の塊状粒子のアスペクト比の平均値は2であった。その他の測定結果は表1に示すとおりであった。
(実施例3)
 実施例1で得られた炭窒化ホウ素(BCN)を含む焼成物を、ボールミルを用いて2時間粉砕して粉末状にした。実施例1と同様にして、粉末状の焼成物のSEM観察を行ったところ、炭窒化ホウ素の一次粒子が凝集するコア部21と、コア部21を取り囲むシェル部22とを有する塊状粒子を含有することが確認された。この粉末状の焼成物の比表面積を実施例1と同様にして測定した。測定結果は表1の「焼成物」の欄に示すとおりであった。この焼成物と焼結助剤とをヘンシェルミキサーを用いて740rpmで3分間混合して配合物を調製した。この配合物を用いて実施例1と同様にして窒化ホウ素焼結体を製造した。実施例1と同様にして、配合物の比表面積の測定、並びに、窒化ホウ素焼結体の各測定及びSEM観察を行った。
 互いに異なる5視野(縦×横=180μm×255μm)で、図2に示すような窒化ホウ素焼結体の断面を観察したところ、粒径15μm以上の塊状粒子を平均で5個以上含むことが確認された。粒径15μm以上の塊状粒子のアスペクト比の平均値は2であった。その他の測定結果は表1に示すとおりであった。
(比較例1)
 実施例1と同じ手順で炭窒化ホウ素(BCN)を含む焼成物を調製した。焼成物の比表面積を実施例1と同様にして測定したところ、測定結果は表1に示すとおりであった。この焼成物を、ボールミルを用いて焼成物を16時間粉砕して粉末状とした。焼成物を粉砕して得た炭窒化ホウ素粉末のSEM写真は図6に示すとおりであった。図6に示すとおり、焼成物を粉砕して得た炭窒化ホウ素粉末では、いずれの塊状粒子においてもシェル部が消失しており、一次粒子が塊状粒子の外縁に露出していることが確認された。
 このようにして得られた炭窒化ホウ素粉末と焼結助剤とをヘンシェルミキサーを用いて混合して配合物を調製した。この配合物を用いて実施例1と同様にして窒化ホウ素焼結体を製造した。実施例1と同様にして、配合物の比表面積の測定、並びに、窒化ホウ素焼結体の各測定及びSEM観察を行った。各測定の結果は表1に示すとおりであった。窒化ホウ素焼結体の断面のSEM写真は図7に示すとおりであった。互いに異なる5視野(縦×横=180μm×255μm)で、図7に示すような窒化ホウ素焼結体の断面を観察したところ、比較例1の窒化ホウ素焼結体は、粒径15μm以上の塊状粒子を一つも含んでいなかった。
Figure JPOXMLDOC01-appb-T000001
[複合体]
<複合体の作製>
 圧力が0.03kPaに制御された含浸装置内において、エポキシ樹脂(三菱ケミカル株式会社製、商品名:エピコート807)と硬化剤(日本合成化学工業株式会社製、商品名:アクメックスH-84B)を含む樹脂組成物中に、実施例1~3及び比較例1の窒化ホウ素焼結体をそれぞれ浸漬し、窒化ホウ素焼結体に樹脂組成物を含浸させた。含浸後、大気圧下、温度150℃で60分間加熱して樹脂組成物を半硬化させ、複合体を得た。この複合体は、窒化ホウ素焼結体と同等の厚みを有していた。
<樹脂の含有量の測定>
 樹脂の含有量は、複合体を空気中で600℃5時間焼成し、焼成前後の質量変化から下記式(3)より求めた。結果は、表2に示すとおりであった。
 複合体の樹脂の含有量(質量%)=(焼成前の複合体の質量-焼成後の複合体の質量)/焼成前の複合体の質量×100 ・・・(3)
<接着強度の評価>
 マルチカットワイヤーソーを用いて、複合体を所定のサイズ(縦×横×厚み=40mm×20mm×0.4mm)に加工してシート状の試料を得た。シート状の銅箔(縦×横×厚み=100mm×20mm×0.035mm)と、平板状の銅板(縦×横×厚み=100mm×20mm×1mm)との間に、上述のシート状の試料を配置して、銅箔、複合体及び銅板をこの順に備える積層体を得た。当該積層体を200℃及び5MPaの条件下で5分間加熱及び加圧して圧着した後、200℃及び大気圧の条件下で2時間加熱処理した。
 上述の処理を施したのち、JIS K 6854-1:1999「接着剤-はく離接着強さ試験方法」に準拠して、90°はく離試験を行い、20℃における複合体のピール強度を、万能試験機(株式会社エーアンドディ製、商品名:RTG-1310)を用いて求めた。試験速度:50mm/min、ロードセル:5kN、測定温度:室温(20℃)の条件で測定を行った。結果は表2の「接着強度評価」の欄に示すとおりであった。なお、凝集破壊部分とは、複合体が破壊した部分の面積である。
  A:凝集破壊部分の面積比率が70面積%以上
  B:凝集破壊部分の面積比率が70面積%未満
Figure JPOXMLDOC01-appb-T000002
 本開示によれば、他部材との接着性に優れる複合体を形成することが可能な窒化ホウ素焼結体及びその製造方法が提供される。また、他部材との接着性に優れる複合体及びその製造方法が提供される。
 10,13,14,15,16,20…塊状粒子、21…コア部、22…シェル部。

Claims (12)

  1.  多孔質構造を有する窒化ホウ素焼結体であって、
     窒化ホウ素の一次粒子が凝集して形成される粒径15μm以上である塊状粒子を含む、窒化ホウ素焼結体。
  2.  走査型電子顕微鏡で観察される断面を500倍に拡大して示す画像において、180μm×255μmの長方形の視野に含まれる粒径15μm以上である前記塊状粒子の個数が平均で5個以上である、請求項1に記載の窒化ホウ素焼結体。
  3.  前記塊状粒子のアスペクト比の平均値は1~6である、請求項1又は2に記載の窒化ホウ素焼結体。
  4.  前記塊状粒子は、窒化ホウ素の一次粒子が凝集するコア部と、前記コア部を取り囲むシェル部と、を有する、請求項1~3のいずれか一項に記載の窒化ホウ素焼結体。
  5.  配向性指数が10以上である、請求項1~3のいずれか一項に記載の窒化ホウ素焼結体。
  6.  前記塊状粒子を複数含み、複数の前記塊状粒子のうちの少なくとも一つは貫通孔を有する、請求項1~5のいずれか一項に記載の窒化ホウ素焼結体。
  7.  炭化ホウ素を含む原料粉末を、窒素を含む雰囲気下で焼成して、炭窒化ホウ素の一次粒子が凝集するコア部と、前記コア部を取り囲むシェル部と、を有する塊状粒子を含む焼成物を得る窒化工程と、
     前記塊状粒子を含む前記焼成物と焼結助剤とを含有する配合物の成形及び加熱を行って、多孔質構造を有する多孔質構造を有するともに、窒化ホウ素の塊状粒子を含む窒化ホウ素焼結体を得る焼成工程と、を有する、窒化ホウ素焼結体の製造方法。
  8.  前記塊状粒子は窒化ホウ素の一次粒子が凝集して形成され、15μm以上の粒径を有する、請求項7に記載の窒化ホウ素焼結体の製造方法。
  9.  前記焼成物及び前記配合物の少なくとも一方の比表面積が12m/g未満である、請求項7又は8に記載の窒化ホウ素焼結体の製造方法。
  10.  請求項1~6のいずれか一項に記載の窒化ホウ素焼結体と、前記窒化ホウ素焼結体の気孔に充填されている樹脂と、を含む、複合体。
  11.  請求項7~9のいずれか一項に記載の製造方法で得られた窒化ホウ素焼結体の気孔に樹脂組成物を含浸させる含浸工程を有する、前記窒化ホウ素焼結体と当該窒化ホウ素焼結体の前記気孔の少なくとも一部に充填された樹脂とを有する複合体の製造方法。
  12.  前記気孔に含浸させた樹脂組成物を半硬化させる半硬化工程を有する、請求項11に記載の複合体の製造方法。

     
PCT/JP2021/013054 2020-03-31 2021-03-26 窒化ホウ素焼結体及びその製造方法、並びに複合体及びその製造方法 WO2021200725A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022512151A JPWO2021200725A1 (ja) 2020-03-31 2021-03-26
US17/907,515 US20230146575A1 (en) 2020-03-31 2021-03-26 Boron nitride sintered body, method for manufacturing same, laminate, and method for manufacturing same
CN202180022041.9A CN115298150B (zh) 2020-03-31 2021-03-26 氮化硼烧结体及其制造方法、以及复合体及其制造方法
EP21781629.7A EP4101812A4 (en) 2020-03-31 2021-03-26 BORON NITRIDE SINTERED BODY, METHOD OF MANUFACTURING IT, LAMINATE AND METHOD OF MANUFACTURING IT

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-064844 2020-03-31
JP2020064844 2020-03-31
JP2020-163439 2020-09-29
JP2020163439 2020-09-29

Publications (1)

Publication Number Publication Date
WO2021200725A1 true WO2021200725A1 (ja) 2021-10-07

Family

ID=77927458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013054 WO2021200725A1 (ja) 2020-03-31 2021-03-26 窒化ホウ素焼結体及びその製造方法、並びに複合体及びその製造方法

Country Status (5)

Country Link
US (1) US20230146575A1 (ja)
EP (1) EP4101812A4 (ja)
JP (1) JPWO2021200725A1 (ja)
CN (1) CN115298150B (ja)
WO (1) WO2021200725A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157563A (ja) * 2008-12-26 2010-07-15 Mitsubishi Electric Corp 熱伝導性シート及びパワーモジュール
WO2011104996A1 (ja) * 2010-02-23 2011-09-01 三菱電機株式会社 熱硬化性樹脂組成物、bステージ熱伝導性シート及びパワーモジュール
JP2014162697A (ja) 2013-02-27 2014-09-08 Denki Kagaku Kogyo Kk 窒化ホウ素成形体、その製造方法及び用途
WO2014136959A1 (ja) * 2013-03-07 2014-09-12 電気化学工業株式会社 窒化ホウ素粉末及びこれを含有する樹脂組成物
JP2016044098A (ja) * 2014-08-21 2016-04-04 住友ベークライト株式会社 造粒粉、放熱用樹脂組成物、放熱シート、半導体装置、および放熱部材
JP2017165609A (ja) * 2016-03-15 2017-09-21 デンカ株式会社 六方晶窒化ホウ素の一次粒子凝集体、樹脂組成物及びその用途

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08133857A (ja) * 1994-11-08 1996-05-28 Sumitomo Electric Ind Ltd セラミックス多孔体及びその製造方法
DE102010050900A1 (de) * 2010-11-10 2012-05-10 Esk Ceramics Gmbh & Co. Kg Bornitrid-Agglomerate, Verfahren zu deren Herstellung und deren Verwendung
DE102012104049A1 (de) * 2012-05-09 2013-11-28 Esk Ceramics Gmbh & Co. Kg Bornitrid-Agglomerate, Verfahren zu deren Herstellung und deren Verwendung
US9516741B2 (en) * 2013-08-14 2016-12-06 Denka Company Limited Boron nitride/resin composite circuit board, and circuit board including boron nitride/resin composite integrated with heat radiation plate
JP6198142B2 (ja) * 2014-03-26 2017-09-20 三菱マテリアル株式会社 立方晶窒化ホウ素基超高圧焼結材料製切削工具
CN107922743B (zh) * 2015-08-26 2019-03-08 电化株式会社 导热性树脂组合物
JP7005523B2 (ja) * 2016-05-27 2022-01-21 サン-ゴバン セラミックス アンド プラスティクス,インコーポレイティド 窒化ホウ素凝集体を製造するためのプロセス
JP7069314B2 (ja) * 2018-06-29 2022-05-17 デンカ株式会社 塊状窒化ホウ素粒子、窒化ホウ素粉末、窒化ホウ素粉末の製造方法、樹脂組成物、及び放熱部材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157563A (ja) * 2008-12-26 2010-07-15 Mitsubishi Electric Corp 熱伝導性シート及びパワーモジュール
WO2011104996A1 (ja) * 2010-02-23 2011-09-01 三菱電機株式会社 熱硬化性樹脂組成物、bステージ熱伝導性シート及びパワーモジュール
JP2014162697A (ja) 2013-02-27 2014-09-08 Denki Kagaku Kogyo Kk 窒化ホウ素成形体、その製造方法及び用途
WO2014136959A1 (ja) * 2013-03-07 2014-09-12 電気化学工業株式会社 窒化ホウ素粉末及びこれを含有する樹脂組成物
JP2016044098A (ja) * 2014-08-21 2016-04-04 住友ベークライト株式会社 造粒粉、放熱用樹脂組成物、放熱シート、半導体装置、および放熱部材
JP2017165609A (ja) * 2016-03-15 2017-09-21 デンカ株式会社 六方晶窒化ホウ素の一次粒子凝集体、樹脂組成物及びその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4101812A4

Also Published As

Publication number Publication date
EP4101812A1 (en) 2022-12-14
CN115298150A (zh) 2022-11-04
EP4101812A4 (en) 2023-08-16
US20230146575A1 (en) 2023-05-11
CN115298150B (zh) 2024-02-09
JPWO2021200725A1 (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
JP7207384B2 (ja) 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、成形体、及びシート
JP7069314B2 (ja) 塊状窒化ホウ素粒子、窒化ホウ素粉末、窒化ホウ素粉末の製造方法、樹脂組成物、及び放熱部材
TWI838500B (zh) 塊狀氮化硼粒子、熱傳導樹脂組成物、以及散熱構件
TWI832978B (zh) 氮化硼凝集粉末、散熱片及半導體裝置
EP4084060A1 (en) Boron nitride sintered body, composite body, method for producing said boron nitride sintered body, method for producing said composite body, and heat dissipation member
EP4116277A1 (en) Boron nitride sintered body, composite, methods for producing same, and heat dissipation member
CN111937140A (zh) 导热性复合粒子及其制造方法、绝缘树脂组合物、绝缘树脂成形体、电路基板用层叠板、金属基底电路基板以及功率模块
WO2021200725A1 (ja) 窒化ホウ素焼結体及びその製造方法、並びに複合体及びその製造方法
JP7140939B2 (ja) 窒化ホウ素粉末、及び窒化ホウ素粉末の製造方法
WO2022071240A1 (ja) 炭窒化ホウ素粉末及びその製造方法、粉末組成物、窒化ホウ素焼結体及びその製造方法、並びに複合体及びその製造方法
WO2021200971A1 (ja) 窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材
EP4112588A1 (en) Method for producing composite body
WO2022071293A1 (ja) 複合シート及びその製造方法、積層体及びその製造方法、並びに、パワーデバイス
JP7080427B1 (ja) 複合シート、積層体、及び、複合シートの接着性を推定する評価方法
WO2022071247A1 (ja) 複合シート及びその製造方法、並びに、積層体及びその製造方法
WO2022209335A1 (ja) 複合シート及びその製造方法、並びに、積層体及びその製造方法
EP4082993A1 (en) Boron nitride sintered body, composite body, and manufacturing methods therefor, and heat dissipation member
WO2022071294A1 (ja) 複合体の接着信頼性及び放熱性能を評価する方法、及び複合体
JP2024031217A (ja) 樹脂シート、及び、積層シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781629

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512151

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021781629

Country of ref document: EP

Effective date: 20220908

NENP Non-entry into the national phase

Ref country code: DE