WO2022071247A1 - 複合シート及びその製造方法、並びに、積層体及びその製造方法 - Google Patents

複合シート及びその製造方法、並びに、積層体及びその製造方法 Download PDF

Info

Publication number
WO2022071247A1
WO2022071247A1 PCT/JP2021/035449 JP2021035449W WO2022071247A1 WO 2022071247 A1 WO2022071247 A1 WO 2022071247A1 JP 2021035449 W JP2021035449 W JP 2021035449W WO 2022071247 A1 WO2022071247 A1 WO 2022071247A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
composite sheet
sintered body
nitride sintered
resin composition
Prior art date
Application number
PCT/JP2021/035449
Other languages
English (en)
French (fr)
Inventor
仁孝 南方
裕介 和久田
政秀 金子
真也 坂口
智也 山口
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to US18/246,073 priority Critical patent/US20230357089A1/en
Priority to JP2022540696A priority patent/JP7176159B2/ja
Priority to CN202180062972.1A priority patent/CN116261782A/zh
Priority to EP21875549.4A priority patent/EP4203013A4/en
Publication of WO2022071247A1 publication Critical patent/WO2022071247A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/028Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles by means of an interlayer consisting of an organic adhesive, e.g. phenol resin or pitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/041Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0054Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/4853Epoxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • C04B41/83Macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/737Dimensions, e.g. volume or area
    • B32B2307/7375Linear, e.g. length, distance or width
    • B32B2307/7376Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/361Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/61Joining two substrates of which at least one is porous by infiltrating the porous substrate with a liquid, such as a molten metal, causing bonding of the two substrates, e.g. joining two porous carbon substrates by infiltrating with molten silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures

Definitions

  • the present disclosure relates to a composite sheet and a manufacturing method thereof, and a laminate and a manufacturing method thereof.
  • thermal interface materials that have electrical insulation for electronic components or printed wiring boards. It has been used to attach it to a heat sink.
  • a composite composed of a resin and ceramics such as boron nitride is used as a heat radiating member.
  • the present disclosure provides a composite sheet that is easy to miniaturize and has excellent adhesiveness, and a method for manufacturing the composite sheet. Further, the present disclosure provides a laminate having excellent adhesive reliability even if it is miniaturized by using such a composite sheet, and a method for producing the same.
  • the present disclosure includes, on one aspect, a porous nitride sintered body having a thickness of less than 2 mm and a resin filled in the pores of the nitride sintered body, and the filling rate of the resin is 85 volumes.
  • a composite sheet that is greater than or equal to%.
  • the “resin filling factor” in the present disclosure is the volume ratio of the pores filled with the resin to the entire pores of the nitride sintered body. Since this composite sheet has a thickness of less than 2 mm, it can be easily miniaturized. Since the filling rate of the resin is sufficiently high, when it is heated and pressed to adhere to other members, the resin component sufficiently exudes from the inside of the composite sheet. The resin component exuded in this way contributes to the improvement of adhesiveness. Therefore, this composite sheet is easy to miniaturize and has excellent adhesiveness.
  • the average pore diameter of the pores of the nitride sintered body in the composite sheet may be 0.5 to 5 ⁇ m. At least a part of the pores of the nitride sintered body of the present disclosure may be filled with a resin. When the average pore diameter of the pores is in the above range, the amount of exudation during adhesion can be sufficiently increased to further improve the adhesiveness, and the thermal conductivity can be increased.
  • At least a part of the convex portion of the concave-convex structure on the main surface may be formed of resin.
  • the resin constituting the convex portion is softened or melted at the time of adhesion, which contributes to the improvement of adhesiveness. Therefore, the adhesiveness can be further improved.
  • the above-mentioned nitride sintered body may include a boron nitride sintered body.
  • Boron nitride has high thermal conductivity and insulating properties. Therefore, the composite sheet provided with the boron nitride sintered body can be suitably used as a component of a semiconductor device or the like.
  • the present disclosure provides a laminate in which the above-mentioned composite sheet and metal sheet are laminated on one aspect. Since this laminated body includes the above-mentioned composite sheet, the adhesiveness between the composite sheet and the metal sheet is excellent. Therefore, even if the size is reduced, the adhesive reliability is excellent.
  • the present disclosure comprises an impregnation step of impregnating the pores of a porous nitride sintered body having a thickness of less than 2 mm with a resin composition having a viscosity of 10 to 500 mPa ⁇ s to obtain a resin-impregnated body.
  • a method for producing a composite sheet comprising a curing step of heating a resin-impregnated body to semi-curing the resin composition filled in the pores.
  • the resin composition is formed in the pores of the nitride sintered body. It can be sufficiently impregnated.
  • the resin component contained in the semi-cured product sufficiently exudes from the inside of the composite sheet. ..
  • the resin component exuded in this way contributes to the improvement of adhesiveness. Therefore, according to the above-mentioned manufacturing method, it is possible to manufacture a composite sheet which is easy to miniaturize and has excellent adhesiveness.
  • the resin filling factor of the composite sheet obtained by the above manufacturing method may be 85% by volume or more.
  • the average pore diameter of the pores of the nitride sintered body may be 0.5 to 5 ⁇ m.
  • the resin composition adhering to the main surface of the resin impregnated body may be semi-cured to form a convex portion composed of resin on the main surface.
  • the resin constituting the convex portion thus formed contributes to the improvement of the adhesiveness with other members. Therefore, the adhesiveness can be further improved.
  • the above-mentioned nitride sintered body may contain a boron nitride sintered body.
  • Boron nitride has high thermal conductivity and insulating properties. Therefore, the composite sheet provided with the boron nitride sintered body can be suitably used as a component of a semiconductor device or the like.
  • the present disclosure provides, in one aspect, a method for manufacturing a laminated body, which comprises a laminating step of laminating a composite sheet obtained by the above-mentioned manufacturing method and a metal sheet, and heating and pressurizing the composite sheet. Since the laminate obtained by such a manufacturing method uses the above-mentioned composite sheet, the adhesiveness between the composite sheet and the metal sheet is excellent. Therefore, it is possible to manufacture a laminate having excellent adhesive reliability even if the size is reduced.
  • the present disclosure it is possible to provide a composite sheet which is easy to miniaturize and has excellent adhesiveness and a method for manufacturing the composite sheet. Further, according to the present disclosure, by using such a composite sheet, it is possible to provide a laminate having excellent adhesive reliability even if it is miniaturized and a method for producing the same.
  • FIG. 1 is a perspective view of a composite sheet according to an embodiment.
  • FIG. 2 is a scanning micrograph showing an example of a cross section when the composite sheet is cut along the thickness direction.
  • FIG. 3 is a cross-sectional view of the laminated body according to the embodiment.
  • FIG. 1 is a perspective view of the composite sheet 10 according to the embodiment.
  • the composite sheet 10 contains a porous nitride sintered body 20 having a thickness t of less than 2 mm, and a resin filled in the pores of the nitride sintered body 20.
  • the nitride sintered body 20 contains nitride particles and pores formed by sintering primary particles of nitride.
  • the filling rate of the resin in the composite sheet 10 is 85% by volume or more. This makes it possible to sufficiently increase the exudation of the resin component during adhesion by heating and pressurization. As a result, the composite sheet of the present embodiment has excellent adhesiveness. From the viewpoint of further increasing the adhesiveness, the filling rate of the resin may be 88% by volume or more, 90% by volume or more, or 92% by volume or more.
  • the "resin” in the present disclosure is a semi-cured product (B stage) of a resin composition containing a main agent and a curing agent.
  • the semi-cured product is a product in which the curing reaction of the resin composition has partially progressed. Therefore, the resin may contain a thermosetting resin or the like produced by the reaction of the main agent and the curing agent in the resin composition.
  • the semi-cured product may contain a monomer such as a main agent and a curing agent in addition to the thermosetting resin as a resin component. It can be confirmed by, for example, a differential scanning calorimeter that the resin contained in the composite sheet is a semi-cured product (B stage) before complete curing (C stage).
  • the curing rate of the resin required by the method described in the examples may be 10 to 70%, and may be 20 to 60%.
  • the resins are epoxy resin, silicone resin, cyanate resin, silicone rubber, acrylic resin, phenol resin, melamine resin, urea resin, bismaleimide resin, unsaturated polyester, fluororesin, polyimide, polyamideimide, polyetherimide, polybutylene terephthalate.
  • the resin may contain an epoxy resin from the viewpoint of heat resistance and improvement of adhesive strength to the circuit.
  • the resin may contain a silicone resin from the viewpoint of improving heat resistance, flexibility, and adhesion to a heat sink or the like.
  • the volume ratio of the resin in the composite sheet 10 may be 30 to 60% by volume or 35 to 55% by volume based on the total volume of the composite sheet 10.
  • the volume ratio of the nitride particles constituting the nitride sintered body 20 in the composite sheet 10 may be 40 to 70% by volume, or 45 to 65% by volume, based on the total volume of the composite sheet 10. good.
  • the composite sheet 10 having such a volume ratio can achieve both excellent adhesiveness and strength at a high level.
  • the average pore diameter of the pores of the nitride sintered body 20 may be 5 ⁇ m or less, 4 ⁇ m or less, or 3.5 ⁇ m or less. Since the size of the pores of such a nitride sintered body 20 is small, the contact area between the nitride particles can be sufficiently increased. Therefore, the thermal conductivity can be increased.
  • the average pore diameter of the pores of the nitride sintered body 20 may be 0.5 ⁇ m or more, 1 ⁇ m or more, or 1.5 ⁇ m or more. Since such a nitride sintered body 20 can be sufficiently deformed when pressed during bonding, the amount of exudation of the resin component can be increased. Therefore, the adhesiveness can be further improved.
  • the average pore diameter of the pores of the nitride sintered body 20 can be measured by the following procedure. First, the composite sheet 10 is heated to remove the resin. Then, using a mercury porosimeter, the pore size distribution when the nitride sintered body 20 is pressed while increasing the pressure from 0.0042 MPa to 206.8 MPa is obtained. When the horizontal axis is the pore diameter and the vertical axis is the cumulative pore volume, the pore diameter when the cumulative pore volume reaches 50% of the total pore volume is the average pore diameter. As the mercury porosimeter, one manufactured by Shimadzu Corporation can be used.
  • the porosity of the nitride sintered body 20, that is, the ratio of the pore volume (V1) in the nitride sintered body 20 may be 30 to 65% by volume or 40 to 60% by volume. If the porosity becomes too large, the strength of the nitride sintered body tends to decrease. On the other hand, if the porosity becomes too small, the amount of resin that seeps out when the composite sheet 10 is adhered to other members tends to decrease.
  • the nitride sintered body 20 may contain at least one selected from the group consisting of boron nitride, aluminum nitride, or silicon nitride.
  • the theoretical density A is 2280 kg / m 3 .
  • the theoretical density A is 3260 kg / m 3 .
  • the theoretical density A is 3170 kg / m 3 .
  • the bulk density B may be 800 to 1500 kg / m 3 or 1000 to 1400 kg / m 3 . If the bulk density B becomes too small, the strength of the nitride sintered body 20 tends to decrease. On the other hand, if the bulk density B becomes too large, the filling amount of the resin tends to decrease, and the amount of resin that seeps out when the composite sheet 10 is adhered to other members tends to decrease.
  • the thickness t of the nitride sintered body 20 may be less than 2 mm and may be less than 1.6 mm.
  • the pores of the nitride sintered body 20 having such a thickness can be sufficiently filled with the resin. Therefore, the composite sheet 10 can be miniaturized and the adhesiveness of the composite sheet 10 can be improved.
  • Such a composite sheet 10 is suitably used as a component of a semiconductor device. From the viewpoint of facilitating the production of the nitride sintered body 20, the thickness t of the nitride sintered body 20 may be 0.1 mm or more, or may be 0.2 mm or more.
  • the thickness of the composite sheet 10 may be the same as the thickness t of the nitride sintered body 20, or may be larger than the thickness t of the nitride sintered body 20.
  • the thickness of the composite sheet 10 may be less than 2 mm and may be less than 1.6 mm.
  • the thickness of the composite sheet 10 may be 0.1 mm or more, and may be 0.2 mm or more.
  • the thickness of the composite sheet 10 is measured along the direction orthogonal to the main surfaces 10a and 10b. When the thickness of the composite sheet 10 is not constant, the thickness may be measured by selecting arbitrary 10 points, and the average value thereof may be within the above range.
  • the thickness of the nitride sintered body 20 is not constant, the thickness is measured by selecting an arbitrary 10 points, and the average value thereof is the thickness t.
  • the sizes of the main surfaces 10a and 10b of the composite sheet 10 are not particularly limited, and may be, for example, 500 mm 2 or more, 800 mm 2 or more, or 1000 mm 2 or more.
  • the main surface 10a and the main surface 10b of the composite sheet 10 are not cut surfaces.
  • the proportion of the nitride sintered body 20 exposed on the main surface 10a and the main surface 10b can be reduced, and the coverage with the resin can be sufficiently increased.
  • the adhesiveness with other members laminated on the main surface 10a and the main surface 10b can be improved.
  • the main surfaces 10a and 10b of the composite sheet 10 may have an uneven structure.
  • the convex portions on the main surfaces 10a and 10b may be formed of resin. This makes it possible to further improve the adhesiveness of other members and the like.
  • the maximum value of the height of the convex portion with respect to the concave portion may be, for example, 15 ⁇ m or less, and may be 10 ⁇ m or less.
  • FIG. 2 is a scanning micrograph showing an example of a cross section when the composite sheet 10 is cut along the thickness direction.
  • the main surface 10a of the composite sheet 10 shown in FIG. 2 is not a cut surface. Therefore, a part of the convex portion on the main surface 10a of the composite sheet 10 is formed of resin.
  • the black part in the central part (above the main surface 10a) of the photograph of FIG. 2 is a space, and the part 15 projected on the space shows the equipment used when observing the scanning microscope. ..
  • a part of the convex portion on the main surface 10b that is not the cut surface may also be formed of resin.
  • the main surface 10a and the main surface 10b of the composite sheet 10 of the present embodiment are quadrangular, but the shape is not limited to such a shape.
  • the main surface may be a polygon other than a quadrangle, or may be a circle.
  • the shape may be such that the corners are chamfered, or the shape may be partially cut out. Further, it may have a through hole penetrating in the thickness direction.
  • FIG. 3 is a cross-sectional view when the laminated body 100 according to the embodiment is cut along the thickness direction.
  • the laminate 100 includes a composite sheet 10, a metal sheet 30 bonded to the main surface 10a of the composite sheet 10, and a metal sheet 40 bonded to the main surface 10b of the composite sheet 10.
  • the metal sheets 30 and 40 may be a metal plate or a metal foil. Examples of the materials of the metal sheets 30 and 40 include aluminum and copper. The materials and thicknesses of the metal sheets 30 and 40 may be the same or different from each other. Further, it is not essential to include both the metal sheets 30 and 40, and in the modified example of the laminated body 100, only one of the metal sheets 30 and 40 may be provided.
  • the laminated body 100 may have a resin layer between the composite sheet 10 and the metal sheets 30 and 40. This resin layer may be formed by curing the resin exuded from the composite sheet 10. Since the composite sheet 10 and the metal sheets 30 and 40 in the laminate 100 are sufficiently firmly bonded by the exuded resin, the bonding reliability is excellent. Since such a laminated body is thin and has excellent adhesive reliability, it can be suitably used for a semiconductor device or the like, for example, as a heat dissipation member.
  • the method for producing a composite sheet includes a sintering step for preparing a porous nitride sintered body and a viscosity of 10 to 500 mPa ⁇ s in the pores of the nitride sintered body having a thickness of less than 2 mm. It has an impregnation step of impregnating the resin composition to obtain a resin-impregnated body, and a curing step of heating the resin-impregnated body to semi-cure the resin composition filled in the pores.
  • the raw material powder used in the sintering process contains nitride.
  • the nitride contained in the raw material powder may contain, for example, at least one nitride selected from the group consisting of boron nitride, aluminum nitride, and silicon nitride.
  • the boron nitride may be amorphous boron nitride or hexagonal boron nitride.
  • the raw material powder is, for example, an amorphous boron nitride powder having an average particle size of 0.5 to 10 ⁇ m or an average particle size of 3.0 to 40 ⁇ m. Hexagonal boron nitride powder can be used.
  • a compound containing a nitride powder may be molded and sintered to obtain a nitride sintered body. Molding may be performed by uniaxial pressurization or by a cold isotropic pressurization (CIP) method.
  • a sintering aid may be added to obtain a formulation. Examples of the sintering aid include metal oxides such as ittoria oxide, aluminum oxide and magnesium oxide, carbonates of alkali metals such as lithium carbonate and sodium carbonate, boric acid and the like.
  • the blending amount of the sintering aid is, for example, 0.01 part by mass or more or 0.1 with respect to 100 parts by mass of the total of the nitride and the sintering aid. It may be parts by mass or more.
  • the blending amount of the sintering aid may be, for example, 20 parts by mass or less, 15 parts by mass or less, or 10 parts by mass or less with respect to 100 parts by mass of the total of the nitride and the sintering aid.
  • the compound may be, for example, a sheet-shaped molded product by the doctor blade method.
  • the molding method is not particularly limited, and a molded product may be obtained by press molding using a mold.
  • the molding pressure may be, for example, 5 to 350 MPa.
  • the shape of the molded body may be a sheet having a thickness of less than 2 mm. If a nitride sintered body is manufactured using such a sheet-shaped molded body, a sheet-shaped composite sheet having a thickness of less than 2 mm can be manufactured without cutting the nitride sintered body.
  • the material loss due to processing can be reduced by forming the sheet shape from the stage of the molded body. Therefore, the composite sheet can be manufactured with a high yield.
  • the sintering temperature in the sintering step may be, for example, 1600 ° C. or higher, or 1700 ° C. or higher.
  • the sintering temperature may be, for example, 2200 ° C. or lower, or 2000 ° C. or lower.
  • the sintering time may be, for example, 1 hour or more, or 30 hours or less.
  • the atmosphere at the time of sintering may be, for example, an atmosphere of an inert gas such as nitrogen, helium, and argon.
  • a batch type furnace, a continuous type furnace, or the like can be used.
  • the batch type furnace include a muffle furnace, a tube furnace, an atmosphere furnace, and the like.
  • the continuous furnace include a rotary kiln, a screw conveyor furnace, a tunnel furnace, a belt furnace, a pusher furnace, a large continuous furnace, and the like.
  • a nitride sintered body can be obtained.
  • the nitride sintered body may be in the form of a block.
  • the nitride sintered body is block-shaped, perform a cutting process to process it so that it has a thickness of less than 2 mm.
  • the nitride sintered body is cut using, for example, a wire saw.
  • the wire saw may be, for example, a multi-cut wire saw or the like.
  • a sheet-shaped nitride sintered body having a thickness of less than 2 mm can be obtained.
  • the nitride sintered body thus obtained has a cut surface.
  • the composite sheet obtained without the cutting step of the nitride sintered body does not have a cut surface, fine cracks can be sufficiently reduced. Therefore, the composite sheet obtained without going through the cutting step of the nitride sintered body can sufficiently improve the insulating property and the thermal conductivity while maintaining a sufficiently high strength. That is, it is excellent in reliability as a member such as an electronic component. Further, when processing such as cutting is performed, material loss occurs. Therefore, the composite sheet having no cut surface of the nitride sintered body can reduce the material loss. This makes it possible to improve the yield of the nitride sintered body and the composite sheet.
  • the pores of the nitride sintered body 20 having a thickness of less than 2 mm are impregnated with a resin composition having a viscosity of 10 to 500 mPa ⁇ s to obtain a resin impregnated body. Since the nitride sintered body 20 is in the form of a sheet having a thickness of less than 2 mm, the resin composition is easily impregnated into the inside. Further, by setting the viscosity of the nitride sintered body 20 when impregnating the resin composition in a range suitable for impregnation, the filling rate of the resin can be sufficiently increased.
  • the viscosity of the resin composition when the nitride sintered body 20 is impregnated with the resin composition may be 440 mPa ⁇ s or less, 390 mPa ⁇ s or less, or 340 mPa ⁇ s or less. By lowering the viscosity of the resin composition in this way, impregnation of the resin composition can be sufficiently promoted.
  • the viscosity of the resin composition when the nitride sintered body 20 is impregnated with the resin composition may be 15 mPa ⁇ s or more, and may be 20 mPa ⁇ s or more.
  • the viscosity of the resin composition may be adjusted by partially polymerizing the monomer components.
  • the viscosity of the resin composition is the viscosity at the temperature (T1) of the resin composition when the nitride sintered body 20 is impregnated with the resin composition. This viscosity is measured using a rotary viscometer at a shear rate of 10 (1 / sec) under the condition of temperature (T1). Therefore, the viscosity of the resin composition when the nitride sintered body 20 is impregnated with the resin composition may be adjusted by changing the temperature T1.
  • the temperature (T2) may be, for example, 80 to 140 ° C.
  • the nitride sintered body 20 may be impregnated with the resin composition under pressure or under reduced pressure.
  • the method of impregnation is not particularly limited, and the nitride sintered body 20 may be immersed in the resin composition, or may be performed by applying the resin composition to the surface of the nitride sintered body 20.
  • the filling rate of the resin in the composite sheet 10 can be sufficiently increased.
  • the filling rate of the resin may be, for example, 85% by volume or more, 88% by volume or more, 90% by volume or more, or 92% by volume or more.
  • the impregnation step may be performed under either a reduced pressure condition or a pressurized condition, and the impregnation under the reduced pressure condition and the impregnation under the pressurized condition may be performed in combination.
  • the pressure in the impregnation device when the impregnation step is carried out under reduced pressure conditions may be, for example, 1000 Pa or less, 500 Pa or less, 100 Pa or less, 50 Pa or less, or 20 Pa or less.
  • the pressure in the impregnation device may be, for example, 1 MPa or more, 3 MPa or more, 10 MPa or more, or 30 MPa or more.
  • the average pore diameter of the nitride sintered body 20 may be 0.5 to 5 ⁇ m, or may be 1 to 4 ⁇ m.
  • the resin composition for example, one that becomes the resin mentioned in the above description of the composite sheet by curing or semi-curing reaction can be used.
  • the resin composition may contain a solvent.
  • the viscosity of the resin composition may be adjusted by changing the blending amount of the solvent, or the viscosity of the resin composition may be adjusted by partially advancing the curing reaction.
  • the solvent include aliphatic alcohols such as ethanol and isopropanol, 2-methoxyethanol, 1-methoxyethanol, 2-ethoxyethanol, 1-ethoxy-2-propanol, 2-butoxyethanol and 2- (2-methoxyethoxy).
  • ketones such as ketones and hydrocarbons such as toluene and xylene. One of these may be contained alone, or two or more thereof may be contained in combination.
  • the resin composition is thermosetting, and contains, for example, at least one compound selected from the group consisting of a compound having a cyanate group, a compound having a bismaleimide group, and a compound having an epoxy group, and a curing agent. May contain.
  • Examples of the compound having a cyanate group include dimethylmethylenebis (1,4-phenylene) biscyanate and bis (4-cyanatephenyl) methane.
  • Dimethylmethylenebis (1,4-phenylene) biscyanate is commercially available, for example, as TACN (manufactured by Mitsubishi Gas Chemical Company, Inc., trade name).
  • Compounds having a bismaleimide group include, for example, N, N'-[(1-methylethylidene) bis [(p-phenylene) oxy (p-phenylene)]] bismaleimide, and 4,4'-diphenylmethane bismaleimide. And so on.
  • N, N'-[(1-methylethylidene) bis [(p-phenylene) oxy (p-phenylene)]] bismaleimide is commercially available, for example, as BMI-80 (manufactured by Keiai Kasei Co., Ltd., trade name). Is available.
  • Examples of the compound having an epoxy group include bisphenol F type epoxy resin, bisphenol A type epoxy resin, biphenyl type epoxy resin, and polyfunctional epoxy resin.
  • bisphenol F type epoxy resin bisphenol A type epoxy resin
  • biphenyl type epoxy resin biphenyl type epoxy resin
  • polyfunctional epoxy resin examples include 1,6-bis (2,3-epoxypropane-1-yloxy) naphthalene, which is commercially available as HP-4032D (manufactured by DIC Corporation, trade name), may be used.
  • the curing agent may contain a phosphine-based curing agent and / or an imidazole-based curing agent.
  • the phosphine-based curing agent can promote the triazine formation reaction by the trimerization of the compound having a cyanate group or the cyanate resin.
  • Examples of the phosphine-based curing agent include tetraphenylphosphonium tetra-p-tolylborate and tetraphenylphosphonium tetraphenylborate. Tetraphenylphosphonium tetra-p-tolylbolate is commercially available, for example, as TPP-MK (manufactured by Hokuko Chemical Industry Co., Ltd., trade name).
  • the imidazole-based curing agent produces oxazoline and promotes the curing reaction of the compound having an epoxy group or the epoxy resin.
  • Examples of the imidazole-based curing agent include 1- (1-cyanomethyl) -2-ethyl-4-methyl-1H-imidazole, 2-ethyl-4-methylimidazole and the like.
  • 1- (1-Cyanomethyl) -2-ethyl-4-methyl-1H-imidazole is commercially available, for example, as 2E4MZ-CN (manufactured by Shikoku Chemicals Corporation, trade name).
  • the content of the phosphine-based curing agent is, for example, 5 parts by mass or less, 4 parts by mass or less, or 3 parts by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. It may be less than or equal to a mass part.
  • the content of the phosphine-based curing agent is, for example, 0.1 part by mass or more or 0.5 part by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group and the compound having an epoxy group. It may be more than one part.
  • the content of the phosphine-based curing agent is within the above range, the resin-impregnated body can be easily prepared, and the time required for adhering the composite sheet cut out from the resin-impregnated body to other members can be further shortened. can.
  • the content of the imidazole-based curing agent is, for example, 0.1 part by mass or less, 0.05 part by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. It may be less than a part or 0.03 part by mass or less.
  • the content of the imidazole-based curing agent is, for example, 0.001 part by mass or more or 0.005 part by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group and the compound having an epoxy group. It may be more than one part.
  • the resin-impregnated body can be easily prepared, and the time required for adhering the composite sheet cut out from the resin-impregnated body to the adherend can be further shortened. Can be done.
  • the resin composition may contain components other than the main agent and the curing agent.
  • other components include other resins such as phenol resin, melamine resin, urea resin, and alkyd resin, a silane coupling agent, a leveling agent, a defoaming agent, a surface conditioner, and a wet dispersant. It may further include at least one selected from the above.
  • the content of these other components may be, for example, 20% by mass or less, 10% by mass or less, or 5% by mass or less in total based on the total amount of the resin composition.
  • the resin composition is semi-cured by heating and / or light irradiation, depending on the type of the resin composition (or the curing agent added as needed).
  • "Semi-curing" also referred to as B stage
  • B stage means that it can be further cured by a subsequent curing treatment.
  • the composite sheet and the metal sheet may be adhered by temporarily crimping to another member such as a metal sheet and then heating.
  • C stage By further curing the semi-cured product, it becomes a "completely cured" state (also referred to as C stage).
  • the heating temperature when the resin composition is semi-cured by heating may be, for example, 80 to 130 ° C.
  • the semi-cured product obtained by semi-curing the resin composition contains, as a resin component, at least one thermosetting resin selected from the group consisting of cyanate resin, bismaleimide resin and epoxy resin, and a curing agent. good.
  • the semi-cured product contains other resins such as phenol resin, melamine resin, urea resin, and alkyd resin as resin components, as well as a silane coupling agent, a leveling agent, a defoaming agent, a surface conditioner, and a wet dispersion. It may contain a component derived from an agent or the like.
  • the composite sheet thus obtained has a thickness of, for example, 2 mm or less. Therefore, it is thin and lightweight, and when used as a component of a semiconductor device or the like, the device can be made smaller and lighter. Further, since the pores of the nitride sintered body are sufficiently filled with the resin, it is excellent not only in adhesiveness but also in thermal conductivity and insulation. Further, in the above-mentioned manufacturing method, the composite sheet can be manufactured without cutting the nitride sintered body. Therefore, a highly reliable composite sheet can be manufactured with a high yield. A metal sheet may be laminated on the composite sheet to form a laminated body, or the composite sheet may be used as it is as a heat radiating member.
  • the resin composition adhering to the main surface of the resin impregnated body may be semi-cured to form a convex portion composed of resin on the main surface.
  • a convex portion composed of resin on the main surface.
  • the method for manufacturing a laminated body includes a laminating step of laminating a composite sheet and a metal sheet, heating and pressurizing the composite sheet.
  • the composite sheet can be manufactured by the above-mentioned manufacturing method.
  • the metal sheet may be a metal plate or a metal foil.
  • a metal sheet is placed on the main surface of the composite sheet. With the main surfaces of the composite sheet and the metal sheet in contact with each other, pressure is applied in the direction in which the main surfaces face each other, and the metal sheet is heated. It should be noted that pressurization and heating do not necessarily have to be performed at the same time, and pressurization and crimping may be performed before heating.
  • the pressurizing pressure may be, for example, 2 to 10 MPa.
  • the heating temperature T4 at this time may be T4 ⁇ T2 + 20 ° C. or T4 ⁇ T2 + 40 ° C., where T2 is the temperature at which the resin composition is semi-cured.
  • the heating temperature T4 may be T4 ⁇ T2 + 150 ° C. or T4 ⁇ T2 + 100 ° C.
  • a semiconductor element may be provided on one of the metal sheets.
  • the other metal sheet may be joined to the cooling fins.
  • a nitride sintered body may be obtained by hot pressing in which molding and sintering are performed at the same time.
  • Example 1 ⁇ Manufacturing of nitride sintered body> 100 parts by mass of orthoboric acid manufactured by Nippon Denko Co., Ltd. and 35 parts by mass of acetylene black (trade name: HS100) manufactured by Denka Co., Ltd. were mixed using a Henschel mixer. The obtained mixture was filled in a graphite crucible and heated in an arc furnace at 2200 ° C. for 5 hours in an argon atmosphere to obtain massive boron carbide (B 4C ). The obtained lump was coarsely pulverized with a jaw crusher to obtain a coarse powder. This coarse powder was further pulverized by a ball mill having a silicon carbide ball ( ⁇ 10 mm) to obtain pulverized powder.
  • the prepared pulverized powder was filled in a crucible made of boron nitride. Then, using a resistance heating furnace, the mixture was heated at 2000 ° C. and 0.85 MPa for 10 hours in a nitrogen gas atmosphere. In this way, a calcined product containing boron nitride (B 4 CN 4 ) was obtained.
  • a sintering aid was prepared by blending powdered boric acid and calcium carbonate. In the preparation, 50.0 parts by mass of calcium carbonate was added to 100 parts by mass of boric acid. At this time, the atomic ratio of boron to calcium was 17.5 atomic% of calcium with respect to 100 atomic% of boron. 20 parts by mass of the sintering aid was added to 100 parts by mass of the calcined product, and the mixture was mixed using a Henschel mixer to prepare a powdery compound.
  • the molded product was placed in a boron nitride container and introduced into a batch type high frequency furnace. In a batch type high frequency furnace, heating was performed under the conditions of normal pressure, nitrogen flow rate of 5 L / min, and 2000 ° C. for 5 hours. Then, the boron nitride sintered body was taken out from the boron nitride container. In this way, a sheet-shaped (square columnar) boron nitride sintered body was obtained. The thickness t of the boron nitride sintered body was 1.6 mm. The thickness t was measured with a caliper.
  • the shear rate at the time of measurement was 10 (1 / sec), and the measurement temperature was the temperature at the time of dropping (120 ° C.).
  • the resin composition dropped on the main surface of the boron nitride sintered body was spread under atmospheric pressure using a rubber spatula, and the resin composition was spread over the entire main surface to obtain a resin-impregnated body.
  • the curing rate of the resin constituting the semi-cured product was determined by the following procedure. First, 1 g of the resin composition in a pre-cured (uncured) state was heated, and the calorific value Q (J / g) generated until the resin composition was completely cured was measured using a differential scanning calorimeter. Next, 1 g of the composite sheet was similarly heated, and the calorific value R (J / g) generated until the composite sheet was completely cured was measured using the same differential scanning calorimeter. Further, the composite sheet was heated at 600 ° C. for 1 hour to volatilize the resin component, and the content c (mass%) of the thermosetting component contained in the composite sheet was determined from the mass difference before and after heating.
  • Resin filling factor (% by volume) in the composite sheet ⁇ (bulk density of composite sheet-bulk density of boron nitride sintered body) / (theoretical density of composite sheet-bulk density of boron nitride sintered body) ⁇ ⁇ 100 ... (4)
  • the bulk density of the boron nitride sintered body and the composite sheet is based on JIS Z 8807: 2012 "Measurement method of density and specific gravity by geometric measurement", and the length of each side of the boron nitride sintered body or the composite sheet. It was determined based on the volume calculated from (measured by Nogisu) and the mass of the boron nitride sintered body or composite sheet measured by an electronic balance (see item 9 of JIS Z 8807: 2012). The theoretical density of the composite sheet was obtained by the following formula (5).
  • Theoretical density of composite sheet true density of boron nitride sintered body + true density of resin x (1-bulk density of boron nitride sintered body / true density of boron nitride) ... (5)
  • the true density of the boron nitride sintered body and resin is based on JIS Z 8807: 2012 "Density and specific gravity measurement method by gas substitution method", and the boron nitride sintered body and resin measured using a dry automatic densitometer. (See equations (14) to (17) in item 11 of JIS Z 8807: 2012).
  • the adhesiveness was evaluated according to the following criteria. The results are shown in Table 1.
  • the cohesive fracture portion is not a peeling at the interface between the composite sheet and the copper foil, but a portion destroyed inside the composite sheet. It is shown that the larger the area ratio of the broken portion inside the composite sheet, the better the adhesiveness.
  • C Area ratio of agglomerated fractured part is less than 50 area%
  • the resin impregnated body and the composite sheet were prepared by the same procedure as in "Preparation of the composite sheet" of Example 1 except that the heating time of the resin composition at 120 ° C. was changed from 15 minutes to 30 minutes.
  • the viscosity of the dropped resin composition was as shown in Table 1. Since the heating time of the resin composition was longer than that of Example 1, the viscosity was high.
  • the filling rate of the resin (semi-cured product) of the produced composite sheet was measured in the same manner as in Example 1. The results are as shown in Table 1.
  • the thickness of the composite sheet measured with a caliper was 1.8 mm.
  • a laminated body was prepared by the same procedure as in Example 1, and the adhesive strength was evaluated. The results are as shown in Table 1.
  • the resin-impregnated body and the composite sheet were prepared by the same procedure as in "Preparation of the composite sheet" of Example 1 except that the heating time of the resin composition at 120 ° C. was changed from 15 minutes to about 30 minutes.
  • the viscosity of the dropped resin composition was slightly higher than that of Example 2. It is considered that this is because the heating time was slightly longer than that of Example 2.
  • the content of the resin (semi-cured product) of the produced composite sheet was measured in the same manner as in Example 1. The results are as shown in Table 1.
  • the thickness of the composite sheet measured with a caliper was 0.2 mm.
  • a laminated body was prepared by the same procedure as in Example 1, and the adhesive strength was evaluated. The results are as shown in Table 1.
  • a resin-impregnated body and a complex (composite sheet in Example 1) were prepared by the same procedure as in Example 1.
  • the content of the resin (semi-cured product) of the produced complex was measured in the same manner as in Example 1. The results are as shown in Table 1.
  • a laminated body was prepared by the same procedure as in Example 1, and the adhesive strength was evaluated. The results are as shown in Table 1.
  • a resin-impregnated body and a composite (composite sheet in Example 1) were prepared by the same procedure as in "Preparation of composite sheet” in Example 1.
  • the content of the resin (semi-cured product) of the produced complex was measured in the same manner as in Example 1. The results are as shown in Table 1. Further, using the prepared complex, a laminated body was prepared by the same procedure as in Example 1, and the adhesive strength was evaluated. The results are as shown in Table 1.
  • the resin-impregnated body and the composite (composite sheet in Example 1) were prepared in the same procedure as in "Preparation of composite sheet" of Example 1 except that the heating time of the resin composition at 120 ° C. was changed from 15 minutes to 30 minutes. ) Was produced.
  • the content of the resin (semi-cured product) of the produced complex was measured in the same manner as in Example 1. The results are as shown in Table 1. Further, using the prepared complex, a laminated body was prepared by the same procedure as in Example 1, and the adhesive strength was evaluated. The results are as shown in Table 1.
  • a composite sheet that is easy to miniaturize and has excellent adhesiveness and a method for manufacturing the composite sheet are provided. Further, according to the present disclosure, there is provided a laminate having excellent adhesive reliability even if it is miniaturized by using such a composite sheet, and a method for producing the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

厚みが2mm未満である多孔質の窒化物焼結体と、窒化物焼結体の気孔に充填されている樹脂と、を含み、樹脂の充填率が85体積%以上である、複合シートを提供する。厚みが2mm未満である多孔質の窒化物焼結体の気孔に10~500mPa・sの粘度を有する樹脂組成物を含浸して樹脂含浸体を得る含浸工程と、樹脂含浸体を加熱して気孔に充填された樹脂組成物を半硬化する硬化工程と、を有する、複合シートの製造方法を提供する。

Description

複合シート及びその製造方法、並びに、積層体及びその製造方法
 本開示は、複合シート及びその製造方法、並びに、積層体及びその製造方法に関する。
 パワーデバイス、トランジスタ、サイリスタ、CPU等の部品においては、使用時に発生する熱を効率的に放熱することが求められる。このような要請から、従来、電子部品を実装するプリント配線板の絶縁層の高熱伝導化を図ったり、電子部品又はプリント配線板を、電気絶縁性を有する熱インターフェース材(Thermal Interface Materials)を介してヒートシンクに取り付けたりすることが行われてきた。このような絶縁層及び熱インターフェース材には、放熱部材として、樹脂と窒化ホウ素等のセラミックスとで構成される複合体が用いられる。
 このような複合体として、多孔性のセラミックス焼結体(例えば、窒化ホウ素焼結体)に樹脂を含浸させた複合体が検討されている(例えば、特許文献1参照)。また、回路基板と樹脂含浸窒化ホウ素焼結体とを有する積層体において、窒化ホウ素焼結体を構成する一次粒子と回路基板とを直接接触させて、積層体の熱抵抗を低減し、放熱性を改善することも検討されている(例えば、特許文献2参照)。
国際公開第2014/196496号 特開2016-103611号
 近年の半導体装置等における回路の高集積化に伴って、部品の小型化が求められている。また、これに伴って、各部材同士の接触面積が小さくなりつつある。このような状況下、信頼性を確保するために、互いに異なる材質で構成される部材同士の接着性を向上することが必要になると考えられる。
 そこで、本開示は、小型化が容易であるとともに優れた接着性を有する複合シート及びその製造方法を提供する。また、本開示は、そのような複合シートを用いることによって小型化しても接着信頼性に優れる積層体及びその製造方法を提供する。
 本開示は、一つの側面において、厚みが2mm未満である多孔質の窒化物焼結体と、窒化物焼結体の気孔に充填されている樹脂と、を含み、樹脂の充填率が85体積%以上である、複合シートを提供する。本開示における「樹脂の充填率」とは、窒化物焼結体の気孔全体に対する、樹脂が充填されている気孔の体積比率である。この複合シートは、厚みが2mm未満であることから小型化が容易である。そして、樹脂の充填率が十分に高いことから、加熱及び加圧して他部材と接着すると、複合シートの内部から樹脂成分が十分にしみ出す。このようにしみ出だした樹脂成分が接着性の向上に寄与する。したがって、この複合シートは、小型化が容易であるとともに優れた接着性を有する。
 上記複合シートにおける窒化物焼結体の気孔の平均細孔径が0.5~5μmであってよい。なお、本開示の窒化物焼結体の気孔の少なくとも一部には、樹脂が充填されていてよい。気孔の平均細孔径が上記範囲であることによって、接着の際のしみ出し量を十分に多くして接着性を一層向上しつつ、熱伝導率を高くすることができる。
 主面における凹凸構造の凸部の少なくとも一部が、樹脂で形成されていてもよい。これによって、接着の際に凸部を構成する樹脂が軟化又は溶解し、接着性の向上に寄与する。したがって、接着性を一層高くすることができる。
 上記窒化物焼結体は窒化ホウ素焼結体を含んでもよい。窒化ホウ素は、高い熱伝導性及び絶縁性等を有している。このため、窒化ホウ素焼結体を備える複合シートは半導体装置等の部品として好適に用いることができる。
 本開示は、一つの側面において、上述の複合シートと金属シートとが積層されている積層体を提供する。この積層体は、上述の複合シートを備えることから、複合シートと金属シートとの接着性に優れる。したがって、小型化しても接着信頼性に優れる。
 本開示は、一つの側面において、厚みが2mm未満である多孔質の窒化物焼結体の気孔に10~500mPa・sの粘度を有する樹脂組成物を含浸して樹脂含浸体を得る含浸工程と、樹脂含浸体を加熱して気孔に充填された樹脂組成物を半硬化する硬化工程と、を有する、複合シートの製造方法を提供する。
 上述の製造方法では、厚みが2mm未満である多孔質の窒化物焼結体を用いるとともに、所定の粘度の樹脂組成物を用いていることから、窒化物焼結体の気孔に樹脂組成物を十分に含浸することができる。このような樹脂含浸体における樹脂組成物を半硬化して得られる複合シートは、加熱及び加圧して他部材と接着すると、複合シートの内部から半硬化物に含まれる樹脂成分が十分にしみ出す。このようにしみ出した樹脂成分が接着性の向上に寄与する。したがって、上記製造方法によれば、小型化が容易であるとともに優れた接着性を有する複合シートを製造することができる。上記製造方法で得られる複合シートの樹脂の充填率は85体積%以上であってよい。
 上記製造方法では、窒化物焼結体の気孔の平均細孔径が0.5~5μmであってよい。これによって、複合シートの強度を高くしつつ接着の際の樹脂成分のしみ出し量を十分に多くして接着性を一層向上しつつ、熱伝導率を高くすることができる。
 上記硬化工程では、樹脂含浸体の主面に付着した樹脂組成物を半硬化することによって、主面に樹脂で構成される凸部を形成してもよい。このようにして形成された凸部を構成する樹脂は、他部材との接着性の向上に寄与する。したがって、接着性を一層向上することができる。
 上記窒化物焼結体が窒化ホウ素焼結体を含んでいてもよい。窒化ホウ素は、高い熱伝導性及び絶縁性等を有している。このため、窒化ホウ素焼結体を備える複合シートは半導体装置等の部品として好適に用いることができる。
 本開示は、一つの側面において、上述の製造方法で得られた複合シートと金属シートとを積層し、加熱及び加圧する積層工程を有する、積層体の製造方法を提供する。このような製造方法で得られる積層体は、上述の複合シートを用いることから、複合シートと金属シートとの接着性に優れる。したがって、小型化しても接着信頼性に優れる積層体を製造することができる。
 本開示によれば、小型化が容易であるとともに優れた接着性を有する複合シート及びその製造方法を提供することができる。また、本開示によれば、そのような複合シートを用いることによって小型化しても接着信頼性に優れる積層体及びその製造方法を提供することができる。
図1は、一実施形態に係る複合シートの斜視図である。 図2は、複合シートを厚み方向に沿って切断したときの断面の一例を示す走査型顕微鏡写真である。 図3は、一実施形態に係る積層体の断面図である。
 以下、場合により図面を参照して、本開示の幾つかの実施形態を説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。
 図1は、一実施形態に係る複合シート10の斜視図である。複合シート10は、厚みtが2mm未満である多孔質の窒化物焼結体20と、窒化物焼結体20の気孔に充填されている樹脂と、を含む。窒化物焼結体20は、窒化物の一次粒子同士が焼結して構成される窒化物粒子と気孔とを含有する。
 複合シート10における樹脂の充填率は85体積%以上である。これによって、加熱及び加圧による接着の際に、樹脂成分のしみ出しを十分に多くすることができる。これによって、本実施形態の複合シートは優れた接着性を有する。接着性を一層高くする観点から、樹脂の充填率は88体積%以上であってよく、90体積%以上であってよく、92体積%以上であってもよい。
 本開示における「樹脂」は、主剤及び硬化剤を含む樹脂組成物の半硬化物(Bステージ)である。半硬化物は、樹脂組成物の硬化反応が一部進行したものである。したがって、樹脂は、樹脂組成物中の主剤及び硬化剤が反応して生成する熱硬化性樹脂等を含んでもよい。上記半硬化物は、樹脂成分として、熱硬化性樹脂に加えて主剤及び硬化剤等のモノマーを含んでもよい。複合シートに含まれる樹脂が完全硬化(Cステージ)前の半硬化物(Bステージ)であることは、例えば、示差走査熱量計によって確認することができる。実施例に記載の方法で求められる樹脂の硬化率は10~70%であってよく、20~60%であってもよい。
 樹脂は、エポキシ樹脂、シリコーン樹脂、シアネート樹脂、シリコーンゴム、アクリル樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、ビスマレイミド樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンエーテル、ポリフェニレンサルファイド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド樹脂、マレイミド変性樹脂、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、AAS(アクリロニトリル-アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂、ポリグリコール酸樹脂、ポリフタルアミド、及びポリアセタールからなる群より選ばれる少なくとも一種を含んでいてよい。これらのうちの1種を単独で含んでもよいし、2種以上を組み合わせて含んでもよい。
 複合シート10がプリント配線板の絶縁層に用いられる場合、耐熱性及び回路への接着強度向上の観点から、樹脂はエポキシ樹脂を含んでよい。複合シート10が熱インターフェース材に用いられる場合、耐熱性、柔軟性及びヒートシンク等への密着性向上の観点から、樹脂はシリコーン樹脂を含んでよい。
 複合シート10における樹脂の体積比率は、複合シート10の全体積を基準として、30~60体積%であってよく、35~55体積%であってもよい。複合シート10における窒化物焼結体20を構成する窒化物粒子の体積比率は、複合シート10の全体積を基準として、40~70体積%であってよく、45~65体積%であってもよい。このような体積比率の複合シート10は、優れた接着性と強度を高水準で両立することができる。
 窒化物焼結体20の気孔の平均細孔径は5μm以下であってよく、4μm以下であってよく、3.5μm以下であってもよい。このような窒化物焼結体20は、気孔のサイズが小さいことから、窒化物粒子の粒子同士の接触面積を十分に大きくすることができる。したがって、熱伝導率を高くすることができる。窒化物焼結体20の気孔の平均細孔径は0.5μm以上であってよく、1μm以上であってもよく、1.5μm以上であってもよい。このような窒化物焼結体20は、接着する際に加圧すると十分に変形できるため、樹脂成分のしみ出し量を多くすることができる。このため、接着性を一層向上することができる。
 窒化物焼結体20の気孔の平均細孔径は、以下の手順で測定することができる。まず、複合シート10を加熱して樹脂を除去する。そして、水銀ポロシメーターを用い、0.0042MPaから206.8MPaまで圧力を増やしながら窒化物焼結体20を加圧したときの細孔径分布を求める。横軸を細孔径、縦軸を累積細孔容積としたときに、累積細孔容積が全細孔容積の50%に達するときの細孔径が平均細孔径である。水銀ポロシメーターとしては、株式会社島津製作所製のものを用いることができる。
 窒化物焼結体20の気孔率、すなわち、窒化物焼結体20における気孔の体積(V1)の比率は、30~65体積%であってよく、40~60体積%であってよい。気孔率が大きくなり過ぎると窒化物焼結体の強度が低下する傾向にある。一方、気孔率が小さくなり過ぎると複合シート10が他部材と接着される際にしみ出す樹脂が少なくなる傾向にある。
 気孔率は、窒化物焼結体20の体積及び質量から、かさ密度[B(kg/m)]を算出し、このかさ密度と窒化物の理論密度[A(kg/m)]とから、下記式(1)によって求めることができる。窒化物焼結体20は、窒化ホウ素、窒化アルミニウム、又は窒化ケイ素からなる群から選択される少なくとも一種を含んでよい。窒化ホウ素の場合、理論密度Aは2280kg/mである。窒化アルミニウムの場合、理論密度Aは3260kg/mである。窒化ケイ素の場合、理論密度Aは3170kg/mである。
  気孔率(体積%)=[1-(B/A)]×100   (1)
 窒化物焼結体20が窒化ホウ素焼結体である場合、かさ密度Bは、800~1500kg/mであってよく、1000~1400kg/mであってもよい。かさ密度Bが小さくなり過ぎると窒化物焼結体20の強度が低下する傾向にある。一方、かさ密度Bが大きくなり過ぎると樹脂の充填量が減少して複合シート10が他部材と接着される際にしみ出す樹脂が少なくなる傾向にある。
 窒化物焼結体20の厚みtは、2mm未満であってよく、1.6mm未満であってもよい。このような厚みを有する窒化物焼結体20の気孔には、樹脂を十分に充填することができる。したがって、複合シート10の小型化が可能であるとともに、複合シート10の接着性を向上することができる。このような複合シート10は、半導体装置の部品として好適に用いられる。窒化物焼結体20の作製を容易にする観点から、窒化物焼結体20の厚みtは、0.1mm以上であってよく、0.2mm以上であってもよい。
 複合シート10の厚みは、窒化物焼結体20の厚みtと同じであってもよいし、窒化物焼結体20の厚みtよりも大きくてもよい。複合シート10の厚みは、2mm未満であってよく、1.6mm未満であってもよい。複合シート10の厚みは、0.1mm以上であってよく、0.2mm以上であってもよい。複合シート10の厚みは、主面10a,10bに直交する方向に沿って測定される。複合シート10の厚みが一定ではない場合、任意の10箇所を選択して厚みの測定を行い、その平均値が上述の範囲であればよい。窒化物焼結体20の厚みが一定でない場合も、任意の10箇所を選択して厚みの測定を行い、その平均値が厚みtとなる。複合シート10の主面10a,10bのサイズは特に限定はなく、例えば、500mm以上であってよく、800mm以上であってよく、1000mm以上であってもよい。
 複合シート10の主面10a及び主面10bは切断面ではないことが好ましい。これによって、主面10a及び主面10bに露出する窒化物焼結体20の割合を低減し、樹脂による被覆率を十分に高くすることができる。その結果、主面10a及び主面10bに積層される他部材との接着性を向上することができる。複合シート10の主面10a,10bは凹凸構造を有していてもよい。この場合、主面10a,10bにおける凸部は樹脂で形成されていてよい。これによって、他部材等の接着性を一層向上することができる。凹部に対する凸部の高さの最大値は、例えば15μm以下であってよく、10μm以下であってもよい。
 図2は、複合シート10を厚み方向に沿って切断したときの断面の一例を示す走査型顕微鏡写真である。図2に示される複合シート10の主面10aは、切断面ではない。このため、複合シート10の主面10aにおける凸部の一部は樹脂で形成されている。なお、図2の写真の中央部(主面10aの上方)における黒色部は空間であり、その上に映し出されている部分15は、走査型顕微鏡を観察する際に用いた機材を示している。切断面ではない主面10bにおける凸部の一部も樹脂で形成されていてよい。
 本実施形態の複合シート10の主面10a,主面10bは四角形であったが、このような形状に限定されない。例えば、主面は四角形以外の多角形であってもよいし、円形であってもよい。また、角部が面取りされた形状であってもよいし、一部を切り欠いた形状であってもよい。また、厚み方向に貫通する貫通孔を有していてもよい。
 図3は、一実施形態に係る積層体100を厚み方向に沿って切断したときの断面図である。積層体100は、複合シート10と、複合シート10の主面10aに接着されている金属シート30と、複合シート10の主面10bに接着されている金属シート40とを備える。金属シート30,40は、金属板であってよく、金属箔であってもよい。金属シート30,40の材質は、アルミニウム、及び銅等が挙げられる。金属シート30,40の材質及び厚みは互いに同じであってよく、異なっていてもよい。また、金属シート30,40の両方備えることは必須ではなく、積層体100の変形例では、金属シート30,40の一方のみを備えていてもよい。
 積層体100は、複合シート10と金属シート30,40の間に樹脂層を有していてもよい。この樹脂層は、複合シート10からしみ出した樹脂が硬化して形成されたものであってよい。積層体100における複合シート10と金属シート30,40とは、しみ出した樹脂によって十分強固に接着されていることから接着信頼性に優れる。このような積層体は、薄型であるうえに接着信頼性に優れるため、例えば放熱部材として、半導体装置等に好適に用いることができる。
 一実施形態に係る複合シートの製造方法は、多孔質の窒化物焼結体を調製する焼結工程と、厚みが2mm未満である窒化物焼結体の気孔に10~500mPa・sの粘度を有する樹脂組成物を含浸して樹脂含浸体を得る含浸工程と、樹脂含浸体を加熱して気孔に充填された樹脂組成物を半硬化する硬化工程と、を有する。
 焼結工程で用いる原料粉末は、窒化物を含む。原料粉末に含まれる窒化物は、例えば、窒化ホウ素、窒化アルミニウム、及び窒化ケイ素からなる群から選択される少なくとも一種の窒化物を含有してよい。窒化ホウ素を含有する場合、窒化ホウ素は、アモルファス状の窒化ホウ素であってよく、六方晶状の窒化ホウ素であってもよい。窒化物焼結体20として窒化ホウ素焼結体を調製する場合、原料粉末として、例えば、平均粒径が0.5~10μmであるアモルファス窒化ホウ素粉末、又は、平均粒径が3.0~40μmである六方晶窒化ホウ素粉末を用いることができる。
 焼結工程では、窒化物粉末を含む配合物を成形して焼結し窒化物焼結体を得てもよい。成形は、一軸加圧で行ってよく、冷間等方加圧(CIP)法で行ってもよい。成形の前に、焼結助剤を配合して配合物を得てもよい。焼結助剤としては、例えば、酸化イットリア、酸化アルミニウム及び酸化マグネシウム等の金属酸化物、炭酸リチウム及び炭酸ナトリウム等のアルカリ金属の炭酸塩、並びにホウ酸等が挙げられる。焼結助剤を配合する場合は、焼結助剤の配合量は、例えば、窒化物及び焼結助剤の合計100質量部に対して、例えば、0.01質量部以上、又は0.1質量部以上であってよい。焼結助剤の配合量は、窒化物及び焼結助剤の合計100質量部に対して、例えば、20質量部以下、15質量部以下又は10質量部以下であってよい。焼結助剤の添加量を上記範囲内とすることで、窒化物焼結体の平均細孔径を後述の範囲に調整し易くなる。
 配合物は、例えば、ドクターブレード法によってシート状の成形体としてよい。成形方法は特に限定されず、金型を用いてプレス成形を行って成形体としてもよい。成形圧力は、例えば5~350MPaであってよい。成形体の形状は、厚みが2mm未満のシート状であってよい。このようなシート状の成形体を用いて窒化物焼結体を製造すれば、窒化物焼結体を切断することなく、厚みが2mm未満のシート状の複合シートを製造することができる。また、ブロック状の窒化物焼結体を切断してシート状とする場合に比べて、成形体の段階からシート状にすることによって、加工による材料ロスを低減することができる。したがって、高い歩留まりで複合シートを製造することができる。
 焼結工程の焼結温度は、例えば、1600℃以上であってよく、1700℃以上であってもよい。焼結温度は、例えば、2200℃以下であってよく、2000℃以下であってもよい。焼結時間は、例えば、1時間以上であってよく、30時間以下であってもよい。焼結時の雰囲気は、例えば、窒素、ヘリウム、及びアルゴン等の不活性ガス雰囲気下であってよい。
 焼結には、例えば、バッチ式炉及び連続式炉等を用いることができる。バッチ式炉としては、例えば、マッフル炉、管状炉、及び雰囲気炉等を挙げることができる。連続式炉としては、例えば、ロータリーキルン、スクリューコンベア炉、トンネル炉、ベルト炉、プッシャー炉、及び大形連続炉等を挙げることができる。このようにして、窒化物焼結体を得ることができる。窒化物焼結体はブロック状であってよい。
 窒化物焼結体がブロック状である場合、2mm未満の厚みとなるように加工する切断工程を行う。切断工程では、窒化物焼結体を、例えばワイヤーソーを用いて切断する。ワイヤーソーは、例えば、マルチカットワイヤーソー等であってよい。このような切断工程によって、例えば厚みが2mm未満のシート状の窒化物焼結体を得ることができる。このようにして得られる窒化物焼結体は切断面を有する。
 窒化物焼結体の切断工程を行うと、切断面に、微細なクラックが生じ得る。一方、窒化物焼結体の切断工程を経ずに得られる複合シートは、切断面を有しないため、微細なクラックを十分に低減することができる。したがって、窒化物焼結体の切断工程を経ずに得られる複合シートは、十分に高い強度を維持しつつ、絶縁性及び熱伝導性を十分に向上することができる。すなわち、電子部品等の部材としての信頼性に優れる。また、切断等の加工を行うと、材料ロスが発生する。このため、窒化物焼結体の切断面を有しない複合シートは、材料ロスを低減することができる。これによって、窒化物焼結体及び複合シートの歩留まりを向上することができる。
 含浸工程では、厚みが2mm未満である窒化物焼結体20の気孔に10~500mPa・sの粘度を有する樹脂組成物を含浸して樹脂含浸体を得る。窒化物焼結体20は、厚みが2mm未満のシート状であるため、樹脂組成物が内部にまで含浸されやすい。また、窒化物焼結体20に樹脂組成物を含浸する際の粘度を含浸に適した範囲にすることによって、樹脂の充填率を十分に高くすることができる。
 窒化物焼結体20に樹脂組成物を含浸する際の樹脂組成物の粘度は、440mPa・s以下であってよく、390mPa・s以下であってよく、340mPa・s以下であってもよい。このように樹脂組成物の粘度を低くすることによって、樹脂組成物の含浸を十分に促進することができる。窒化物焼結体20に樹脂組成物を含浸する際の樹脂組成物の粘度は、15mPa・s以上であってよく、20mPa・s以上であってもよい。このように樹脂組成物の粘度に下限を設けることによって、一旦気孔内に含浸した樹脂組成物が気孔から流出することを抑制することができる。樹脂組成物の粘度は、モノマー成分を一部重合して調節してもよい。樹脂組成物の上記粘度は、窒化物焼結体20に樹脂組成物を含浸する際の樹脂組成物の温度(T1)における粘度である。この粘度は、回転式粘度計を用いて、剪断速度が10(1/秒)であり、温度(T1)の条件下で測定される。したがって、温度T1を変えることによって、窒化物焼結体20に樹脂組成物を含浸する際の樹脂組成物の粘度を調節してもよい。
 窒化物焼結体20に樹脂組成物を含浸する際の温度(T1)は、例えば樹脂組成物を半硬化する温度(T2)以上、且つ温度T3(=T2+20℃)未満であってよい。温度(T2)は、例えば、80~140℃であってよい。窒化物焼結体20に樹脂組成物を含浸は、加圧下で行ってよく、減圧下で行ってもよい。含浸する方法は特に限定されず、樹脂組成物中に窒化物焼結体20を浸漬してもよいし、窒化物焼結体20の表面に樹脂組成物を塗布することで行ってもよい。
 粘度が上述の範囲にある樹脂組成物を用いることによって、複合シート10における樹脂の充填率を十分に高くすることができる。樹脂の充填率は、例えば85体積%以上であってよく、88体積%以上であってよく、90体積%以上であってよく、92体積%以上であってもよい。
 含浸工程は、減圧条件下及び加圧条件下のどちらで行ってもよく、減圧条件下での含浸と、加圧条件下での含浸とを組み合わせて行ってもよい。減圧条件下で含浸工程を実施する場合における含浸装置内の圧力は、例えば、1000Pa以下、500Pa以下、100Pa以下、50Pa以下、又は20Pa以下であってよい。加圧条件下で含浸工程を実施する場合における含浸装置内の圧力は、例えば、1MPa以上、3MPa以上、10MPa以上、又は30MPa以上であってよい。
 窒化物焼結体20における気孔の細孔径を調整することによって、毛細管現象による樹脂組成物の含浸を促進してもよい。このような観点から、窒化物焼結体20の平均細孔径は0.5~5μmであってよく、1~4μmであってもよい。
 樹脂組成物は、例えば硬化又は半硬化反応によって上述の複合シートの説明で挙げた樹脂となるものを用いることができる。樹脂組成物は溶剤を含んでいてもよい。溶剤の配合量を変えることで樹脂組成物の粘度を調整してもよいし、硬化反応を一部進行させて樹脂組成物の粘度を調整してもよい。溶剤としては、例えば、エタノール、イソプロパノール等の脂肪族アルコール、2-メトキシエタノール、1-メトキシエタノール、2-エトキシエタノール、1-エトキシ-2-プロパノール、2-ブトキシエタノール、2-(2-メトキシエトキシ)エタノール、2-(2-エトキシエトキシ)エタノール、2-(2-ブトキシエトキシ)エタノール等のエーテルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル等のグリコールエーテル、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン等のケトン、トルエン、キシレン等の炭化水素が挙げられる。これらのうちの1種を単独で含んでもよいし、2種以上を組み合わせて含んでもよい。
 樹脂組成物は、熱硬化性であり、例えば、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物からなる群より選択される少なくとも1種の化合物と、硬化剤と、を含有してよい。
 シアネート基を有する化合物としては、例えば、ジメチルメチレンビス(1,4-フェニレン)ビスシアナート、及びビス(4-シアネートフェニル)メタン等が挙げられる。ジメチルメチレンビス(1,4-フェニレン)ビスシアナートは、例えば、TACN(三菱ガス化学株式会社製、商品名)として商業的に入手可能である。
 ビスマレイミド基を有する化合物としては、例えば、N,N’-[(1-メチルエチリデン)ビス[(p-フェニレン)オキシ(p-フェニレン)]]ビスマレイミド、及び4,4’-ジフェニルメタンビスマレイミド等が挙げられる。N,N’-[(1-メチルエチリデン)ビス[(p-フェニレン)オキシ(p-フェニレン)]]ビスマレイミドは、例えば、BMI-80(ケイ・アイ化成株式会社製、商品名)として商業的に入手可能である。
 エポキシ基を有する化合物としては、ビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、及び多官能エポキシ樹脂等が挙げられる。例えば、HP-4032D(DIC株式会社製、商品名)として商業的に入手可能である1,6-ビス(2,3-エポキシプロパン-1-イルオキシ)ナフタレン等であってもよい。
 硬化剤は、ホスフィン系硬化剤及び/又はイミダゾール系硬化剤を含有してもよい。ホスフィン系硬化剤はシアネート基を有する化合物又はシアネート樹脂の三量化によるトリアジン生成反応を促進し得る。ホスフィン系硬化剤としては、例えば、テトラフェニルホスホニウムテトラ-p-トリルボレート、及びテトラフェニルホスホニウムテトラフェニルボレート等が挙げられる。テトラフェニルホスホニウムテトラ-p-トリルボレートは、例えば、TPP-MK(北興化学工業株式会社製、商品名)として商業的に入手可能である。
 イミダゾール系硬化剤はオキサゾリンを生成し、エポキシ基を有する化合物又はエポキシ樹脂の硬化反応を促進する。イミダゾール系硬化剤としては、例えば、1-(1-シアノメチル)-2-エチル-4-メチル-1H-イミダゾール、及び2-エチル-4-メチルイミダゾール等が挙げられる。1-(1-シアノメチル)-2-エチル-4-メチル-1H-イミダゾールは、例えば、2E4MZ-CN(四国化成工業株式会社製、商品名)として商業的に入手可能である。
 ホスフィン系硬化剤の含有量は、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、5質量部以下、4質量部以下又は3質量部以下であってよい。ホスフィン系硬化剤の含有量は、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、0.1質量部以上又は0.5質量部以上であってよい。ホスフィン系硬化剤の含有量が上記範囲内であると、樹脂含浸体の調製が容易であり、かつ、樹脂含浸体から切り出される複合シートの他部材への接着に要する時間をより短縮することができる。
 イミダゾール系硬化剤の含有量は、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、0.1質量部以下、0.05質量部以下又は0.03質量部以下であってよい。イミダゾール系硬化剤の含有量は、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、0.001質量部以上又は0.005質量部以上であってよい。イミダゾール系硬化剤の含有量が上記範囲内であると、樹脂含浸体の調製が容易であり、かつ、樹脂含浸体から切り出される複合シートの被着体への接着に要する時間をより短縮することができる。
 樹脂組成物は、主剤及び硬化剤とは別の成分を含んでよい。その他の成分としては、例えば、フェノール樹脂、メラミン樹脂、尿素樹脂、及びアルキド樹脂等のその他の樹脂、シランカップリング剤、レベリング剤、消泡剤、表面調整剤、並びに湿潤分散剤等からなる群より選ばれる少なくとも一種を更に含んでもよい。これらのその他の成分の含有量は、樹脂組成物全量を基準として、合計で、例えば、20質量%以下であってよく、10質量%以下であってよく、5質量%以下であってよい。
 含浸工程の後に、気孔内に含浸した樹脂組成物を半硬化させる硬化工程を有する。硬化工程では、樹脂組成物(又は必要に応じて添加される硬化剤)の種類に応じて、加熱、及び/又は光照射により、樹脂組成物を半硬化させる。「半硬化」(Bステージともいう)とは、その後の硬化処理によって、更に硬化させることができるものをいう。半硬化の状態であることを利用し金属シート等の他部材と仮圧着して、その後加熱することによって複合シートと金属シートを接着してもよい。半硬化物にさらに硬化処理を施すことで「完全硬化」(Cステージともいう)の状態となる。
 硬化工程において、加熱によって樹脂組成物を半硬化させる場合の加熱温度は、例えば80~130℃であってよい。樹脂組成物の半硬化によって得られる半硬化物は、樹脂成分として、シアネート樹脂、ビスマレイミド樹脂及びエポキシ樹脂からなる群より選択される少なくとも1種の熱硬化性樹脂、並びに硬化剤を含有してよい。半硬化物は、樹脂成分として、例えば、フェノール樹脂、メラミン樹脂、尿素樹脂、及びアルキド樹脂等のその他の樹脂、並びに、シランカップリング剤、レベリング剤、消泡剤、表面調整剤、及び湿潤分散剤等に由来する成分を含有してもよい。
 このようにして得られた複合シートは、例えば2mm以下の厚みを有する。このため、薄型且つ軽量であり、半導体装置等の部品として用いられたときに装置の小型化及び軽量化を図ることができる。また、窒化物焼結体の気孔に樹脂が十分に充填されていることから、接着性のみならず、熱伝導性及び絶縁性にも優れる。また、上述の製造方法では、窒化物焼結体を切断することなく複合シートを製造することができる。したがって、信頼性に優れる複合シートを高い歩留まりで製造することができる。なお、複合シートに金属シートを積層して積層体としてもよいし、そのまま放熱部材として用いてもよい。
 上記硬化工程では、樹脂含浸体の主面に付着した樹脂組成物を半硬化することによって、主面に樹脂で構成される凸部を形成してもよい。このような凸部を有することによって、被着体に対する接着性を一層向上することができる。
 一実施形態に係る積層体の製造方法は、複合シートと金属シートとを積層し、加熱及び加圧する積層工程を有する。複合シートは上述の製造方法で製造することができる。金属シートは、金属板であってよく、金属箔であってもよい。
 積層工程では、複合シートの主面上に金属シートを配置する。複合シートと金属シートの主面同士を接触させた状態で、主面同士が対向する方向に加圧するとともに、加熱する。なお、加圧と加熱は必ずしも同時に行う必要はなく、加圧して圧着した後に加熱してもよい。加圧圧力は例えば2~10MPaであってよい。このときの加熱温度T4は、樹脂組成物が半硬化する温度をT2としたときに、T4≧T2+20℃であってよく、T4≧T2+40℃であってもよい。これによって、複合シートからしみ出した樹脂組成物が複合シートと金属シートの界面で硬化し、両者を強固に接着することができる。硬化した硬化物の分解を抑制する観点から、加熱温度T4は、T4≦T2+150℃であってよく、T4≦T2+100℃であってもよい。
 このようにして得られた積層体は、半導体装置等の製造に用いることができる。一方の金属シート上に半導体素子を設けてもよい。他方の金属シートは冷却フィンと接合されてもよい。
 以上、幾つかの実施形態を説明したが、本開示は上記実施形態に何ら限定されるものではない。例えば、焼結工程では、成形と焼結を同時に行うホットプレスによって窒化物焼結体を得てもよい。
 実施例及び比較例を参照して本開示の内容をより詳細に説明するが、本開示は下記の実施例に限定されるものではない。
(実施例1)
<窒化物焼結体の作製>
 新日本電工株式会社製のオルトホウ酸100質量部と、デンカ株式会社製のアセチレンブラック(商品名:HS100)35質量部とをヘンシェルミキサーを用いて混合した。得られた混合物を、黒鉛製のルツボ中に充填し、アーク炉にて、アルゴン雰囲気で、2200℃にて5時間加熱し、塊状の炭化ホウ素(BC)を得た。得られた塊状物を、ジョークラッシャーで粗粉砕して粗粉を得た。この粗粉を、炭化珪素製のボール(φ10mm)を有するボールミルによってさらに粉砕して粉砕粉を得た。
 調製した粉砕粉を、窒化ホウ素製のルツボに充填した。その後、抵抗加熱炉を用い、窒素ガス雰囲気下で、2000℃、0.85MPaの条件で10時間加熱した。このようにして炭窒化ホウ素(BCN)を含む焼成物を得た。
 粉末状のホウ酸と炭酸カルシウムを配合して焼結助剤を調製した。調製にあたっては、100質量部のホウ酸に対して、炭酸カルシウムを50.0質量部配合した。このときのホウ素とカルシウムの原子比率は、ホウ素100原子%に対してカルシウムが17.5原子%であった。焼成物100質量部に対して焼結助剤を20質量部配合し、ヘンシェルミキサーを用いて混合して粉末状の配合物を調製した。
 配合物を、粉末プレス機を用いて、150MPaで30秒間加圧して、シート状(縦×横×厚み=50mm×50mm×1.5mm)の成形体を得た。成形体を窒化ホウ素製容器に入れ、バッチ式高周波炉に導入した。バッチ式高周波炉において、常圧、窒素流量5L/分、2000℃の条件で5時間加熱した。その後、窒化ホウ素製容器から窒化ホウ素焼結体を取り出した。このようにして、シート状(四角柱状)の窒化ホウ素焼結体を得た。窒化ホウ素焼結体の厚みtは1.6mmであった。厚みtはノギスで測定した。
<平均細孔径の測定>
 得られた窒化ホウ素焼結体について、株式会社島津製作所製の水銀ポロシメーター(装置名:オートポアIV9500)を用い、0.0042MPaから206.8MPaまで圧力を増加しながら細孔容積分布を測定した。積算細孔容積が全細孔容積の50%に達する細孔径を、「平均細孔径」とした。結果を表1に示す。
<気孔率の測定>
 得られた窒化ホウ素焼結体の体積及び質量を測定し、当該体積及び質量からかさ密度B(kg/m)を算出した。このかさ密度と窒化ホウ素の理論密度(2280kg/m)とから、以下の計算式(2)によって気孔率を求めた。結果を表1に示す。
  気孔率(体積%)=[1-(B/2280)]×100   (2)
<複合シートの作製>
 市販のエポキシ樹脂(三菱ケミカル株式会社製、商品名:エピコート807)100質量部に対し、市販の硬化剤(日本合成化学工業株式会社製、商品名:アクメックスH-8)を10質量部配合して、樹脂組成物を調製した。調製した樹脂組成物を120℃で15分間加熱した後、その温度を維持したままスポイトを用いて、120℃に加熱された窒化ホウ素焼結体の主面に滴下した。滴下される樹脂組成物の粘度を、回転式粘度計を用いて測定したところ、表1に示すとおりであった。測定の際の剪断速度は10(1/秒)とし、測定温度は滴下時の温度(120℃)とした。大気圧下、窒化ホウ素焼結体の主面に滴下した樹脂組成物をゴム製のヘラを用いて塗り伸ばし、主面全体に樹脂組成物を塗り広げて樹脂含浸体を得た。
 樹脂含浸体を、大気圧下、160℃で30分間加熱して樹脂組成物を半硬化させた。このようにして、四角柱状の複合シート(縦×横×厚み=50mm×50mm×1.6mm)を作製した。複合シートのサイズはノギスで測定した。
 上記半硬化物を構成する樹脂の硬化率を、以下の手順で求めた。まず、硬化前(未硬化)の状態の樹脂組成物1gを昇温し、完全に硬化するまでに生じる発熱量Q(J/g)を、示差走査熱量計を用いて測定した。次に、複合シート1gを同様に昇温し、完全に硬化するまでに生じる発熱量R(J/g)を、同じ示差走査熱量計を用いて測定した。また、複合シートを600℃で1時間加熱して樹脂成分を揮発させ、加熱前後の質量差から複合シートに含まれる熱硬化性を有する成分の含有量c(質量%)を求めた。
 上述の手順で求めた発熱量Q、R及び含有量cを用い、下記式(3)によって複合シートに含まれる樹脂の硬化率を求めた。その結果、樹脂の硬化率は35%であった。
 硬化率(%)={1-[(R/c)×100]/Q}×100・・・(3)
<樹脂(半硬化物)の充填率の測定>
 複合シートに含まれる樹脂の充填率を、以下の式(4)によって求めた。結果は表1に示すとおりであった。
 複合シートにおける樹脂の充填率(体積%)={(複合シートのかさ密度-窒化ホウ素焼結体のかさ密度)/(複合シートの理論密度-窒化ホウ素焼結体のかさ密度)}×100 …(4)
 窒化ホウ素焼結体及び複合シートのかさ密度は、JIS Z 8807:2012の「幾何学的測定による密度及び比重の測定方法」に準拠し、窒化ホウ素焼結体又は複合シートの各辺の長さ(ノギスにより測定)から計算した体積と、電子天秤により測定した窒化ホウ素焼結体又は複合シートの質量に基づいて求めた(JIS Z 8807:2012の9項参照)。複合シートの理論密度は、下記式(5)によって求めた。
 複合シートの理論密度=窒化ホウ素焼結体の真密度+樹脂の真密度×(1-窒化ホウ素焼結体のかさ密度/窒化ホウ素の真密度) … (5)
 窒化ホウ素焼結体及び樹脂の真密度は、JIS Z 8807:2012の「気体置換法による密度及び比重の測定方法」に準拠し、乾式自動密度計を用いて測定した窒化ホウ素焼結体及び樹脂の体積及び質量より求めた(JIS Z 8807:2012の11項の式(14)~(17)参照)。
<積層体の作製>
 シート状の銅箔(縦×横×厚み=100mm×20mm×0.035mm)と、シート状の銅板(縦×横×厚み=100mm×20mm×1mm)との間に、上述の複合シート(縦×横×厚み=50mm×20mm×1.6mm)を配置して、銅箔、複合シート及び銅板をこの順に備える積層体を作製した。当該積層体を200℃及び5MPaの条件下で5分間加熱及び加圧した後、200℃及び大気圧の条件下で2時間加熱処理した。これによって積層体を得た。
<接着強度の評価>
 上述の加熱処理を施したのち、JIS K 6854-1:1999「接着剤-はく離接着強さ試験方法」に準拠して、90°剥離試験を、万能試験機(株式会社エーアンドディ製、商品名:RTG-1310)を用いて実施した。なお、90°剥離試験はシート状の銅箔と複合シートの接着界面において行った。試験速度:50mm/min、ロードセル:5kN、測定温度:室温(20℃)の条件で測定を行って、剥離面における凝集破壊部分の面積比率を測定した。測定結果から、以下の基準で接着性を評価した。結果を表1に示す。なお、凝集破壊部分とは、複合シートと銅箔の界面におけるはく離ではなく、複合シートの内部で破壊した部分である。複合シートの内部で破壊した部分の面積比率が大きい方が接着性に優れることを示している。
  A:凝集破壊部分の面積比率が70面積%以上
  B:凝集破壊部分の面積比率が50面積%以上70面積%未満
  C:凝集破壊部分の面積比率が50面積%未満
(実施例2)
 シート状の成形体のサイズを、縦×横×厚み=50mm×50mm×1.7mmにしたこと、焼結助剤の調製にあたって、100質量部のホウ酸に対して炭酸カルシウムを30質量部配合したこと、及び、焼成物100質量部に対して焼結助剤を15質量部配合したこと以外は、実施例1の「窒化物焼結体の作製」に記載の手順と同じ手順で窒化ホウ素焼結体を作製した。得られた窒化ホウ素焼結体の厚みt、平均細孔径及び気孔率を実施例1と同様にして測定した。窒化ホウ素焼結体の厚みtは1.8mmであった。結果は表1に示すとおりであった。
 樹脂組成物の120℃での加熱時間を15分間から30分間に変更したこと以外は、実施例1の「複合シートの作製」と同じ手順で樹脂含浸体、及び複合シートを作製した。滴下される樹脂組成物の粘度は表1に示すとおりであった。実施例1よりも樹脂組成物の加熱時間を長くしたため、粘度は高くなっていた。作製した複合シートの樹脂(半硬化物)の充填率を実施例1と同様にして測定した。結果は表1に示すとおりであった。ノギスで測定した複合シートの厚みは1.8mmであった。また、作製した複合シートを用いて、実施例1と同じ手順で積層体を作製し、接着強度の評価を行った。結果は表1に示すとおりであった。
(実施例3)
 シート状の成形体のサイズを、縦×横×厚み=50mm×50mm×0.19mmにしたこと、焼結助剤の調製にあたって、100質量部のホウ酸に対して炭酸カルシウムを20質量部配合したこと、及び、焼成物100質量部に対して焼結助剤を12質量部配合したこと以外は、実施例1の「窒化物焼結体の作製」に記載の手順と同じ手順で窒化ホウ素焼結体を作製した。得られた窒化ホウ素焼結体の厚みt、平均細孔径及び気孔率を実施例1と同様にして測定した。窒化ホウ素焼結体の厚みtは0.2mmであった。結果は表1に示すとおりであった。
 樹脂組成物の120℃での加熱時間を15分間から約30分間に変更したこと以外は、実施例1の「複合シートの作製」と同じ手順で樹脂含浸体及び複合シートを作製した。滴下される樹脂組成物の粘度は、表1に示すとおり、実施例2よりもわずかに高くなっていた。これは、実施例2よりもわずかに加熱時間が長かったことによるものと思われる。作製した複合シートの樹脂(半硬化物)の含有量を実施例1と同様にして測定した。結果は表1に示すとおりであった。ノギスで測定した複合シートの厚みは0.2mmであった。また、作製した複合シートを用いて、実施例1と同じ手順で積層体を作製し、接着強度の評価を行った。結果は表1に示すとおりであった。
(比較例1)
 成形体のサイズを、縦×横×厚み=50mm×50mm×39.1mmにしたこと以外は、実施例1の「窒化物焼結体の作製」に記載の手順と同じ手順で窒化ホウ素焼結体を作製した。滴下される樹脂組成物の粘度、並びに、得られた窒化ホウ素焼結体の厚みt、平均細孔径及び気孔率を、実施例1と同様にして測定した。窒化ホウ素焼結体の厚みtは41.2mmであった。結果は表1に示すとおりであった。
 実施例1と同じ手順で樹脂含浸体及び複合体(実施例1では複合シート)を作製した。作製した複合体の樹脂(半硬化物)の含有量を実施例1と同様にして測定した。結果は表1に示すとおりであった。また、作製した複合体を用いて、実施例1と同じ手順で積層体を作製し、接着強度の評価を行った。結果は表1に示すとおりであった。
(比較例2)
 成形体のサイズを、縦×横×厚み=50mm×50mm×48.6mmにしたこと、焼結助剤の調製にあたって、100質量部のホウ酸に対して炭酸カルシウムを20質量部配合したこと、及び、焼成物100質量部に対して焼結助剤を12質量部配合したこと以外は、実施例1の「窒化物焼結体の作製」に記載の手順と同じ手順で窒化ホウ素焼結体を作製した。滴下される樹脂組成物の粘度、並びに、得られた窒化ホウ素焼結体の厚みt、平均細孔径及び気孔率を、実施例1と同様にして測定した。窒化ホウ素焼結体の厚みtは51.2mmであった。結果は表1に示すとおりであった。
 実施例1の「複合シートの作製」と同じ手順で樹脂含浸体及び複合体(実施例1では複合シート)を作製した。作製した複合体の樹脂(半硬化物)の含有量を実施例1と同様にして測定した。結果は表1に示すとおりであった。また、作製した複合体を用いて、実施例1と同じ手順で積層体を作製し、接着強度の評価を行った。結果は表1に示すとおりであった。
(比較例3)
 成形体のサイズを、縦×横×厚み=50mm×50mm×56.3mmにしたこと以外は実施例1の「窒化物焼結体の作製」に記載の手順と同じ手順で窒化ホウ素焼結体を作製した。滴下される樹脂組成物の粘度、並びに、得られた窒化ホウ素焼結体の厚みt、平均細孔径及び気孔率を、実施例1と同様にして測定した。窒化ホウ素焼結体の厚みtは59.3mmであった。結果は表1に示すとおりであった。
 樹脂組成物の120℃での加熱時間を15分間から30分間に変更したこと以外は、実施例1の「複合シートの作製」と同じ手順で樹脂含浸体及び複合体(実施例1では複合シート)を作製した。作製した複合体の樹脂(半硬化物)の含有量を実施例1と同様にして測定した。結果は表1に示すとおりであった。また、作製した複合体を用いて、実施例1と同じ手順で積層体を作製し、接着強度の評価を行った。結果は表1に示すとおりであった。
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、厚みtが2mm以下である窒化ホウ素焼結体を用いた実施例1~3では、比較例1~3よりも樹脂の充填率が高かった。
 本開示によれば、小型化が容易であるとともに優れた接着性を有する複合シート及びその製造方法が提供される。また、本開示によれば、そのような複合シートを用いることによって小型化しても接着信頼性に優れる積層体及びその製造方法が提供される。
 10…複合シート、10a,10b…主面、20…窒化物焼結体、30,40…金属シート、100…積層体。

 

Claims (11)

  1.  厚みが2mm未満である多孔質の窒化物焼結体と、
     前記窒化物焼結体の気孔に充填されている樹脂と、を含み、
     前記樹脂の充填率が85体積%以上である、複合シート。
  2.  前記気孔の平均細孔径が0.5~5μmである、請求項1に記載の複合シート。
  3.  主面における凹凸構造の凸部の少なくとも一部が、前記樹脂で形成される、請求項1又は2に記載の複合シート。
  4.  前記窒化物焼結体が窒化ホウ素焼結体を含む、請求項1~3のいずれか一項に記載の複合シート。
  5.  請求項1~4のいずれか一項に記載の複合シートと金属シートとが積層されている積層体。
  6.  厚みが2mm未満である多孔質の窒化物焼結体の気孔に10~500mPa・sの粘度を有する樹脂組成物を含浸して樹脂含浸体を得る含浸工程と、
     前記樹脂含浸体を加熱して前記気孔に充填された前記樹脂組成物を半硬化する硬化工程と、を有する、複合シートの製造方法。
  7.  樹脂の充填率が85体積%以上である、請求項6に記載の複合シートの製造方法。
  8.  前記窒化物焼結体の前記気孔の平均細孔径が0.5~5μmである、請求項6又は7に記載の複合シートの製造方法。
  9.  前記硬化工程では、前記樹脂含浸体の主面に付着した前記樹脂組成物を半硬化することによって、前記主面に樹脂で構成される凸部を形成する、請求項6~8のいずれか一項に記載の複合シートの製造方法。
  10.  前記窒化物焼結体が窒化ホウ素焼結体を含む、請求項6~9のいずれか一項に記載の複合シートの製造方法。
  11.  請求項6~10のいずれか一項に記載の製造方法で得られた複合シートと金属シートとを積層し、加熱及び加圧する積層工程を有する、積層体の製造方法。

     
PCT/JP2021/035449 2020-09-29 2021-09-27 複合シート及びその製造方法、並びに、積層体及びその製造方法 WO2022071247A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/246,073 US20230357089A1 (en) 2020-09-29 2021-09-27 Composite sheet and manufacturing method thereof, and laminate and manufacturing method thereof
JP2022540696A JP7176159B2 (ja) 2020-09-29 2021-09-27 複合シート及びその製造方法、並びに、積層体及びその製造方法
CN202180062972.1A CN116261782A (zh) 2020-09-29 2021-09-27 复合片材及其制造方法、以及层叠体及其制造方法
EP21875549.4A EP4203013A4 (en) 2020-09-29 2021-09-27 COMPOSITE FILM AND PRODUCTION PROCESS THEREOF AND LAMINATE AND PRODUCTION PROCESS THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-163275 2020-09-29
JP2020163275 2020-09-29

Publications (1)

Publication Number Publication Date
WO2022071247A1 true WO2022071247A1 (ja) 2022-04-07

Family

ID=80949103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035449 WO2022071247A1 (ja) 2020-09-29 2021-09-27 複合シート及びその製造方法、並びに、積層体及びその製造方法

Country Status (5)

Country Link
US (1) US20230357089A1 (ja)
EP (1) EP4203013A4 (ja)
JP (1) JP7176159B2 (ja)
CN (1) CN116261782A (ja)
WO (1) WO2022071247A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582760B2 (ja) * 1985-07-26 1993-11-22 Ibiden Co Ltd
WO2014196496A1 (ja) * 2013-06-03 2014-12-11 電気化学工業株式会社 樹脂含浸窒化ホウ素焼結体およびその用途
JP2016103611A (ja) 2014-11-28 2016-06-02 デンカ株式会社 窒化ホウ素樹脂複合体回路基板
WO2017155110A1 (ja) * 2016-03-10 2017-09-14 デンカ株式会社 セラミックス樹脂複合体
WO2018181606A1 (ja) * 2017-03-29 2018-10-04 デンカ株式会社 伝熱部材及びこれを含む放熱構造体
JP2019145744A (ja) * 2018-02-23 2019-08-29 イビデン株式会社 伝熱基板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2918723B2 (ja) * 1991-09-19 1999-07-12 三菱電機株式会社 半導体記憶装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582760B2 (ja) * 1985-07-26 1993-11-22 Ibiden Co Ltd
WO2014196496A1 (ja) * 2013-06-03 2014-12-11 電気化学工業株式会社 樹脂含浸窒化ホウ素焼結体およびその用途
JP2016103611A (ja) 2014-11-28 2016-06-02 デンカ株式会社 窒化ホウ素樹脂複合体回路基板
WO2017155110A1 (ja) * 2016-03-10 2017-09-14 デンカ株式会社 セラミックス樹脂複合体
WO2018181606A1 (ja) * 2017-03-29 2018-10-04 デンカ株式会社 伝熱部材及びこれを含む放熱構造体
JP2019145744A (ja) * 2018-02-23 2019-08-29 イビデン株式会社 伝熱基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4203013A4

Also Published As

Publication number Publication date
EP4203013A1 (en) 2023-06-28
JP7176159B2 (ja) 2022-11-21
JPWO2022071247A1 (ja) 2022-04-07
EP4203013A4 (en) 2024-03-06
US20230357089A1 (en) 2023-11-09
CN116261782A (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
WO2021200966A1 (ja) 窒化ホウ素焼結体及び複合体、並びに放熱部材
WO2022209325A1 (ja) 複合体及びその製造方法、樹脂充填板、並びに、積層体及びその製造方法
WO2021200724A1 (ja) 窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材
WO2022209971A1 (ja) 複合体及びその製造方法、並びに、積層体及びその製造方法
WO2022071247A1 (ja) 複合シート及びその製造方法、並びに、積層体及びその製造方法
JP7458479B2 (ja) 複合体及び複合体の製造方法
WO2021200973A1 (ja) 複合体の製造方法
WO2021200967A1 (ja) 複合体、及び放熱部材
WO2021200965A1 (ja) 複合体シート
WO2022071236A1 (ja) 複合シート及びその製造方法、並びに、積層体及びその製造方法
WO2022071293A1 (ja) 複合シート及びその製造方法、積層体及びその製造方法、並びに、パワーデバイス
WO2021230328A1 (ja) 複合体及び積層体
JP7080427B1 (ja) 複合シート、積層体、及び、複合シートの接着性を推定する評価方法
JP7381806B2 (ja) 積層部品、及びその製造方法、並びに、積層体、及びその製造方法
WO2022209335A1 (ja) 複合シート及びその製造方法、並びに、積層体及びその製造方法
WO2023162705A1 (ja) 複合シート、及び積層体
WO2021200971A1 (ja) 窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材
WO2023190236A1 (ja) 複合体及びその製造方法、並びに、接合体、回路基板及びパワーモジュール
WO2021200719A1 (ja) 窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材
WO2021201012A1 (ja) 複合体の製造方法
WO2023027122A1 (ja) セラミックス板の製造方法、セラミックス板、複合シート、及び積層基板
WO2022071294A1 (ja) 複合体の接着信頼性及び放熱性能を評価する方法、及び複合体
JP2024033151A (ja) 複合基板の製造方法、及び、複合基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022540696

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021875549

Country of ref document: EP

Effective date: 20230324

NENP Non-entry into the national phase

Ref country code: DE