WO2021200966A1 - 窒化ホウ素焼結体及び複合体、並びに放熱部材 - Google Patents
窒化ホウ素焼結体及び複合体、並びに放熱部材 Download PDFInfo
- Publication number
- WO2021200966A1 WO2021200966A1 PCT/JP2021/013571 JP2021013571W WO2021200966A1 WO 2021200966 A1 WO2021200966 A1 WO 2021200966A1 JP 2021013571 W JP2021013571 W JP 2021013571W WO 2021200966 A1 WO2021200966 A1 WO 2021200966A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- boron nitride
- sintered body
- nitride sintered
- resin
- complex
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
- C01B21/064—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/583—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/82—Coating or impregnation with organic materials
- C04B41/83—Macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
Definitions
- the present disclosure relates to a boron nitride sintered body and a composite, and a heat radiating member.
- thermal interface materials that have electrical insulation properties for electronic components or printed wiring boards. It has been used to attach it to a heat sink.
- a composite heat dissipation member composed of a resin and ceramics such as boron nitride is used.
- Patent Document 1 proposes a technique for reducing the anisotropy of thermal conductivity while having excellent thermal conductivity by setting the degree of orientation and the graphitization index within a predetermined range.
- the present disclosure provides a boron nitride sintered body having excellent adhesion to other members.
- the present disclosure also provides a complex having excellent adhesiveness to other members. Further, in the present disclosure, by providing the above-mentioned composite, a heat radiating member having sufficiently high reliability is provided.
- the present disclosure provides a boron nitride sintered body containing boron nitride particles and pores, which has a compressive elastic modulus of 0.8 GPa or less, in one aspect.
- a boron nitride sintered body When such a boron nitride sintered body is sandwiched between a pair of facing members and pressed, the boron nitride sintered body is appropriately deformed, and therefore has excellent adhesion to the pair of members. Further, since the boron nitride sintered body contains pores, it is easy to impregnate the resin.
- the boron nitride sintered body When a composite is formed by impregnating with a resin, and the composite is sandwiched between a pair of opposing members and pressed to be joined, the boron nitride sintered body has a low compressive elastic modulus and is easily compression-deformed. When deformed, the resin impregnated in the complex exudes. By the action of the exuded resin, the complex can be firmly adhered to other members. As described above, the boron nitride sintered body can easily produce a composite having excellent adhesiveness.
- the compressive strength of the sintered body may be 1.5 MPa or more. By having such a compressive strength, it is possible to suppress breakage when used as a member.
- the porosity of the boron nitride sintered body may be 40 to 75% by volume. As a result, the amount of resin impregnated can be sufficiently increased while maintaining the strength and thermal conductivity of the boron nitride sintered body. Such a boron nitride sintered body can form a complex that can achieve both excellent insulation and adhesiveness at a high level.
- the bulk density of the boron nitride sintered body may be 600 to 1400 kg / m 3.
- the amount of resin impregnated can be sufficiently increased while maintaining the strength and thermal conductivity of the boron nitride sintered body.
- Such a boron nitride sintered body can form a complex that can achieve both excellent insulation and adhesiveness at a high level.
- the orientation index of the boron nitride sintered body may be 20 or less. Thereby, the anisotropy of thermal conductivity can be sufficiently reduced.
- the present disclosure provides, in one aspect, a complex comprising any of the above-mentioned boron nitride sintered bodies and a resin filled in at least a part of the pores of the boron nitride sintered body.
- This complex contains the above-mentioned boron nitride sintered body and a resin.
- the boron nitride sintered body has a low compressive elastic modulus, so that the composite is easily compressed and deformed.
- the resin impregnated in the complex exudes. By the action of the exuded resin, the complex can be firmly adhered to other members. Therefore, this complex has excellent adhesiveness to other members.
- the present disclosure provides a heat radiating member having the above-mentioned complex in one aspect. Since this heat radiating member has the above-mentioned composite, it has excellent adhesiveness.
- the present disclosure it is possible to provide a boron nitride sintered body having excellent adhesion to other members. Further, the present disclosure can provide a complex having excellent adhesiveness to other members. Further, in the present disclosure, by providing the above-mentioned composite, it is possible to provide a heat radiating member having sufficiently high reliability.
- FIG. 1 is a perspective view showing an example of a boron nitride sintered body (heat dissipation member).
- the boron nitride sintered body according to the first embodiment contains boron nitride particles and pores formed by sintering primary boron nitride particles.
- the boron nitride sintered body may be composed of boron nitride particles.
- the compressive elastic modulus of the boron nitride sintered body may be 0.8 GPa or less, 0.7 GPa or less, or 0.6 GPa or less.
- a boron nitride sintered body having a small compressive elastic modulus is easily compressively deformed when pressed. Therefore, the adhesion with other members is excellent.
- the boron nitride sintered body contains pores, it is easily impregnated with the resin. Therefore, a complex impregnated with a large amount of resin can be easily produced.
- the compressive elastic modulus of the boron nitride sintered body may be 0.02 GPa or more, or 0.2 GPa or more, from the viewpoint of maintaining its shape.
- the compressive elastic modulus can be measured in accordance with JIS K7181 using a precision universal testing machine (trade name: Autograph AG-X) manufactured by Shimadzu Corporation.
- An example of the compressive elastic modulus of the boron nitride sintered body is 0.02 to 0.8 GPa.
- the compressive strength of the boron nitride sintered body may be, for example, 1.5 MPa or more, 3.0 MPa or more, or 5.0 MPa or more. By having such a compressive strength, it is possible to suppress breakage when used as a member. Compressive strength can be measured by a compression tester. The compressive strength of the boron nitride sintered body may be 20 MPa or less, 15 MPa or less, 12 MPa or less, and 10 MPa or less. The compressive strength can also be measured using a precision universal testing machine (trade name: Autograph AG-X) manufactured by Shimadzu Corporation. An example of the compressive strength of the boron nitride sintered body is 1.5 to 20 MPa.
- the average pore diameter of the pores contained in the boron nitride sintered body may be less than 10 ⁇ m.
- the average pore size of the pores is determined based on the pore size distribution when pressure is applied while increasing the pressure from 0.5 psia to 60,000 psia using a mercury porosimeter.
- the horizontal axis is the pore diameter and the vertical axis is the cumulative pore volume
- the pore diameter when the cumulative pore volume reaches 50% of the total pore volume is the average pore diameter.
- the mercury porosimeter one manufactured by Shimadzu Corporation can be used.
- the porosity of the boron nitride sintered body that is, the volume ratio of the pores in the boron nitride sintered body may be 40 to 75% by volume or 45 to 70% by volume. If the porosity becomes too large, the strength and thermal conductivity of the boron nitride sintered body tend to decrease. On the other hand, if the porosity becomes too small, the resin content when the composite is produced tends to decrease.
- the bulk density [B (kg / m 3 )] is calculated from the volume and mass of the boron nitride sintered body, and from this bulk density and the theoretical density of boron nitride [2280 (kg / m 3 )].
- B (kg / m 3 ) the bulk density of the boron nitride sintered body, and from this bulk density and the theoretical density of boron nitride [2280 (kg / m 3 )].
- Porosity (% by volume) [1- (B / 2280)] x 100 (1)
- the bulk density B may be 600 to 1400 kg / m 3 or 800 to 1200 kg / m 3 . If the bulk density B becomes too small, the strength of the boron nitride sintered body tends to decrease. On the other hand, if the bulk density B becomes too large, the impregnation amount of the resin tends to decrease and the insulating property of the complex tends to decrease.
- the thermal conductivity of the boron nitride sintered body may be 10 W / (m ⁇ K) or more, 15 W / (m ⁇ K) or more, and 20 W / (m ⁇ K) or more. It may be 25 W / (m ⁇ K) or more.
- the thermal conductivity (H) can be calculated by the following formula (2).
- the thermal conductivity (H) may be 70 W / (m ⁇ K) or less, 60 W / (m ⁇ K) or less, and 50 W / (m ⁇ K) or less.
- An example of thermal conductivity (H) is 10 to 70 W / (m ⁇ K).
- H A ⁇ B ⁇ C (2)
- H is the thermal conductivity (W / (m ⁇ K))
- A is the thermal diffusivity (m 2 / sec)
- B is the bulk density (kg / m 3 )
- C is the specific heat capacity. (J / (kg ⁇ K)) is shown.
- the thermal diffusivity A can be measured by a laser flash method.
- the bulk density B can be obtained from the volume and mass of the boron nitride sintered body.
- the specific heat capacity C can be measured using a differential scanning calorimeter.
- the boron nitride sintered body may contain components other than boron nitride.
- the content of boron nitride in the boron nitride sintered body may be 90% by mass or more, 95% by mass or more, and 98% by mass or more.
- the boron nitride sintered body may be in the form of a sheet (thin plate shape) as shown in FIG. Since the sheet-shaped boron nitride sintered body 10 has a small thickness t 0 , the resin composition can be smoothly impregnated. As a result, the pores of the boron nitride sintered body are sufficiently filled with the resin, and a composite having excellent insulating properties can be obtained.
- the thickness t 0 of the boron nitride sintered body 10 may be less than 2 mm, less than 1 mm, or less than 0.5 mm.
- the thickness t 0 of the boron nitride sintered body 10 may be 0.1 mm or more, or 0.2 mm or more.
- the area of the main surface 10a of the boron nitride sintered body 10 may be 25 mm 2 or more, 100 mm 2 or more, 500 mm 2 or more, 800 mm 2 or more, 1000 mm 2 or more. There may be.
- the shape of the boron nitride sintered body is not limited to the shape shown in FIG. 1, and may be, for example, a disk-shaped sheet or a C-shaped sheet having a curved main surface 10a. Further, the block-shaped boron nitride sintered body may be cut and / or polished to be processed into a sheet shape as shown in FIG. However, if processing such as cutting is performed, material loss will occur. Therefore, if a sheet-shaped boron nitride sintered body is produced using the sheet-shaped molded body, material loss can be reduced. Thereby, the yield of the boron nitride sintered body and the composite can be improved.
- the block-shaped boron nitride sintered body is a polyhedron, for example, all sides have an appropriate length, and the block-shaped boron nitride sintered body has a larger thickness than the sheet-shaped boron nitride sintered body. That is, the block shape means a shape that can be divided into a plurality of sheet shapes (thin plate shapes) by cutting.
- the orientation index of the boron nitride crystal in the boron nitride sintered body may be 20 or less, 18 or less, and 15 or less. Thereby, the anisotropy of thermal conductivity can be sufficiently reduced. Therefore, in the case of a sheet like the boron nitride sintered body 10, the thermal conductivity along the thickness direction can be sufficiently increased. It is preferable that the thermal conductivity along the thickness direction of the boron nitride sintered body 10 is the above-mentioned value.
- the orientation index of the boron nitride sintered body may be 0.5 or more, 3 or more, or 5 or more.
- the orientation index in the present disclosure is an index for quantifying the degree of orientation of boron nitride crystals.
- the orientation index can be calculated by the peak intensity ratio [I (002) / I (100)] of the (002) plane and the (100) plane of boron nitride measured by an X-ray diffractometer.
- the composite according to one embodiment is a composite of a silicon nitride sintered body and a resin, and has the above-mentioned boron nitride sintered body and a resin filled in at least a part of the pores of the boron nitride sintered body.
- the resin include epoxy resin, silicone resin, cyanate resin, silicone rubber, acrylonitrile resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyimide, polyamideimide, polyetherimide, and polybutylene terephthalate.
- the resin may contain an epoxy resin from the viewpoint of improving heat resistance and adhesive strength to the circuit.
- the resin may contain a silicone resin from the viewpoint of improving heat resistance, flexibility, and adhesion to a heat sink or the like.
- the resin may be a cured product (C stage state) or a semi-cured product (B stage state).
- the content of the boron nitride particles in the complex may be 25 to 65% by volume or 39 to 48% by volume based on the total volume of the complex.
- the content of the fat group (total of the semi-cured product and the cured product) in the complex may be 35 to 75% by volume or 52 to 61% by volume based on the total volume of the complex.
- a complex containing boron nitride particles and a resin in such a proportion can achieve both high adhesiveness and thermal conductivity at a high level.
- the content of the resin (total of semi-cured product and cured product) in the composite may be 10 to 70% by mass, 10 to 60% by mass, and 20 to 20 to 70% by mass based on the total mass of the composite. It may be 60% by mass, 20 to 55% by mass, and 25 to 55% by mass.
- a complex containing a resin in such a ratio can achieve both high adhesiveness and thermal conductivity at a high level.
- the content of the resin in the complex can be determined by heating the complex to decompose and remove the resin, and calculating the mass of the resin from the mass difference before and after heating.
- the filling rate of the resin in the complex may be 80% by volume or more, 90% by volume or more, or 92% by volume or more.
- the resin filling rate indicates the volume ratio of the pores filled with the resin (semi-cured product + cured product) among all the pores in the boron nitride sintered body.
- the porosity in the complex may be 20% by volume or less, 10% by volume or less, 8% by volume or less, 6% by volume or less, and 5% by volume or less. It may be 4% by volume or less. As a result, both high adhesiveness and high insulation can be achieved at a sufficiently high level.
- the complex may further contain other components in addition to the boron nitride sintered body and the resin filled in the pores thereof.
- other components include a curing agent, an inorganic filler, a silane coupling agent, a defoaming agent, a surface conditioner, a wet dispersant and the like.
- the inorganic filler may contain one or more selected from the group consisting of aluminum oxide, silicon oxide, zinc oxide, silicon nitride, aluminum nitride and aluminum hydroxide. Thereby, the thermal conductivity of the complex can be further improved.
- the composite and the heat radiating sheet may be in the form of a sheet (thin plate shape) as shown in FIG. 1, similarly to the boron nitride sintered body. Since the sheet-shaped composite 20 (heat radiating member 20) has a small thickness, it can be suitably used as a heat radiating member for electronic devices and the like. Moreover, the resin composition is sufficiently impregnated.
- the thickness t of the complex 20 (heat radiating member 20) may be less than 2 mm, less than 1 mm, or less than 0.5 mm. From the viewpoint of maintaining a certain level of strength, the thickness t of the complex 20 (heat dissipation member 20) may be 0.1 mm or more, or 0.2 mm or more.
- the areas of the main surfaces 20a and 20b of the complex 20 may be 25 mm 2 or more, 100 mm 2 or more, 500 mm 2 or more, and 800 mm 2 or more, respectively. It may be 1000 mm 2 or more.
- the composite of this embodiment contains the above-mentioned boron nitride sintered body and resin.
- the boron nitride sintered body has a low compressive elastic modulus, so that the composite is easily compressed and deformed.
- the resin impregnated in the complex exudes.
- the complex can be firmly adhered to other members. Therefore, this complex has excellent adhesiveness to other members. Therefore, the complex is sufficiently reliable.
- the production method of this example includes a sintering step of sintering boron nitride powder to obtain a block-shaped boron nitride sintered body.
- the raw material powder include amorphous boron nitride powder having an average particle size of 0.5 to 10 ⁇ m and hexagonal boron nitride powder having an average particle size of 3.0 to 40 ⁇ m. These powders may be mixed using a Henschel mixer or the like, or may be mixed in a slurry form in water or an ethanol solution using a disparizer.
- a slurry containing such boron nitride powder may be spheroidized by a spray dryer or the like, molded, and then sintered to obtain a boron nitride sintered body.
- a mold may be used for molding, or a cold isotropic pressing (CIP) method may be used.
- the average particle size of each of the above-mentioned boron nitride powders is a particle size of 50% of the cumulative value of the cumulative particle size distribution in the particle size distribution measurement by the laser diffraction light scattering method.
- the particle size distribution measuring machine include "MT3300EX" (manufactured by Nikkiso Co., Ltd.).
- water is used as a solvent
- hexametaphosphate is used as a dispersant
- a homogenizer is used for 30 seconds to carry out a dispersion treatment with an output of 20 W.
- 1.33 is used for the refractive index of water
- 1.80 is used for the refractive index of the boron nitride powder.
- the measurement time per measurement is 30 seconds.
- a sintering aid When sintering the boron nitride powder, a sintering aid may be used. Sintering aids include, for example, oxides of rare earth elements such as ittoria oxide, alumina oxide and magnesium oxide, carbonates of alkali metals such as lithium carbonate and sodium carbonate, carbonates of alkaline earth metals such as calcium carbonate, and It may be boric acid or the like. When the sintering aid is blended, the amount of the sintering aid added may be, for example, 1.5 to 25 parts by mass and 3.0 to 22 parts by mass with respect to 100 parts by mass of the boron nitride powder. It may be a department. By setting the amount of the sintering aid added within the above range, a boron nitride sintered body having a certain degree of strength and a high porosity can be smoothly obtained.
- the sintering temperature in the sintering step may be, for example, 1600 ° C. or higher, or 1700 ° C. or higher.
- the sintering temperature may be, for example, 2200 ° C. or lower, 2100 ° C. or lower, or 2000 ° C. or lower.
- the sintering time may be, for example, 1 hour or more, or 30 hours or less.
- the atmosphere at the time of sintering may be, for example, an atmosphere of an inert gas such as nitrogen, helium, and argon.
- a batch type furnace, a continuous type furnace, or the like can be used.
- the batch type furnace include a high frequency furnace, a muffle furnace, a tube furnace, an atmosphere furnace, and the like.
- the continuous furnace include a rotary kiln, a screw conveyor furnace, a tunnel furnace, a belt furnace, a pusher furnace, a koto-shaped continuous furnace, and the like. In this way, a block-shaped boron nitride sintered body can be obtained.
- the method for producing the complex of this example includes an impregnation step and a cutting step of impregnating a block-shaped (for example, a bulk body having a thickness of more than 2 mm) boron nitride sintered body with a resin composition.
- the resin composition may contain a main agent, a curing agent and a solvent from the viewpoint of improving fluidity and handleability.
- an inorganic filler, a silane coupling agent, a defoaming agent, a surface conditioner, a wet dispersant and the like may be contained.
- the resin component for example, one that becomes the resin mentioned in the above description of the complex by curing or semi-curing reaction can be used.
- the solvent include aliphatic alcohols such as ethanol and isopropanol, 2-methoxyethanol, 1-methoxyethanol, 2-ethoxyethanol, 1-ethoxy-2-propanol, 2-butoxyethanol and 2- (2-methoxyethoxy).
- Ether alcohols such as ethanol, 2- (2-ethoxyethoxy) ethanol, 2- (2-butoxyethoxy) ethanol, glycol ethers such as ethylene glycol monomethyl ether and ethylene glycol monobutyl ether, acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl
- ketones such as ketones and hydrocarbons such as toluene and xylene. One of these may be contained alone, or two or more thereof may be contained in combination.
- Impregnation is performed by adhering the resin composition to the boron nitride sintered body.
- the boron nitride sintered body may be immersed in the resin composition. It may be carried out under pressurization or depressurization conditions in the immersed state.
- the resin composition can be applied to the boron nitride sintered body to impregnate it. In this way, the pores of the boron nitride sintered body can be filled with the resin.
- the impregnation step may be performed in an impregnation device provided with a closed container.
- the pressure in the impregnating device may be increased to be higher than the atmospheric pressure and impregnated under pressurized conditions.
- the depressurization condition and the pressurization condition may be repeated a plurality of times.
- the impregnation step may be performed while heating.
- the resin composition impregnated in the pores of the boron nitride sintered body becomes a resin (cured product or semi-cured product) after curing or semi-curing proceeds or the solvent volatilizes.
- a composite having a boron nitride sintered body and a resin filled in its pores is obtained. Not all of the pores need to be filled with resin, and some of the pores may not be filled with resin.
- Boron nitride sintered bodies and complexes may contain both closed and open pores.
- the impregnation step there may be a curing step of curing the resin filled in the pores.
- the resin-filled composite is taken out from the impregnation device, and the resin is cured by heating and / or light irradiation depending on the type of resin (or a curing agent added as needed). Or semi-cured.
- the impregnation step may be performed under atmospheric pressure or reduced pressure conditions, impregnation under pressurized conditions, or a combination thereof.
- the pressure in the impregnation device when the impregnation step is carried out under reduced pressure conditions may be, for example, 1000 Pa or less, 500 Pa or less, 100 Pa or less, 50 Pa or less, or 30 Pa or less.
- the pressure in the impregnation device may be, for example, 1 MPa or more, 3 MPa or more, 10 MPa or more, or 30 MPa or more.
- the solution containing the resin composition may be heated.
- the viscosity of the solution can be adjusted and the impregnation of the resin can be promoted.
- the viscosity of the solution containing the resin composition at the time of impregnation may be, for example, 500 mPa ⁇ s or less.
- the nitride sintered body is kept immersed in a solution containing the resin composition for a predetermined time.
- the predetermined time may be, for example, 5 hours or more, or 10 hours or more.
- the impregnation step there may be a curing step of curing the resin filled in the pores.
- the resin-filled composite is taken out from the impregnation device, and the resin is cured by heating and / or light irradiation depending on the type of resin (or a curing agent added as needed). Or semi-cured.
- "Semi-hardening" also referred to as B stage
- B stage means that it can be further hardened by a subsequent hardening treatment. Utilizing the fact that it is in a semi-cured state, it may be temporarily pressure-bonded to an adherend such as a metal substrate and then heated to adhere to the adherend.
- the semi-cured product By further curing the semi-cured product, it can be in a "completely cured" (also referred to as C stage) state. Whether or not the resin is in a semi-cured state can be confirmed by, for example, a differential scanning calorimeter.
- the obtained resin impregnated body is cut using, for example, a wire saw.
- the wire saw may be, for example, a multi-cut wire saw or the like. ) Can be cut and prepared. In this way, a sheet-like complex can be obtained.
- a boron nitride sintered body may be obtained by hot pressing in which molding and sintering are performed at the same time.
- Example 1 ⁇ Preparation of Boron Nitride Sintered Body> Hexagonal boron nitride powder (oxygen content: 0.8% by mass, boron nitride purity: 99.0% by mass) having an average particle size of 8.0 ⁇ m is 40.0% by mass, and the average particle size is 13. Hexagonal boron nitride powder (oxygen content: 0.3% by mass, boron nitride purity: 99.0% by mass), which is 0 ⁇ m, is measured so as to be 60.0% by mass, and these are mixed to form a raw material powder. Was prepared.
- a sintering aid was prepared by blending powdered boric acid and calcium carbonate. In the preparation, 60 parts by mass of calcium carbonate was added to 100 parts by mass of boric acid. 14 parts by mass of a sintering aid and 10 parts by mass of a binder (polyvinyl alcohol (“Gosenol”, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.)) were blended with respect to 100 parts by mass of the raw material powder. The obtained compound was heated and stirred at 50 ° C. until it was dissolved, and then spheroidized at a drying temperature of 230 ° C. with a spray dryer. In this way, a spheroidized mixed powder was prepared. A rotary atomizer was used as the spheroidizing device of the spray dryer.
- the above mixed powder was filled in a cold isotropic pressure (CIP) device (manufactured by Kobe Steel, Ltd., trade name: ADW800) and compressed at a pressure of 30 MPa to prepare a molded product.
- CIP cold isotropic pressure
- the produced molded product was sintered by holding it at 2000 ° C. for 10 hours using a batch type high frequency furnace (manufactured by Fuji Dempa Kogyo Co., Ltd., trade name: FTH-300-1H).
- FTH-300-1H a batch type high frequency furnace
- the firing was carried out by adjusting the inside of the furnace under a nitrogen atmosphere while flowing nitrogen into the furnace in a standard state so that the flow rate was 10 L / min.
- the compressive elastic modulus at 20 ° C. was determined by the following procedure according to JIS K7181.
- the measurement was carried out under the conditions of a compression speed of 1 mm / min, a load cell of 100 kN, and 200 ° C. using a measuring device of a compression tester (trade name: Autograph AG-X manufactured by Shimadzu Corporation). The results are as shown in Table 1.
- the compressive strength at 200 ° C. was determined by the following procedure.
- the compressive strength was measured under the condition of a compression speed of 1 mm / min using a compression tester (trade name: Autograph AG-X manufactured by Shimadzu Corporation). The results are as shown in Table 1.
- H is the thermal conductivity (W / (m ⁇ K))
- A is the thermal diffusivity (m 2 / sec)
- B is the bulk density (kg / m 3 )
- C is the specific heat capacity. (J / (kg ⁇ K)) is shown.
- a xenon flash analyzer manufactured by NETZSCH, trade name: LFA447NanoFlash was used as the measuring device.
- the bulk density B was calculated from the volume and mass of the boron nitride sintered body.
- the specific heat capacity C was measured using a differential scanning calorimeter (manufactured by Rigaku Co., Ltd., device name: ThermoPlusEvo DSC8230).
- the results of thermal conductivity H and bulk density B are shown in Table 1.
- the orientation index [I (002) / I (100)] of the boron nitride sintered body was determined using an X-ray diffractometer (manufactured by Rigaku Co., Ltd., trade name: ULTIMA-IV).
- the measurement sample (boron nitride sintered body) set in the sample holder of the X-ray diffractometer was irradiated with X-rays to perform baseline correction. Then, the peak intensity ratio of the (002) plane and the (100) plane of boron nitride was calculated. This was defined as the orientation index [I (002) / I (100)].
- the results are as shown in Table 1.
- Epoxy resin manufactured by Mitsubishi Chemical Corporation, trade name: Epicoat 807
- curing agent manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Acmex H-84B
- the boron nitride sintered body was immersed in the resin composition containing the above, and the boron nitride sintered body was impregnated with the resin composition. After impregnation, the resin was semi-cured by heating at a temperature of 150 ° C. for 60 minutes under atmospheric pressure, and cooled to room temperature (25 ° C.) to prepare a complex (before processing).
- the semi-cured product layer constituting the surface portion of the complex was cut and removed, and then the complex was cut with a multi-cut wire saw to obtain a complex sheet having a thickness of 0.4 mm.
- the filling rate of the resin in the complex sheet was 94.0% by volume. This content was determined by the following procedure.
- the filling rate of the resin in the complex was determined by the following formula (4) from the bulk density and the theoretical density before and after the complex was produced.
- Resin filling rate in the composite ((composite bulk density-boron nitride sintered bulk density) / (complex theoretical density-boron nitride sintered bulk density)) x 100. ⁇ ⁇ (4)
- Theoretical density of composite true density of boron nitride sintered body + true density of resin x (1-bulk density of boron nitride sintered body / true density of boron nitride sintered body) ... (5)
- the bulk density of the boron nitride sintered body conforms to the measurement method of density and specific gravity by geometric measurement of JIS Z 8807: 2012, and is a sheet-shaped (rectangular) boron nitride sintered body (composite). It was obtained from the volume calculated from the length of each side (measured by a caliper) and the mass measured by an electronic balance (see item 9 of JIS Z 8807: 2012).
- the true density of the boron nitride sintered body and the resin conforms to the method of measuring the density and specific gravity by the gas substitution method of JIS Z 8807: 2012, and the volume of the boron nitride sintered body and the resin measured using a dry automatic densitometer. (Refer to equations (14) to (17) in paragraph 11 of JIS Z 8807: 2012).
- the resin content in the complex sheet is as shown in Table 2.
- the content (mass%) of this resin is the mass ratio of the resin to the entire complex.
- the resin content was measured by burning the resin from the complex.
- the mass of the resin was calculated from the mass difference between the boron nitride sintered body and the composite after the resin was burnt off, and the mass of this resin was divided by the mass of the composite.
- the cohesive fracture portion is the area of the portion of the adhesive surface of the composite that has been adhered to the copper foil and that the composite has broken.
- Example 2 Boron nitride firing was performed in the same procedure as in Example 1 except that when the molded product was produced, the mixed powder was compressed at a pressure of 35 MPa with a cold isotropic pressure (CIP) device to obtain the molded product. Bounds and complexes were made. Each measurement of the boron nitride sintered body and the composite was carried out in the same manner as in Example 1. The results are as shown in Tables 1 and 2.
- Example 3 Boron nitride sintering was performed in the same procedure as in Example 1 except that the mixed powder was compressed at a pressure of 90 MPa with a cold isotropic pressure (CIP) device to obtain the molded product when the molded product was produced. Body and complex were made. Each measurement of the boron nitride sintered body and the composite was carried out in the same manner as in Example 1. The results are as shown in Tables 1 and 2.
- Example 4 Boron nitride sintering was performed in the same procedure as in Example 1 except that the mixed powder was compressed at a pressure of 10 MPa with a cold isotropic pressure (CIP) device when the molded product was produced to obtain the molded product. Body and complex were made. Each measurement of the boron nitride sintered body and the composite was carried out in the same manner as in Example 1. The results are as shown in Tables 1 and 2.
- Example 5 Amorphous boron nitride powder (oxygen content: 1.8% by mass, boron nitride purity: 97.2% by mass) having an average particle size of 0.8 ⁇ m is 40.0% by mass, and an average particle size is 13.0 ⁇ m.
- Hexagonal boron nitride powder (oxygen content: 0.3% by mass, boron nitride purity: 99.0% by mass) was measured so as to be 60.0% by mass, and blended to prepare a raw material powder. ..
- a boron nitride sintered body and a complex were prepared in the same procedure as in Example 1 except that this raw material powder was used. Each measurement of the boron nitride sintered body and the composite was carried out in the same manner as in Example 1. The results are as shown in Tables 1 and 2.
- Example 6 The boron nitride sintered body and the composite were prepared in the same procedure as in Example 1 except that the method for producing the molded product was changed from cold isotropic pressure (CIP) to mold molding (molding pressure: 50 MPa). Made. Each measurement of the boron nitride sintered body and the composite was carried out in the same manner as in Example 1. The results are as shown in Tables 1 and 2.
- Example 7 The boron nitride sintered body and the composite were prepared in the same procedure as in Example 1 except that the method for producing the molded product was changed from cold isotropic pressure (CIP) to mold molding (molding pressure: 15 MPa). Made. Each measurement of the boron nitride sintered body and the composite was carried out in the same manner as in Example 1. The results are as shown in Tables 1 and 2.
- Example 8 A mixed powder was prepared by stirring the raw material powder and the sintering aid using a Henschel mixer without performing the spheroidizing treatment with a spray dryer.
- a boron nitride sintered body and a composite were prepared in the same procedure as in Example 1 except that a molded product was produced by a cold isotropic pressurizing device using this mixed powder.
- Each measurement of the boron nitride sintered body and the composite was carried out in the same manner as in Example 1. The results are as shown in Tables 1 and 2.
- Example 9 Same as Example 8 except that the spheroidizing treatment by the spray dryer was not performed and the molded product was produced by mold molding (molding pressure: 30 MPa) instead of the cold isotropic pressurizing device. In the procedure, a boron nitride sintered body and a composite were prepared. Each measurement of the boron nitride sintered body and the composite was carried out in the same manner as in Example 1. The results are as shown in Tables 1 and 2.
- Hexagonal boron nitride powder (oxygen content: 0.3% by mass, boron nitride purity: 99.1% by mass) having an average particle size of 18.0 ⁇ m is 40.0% by mass, and the average particle size is 13.
- Hexagonal boron nitride powder (oxygen content: 0.3% by mass, boron nitride purity: 99.0% by mass), which is 0 ⁇ m, is measured so as to be 60.0% by mass, and these are mixed and used as a raw material.
- a powder was prepared.
- a boron nitride sintered body and a complex were prepared in the same procedure as in Example 1 except that this raw material powder was used.
- Each measurement of the boron nitride sintered body and the composite was carried out in the same manner as in Example 1. The results are as shown in Tables 1 and 2.
- Example 2 Boron nitride sintered body and composite were obtained by the same procedure as in Example 1 except that the molded product was obtained by compressing it with a cold isotropic pressure (CIP) device at a pressure of 150 MPa when producing the molded product. The body was made. Each measurement of the boron nitride sintered body and the composite was carried out in the same manner as in Example 1. The results are as shown in Tables 1 and 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Polymers & Plastics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Power Engineering (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Ceramic Products (AREA)
Abstract
窒化ホウ素粒子と気孔とを含む窒化ホウ素焼結体であって、圧縮弾性率が0.8GPa以下である、窒化ホウ素焼結体を提供する。窒化ホウ素焼結体と、窒化ホウ素焼結体の気孔の少なくとも一部に充填された樹脂と、含む複合体を提供する。
Description
本開示は、窒化ホウ素焼結体及び複合体、並びに放熱部材に関する。
パワーデバイス、トランジスタ、サイリスタ、CPU等の部品においては、使用時に発生する熱を効率的に放熱することが求められる。このような要請から、従来、電子部品を実装するプリント配線板の絶縁層の高熱伝導化を図ったり、電子部品又はプリント配線板を、電気絶縁性を有する熱インターフェース材(Thermal Interface Materials)を介してヒートシンクに取り付けたりすることが行われてきた。このような絶縁層及び熱インターフェース材には、樹脂と窒化ホウ素等のセラミックスとで構成される複合体(放熱部材)が用いられる。
このような複合体として、多孔性のセラミックス成形体に樹脂を含浸させた複合体を用いることが検討されている。窒化ホウ素は、潤滑性、高熱伝導性、及び絶縁性等を有していることから、窒化ホウ素を含むセラミックスを放熱部材に用いることが検討されている。特許文献1では、配向度及び黒鉛化指数を所定の範囲にして、熱伝導率に優れつつ熱伝導率の異方性を低減する技術が提案されている。
近年の電子デバイスは高集積化が進んでいる。これに伴って、電子デバイスを構成する各種部品は、高い位置精度で搭載されることが求められる。このような観点から、各種部品は、他の部品との接着性に優れることが求められている。
そこで、本開示は、他部材との密着性に優れる窒化ホウ素焼結体を提供する。また、本開示は、他部材との接着性に優れる複合体を提供する。また、本開示では、上述の複合体を備えることによって、十分に高い信頼性を有する放熱部材を提供する。
本開示は、一つの側面において、窒化ホウ素粒子と気孔とを含む窒化ホウ素焼結体であって、圧縮弾性率が0.8GPa以下である、窒化ホウ素焼結体を提供する。このような窒化ホウ素焼結体は、例えば、対向する一対の部材間に挟んで押圧されると、適度に変形するため、当該一対の部材との密着性に優れる。また、上記窒化ホウ素焼結体は、気孔を含むことから、樹脂を含浸しやすい。樹脂を含浸させて複合体とし、この複合体を対向する一対の部材間に挟んで押圧して接合すると、窒化ホウ素焼結体の圧縮弾性率が低いため、容易に圧縮変形する。変形すると複合体に含浸されていた樹脂が染み出す。染み出した樹脂の作用によって、複合体を他部材に強固に接着することができる。このように、上記窒化ホウ素焼結体は、接着性に優れる複合体を簡便に製造することができる。
上記焼結体の圧縮強さは1.5MPa以上であってよい。このような圧縮強さを有することによって、部材として用いたときの破損を抑制することができる。
上記窒化ホウ素焼結体の気孔率は40~75体積%であってよい。これによって、窒化ホウ素焼結体の強度と熱伝導率を維持しつつ、樹脂の含浸量を十分に大きくすることができる。このような窒化ホウ素焼結体は、優れた絶縁性と接着性を高い水準で両立できる複合体を形成することができる。
上記窒化ホウ素焼結体のかさ密度は600~1400kg/m3であってよい。これによって、窒化ホウ素焼結体の強度と熱伝導率を維持しつつ、樹脂の含浸量を十分に大きくすることができる。このような窒化ホウ素焼結体は、優れた絶縁性と接着性を高い水準で両立できる複合体を形成することができる。
上記窒化ホウ素焼結体の配向性指数は20以下であってよい。これによって、熱伝導率の異方性を十分に低減することができる。
本開示は、一つの側面において、上述のいずれかの窒化ホウ素焼結体と、当該窒化ホウ素焼結体の気孔の少なくとも一部に充填された樹脂と、含む複合体を提供する。この複合体は、上述の窒化ホウ素焼結体と樹脂とを含む。この複合体を対向する一対の部材間に挟んで押圧して接合すると、窒化ホウ素焼結体の圧縮弾性率が低いため、容易に圧縮変形する。変形すると複合体に含浸されていた樹脂が染み出す。染み出した樹脂の作用によって、複合体を他部材に強固に接着することができる。したがって、この複合体は、他部材との接着性に優れる。
本開示は、一つの側面において、上述の複合体を有する放熱部材を提供する。この放熱部材は上述の複合体を有することから、接着性に優れる。
本開示によれば、他部材との密着性に優れる窒化ホウ素焼結体を提供することができる。また、本開示は、他部材との接着性に優れる複合体を提供することができる。また、本開示では、上述の複合体を備えることによって、十分に高い信頼性を有する放熱部材を提供することができる。
以下、場合により図面を参照して、本開示の実施形態を説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。
一実施形態に係る窒化ホウ素焼結体は、窒化ホウ素の一次粒子同士が焼結して構成される窒化ホウ素粒子と気孔とを含有する。窒化ホウ素焼結体は窒化ホウ素粒子で構成されてよい。窒化ホウ素焼結体の圧縮弾性率は、0.8GPa以下であり、0.7GPa以下であってよく、0.6GPa以下であってもよい。圧縮弾性率が小さい窒化ホウ素焼結体は、押圧すると容易に圧縮変形する。このため、他部材との密着性に優れる。また、窒化ホウ素焼結体は気孔を含むため、樹脂が含浸されやすい。したがって、樹脂を多く含浸する複合体を容易に製造することができる。
窒化ホウ素焼結体の圧縮弾性率は、その形状を保持する観点から、0.02GPa以上であってよく、0.2GPa以上であってもよい。これによって、窒化ホウ素焼結体又はこれを用いて得られる複合体を対向する一対の部材間に挟んで押圧して接合したときに、適度に変形して部材との密着性を高くすることができる。圧縮弾性率は、株式会社島津製作所製の精密万能試験機(商品名:オートグラフAG-X)を用い、JIS K7181に準拠して測定することができる。窒化ホウ素焼結体の圧縮弾性率の一例は、0.02~0.8GPaである。
窒化ホウ素焼結体の圧縮強さは、例えば、1.5MPa以上であってよく、3.0MPa以上であってよく、5.0MPa以上であってもよい。このような圧縮強さを有することによって、部材として用いたときの破損を抑制することができる。圧縮強さは、圧縮試験機によって測定することができる。窒化ホウ素焼結体の圧縮強さは20MPa以下であってよく、15MPa以下であってよく、12MPa以下であってよく、10MPa以下であってよい。圧縮強さも、株式会社島津製作所製の精密万能試験機(商品名:オートグラフAG-X)を用いて測定することができる。窒化ホウ素焼結体の圧縮強さの一例は、1.5~20MPaである。
窒化ホウ素焼結体に含まれる気孔の平均細孔径は10μm未満であってよい。気孔のサイズを小さくすることによって、窒化ホウ素粒子の一次粒子同士の接触面積を十分に大きくすることができる。したがって、気孔率を高くしても、強度を比較的高くすることができる。
気孔の平均細孔径は、水銀ポロシメーターを用い、0.5psiaから60,000psiaまで圧力を増やしながら加圧したときの細孔径分布に基づいて求められる。横軸を細孔径、縦軸を累積細孔容積としたときに、累積細孔容積が全細孔容積の50%に達するときの細孔径が平均細孔径である。水銀ポロシメーターとしては、株式会社島津製作所製のものを用いることができる。
窒化ホウ素焼結体の気孔率、すなわち、窒化ホウ素焼結体における気孔の体積比率は、40~75体積%であってよく、45~70体積%であってよい。気孔率が大きくなり過ぎると窒化ホウ素焼結体の強度及び熱伝導率が低下する傾向にある。一方、気孔率が小さくなり過ぎると複合体を製造したときの樹脂の含有量が減少する傾向にある。
気孔率は、窒化ホウ素焼結体の体積及び質量から、かさ密度[B(kg/m3)]を算出し、このかさ密度と窒化ホウ素の理論密度[2280(kg/m3)]とから、下記式(1)によって求めることができる。なお、複合体に含まれる窒化ホウ素焼結体の気孔率を測定する場合には、複合体に含まれる樹脂を燃焼させて除去することで測定することができる。
気孔率(体積%)=[1-(B/2280)]×100 (1)
気孔率(体積%)=[1-(B/2280)]×100 (1)
かさ密度Bは、600~1400kg/m3であってよく、800~1200kg/m3であってもよい。かさ密度Bが小さくなり過ぎると窒化ホウ素焼結体の強度が低下する傾向にある。一方、かさ密度Bが大きくなり過ぎると樹脂の含浸量が減少して複合体の絶縁性が低下する傾向にある。
窒化ホウ素焼結体の熱伝導率は、10W/(m・K)以上であってよく、15W/(m・K)以上であってよく、20W/(m・K)以上であってよく、25W/(m・K)以上であってもよい。熱伝導率が高い窒化ホウ素焼結体を用いることによって、放熱性能に十分に優れる放熱部材を得ることができる。熱伝導率(H)は、以下の計算式(2)で求めることができる。熱伝導率(H)は、70W/(m・K)以下であってよく、60W/(m・K)以下であってよく、50W/(m・K)以下であってよい。熱伝導率(H)の一例は、10~70W/(m・K)である。
H=A×B×C (2)
H=A×B×C (2)
式(2)中、Hは熱伝導率(W/(m・K))、Aは熱拡散率(m2/sec)、Bはかさ密度(kg/m3)、及び、Cは比熱容量(J/(kg・K))を示す。熱拡散率Aは、レーザーフラッシュ法によって測定することができる。かさ密度Bは、窒化ホウ素焼結体の体積及び質量から求めることができる。比熱容量Cは、示差走査熱量計を用いて測定することができる。
窒化ホウ素焼結体は、窒化ホウ素以外の成分を含んでいてもよい。窒化ホウ素焼結体における窒化ホウ素の含有量は、90質量%以上であってよく、95質量%以上であってよく、98質量%以上であってよい。
窒化ホウ素焼結体は、図1に示すようなシート状(薄板形状)であってよい。シート状の窒化ホウ素焼結体10は、厚みt0が小さいため、樹脂組成物の含浸を円滑に行うことができる。これによって、窒化ホウ素焼結体の気孔に樹脂が十分に充填され、絶縁性に優れる複合体を得ることができる。窒化ホウ素焼結体10の厚みt0は、2mm未満であってよく、1mm未満であってよく、0.5mm未満であってもよい。成形体作製の容易性の観点から、窒化ホウ素焼結体10の厚みt0は、0.1mm以上であってよく、0.2mm以上であってもよい。窒化ホウ素焼結体10の主面10aの面積は、25mm2以上であってよく、100mm2以上であってよく、500mm2以上であってよく、800mm2以上であってよく、1000mm2以上であってもよい。
窒化ホウ素焼結体の形状は図1の形状に限定されず、例えば、円盤型のシート状であってもよいし、主面10aが湾曲したC型のシート状であってもよい。また、ブロック状の窒化ホウ素焼結体を切断及び/又は研磨して、図1のようなシート状に加工してもよい。ただし、切断等の加工を行うと、材料ロスが発生する。このため、シート状の成形体を用いてシート状の窒化ホウ素焼結体を作製すれば材料ロスを低減することができる。これによって、窒化ホウ素焼結体及び複合体の歩留まりを向上することができる。なお、ブロック状の窒化ホウ素焼結体は、例えば、多面体であるときに、全ての辺が相応の長さを有しており、シート状の窒化ホウ素焼結体よりも大きな厚みを有する。すなわち、ブロック状とは、切断することで複数のシート状(薄板状)のものに分割できるような形状をいう。
窒化ホウ素焼結体における窒化ホウ素結晶の配向性指数は、20以下であってよく、18以下であってよく、15以下であってよい。これによって、熱伝導性の異方性を十分に低減することができる。したがって、窒化ホウ素焼結体10のようにシート状の場合、厚み方向に沿う熱伝導率を十分に高くすることができる。窒化ホウ素焼結体10の厚み方向に沿う熱伝導率が上述の値であることが好ましい。窒化ホウ素焼結体の配向性指数は、0.5以上であってもよいし、3以上であってもよいし、5以上であってもよい。本開示における配向性指数は、窒化ホウ素結晶の配向度を定量化するための指標である。配向性指数は、X線回折装置で測定される窒化ホウ素の(002)面と(100)面のピーク強度比[I(002)/I(100)]で算出することができる。
一実施形態に係る複合体は、窒化ケイ素焼結体と樹脂の複合体であり、上述の窒化ホウ素焼結体と窒化ホウ素焼結体の気孔の少なくとも一部に充填された樹脂とを有する。樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、シアネート樹脂、シリコーンゴム、アクリル樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンエーテル、ポリフェニレンサルファイド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド樹脂、マレイミド変性樹脂、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、AAS(アクリロニトリル-アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂、ポリグリコール酸樹脂、ポリフタルアミド、ポリアセタール等を用いることができる。これらのうちの1種を単独で含んでもよいし、2種以上を組み合わせて含んでもよい。
複合体がプリント配線板の絶縁層に用いられる場合、耐熱性及び回路への接着強度向上の観点から、樹脂はエポキシ樹脂を含んでよい。複合体が熱インターフェース材に用いられる場合、耐熱性、柔軟性及びヒートシンク等への密着性向上の観点から、樹脂はシリコーン樹脂を含んでよい。樹脂は硬化物(Cステージ状態)であってもよいし、半硬化物(Bステージ状態)であってもよい。
複合体における窒化ホウ素粒子の含有量は、複合体の全体積を基準として、25~65体積%であってよく、39~48体積%であってもよい。複合体における脂組(半硬化物と硬化物の合計)の含有量は、複合体の全体積を基準として、35~75体積%であってよく、52~61体積%であってもよい。このような割合で窒化ホウ素粒子及び樹脂を含む複合体は、高い接着性と熱伝導率を高水準で両立することができる。
複合体における樹脂(半硬化物と硬化物の合計)の含有量は、複合体の全質量を基準として、10~70質量%であってよく、10~60質量%であってよく、20~60質量%であってよく、20~55質量%であってよく25~55質量%であってよい。このような割合で樹脂を含む複合体は、高い接着性と熱伝導率を高水準で両立することができる。複合体における樹脂の含有量は、複合体を加熱して樹脂を分解して除去し、加熱前後の質量差から樹脂の質量を算出することによって求めることができる。
複合体における樹脂の充填率は、80体積%以上であってよく、90体積%以上であってよく、92体積%以上であってもよい。樹脂の充填率は、窒化ホウ素焼結体における全ての気孔のうち、樹脂(半硬化物+硬化物)が充填されている気孔の体積比率を示している。
複合体における気孔率は、20体積%以下であってよく、10体積%以下であってよく、8体積%以下であってよく、6体積%以下であってよく、5体積%以下であってよく、4体積%以下であってよい。これによって高い接着性と高い絶縁性を十分に高い水準で両立することができる。
複合体は、窒化ホウ素焼結体及びその気孔中に充填された樹脂に加えて、その他の成分をさらに含有してもよい。その他の成分としては、硬化剤、無機フィラー、シランカップリング剤、消泡剤、表面調整剤、湿潤分散剤等が挙げられる。無機フィラーは、酸化アルミニウム、酸化ケイ素、酸化亜鉛、窒化ケイ素、窒化アルミニウム及び水酸化アルミニウムからなる群より選ばれる1種又は2種以上を含んでよい。これによって、複合体の熱伝導性を一層向上することができる。
複合体及び放熱シートは、窒化ホウ素焼結体と同様に、図1に示すようなシート状(薄板形状)であってよい。シート状の複合体20(放熱部材20)は、厚みが小さいため、電子デバイス等の放熱部材として好適に用いることができる。また、樹脂組成物が十分に含浸されている。複合体20(放熱部材20)の厚みtは、2mm未満であってよく、1mm未満であってよく、0.5mm未満であってもよい。ある程度の強度を維持する観点から、複合体20(放熱部材20)の厚みtは、0.1mm以上であってよく、0.2mm以上であってもよい。複合体20(放熱部材20)の主面20a,20bの面積は、それぞれ、25mm2以上であってよく、100mm2以上であってよく、500mm2以上であってよく、800mm2以上であってよく、1000mm2以上であってもよい。
本実施形態の複合体は、上述の窒化ホウ素焼結体と樹脂とを含む。この複合体を対向する一対の部材間に挟んで押圧して接合すると、窒化ホウ素焼結体の圧縮弾性率が低いため、容易に圧縮変形する。変形すると複合体に含浸されていた樹脂が染み出す。染み出した樹脂の作用によって、複合体を他部材に強固に接着することができる。したがって、この複合体は、他部材との接着性に優れる。したがって、複合体は十分に高い信頼性を有する。
窒化ホウ素焼結体、複合体及び放熱部材の製造方法の例を以下に説明する。なお、以下の製造方法には、上述の窒化ホウ素焼結体、複合体及び放熱部材の説明内容が適用される。
<窒化ホウ素焼結体の製造方法>
本例の製造方法は、窒化ホウ素粉末を焼結して、ブロック状の窒化ホウ素焼結体を得る焼結工程を有する。原料粉末としては、例えば、平均粒径が0.5~10μmであるアモルファス窒化ホウ素粉末、及び、平均粒径が3.0~40μmである六方晶窒化ホウ素粉末が挙げられる。これらの粉末を、ヘンシェルミキサー等を用いて混合してもよいし、ディスパライザーを用いて水又はエタノール溶液中、スラリー状にして混合してもよい。このような窒化ホウ素粉末を含むスラリーを、噴霧乾燥機等で球状化処理し、成形した後に焼結して、窒化ホウ素焼結体を得てもよい。成形には、金型を用いてもよく、冷間等方加圧(cold isostatic pressing:CIP)法を用いてもよい。
本例の製造方法は、窒化ホウ素粉末を焼結して、ブロック状の窒化ホウ素焼結体を得る焼結工程を有する。原料粉末としては、例えば、平均粒径が0.5~10μmであるアモルファス窒化ホウ素粉末、及び、平均粒径が3.0~40μmである六方晶窒化ホウ素粉末が挙げられる。これらの粉末を、ヘンシェルミキサー等を用いて混合してもよいし、ディスパライザーを用いて水又はエタノール溶液中、スラリー状にして混合してもよい。このような窒化ホウ素粉末を含むスラリーを、噴霧乾燥機等で球状化処理し、成形した後に焼結して、窒化ホウ素焼結体を得てもよい。成形には、金型を用いてもよく、冷間等方加圧(cold isostatic pressing:CIP)法を用いてもよい。
上述のそれぞれの窒化ホウ素粉末の平均粒径は、レーザー回折光散乱法による粒度分布測定における、累積粒度分布の累積値50%の粒径である。粒度分布測定機としては、例えば「MT3300EX」(日機装社製)が挙げられる。測定に際し、溶媒には水、分散剤としてはヘキサメタリン酸を用い、前処理として、30秒間、ホモジナイザーを用いて20Wの出力をかけて分散処理させる。水の屈折率には1.33、窒化ホウ素粉末の屈折率については1.80を用いる。一回当たりの測定時間は30秒間である。
窒化ホウ素粉末の焼結の際には、焼結助剤を用いてもよい。焼結助剤は、例えば、酸化イットリア、酸化アルミナ及び酸化マグネシウム等の希土類元素の酸化物、炭酸リチウム及び炭酸ナトリウム等のアルカリ金属の炭酸塩、炭酸カルシウム等のアルカリ土類金属の炭酸塩、並びにホウ酸等であってよい。焼結助剤を配合する場合、焼結助剤の添加量は、例えば、窒化ホウ素粉末100質量部に対して、例えば、1.5~25質量部であってよく、3.0~22質量部であってもよい。焼結助剤の添加量を上記範囲内とすることで、ある程度の強度を有しつつ、高い気孔率を有する窒化ホウ素焼結体を円滑に得ることができる。
焼結工程の焼結温度は、例えば、1600℃以上であってよく、1700℃以上であってもよい。焼結温度は、例えば、2200℃以下であってよく、2100℃以下であってよく、2000℃以下であってもよい。焼結時間は、例えば、1時間以上であってよく、30時間以下であってもよい。焼結時の雰囲気は、例えば、窒素、ヘリウム、及びアルゴン等の不活性ガス雰囲気下であってよい。
焼結には、例えば、バッチ式炉及び連続式炉等を用いることができる。バッチ式炉としては、例えば、高周波炉、マッフル炉、管状炉、及び雰囲気炉等を挙げることができる。連続式炉としては、例えば、ロータリーキルン、スクリューコンベア炉、トンネル炉、ベルト炉、プッシャー炉、及び琴形連続炉等を挙げることができる。このようにして、ブロック状の窒化ホウ素焼結体を得ることができる。
<複合体の製造方法>
本例の複合体の製造方法は、ブロック状(例えば、厚みが2mm超のバルク体である。)の窒化ホウ素焼結体に樹脂組成物を含浸させる含浸工程と切断工程とを有する。樹脂組成物は、流動性及び取り扱い性向上の観点から、主剤、硬化剤及び溶剤を含有してもよい。また、これらの他に、無機フィラー、シランカップリング剤、消泡剤、表面調整剤、湿潤分散剤等を含有してもよい。
本例の複合体の製造方法は、ブロック状(例えば、厚みが2mm超のバルク体である。)の窒化ホウ素焼結体に樹脂組成物を含浸させる含浸工程と切断工程とを有する。樹脂組成物は、流動性及び取り扱い性向上の観点から、主剤、硬化剤及び溶剤を含有してもよい。また、これらの他に、無機フィラー、シランカップリング剤、消泡剤、表面調整剤、湿潤分散剤等を含有してもよい。
樹脂成分としては、例えば硬化又は半硬化反応によって上述の複合体の説明で挙げた樹脂となるものを用いることができる。溶剤としては、例えば、エタノール、イソプロパノール等の脂肪族アルコール、2-メトキシエタノール、1-メトキシエタノール、2-エトキシエタノール、1-エトキシ-2-プロパノール、2-ブトキシエタノール、2-(2-メトキシエトキシ)エタノール、2-(2-エトキシエトキシ)エタノール、2-(2-ブトキシエトキシ)エタノール等のエーテルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル等のグリコールエーテル、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン等のケトン、トルエン、キシレン等の炭化水素が挙げられる。これらのうちの1種を単独で含んでもよいし、2種以上を組み合わせて含んでもよい。
含浸は、窒化ホウ素焼結体に樹脂組成物を付着させて行う。例えば、窒化ホウ素焼結体を樹脂組成物に浸漬して行ってよい。浸漬した状態で加圧又は減圧条件として行ってもよい。また例えば、厚みが2μm以下のシート状である窒化ホウ素焼結体の場合、窒化ホウ素焼結体に樹脂組成物を塗布して含浸させることもできる。このようにして、窒化ホウ素焼結体の気孔に樹脂を充填することができる。
含浸工程は、密閉容器を備える含浸装置内を用いて行ってもよい。一例として、含浸装置内で減圧条件にて含浸を行った後、含浸装置内の圧力を上げて大気圧よりも高くして加圧条件で含浸を行ってもよい。このように減圧条件と加圧条件の両方を行うことによって、窒化ホウ素焼結体の気孔に樹脂を十分に充填することができる。減圧条件と加圧条件とを複数回繰り返し行ってもよい。含浸工程は、加温しながら行ってもよい。窒化ホウ素焼結体の気孔に含浸した樹脂組成物は、硬化又は半硬化が進行したり、溶剤が揮発したりした後、樹脂(硬化物又は半硬化物)となる。このようにして、窒化ホウ素焼結体とその気孔に充填された樹脂とを有する複合体が得られる。気孔の全てに樹脂が充填されている必要はなく、一部の気孔には樹脂が充填されていなくてもよい。窒化ホウ素焼結体及び複合体は、閉気孔と開気孔の両方を含んでいてよい。
含浸工程の後に、気孔内に充填された樹脂を硬化させる硬化工程を有していてもよい。硬化工程では、例えば、含浸装置から樹脂が充填された複合体を取り出し、樹脂(又は必要に応じて添加される硬化剤)の種類に応じて、加熱、及び/又は光照射により、樹脂を硬化又は半硬化させる。
含浸工程は、大気圧下又は減圧条件下での含浸、加圧条件下での含浸、或いはこれらを組み合わせて行ってもよい。減圧条件下で含浸工程を実施する場合における含浸装置内の圧力は、例えば、1000Pa以下、500Pa以下、100Pa以下、50Pa以下、又は30Pa以下であってよい。加圧条件下で含浸工程を実施する場合における含浸装置内の圧力は、例えば、1MPa以上、3MPa以上、10MPa以上、又は30MPa以上であってよい。
含浸工程において、樹脂組成物を含む溶液を加熱してもよい。上記溶液を下記の温度範囲で加熱することによって、溶液の粘度が調整され樹脂の含浸を促進することができる。含浸させる際の樹脂組成物を含む溶液の粘度は、例えば、500mPa・s以下であってよい。このような粘度を有する溶液を用いることによって、樹脂組成物を窒化ホウ素焼結体に十分に含浸させることができる。
含浸工程では、樹脂組成物を含む溶液に窒化物焼結体を浸漬した状態で所定の時間保持する。当該所定の時間は、例えば、5時間以上であってよく、10時間以上であってもよい。
含浸工程の後に、気孔内に充填された樹脂を硬化させる硬化工程を有していてもよい。硬化工程では、例えば、含浸装置から樹脂が充填された複合体を取り出し、樹脂(又は必要に応じて添加される硬化剤)の種類に応じて、加熱、及び/又は光照射により、樹脂を硬化又は半硬化させる。「半硬化」(Bステージともいう)とは、その後の硬化処理によって、更に硬化させることができるものをいう。半硬化の状態であることを利用し金属基板等の被着体へ仮圧着して、その後加熱することによって被着体と接着してもよい。半硬化物にさらに硬化処理を施すことで「完全硬化」(Cステージともいう)の状態となり得る。樹脂が半硬化の状態にあるか否かは、例えば、示差走査熱量計によって確認することができる。
切断工程では、得られた樹脂含浸体を、例えばワイヤーソーを用いて切断する。ワイヤーソーは、例えば、マルチカットワイヤーソー等であってよい。)で切断して調製することができる。このようにして、シート状の複合体を得ることができる。
窒化ホウ素焼結体及び複合体の製造方法の例を説明したが、これらの製造方法は上述の例に限定されない。
以上のとおり、幾つかの実施形態を説明したが、本開示は上記実施形態に何ら限定されるものではない。例えば、焼結工程では、成形と焼結を同時に行うホットプレスによって窒化ホウ素焼結体を得てもよい。
実施例及び比較例を参照して本開示の内容をより詳細に説明するが、本開示は下記の実施例に限定されるものではない。
(実施例1)
<窒化ホウ素焼結体の作製>
平均粒径が8.0μmである六方晶窒化ホウ素粉末(酸素含有量:0.8質量%、窒化ホウ素純度:99.0質量%)が40.0質量%、及び、平均粒径が13.0μmである六方晶窒化ホウ素粉末(酸素含有量:0.3質量%、窒化ホウ素純度:99.0質量%)が60.0質量%となるようにそれぞれ測り取り、これらを配合して原料粉末を調製した。
<窒化ホウ素焼結体の作製>
平均粒径が8.0μmである六方晶窒化ホウ素粉末(酸素含有量:0.8質量%、窒化ホウ素純度:99.0質量%)が40.0質量%、及び、平均粒径が13.0μmである六方晶窒化ホウ素粉末(酸素含有量:0.3質量%、窒化ホウ素純度:99.0質量%)が60.0質量%となるようにそれぞれ測り取り、これらを配合して原料粉末を調製した。
粉末状のホウ酸と炭酸カルシウムを配合して焼結助剤を調製した。調製にあたっては、100質量部のホウ酸に対して、炭酸カルシウムを60質量部配合した。原料粉末100質量部に対して焼結助剤を14質量部、バインダ(ポリビニルアルコール(「ゴーセノール」、日本合成化学工業株式会社製))を10質量部配合した。得られた配合物を、溶解するまで50℃で加熱撹拌した後、噴霧乾燥機にて乾燥温度230℃で球状化処理を行った。このようにして、球状化処理された混合粉末を調製した。なお、噴霧乾燥機の球状化装置としては、回転式アトマイザーを使用した。
上記混合粉末を、冷間等方加圧(CIP)装置(株式会社神戸製鋼所製、商品名:ADW800)に充填し、30MPaの圧力で圧縮し成形体を作製した。作製した成形体を、バッチ式高周波炉(富士電波工業株式会社製、商品名:FTH-300-1H)を用いて2000℃で10時間保持して焼結した。これによって、ブロック状の窒化物焼結体を得た。なお、焼成は、炉内に窒素を標準状態で流量が10L/分となるように流しながら、炉内を窒素雰囲気下に調整して行った。
<圧縮弾性率の測定>
JIS K7181に準拠して、20℃における圧縮弾性率を以下の手順で求めた。窒化ホウ素焼結体を加工して四角柱形状(縦×横×厚み=10mm×10mm×4mm)の測定用試料を作製した。圧縮試験機(株式会社島津製作所製 商品名:オートグラフAG-X)の測定装置を用いて、圧縮速度1mm/min、ロードセル100kN、200℃の条件で測定を行った。結果は表1に示すとおりであった。
JIS K7181に準拠して、20℃における圧縮弾性率を以下の手順で求めた。窒化ホウ素焼結体を加工して四角柱形状(縦×横×厚み=10mm×10mm×4mm)の測定用試料を作製した。圧縮試験機(株式会社島津製作所製 商品名:オートグラフAG-X)の測定装置を用いて、圧縮速度1mm/min、ロードセル100kN、200℃の条件で測定を行った。結果は表1に示すとおりであった。
<圧縮強さの測定>
200℃における圧縮強さを以下の手順で求めた。窒化ホウ素焼結体を加工して四角柱形状(縦×横×厚み=10mm×10mm×0.3~4.0mm)の測定試料を作製した。圧縮試験機(島津製作所製 商品名:オートグラフAG-X)を用いて、圧縮速度1mm/minの条件で圧縮強さの測定を行った。結果は表1に示すとおりであった。
200℃における圧縮強さを以下の手順で求めた。窒化ホウ素焼結体を加工して四角柱形状(縦×横×厚み=10mm×10mm×0.3~4.0mm)の測定試料を作製した。圧縮試験機(島津製作所製 商品名:オートグラフAG-X)を用いて、圧縮速度1mm/minの条件で圧縮強さの測定を行った。結果は表1に示すとおりであった。
<熱伝導率の測定>
窒化ホウ素焼結体の厚さ方向の熱伝導率(H)を、以下の計算式(2)で求めた。
H=A×B×C (2)
窒化ホウ素焼結体の厚さ方向の熱伝導率(H)を、以下の計算式(2)で求めた。
H=A×B×C (2)
式(2)中、Hは熱伝導率(W/(m・K))、Aは熱拡散率(m2/sec)、Bはかさ密度(kg/m3)、及び、Cは比熱容量(J/(kg・K))を示す。熱拡散率Aは、窒化ホウ素焼結体を、縦×横×厚み=10mm×10mm×2mmのサイズに加工した試料を用い、レーザーフラッシュ法によって測定した。測定装置はキセノンフラッシュアナライザ(NETZSCH社製、商品名:LFA447NanoFlash)を用いた。
かさ密度Bは窒化ホウ素焼結体の体積及び質量から算出した。比熱容量Cは、示差走査熱量計(株式会社リガク製、装置名:ThermoPlusEvo DSC8230)を用いて測定した。熱伝導率H及びかさ密度Bの結果を表1に示す。
<気孔率の測定>
得られた窒化ホウ素焼結体の体積及び質量を測定し、当該体積及び質量からかさ密度B(kg/m3)を算出した。このかさ密度と窒化ホウ素の理論密度(2280kg/m3)とから、以下の計算式(3)によって気孔率を求めた。結果は表1に示すとおりであった。
気孔率(体積%)=[1-(D/2280)]×100 (3)
得られた窒化ホウ素焼結体の体積及び質量を測定し、当該体積及び質量からかさ密度B(kg/m3)を算出した。このかさ密度と窒化ホウ素の理論密度(2280kg/m3)とから、以下の計算式(3)によって気孔率を求めた。結果は表1に示すとおりであった。
気孔率(体積%)=[1-(D/2280)]×100 (3)
<配向性指数の測定>
X線回折装置(株式会社リガク製、商品名:ULTIMA-IV)を用いて、窒化ホウ素焼結体の配向性指数[I(002)/I(100)]を求めた。X線回折装置の試料ホルダーにセットした測定試料(窒化ホウ素焼結体)にX線を照射して、ベースライン補正を行った。その後、窒化ホウ素の(002)面と(100)面のピーク強度比を算出した。これを配向性指数[I(002)/I(100)]とした。結果は、表1に示すとおりであった。
X線回折装置(株式会社リガク製、商品名:ULTIMA-IV)を用いて、窒化ホウ素焼結体の配向性指数[I(002)/I(100)]を求めた。X線回折装置の試料ホルダーにセットした測定試料(窒化ホウ素焼結体)にX線を照射して、ベースライン補正を行った。その後、窒化ホウ素の(002)面と(100)面のピーク強度比を算出した。これを配向性指数[I(002)/I(100)]とした。結果は、表1に示すとおりであった。
<複合体の作製>
圧力が0.03kPaに制御された含浸装置内において、エポキシ樹脂(三菱ケミカル株式会社製、商品名:エピコート807)と硬化剤(日本合成化学工業株式会社製、商品名:アクメックスH-84B)を含む樹脂組成物中に、窒化ホウ素焼結体を浸漬し、窒化ホウ素焼結体に樹脂組成物を含浸させた。含浸後、大気圧下、温度150℃で60分間加熱して樹脂を半硬化させ、室温(25℃)になるまで冷却し複合体(加工前)を作製した。複合体の表面部分を構成する半硬化物層を切断して除去し、その後、マルチカットワイヤーソーで複合体を切断して厚さ0.4mmの複合体シートを得た。複合体シートにおける樹脂の充填率は、表2に示すとおり、94.0体積%であった。この含有量は、以下の手順で求めた。
圧力が0.03kPaに制御された含浸装置内において、エポキシ樹脂(三菱ケミカル株式会社製、商品名:エピコート807)と硬化剤(日本合成化学工業株式会社製、商品名:アクメックスH-84B)を含む樹脂組成物中に、窒化ホウ素焼結体を浸漬し、窒化ホウ素焼結体に樹脂組成物を含浸させた。含浸後、大気圧下、温度150℃で60分間加熱して樹脂を半硬化させ、室温(25℃)になるまで冷却し複合体(加工前)を作製した。複合体の表面部分を構成する半硬化物層を切断して除去し、その後、マルチカットワイヤーソーで複合体を切断して厚さ0.4mmの複合体シートを得た。複合体シートにおける樹脂の充填率は、表2に示すとおり、94.0体積%であった。この含有量は、以下の手順で求めた。
<樹脂の充填率>
複合体における樹脂の充填率は、複合体を作製する前と後のかさ密度と理論密度から下記式(4)によって求めた。
複合体における樹脂の充填率は、複合体を作製する前と後のかさ密度と理論密度から下記式(4)によって求めた。
複合体における樹脂の充填率(体積%)=((複合体のかさ密度-窒化ホウ素焼結体のかさ密度)/(複合体の理論密度-窒化ホウ素焼結体のかさ密度))×100 ・・・(4)
複合体の理論密度は下記式(5)より求めた。
複合体の理論密度=窒化ホウ素焼結体の真密度+樹脂の真密度×(1-窒化ホウ素焼結体のかさ密度/窒化ホウ素焼結体の真密度) ・・・(5)
複合体の理論密度=窒化ホウ素焼結体の真密度+樹脂の真密度×(1-窒化ホウ素焼結体のかさ密度/窒化ホウ素焼結体の真密度) ・・・(5)
窒化ホウ素焼結体(複合体)のかさ密度は、JIS Z 8807:2012の幾何学的測定による密度及び比重の測定方法に準拠し、シート状(直方体)の窒化ホウ素焼結体(複合体)の各辺の長さ(ノギスにより測定)から計算した体積と、電子天秤により測定した質量から求めた(JIS Z 8807:2012の9項参照)。窒化ホウ素焼結体及び樹脂の真密度は、JIS Z 8807:2012の気体置換法による密度及び比重の測定方法に準拠し、乾式自動密度計を用いて測定した窒化ホウ素焼結体及び樹脂の体積と質量から求めた(JIS Z 8807:2012の11項の式(14)~(17)参照)
<樹脂の含有量>
複合体シートにおける樹脂の含有量は、表2に示すとおりであった。この樹脂の含有量(質量%)は、複合体全体に対する樹脂の質量比率である。樹脂の含有量は、複合体より樹脂を焼き飛ばし測定した。樹脂を焼き飛ばした後の窒化ホウ素焼結体と複合体の質量差から樹脂の質量を算出し、この樹脂の質量を複合体の質量で除することによって算出した。
複合体シートにおける樹脂の含有量は、表2に示すとおりであった。この樹脂の含有量(質量%)は、複合体全体に対する樹脂の質量比率である。樹脂の含有量は、複合体より樹脂を焼き飛ばし測定した。樹脂を焼き飛ばした後の窒化ホウ素焼結体と複合体の質量差から樹脂の質量を算出し、この樹脂の質量を複合体の質量で除することによって算出した。
<複合体の気孔率>
上述のとおり求めた窒化ホウ素焼結体の気孔率と、複合体における樹脂の充填率とから、以下の式(6)によって複合体の気孔率を算出した。結果は表2に示すとおりであった。
複合体の気孔率(体積%)=窒化ホウ素焼結体の気孔率(体積%)-(窒化ホウ素焼結体の気孔率(体積%)×樹脂の充填率(体積%)×100) ・・・(6)
上述のとおり求めた窒化ホウ素焼結体の気孔率と、複合体における樹脂の充填率とから、以下の式(6)によって複合体の気孔率を算出した。結果は表2に示すとおりであった。
複合体の気孔率(体積%)=窒化ホウ素焼結体の気孔率(体積%)-(窒化ホウ素焼結体の気孔率(体積%)×樹脂の充填率(体積%)×100) ・・・(6)
<接着性の評価>
シート状の銅箔(縦×横×厚み=100mm×20mm×0.035mm)と、平板状の銅板(縦×横×厚み=100mm×20mm×1mm)との間に、上述のシート状の複合体シート(縦×横×厚み=40mm×20mm×0.4mm)を配置した。このようにして、銅箔、複合体及び銅板をこの順に備える積層体を得た。当該積層体を200℃及び5MPaの条件下で5分間加熱及び加圧した後、200℃及び大気圧の条件下で2時間加熱処理した。
シート状の銅箔(縦×横×厚み=100mm×20mm×0.035mm)と、平板状の銅板(縦×横×厚み=100mm×20mm×1mm)との間に、上述のシート状の複合体シート(縦×横×厚み=40mm×20mm×0.4mm)を配置した。このようにして、銅箔、複合体及び銅板をこの順に備える積層体を得た。当該積層体を200℃及び5MPaの条件下で5分間加熱及び加圧した後、200℃及び大気圧の条件下で2時間加熱処理した。
上述の処理を施したのち、JIS K 6854-1:1999「接着剤-はく離接着強さ試験方法」に準拠して、複合体から銅箔を剥離する90°はく離試験を行った。この試験では、20℃における複合体のピール強度を、万能試験機(株式会社エーアンドディ製、商品名:RTG-1310)を用いて求めた。試験速度:50mm/min、ロードセル:5kN、測定温度:室温(20℃)の条件で測定を行って、凝集破壊部分の面積を測定した。測定結果から、以下の基準で接着性を評価した。結果を表2に示す。なお、凝集破壊部分とは、銅箔に接着していた複合体の接着面のうち、複合体が破壊した部分の面積である。
A:接着面全体に対する凝集破壊部分の面積比率が80%以上
B:接着面全体に対する凝集破壊部分の面積比率が70%以上80%未満
C:接着面全体に対する凝集破壊部分の面積比率が20%以上70%未満
A:接着面全体に対する凝集破壊部分の面積比率が80%以上
B:接着面全体に対する凝集破壊部分の面積比率が70%以上80%未満
C:接着面全体に対する凝集破壊部分の面積比率が20%以上70%未満
(実施例2)
成形体を作製する際に、冷間等方加圧(CIP)装置にて35MPaの圧力で混合粉末を圧縮して成形体を得たこと以外は、実施例1と同じ手順で、窒化ホウ素焼結体及び複合体を作製した。窒化ホウ素焼結体及び複合体の各測定を、実施例1と同様にして行った。結果は表1及び表2に示すとおりであった。
成形体を作製する際に、冷間等方加圧(CIP)装置にて35MPaの圧力で混合粉末を圧縮して成形体を得たこと以外は、実施例1と同じ手順で、窒化ホウ素焼結体及び複合体を作製した。窒化ホウ素焼結体及び複合体の各測定を、実施例1と同様にして行った。結果は表1及び表2に示すとおりであった。
(実施例3)
成形体を作製する際に、冷間等方加圧(CIP)装置にて90MPaの圧力で混合粉末を圧縮し成形体を得たこと以外は、実施例1と同じ手順で、窒化ホウ素焼結体及び複合体を作製した。窒化ホウ素焼結体及び複合体の各測定を、実施例1と同様にして行った。結果は表1及び表2に示すとおりであった。
成形体を作製する際に、冷間等方加圧(CIP)装置にて90MPaの圧力で混合粉末を圧縮し成形体を得たこと以外は、実施例1と同じ手順で、窒化ホウ素焼結体及び複合体を作製した。窒化ホウ素焼結体及び複合体の各測定を、実施例1と同様にして行った。結果は表1及び表2に示すとおりであった。
(実施例4)
成形体を作製する際に、冷間等方加圧(CIP)装置にて10MPaの圧力で混合粉末を圧縮し成形体を得たこと以外は、実施例1と同じ手順で、窒化ホウ素焼結体及び複合体を作製した。窒化ホウ素焼結体及び複合体の各測定を、実施例1と同様にして行った。結果は表1及び表2に示すとおりであった。
成形体を作製する際に、冷間等方加圧(CIP)装置にて10MPaの圧力で混合粉末を圧縮し成形体を得たこと以外は、実施例1と同じ手順で、窒化ホウ素焼結体及び複合体を作製した。窒化ホウ素焼結体及び複合体の各測定を、実施例1と同様にして行った。結果は表1及び表2に示すとおりであった。
(実施例5)
平均粒径が0.8μmであるアモルファス窒化ホウ素粉末(酸素含有量:1.8質量%、窒化ホウ素純度:97.2質量%)が40.0質量%、及び、平均粒径が13.0μmである六方晶窒化ホウ素粉末(酸素含有量:0.3質量%、窒化ホウ素純度:99.0質量%)が60.0質量%となるようにそれぞれ測り取り、配合して原料粉末を調製した。この原料粉末を用いたこと以外は、実施例1と同じ手順で、窒化ホウ素焼結体及び複合体を作製した。窒化ホウ素焼結体及び複合体の各測定を、実施例1と同様にして行った。結果は表1及び表2に示すとおりであった。
平均粒径が0.8μmであるアモルファス窒化ホウ素粉末(酸素含有量:1.8質量%、窒化ホウ素純度:97.2質量%)が40.0質量%、及び、平均粒径が13.0μmである六方晶窒化ホウ素粉末(酸素含有量:0.3質量%、窒化ホウ素純度:99.0質量%)が60.0質量%となるようにそれぞれ測り取り、配合して原料粉末を調製した。この原料粉末を用いたこと以外は、実施例1と同じ手順で、窒化ホウ素焼結体及び複合体を作製した。窒化ホウ素焼結体及び複合体の各測定を、実施例1と同様にして行った。結果は表1及び表2に示すとおりであった。
(実施例6)
成形体の作製方法を、冷間等方加圧(CIP)から金型成形(成形圧力:50MPa)に変更したこと以外は、実施例1と同じ手順で、窒化ホウ素焼結体及び複合体を作製した。窒化ホウ素焼結体及び複合体の各測定を、実施例1と同様にして行った。結果は表1及び表2に示すとおりであった。
成形体の作製方法を、冷間等方加圧(CIP)から金型成形(成形圧力:50MPa)に変更したこと以外は、実施例1と同じ手順で、窒化ホウ素焼結体及び複合体を作製した。窒化ホウ素焼結体及び複合体の各測定を、実施例1と同様にして行った。結果は表1及び表2に示すとおりであった。
(実施例7)
成形体の作製方法を、冷間等方加圧(CIP)から金型成形(成形圧力:15MPa)に変更したこと以外は、実施例1と同じ手順で、窒化ホウ素焼結体及び複合体を作製した。窒化ホウ素焼結体及び複合体の各測定を、実施例1と同様にして行った。結果は表1及び表2に示すとおりであった。
成形体の作製方法を、冷間等方加圧(CIP)から金型成形(成形圧力:15MPa)に変更したこと以外は、実施例1と同じ手順で、窒化ホウ素焼結体及び複合体を作製した。窒化ホウ素焼結体及び複合体の各測定を、実施例1と同様にして行った。結果は表1及び表2に示すとおりであった。
(実施例8)
噴霧乾燥機による球状化処理を行わず、ヘンシェルミキサーを用いて、原料粉末と焼結助剤を撹拌して混合粉末を調製した。この混合粉末を用いて冷間等方加圧装置で成形体を作製したこと以外は、実施例1と同じ手順で、窒化ホウ素焼結体及び複合体を作製した。窒化ホウ素焼結体及び複合体の各測定を、実施例1と同様にして行った。結果は表1及び表2に示すとおりであった。
噴霧乾燥機による球状化処理を行わず、ヘンシェルミキサーを用いて、原料粉末と焼結助剤を撹拌して混合粉末を調製した。この混合粉末を用いて冷間等方加圧装置で成形体を作製したこと以外は、実施例1と同じ手順で、窒化ホウ素焼結体及び複合体を作製した。窒化ホウ素焼結体及び複合体の各測定を、実施例1と同様にして行った。結果は表1及び表2に示すとおりであった。
(実施例9)
噴霧乾燥機による球状化処理を行わなかったこと、及び、冷間等方加圧装置に代えて、金型成形(成形圧力:30MPa)で成形体を作製したこと以外は、実施例8と同じ手順で、窒化ホウ素焼結体及び複合体を作製した。窒化ホウ素焼結体及び複合体の各測定を、実施例1と同様にして行った。結果は表1及び表2に示すとおりであった。
噴霧乾燥機による球状化処理を行わなかったこと、及び、冷間等方加圧装置に代えて、金型成形(成形圧力:30MPa)で成形体を作製したこと以外は、実施例8と同じ手順で、窒化ホウ素焼結体及び複合体を作製した。窒化ホウ素焼結体及び複合体の各測定を、実施例1と同様にして行った。結果は表1及び表2に示すとおりであった。
(比較例1)
平均粒径が18.0μmである六方晶窒化ホウ素粉末(酸素含有量:0.3質量%、窒化ホウ素純度:99.1質量%)が40.0質量%、及び、平均粒径が13.0μmである六方晶窒化ホウ素粉末(酸素含有量:0.3質量%、窒化ホウ素純度:99.0質量%)、が60.0質量%となるようにそれぞれ測り取り、これらを配合して原料粉末を調製した。この原料粉末を用いたこと以外は、実施例1と同じ手順で、窒化ホウ素焼結体及び複合体を作製した。窒化ホウ素焼結体及び複合体の各測定を、実施例1と同様にして行った。結果は表1及び表2に示すとおりであった。
平均粒径が18.0μmである六方晶窒化ホウ素粉末(酸素含有量:0.3質量%、窒化ホウ素純度:99.1質量%)が40.0質量%、及び、平均粒径が13.0μmである六方晶窒化ホウ素粉末(酸素含有量:0.3質量%、窒化ホウ素純度:99.0質量%)、が60.0質量%となるようにそれぞれ測り取り、これらを配合して原料粉末を調製した。この原料粉末を用いたこと以外は、実施例1と同じ手順で、窒化ホウ素焼結体及び複合体を作製した。窒化ホウ素焼結体及び複合体の各測定を、実施例1と同様にして行った。結果は表1及び表2に示すとおりであった。
(比較例2)
成形体を作製する際に、冷間等方加圧(CIP)装置にて150MPaの圧力で圧縮し成形体を得たこと以外は、実施例1と同じ手順で、窒化ホウ素焼結体及び複合体を作製した。窒化ホウ素焼結体及び複合体の各測定を、実施例1と同様にして行った。結果は表1及び表2に示すとおりであった。
成形体を作製する際に、冷間等方加圧(CIP)装置にて150MPaの圧力で圧縮し成形体を得たこと以外は、実施例1と同じ手順で、窒化ホウ素焼結体及び複合体を作製した。窒化ホウ素焼結体及び複合体の各測定を、実施例1と同様にして行った。結果は表1及び表2に示すとおりであった。
(比較例3)
焼結助剤の調製に際し、ホウ酸100質量部に対して炭酸カルシウムを57質量部配合して焼結助剤を調製したこと、及び、原料粉末100質量部に対して焼結助剤を1.0質量部配合したこと以外は、実施例1と同じ手順で、窒化ホウ素焼結体及び複合体を作製した。窒化ホウ素焼結体及び複合体の各測定を、実施例1と同様にして行った。結果は表1及び表2に示すとおりであった。
焼結助剤の調製に際し、ホウ酸100質量部に対して炭酸カルシウムを57質量部配合して焼結助剤を調製したこと、及び、原料粉末100質量部に対して焼結助剤を1.0質量部配合したこと以外は、実施例1と同じ手順で、窒化ホウ素焼結体及び複合体を作製した。窒化ホウ素焼結体及び複合体の各測定を、実施例1と同様にして行った。結果は表1及び表2に示すとおりであった。
10…窒化ホウ素焼結体、20…複合体(放熱部材)。
Claims (7)
- 窒化ホウ素粒子と気孔とを含む窒化ホウ素焼結体であって、
圧縮弾性率が0.8GPa以下である、窒化ホウ素焼結体。 - 圧縮強さが1.5MPa以上である、請求項1に記載の窒化ホウ素焼結体。
- 気孔率が40~75体積%である、請求項1又は2に記載の窒化ホウ素焼結体。
- かさ密度が600~1400kg/m3である、請求項1~3のいずれか一項に記載の窒化ホウ素焼結体。
- 配向性指数が20以下である、請求項1~4のいずれか一項に記載の窒化ホウ素焼結体。
- 請求項1~5のいずれか一項に記載の窒化ホウ素焼結体と、前記窒化ホウ素焼結体の前記気孔の少なくとも一部に充填された樹脂と、含む複合体。
- 請求項6に記載の複合体を有する放熱部材。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022512549A JPWO2021200966A1 (ja) | 2020-03-31 | 2021-03-30 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020064245 | 2020-03-31 | ||
JP2020-064245 | 2020-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021200966A1 true WO2021200966A1 (ja) | 2021-10-07 |
Family
ID=77928537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/013571 WO2021200966A1 (ja) | 2020-03-31 | 2021-03-30 | 窒化ホウ素焼結体及び複合体、並びに放熱部材 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2021200966A1 (ja) |
WO (1) | WO2021200966A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023162598A1 (ja) * | 2022-02-22 | 2023-08-31 | デンカ株式会社 | 窒化ホウ素粉末の製造方法、窒化ホウ素粉末及び樹脂封止材 |
KR102578083B1 (ko) * | 2022-06-14 | 2023-09-13 | 윌코 주식회사 | 질화붕소 복합체 및 그 제조 방법 |
WO2023204139A1 (ja) * | 2022-04-21 | 2023-10-26 | デンカ株式会社 | 窒化ホウ素粉末、及び、放熱シート、並びに、窒化ホウ素粉末の製造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0761855A (ja) * | 1993-08-26 | 1995-03-07 | Shinagawa Refract Co Ltd | 窒化硼素含有耐火物 |
JP2016103611A (ja) * | 2014-11-28 | 2016-06-02 | デンカ株式会社 | 窒化ホウ素樹脂複合体回路基板 |
WO2017155110A1 (ja) * | 2016-03-10 | 2017-09-14 | デンカ株式会社 | セラミックス樹脂複合体 |
-
2021
- 2021-03-30 JP JP2022512549A patent/JPWO2021200966A1/ja active Pending
- 2021-03-30 WO PCT/JP2021/013571 patent/WO2021200966A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0761855A (ja) * | 1993-08-26 | 1995-03-07 | Shinagawa Refract Co Ltd | 窒化硼素含有耐火物 |
JP2016103611A (ja) * | 2014-11-28 | 2016-06-02 | デンカ株式会社 | 窒化ホウ素樹脂複合体回路基板 |
WO2017155110A1 (ja) * | 2016-03-10 | 2017-09-14 | デンカ株式会社 | セラミックス樹脂複合体 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023162598A1 (ja) * | 2022-02-22 | 2023-08-31 | デンカ株式会社 | 窒化ホウ素粉末の製造方法、窒化ホウ素粉末及び樹脂封止材 |
WO2023204139A1 (ja) * | 2022-04-21 | 2023-10-26 | デンカ株式会社 | 窒化ホウ素粉末、及び、放熱シート、並びに、窒化ホウ素粉末の製造方法 |
KR102578083B1 (ko) * | 2022-06-14 | 2023-09-13 | 윌코 주식회사 | 질화붕소 복합체 및 그 제조 방법 |
WO2023242828A3 (en) * | 2022-06-14 | 2024-06-13 | Wilco Inc. | Boron nitride composite and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021200966A1 (ja) | 2021-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021200966A1 (ja) | 窒化ホウ素焼結体及び複合体、並びに放熱部材 | |
JP6285155B2 (ja) | 放熱部材およびその用途 | |
JP7550869B2 (ja) | 複合体及びその製造方法、並びに、積層体及びその製造方法 | |
WO2021200967A1 (ja) | 複合体、及び放熱部材 | |
WO2021200969A1 (ja) | 窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材 | |
WO2021200724A1 (ja) | 窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材 | |
WO2022209325A1 (ja) | 複合体及びその製造方法、樹脂充填板、並びに、積層体及びその製造方法 | |
WO2021200973A1 (ja) | 複合体の製造方法 | |
EP3950643B1 (en) | Method for producing composite body | |
WO2020203692A1 (ja) | 複合体 | |
JP7458479B2 (ja) | 複合体及び複合体の製造方法 | |
WO2021200965A1 (ja) | 複合体シート | |
WO2021200719A1 (ja) | 窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材 | |
WO2021200971A1 (ja) | 窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材 | |
WO2022071247A1 (ja) | 複合シート及びその製造方法、並びに、積層体及びその製造方法 | |
JP7080427B1 (ja) | 複合シート、積層体、及び、複合シートの接着性を推定する評価方法 | |
WO2021201012A1 (ja) | 複合体の製造方法 | |
WO2022071236A1 (ja) | 複合シート及びその製造方法、並びに、積層体及びその製造方法 | |
WO2022071293A1 (ja) | 複合シート及びその製造方法、積層体及びその製造方法、並びに、パワーデバイス | |
WO2023190236A1 (ja) | 複合体及びその製造方法、並びに、接合体、回路基板及びパワーモジュール | |
JP7381806B2 (ja) | 積層部品、及びその製造方法、並びに、積層体、及びその製造方法 | |
WO2022209335A1 (ja) | 複合シート及びその製造方法、並びに、積層体及びその製造方法 | |
WO2023027122A1 (ja) | セラミックス板の製造方法、セラミックス板、複合シート、及び積層基板 | |
JP2000169267A (ja) | 炭化珪素質複合体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21780472 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022512549 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21780472 Country of ref document: EP Kind code of ref document: A1 |