WO2023204139A1 - 窒化ホウ素粉末、及び、放熱シート、並びに、窒化ホウ素粉末の製造方法 - Google Patents

窒化ホウ素粉末、及び、放熱シート、並びに、窒化ホウ素粉末の製造方法 Download PDF

Info

Publication number
WO2023204139A1
WO2023204139A1 PCT/JP2023/015034 JP2023015034W WO2023204139A1 WO 2023204139 A1 WO2023204139 A1 WO 2023204139A1 JP 2023015034 W JP2023015034 W JP 2023015034W WO 2023204139 A1 WO2023204139 A1 WO 2023204139A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
heat dissipation
nitride powder
primary particles
powder
Prior art date
Application number
PCT/JP2023/015034
Other languages
English (en)
French (fr)
Inventor
英志 犬飼
福將 加藤
豪 竹田
悠 楯岡
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2024501577A priority Critical patent/JP7505139B2/ja
Publication of WO2023204139A1 publication Critical patent/WO2023204139A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present disclosure relates to boron nitride powder, a heat dissipation sheet, and a method for producing boron nitride powder.
  • Boron nitride powder has lubricity, high thermal conductivity, insulation, etc., and is widely used for solid lubricants, thermally conductive fillers, insulating fillers, etc.
  • boron nitride powder is used as a filler in heat dissipating members that require high thermal conductivity.
  • the primary particles of hexagonal boron nitride have a relatively thin scale shape, and when filled in a resin or the like and molded, the primary particles tend to be oriented in a certain direction due to molding pressure, etc.
  • the main surface of the resin sheet is generally oriented parallel to the long axis of the primary particles of boron nitride.
  • the primary particles of hexagonal boron nitride may exhibit anisotropy in various physical properties due to the anisotropy of their shape.
  • the thermal conductivity of primary particles of hexagonal boron nitride in the in-plane direction (a-axis direction) is as high as 400 W/(m ⁇ K), while the thermal conductivity in the thickness direction (c-axis direction) is only 2 W. /(m ⁇ K), and the anisotropy of physical properties depending on the direction is remarkable.
  • Patent Document 2 discloses boron nitride agglomerated particles formed by agglomerating primary particles of boron nitride, and the strength of the agglomerated particles is increased to such an extent that collapse of the agglomerated particles can be suppressed even when a predetermined molding pressure is applied. It is described that this suppresses the alignment of the primary particles of boron nitride in the same direction.
  • a heat dissipation sheet in which the a-axis direction of the primary particles of hexagonal boron nitride is oriented in the thickness direction of the heat dissipation sheet requires complicated condition settings and a large number of work steps.
  • a boron nitride powder that can exhibit excellent heat dissipation properties using a simple method would be useful.
  • the agglomerated particles are relatively strong and resistant to resin molding pressure as mentioned above, if they are used together with other heat dissipation fillers, they may be mixed with other heat dissipation fillers when kneading with the resin.
  • the agglomerated particles collapse due to the collision, and the proportion of primary particles increases, which may impair the effect of forming agglomerated particles. It is required to further improve the performance of the hexagonal boron nitride primary particles themselves.
  • the present disclosure provides a boron nitride powder that is a powder containing primary particles of hexagonal boron nitride, which has excellent filling properties when filling into a resin, and can prepare a heat dissipation sheet that has excellent heat dissipation properties, and a method for producing the same.
  • the purpose is to The present disclosure also aims to provide a heat dissipation sheet containing the above-mentioned boron nitride powder.
  • [1] Contains primary particles of hexagonal boron nitride having a scale shape, A boron nitride powder having an average particle diameter of 4.0 to 15.0 ⁇ m, an orientation index of 25.0 or less, and a tap density of 0.70 g/cm 3 or more.
  • [2] The boron nitride powder according to [1], wherein the primary particles have an average thickness of 0.8 to 2.0 ⁇ m.
  • the boron nitride powder according to [1] or [2] which has a specific surface area of 3.0 m 2 /g or less.
  • [4] The boron nitride powder according to any one of [1] to [3], which has an orientation index of 10.0 or more.
  • [5] A heat dissipation sheet containing a resin and a heat dissipation filler, A heat dissipation sheet, wherein the heat dissipation filler contains the boron nitride powder according to any one of [1] to [4].
  • a raw material powder containing a carbon-containing compound, a boron-containing compound, and a sintering aid is fired in a pressurized nitrogen atmosphere of 0.5 to 0.9 MPaG to obtain primary particles of hexagonal boron nitride having a scale shape.
  • a firing step for obtaining a fired product containing A crushing step of crushing the fired product to obtain a powder having an average particle size of 4.0 to 15.0 ⁇ m and an orientation index of 25.0 or less,
  • a method for producing boron nitride powder comprising maintaining the firing temperature at 1800 to 2200°C for 7 hours or more in the firing step.
  • One aspect of the present disclosure includes primary particles of hexagonal boron nitride having a scale shape, an average particle diameter of 4.0 to 15.0 ⁇ m, an orientation index of 25.0 or less, and a tap density.
  • a boron nitride powder having a density of 0.70 g/cm 3 or more.
  • the boron nitride powder contains primary particles of hexagonal boron nitride having a scale shape, and has an average particle diameter, an orientation index, and a tap density within a predetermined range. This allows for excellent filling properties into the resin, and allows a resin molded article (for example, a resin sheet) obtained by filling the resin and molding to exhibit excellent heat dissipation properties.
  • a resin molded article for example, a resin sheet
  • the orientation between the particles tends to be suppressed, and when the particle size of the primary particles is large, the particles tend to change when external force is applied. It tends to encourage orientation between the two.
  • the present inventors focused on the average particle diameter, orientation index, and tap density of boron nitride powder mainly composed of primary particles of boron nitride, and found that this value falls within a predetermined range. It has been found that the powder prepared in the above manner can exhibit boron nitride powder that is excellent in both filling properties into a resin and heat dissipation properties in a resin molded article obtained by filling the resin.
  • the average thickness of the primary particles may be 0.8 to 2.0 ⁇ m.
  • the boron nitride powder may have a specific surface area of 3.0 m 2 /g or less.
  • the boron nitride powder may have an orientation index of 10.0 or more.
  • One aspect of the present disclosure provides a heat dissipation sheet that includes a resin and a heat dissipation filler, where the heat dissipation filler includes the boron nitride powder described above.
  • the heat dissipation filler may further include at least one of aluminum nitride and aluminum oxide.
  • One aspect of the present disclosure is to sinter a raw material powder containing a carbon-containing compound, a boron-containing compound, and a sintering aid in a pressurized nitrogen atmosphere of 0.5 to 0.9 MPaG to obtain a hexagonal shape having a scale shape.
  • a method for producing boron nitride powder which comprises the steps of: holding the firing temperature at 1800 to 2200° C. for 7 hours or more in the firing step.
  • the method for manufacturing the boron nitride powder described above is such that the thickness of the primary particles of hexagonal boron nitride is increased by holding the firing temperature at that temperature for a relatively long time in a pressurized environment during the firing process. By promoting growth in this direction and breaking loose associations between primary particles in the subsequent crushing process, it is possible to produce a powder having a predetermined particle size and consisting mainly of hexagonal boron nitride primary particles. Further, the above-mentioned powder has a low orientation index as a powder composed of primary particles of hexagonal boron nitride.
  • a boron nitride powder that is a powder containing primary particles of hexagonal boron nitride, which can be used to prepare a heat dissipation sheet that has excellent filling properties when filling into a resin and has excellent heat dissipation properties, and a method for producing the same.
  • a heat dissipation sheet containing the above-described boron nitride powder.
  • FIG. 1 is a schematic diagram showing an example of a heat dissipation sheet.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • the materials exemplified in this specification can be used alone or in combination of two or more. If there are multiple substances corresponding to each component in the composition, the content of each component in the composition means the total amount of the multiple substances present in the composition, unless otherwise specified. .
  • boron nitride powder includes hexagonal boron nitride primary particles having a scale shape.
  • the boron nitride powder has an average particle diameter of 4.0 to 15.0 ⁇ m, an orientation index of 25.0 or less, and a tap density of 0.70 g/cm 3 or more.
  • the upper limit of the average particle diameter of the boron nitride powder may be, for example, 14.9 ⁇ m or less, or 14.8 ⁇ m or less.
  • the lower limit of the average particle diameter of boron nitride powder is, for example, 4.5 ⁇ m or more, 5.0 ⁇ m or more, 5.5 ⁇ m or more, 6.0 ⁇ m or more, 6.5 ⁇ m or more, 7.0 ⁇ m or more, 7.5 ⁇ m or more, 8 It may be .0 ⁇ m or more, 9.0 ⁇ m or more, or 10.0 ⁇ m or more.
  • the average particle size of the boron nitride powder may be adjusted within the above-mentioned range, and may be, for example, 5.0 to 15.0 ⁇ m, 8.0 to 15.0 ⁇ m, or 10.0 to 15.0 ⁇ m.
  • the average particle diameter in this specification means the 50% cumulative diameter (median diameter) in the volume-based cumulative particle size distribution. More specifically, it means the particle diameter (D50) when the cumulative value in the volume-based cumulative particle size distribution obtained by the laser diffraction scattering method for powder becomes 50%.
  • the laser diffraction scattering method is measured in accordance with the method described in JIS Z 8825:2013 "Particle size analysis - laser diffraction/scattering method".
  • a laser diffraction scattering particle size distribution measuring device or the like can be used.
  • the laser diffraction scattering particle size distribution measuring device for example, "LS-13 320" (product name) manufactured by Beckman Coulter, Inc. can be used.
  • the powder to be measured has primary particles loosely associated with each other, the powder should be treated with a homogenizer or the like before measurement.
  • a homogenizer device "VC-505" (product name) manufactured by Ieda Boeki Co., Ltd., etc. can be used.
  • the treatment with a homogenizer may be performed, for example, at a frequency of 20 KHz for 2 minutes.
  • the boron nitride powder in the present disclosure is mainly composed of primary particles of hexagonal boron nitride.
  • the boron nitride powder may contain a small amount of particles in which a plurality of primary particles are aggregated, or may not contain any particles in which a plurality of primary particles are aggregated.
  • the boron nitride powder has one peak in the volume-based particle size distribution measured without ultrasonic dispersion treatment using a homogenizer in the particle size distribution measurement using the laser diffraction scattering method, and the particle size distribution measured by the above-mentioned laser diffraction scattering method has one peak.
  • the ratio (D50(A)/D50(B) value) of the average particle diameter measured after dispersion treatment (D50(A)) and the average particle diameter measured without ultrasonic dispersion treatment (D50(B)) is It may be 0.85 or more.
  • the value of D50(A)/D50(B) may be, for example, 1.00 or less, or less than 1.00.
  • the upper limit of the orientation index of boron nitride powder is, for example, 24.8 or less, 24.6 or less, 24.4 or less, 24.0 or less, 23.5 or less, 23.0 or less, 22.5 or less, 22 It may be .0 or less, 21.5 or less, 21.0 or less, 20.5 or less, or 20.0 or less.
  • the lower limit of the orientation index of the boron nitride powder may be, for example, 10.0 or more, 10.5 or more, 11.0 or more, 11.5 or more, or 12.0 or more.
  • the above orientation index can be an indicator that the boron nitride powder has a small proportion of aggregates and contains primary particles having an appropriate thickness.
  • the lower limit of the orientation index is within the above range, it is possible to achieve both a higher level of resin filling properties and a higher level of heat dissipation of the resulting resin molded article (for example, a heat dissipation sheet).
  • the orientation index of the boron nitride powder may be adjusted within the above-mentioned range, for example, from 10.0 to 25.0, or from 12.0 to 24.8.
  • the orientation index herein means a value measured according to the following method.
  • an X-ray diffraction spectrum of the boron nitride powder is obtained, and from the X-ray diffraction spectrum, the peak intensity I (002) corresponding to the (002) plane and the (100) plane is obtained. and obtain I(100).
  • the orientation index [I(002)/I(100)] of the boron nitride powder is calculated.
  • the X-ray diffraction device for example, “ULTIMA-IV” (product name) manufactured by Rigaku Co., Ltd. can be used.
  • the orientation index since the object to be measured for the orientation index is boron nitride powder, if there are lumpy particles (agglomerated particles) in which the primary particles are not substantially oriented in the powder, and the proportion of these is large, the orientation index The value of tends to approach a value of about 6 to 7. On the other hand, if it is composed of primary particles that do not contain aggregated particles, or if the proportion of primary particles present increases, the value of the orientation index tends to increase. Furthermore, when the average particle diameter of the primary particles is large or when the average thickness of the primary particles is small, the orientation between particles becomes easier, and therefore the value of the orientation index tends to increase.
  • the lower limit of the tap density of the boron nitride powder may be, for example, 0.72 g/cm 3 or more, 0.75 g/cm 3 or more, 0.80 g/cm 3 or more, or 0.85 g/cm 3 or more.
  • the upper limit value of the tap density of boron nitride powder is not particularly specified, but for example, 1.00 g/cm 3 or less, 0.98 g/cm 3 or less, 0.96 g/cm 3 or less, or 0.94 g/cm 3 It may be the following.
  • the tapped density of the boron nitride powder may be adjusted within the above range, for example, 0.70 to 1.00 g/cm 3 or 0.85 to 1.00 g/cm 3 .
  • the tapped density in this specification means a value determined according to the method described in JIS R 1628:1997 "Method for Measuring Bulk Density of Fine Ceramic Powders.” Specifically, boron nitride powder was filled into a 100 cm 3 special container, and the bulk density was measured after tapping under the conditions of a tapping time of 180 seconds, a tapping frequency of 180 times, and a tap lift of 18 mm. Let the value be the tap density.
  • a commercially available device can be used, such as "Powder Tester” (trade name) manufactured by Hosokawa Micron.
  • the primary particles of hexagonal boron nitride having a scale shape contained in the boron nitride powder according to the present disclosure have a relatively small particle size and a relatively large thickness, so the specific surface area of the entire boron nitride powder is kept low. It has become something that has been established.
  • the upper limit of the specific surface area of the boron nitride powder may be, for example, 3.0 m 2 /g or less, 2.5 m 2 /g or less, 2.0 m 2 /g or less, or 1.5 m 2 /g or less.
  • the boron nitride powder has an upper limit value of the specific surface area within the above range, it can exhibit excellent filling properties into the resin.
  • the lower limit of the specific surface area of the boron nitride powder is not particularly limited, but is, for example, 0.5 m 2 /g or more, 0.6 m 2 /g or more, 0.7 m 2 /g or more, or 0.8 m It may be 2 /g or more.
  • the specific surface area of the boron nitride powder may be adjusted within the above-mentioned range, for example, from 0.5 to 3.0 m 2 /g.
  • the specific surface area in this specification refers to a value measured using a specific surface area measuring device in accordance with the description of JIS Z 8830:2013 "Method for measuring the specific surface area of powder (solid) by gas adsorption". This is a value calculated by applying the BET one point method using As the specific surface area measuring device, for example, "MONOSORB Model MS-22" (product name) manufactured by QUANTACHROME can be used.
  • the lower limit of the average thickness of the primary particles of hexagonal boron nitride may be, for example, 0.8 ⁇ m or more, 0.9 ⁇ m or more, 1.0 ⁇ m or more, 1.1 ⁇ m or more, or 1.2 ⁇ m or more.
  • the upper limit of the average thickness is not particularly limited, but may be, for example, 3.0 ⁇ m or less, 2.5 ⁇ m or less, or 2.0 ⁇ m or less.
  • the average thickness of the primary particles of hexagonal boron nitride may be adjusted within the above-mentioned range, and may be, for example, 0.8 to 2.0 ⁇ m. When the thickness of the primary particles of hexagonal boron nitride is within the above-mentioned range, it becomes possible to further suppress orientation of the particles in one direction during sheet forming.
  • the average thickness of primary particles in this specification means a value measured by the method shown below. Specifically, first, using a press molding machine, 3 g of powder is molded into a disk shape (diameter: 30 mm) under a pressure of 5 MPa. Next, the molded body obtained as described above is embedded in a resin (manufactured by GATAN, trade name: G2 epoxy). Then, cross-sectional milling is performed in a direction parallel to the direction in which pressure is applied during press molding, thereby preparing a sample in which the cross-section of the primary particles of hexagonal boron nitride is exposed. This cross section is photographed using a scanning electron microscope.
  • the obtained particle image is imported into image analysis software (manufactured by Mountec Co., Ltd., trade name: Mac-View), and the short side of the rectangular particle (corresponding to the particle thickness and short diameter of the particle) is measured from the obtained photograph.
  • the measurement is performed on 100 arbitrarily selected primary particles, and the arithmetic mean value is taken as the average thickness of the primary particles.
  • the press molding machine for example, "BRE-32" (product name) manufactured by Rigaku Co., Ltd. can be used.
  • As the scanning electron microscope for example, "JSM-6010LA” (product name) manufactured by JEOL Ltd. can be used.
  • the above-mentioned boron nitride powder can be produced, for example, by the following method.
  • One embodiment of the method for producing boron nitride powder is to sinter raw material powder containing a carbon-containing compound, a boron-containing compound, and a sintering aid in a pressurized nitrogen atmosphere of 0.5 to 0.9 MPaG,
  • the firing process includes maintaining the firing temperature at 1800 to 2200°C for 7 hours or more.
  • a carbon-containing compound is a compound that has carbon atoms as a constituent element.
  • the carbon-containing compound reacts with a boron-containing compound and a compound having a nitrogen atom as a constituent element to form boron nitride.
  • a highly pure and relatively inexpensive raw material can be used. Examples of such carbon-containing compounds include carbon black and acetylene black.
  • a boron-containing compound is a compound that has boron as a constituent element.
  • a boron-containing compound is a compound that reacts with a carbon-containing compound and a compound having a nitrogen atom as a constituent element to form boron nitride.
  • a highly pure and relatively inexpensive raw material can be used.
  • Examples of such boron-containing compounds include boric acid and boron oxide.
  • the boron-containing compound preferably includes boric acid. In this case, boric acid is dehydrated by heating to become boron oxide, which forms a liquid phase during the heat treatment of the raw material powder and can also act as an auxiliary agent for promoting grain growth.
  • the sintering aid forms a liquid phase by reacting with a boron-containing compound, etc., and promotes the growth of primary particles of boron nitride.
  • the sintering aid include alkali metal oxides and carbonates, and alkaline earth metal oxides and carbonates. More specific examples of the sintering aid include sodium oxide, sodium carbonate, calcium oxide, and calcium carbonate.
  • the boron-containing compound may be blended in an excess amount relative to the carbon-containing compound.
  • the raw material powder may contain other compounds in addition to the carbon-containing compound, boron-containing compound, and sintering aid. Examples of other compounds include boron nitride as a nucleating agent.
  • boron nitride as a nucleating agent in the raw material powder, the average particle size of the hexagonal boron nitride powder to be synthesized can be more easily controlled.
  • the raw material powder preferably contains a nucleating agent. When the raw material powder contains a nucleating agent, it becomes easier to prepare hexagonal boron nitride powder with a small specific surface area.
  • the firing process is performed in a pressurized environment.
  • the lower limit of the atmospheric pressure in the firing step may be, for example, 0.5 MPaG or more, 0.6 MPaG or more, 0.7 MPaG or more, or 0.8 MPaG or more.
  • the upper limit of the atmospheric pressure in the firing step is not particularly limited, but may be 0.9 MPaG or less from an industrial perspective.
  • the pressure of the atmosphere in the firing step may be adjusted within the above range, and may be, for example, 0.5 to 0.9 MPaG. Pressure herein means gauge pressure.
  • the firing temperature in the firing step is, for example, 1800 to 2200°C.
  • the upper limit of the firing temperature may be, for example, 2150°C or less or 2100°C or less. By setting the upper limit of the firing temperature within the above range, the generation of by-products can be sufficiently suppressed.
  • the lower limit of the firing temperature may be, for example, 1850°C or higher, 1900°C or higher, 1950°C or higher, 2000°C or higher, or 2050°C or higher. By setting the lower limit of the firing temperature within the above range, the reaction on the carbon-containing compound can be promoted and the yield of the obtained boron nitride can be further improved.
  • the time (holding time) for holding at that temperature after reaching the firing temperature under the above-mentioned pressure environment is relatively long, thereby producing a primary hexagonal boron nitride. Promotes growth of particles in the thickness direction.
  • the lower limit of the holding time in the firing step is 7 hours or more, but may be, for example, 8 hours or more.
  • the upper limit of the holding time in the firing process is not particularly limited, but from the viewpoint of reducing the manufacturing cost of boron nitride powder, for example, 20 hours or less, 18 hours or less, 16 hours or less, 14 hours or less, or 12 hours or less. It may be less than 1 hour.
  • the holding time in the firing step may be adjusted within the above-mentioned range, and may be, for example, 7 to 20 hours or 7 to 12 hours.
  • the fired product obtained in the calcination step is pulverized to obtain a powder having an average particle diameter of 4.0 to 15.0 ⁇ m and an orientation index of 25.0 or less.
  • a crusher such as a Henschel mixer or a grinder mill can be used.
  • the rotational speed of the crusher may be under the following conditions.
  • the upper limit of the rotational speed of the crusher may be, for example, 950 rpm or less, 900 rpm or less, or 850 rpm or less. By setting the upper limit of the rotational speed of the crusher within the above range, it is possible to prevent particles from being overly crushed.
  • the lower limit of the rotation speed of the crusher may be, for example, 500 rpm or more, or 550 rpm or more. When the lower limit of the rotational speed of the crusher is within the above range, the fired product can be sufficiently crushed and loose agglomeration of the boron nitride primary particles can be released.
  • the lower limit of the crushing time in the crushing step may be, for example, 5 minutes or more, 6 minutes or more, 7 minutes or more, or 8 minutes or more. By setting the lower limit of the crushing time within the above range, loose aggregation of primary particles of hexagonal boron nitride can be more fully released.
  • the upper limit of the crushing time in the crushing step may be, for example, 15 minutes or less, 14 minutes or less, 13 minutes or less, or 12 minutes or less. By setting the upper limit of the crushing time within the above range, the fired product can be sufficiently crushed, and the collapse of the primary particles of hexagonal boron nitride itself can be further suppressed.
  • the disintegration time may be adjusted within the above-mentioned ranges and may be, for example, from 5 to 15 minutes, or from 8 to 12 minutes.
  • the boron nitride powder described above has excellent filling properties for resin and can suppress the orientation of primary particles in a resin molded sheet, so it can be suitably used as a heat dissipation filler.
  • One embodiment of the heat dissipation sheet is a heat dissipation sheet containing a resin and a heat dissipation filler.
  • the heat dissipation filler includes the boron nitride powder described above.
  • FIG. 1 is a schematic diagram showing an example of a heat dissipation sheet.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • the heat dissipation sheet 100 includes a resin part 10 and a plurality of hexagonal boron nitride primary particles 20 filled in the resin part 10.
  • the primary particles 20 have a relatively large thickness, the main surface of the heat dissipation sheet 100 and the a-axis of the primary particles are not parallel to each other but are maintained in a moderately inclined state. Thereby, sufficient heat dissipation performance can be exhibited in the thickness direction of the heat dissipation sheet 100 as well.
  • the orientation of the primary particles of hexagonal boron nitride in the heat dissipation sheet is determined by the ratio of the peak intensity of the ⁇ 002> plane to the peak intensity of the ⁇ 100> plane in an X-ray diffraction spectrum obtained by irradiating X-rays in the thickness direction of the sheet ( This can be confirmed by examining the value expressed by [Peak intensity of ⁇ 002> plane]/[Peak intensity of ⁇ 100> plane].
  • the upper limit of the ratio of the peak intensity of the ⁇ 002> plane to the peak intensity of the ⁇ 100> plane may be, for example, 60 or less, or 50 or less.
  • the lower limit of the ratio of the peak intensity of the ⁇ 002> plane to the peak intensity of the ⁇ 100> plane may be, for example, 7 or more, 8 or more, or 9 or more.
  • the above peak intensity ratio in this specification can be calculated using values measured by the method shown below.
  • a square measurement sample measuring 10 mm in length and 10 mm in width is cut out from the heat dissipation sheet to be measured.
  • the measurement sample is irradiated with X-rays in the thickness direction to obtain an X-ray diffraction spectrum. It can be determined by measuring the peak intensity of the ⁇ 100> plane and the peak intensity of the ⁇ 002> plane in the obtained X-ray diffraction spectrum, and calculating the ratio thereof.
  • the X-ray diffraction analyzer for example, "Ultima-IV" (product name) manufactured by Rigaku Co., Ltd. can be used.
  • the lower limit of the content of boron nitride powder in the heat dissipation sheet may be, for example, 30 volume % or more, 40 volume % or more, or 50 volume % or more, based on the total volume of the heat dissipation sheet.
  • the upper limit of the content of boron nitride powder in the heat dissipation sheet may be, for example, 85 volume % or less, 80 volume % or less, or 70 volume % or less, based on the total volume of the heat dissipation sheet.
  • the resin part 2 may contain or be made of a cured resin.
  • cured resin examples include epoxy resin, phenol resin, melamine resin, urea resin, polyimide, polyamideimide, polyetherimide, and maleimide-modified resin.
  • the lower limit of the content of the cured resin in the heat dissipation sheet may be, for example, 15 volume % or more, 20 volume % or more, or 30 volume % or more, based on the total volume of the heat dissipation sheet.
  • the upper limit of the content of the cured resin in the heat radiation sheet may be, for example, 70 volume % or less, 60 volume % or less, or 50 volume % or less, based on the total volume of the heat radiation sheet.
  • the above-mentioned heat dissipation sheet can be prepared by, for example, heating and press-molding a resin composition containing boron nitride powder containing primary particles of hexagonal boron nitride having a scale shape and a thermosetting resin.
  • the resin composition may contain other components, such as a curing agent.
  • the curing agent may be appropriately selected depending on the type of thermosetting resin.
  • examples of the curing agent include phenol novolak compounds, acid anhydrides, amino compounds, and imidazole compounds.
  • the lower limit of the content of the curing agent may be, for example, 0.5 parts by mass or more, or 1.0 parts by mass or more with respect to 100 parts by mass of the resin.
  • the upper limit of the content of the curing agent may be, for example, 15 parts by mass or less, or 10 parts by mass or less based on 100 parts by mass of the resin.
  • the heat dissipation filler may further contain, for example, at least one of aluminum nitride and aluminum oxide, and preferably contains aluminum nitride. If the powder is mainly composed of agglomerated particles composed of agglomerated primary particles of hexagonal boron nitride, collisions between fillers may occur when used in combination with other heat dissipation fillers, or when kneaded with resin. As a result, the above-mentioned aggregates may collapse, and the expected performance may not be achieved. Therefore, control of the kneading conditions, etc. is required.
  • Example 1 100 parts by mass of boric acid (manufactured by Kojundo Kagaku Kenkyusho Co., Ltd.), 26 parts by mass of acetylene black (manufactured by Denka Corporation, grade name: Li-400), and 3.4 parts by mass of sodium carbonate (manufactured by New Lime Corporation). and were mixed using a Henschel mixer to obtain a raw material powder.
  • the obtained mixed powder was placed in a dryer at 250°C and held for 3 hours to dehydrate the boric acid.
  • the mixed powder after dehydration was put into a mold with a diameter of 100 mm in a press molding machine, and molded under conditions of a heating temperature of 200° C. and a press pressure of 30 MPa.
  • the raw material powder pellets thus obtained were subjected to subsequent heat treatment.
  • pellets of the above raw material powder were placed in a carbon atmosphere furnace, and heated to 1900°C at a rate of 5°C/min in a nitrogen atmosphere pressurized to 0.5 MPaG. The pellets were heated for a certain period of time to obtain a fired product (firing step).
  • Powder was prepared by crushing the obtained baked product using a Henschel mixer under conditions of a rotation speed of 900 rpm and a crushing time of 10 minutes (pulverization step).
  • the average particle diameter, orientation index, tap density, specific surface area, average thickness of primary particles, and D50(A)/D50(B) values were measured. The results are shown in Table 1.
  • boron nitride powder ⁇ Evaluation of filling properties of boron nitride powder> The fillability of the obtained boron nitride powder was evaluated when it was used as a filler in a resin. Specifically, the boron nitride powder was blended with silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KF96L) in an amount of 20% by volume based on the total amount of the resin composition, and the powder was mixed with a rotating/revolution mixer. (manufactured by Thinky Co., Ltd., product name: Awatori Rentaro RE-310) and stirred at 2000 rpm for 2 minutes to prepare a slurry.
  • silicone oil manufactured by Shin-Etsu Chemical Co., Ltd., product name: KF96L
  • the shear viscosity obtained by this evaluation be low.
  • Heat dissipation performance evaluation for heat dissipation sheets containing boron nitride powder The heat dissipation properties of the obtained boron nitride powder were evaluated when it was used as a filler in a resin.
  • a xenon flash analyzer manufactured by NETZSCH, trade name: LFA447NanoFlash
  • Density D was measured by the Archimedes method.
  • the specific heat capacity C was measured using a differential scanning calorimeter (manufactured by Rigaku Corporation, device name: ThermoPlusEvo DSC8230). Based on the obtained results, the following criteria were used for evaluation. The results are shown in Table 1.
  • C Thermal conductivity is less than 4 W/mK.
  • Example 2 Boron nitride powder was prepared in the same manner as in Example 1, except that the pressure in the firing step was 0.8 MPaG and the firing temperature was 2050°C. The obtained boron nitride powder was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 Boron nitride powder was prepared in the same manner as in Example 1 except that the firing temperature in the firing step was changed to 2000°C. The obtained boron nitride powder was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 Boron nitride powder was prepared in the same manner as in Example 1, except that the pressure in the firing step was 0.9 MPaG, the firing temperature was 2100°C, and the time for holding at 2100°C was 12 hours. The obtained boron nitride powder was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • a boron nitride powder that is a powder containing primary particles of hexagonal boron nitride, which can be used to prepare a heat dissipation sheet that has excellent filling properties when filling into a resin and has excellent heat dissipation properties, and a method for producing the same.
  • a heat dissipation sheet containing the above-described boron nitride powder.
  • SYMBOLS 10 Resin part, 20... Primary particles, 100... Heat dissipation sheet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本開示の一側面は、六方晶窒化ホウ素の一次粒子を含み、平均粒子径が4.0~15.0μmであり、配向性指数が25以下であり、且つタップ密度が0.70g/cm3以上である、窒化ホウ素粉末を提供する。

Description

窒化ホウ素粉末、及び、放熱シート、並びに、窒化ホウ素粉末の製造方法
 本開示は、窒化ホウ素粉末、及び、放熱シート、並びに、窒化ホウ素粉末の製造方法に関する。
 窒化ホウ素粉末は、潤滑性、高熱伝導性、及び絶縁性等を有しており、固体潤滑材、熱伝導性フィラー、及び絶縁性フィラー等の用途に幅広く利用されている。特に熱伝導性が要求される放熱部材における充填材として、窒化ホウ素粉末が使用されている。
 六方晶窒化ホウ素の一次粒子は、比較的薄い鱗片形状を有しており、樹脂等に充填し成形した場合、成形圧力等によって一次粒子が一定の方向に配向しやすい傾向にある。例えば、六方晶窒化ホウ素の粉末を充填し、押出成形等によってシート状に成形した樹脂シートでは、一般に樹脂シートの主面と、窒化ホウ素の一次粒子の長軸とが平行になるように配向しやすい。また六方晶窒化ホウ素の一次粒子は、その形状の異方性に起因して、各種物性にも異方性が生じ得る。六方晶窒化ホウ素の一次粒子の面内方向(a軸方向)の熱伝導率が400W/(m・K)程度と高いのに対して、厚さ方向(c軸方向)の熱伝導率は2W/(m・K)程度に留まり、その方向による物性の異方性が顕著である。
 上述の理由から、六方晶窒化ホウ素の粉末を樹脂への充填材として利用し、放熱シートを調製する際に、上記一次粒子のa軸方向と、放熱シートの厚さ方向とが平行となるように調整することによって、上記一次粒子のa軸方向における高い熱伝導率を活かす方法が検討されている。例えば、六方晶窒化ホウ素の一次粒子のa軸方向と放熱シートの厚み方向とが平行になるように配向させる技術が知られている(例えば、特許文献1等)。
 また上述のような形状に基づく異方性を低減する観点から、複数の一次粒子で構成され、隣接する一次粒子同士のa軸方向の向きが異なるように凝集させ融着させた凝集体を形成する方法が検討されている。特許文献2では、窒化ホウ素の一次粒子が凝集してなる窒化ホウ素凝集粒子が開示されており、所定の成形圧力を加えた場合でも凝集粒子の崩壊が抑制できる程度に上記凝集粒子の強度を高めることによって、窒化ホウ素の一次粒子が同一方向に揃って配向することを抑制する旨が記載されている。
特開2000-154265号公報 特開2016-135731号公報
 六方晶窒化ホウ素の一次粒子のa軸方向を放熱シートの厚み方向に配向させた放熱シートの製造は条件設定等が煩雑であり、作業工程数も多いことから、一般的な放熱フィラーと同様の簡易な方法で、優れた放熱性を発揮し得る窒化ホウ素粉末があれば有用である。また、上述のような比較的強度に優れ、樹脂の成形圧力に対する耐性を有する凝集粒子であっても、他の放熱フィラーと併用する場合には、樹脂との混練の際に他の放熱フィラーとの衝突によって凝集粒子が崩壊し、一次粒子の存在割合が上昇することで、凝集粒子としたことによる効果が損なわれる場合が生じ得る。六方晶窒化ホウ素の一次粒子自体の性能をより向上させることが求められる。
 本開示は、六方晶窒化ホウ素の一次粒子を含む粉末であって、樹脂に充填する際の充填性に優れ、且つ放熱性に優れる放熱シートを調製可能な窒化ホウ素粉末及びその製造方法を提供することを目的とする。本開示はまた、上述の窒化ホウ素粉末を含む放熱シートを提供することを目的とする。
 本開示は、以下の[1]~[7]を提供する。
[1]鱗片形状を有する六方晶窒化ホウ素の一次粒子を含み、
 平均粒子径が4.0~15.0μmであり、配向性指数が25.0以下であり、且つタップ密度が0.70g/cm以上である、窒化ホウ素粉末。
[2]
 前記一次粒子の平均厚さが0.8~2.0μmである、[1]に記載の窒化ホウ素粉末。
[3]
 比表面積が3.0m/g以下である、[1]又は[2]に記載の窒化ホウ素粉末。
[4]
 配向性指数が10.0以上である、[1]~[3]のいずれかに記載の窒化ホウ素粉末。
[5]
 樹脂と、放熱フィラーとを含む、放熱シートであって、
 前記放熱フィラーが、[1]~[4]のいずれかに記載の窒化ホウ素粉末を含む、放熱シート。
[6]
 前記放熱フィラーが、窒化アルミニウム及び酸化アルミニウムの少なくとも一方を更に含む、[5]に記載の放熱シート。
[7]
 炭素含有化合物、ホウ素含有化合物、及び焼結助剤を含有する原料粉末を、0.5~0.9MPaGの加圧窒素雰囲気下で焼成して、鱗片形状を有する六方晶窒化ホウ素の一次粒子を含む焼成物を得る焼成工程と、
 前記焼成物を解砕し、平均粒子径が4.0~15.0μmであり、配向性指数が25.0以下である粉末を得る粉砕工程と、を有し、
 前記焼成工程における焼成温度が1800~2200℃で7時間以上保持することを含む、窒化ホウ素粉末の製造方法。
 本開示の一側面は、鱗片形状を有する六方晶窒化ホウ素の一次粒子を含み、平均粒子径が4.0~15.0μmであり、配向性指数が25.0以下であり、且つタップ密度が0.70g/cm以上である、窒化ホウ素粉末を提供する。
 上記窒化ホウ素粉末は、鱗片形状を有する六方晶窒化ホウ素の一次粒子を含むものであって、平均粒子径、配向性指数、及びタップ密度が所定の範囲のものとなっている。これによって、樹脂への充填性に優れ、且つ樹脂に充填し成形して得られる樹脂成形体(例えば、樹脂シート)が優れた放熱性を発揮し得る。六方晶窒化ホウ素の一次粒子の厚さが粒子径に対して大きくなると、粒子間の配向が抑制される傾向にあり、また一次粒子の粒子径が大きい場合には、外力が加わった際に粒子間の配向を促す傾向にある。また、六方晶窒化ホウ素の一次粒子の厚さが大きくなることで、タップ密度が上昇し、樹脂への充填性が向上し得る傾向にある。これらの知見に基づき、本発明者らは、主として窒化ホウ素の一次粒子で構成される窒化ホウ素粉末における、平均粒子径、配向性指数及びタップ密度に着目し、この値が所定の範囲内となるように調製された粉体が、樹脂への充填性及び樹脂に充填して得られる樹脂成形体における放熱性の双方に優れる窒化ホウ素粉末を発揮し得ることを見出した。
 上記一次粒子の平均厚さは0.8~2.0μmであってよい。
 上記窒化ホウ素粉末は比表面積が3.0m/g以下であってよい。
 上記窒化ホウ素粉末は配向性指数が10.0以上であってよい。
 本開示の一側面は、樹脂と、放熱フィラーとを含む、放熱シートであって、上記放熱フィラーが、上述の窒化ホウ素粉末を含む、放熱シートを提供する。
 上記放熱フィラーが、窒化アルミニウム及び酸化アルミニウムの少なくとも一方を更に含んでもよい。
 本開示の一側面は、炭素含有化合物、ホウ素含有化合物、及び焼結助剤を含有する原料粉末を、0.5~0.9MPaGの加圧窒素雰囲気下で焼成して、鱗片形状を有する六方晶窒化ホウ素の一次粒子を含む焼成物を得る焼成工程と、上記焼成物を解砕し、平均粒子径が4.0~15.0μmであり、配向性指数が25以下である粉末を得る粉砕工程と、を有し、上記焼成工程における焼成温度が1800~2200℃で7時間以上保持することを含む、窒化ホウ素粉末の製造方法を提供する。
 上記窒化ホウ素粉末の製造方法は、焼成工程において、加圧環境下で、焼成温度に到達してからその温度で保持する時間を比較的長くすることで、六方晶窒化ホウ素の一次粒子の厚さ方向への成長を促し、その後の解砕工程において、一次粒子間の緩い会合を崩すことによって、所定の粒子径を有し、主として六方晶窒化ホウ素の一次粒子で構成される粉末を製造できる。また上述の粉末は、六方晶窒化ホウ素の一次粒子で構成される粉末としては配向性指数が低く抑えられたものとなる。
 本開示によれば、六方晶窒化ホウ素の一次粒子を含む粉末であって、樹脂に充填する際の充填性に優れ、且つ放熱性に優れる放熱シートを調製可能な窒化ホウ素粉末及びその製造方法を提供できる。本開示によればまた、上述の窒化ホウ素粉末を含む放熱シートを提供できる。
図1は、放熱シートの一例を示す模式図である。 図2は、図1のII-II線に沿った断面図である。
 以下、場合によって図面を参照して、本開示の実施形態を説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一符号を用い、場合によって重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、各要素の寸法比率は図示の比率に限られるものではない。本明細書において、「~」の記号で示される数値範囲は、下限値及び上限値を含む。すなわち、「x~y」で示される数値範囲は、x以上且つy以下を意味する。
 本明細書において例示する材料は特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。組成物中の各成分の含有量は、組成物中の各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 窒化ホウ素粉末の一実施形態は、鱗片形状を有する六方晶窒化ホウ素の一次粒子を含む。上記窒化ホウ素粉末は、平均粒子径が4.0~15.0μmであり、配向性指数が25.0以下であり、且つタップ密度が0.70g/cm以上である。
 窒化ホウ素粉末の平均粒子径の上限値は、例えば、14.9μm以下、又は14.8μm以下であってよい。上記平均粒子径の上限値が上記範囲内となるような粒子サイズに抑制されていることによって、一次粒子の配向が抑制され、窒化ホウ素粉末の配向性指数が上昇することをより抑制できる。窒化ホウ素粉末の平均粒子径の下限値は、例えば、4.5μm以上、5.0μm以上、5.5μm以上、6.0μm以上、6.5μm以上、7.0μm以上、7.5μm以上、8.0μm以上、9.0μm以上、又は10.0μm以上であってよい。上記平均粒子径の下限値が上記範囲内であることで、樹脂への充填性と、得られる樹脂成形体(例えば、放熱シート)の放熱性とをより高水準で両立し得る。窒化ホウ素粉末の平均粒子径は上述の範囲内で調整してよく、例えば、5.0~15.0μm、8.0~15.0μm、又は10.0~15.0μmであってよい。
 本明細書における平均粒子径は、体積基準の累積粒度分布における50%累積径(メジアン径)を意味する。より具体的には、粉末に対するレーザー回折散乱法で得られる体積基準の累積粒度分布における累積値が50%となったときの粒子径(D50)を意味する。レーザー回折散乱法は、JIS Z 8825:2013「粒子径解析-レーザー回折・散乱法」に記載の方法に準拠して測定する。測定には、レーザー回折散乱法粒度分布測定装置等を使用することができる。レーザー回折散乱法粒度分布測定装置は、例えば、ベックマンコールター社製の「LS-13 320」(製品名)等を使用できる。なお、測定対象となる粉末が、一次粒子同士が緩く会合を形成しているような場合は、ホモジナイザー等による処理を行ったうえで測定を行うものとする。ホモジナイザー装置としては、家田貿易株式会社製の「VC-505」(製品名)等を使用できる。ホモジナイザーによる処理は、例えば、周波数20KHz、2分間の条件で行ってよい。
 本開示における窒化ホウ素粉末は、主に六方晶窒化ホウ素の一次粒子で構成されている。上記窒化ホウ素粉末は、複数の一次粒子が凝集した粒子を少量含んでもよく、複数の一次粒子が凝集した粒子を全く含まなくてもよい。上記窒化ホウ素粉末は上記レーザー回折散乱法での粒度分布の測定においてホモジナイザーによる超音波分散処理を行わず測定した体積基準の粒度分布におけるピークが一つであり、かつ上述のような条件による超音波分散処理を行い測定した平均粒子径(D50(A))と超音波分散処理を行わず測定した平均粒子径(D50(B))の比(D50(A)/D50(B)の値)が0.85以上であってよい。D50(A)/D50(B)の値は、例えば、1.00以下、又は1.00未満であってよい。
 窒化ホウ素粉末の配向性指数の上限値は、例えば、24.8以下、24.6以下、24.4以下、24.0以下、23.5以下、23.0以下、22.5以下、22.0以下、21.5以下、21.0以下、20.5以下、又は20.0以下であってよい。上記配向性指数の上限値が上記範囲内であることで、窒化ホウ素が有する熱異方性をより軽減し、放熱フィラーとしての特性を向上させることができる。窒化ホウ素粉末の配向性指数の下限値は、例えば、10.0以上、10.5以上、11.0以上、11.5以上、又は12.0以上であってよい。上記配向性指数は、窒化ホウ素粉末における凝集体の割合が少なく、適度な厚さを有する一次粒子を含むことの指標となり得る。上記配向性指数の下限値が上記範囲内であることで、樹脂への充填性と、得られる樹脂成形体(例えば、放熱シート)の放熱性とをより高水準で両立し得る。窒化ホウ素粉末の配向性指数は上述の範囲内で調整してよく、例えば、10.0~25.0、又は12.0~24.8であってよい。
 本明細書における配向性指数は、以下の方法に沿って測定される値を意味する。窒化ホウ素粉末に対するX線回折測定を行うことによって、窒化ホウ素粉末のX線回折スペクトルを取得し、当該X線回折スペクトルから、(002)面及び(100)面に対応するピーク強度I(002)及びI(100)を取得する。得られたピーク強度を用いて、窒化ホウ素粉末の配向性指数[I(002)/I(100)]を算出する。X線回折装置としては、例えば、株式会社リガク製の「ULTIMA-IV」(製品名)等を使用することができる。
 なお、配向性指数の測定対象は窒化ホウ素粉末であることから、粉末において、実質的に一次粒子が配向していない塊状粒子(凝集粒子)が存在し、この存在割合が大きい場合、配向性指数の値は6~7程度の値に近づく傾向にある。一方で、凝集粒子を含まない一次粒子で構成され、若しくは、上記一次粒子の存在割合が大きくなると、配向性指数の値は大きくなる傾向にある。さらに、一次粒子の平均粒子径が大きい場合、又は一次粒子の平均厚さが小さい場合には、粒子間の配向がより容易になることから、配向性指数の値は大きくなる傾向にある。
 窒化ホウ素粉末のタップ密度の下限値は、例えば、0.72g/cm以上、0.75g/cm以上、0.80g/cm以上、又は0.85g/cm以上であってよい。上記タップ密度の下限値が上記範囲内であることで、窒化ホウ素粉末を樹脂に対する充填性をより向上させることができる。窒化ホウ素粉末のタップ密度の上限値は、特に規定はないが、例えば、1.00g/cm以下、0.98g/cm以下、0.96g/cm以下、又は0.94g/cm以下であってよい。窒化ホウ素粉末のタップ密度は上述の範囲内で調整してよく、例えば、0.70~1.00g/cm、又は0.85~1.00g/cmであってよい。
 本明細書におけるタップ密度は、JIS R 1628:1997「ファインセラミックス粉末のかさ密度測定方法」に記載の方法に準拠して求められる値を意味する。具体的には、窒化ホウ素粉末を100cmの専用容器に充填し、タッピングタイム180秒、タッピング回数180回、及びタップリフト18mmの条件でタッピングを行った後のかさ密度を測定し、得られた値をタップ密度とする。測定には、市販の装置を用いることができ、例えば、ホソカワミクロン製の「パウダテスタ」(商品名)等を用いることができる。
 本開示に係る窒化ホウ素粉末に含まれる、鱗片形状を有する六方晶窒化ホウ素の一次粒子は、粒子径が比較的小さく、また厚さが比較的大きいことから窒化ホウ素粉末全体の比表面積も低く抑えられたものとなっている。窒化ホウ素粉末の比表面積の上限値は、例えば、3.0m/g以下、2.5m/g以下、2.0m/g以下、又は1.5m/g以下であってよい。上記比表面積の上限値が上記範囲内となるような窒化ホウ素粉末であることで樹脂への優れた充填性を発揮し得る。窒化ホウ素粉末の比表面積の下限値は、特に限定されるものではないが、例えば、0.5m/g以上、0.6m/g以上、0.7m/g以上、又は0.8m/g以上であってよい。窒化ホウ素粉末の比表面積は上述の範囲内で調整してよく、例えば、0.5~3.0m/gであってよい。
 本明細書における比表面積は、JIS Z 8830:2013「ガス吸着による粉体(固体)の比表面積測定方法」の記載に準拠し、比表面積測定装置を用い測定される値を意味し、窒素ガスを使用したBET一点法を適用して算出される値である。比表面積測定装置としては、例えば、QUANTACHROME社製の「MONOSORB MS-22型」(製品名)等を使用することができる。
 六方晶窒化ホウ素の一次粒子の平均厚さの下限値は、例えば、0.8μm以上、0.9μm以上、1.0μm以上、1.1μm以上、又は1.2μm以上であってよい。上記平均厚さの下限値が上記範囲内であることで、樹脂と混練した際の一次粒子の配向が抑制され、得られる樹脂成形体(例えば、放熱シート)の放熱性をより向上させ得る。上記平均厚さの上限値は、特に限定されるものではないが、例えば、3.0μm以下、2.5μm以下、又は2.0μm以下であってよい。六方晶窒化ホウ素の一次粒子の平均厚さは上述の範囲内で調整してよく、例えば、0.8~2.0μmであってよい。六方晶窒化ホウ素の一次粒子の厚みが上述の範囲内にあることでシート成形時に粒子が一方向に配向することをより抑制することが可能になる。
 本明細書における一次粒子の平均厚さは、以下に示す方法によって測定される値を意味する。具体的には、まず、プレス成型機を用いて、3gの粉末を5MPaの圧力で円盤状(直径:30mm)に成型する。次に、樹脂(GATAN社製、商品名:G2エポキシ)によって、上述のようにして得られた成型体を包埋する。そして、プレス成型の際に圧力をかけた方向と並行方向に断面ミリング加工を行うことによって、六方晶窒化ホウ素の一次粒子の断面が露出した試料を調製する。この断面を走査型電子顕微鏡によって撮影する。得られた粒子像を画像解析ソフトウェア(株式会社マウンテック製、商品名:Mac-View)に取り込み、得られた写真から矩形粒子の短辺(粒子厚み、粒子短径に相当)を測定する。測定は、任意に選択した100個の一次粒子に対して行い、その算術平均値を、一次粒子の平均厚さとする。プレス成型機としては、例えば、株式会社リガク製の「BRE-32」(製品名)等を用いることができる。走査型電子顕微鏡としては、例えば、日本電子株式会社製の「JSM-6010LA」(製品名)等を用いることができる。
 上述の窒化ホウ素粉末は、例えば、以下のような方法で製造することができる。窒化ホウ素粉末の製造方法の一実施形態は、炭素含有化合物、ホウ素含有化合物、及び焼結助剤を含有する原料粉末を、0.5~0.9MPaGの加圧窒素雰囲気下で焼成して、鱗片形状を有する六方晶窒化ホウ素の一次粒子を含む焼成物を得る焼成工程と、上記焼成物を解砕し、平均粒子径が4.0~15.0μmであり、配向性指数が25.0以下である粉末を得る粉砕工程と、を有する。上記焼成工程における焼成温度が1800~2200℃で7時間以上保持することを含む。
 炭素含有化合物は構成元素として炭素原子を有する化合物である。炭素含有化合物は、ホウ素含有化合物及び構成元素として窒素原子を有する化合物と反応して窒化ホウ素を形成する。炭素含有化合物としては、純度が高く比較的安価な原料を用いることができる。このような炭素含有化合物としては、例えば、カーボンブラック及びアセチレンブラック等が挙げられる。
 ホウ素含有化合物は構成元素としてホウ素を有する化合物である。ホウ素含有化合物は、炭素含有化合物及び構成元素として窒素原子を有する化合物と反応して窒化ホウ素を形成する化合物である。ホウ素含有化合物としては、純度が高く比較的安価な原料を用いることができる。このようなホウ素含有化合物としては、例えば、ホウ酸及び酸化ホウ素などが挙げられる。ホウ素含有化合物は、好ましくはホウ酸を含む。この場合、ホウ酸は加熱によって脱水し酸化ホウ素となり、原料粉末の加熱処理中に液相を形成すると共に粒成長を促す助剤としても働くことができる。
 焼結助剤は、ホウ素含有化合物等との反応によって、液相を形成し、窒化ホウ素の一次粒子の成長を促す。焼結助剤としては、例えば、アルカリ金属の酸化物、炭酸塩、並びに、アルカリ土類金属の酸化物、炭酸塩等が挙げられる。焼結助剤は、より具体的には、酸化ナトリウム、炭酸ナトリウム、酸化カルシウム、及び炭酸カルシウム等が挙げられる。
 原料粉末において、ホウ素含有化合物を炭素含有化合物に対して過剰量となるように配合してよい。原料粉末は、炭素含有化合物、ホウ素含有化合物及び焼結助剤に加えて、その他の化合物を含有してもよい。その他の化合物としては、例えば、核剤としての窒化ホウ素等が挙げられる。原料粉末が核剤としての窒化ホウ素を含有することで、合成される六方晶窒化ホウ素粉末の平均粒子径をより容易に制御することができる。原料粉末は、好ましくは核剤を含む。原料粉末が核剤を含む場合、比表面積の小さな六方晶窒化ホウ素粉末の調製がより容易となる。
 焼成工程は加圧環境下で行われる。上記焼成工程における雰囲気の圧力の下限値は、例えば、0.5MPaG以上、0.6MPaG以上、0.7MPaG以上、又は0.8MPaG以上であってよい。雰囲気の圧力の下限値を上記範囲内とすることで、ホウ素含有化合物の揮発を抑制し、ホウ素含有化合物の液相を維持することで六方晶窒化ホウ素の一次粒子の成長をより促進すると共に、副生物である炭化ホウ素の生成を抑制できる。上記焼成工程における雰囲気の圧力の上限値は、特に限定されるものではないが、工業的には0.9MPaG以下であってよい。上記焼成工程における雰囲気の圧力は上述の範囲内で調整してよく、例えば、0.5~0.9MPaGであってよい。本明細書の圧力は、ゲージ圧を意味する。
 焼成工程における焼成温度は、例えば、1800~2200℃である。上記焼成温度の上限値は、例えば、2150℃以下、又は2100℃以下であってよい。上記焼成温度の上限値を上記範囲内とすることで、副生成物の生成を十分に抑制することができる。上記焼成温度の下限値は、例えば、1850℃以上、1900℃以上、1950℃以上、2000℃以上、又は2050℃以上であってよい。上記焼成温度の下限値を上記範囲内とすることで、炭素含有化合物上における反応を促進させ、得られる窒化ホウ素の収量をより向上させることができる。
 本開示にかかる製造方法では、焼成工程において、上述の圧力環境下で、焼成温度に到達してからその温度で保持する時間(保持時間)を比較的長くすることで、六方晶窒化ホウ素の一次粒子の厚さ方向への成長を促す。焼成工程における保持時間の下限値は、7時間以上であるが、例えば、8時間以上であってよい。上記保持時間の下限値を上記範囲内とすることで、六方晶窒化ホウ素の一次粒子の厚さを増大させ、一次粒子間の配向をより低下させると共に、タップ密度のより大きな窒化ホウ素粉末を調製し得る。焼成工程における保持時間の上限値は、特に限定されるものではないが、窒化ホウ素粉末の製造コスト低減の観点から、例えば、20時間以下、18時間以下、16時間以下、14時間以下、又は12時間以下であってよい。焼成工程における上記保持時間は上述の範囲内で調整してよく、例えば、7~20時間、又は7~12時間であってよい。
 粉砕工程では、焼成工程で得られた上記焼成物を解砕し、平均粒子径が4.0~15.0μmであり、配向性指数が25.0以下である粉末を得る。
 解砕工程では、例えば、ヘンシェルミキサー及びグラインダーミル等の解砕機を使用できる。
 ヘンシェルミキサーを用いた場合、解砕機の回転速度は、以下のような条件であってよい。解砕機の回転速度の上限値は、例えば、950rpm以下、900rpm以下、又は850rpm以下であってよい。解砕機の回転数の上限値が上記範囲内であることで、粒子が過解砕されることを抑制できる。解砕機の回転速度の下限値は、例えば、500rpm以上、又は550rpm以上であってよい。解砕機の回転数の下限値が上記範囲内であることで、焼成物を充分に解砕し、窒化ホウ素一次粒子の緩い凝集を解除することができる。
 解砕工程における解砕時間の下限値は、例えば、5分間以上、6分間以上、7分間以上、又は8分間以上であってよい。解砕時間の下限値を上記範囲内とすることで、六方晶窒化ホウ素の一次粒子の緩い凝集をより充分に解除することができる。解砕工程における解砕時間の上限値は、例えば、15分間以下、14分間以下、13分間以下、又は12分間以下であってよい。解砕時間の上限値を上記範囲内とすることで、焼成物を十分に解砕することができ、六方晶窒化ホウ素の一次粒子自体の崩壊等をより抑制することができる。解砕時間は上述の範囲内で調整してよく、例えば、5~15分間、又は8~12分間であってよい。
 上述の窒化ホウ素粉末は、樹脂に対する充填性に優れ、樹脂成形シート中での一次粒子の配向も抑制され得ることから、放熱フィラーとして好適に使用することができる。放熱シートの一実施形態は、樹脂と、放熱フィラーとを含む、放熱シートである。上記放熱フィラーが、上述の窒化ホウ素粉末を含む。
 図1は、放熱シートの一例を示す模式図である。図2は、図1のII-II線に沿った断面図である。放熱シート100は、樹脂部10と、樹脂部10中に充填された複数の六方晶窒化ホウ素の一次粒子20と、を含む。放熱シート100において、上記一次粒子20は比較的厚さが大きいことから、放熱シート100の主面と、一次粒子のa軸とは平行にならず、適度に傾いた状態に維持されている。これによって、放熱シート100の厚み方向にも充分な放熱性を発揮し得る。
 放熱シートにおける六方晶窒化ホウ素の一次粒子の配向は、シートの厚み方向にX線を照射して得られるX線回折スペクトルにおける<100>面のピーク強度に対する<002>面のピーク強度の比([<002>面のピーク強度]/[<100>面のピーク強度]で表される値)を調べることで確認できる。<100>面のピーク強度に対する<002>面のピーク強度の比の上限値は、例えば、60以下、又は50以下であってよい。上記値の上限値が上記範囲内であることで、放熱シートにより高い放熱性を付与できる。<100>面のピーク強度に対する<002>面のピーク強度の比の下限値は、例えば、7以上、8以上、又は9以上であってよい。
 本明細書における上記ピーク強度比は、以下に示す方法によって測定した値を用いて算出できる。測定対象となる放熱シートから縦が10mm、横が10mmの正方形状の測定サンプルを切り出す。X線回折分析装置を用いて、上記測定サンプルの厚み方向に対しX線を照射し、X線回折スペクトルを取得する。得られたX線回折スペクトルにおいて、<100>面のピーク強度、及び<002>面のピーク強度を測定し、その比を算出することによって求めることができる。X線回折分析装置としては、例えば、株式会社リガク製の「Ultima-IV」(製品名)等を使用できる。
 放熱シートにおける窒化ホウ素粉末の含有量の下限値は、放熱シートの全体積を基準として、例えば、30体積%以上、40体積%以上、又は50体積%以上であってよい。上記窒化ホウ素粉末の含有量の下限値が上記範囲内であることで、放熱シートの放熱性をより向上させ得る。放熱シートにおける窒化ホウ素粉末の含有量の上限値は、放熱シートの全体積を基準として、例えば、85体積%以下、80体積%以下、又は70体積%以下であってよい。上記窒化ホウ素粉末の含有量の上限値が上記範囲内であることで、放熱シートを成形する際に内部に空隙が発生することをより抑制することができ、また絶縁性及び機械強度の低下を抑制することができる。
 樹脂部2は硬化樹脂を含んでもよく、硬化樹脂からなっていてもよい。樹脂部2を構成する硬化樹脂の種類は、例えば、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド、及びマレイミド変性樹脂等が挙げられる。
 放熱シートにおける硬化樹脂の含有量の下限値は、放熱シートの全体積を基準として、例えば、15体積%以上、20体積%以上、又は30体積%以上であってよい。放熱シートにおける硬化樹脂の含有量の上限値は、放熱シートの全体積を基準として、例えば、70体積%以下、60体積%以下、又は50体積%以下であってよい。
 上述の放熱シートは、鱗片形状を有する六方晶窒化ホウ素の一次粒子を含む窒化ホウ素粉末と、熱硬化性樹脂とを含む、樹脂組成物を、例えば、加熱加圧成型等を行うことによって調製できる。上記樹脂組成物は、その他の成分を含んでもよく、例えば、硬化剤等を含んでもよい。硬化剤は、熱硬化性樹脂の種類によって適宜選択してよい。例えば、樹脂がエポキシ樹脂である場合、硬化剤としては、例えば、フェノールノボラック化合物、酸無水物、アミノ化合物、及びイミダゾール化合物等が挙げられる。硬化剤の含有量の下限値は、樹脂100質量部に対して、例えば、0.5質量部以上、又は1.0質量部以上であってよい。硬化剤の含有量の上限値は、樹脂100質量部に対して、例えば、15質量部以下、又は10質量部以下であってよい。
 上述の窒化ホウ素粉末は、主に一次粒子によって構成されることから、他の放熱用のフィラーと併用することもできる。上記放熱フィラーは上述の窒化ホウ素粉末の他に、例えば、窒化アルミニウム及び酸化アルミニウムの少なくとも一方を更に含んでもよく、好ましくは窒化アルミニウムを含む。六方晶窒化ホウ素の一次粒子が凝集して構成される凝集粒子が主となるような粉末の場合、他の放熱用のフィラーと併用する場合、樹脂との混練の際に、フィラー間の衝突等によって、上記凝集体が崩壊し得ることから、想定した性能が発揮されない場合があり、混練の条件等の制御が求められる。
 以上、幾つかの実施形態について説明したが、本開示は上記実施形態に何ら限定されるものではない。また、上述した実施形態についての説明内容は、互いに適用することができる。
 以下、本開示について、実施例及び比較例を用いてより詳細に説明する。なお、本開示は以下の実施例に限定されるものではない。
(実施例1)
 ホウ酸(株式会社高純度化学研究所製)100質量部とアセチレンブラック(デンカ株式会社製、グレード名:Li-400)26質量部と、炭酸ナトリウム(株式会社ニューライム製)3.4質量部と、をヘンシェルミキサーによって混合して原料粉末を得た。得られた混合粉末を250℃の乾燥機に入れ、3時間保持することでホウ酸の脱水を行った。脱水後の混合粉末をプレス成型機の直径100mmの型に入れ、加熱温度が200℃、プレス圧が30MPaの条件にて成型を行った。このようにして得られた原料粉末のペレットを以降の加熱処理に供した。
 まず、上記原料粉末のペレットをカーボン雰囲気炉内に静置し、0.5MPaGに加圧された窒素雰囲気において、5℃/分の昇温速度で1900℃まで昇温し、1900℃にて8時間保持して上記ペレットの加熱処理を行い、焼成物を得た(焼成工程)。
 得られた焼成物を、回転速度900rpm、解砕時間10分の条件のもと、ヘンシェルミキサーによって解砕することで、粉末を調製した(粉砕工程)。得られた粉末について、平均粒子径、配向性指数、タップ密度、比表面積、一次粒子の平均厚さ、及びD50(A)/D50(B)の値を測定した。結果を表1に示す。
<窒化ホウ素粉末の充填性評価>
 得られた窒化ホウ素粉末を樹脂への充填材として用いた際の充填性の評価を行った。具体的には、シリコーンオイル(信越化学工業株式会社製、製品名:KF96L)に対して、樹脂組成物全量を基準として20体積%となるように上記窒化ホウ素粉末を配合し、自転・公転ミキサー(シンキー社製、製品名:あわとり廉太郎RE-310)を使用し、2000rpmで2分間撹拌することによってスラリーを調製した。レオメーター(アントンパール・ジャパン社製、製品名:MCR302、パラレルプレート(直径:25mmφ)、ギャップ:1mm)を用いて、上記スラリーの粘度を25℃において、0.01~100sec-1の範囲で測定し、得られた結果から、下記の基準に基づいて充填性を評価した。結果を表1に示す。なお、窒化ホウ素粉末を配合した樹脂組成物の粘度が高いと取扱い性や成形性に劣ることから、窒化ホウ素粉末の配合量を減少させる必要が生じ、成形体中に充填可能な粉末の量を増加させることが困難になる傾向にある。そのため、本評価によって得られるせん断粘度は低い方が望ましい。
A:せん断速度20rpmの時の粘度が1000mPa・s以下である。
B:せん断速度20rpmの時の粘度が1000mPa・s超2000mPa・s以下である。
C:せん断速度20rpmの時の粘度が2000mPa・s超である。
<窒化ホウ素粉末を含む放熱シートに対する放熱性評価>
 得られた窒化ホウ素粉末を樹脂への充填材として用いた際の放熱性の評価を行った。
[評価用シートの調製]
 ナフタレン型エポキシ樹脂(DIC株式会社製、商品名:HP4032)100質量部と、硬化剤としてイミダゾール化合物(四国化成工業株式会社製、商品名:2E4MZ-CN)10質量部との混合物に対し、窒化ホウ素粉末が60体積%となるように混合して樹脂組成物を得た。樹脂との混練には株式会社シンキー製のあわとり練太郎を用いた。混練の条件は、1600rpmで3分間とした。得られた樹脂組成物をPETフィルム上に厚さが0.3mmになるように塗布した。その後、温度150℃、50kgf/cmの条件で60分間の比較的温和な条件で加熱及び加圧を行うことによって、0.3mmの樹脂シート(評価用シート)を作製した。
[熱伝導率の測定]
 得られた評価用積層シートの一軸プレス方向における熱伝導率H(単位:W/(m・K))を、熱拡散率T(単位:m/秒)、密度D(単位:kg/m)、及び比熱容量C(単位:J/(kg・K))を用いて、H=T×D×Cの計算式で算出した。熱拡散率Tは、評価用積層シートを、縦×横×厚み=10mm×10mm×0.3mmのサイズに加工した試料を用い、レーザーフラッシュ法によって測定した。測定装置はキセノンフラッシュアナライザ(NETZSCH社製、商品名:LFA447NanoFlash)を用いた。密度Dはアルキメデス法によって測定した。比熱容量Cは、示差走査熱量計(リガク社製、装置名:ThermoPlusEvo DSC8230)を用いて測定した。得られた結果に基づいて、下記の基準で評価した。結果を表1に示す。
A:熱伝導率が7W/mK以上である。
B:熱伝導率が4W/mK以上7W/mK未満である。
C:熱伝導率が4W/mK未満である。
(実施例2)
 焼成工程における圧力を0.8MPaGとし、焼成温度を2050℃としたこと以外は、実施例1と同様にして、窒化ホウ素粉末を調製した。得られた窒化ホウ素粉末に対して、実施例1と同様の評価を行った。結果を表1に示す。
(実施例3)
 焼成工程における焼成温度を2000℃に変更したこと以外は、実施例1と同様にして、窒化ホウ素粉末を調製した。得られた窒化ホウ素粉末に対して、実施例1と同様の評価を行った。結果を表1に示す。
(実施例4)
 焼成工程にける圧力を0.9MPaGとし、焼成温度を2100℃とし、更に2100℃で保持する時間を12時間としたこと以外は、実施例1と同様にして、窒化ホウ素粉末を調製した。得られた窒化ホウ素粉末に対して、実施例1と同様の評価を行った。結果を表1に示す。
(比較例1)
 ホウ酸(株式会社高純度化学研究所製)100質量部と、メラミン(富士フイルム和光純薬株式会社製)9質量部と、炭酸ナトリウム(富士フイルム和光純薬株式会社製)13質量部を加え、加湿混合して、原料粉末を得た。得られた原料粉末を、管状炉を用いて、大気圧(0MPaG)条件の窒素雰囲気下、1000℃で2時間加熱処理し、加熱処理物を得た(仮焼工程)。得られた加熱処理物100質量部を、電気炉を用いて、大気圧(0MPaG)条件の窒素雰囲気下、1900℃に昇温し、1900℃にて6時間焼成することによって、窒化ホウ素粉末を得た(焼成工程)。得られた窒化ホウ素粉末に対して、実施例1と同様の評価を行った。結果を表1に示す。
(比較例2)
 焼成工程における焼成温度を1800℃としたこと以外は、比較例1と同様にして、窒化ホウ素粉末を得た。得られた窒化ホウ素粉末に対して、実施例1と同様の評価を行った。結果を表1に示す。
(比較例3)
 焼成工程における焼成温度を1700℃とし、1700℃で保持する時間を4時間としたこと以外は、比較例1と同様にして、窒化ホウ素粉末を得た。得られた窒化ホウ素粉末に対して、実施例1と同様の評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本開示によれば、六方晶窒化ホウ素の一次粒子を含む粉末であって、樹脂に充填する際の充填性に優れ、且つ放熱性に優れる放熱シートを調製可能な窒化ホウ素粉末及びその製造方法を提供できる。本開示によればまた、上述の窒化ホウ素粉末を含む放熱シートを提供できる。
 10…樹脂部、20…一次粒子、100…放熱シート。

 

Claims (7)

  1.  鱗片形状を有する六方晶窒化ホウ素の一次粒子を含み、
     平均粒子径が4.0~15.0μmであり、配向性指数が25.0以下であり、且つタップ密度が0.70g/cm以上である、窒化ホウ素粉末。
  2.  前記一次粒子の平均厚さが0.8~2.0μmである、請求項1に記載の窒化ホウ素粉末。
  3.  比表面積が3.0m/g以下である、請求項1又は2に記載の窒化ホウ素粉末。
  4.  配向性指数が10.0以上である、請求項1又は2に記載の窒化ホウ素粉末。
  5.  樹脂と、放熱フィラーとを含む、放熱シートであって、
     前記放熱フィラーが、請求項1又は2に記載の窒化ホウ素粉末を含む、放熱シート。
  6.  前記放熱フィラーが、窒化アルミニウム及び酸化アルミニウムの少なくとも一方を更に含む、請求項5に記載の放熱シート。
  7.  炭素含有化合物、ホウ素含有化合物、及び焼結助剤を含有する原料粉末を、0.5~0.9MPaGの加圧窒素雰囲気下で焼成して、鱗片形状を有する六方晶窒化ホウ素の一次粒子を含む焼成物を得る焼成工程と、
     前記焼成物を解砕し、平均粒子径が4.0~15.0μmであり、配向性指数が25.0以下である粉末を得る粉砕工程と、を有し、
     前記焼成工程における焼成温度が1800~2200℃で7時間以上保持することを含む、窒化ホウ素粉末の製造方法。

     
PCT/JP2023/015034 2022-04-21 2023-04-13 窒化ホウ素粉末、及び、放熱シート、並びに、窒化ホウ素粉末の製造方法 WO2023204139A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024501577A JP7505139B2 (ja) 2022-04-21 2023-04-13 窒化ホウ素粉末、及び、放熱シート、並びに、窒化ホウ素粉末の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022069925 2022-04-21
JP2022-069925 2022-04-21

Publications (1)

Publication Number Publication Date
WO2023204139A1 true WO2023204139A1 (ja) 2023-10-26

Family

ID=88420068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015034 WO2023204139A1 (ja) 2022-04-21 2023-04-13 窒化ホウ素粉末、及び、放熱シート、並びに、窒化ホウ素粉末の製造方法

Country Status (1)

Country Link
WO (1) WO2023204139A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035354A1 (ja) * 2011-09-08 2013-03-14 日立化成株式会社 樹脂組成物、樹脂シート、樹脂シート硬化物、樹脂付き金属箔及び放熱部材
WO2019073690A1 (ja) * 2017-10-13 2019-04-18 デンカ株式会社 窒化ホウ素粉末、その製造方法及びそれを用いた放熱部材
JP2019073409A (ja) * 2017-10-13 2019-05-16 デンカ株式会社 塊状窒化ホウ素粉末の製造方法及びそれを用いた放熱部材
WO2021200966A1 (ja) * 2020-03-31 2021-10-07 デンカ株式会社 窒化ホウ素焼結体及び複合体、並びに放熱部材
JP2021195291A (ja) * 2020-06-17 2021-12-27 株式会社豊田中央研究所 熱伝導性フィラー及びそれを用いた熱伝導性複合材料、並びにそれらの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035354A1 (ja) * 2011-09-08 2013-03-14 日立化成株式会社 樹脂組成物、樹脂シート、樹脂シート硬化物、樹脂付き金属箔及び放熱部材
WO2019073690A1 (ja) * 2017-10-13 2019-04-18 デンカ株式会社 窒化ホウ素粉末、その製造方法及びそれを用いた放熱部材
JP2019073409A (ja) * 2017-10-13 2019-05-16 デンカ株式会社 塊状窒化ホウ素粉末の製造方法及びそれを用いた放熱部材
WO2021200966A1 (ja) * 2020-03-31 2021-10-07 デンカ株式会社 窒化ホウ素焼結体及び複合体、並びに放熱部材
JP2021195291A (ja) * 2020-06-17 2021-12-27 株式会社豊田中央研究所 熱伝導性フィラー及びそれを用いた熱伝導性複合材料、並びにそれらの製造方法

Also Published As

Publication number Publication date
JPWO2023204139A1 (ja) 2023-10-26

Similar Documents

Publication Publication Date Title
JP7455047B2 (ja) 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、及び成形体
WO2020004600A1 (ja) 塊状窒化ホウ素粒子、窒化ホウ素粉末、窒化ホウ素粉末の製造方法、樹脂組成物、及び放熱部材
US9371449B2 (en) Boron nitride agglomerates, method for the production thereof and use thereof
WO2014003193A1 (ja) 凹部付きbn球状焼結粒子およびその製造方法ならびに高分子材料
JP5602480B2 (ja) AlN改質層を備えたアルミナ粒子の製造方法
JP6704271B2 (ja) 六方晶窒化ホウ素の一次粒子凝集体、樹脂組成物及びその用途
TW201510016A (zh) 自聚合物/氮化硼化合物製得之組成部件、用於製造此組成部件之聚合物/氮化硼化合物及其用途
KR20130102042A (ko) 구상 질화알루미늄 분말
JP5972179B2 (ja) 被覆酸化マグネシウム粉末及びその製造方法
WO2020196679A1 (ja) 窒化ホウ素粉末及びその製造方法、並びに、複合材及び放熱部材
JP2017036190A (ja) 窒化ホウ素凝集粒子組成物、bn凝集粒子含有樹脂組成物及びそれらの成形体、並びに窒化ホウ素凝集粒子の製造方法、
WO2023204139A1 (ja) 窒化ホウ素粉末、及び、放熱シート、並びに、窒化ホウ素粉末の製造方法
JP2015166294A (ja) 粘度特性に優れた低ソーダαアルミナ粉体及びその製造方法
JP7505139B2 (ja) 窒化ホウ素粉末、及び、放熱シート、並びに、窒化ホウ素粉末の製造方法
JP4392088B2 (ja) 窒化ホウ素被覆球状ホウ酸塩粒子とそれを含む混合粉末、及びそれらの製造方法
JP7140939B2 (ja) 窒化ホウ素粉末、及び窒化ホウ素粉末の製造方法
JP7343734B1 (ja) 粉末、粉末の製造方法、及び放熱シート
US20230142330A1 (en) Boron nitride sintered body, composite body, method for producing said boron nitride sintered body, method for producing said composite body, and heat dissipation member
WO2023204140A1 (ja) 窒化ホウ素粉末、及び、その製造方法、並びに、放熱シート
JP2022178471A (ja) 窒化ホウ素粉末、及び窒化ホウ素粉末の製造方法、並びに、樹脂組成物
JP2000169137A (ja) ホウ酸塩粒子、その粒子を含む無機粉末の製法及び用途
JP2023147855A (ja) 窒化ホウ素粉末
JP2024022830A (ja) 窒化ホウ素粉末、及び、窒化ホウ素粉末の製造方法
JP2023108717A (ja) 窒化ホウ素粉末、樹脂組成物、樹脂組成物の硬化物及び窒化ホウ素粉末の製造方法
JP3572692B2 (ja) α−アルミナ粉末含有樹脂組成物及びゴム組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791787

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024501577

Country of ref document: JP