WO2021200719A1 - 窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材 - Google Patents

窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材 Download PDF

Info

Publication number
WO2021200719A1
WO2021200719A1 PCT/JP2021/013048 JP2021013048W WO2021200719A1 WO 2021200719 A1 WO2021200719 A1 WO 2021200719A1 JP 2021013048 W JP2021013048 W JP 2021013048W WO 2021200719 A1 WO2021200719 A1 WO 2021200719A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
sintered body
nitride sintered
pores
resin
Prior art date
Application number
PCT/JP2021/013048
Other languages
English (en)
French (fr)
Inventor
五十嵐 厚樹
武田 真
小橋 聖治
西村 浩二
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to EP21781730.3A priority Critical patent/EP4082993A4/en
Priority to JP2022512147A priority patent/JPWO2021200719A1/ja
Priority to CN202180013551.XA priority patent/CN115066406A/zh
Priority to US17/908,786 priority patent/US20230085806A1/en
Publication of WO2021200719A1 publication Critical patent/WO2021200719A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • C04B41/83Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • C04B38/0074Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores expressed as porosity percentage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/4853Epoxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/723Oxygen content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the present disclosure relates to a boron nitride sintered body, a composite, a method for producing these, and a heat radiating member.
  • thermal interface materials that have electrical insulation properties for electronic components or printed wiring boards. It has been used to attach it to a heat sink.
  • a composite heat dissipation member composed of a resin and ceramics such as boron nitride is used.
  • Patent Document 1 proposes a technique for reducing the anisotropy of thermal conductivity while having excellent thermal conductivity by setting the degree of orientation and the graphitization index within a predetermined range.
  • the present disclosure provides a boron nitride sintered body and a composite which are thin and suitable as members for electronic parts and the like, and a method for producing these. Further, in the present disclosure, a heat radiating member suitable as a member such as an electronic component is provided.
  • the present disclosure provides a boron nitride sintered body containing boron nitride particles and pores on one side, which is in the form of a sheet and has a thickness of less than 2 mm. Since such a boron nitride sintered body contains boron nitride particles, it is excellent in electrical insulation and thermal conductivity. Further, since the thickness is less than 2 mm, it is thin, and when it is used as a member of an electronic component or the like, the size of the electronic component or the like can be reduced. Therefore, it is suitable as a member such as an electronic component. Further, since it is thin and contains pores, it is possible to reduce the weight, and it is also possible to smoothly fill the pores with a resin to form a complex.
  • the orientation index of the boron nitride sintered body may be 40 or less.
  • the boron nitride particles are formed into a sheet, they are usually oriented in a direction perpendicular to the thickness direction, and the thermal conductivity in the thickness direction tends to be low.
  • such a tendency can be reduced by reducing the orientation index. Therefore, the anisotropy of the thermal conductivity can be sufficiently reduced, and the thermal conductivity in the thickness direction can be sufficiently increased.
  • the porosity of the boron nitride sintered body may be 30 to 65% by volume.
  • the bulk density may be 800 to 1500 kg / m 3 .
  • such a boron nitride sintered body can also form a complex capable of achieving both excellent thermal conductivity and electrical insulation at a high level.
  • the average pore diameter of the pores of the boron nitride sintered body may be less than 4.0 ⁇ m.
  • the boron nitride sintered body does not have to have a cut surface. Such a boron nitride sintered body does not have fine cracks that may occur during cutting. Therefore, the reliability as a member can be further improved.
  • the present disclosure provides, in one aspect, a complex comprising any of the above-mentioned boron nitride sintered bodies and a resin filled in at least a part of the pores of the boron nitride sintered body. Since this complex contains the above-mentioned boron nitride sintered body and resin, it has both excellent thermal conductivity and excellent electrical insulation. Further, since it is thin and lightweight, it can be reduced in size and weight when used as a member of an electronic component or the like. Therefore, it is suitable as a member such as an electronic component.
  • the present disclosure provides a heat radiating member having the above-mentioned complex in one aspect. Since this heat radiating member has the above-mentioned composite, it has both excellent thermal conductivity and excellent electrical insulation. Further, since it is thin and lightweight, it can be reduced in size and weight when it is used as a heat radiating member for electronic parts and the like. Therefore, it is suitable as a member such as an electronic component.
  • the present disclosure comprises an impregnation step of impregnating the boron nitride sintered body according to any one of the above with a resin composition, and at least the pores of the boron nitride sintered body and the boron nitride sintered body.
  • a method for producing a composite having a partially filled resin In this production method, since a sheet-shaped boron nitride sintered body having a thickness of less than 2 mm is used, impregnation of the resin composition proceeds smoothly. As a result, a composite having a high resin filling rate and excellent electrical insulation can be easily obtained.
  • the above-mentioned boron nitride sintered body since it is used, it has excellent electrical insulation and thermal conductivity. Further, since it can be made thin and lightweight, it can be made smaller and lighter when it is used as a member of an electronic component or the like. Therefore, it is suitable as a member such as an electronic component.
  • the present disclosure comprises, on one aspect, a sintering step of molding and heating a formulation containing boron nitride powder and a sintering aid to obtain a boron nitride sintered body containing boron nitride particles and pores.
  • a method for producing a boron nitride sintered body is provided, wherein the thickness of the boron nitride sintered body obtained in the sintering step is less than 2 mm.
  • the present disclosure includes a nitriding step of calcining boron carbide powder in a nitrogen atmosphere to obtain a calcined product containing boron nitride, and molding and heating of a formulation containing the calcined product and a sintering aid.
  • the boron nitride sintered body has a sintering step of obtaining a boron nitride sintered body containing boron nitride particles and pores, and the thickness of the boron nitride sintered body obtained in the sintering step is less than 2 mm.
  • the boron nitride sintered body obtained by these manufacturing methods is excellent in electrical insulation and thermal conductivity because it contains boron nitride particles. Further, since the thickness is less than 2 mm, it is thin, and when it is used as a member of a circuit, the size of the circuit can be reduced. Further, since it is thin and contains pores, it is possible to reduce the weight, and it is also possible to smoothly fill the pores with a resin to form a complex. In addition, since a fired product containing boron nitride is used, the anisotropy of the thermal conductivity of the sheet-shaped boron nitride sintered body should be sufficiently reduced, and the thermal conductivity in the thickness direction should be sufficiently increased. Can be done. Therefore, it is suitable as a member such as an electronic component.
  • the present disclosure comprises a boron nitride sintered body having an impregnation step of impregnating a boron nitride sintered body obtained by any of the above-mentioned production methods with a resin composition, and the boron nitride sintered body.
  • a method for producing a composite comprising a resin filled in at least a part of the pores of the above. Since the composite obtained by such a production method contains the above-mentioned boron nitride sintered body and the resin, it has both excellent thermal conductivity and excellent electrical insulation. Further, since it is thin and lightweight, it can be reduced in size and weight when used as a member of an electronic component or the like. Therefore, it is suitable as a member such as an electronic component.
  • boron nitride sintered body and a composite which are thin and suitable as members for electronic parts and the like, and a method for producing these. Further, in the present disclosure, it is possible to provide a heat radiating member suitable as a member such as an electronic component.
  • FIG. 1 is a perspective view showing an example of a boron nitride sintered body.
  • FIG. 2 is a photograph showing an example of a molded product for producing a boron nitride sintered body.
  • the boron nitride sintered body is in the form of a sheet (thin plate shape).
  • the boron nitride sintered body is porous and its thickness is less than 2 mm.
  • the boron nitride sintered body contains boron nitride particles and pores formed by sintering primary particles of boron nitride (formed by a portion obtained by sintering the primary particles of boron nitride and the sintered primary particles). Contains the pores that have been sintered).
  • the boron nitride sintered body contains boron nitride particles (because the primary particles of boron nitride are sintered and formed), the boron nitride sintered body is excellent in electrical insulation and thermal conductivity.
  • the boron nitride sintered body may be composed of boron nitride particles.
  • the boron nitride sintered body has a thickness of less than 2 mm, it is thin, and when it is used as a member of an electronic component or the like, the size of the electronic component or the like can be reduced. Further, since it is thin and contains pores, it is possible to reduce the weight, and it is also possible to smoothly fill the pores with a resin to form a complex. (Note that the sintering of primary particles includes the case where the primary particles in the secondary particles are sintered.)
  • the thickness of the boron nitride sintered body may be less than 1 mm and may be less than 0.5 mm. From the viewpoint of ease of molding, the thickness of the boron nitride sintered body may be 0.1 mm or more, or 0.2 mm or more.
  • FIG. 1 is a perspective view showing an example of a boron nitride sintered body.
  • the boron nitride sintered body 10 has a thickness t.
  • the thickness t is less than 2 mm.
  • the boron nitride sintered body 10 may be manufactured by uniaxially pressing along the thickness direction.
  • the area of the main surface 10a may be 25 mm 2 or more, 100 mm 2 or more, 800 mm 2 or more, or 1000 mm 2 or more.
  • the resin composition can be smoothly impregnated.
  • the pores of the boron nitride sintered body are sufficiently filled with the resin, and a composite having excellent electrical insulation can be obtained.
  • the shape of the boron nitride sintered body is not limited to the quadrangular prism shape as shown in FIG. 1, and may be, for example, a cylindrical shape or a C-shaped shape in which the main surface 10a is curved.
  • the boron nitride sintered body does not have to have a cut surface. For example, it may be obtained by sintering a sheet-shaped molded product as shown in FIG.
  • the boron nitride sintered body obtained through the cutting step has fine cracks or fine irregularities (striped pattern) generated by cutting on the cut surface.
  • fine cracks and irregularities (striped pattern) on the surface can be sufficiently reduced. Therefore, the boron nitride sintered body obtained without undergoing the cutting step can further improve the thermal conductivity while maintaining sufficiently high strength. That is, it is excellent in reliability as a member such as an electronic component. Further, when processing such as cutting is performed, material loss occurs. Therefore, the boron nitride sintered body having no cut surface can reduce the material loss. Thereby, the yield of the boron nitride sintered body can be improved.
  • both of the pair of main surfaces 10a and 10b of the boron nitride sintered body 10 of FIG. 1 may not be cut surfaces. That is, the side surface of the boron nitride sintered body 10 may be a cut surface. In this case as well, it is possible to sufficiently reduce the fine cracks that may occur due to cutting on both of the pair of main surfaces 10a and 10b. Therefore, sufficiently high thermal conductivity can be maintained. Further, the material loss can be reduced as compared with the case where both of the pair of main surfaces 10a and 10b are cut surfaces.
  • the surface of the boron nitride sintered body may be shaped by polishing or the like.
  • the main surface may have an area twice or more as large as the side surface, and may have an area four times or more as large as the side surface.
  • the orientation index of the boron nitride crystal in the boron nitride sintered body may be 40 or less, 30 or less, 15 or less, and 10 or less. Thereby, the anisotropy of thermal conductivity can be sufficiently reduced. Therefore, the thermal conductivity along the thickness direction of the sheet-shaped boron nitride sintered body can be sufficiently increased.
  • the orientation index of the boron nitride sintered body may be 2.0 or more, 3.0 or more, or 4.0 or more.
  • the orientation index in the present disclosure is an index for quantifying the degree of orientation of boron nitride crystals.
  • the orientation index can be calculated by the peak intensity ratio [I (002) / I (100)] of the (002) plane and the (100) plane of boron nitride measured by an X-ray diffractometer.
  • the average pore diameter of the pores contained in the boron nitride sintered body may be less than 4.0 ⁇ m.
  • the thermal conductivity can be further increased.
  • the average pore diameter of the pores may be less than 3.8 ⁇ m, less than 3 ⁇ m, or less than 2 ⁇ m.
  • the average pore diameter of the pores may be 0.1 ⁇ m or more, and may be 0.2 ⁇ m or more.
  • the average pore diameter of the pores is determined based on the pore diameter distribution when the pressure is increased from 0.0042 MPa to 206.8 MPa using a mercury porosimeter.
  • the pore diameter when the cumulative pore volume reaches 50% of the total pore volume is the average pore diameter.
  • the mercury porosimeter one manufactured by Shimadzu Corporation can be used.
  • the porosity of the boron nitride sintered body that is, the volume ratio of the pores in the boron nitride sintered body may be 30 to 65% by volume, 30 to 60% by volume, or 35 to 55% by volume. It's okay. If the porosity becomes too large, the strength of the boron nitride sintered body tends to decrease. On the other hand, if the porosity becomes too small, the mass tends to be heavy. In addition, the content of the resin when the composite is produced tends to decrease, and the electrical insulating property tends to decrease.
  • the bulk density [B (kg / m 3 )] is calculated from the volume and mass of the boron nitride sintered body, and from this bulk density and the theoretical density of boron nitride [2280 (kg / m 3 )].
  • Porosity (% by volume) [1- (B / 2280)] x 100 (1)
  • the bulk density B may be 800 to 1500 kg / m 3 , 850 to 1400 kg / m 3 , or 900 to 1300 kg / m 3 . If the bulk density B becomes too large, the mass of the boron nitride sintered body tends to increase. In addition, the filling amount of the resin tends to decrease, and the electrical insulating property of the complex tends to decrease. On the other hand, if the bulk density B becomes too small, the strength of the boron nitride sintered body tends to decrease.
  • the thermal conductivity of the boron nitride sintered body may be 20 W / mK or more, 30 W / mK or more, 35 W / mK or more, or 40 W / mK or more.
  • H is the thermal conductivity (W / (m ⁇ K))
  • A is the thermal diffusivity (m 2 / sec)
  • B is the bulk density (kg / m 3 )
  • C is the specific heat capacity. (J / (kg ⁇ K)) is shown.
  • the thermal diffusivity A can be measured by a laser flash method.
  • the bulk density B can be obtained from the volume and mass of the boron nitride sintered body.
  • the specific heat capacity C can be measured using a differential scanning calorimeter.
  • the boron nitride sintered body may have the above-mentioned thermal conductivity in the thickness direction.
  • the composite according to one embodiment is a composite of a boron nitride sintered body and a resin, and has the above-mentioned boron nitride sintered body and a resin filled in at least a part of the pores of the boron nitride sintered body.
  • the resin include epoxy resin, silicone resin, cyanate resin, silicone rubber, acrylic resin, phenol resin, melamine resin, urea resin, bismaleimide resin, unsaturated polyester, fluororesin, polyimide, polyamideimide, polyetherimide, and the like.
  • the resin may contain an epoxy resin from the viewpoint of improving heat resistance and adhesive strength to the circuit.
  • the resin may contain a silicone resin from the viewpoint of improving heat resistance, flexibility, and adhesion to a heat sink or the like.
  • the resin may be a cured product or a semi-cured product (B stage state).
  • FIG. 1 is a perspective view showing an example of a complex.
  • the complex 20 has a thickness t.
  • the thickness t is less than 2 mm.
  • the area of the main surfaces 20a and 20b may be 25 mm 2 or more, 100 mm 2 or more, 800 mm 2 or more, and 1000 mm 2 or more.
  • the complex 20 Since the complex 20 has a small thickness t, the pores of the boron nitride sintered body 10 are sufficiently filled with resin. Therefore, it is sufficiently excellent in electrical insulation.
  • the thickness t of the complex 20 does not have to be the same as the thickness of the boron nitride sintered body 10.
  • a resin layer may be provided on the surface of the boron nitride sintered body 10.
  • the shape of the complex is not limited to the square pillar shape as shown in FIG. 1, and may be, for example, a cylindrical shape or a C-shaped shape in which the main surfaces 20a and 20b are curved.
  • the complex does not have to have a cut surface.
  • the complex obtained without the cutting step does not have the fine cracks that may occur with the cutting. Therefore, the thermal conductivity can be further improved while maintaining a sufficiently high strength. That is, it is excellent in reliability as a member such as an electronic component. Further, when processing such as cutting is performed, material loss occurs. Therefore, the composite having no cut surface can reduce the material loss. Thereby, the yield of the complex can be improved.
  • the content of the boron nitride particles in the complex may be 40 to 70% by volume or 45 to 65% by volume based on the total volume of the complex.
  • the content of the resin in the complex may be 30 to 60% by volume or 35 to 55% by volume based on the total volume of the complex.
  • a complex containing boron nitride particles and a resin in such a proportion can achieve both high electrical insulation and high thermal conductivity at a high level.
  • the porosity of the complex may be 10% by volume or less, 5% by volume or less, or 3% by volume or less.
  • the porosity is, for example, the bulk density B 1 (kg / m 3 ) obtained from the volume and mass of the composite and the theoretical density B 2 (kg / m 3) when all the pores of the boron nitride sintered body are impregnated with the resin composition. It can be obtained from kg / m 3).
  • the complex may further contain other components in addition to the boron nitride sintered body and the resin filled in the pores thereof.
  • other components include a curing agent, an inorganic filler, a silane coupling agent, a defoaming agent, a surface conditioner, a wet dispersant and the like.
  • the inorganic filler may contain one or more selected from the group consisting of aluminum oxide, silicon oxide, zinc oxide, silicon nitride, aluminum nitride and aluminum hydroxide. Thereby, the thermal conductivity of the complex can be further improved.
  • the composite of the present embodiment contains the above-mentioned boron nitride sintered body and the resin filled in the pores thereof, it has both excellent thermal conductivity and excellent electrical insulation. Further, since it is thin and lightweight, it is possible to reduce the size and weight of the electronic component when it is used as a member of the electronic component or the like. Since the complex has such characteristics, it can be suitably used as a heat radiating member.
  • the heat radiating member may be composed of the above-mentioned composite, or may be composed of a composite with another member (for example, a metal plate such as aluminum).
  • the method for producing a boron nitride sintered body of this example includes a nitriding step of calcining boron carbide powder in a nitrogen-pressurized atmosphere to obtain a calcined product containing boron nitride, and a calcined product and a sintering aid. It has a sintering step of forming and heating a compound to obtain a boron nitride sintered body containing boron nitride particles and pores.
  • Boron carbide powder can be prepared, for example, by the following procedure. After mixing boric acid and acetylene black, the mixture is heated at 1800 to 2400 ° C. for 1 to 10 hours in an inert gas atmosphere to obtain a boron carbide mass.
  • the boron carbide mass can be prepared by pulverizing, washing, removing impurities, and drying.
  • the boron carbide powder is calcined in a nitrogen atmosphere to obtain a calcined product containing boron nitride (B 4 CN 4).
  • the firing temperature in the nitriding step may be 1800 ° C. or higher, and may be 1900 ° C. or higher. Further, the firing temperature may be 2400 ° C. or lower, and may be 2200 ° C. or lower. The firing temperature may be, for example, 1800 to 2400 ° C.
  • the pressure in the nitriding step may be 0.6 MPa or more, and may be 0.7 MPa or more. Further, the pressure may be 1.0 MPa or less, and may be 0.9 MPa or less. The pressure may be, for example, 0.6 to 1.0 MPa. If the pressure is too low, nitriding of boron carbide tends to be difficult to proceed. On the other hand, if the pressure is too high, the manufacturing cost tends to increase.
  • the pressure in the present disclosure is an absolute pressure.
  • the nitrogen gas concentration in the nitrogen atmosphere in the nitriding step may be 95% by volume or more, and may be 99.9% by volume or more.
  • the partial pressure of nitrogen may be in the pressure range described above.
  • the firing time in the nitriding step is not particularly limited as long as the nitriding proceeds sufficiently, and may be, for example, 6 to 30 hours or 8 to 20 hours.
  • a calcined product containing boron nitride particles obtained in the nitriding step and a sintering aid may be blended to obtain a compound.
  • the sintering aid may contain a boron compound and a calcium compound.
  • the compound may contain 1 to 30 parts by mass in total of the boron compound and the calcium compound with respect to 100 parts by mass of the fired product. With such a content, while suppressing the excessive grain growth of the primary particles, the grain growth is moderately promoted to promote sintering, and the primary particles of boron nitride are firmly and closely adhered to each other over a wide area. Join.
  • the formulation may contain a total of 1 to 30 parts by mass of the boron compound and the calcium compound with respect to 100 parts by mass of the calcined product, and may contain 5 to 25 parts by mass. It may contain 8 to 20 parts by mass.
  • the formulation may contain 0.5 to 40 atomic% of calcium constituting a calcium compound, or 0.7 to 30 atomic%, based on 100 atomic% of boron constituting the boron compound.
  • Examples of the boron compound include boric acid, boron oxide, borax and the like.
  • Examples of the calcium compound include calcium carbonate and calcium oxide.
  • the sintering aid may contain components other than boric acid and calcium carbonate. Examples of such a component include carbonates of alkali metals such as lithium carbonate and sodium carbonate.
  • a binder may be added to the compound. Examples of the binder include an acrylic compound and the like.
  • the fired product may be crushed using a general crusher or crusher.
  • a ball mill, a Henschel mixer, a vibration mill, a jet mill and the like can be used.
  • "crushing” also includes “crushing”.
  • the calcined product may be crushed and then the sintering aid may be blended, or the calcined product and the sintering aid may be blended and then pulverized and mixed at the same time.
  • the compound may be a molded product by powder pressing or mold molding, or may be a sheet-shaped molded product by a doctor blade method or an extrusion method.
  • the molding pressure may be, for example, 5 to 350 MPa.
  • the molded body may be in the form of a sheet having a thickness of less than 2 mm, for example. If a boron nitride sintered body is manufactured using a sheet-shaped molded body, a boron nitride sintered body having no cut surface can be manufactured. Further, as compared with the case where the block-shaped boron nitride sintered body and the composite are cut into a sheet shape, the material loss due to processing can be reduced by forming the sheet shape from the stage of the molded body. Therefore, a sheet-shaped boron nitride sintered body and a composite can be produced with a high yield.
  • the molded product thus obtained is heated and fired in, for example, an electric furnace.
  • the heating temperature may be, for example, 1800 ° C. or higher, and may be 1900 ° C. or higher.
  • the heating temperature may be, for example, 2200 ° C. or lower, or 2100 ° C. or lower. If the heating temperature is too low, grain growth tends not to proceed sufficiently.
  • the heating time may be 0.5 hours or more, and may be 1 hour or more, 3 hours or more, 5 hours or more, or 10 hours or more.
  • the heating time may be 40 hours or less, 30 hours or less, or 20 hours or less.
  • the heating time may be, for example, 0.5 to 40 hours, or 1 to 30 hours. If the heating time is too short, grain growth tends not to proceed sufficiently.
  • the heating atmosphere may be, for example, an atmosphere of an inert gas such as nitrogen, helium, or argon.
  • an inert gas such as nitrogen, helium, or argon.
  • a sheet-shaped boron nitride sintered body containing boron nitride particles and pores and having a thickness of less than 2 mm can be obtained.
  • boron nitride since boron nitride is used, it is possible to prevent the boron nitride particles from being oriented in the direction perpendicular to the thickness direction. Therefore, it is possible to reduce the anisotropy of thermal conductivity and produce a boron nitride sintered body having excellent thermal conductivity according to the thickness method.
  • the range of the orientation index of the boron nitride sintered body is as described above.
  • the boron nitride sintered body can be produced without having a step of cutting the boron nitride sintered body.
  • a highly reliable boron nitride sintered body having no cut surface can be produced with a high yield.
  • the method for producing a boron nitride sintered body is not limited to this.
  • a commercially available boron nitride powder may be used instead of the fired product containing the boron nitride particles obtained in the nitride step to obtain a boron nitride sintered body.
  • a granulated product obtained by drying a water slurry containing scaly and / or amorphous boron nitride powder, a sintering aid, a binder and water is formed and sintered to obtain a boron nitride sintered body. You may get it.
  • a sheet-shaped boron nitride sintered body having a thickness of less than 2 mm can be obtained.
  • An example of a method for producing a complex has an impregnation step of impregnating a boron nitride sintered body with a resin composition.
  • the boron nitride sintered body may be produced by any of the above methods.
  • the resin composition may contain a resin component, a curing agent and a solvent from the viewpoint of improving fluidity and handleability.
  • an inorganic filler, a silane coupling agent, a defoaming agent, a surface conditioner, a wet dispersant and the like may be contained.
  • the resin component for example, one that becomes the resin mentioned in the above description of the complex by curing or semi-curing reaction can be used.
  • the solvent include aliphatic alcohols such as ethanol and isopropanol, 2-methoxyethanol, 1-methoxyethanol, 2-ethoxyethanol, 1-ethoxy-2-propanol, 2-butoxyethanol and 2- (2-methoxyethoxy).
  • Ether alcohols such as ethanol, 2- (2-ethoxyethoxy) ethanol, 2- (2-butoxyethoxy) ethanol, glycol ethers such as ethylene glycol monomethyl ether and ethylene glycol monobutyl ether, acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl
  • ketones such as ketones and hydrocarbons such as toluene and xylene. One of these may be contained alone, or two or more thereof may be contained in combination.
  • Impregnation is performed by adhering the resin composition to the boron nitride sintered body.
  • the boron nitride sintered body may be immersed in the resin composition. It may be carried out under pressurization or depressurization conditions in the immersed state. In this way, the pores of the boron nitride sintered body can be filled with the resin. Since the boron nitride sintered body is in the form of a sheet and has a thickness of less than 2 mm, it is possible to smoothly fill the pores with the resin. Therefore, the filling rate with the resin can be sufficiently increased. Therefore, a composite having excellent electrical insulation can be smoothly produced.
  • the impregnation step may be performed in an impregnation device provided with a closed container.
  • the pressure in the impregnating device may be increased to be higher than the atmospheric pressure and impregnated under pressurized conditions.
  • the depressurization condition and the pressurization condition may be repeated a plurality of times.
  • the impregnation step may be performed while heating.
  • the resin composition impregnated in the pores of the boron nitride sintered body becomes a resin (cured product or semi-cured product) after curing or semi-curing proceeds or the solvent volatilizes.
  • a composite having a boron nitride sintered body and a resin filled in its pores is obtained. It is not necessary that all the pores of the boron nitride sintered body are filled with resin, and some of the pores may not be filled with resin.
  • Boron nitride sintered bodies and complexes may contain both closed and open pores.
  • the impregnation step there may be a curing step of curing the resin filled in the pores.
  • the curing step for example, the composite filled with the resin (resin composition) is taken out from the impregnation device, heated and / or irradiated with light depending on the type of the resin (or the curing agent added as needed). Allows the resin to be cured or semi-cured.
  • the complex thus obtained is in the form of a sheet and has a thin thickness. Therefore, it is thin and lightweight, and when it is used as a member of an electronic component or the like, it is possible to reduce the size and weight of the electronic component or the like.
  • the pores of the boron nitride sintered body are sufficiently filled with resin, it is also excellent in electrical insulation.
  • the composite in the above-mentioned production method, the composite can be produced without having a step of cutting the boron nitride sintered body and the composite. Therefore, a highly reliable complex can be produced with a high yield.
  • the composite may be used as it is as a heat radiating member, or may be subjected to processing such as polishing to be a heat radiating member.
  • a boron nitride sintered body may be obtained by hot pressing in which molding and sintering are performed at the same time.
  • Example 1 ⁇ Preparation of Boron Nitride Sintered Body> 100 parts by mass of orthoboric acid manufactured by Nippon Denko Co., Ltd. and 35 parts by mass of acetylene black (trade name: HS100) manufactured by Denka Co., Ltd. were mixed using a Henschel mixer. The resulting mixture was filled into a graphite crucible, in an arc furnace, in argon atmosphere, and heated for 5 hours at 2200 ° C., to obtain a lump of boron carbide (B 4 C). The obtained mass was coarsely pulverized with a jaw crusher to obtain a coarse powder.
  • This coarse powder was further pulverized by a ball mill having a silicon carbide ball ( ⁇ 10 mm) to obtain pulverized powder.
  • the carbon content of the obtained boron carbide powder was 19.9% by mass.
  • the amount of carbon was measured with a carbon / sulfur simultaneous analyzer.
  • the prepared boron carbide powder was filled in a crucible made of boron nitride. Then, using a resistance heating furnace, the mixture was heated in a nitrogen gas atmosphere at 2000 ° C. and 0.85 MPa for 10 hours. In this way, a fired product containing boron nitride (B 4 CN 4) was obtained.
  • a sintering aid was prepared by blending powdered boric acid and powdered calcium carbonate. In the preparation, 1.9 parts by mass of calcium carbonate was added to 100 parts by mass of boric acid. At this time, the atomic ratio of boron to calcium was 1.2 atomic% of calcium with respect to 100 atomic% of boron. 19 parts by mass of the sintering aid was added to 100 parts by mass of the calcined product and mixed using a Henschel mixer to obtain a powdery compound.
  • This sintered body was a porous sintered body (boron nitride sintered body) containing boron nitride particles and pores. In this way, a sheet-shaped (flat plate-shaped) boron nitride sintered body was obtained. The thickness t of the boron nitride sintered body was 0.40 mm.
  • H is the thermal conductivity (W / (m ⁇ K))
  • A is the thermal diffusivity (m 2 / sec)
  • B is the bulk density (kg / m 3 )
  • C is the specific heat capacity. (J / (kg ⁇ K)) is shown.
  • a xenon flash analyzer manufactured by NETZSCH, trade name: LFA447NanoFlash
  • the bulk density B was calculated from the volume and mass of the boron nitride sintered body.
  • the results of thermal conductivity H and bulk density B are shown in Table 1.
  • the specific heat capacity C was 0.79 (J / (kg ⁇ K)).
  • the orientation index [I (002) / I (100)] of the boron nitride sintered body was determined using an X-ray diffractometer (manufactured by Rigaku Co., Ltd., trade name: ULTIMA-IV).
  • the measurement sample (boron nitride sintered body) set in the sample holder of the X-ray diffractometer was irradiated with X-rays to perform baseline correction. Then, the peak intensity ratio of the (002) plane and the (100) plane of boron nitride was calculated. This was defined as the orientation index [I (002) / I (100)].
  • the results are as shown in Table 1.
  • Example 2 Amorphous boron nitride powder with an oxygen content of 1.7% by mass and an average particle size of 3.4 ⁇ m and a hexagonal crystal with an oxygen content of 0.1% by mass and an average particle size of 16.0 ⁇ m. Boron nitride powder was prepared. Amorphous boron nitride powder 10.7 parts by mass, hexagonal boron nitride powder 7.1 parts by mass, calcium carbonate (manufactured by Shiraishi Kogyo Co., Ltd., trade name: PC-700) 0.9 parts by mass, boric acid 1. 6 parts by mass were mixed using a Henschel mixer to obtain a mixture.
  • PC-700 calcium carbonate
  • a molded product of ⁇ 25 mm ⁇ 0.38 mm) was obtained.
  • the molded product was placed in a boron nitride container and introduced into a batch type high frequency furnace. In a batch type high frequency furnace, heating was performed under the conditions of normal pressure, nitrogen flow rate of 5 L / min, and 2050 ° C. for 10 hours. Then, the sintered body was taken out from the boron nitride container.
  • This sintered body was a porous sintered body (boron nitride sintered body) containing boron nitride particles and pores. In this way, a sheet-shaped (flat plate-shaped) boron nitride sintered body was obtained. The thickness t of the boron nitride sintered body was 0.40 mm.
  • H is the thermal conductivity (W / (m ⁇ K))
  • A is the thermal diffusivity (m 2 / sec)
  • B 1 is the bulk density (kg / m 3 )
  • C is the ratio.
  • the heat capacity (J / (kg ⁇ K)) is shown.
  • a xenon flash analyzer manufactured by NETZSCH, trade name: LFA447NanoFlash
  • the bulk density B 1 was calculated from the volume and mass of the complex.
  • the specific heat capacity C was 0.97 (J / (kg ⁇ K)).
  • the theoretical density B 2 (kg / m 3 ) when all the pores of the boron nitride sintered body is impregnated with the above resin composition is the bulk density B (kg / m 3 ) of the boron nitride sintered body and nitrided. It was calculated based on the following formula (6) from the pore ratio P (volume%) of the boron sintered body and the theoretical density (1240 kg / m 3) of the resin composition.
  • Theoretical density B 2 (kg / m 3 ) B + P / 100 ⁇ 1240 (6)
  • the breakdown voltage of the composite obtained as described above was evaluated. Specifically, two conductive tapes were attached to both sides of the complex to prepare a measurement sample. The dielectric breakdown voltage of the obtained measurement sample was measured using a withstand voltage tester (manufactured by Kikusui Electronics Co., Ltd., device name: TOS-8700) according to JIS C2110-1: 2016. The results of composite thickness, thermal conductivity, bulk density, porosity, and dielectric breakdown voltage are shown in Table 2.
  • the breakdown voltage of the complex of each example was sufficiently high. From this, it was confirmed that it has excellent electrical insulation.
  • a boron nitride sintered body and a composite which are thin and suitable as members for electronic parts and the like, and a method for producing these are provided. Further, a heat radiating member suitable as a member of an electronic component or the like is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Products (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

窒化ホウ素粒子と気孔とを含む窒化ホウ素焼結体であって、シート状であり、厚みが2mm未満である窒化ホウ素焼結体を提供する。炭窒化ホウ素粉末と焼結助剤とを含む配合物の成形及び加熱を行って窒化ホウ素粒子と気孔とを含む、シート状の窒化ホウ素焼結体を得る焼結工程を有し、焼結工程で得られる窒化ホウ素焼結体の厚みは2mm未満である、窒化ホウ素焼結体の製造方法を提供する。

Description

窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材
 本開示は、窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材に関する。
 パワーデバイス、トランジスタ、サイリスタ、CPU等の部品においては、使用時に発生する熱を効率的に放熱することが求められる。このような要請から、従来、電子部品を実装するプリント配線板の絶縁層の高熱伝導化を図ったり、電子部品又はプリント配線板を、電気絶縁性を有する熱インターフェース材(Thermal Interface Materials)を介してヒートシンクに取り付けたりすることが行われてきた。このような絶縁層及び熱インターフェース材には、樹脂と窒化ホウ素等のセラミックスとで構成される複合体(放熱部材)が用いられる。
 このような複合体として、多孔性のセラミックス成形体に樹脂を含浸させた複合体を用いることが検討されている。窒化ホウ素は、潤滑性、高熱伝導性、及び絶縁性等を有していることから、窒化ホウ素を含むセラミックスを放熱部材に用いることが検討されている。特許文献1では、配向度及び黒鉛化指数を所定の範囲にして、熱伝導率に優れつつ熱伝導率の異方性を低減する技術が提案されている。
特開2014-162697号公報
 近年の電子部品内の回路の高集積化に伴って、優れた電気絶縁性と熱伝導性を兼ね備える放熱部材が求められている。このように各種部材の高性能化が求められている一方で、電子部品が搭載されるスペースには通常制限があるため、電子部品に搭載される部材を小型化する技術を確立することも必要であると考えられる。
 そこで、本開示は、薄型であり、電子部品等の部材として好適な窒化ホウ素焼結体及び複合体、並びにこれらの製造方法を提供する。また、本開示では、電子部品等の部材として好適な放熱部材を提供する。
 本開示は、一つの側面において、窒化ホウ素粒子と気孔とを含む窒化ホウ素焼結体であって、シート状であり、厚みが2mm未満である窒化ホウ素焼結体を提供する。このような窒化ホウ素焼結体は、窒化ホウ素粒子を含むことから電気絶縁性と熱伝導性に優れる。また、厚みが2mm未満であることから薄型であり、電子部品等の部材として用いられたときに電子部品等の小型化を図ることができる。したがって、電子部品等の部材として好適である。また、薄型で気孔を含むことから軽量化を図ることができるうえ、気孔に円滑に樹脂を充填して複合体にすることもできる。
 上記窒化ホウ素焼結体の配向性指数は40以下であってよい。窒化ホウ素粒子は、シート状に成形すると、通常は厚み方向とは垂直な方向に配向し、厚み方向の熱伝導率が低くなる傾向にある。しかしながら、配向性指数を小さくすることによってそのような傾向を低減できる。したがって、熱伝導率の異方性を十分に低減し、厚み方向の熱伝導性を十分に高くすることができる。
 上記窒化ホウ素焼結体における気孔率は30~65体積%であってよい。また、かさ密度は800~1500kg/mであってよい。気孔率及びかさ密度の少なくとも一方がこの範囲にあることによって、熱伝導率を十分に高くしつつ、軽量化を図ることができる。また、このような窒化ホウ素焼結体は、優れた熱伝導率と電気絶縁性を高い水準で両立できる複合体を形成することもできる。
 上記窒化ホウ素焼結体の気孔の平均細孔径は4.0μm未満であってよい。このように気孔のサイズを小さくすることによって、窒化ホウ素の一次粒子同士の接触面積を十分に大きくすることができる。したがって、熱伝導率を十分に高くすることができる。
 上記窒化ホウ素焼結体は切断面を有しなくてよい。このような窒化ホウ素焼結体は、切断に伴って生じ得る微細なクラックを有しない。したがって、部材としての信頼性を一層向上することができる。
 本開示は、一つの側面において、上述のいずれかの窒化ホウ素焼結体と、当該窒化ホウ素焼結体の気孔の少なくとも一部に充填された樹脂と、含む複合体を提供する。この複合体は、上述の窒化ホウ素焼結体と樹脂とを含むことから、優れた熱伝導率と優れた電気絶縁性を兼ね備える。また、薄型且つ軽量であるため、電子部品等の部材として用いると小型化及び軽量化を図ることができる。したがって、電子部品等の部材として好適である。
 本開示は、一つの側面において、上述の複合体を有する放熱部材を提供する。この放熱部材は上述の複合体を有することから、優れた熱伝導率と優れた電気絶縁性を兼ね備える。また、薄型且つ軽量であるため、電子部品等の放熱部材として用いられたときに小型化及び軽量化を図ることができる。したがって、電子部品等の部材として好適である。
 本開示は、一つの側面において、上述のいずれかに記載の窒化ホウ素焼結体に、樹脂組成物を含浸させる含浸工程を有する、窒化ホウ素焼結体と、窒化ホウ素焼結体の気孔の少なくとも一部に充填された樹脂とを有する複合体の製造方法を提供する。この製造方法では、厚みが2mm未満のシート状の窒化ホウ素焼結体を用いていることから、樹脂組成物の含浸が円滑に進行する。これによって、樹脂の充填率が高く電気絶縁性に優れる複合体を簡便に得ることができる。また、上述の窒化ホウ素焼結体を用いていることから、優れた電気絶縁性と熱伝導性を有する。また、薄型且つ軽量とすることが可能であるため、電子部品等の部材として用いられたときに小型化及び軽量化を図ることができる。したがって、電子部品等の部材として好適である。
 本開示は、一つの側面において、炭窒化ホウ素粉末と焼結助剤とを含む配合物の成形及び加熱を行って窒化ホウ素粒子と気孔とを含む窒化ホウ素焼結体を得る焼結工程を有し、焼結工程で得られる窒化ホウ素焼結体の厚みは2mm未満である、窒化ホウ素焼結体の製造方法を提供する。
 本開示は、一つの側面において、炭化ホウ素粉末を、窒素雰囲気下で焼成して炭窒化ホウ素を含む焼成物を得る窒化工程と、焼成物と焼結助剤とを含む配合物の成形及び加熱を行って窒化ホウ素粒子と気孔とを含む窒化ホウ素焼結体を得る焼結工程と、を有し、焼結工程で得られる窒化ホウ素焼結体の厚みは2mm未満である、窒化ホウ素焼結体の製造方法を提供する。
 これらの製造方法で得られる窒化ホウ素焼結体は、窒化ホウ素粒子を含むことから電気絶縁性と熱伝導性に優れる。また、厚みが2mm未満であることから薄型であり、回路の部材として用いられたときに回路の小型化を図ることができる。また、薄型であるうえに気孔を含むことから軽量化を図ることができるうえ、気孔に円滑に樹脂を充填して複合体にすることもできる。また、炭窒化ホウ素を含む焼成物を用いていることから、シート状の窒化ホウ素焼結体の熱伝導率の異方性を十分に低減し、厚み方向の熱伝導性を十分に高くすることができる。したがって、電子部品等の部材として好適である。
 本開示は、一つの側面において、上述のいずれかの製造方法で得られた窒化ホウ素焼結体に樹脂組成物を含浸させる含浸工程を有する、窒化ホウ素焼結体と、当該窒化ホウ素焼結体の気孔の少なくとも一部に充填された樹脂とを備える複合体の製造方法を提供する。このような製造方法によって得られる複合体は、上述の窒化ホウ素焼結体と樹脂とを含むことから、優れた熱伝導率と優れた電気絶縁性を兼ね備える。また、薄型且つ軽量であるため、電子部品等の部材として用いられたときに小型化及び軽量化を図ることができる。したがって、電子部品等の部材として好適である。
 本開示によれば、薄型であり、電子部品等の部材として好適な窒化ホウ素焼結体及び複合体、並びにこれらの製造方法を提供することができる。また、本開示では、電子部品等の部材として好適な放熱部材を提供することができる。
図1は、窒化ホウ素焼結体の一例を示す斜視図である。 図2は、窒化ホウ素焼結体を製造するための成形体の例を示す写真である。
 以下、場合により図面を参照して、本開示の実施形態を説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。
 窒化ホウ素焼結体は、シート状(薄板形状)である。窒化ホウ素焼結体は多孔質であり、その厚みは、2mm未満である。窒化ホウ素焼結体は、窒化ホウ素の一次粒子同士が焼結して構成される窒化ホウ素粒子と気孔とを含有する(窒化ホウ素の一次粒子同士が焼結した部分と焼結した一次粒子により形成された気孔を含有する)。窒化ホウ素焼結体は、窒化ホウ素粒子を含むことから(窒化ホウ素の一次粒子同士が焼結して形成されることから)電気絶縁性と熱伝導性に優れる。窒化ホウ素焼結体は、窒化ホウ素粒子で構成されてよい。
 窒化ホウ素焼結体は、厚みが2mm未満であることから薄型であり、電子部品等の部材として用いられたときに電子部品等の小型化を図ることができる。また、薄型であるうえに気孔を含むことから軽量化を図ることができるうえ、気孔に円滑に樹脂を充填して複合体にすることもできる。(なお、一次粒子同士の焼結には二次粒子中の一次粒子同士が焼結する場合も含む。)
 一層の小型化及び軽量化を図る観点から、窒化ホウ素焼結体の厚みは、1mm未満であってよく、0.5mm未満であってもよい。成形体作製の容易性の観点から、窒化ホウ素焼結体の厚みは、0.1mm以上であってよく、0.2mm以上であってもよい。
 図1は、窒化ホウ素焼結体の一例を示す斜視図である。窒化ホウ素焼結体10は厚みtを有する。厚みtは2mm未満である。窒化ホウ素焼結体10は厚み方向に沿って一軸加圧されて製造されたものであってよい。主面10aの面積は、25mm以上であってよく、100mm以上であってよく、800mm以上であってよく、1000mm以上であってもよい。
 窒化ホウ素焼結体10は厚みtが小さいため、樹脂組成物の含浸を円滑に行うことができる。これによって、窒化ホウ素焼結体の気孔に樹脂が十分に充填され、電気絶縁性に優れる複合体を得ることができる。
 窒化ホウ素焼結体の形状は図1のような四角柱形状に限定されず、例えば、円柱形状であってもよいし、主面10aが湾曲したC型形状であってもよい。窒化ホウ素焼結体は切断面を有していなくてよい。例えば図1のようなシート状の成形体を焼結して得られるものであってよい。
 切断工程を経て得られる窒化ホウ素焼結体は、切断面に、微細なクラック、或いは切断に伴って生じる微細な凹凸(縞模様)を有する。一方、切断工程を経ずに得られる窒化ホウ素焼結体は、切断面を有しないため、表面の微細なクラック及び凹凸(縞模様)を十分に低減することができる。したがって、切断工程を経ずに得られる窒化ホウ素焼結体は、十分に高い強度を維持しつつ、熱伝導性を一層向上することができる。すなわち、電子部品等の部材としての信頼性に優れる。また、切断等の加工を行うと、材料ロスが発生する。このため、切断面を有しない窒化ホウ素焼結体は、材料ロスを低減することができる。これによって、窒化ホウ素焼結体の歩留まりを向上することができる。
 変形例では、図1の窒化ホウ素焼結体10の一対の主面10a,10bの両方が切断面でなければよい。すなわち、窒化ホウ素焼結体10の側面は切断面であってもよい。この場合も一対の主面10a,10bの両方において切断に伴って生じ得る微細なクラックを十分に低減することができる。したがって、十分に高い熱伝導性を維持することができる。また、一対の主面10a,10bの両方が切断面である場合に比べて材料ロスを低減することができる。なお、窒化ホウ素焼結体の表面は研磨等によって形状が整えられていてもよい。主面は側面の2倍以上の面積を有してよく、4倍以上の面積を有してよい。
 窒化ホウ素焼結体における窒化ホウ素結晶の配向性指数は、40以下であってよく、30以下であってよく、15以下であってよく、10以下であってよい。これによって、熱伝導性の異方性を十分に低減することができる。したがって、シート状の窒化ホウ素焼結体の厚み方向に沿う熱伝導率を十分に高くすることができる。
 窒化ホウ素焼結体の配向性指数は、2.0以上であってもよいし、3.0以上であってもよいし、4.0以上であってもよい。本開示における配向性指数は、窒化ホウ素結晶の配向度を定量化するための指標である。配向性指数は、X線回折装置で測定される窒化ホウ素の(002)面と(100)面のピーク強度比[I(002)/I(100)]で算出することができる。
 窒化ホウ素焼結体に含まれる気孔の平均細孔径は4.0μm未満であってよい。気孔のサイズを小さくすることによって、窒化ホウ素粒子の一次粒子同士の接触面積を十分に大きくすることができる。したがって、熱伝導率を一層高くすることができる。熱伝導率を一層高くする観点から、気孔の平均細孔径は、3.8μm未満であってよく、3μm未満であってよく、2μm未満であってもよい。窒化ホウ素焼結体への樹脂組成物の含浸を円滑にする観点から、気孔の平均細孔径は、0.1μm以上であってよく、0.2μm以上であってもよい。
 気孔の平均細孔径は、水銀ポロシメーターを用い、0.0042MPaから206.8MPaまで圧力を増やしながら加圧したときの細孔径分布に基づいて求められる。横軸を細孔径、縦軸を累積細孔容積としたときに、累積細孔容積が全細孔容積の50%に達するときの細孔径が平均細孔径である。水銀ポロシメーターとしては、島津製作所製のものを用いることができる。
 窒化ホウ素焼結体の気孔率、すなわち、窒化ホウ素焼結体における気孔の体積比率は、30~65体積%であってよく、30~60体積%であってよく、35~55体積%であってよい。気孔率が大きくなり過ぎると窒化ホウ素焼結体の強度が低下する傾向にある。一方、気孔率が小さくなり過ぎると質量が重くなる傾向にある。また、複合体を製造したときの樹脂の含有量が減少して電気絶縁性が低下する傾向にある。
 気孔率は、窒化ホウ素焼結体の体積及び質量から、かさ密度[B(kg/m)]を算出し、このかさ密度と窒化ホウ素の理論密度[2280(kg/m)]とから、下記式(1)によって求めることができる。
  気孔率(体積%)=[1-(B/2280)]×100   (1)
 かさ密度Bは、800~1500kg/mであってよく、850~1400kg/mであってよく、900~1300kg/mであってもよい。かさ密度Bが大きくなり過ぎると窒化ホウ素焼結体の質量が増加する傾向にある。また、樹脂の充填量が減少して複合体の電気絶縁性が低下する傾向にある。一方、かさ密度Bが小さくなり過ぎると窒化ホウ素焼結体の強度が低下する傾向にある。
 窒化ホウ素焼結体の熱伝導率は、20W/mK以上であってよく、30W/mK以上であってよく、35W/mK以上であってよく、40W/mK以上であってもよい。熱伝導率が高い窒化ホウ素焼結体を用いることによって、放熱性能に十分に優れる放熱部材を得ることができる。熱伝導率(H)は、以下の計算式(2)で求めることができる。
   H=A×B×C   (2)
 式(2)中、Hは熱伝導率(W/(m・K))、Aは熱拡散率(m/sec)、Bはかさ密度(kg/m)、及び、Cは比熱容量(J/(kg・K))を示す。熱拡散率Aは、レーザーフラッシュ法によって測定することができる。かさ密度Bは窒化ホウ素焼結体の体積及び質量から求めることができる。比熱容量Cは、示差走査熱量計を用いて測定することができる。窒化ホウ素焼結体は厚み方向において上述の熱伝導率を有してよい。
 一実施形態に係る複合体は、窒化ホウ素焼結体と樹脂との複合体であり、上述の窒化ホウ素焼結体と窒化ホウ素焼結体の気孔の少なくとも一部に充填された樹脂とを有する。樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、シアネート樹脂、シリコーンゴム、アクリル樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、ビスマレイミド樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンエーテル、ポリフェニレンサルファイド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド樹脂、マレイミド変性樹脂、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、AAS(アクリロニトリル-アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂、ポリグリコール酸樹脂、ポリフタルアミド、ポリアセタール等を用いることができる。これらのうちの1種を単独で含んでもよいし、2種以上を組み合わせて含んでもよい。
 複合体がプリント配線板の絶縁層に用いられる場合、耐熱性及び回路への接着強度向上の観点から、樹脂はエポキシ樹脂を含んでよい。複合体が熱インターフェース材に用いられる場合、耐熱性、柔軟性及びヒートシンク等への密着性向上の観点から、樹脂はシリコーン樹脂を含んでよい。樹脂は硬化物であってもよいし、半硬化物(Bステージ状態)であってもよい。
 図1は、複合体の一例を示す斜視図である。複合体20は厚みtを有する。厚みtは2mm未満である。主面20a,20bの面積は、25mm以上であってよく、100mm以上であってよく、800mm以上であってよく、1000mm以上であってもよい。
 複合体20は厚みtが小さいため、窒化ホウ素焼結体10の気孔中に樹脂が十分に充填されている。このため、電気絶縁性に十分に優れる。複合体20の厚みtは、窒化ホウ素焼結体10の厚みと同一ではなくてよい。例えば、窒化ホウ素焼結体10の表面に樹脂層を有していてもよい。
 複合体の形状も図1のような四角柱形状に限定されず、例えば、円柱形状であってもよいし、主面20a,20bが湾曲したC型形状であってもよい。複合体は切断面を有しなくてよい。切断工程を経ずに得られる複合体は、切断に伴って生じ得る微細なクラックを有しない。したがって、十分に高い強度を維持しつつ、熱伝導性を一層向上することができる。すなわち、電子部品等の部材としての信頼性に優れる。また、切断等の加工を行うと、材料ロスが発生する。このため、切断面を有しない複合体は、材料ロスを低減することができる。これによって、複合体の歩留まりを向上することができる。
 複合体における窒化ホウ素粒子の含有量は、複合体の全体積を基準として、40~70体積%であってよく、45~65体積%であってもよい。複合体における樹脂の含有量は、複合体の全体積を基準として、30~60体積%であってよく、35~55体積%であってもよい。このような割合で窒化ホウ素粒子及び樹脂を含む複合体は、高い電気絶縁性と熱伝導率を高水準で両立することができる。これらの特性を一層向上する観点から、複合体の気孔率は、10体積%以下であってよく、5体積%以下であってよく、3体積%以下であってもよい。この気孔率は、例えば、複合体の体積及び質量から求められるかさ密度B(kg/m)と窒化ホウ素焼結体の全気孔に樹脂組成物が含浸された時の理論密度B(kg/m)から求めることができる。
 複合体は、窒化ホウ素焼結体及びその気孔中に充填された樹脂に加えて、その他の成分をさらに含有してもよい。その他の成分としては、硬化剤、無機フィラー、シランカップリング剤、消泡剤、表面調整剤、湿潤分散剤等が挙げられる。無機フィラーは、酸化アルミニウム、酸化ケイ素、酸化亜鉛、窒化ケイ素、窒化アルミニウム及び水酸化アルミニウムからなる群より選ばれる1種又は2種以上を含んでよい。これによって、複合体の熱伝導性を一層向上することができる。
 本実施形態の複合体は、上述の窒化ホウ素焼結体と、その気孔中に充填された樹脂とを含むことから、優れた熱伝導率と優れた電気絶縁性を兼ね備える。また、薄型且つ軽量であるため、電子部品等の部材として用いられたときに電子部品等の小型化及び軽量化を図ることができる。複合体は、このような特性を有することから、放熱部材として好適に用いることができる。放熱部材は、上述の複合体で構成されていてよく、他の部材(例えば、アルミニウム等の金属板)と複合体を組み合わせて構成されてもよい。
 窒化ホウ素焼結体、複合体及び放熱部材の製造方法の一例を以下に説明する。本例の窒化ホウ素焼結体の製造方法は、炭化ホウ素粉末を、窒素加圧雰囲気下で焼成して炭窒化ホウ素を含む焼成物を得る窒化工程と、焼成物と焼結助剤とを含む配合物の成形及び加熱を行って窒化ホウ素粒子と気孔とを含む窒化ホウ素焼結体を得る焼結工程と、を有する。
 炭化ホウ素粉末は、例えば、以下の手順で調製することができる。ホウ酸とアセチレンブラックとを混合したのち、不活性ガス雰囲気中、1800~2400℃にて、1~10時間加熱し、炭化ホウ素塊を得る。この炭化ホウ素塊を、粉砕し、洗浄、不純物除去、及び乾燥を行って調製することができる。
 窒化工程では、炭化ホウ素粉末を、窒素雰囲気下で焼成して炭窒化ホウ素(BCN)を含む焼成物を得る。窒化工程における焼成温度は、1800℃以上であってよく、1900℃以上であってもよい。また、当該焼成温度は、2400℃以下であってよく、2200℃以下であってもよい。当該焼成温度は、例えば、1800~2400℃であってよい。
 窒化工程における圧力は、0.6MPa以上であってよく、0.7MPa以上であってもよい。また当該圧力は、1.0MPa以下であってよく、0.9MPa以下であってもよい。当該圧力は、例えば、0.6~1.0MPaであってよい。当該圧力が低すぎると、炭化ホウ素の窒化が進行し難くなる傾向がある。一方、当該圧力が高すぎると、製造コストが上昇する傾向にある。なお、本開示における圧力は絶対圧である。
 窒化工程における窒素雰囲気の窒素ガス濃度は95体積%以上であってよく、99.9体積%以上であってもよい。窒素の分圧は、上述の圧力範囲であってよい。窒化工程における焼成時間は、窒化が十分進む範囲であれば特に限定されず、例えば6~30時間であってよく、8~20時間であってもよい。
 焼結工程では、窒化工程で得られた炭窒化ホウ素粒子を含む焼成物と焼結助剤を配合して配合物を得てよい。焼結助剤は、ホウ素化合物及びカルシウム化合物を含んでよい。配合物は、焼成物100質量部に対してホウ素化合物及びカルシウム化合物を合計で1~30質量部含んでよい。このような含有量とすることによって、一次粒子の過剰な粒成長を抑制しつつ、適度に粒成長させて焼結を促進し、窒化ホウ素の一次粒子同士が強固に且つ広域に亘って密接に結合する。
 窒化ホウ素の一次粒子を十分に結合させる観点から、配合物は、焼成物100質量部に対してホウ素化合物及びカルシウム化合物を合計で、例えば1~30質量部含んでよく、5~25質量部含んでよく、8~20質量部含んでもよい。
 配合物は、ホウ素化合物を構成するホウ素100原子%に対して、カルシウム化合物を構成するカルシウムを0.5~40原子%含んでよく、0.7~30原子%含んでもよい。このような比率でホウ素及びカルシウムを含有することによって、一次粒子の均質な粒成長を促進して窒化ホウ素焼結体の熱伝導率を一層高くすることができる。
 ホウ素化合物としては、ホウ酸、酸化ホウ素、ホウ砂等が挙げられる。カルシウム化合物としては、炭酸カルシウム、酸化カルシウム等が挙げられる。焼結助剤は、ホウ酸及び炭酸カルシウム以外の成分を含んでいてもよい。そのような成分としては、例えば、炭酸リチウム、炭酸ナトリウム等のアルカリ金属の炭酸塩が挙げられる。また、成形性向上のため、配合物にバインダを配合してもよい。バインダとしては、アクリル化合物等が挙げられる。
 焼成物と焼結助剤の配合に際し、一般的な粉砕機又は解砕機を用いて焼成物の粉砕を行ってもよい。例えば、ボールミル、ヘンシェルミキサー、振動ミル、ジェットミル等を用いることができる。なお、本開示においては、「粉砕」には「解砕」も含まれる。焼成物を粉砕した後に焼結助剤を配合してもよいし、焼成物と焼結助剤とを配合した後に、粉砕と混合を同時に行ってもよい。
 配合物は粉末プレス又は金型成形を行って成形体としてもよいし、ドクターブレード法又は押出法によって、シート状の成形体としてもよい。成形圧力は、例えば5~350MPaであってよい。成形体は、例えば、厚みが2mm未満のシート状であってよい。シート状の成形体を用いて窒化ホウ素焼結体を製造すれば、切断面のない窒化ホウ素焼結体を製造することができる。また、ブロック状の窒化ホウ素焼結体及び複合体を切断してシート状とする場合に比べて、成形体の段階からシート状にすることによって、加工による材料ロスを低減することができる。したがって、高い歩留まりでシート状の窒化ホウ素焼結体及び複合体を製造することができる。
 このようにして得られた成形体を、例えば電気炉中で加熱して焼成する。加熱温度は、例えば1800℃以上であってよく、1900℃以上であってもよい。当該加熱温度は、例えば2200℃以下であってよく、2100℃以下であってもよい。加熱温度が低すぎると、粒成長が十分に進行しない傾向にある。加熱時間は、0.5時間以上であってよく、1時間以上、3時間以上、5時間以上、又は10時間以上であってもよい。当該加熱時間は、40時間以下であってよく、30時間以下、又は20時間以下であってもよい。当該加熱時間は、例えば、0.5~40時間であってよく、1~30時間であってもよい。加熱時間が短すぎると粒成長が十分に進行しない傾向にある。一方、加熱時間が長すぎると工業的に不利になる傾向にある。加熱雰囲気は、例えば、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気であってよい。配合物にバインダを配合する場合、上述の加熱の前に、バインダが分解する温度と雰囲気で仮焼して脱脂してもよい。
 以上の工程によって、窒化ホウ素粒子と気孔とを含み、厚みが2mm未満のシート状の窒化ホウ素焼結体を得ることができる。この例では、炭窒化ホウ素を用いていることから、窒化ホウ素粒子が厚み方向とは垂直方向に配向することを抑制できる。したがって、熱伝導性の異方性を低減して、厚み方法に沿う熱伝導性に優れる窒化ホウ素焼結体を製造することができる。窒化ホウ素焼結体の配向性指数の範囲は上述したとおりである。また、上述の製造方法では、窒化ホウ素焼結体を切断する工程を有することなく窒化ホウ素焼結体を製造することができる。これによって、切断面を有しない、信頼性に優れる窒化ホウ素焼結体を高い歩留まりで製造することができる。
 窒化ホウ素焼結体の製造方法の一例を説明したが、窒化ホウ素焼結体の製造方法はこれに限定されない。例えば、上記焼結工程では、窒化工程で得られた炭窒化ホウ素粒子を含む焼成物の代わりに市販の炭窒化ホウ素粉末を用いて、窒化ホウ素焼結体を得てもよい。また例えば、鱗片状及び/又はアモルファスの窒化ホウ素粉末と焼結助剤とバインダと水とを含む水スラリーを乾燥させて得られる造粒物を成形して焼結し、窒化ホウ素焼結体を得てもよい。成形する際の厚みを調節することによって、厚みが2mm未満であるシート状の窒化ホウ素焼結体を得ることができる。
 複合体の製造方法の一例は、窒化ホウ素焼結体に樹脂組成物を含浸させる含浸工程を有する。窒化ホウ素焼結体は、上述のいずれかの方法で製造されたものであってよい。樹脂組成物は、流動性及び取り扱い性向上の観点から、樹脂成分、硬化剤及び溶剤を含有してもよい。また、これらの他に、無機フィラー、シランカップリング剤、消泡剤、表面調整剤、湿潤分散剤等を含有してもよい。
 樹脂成分としては、例えば硬化又は半硬化反応によって上述の複合体の説明で挙げた樹脂となるものを用いることができる。溶剤としては、例えば、エタノール、イソプロパノール等の脂肪族アルコール、2-メトキシエタノール、1-メトキシエタノール、2-エトキシエタノール、1-エトキシ-2-プロパノール、2-ブトキシエタノール、2-(2-メトキシエトキシ)エタノール、2-(2-エトキシエトキシ)エタノール、2-(2-ブトキシエトキシ)エタノール等のエーテルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル等のグリコールエーテル、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン等のケトン、トルエン、キシレン等の炭化水素が挙げられる。これらのうちの1種を単独で含んでもよいし、2種以上を組み合わせて含んでもよい。
 含浸は、窒化ホウ素焼結体に樹脂組成物を付着させて行う。例えば、窒化ホウ素焼結体を樹脂組成物に浸漬して行ってよい。浸漬した状態で加圧又は減圧条件として行ってもよい。このようにして、窒化ホウ素焼結体の気孔に樹脂を充填することができる。窒化ホウ素焼結体は、シート状であり、厚みが2mm未満であることから、気孔への樹脂の充填を円滑にすることができる。このため、樹脂による充填率を十分に高くすることができる。したがって、優れた電気絶縁性を有する複合体を円滑に製造することができる。
 含浸工程は、密閉容器を備える含浸装置内を用いて行ってもよい。一例として、含浸装置内で減圧条件にて含浸を行った後、含浸装置内の圧力を上げて大気圧よりも高くして加圧条件で含浸を行ってもよい。このように減圧条件と加圧条件の両方を行うことによって、窒化ホウ素焼結体の気孔に樹脂を十分に充填することができる。減圧条件と加圧条件とを複数回繰り返し行ってもよい。含浸工程は、加温しながら行ってもよい。窒化ホウ素焼結体の気孔に含浸した樹脂組成物は、硬化又は半硬化が進行したり、溶剤が揮発したりした後、樹脂(硬化物又は半硬化物)となる。このようにして、窒化ホウ素焼結体とその気孔に充填された樹脂とを有する複合体が得られる。窒化ホウ素焼結体の気孔の全てに樹脂が充填されている必要はなく、一部の気孔には樹脂が充填されていなくてもよい。窒化ホウ素焼結体及び複合体は、閉気孔と開気孔の両方を含んでいてよい。
 含浸工程の後に、気孔内に充填された樹脂を硬化させる硬化工程を有していてもよい。硬化工程では、例えば、含浸装置から樹脂(樹脂組成物)が充填された複合体を取り出し、樹脂(又は必要に応じて添加される硬化剤)の種類に応じて、加熱、及び/又は光照射により、樹脂を硬化又は半硬化させる。
 このようにして得られた複合体は、シート状であり、薄い厚みを有する。このため、薄型且つ軽量であり、電子部品等の部材として用いられたときに電子部品等の小型化及び軽量化を図ることができる。また、窒化ホウ素焼結体の気孔に樹脂が十分に充填されていることから、電気絶縁性にも優れる。また、上述の製造方法では、窒化ホウ素焼結体及び複合体を切断する工程を有することなく複合体を製造することができる。したがって、信頼性に優れる複合体を高い歩留まりで製造することができる。なお、複合体は、そのまま放熱部材として用いてもよいし、研磨等の加工を施して放熱部材としてもよい。
 以上、幾つかの実施形態を説明したが、本開示は上記実施形態に何ら限定されるものではない。例えば、焼結工程では、成形と焼結を同時に行うホットプレスによって窒化ホウ素焼結体を得てもよい。
 実施例を参照して本開示の内容をより詳細に説明するが、本開示は下記の実施例に限定されるものではない。
[窒化ホウ素焼結体]
(実施例1)
<窒化ホウ素焼結体の作製>
 新日本電工株式会社製のオルトホウ酸100質量部と、デンカ株式会社製のアセチレンブラック(商品名:HS100)35質量部とをヘンシェルミキサーを用いて混合した。得られた混合物を、黒鉛製のルツボ中に充填し、アーク炉にて、アルゴン雰囲気で、2200℃にて5時間加熱し、塊状の炭化ホウ素(BC)を得た。得られた塊状物を、ジョークラッシャーで粗粉砕して粗粉を得た。この粗粉を、炭化珪素製のボール(φ10mm)を有するボールミルによってさらに粉砕して粉砕粉を得た。得られた炭化ホウ素粉末の炭素量は19.9質量%であった。炭素量は、炭素/硫黄同時分析計にて測定した。
 調製した炭化ホウ素粉末を、窒化ホウ素製のルツボに充填した。その後、抵抗加熱炉を用い、窒素ガス雰囲気下で、2000℃、0.85MPaの条件で10時間加熱した。このようにして炭窒化ホウ素(BCN)を含む焼成物を得た。
 粉末状のホウ酸と粉末状の炭酸カルシウムを配合して焼結助剤を調製した。調製にあたっては、100質量部のホウ酸に対して、炭酸カルシウムを1.9質量部配合した。このときのホウ素とカルシウムの原子比率は、ホウ素100原子%に対してカルシウムが1.2原子%であった。焼成物100質量部に対して焼結助剤を19質量部配合し、ヘンシェルミキサーを用いて混合して粉末状の配合物を得た。
 配合物0.67gを、粉末プレス機を用いて、150MPaで30秒間加圧して、図2の(A)に示すようなシート状(縦×横×厚み=49mm×25mm×0.38mm)の成形体を得た。成形体を窒化ホウ素製容器に入れ、バッチ式高周波炉に導入した。バッチ式高周波炉において、常圧、窒素流量5L/分、2000℃の条件で5時間加熱した。その後、窒化ホウ素容器から焼結体を取り出した。この焼結体は、窒化ホウ素粒子と気孔とを含む多孔質の焼結体(窒化ホウ素焼結体)であった。このようにして、シート状(平板形状)の窒化ホウ素焼結体を得た。窒化ホウ素焼結体の厚みtは0.40mmであった。
<厚みの測定>
 窒化ホウ素焼結体の厚みは、マイクロメーターで測定した。結果を表1に示す。
<熱伝導率の測定>
 窒化ホウ素焼結体の厚み方向の熱伝導率(H)を、以下の計算式(3)で求めた。
   H=A×B×C   (3)
 式(3)中、Hは熱伝導率(W/(m・K))、Aは熱拡散率(m/sec)、Bはかさ密度(kg/m)、及び、Cは比熱容量(J/(kg・K))を示す。熱拡散率Aは、窒化ホウ素焼結体を、所定のサイズ(縦×横=10mm×10mm)に加工した試料を用い、レーザーフラッシュ法によって測定した。測定装置はキセノンフラッシュアナライザ(NETZSCH社製、商品名:LFA447NanoFlash)を用いた。かさ密度Bは窒化ホウ素焼結体の体積及び質量から算出した。熱伝導率H及びかさ密度Bの結果を表1に示す。比熱容量Cは0.79(J/(kg・K))とした。
<平均細孔径の測定>
 得られた窒化ホウ素焼結体について、株式会社島津製作所製の水銀ポロシメーター(装置名:オートポアIV9500)を用い、0.0042MPaから206.8MPaまで圧力を増加しながら細孔容積分布を測定した。積算細孔容積分布において、積算細孔容積が全細孔容積の50%に達する細孔径を、「平均細孔径」とした。結果を表1に示す。
<気孔率の測定>
 上述のとおり算出したかさ密度Bと窒化ホウ素の理論密度(2280kg/m)とから、以下の計算式(4)によって気孔率を求めた。結果を表1に示す。
  気孔率(体積%)=[1-(B/2280)]×100   (4)
<配向性指数の測定>
 X線回折装置(株式会社リガク製、商品名:ULTIMA-IV)を用いて、窒化ホウ素焼結体の配向性指数[I(002)/I(100)]を求めた。X線回折装置の試料ホルダーにセットした測定試料(窒化ホウ素焼結体)にX線を照射して、ベースライン補正を行った。その後、窒化ホウ素の(002)面と(100)面のピーク強度比を算出した。これを配向性指数[I(002)/I(100)]とした。結果は、表1に示すとおりであった。
(実施例2)
 酸素含有量が1.7質量%であり、平均粒径が3.4μmであるアモルファス窒化ホウ素粉末と、酸素含有量が0.1質量%であり、平均粒径が16.0μmである六方晶窒化ホウ素粉末を準備した。アモルファス窒化ホウ素粉末10.7質量部と、六方晶窒化ホウ素粉末7.1質量部と、炭酸カルシウム(白石工業株式会社製、商品名:PC-700)0.9質量部と、ホウ酸1.6質量部とを、ヘンシェルミキサーを用いて混合して混合物を得た。その後、混合物100質量部に対して、水380質量部を添加してボールミルで5時間粉砕し、水スラリーを得た。この水スラリーに、ポリビニルアルコール(日本合成化学工業株式会社製、商品名:ゴーセノール)を、その濃度が3.0質量%となるように添加し、溶解するまで50℃で加熱撹拌した。その後、噴霧乾燥機にて乾燥温度200℃で球状化処理を行って造粒物を得た。噴霧乾燥機の球状化装置としては、回転式アトマイザーを使用した。
 球状化処理によって得られた造粒物0.58gを、粉末プレス機を用いて、25MPaで30秒間加圧して、図2の(B)に示すようなシート状(縦×横×厚み=49mm×25mm×0.38mm)の成形体を得た。成形体を窒化ホウ素製容器に入れ、バッチ式高周波炉に導入した。バッチ式高周波炉において、常圧、窒素流量5L/分、2050℃の条件で10時間加熱した。その後、窒化ホウ素容器から焼結体を取り出した。この焼結体は、窒化ホウ素粒子と気孔とを含む多孔質の焼結体(窒化ホウ素焼結体)であった。このようにして、シート状(平板形状)の窒化ホウ素焼結体を得た。窒化ホウ素焼結体の厚みtは0.40mmであった。
 このようにして得られた窒化ホウ素焼結体の各測定を実施例1と同様にして行った。測定結果は表1に示すとおりであった。
(実施例3)
 実施例2と同じ手順で、図2の(C)に示すようなシート状(直径×厚み=30mm×0.38mm)の成形体を得た。この成形体を用いたこと以外は実施例2と同様にしてシート状(円板形状)の窒化ホウ素焼結体を得た。窒化ホウ素焼結体の厚みtは0.40mmであった。このようにして得られた窒化ホウ素焼結体の各測定を実施例1と同様にして行った。測定結果は表1に示すとおりであった。
(実施例4)
 粉末プレス機で成形する際の配合物の質量を0.97gとしたこと以外は実施例1と同じ手順で、図2の(B)に示すようなシート状(縦×横×厚み=49mm×25mm×0.55mm)の成形体を得た。この成形体を用いたこと以外は実施例1と同様にしてシート状(平板形状)の窒化ホウ素焼結体を得た。窒化ホウ素焼結体の厚みtは0.58mmであった。このようにして得られた窒化ホウ素焼結体の各測定を実施例1と同様にして行った。測定結果は表1に示すとおりであった。
(実施例5)
 粉末プレス機で成形する際の配合物の質量を0.47gとしたこと以外は実施例3と同じ手順で、図2の(B)に示すようなシート状(縦×横×厚み=49mm×25mm×0.27mm)の成形体を得た。この成形体を用いたこと以外は実施例3と同様にしてシート状(平板形状)の窒化ホウ素焼結体を得た。窒化ホウ素焼結体の厚みtは0.28mmであった。このようにして得られた窒化ホウ素焼結体の各測定を実施例1と同様にして行った。測定結果は表1に示すとおりであった。
(実施例6)
 粉末プレス機の加圧圧力を300MPaとしたこと以外は実施例1と同じ手順で、図2の(B)に示すようなシート状(縦×横×厚み=49mm×25mm×0.35mm)の成形体を得た。この成形体を用いたこと以外は実施例1と同様にしてシート状(平板形状)の窒化ホウ素焼結体を得た。窒化ホウ素焼結体の厚みtは0.37mmであった。このようにして得られた窒化ホウ素焼結体の各測定を実施例1と同様にして行った。測定結果は表1に示すとおりであった。
(実施例7)
 粉末プレス機の加圧圧力を15MPaとしたこと以外は実施例1と同じ手順で、図2の(B)に示すようなシート状(縦×横×厚み=49mm×25mm×0.48mm)の成形体を得た。この成形体を用いたこと以外は実施例1と同様にしてシート状(平板形状)の窒化ホウ素焼結体を得た。窒化ホウ素焼結体の厚みtは0.51mmであった。このようにして得られた窒化ホウ素焼結体の各測定を実施例1と同様にして行った。測定結果は表1に示すとおりであった。
Figure JPOXMLDOC01-appb-T000001
[複合体]
<複合体の作製>
 エポキシ樹脂(三菱ケミカル株式会社製、商品名:エピコート807)と硬化剤(日本合成化学工業株式会社製、商品名:アクメックスH-84B)を含む樹脂組成物を、大気圧下でバーコーターを用いて実施例1~7の窒化ホウ素焼結体にそれぞれ塗布し、各窒化ホウ素焼結体に樹脂組成物を含浸させた。含浸後、大気圧下、温度120℃で120分間加熱して樹脂を硬化させて、実施例1~7の複合体を得た。これらの複合体は、いずれも窒化ホウ素焼結体と同等の厚み及び熱伝導率を有していた。したがって、電子部品の放熱部材として有用である。
<厚みの測定>
 複合体の厚みを、マイクロメーターで測定した。
<熱伝導率の測定>
 複合体の厚み方向の熱伝導率(H)を、以下の計算式(4)で求めた。
   H=A×B×C   (4)
 式(4)中、Hは熱伝導率(W/(m・K))、Aは熱拡散率(m/sec)、Bはかさ密度(kg/m)、及び、Cは比熱容量(J/(kg・K))を示す。熱拡散率Aは、複合体を、縦×横×厚み=10mm×10mmのサイズに加工した試料を用い、レーザーフラッシュ法によって測定した。測定装置はキセノンフラッシュアナライザ(NETZSCH社製、商品名:LFA447NanoFlash)を用いた。かさ密度Bは複合体の体積及び質量から算出した。比熱容量Cは0.97(J/(kg・K))とした。
<気孔率の測定>
 複合体の気孔率は、複合体の体積及び質量から求められるかさ密度B(kg/m)と窒化ホウ素焼結体の全気孔に上記樹脂組成物が含浸された時の理論密度B(kg/m)から下記式(5)に基づいて算出した。
 複合体の気孔率(体積%)=[1-(B/B)]×100・・・(5)
 なお、窒化ホウ素焼結体の全気孔に上記樹脂組成物が含浸された時の理論密度B(kg/m)は、窒化ホウ素焼結体のかさ密度B(kg/m)、窒化ホウ素焼結体の気孔率P(体積%)、及び樹脂組成物の理論密度(1240kg/m)から、下記式(6)に基づいて算出した。
 理論密度B(kg/m)=B+P/100×1240   (6)
<絶縁破壊電圧の測定>
 上述のようにして得られた複合体の絶縁破壊電圧の評価を行った。具体的には、上記複合体の両面に2枚の導電性テープを張り付け、測定サンプルを調製した。得られた測定サンプルを対象として、JIS C2110-1:2016にしたがって、耐圧試験器(菊水電子工業株式会社製、装置名:TOS-8700)を用いて絶縁破壊電圧を測定した。複合体の厚み、熱伝導率、かさ密度、気孔率、及び絶縁破壊電圧の結果は表2に示すとおりであった。
Figure JPOXMLDOC01-appb-T000002
 各実施例の複合体の絶縁破壊電圧は十分に高かった。このことから、優れた電気絶縁性を有することが確認された。
 本開示によれば、薄型であり、電子部品等の部材として好適な窒化ホウ素焼結体及び複合体、並びにこれらの製造方法が提供される。また、電子部品等の部材として好適な放熱部材が提供される。
 10…窒化ホウ素焼結体、20…複合体。

Claims (12)

  1.  窒化ホウ素粒子と気孔とを含む窒化ホウ素焼結体であって、シート状であり、厚みが2mm未満である窒化ホウ素焼結体。
  2.  配向性指数が40以下である、請求項1に記載の窒化ホウ素焼結体。
  3.  気孔率が30~65体積%である、請求項1又は2に記載の窒化ホウ素焼結体。
  4.  かさ密度が800~1500kg/mである、請求項1~3のいずれか一項に記載の窒化ホウ素焼結体。
  5.  前記気孔の平均細孔径が4.0μm未満である、請求項1~4のいずれか一項に記載の窒化ホウ素焼結体。
  6.  切断面を有しない、請求項1~5のいずれか一項に記載の窒化ホウ素焼結体。
  7.  請求項1~6のいずれか一項に記載の窒化ホウ素焼結体と、前記窒化ホウ素焼結体の前記気孔の少なくとも一部に充填された樹脂と、含む複合体。
  8.  請求項7に記載の複合体を有する放熱部材。
  9.  請求項1~6のいずれか一項に記載の窒化ホウ素焼結体に樹脂組成物を含浸させる含浸工程を有する、前記窒化ホウ素焼結体と、当該窒化ホウ素焼結体の前記気孔の少なくとも一部に充填された樹脂とを有する複合体の製造方法。
  10.  炭窒化ホウ素粉末と焼結助剤とを含む配合物の成形及び加熱を行って窒化ホウ素粒子と気孔とを含む、シート状の窒化ホウ素焼結体を得る焼結工程を有し、
     前記焼結工程で得られる窒化ホウ素焼結体の厚みは2mm未満である、窒化ホウ素焼結体の製造方法。
  11.  炭化ホウ素粉末を、窒素雰囲気下で焼成して炭窒化ホウ素を含む焼成物を得る窒化工程と、
     前記焼成物と焼結助剤とを含む配合物の成形及び加熱を行って窒化ホウ素粒子と気孔とを含む、シート状の窒化ホウ素焼結体を得る焼結工程と、を有し、
     前記焼結工程で得られる窒化ホウ素焼結体の厚みは2mm未満である、窒化ホウ素焼結体の製造方法。
  12.  請求項10又は11に記載の製造方法で得られた窒化ホウ素焼結体に樹脂組成物を含浸させる含浸工程を有する、前記窒化ホウ素焼結体と、当該窒化ホウ素焼結体の前記気孔の少なくとも一部に充填された樹脂とを有する複合体の製造方法。

     
PCT/JP2021/013048 2020-03-31 2021-03-26 窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材 WO2021200719A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21781730.3A EP4082993A4 (en) 2020-03-31 2021-03-26 BORON NITRIDE SINTERED BODY, COMPOSITE BODY, AND METHODS OF MAKING THEREOF, AND HEAT DISSIPATION ELEMENT
JP2022512147A JPWO2021200719A1 (ja) 2020-03-31 2021-03-26
CN202180013551.XA CN115066406A (zh) 2020-03-31 2021-03-26 氮化硼烧结体、复合体及它们的制造方法、以及散热构件
US17/908,786 US20230085806A1 (en) 2020-03-31 2021-03-26 Boron nitride sintered body, composite body, and manufacturing methods therefor, and heat dissipation member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-064844 2020-03-31
JP2020064844 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021200719A1 true WO2021200719A1 (ja) 2021-10-07

Family

ID=77928474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013048 WO2021200719A1 (ja) 2020-03-31 2021-03-26 窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材

Country Status (5)

Country Link
US (1) US20230085806A1 (ja)
EP (1) EP4082993A4 (ja)
JP (1) JPWO2021200719A1 (ja)
CN (1) CN115066406A (ja)
WO (1) WO2021200719A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05159624A (ja) * 1991-12-04 1993-06-25 Denki Kagaku Kogyo Kk 絶縁放熱板
JPH10251069A (ja) * 1997-03-14 1998-09-22 Toshiba Corp 窒化珪素回路基板及び半導体装置
JP2002114575A (ja) * 2000-10-04 2002-04-16 Denki Kagaku Kogyo Kk 六方晶窒化ホウ素板及びその製造方法、用途
JP2003037382A (ja) * 2001-07-25 2003-02-07 Mitsubishi Gas Chem Co Inc 熱伝導性接着シート
JP2014162697A (ja) 2013-02-27 2014-09-08 Denki Kagaku Kogyo Kk 窒化ホウ素成形体、その製造方法及び用途
WO2017155110A1 (ja) * 2016-03-10 2017-09-14 デンカ株式会社 セラミックス樹脂複合体
WO2020004600A1 (ja) * 2018-06-29 2020-01-02 デンカ株式会社 塊状窒化ホウ素粒子、窒化ホウ素粉末、窒化ホウ素粉末の製造方法、樹脂組成物、及び放熱部材

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6351585B2 (ja) * 2013-06-03 2018-07-04 デンカ株式会社 樹脂含浸窒化ホウ素焼結体およびその用途
US9516741B2 (en) * 2013-08-14 2016-12-06 Denka Company Limited Boron nitride/resin composite circuit board, and circuit board including boron nitride/resin composite integrated with heat radiation plate
CN107922743B (zh) * 2015-08-26 2019-03-08 电化株式会社 导热性树脂组合物
EP3524573B1 (en) * 2016-10-07 2022-05-04 Denka Company Limited Boron nitride aggregated grain, method for producing same, and thermally conductive resin composition using same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05159624A (ja) * 1991-12-04 1993-06-25 Denki Kagaku Kogyo Kk 絶縁放熱板
JPH10251069A (ja) * 1997-03-14 1998-09-22 Toshiba Corp 窒化珪素回路基板及び半導体装置
JP2002114575A (ja) * 2000-10-04 2002-04-16 Denki Kagaku Kogyo Kk 六方晶窒化ホウ素板及びその製造方法、用途
JP2003037382A (ja) * 2001-07-25 2003-02-07 Mitsubishi Gas Chem Co Inc 熱伝導性接着シート
JP2014162697A (ja) 2013-02-27 2014-09-08 Denki Kagaku Kogyo Kk 窒化ホウ素成形体、その製造方法及び用途
WO2017155110A1 (ja) * 2016-03-10 2017-09-14 デンカ株式会社 セラミックス樹脂複合体
WO2020004600A1 (ja) * 2018-06-29 2020-01-02 デンカ株式会社 塊状窒化ホウ素粒子、窒化ホウ素粉末、窒化ホウ素粉末の製造方法、樹脂組成物、及び放熱部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4082993A4

Also Published As

Publication number Publication date
CN115066406A (zh) 2022-09-16
US20230085806A1 (en) 2023-03-23
JPWO2021200719A1 (ja) 2021-10-07
EP4082993A1 (en) 2022-11-02
EP4082993A4 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
JP6351585B2 (ja) 樹脂含浸窒化ホウ素焼結体およびその用途
US20210261413A1 (en) Aggregate boron nitride particles, boron nitride powder, production method for boron nitride powder, resin composition, and heat dissipation member
WO2021200966A1 (ja) 窒化ホウ素焼結体及び複合体、並びに放熱部材
JP7273587B2 (ja) 窒化ホウ素粉末及び樹脂組成物
JP6285155B2 (ja) 放熱部材およびその用途
WO2021200969A1 (ja) 窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材
WO2021200724A1 (ja) 窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材
WO2021200973A1 (ja) 複合体の製造方法
EP3950643B1 (en) Method for producing composite body
WO2020203692A1 (ja) 複合体
WO2021200719A1 (ja) 窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材
WO2021200967A1 (ja) 複合体、及び放熱部材
WO2021201012A1 (ja) 複合体の製造方法
WO2021200971A1 (ja) 窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材
WO2022071247A1 (ja) 複合シート及びその製造方法、並びに、積層体及びその製造方法
WO2022071293A1 (ja) 複合シート及びその製造方法、積層体及びその製造方法、並びに、パワーデバイス
WO2022071236A1 (ja) 複合シート及びその製造方法、並びに、積層体及びその製造方法
JP7080427B1 (ja) 複合シート、積層体、及び、複合シートの接着性を推定する評価方法
WO2023027122A1 (ja) セラミックス板の製造方法、セラミックス板、複合シート、及び積層基板
CN117098721A (zh) 氮化硼粉末及树脂组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781730

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512147

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021781730

Country of ref document: EP

Effective date: 20220728

NENP Non-entry into the national phase

Ref country code: DE