JP2016027144A - 熱伝導性シート、熱伝導性シートの硬化物および半導体装置 - Google Patents

熱伝導性シート、熱伝導性シートの硬化物および半導体装置 Download PDF

Info

Publication number
JP2016027144A
JP2016027144A JP2015130021A JP2015130021A JP2016027144A JP 2016027144 A JP2016027144 A JP 2016027144A JP 2015130021 A JP2015130021 A JP 2015130021A JP 2015130021 A JP2015130021 A JP 2015130021A JP 2016027144 A JP2016027144 A JP 2016027144A
Authority
JP
Japan
Prior art keywords
conductive sheet
heat conductive
less
pore diameter
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015130021A
Other languages
English (en)
Other versions
JP6657616B2 (ja
Inventor
俊佑 望月
Shunsuke Mochizuki
俊佑 望月
和哉 北川
Kazuya Kitagawa
和哉 北川
洋次 白土
Hirotsugu Shirato
洋次 白土
啓太 長橋
Keita NAGAHASHI
啓太 長橋
美香 津田
Mika TSUDA
美香 津田
憲也 平沢
Noriya Hirasawa
憲也 平沢
素美 黒川
Motomi Kurokawa
素美 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2015130021A priority Critical patent/JP6657616B2/ja
Publication of JP2016027144A publication Critical patent/JP2016027144A/ja
Application granted granted Critical
Publication of JP6657616B2 publication Critical patent/JP6657616B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49568Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/564Details not otherwise provided for, e.g. protection against moisture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

【課題】放熱性および絶縁性のバランスに優れた熱伝導性シートおよびその硬化物ならびに耐久性の高い半導体装置を提供すること。【解決手段】本発明の熱伝導性シートは、熱硬化性樹脂(A)と、熱硬化性樹脂(A)中に分散された無機充填材(B)とを含む。そして、本発明の熱伝導性シートは、当該熱伝導性シートの硬化物を700℃、4時間加熱処理して灰化した後の灰化残渣に含まれる無機充填材(B)について、水銀圧入法による細孔径分布測定を行ったとき、上記水銀圧入法により測定される、細孔径Rを横軸とし、対数微分細孔容積(dV/dlogR)を縦軸としたときの細孔径分布曲線において、細孔径Rが1.0μm以上10.0μm以下の範囲にピーク(P)を有し、このピーク(P)は2以上のピークが重なり合っている。【選択図】なし

Description

本発明は、熱伝導性シート、熱伝導性シートの硬化物および半導体装置に関する。
従来から絶縁ゲートバイポーラトランジスタ(IGBT;Insulated Gate Bipolar Transistor)およびダイオード等の半導体チップ、抵抗、ならびにコンデンサ等の電子部品を基板上に搭載して構成したインバーター装置またはパワー半導体装置が知られている。
これらの電力制御装置は、その耐圧や電流容量に応じて各種機器に応用されている。特に、近年の環境問題、省エネルギー化推進の観点から、各種電気機械へのこれら電力制御装置の使用が年々拡大している。
特に車載用電力制御装置について、その小型化、省スペ−ス化と共に電力制御装置をエンジンル−ム内に設置することが要望されている。エンジンル−ム内は温度が高く、温度変化が大きい等過酷な環境であり、高温での放熱性および絶縁性により一層優れる部材が必要とされる。
たとえば、特許文献1には、半導体チップをリードフレーム等の支持体に搭載し、支持体と、ヒートシンクに接続される放熱板とを、絶縁樹脂層とで接着した半導体装置が開示されている。
特開2011−216619号公報
しかし、このような半導体装置は高温での放熱性および絶縁性がまだ十分に満足できるものでなかった。そのため、半導体チップの熱を外部に十分に放熱させたり、電子部品の絶縁性を保ったりすることが困難となる場合があり、その場合は半導体装置の性能が低下してしまう。
本発明によれば、
熱硬化性樹脂と、上記熱硬化性樹脂中に分散された無機充填材とを含む熱伝導性シートであって、
当該熱伝導性シートの硬化物を700℃、4時間加熱処理して灰化した後の灰化残渣に含まれる上記無機充填材について、水銀圧入法による細孔径分布測定を行ったとき、
上記水銀圧入法により測定される、細孔径Rを横軸とし、対数微分細孔容積(dV/dlogR)を縦軸としたときの細孔径分布曲線において、
上記細孔径Rが1.0μm以上10.0μm以下の範囲にピーク(P)を有し、
上記ピーク(P)は2以上のピークが重なり合っている、熱伝導性シートが提供される。
本発明の熱伝導性シートは、上記無機充填材の細孔径分布曲線が、上記細孔径Rが1μm以上10μm以下の範囲においてピーク(P)を有し、上記ピーク(P)は2以上のピークが重なり合っている。こうした無機充填材であると、熱硬化性樹脂が無機充填材の内部に十分に入り込むため、熱伝導性シート中のボイドの発生が少ない。これにより、熱伝導性シートおよびその硬化物の絶縁性を向上できるため、得られる半導体装置の絶縁信頼性を向上できる。
さらに熱伝導性シート中の上記無機充填材の充填性が高く、上記無機充填材同士の接触面積が大きい。これにより、熱伝導性シートおよびその硬化物の熱伝導性を向上させることができる。
以上から、本発明によれば、上記無機充填材が上記細孔径分布曲線を示すことにより、放熱性および絶縁性のバランスに優れた熱伝導性シートおよびその硬化物を得ることができると推察される。そして、当該熱伝導性シートを半導体装置に適用することで、耐久性の高い半導体装置を実現できる。
また、本発明によれば、
上記熱伝導性シートを硬化してなる熱伝導性シートの硬化物が提供される。
また、本発明によれば、
金属板と、
上記金属板の第1面側に設けられた半導体チップと、
上記金属板の上記第1面とは反対側の第2面に接合された熱伝導材と、
上記半導体チップおよび上記金属板を封止する封止樹脂とを備え、
上記熱伝導材が、上記熱伝導性シートにより形成された半導体装置が提供される。
本発明によれば、放熱性および絶縁性のバランスに優れた熱伝導性シートおよびその硬化物ならびに耐久性の高い半導体装置を提供できる。
本発明の一実施形態に係る半導体装置の断面図である。 本発明の一実施形態に係る半導体装置の断面図である。
以下、本発明の実施形態を図面に基づいて説明する。なお、すべての図面において、同様な構成要素には同一符号を付し、その詳細な説明は重複しないように適宜省略される。また、図は概略図であり、実際の寸法比率とは必ずしも一致していない。また、「〜」は特に断りがなければ、以上から以下を表す。
はじめに、本実施形態に係る熱伝導性シートについて説明する。
本実施形態に係る熱伝導性シートは、熱硬化性樹脂(A)と、熱硬化性樹脂(A)中に分散された無機充填材(B)とを含む。
そして、当該熱伝導性シートの硬化物を700℃、4時間加熱処理して灰化した後の灰化残渣に含まれる無機充填材(B)について、水銀圧入法による細孔径分布測定を行ったとき、上記水銀圧入法により測定される、細孔径Rを横軸とし、対数微分細孔容積(dV/dlogR)を縦軸としたときの細孔径分布曲線において、細孔径Rが1.0μm以上10.0μm以下、好ましくは1.0μm以上8.0μm以下の範囲にピーク(P)を有する。
また、ピーク(P)は、2以上、好ましくは3以上、そして、好ましくは4以下、より好ましくは3以下のピークが重なり合っているものである。ピーク(P)は、たとえば水銀圧入式のポロシメータで測定できる。
ここで、細孔径Rが上記範囲にピーク(P)を有するとは、ピーク(P)の極大値が上記範囲内にあることを意味する。また、本実施形態において、細孔径は細孔の直径を示す。
また、2以上のピークが重なり合っているものであるとは、ピーク(P)が2以上の極大値を有し、かつ、個々のピークが分離できないことを意味する。なお、ショルダーピークも一つのピークとして数える。
このような熱伝導性シートの硬化物を、半導体パッケージ等の半導体装置において熱伝導材として適用することにより、耐久性の高い半導体装置を実現できる。
ここで、ピーク(P)において、細孔径Rが好ましくは1.0μm以上3.0μm以下、より好ましくは1.0μm以上2.5μm以下の範囲に第1の極大値を有し、細孔径Rが好ましくは3.0μmを超えて10.0μm以下、より好ましくは3.0μmを超えて8.0μm以下の範囲に第2の極大値を有することが好ましい。ここで、第1の極大値に対応するピーク(P1)は無機充填材(B)の粒子内の空隙体積を示し、第2の極大値に対応するピーク(P2)は無機充填材(B)の粒子間の空隙体積を示していると考えられる。ここで、上記各範囲内にそれぞれ極大値が2つ以上ある場合は、最も大きいものを第1の極大値または第2の極大値とする。
無機充填材(B)がピーク(P1)を有すると、熱硬化性樹脂(A)が無機充填材(B)の内部に十分に入り込むため、熱伝導性シート中のボイドの発生が少ない。これにより、熱伝導性シートおよびその硬化物の絶縁性を向上できるため、得られる半導体装置の絶縁信頼性を向上できる。
また、無機充填材(B)がピーク(P2)を有すると、熱伝導性シート中の無機充填材(B)の充填性が高く、無機充填材(B)同士の接触面積が大きい。これにより、熱伝導性シートおよびその硬化物の熱伝導性を向上させることができる。
本実施形態に係る熱伝導性シートにおいて、上記細孔径Rが1.0μm以上10.0μm以下の範囲における累積細孔体積V1が好ましくは0.1mL/g以上2.0mL/g以下、より好ましくは0.2mL/g以上1.8mL/g以下であり、さらに好ましくは0.3mL/g以上1.6mL/g以下である。
累積細孔体積V1が上記範囲内であると、放熱性および絶縁性のバランスにより一層優れた熱伝導性シートおよびその硬化物を得ることができる。
本実施形態によれば、無機充填材(B)の細孔径分布曲線が、細孔径Rが1.0μm以上10.0μm以下の範囲において、ピーク(P)を有し、ピーク(P)は2以上のピークが重なり合っているものである。こうした無機充填材(B)であると、熱硬化性樹脂(A)が無機充填材(B)の内部に十分に入り込むため、熱伝導性シート中のボイドの発生が少ない。これにより、熱伝導性シートおよびその硬化物の絶縁性を向上できるため、得られる半導体装置の絶縁信頼性を向上できる。
さらに熱伝導性シート中の無機充填材(B)の充填性が高められ、無機充填材(B)同士の接触面積をより大きくすることができる。これにより、熱伝導性シートおよびその硬化物の熱伝導性を向上させることができる。
以上から、本実施形態によれば、熱伝導性シート中の無機充填材(B)が上記細孔径分布曲線を有することにより、放熱性および絶縁性のバランス優れた熱伝導性シートおよびその硬化物を得ることができると推察される。そして、当該熱伝導性シートを半導体装置に適用することで、耐久性の高い半導体装置を実現できる。
なお、本実施形態において、熱伝導性シートはBステージ状態のものをいう。また、熱伝導性シートを硬化させたものを「熱伝導性シートの硬化物」と呼ぶ。また、熱伝導性シートを半導体装置に適用し、硬化させたものを「熱伝導材」と呼ぶ。熱伝導性シートの硬化物は熱伝導材を含む。また、本実施形態において、熱伝導性シートの硬化物はCステージ状態のものをいい、Bステージ状態の熱伝導性シートを、例えば、180℃、10MPaで40分間熱処理することにより硬化して得られたものである。
熱伝導性シートは、たとえば、半導体装置内の高熱伝導性が要求される接合界面に設けられ、発熱体から放熱体への熱伝導を促進する。これにより、半導体チップ等における特性変動に起因した故障を抑え、半導体装置の安定性の向上が図られている。
本実施形態に係る熱伝導性シートを適用した半導体装置の一例としては、たとえば、半導体チップがヒートシンク(金属板)上に設けられており、ヒートシンクの半導体チップが接合された面とは反対側の面に、熱伝導材が設けられた構造が挙げられる。
また、本実施形態に係る熱伝導性シートを適用した半導体パッケージの他の例としては、熱伝導材と、熱伝導材の一方の面に接合した半導体チップと、上記熱伝導材の上記一方の面と反対側の面に接合した金属部材と、上記熱伝導材、上記半導体チップおよび上記金属部材を封止する封止樹脂と、を備えるものが挙げられる。
本実施形態に係る熱伝導性シートを用いることにより、耐久性の高い半導体装置を実現できる。この理由は必ずしも明らかではないが、以下のような理由が考えられる。
本発明者の検討によれば、従来の熱伝導性シートを用いた半導体装置は、自動車のエンジンルーム内等の温度変化が激しい環境下に長時間置かれると、熱伝導性シートの熱伝導率や絶縁性の低下等が生じて半導体装置の耐久性が低下してしまうことが明らかになった。そのため、従来の半導体装置は耐久性に劣っていた。
一方、本実施形態に係る熱伝導性シートを用いた半導体装置は温度変化が激しい環境下でも耐久性に優れている。この理由としては、本実施形態に係る熱伝導性シートは、ボイドが発生し難い構造になっており、かつ、熱伝導性シート中の上記無機充填材の充填性が高く、上記無機充填材同士の接触面積が大きいからだと考えられる。
熱伝導性シート中のボイドの発生が少ないことにより、熱伝導性シートおよびその硬化物の絶縁性を向上でき、無機充填材(B)同士の接触面積を向上させることにより、熱伝導性シートおよびその硬化物の熱伝導性を向上させることができる。
以上の理由から、本実施形態に係る熱伝導性シートは熱伝導性および絶縁性の観点からバランスの良い構造となっている。そのため、本実施形態に係る熱伝導性シートを用いると、耐久性に優れる半導体装置が得られると推察される。
本実施形態に係る熱伝導性シートにおいて、上記細孔径Rが10.0μmを超えて30.0μm以下の範囲に好ましくは1以上3以下、より好ましくは1以上2以下のピークをさらに有することが好ましい。これにより、熱硬化性樹脂(A)の無機充填材(B)の粒子間への浸透性が向上し、熱伝導性シートおよびその硬化物中の無機充填材(B)間の密着性を向上できる。これにより、熱伝導性シートおよびその硬化物の熱伝導性および絶縁性を向上できる。
なお、これらのピークは粒子間の空隙体積のうち大きいものを意味していると推察される。
また、本実施形態に係る熱伝導性シートにおいて、上記細孔径Rが10.0μmを超えて30.0μm以下の範囲における累積細孔体積V2が0.07mL/g以上0.17mL/g以下であることが好ましい。
これにより、熱硬化性樹脂(A)の無機充填材(B)の粒子間への浸透性が向上し、熱伝導性シートおよびその硬化物中の無機充填材(B)間の密着性を向上できる。これにより、熱伝導性シートおよびその硬化物の熱伝導性および絶縁性を向上できる。
また、本実施形態に係る熱伝導性シートにおいて、上記細孔径Rが0.01μm以上1μm未満の範囲には、通常、実質的にピークを有さない。実質的にピークを有さないとは極大点がないことを意味する。ここで、0.01μm以上1.0μm未満の範囲のピークは、粒子内の空隙体積のうち、小さいものを意味し、このような粒子内の空隙体積があると、無機充填材(B)の強度が低下すると推察される。
よって、上記範囲に実質的にピークを有さないことにより、無機充填材(B)の強度(二次凝集粒子の場合は凝集力)を向上させることができ、その結果、熱伝導性シート製造前後において、無機充填材(B)の形状や配向(二次凝集粒子の場合は一次粒子の配向)をある程度保持することができる。これにより、熱伝導性シートおよびその硬化物の熱伝導性を向上できるため、得られる半導体装置の放熱性を向上できる。特に無機充填材(B)が二次凝集粒子の場合、二次凝集粒子の形状をある程度維持することにより、一次粒子間の接触が保たれ、また一次粒子のランダム配向が保たれるために熱伝導性シートおよびその硬化物の熱伝導性をより一層向上できる。
また、上記細孔径Rが0.01μm以上1.0μm未満の範囲における累積細孔体積V3が0.30mL/g以下であることが好ましく、0.15mL/g以下がより好ましい。累積細孔体積V3の下限値は例えば、0.03mL/g以上である。
これにより、無機充填材(B)の強度(二次凝集粒子の場合は凝集力)を向上させることができ、その結果、熱伝導性シート製造前後において、無機充填材(B)の形状や配向(二次凝集粒子の場合は一次粒子の配向)をある程度保持することができる。これにより、熱伝導性シートおよびその硬化物の熱伝導性を向上できるため、得られる半導体装置の放熱性を向上できる。特に無機充填材(B)が二次凝集粒子の場合、二次凝集粒子の形状をある程度維持することにより、一次粒子間の接触が保たれ、また一次粒子のランダム配向が保たれるために熱伝導性シートおよびその硬化物の熱伝導性をより一層向上できる。
本実施形態に係る無機充填材(B)のピーク(P)は、熱伝導性シートを構成する各成分の種類や配合割合、および熱伝導性シートの作製方法を適切に調節することにより制御することが可能である。
本実施形態においては、とくに熱硬化性樹脂(A)の種類を適切に選択することや、熱伝導性シートを形成するための樹脂ワニスを構成する溶媒を適切に選択すること、熱伝導性シートに対して圧縮圧力を印加する工程を含むこと、熱硬化性樹脂(A)および無機充填材(B)を添加した樹脂ワニスに対しエージングを行うこと、当該エージングにおける加熱・加圧条件、無機充填材(B)の焼成条件等が、上記ピーク(P)を制御するための因子として挙げられる。
本実施形態に係る熱伝導性シートは、昇温速度5℃/min、周波数1Hzの条件で動的粘弾性測定により測定される、当該熱伝導性シートの硬化物のガラス転移温度が好ましくは175℃以上であり、より好ましくは190℃以上である。上記ガラス転移温度の上限値は特に限定されないが、たとえば300℃以下である。
ここで、熱伝導性シートの硬化物のガラス転移温度は次のように測定できる。まず、熱伝導性シートを180℃、10MPaで40分間熱処理することにより、熱伝導性シートの硬化物を得る。次いで、得られた硬化物のガラス転移温度(Tg)を、DMA(動的粘弾性測定)により昇温速度5℃/min、周波数1Hzの条件で測定する。
ガラス転移温度が上記下限値以上であると、導電性成分の運動開放をより一層抑制できるため、温度上昇による熱伝導性シートの絶縁性の低下をより一層抑制できる。その結果、より一層絶縁信頼性に優れた半導体装置を実現できる。
ガラス転移温度は熱伝導性シートを構成する各成分の種類や配合割合、および熱伝導性シートの作製方法を適切に調節することにより制御することができる。
本実施形態に係る熱伝導性シートは、たとえば、半導体チップ等の発熱体と当該発熱体を搭載するリードフレーム、配線基板(インターポーザ)等の基板との間、あるいは、当該基板とヒートシンク等の放熱部材との間に設けられる。これにより、上記発熱体から生じる熱を、半導体装置の外部へ効果的に放散させることができる。このため、半導体装置の耐久性を向上させることが可能となる。
本実施形態に係る熱伝導性シートの平面形状は、特に限定されず、放熱部材や発熱体等の形状に合わせて適宜選択することが可能であるが、たとえば矩形とすることができる。熱伝導性シートの硬化物の膜厚は、50μm以上250μm以下であることが好ましい。これにより、機械的強度や耐熱性の向上を図りつつ、発熱体からの熱をより効果的に放熱部材へ伝えることができる。さらに、熱伝導材の放熱性と絶縁性のバランスがより一層優れる。
本実施形態に係る熱伝導性シートは、熱硬化性樹脂(A)と、熱硬化性樹脂(A)中に分散された無機充填材(B)とを含む。以下、本実施形態に係る熱伝導性シートを構成する各材料について説明する。
(熱硬化性樹脂(A))
熱硬化性樹脂(A)としては、たとえば、エポキシ樹脂、シアネート樹脂、ポリイミド樹脂、ベンゾオキサジン樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、ビスマレイミド樹脂、アクリル樹脂等が挙げられる。熱硬化性樹脂(A)として、これらの中の1種類を単独で用いてもよいし、2種類以上を併用してもよい。
エポキシ樹脂としては、たとえば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールM型エポキシ樹脂(4,4'−(1,3−フェニレンジイソプリジエン)ビスフェノール型エポキシ樹脂)、ビスフェノールP型エポキシ樹脂(4,4'−(1,4−フェニレンジイソプリジエン)ビスフェノール型エポキシ樹脂)、ビスフェノールZ型エポキシ樹脂(4,4'−シクロヘキシジエンビスフェノール型エポキシ樹脂)等のビスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、テトラフェノール基エタン型ノボラック型エポキシ樹脂、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;ビフェニル骨格を有するエポキシ樹脂;キシリレン型エポキシ樹脂、ビフェニルアラルキル骨格を有するエポキシ樹脂等のアリールアルキレン型エポキシ樹脂;ナフチレンエーテル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、2官能ないし4官能エポキシ型ナフタレン樹脂、ビナフチル型エポキシ樹脂、ナフタレンアラルキル骨格を有するエポキシ樹脂等のナフタレン型エポキシ樹脂;アントラセン型エポキシ樹脂;フェノキシ型エポキシ樹脂;ジシクロペンタジエン骨格を有するエポキシ樹脂;ノルボルネン型エポキシ樹脂;アダマンタン骨格を有するエポキシ樹脂;フルオレン型エポキシ樹脂;フェノールアラルキル骨格を有するエポキシ樹脂等が挙げられる。
これらの中でも、熱硬化性樹脂(A)としては、ジシクロペンタジエン骨格を有するエポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、アダマンタン骨格を有するエポキシ樹脂、フェノールアラルキル骨格を有するエポキシ樹脂、ビフェニルアラルキル骨格を有するエポキシ樹脂、ナフタレンアラルキル骨格を有するエポキシ樹脂、シアネート樹脂等が好ましい。
このような熱硬化性樹脂(A)を使用することで、本実施形態に係る熱伝導性シートの硬化物のガラス転移温度を高くするとともに、熱伝導性シートおよびその硬化物の放熱性および絶縁性を向上させることができる。
本実施形態に係る熱伝導性シート中に含まれる熱硬化性樹脂(A)の含有量は、当該熱伝導性シート100質量%に対し、1質量%以上30質量%以下が好ましく、5質量%以上28質量%以下がより好ましい。熱硬化性樹脂(A)の含有量が上記下限値以上であると、ハンドリング性が向上し、熱伝導性シートを形成するのが容易となる。熱硬化性樹脂(A)の含有量が上記上限値以下であると、熱伝導性シートおよびその硬化物の強度や難燃性がより一層向上したり、熱伝導性シートおよびその硬化物の熱伝導性がより一層向上したりする。
(無機充填材(B))
無機充填材(B)としては、たとえばシリカ、アルミナ、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素等が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。
無機充填材(B)の形状は、特に限定されないが、通常は球状である。
無機充填材(B)としては、本実施形態に係る熱伝導性シートの熱伝導性をより一層向上させる観点から、鱗片状窒化ホウ素の一次粒子を凝集させることにより形成される二次凝集粒子であることが好ましい。
鱗片状窒化ホウ素の一次粒子を凝集させることにより形成される二次凝集粒子は、たとえば、以下の手順で製造することができる。
まず、炭化ホウ素を窒素雰囲気中で、たとえば、1200〜2500℃、2〜24時間の条件で窒化処理する。次いで、得られた窒化ホウ素に三酸化二ホウ素を加え、これを非酸化性雰囲気中にて焼成することにより形成することができる。焼成温度は、たとえば1200〜2500℃である。焼成時間は、たとえば2〜24時間である。通常は、焼成温度を上げたり、焼成時間を増加させたりするほど、上記ピーク(P1)に対応する細孔径を大きくし、上記ピーク(P2)に対応する細孔径を小さくすることができる。
このように、無機充填材(B)として、鱗片状窒化ホウ素の一次粒子を焼結させて得られる二次凝集粒子を用いる場合には、熱硬化性樹脂(A)中における無機充填材(B)の分散性を向上させる観点から、熱硬化性樹脂(A)としてジシクロペンタジエン骨格を有するエポキシ樹脂がとくに好ましい。
無機充填材(B)の平均粒径は、たとえば5μm以上180μm以下であることが好ましく、10μm以上100μm以下であることがより好ましい。これにより、熱伝導性と絶縁性のバランスにより一層優れた熱伝導性シートおよびその硬化物を実現することができる。
ここで、無機充填材(B)の平均粒径は、レーザー回折式粒度分布測定装置により、粒子の粒度分布を体積基準で測定したときのメディアン径(D50)である。
上記二次凝集粒子を構成する鱗片状窒化ホウ素の一次粒子の平均長径は、好ましくは0.01μm以上40μm以下であり、より好ましくは0.1μm以上30μm以下である。これにより、熱伝導性と絶縁性のバランスにより一層優れた熱伝導性シートおよびその硬化物を実現することができる。
なお、この平均長径は電子顕微鏡写真により測定することができる。たとえば、以下の手順で測定する。まず、二次凝集粒子をミクロトームなどで切断しサンプルを作製する。次いで、走査型電子顕微鏡により、数千倍に拡大した二次凝集粒子の断面写真を数枚撮影する。次いで、任意の二次凝集粒子を選択し、写真から鱗片状窒化ホウ素の一次粒子の長径を測定する。このとき、10個以上の一次粒子について長径を測定し、それらの平均値を平均長径とする。
本実施形態に係る熱伝導性シート中に含まれる無機充填材(B)の含有量は、当該熱伝導性シート100質量%に対し、50質量%以上95質量%以下であることが好ましく、55質量%以上88質量%以下であることがより好ましく、60質量%以上80質量%以下であることが特に好ましい。
無機充填材(B)の含有量を上記下限値以上とすることにより、熱伝導性シートおよびその硬化物における熱伝導性や機械的強度の向上をより効果的に図ることができる。一方で、無機充填材(B)の含有量を上記上限値以下とすることにより、樹脂組成物の成膜性や作業性を向上させ、熱伝導性シートおよびその硬化物の膜厚の均一性をより一層良好なものとすることができる。
本実施形態に係る無機充填材(B)は、熱伝導性シートおよびその硬化物の熱伝導性をより一層向上させる観点から、上記二次凝集粒子に加えて、二次凝集粒子を構成する鱗片状窒化ホウ素の一次粒子とは別の鱗片状窒化ホウ素の一次粒子をさらに含むのが好ましい。この鱗片状窒化ホウ素の一次粒子の平均長径は、好ましくは0.01μm以上40μm以下であり、より好ましくは0.1μm以上30μm以下である。
これにより、熱伝導性と絶縁性のバランスにより一層優れた熱伝導性シートおよびその硬化物を実現することができる。
(硬化剤(C))
本実施形態に係る熱伝導性シートは、熱硬化性樹脂(A)としてエポキシ樹脂を用いる場合、さらに硬化剤(C)を含むのが好ましい。
硬化剤(C)としては、硬化触媒(C−1)およびフェノール系硬化剤(C−2)から選択される1種以上を用いることができる。
硬化触媒(C−1)としては、たとえばナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)等の有機金属塩;トリエチルアミン、トリブチルアミン、1,4−ジアザビシクロ[2.2.2]オクタン等の3級アミン類;2−フェニル−4−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2,4−ジエチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール等のイミダゾール類;トリフェニルホスフィン、トリ−p−トリルホスフィン、テトラフェニルホスホニウム・テトラフェニルボレート、トリフェニルホスフィン・トリフェニルボラン、1,2−ビス−(ジフェニルホスフィノ)エタン等の有機リン化合物;フェノール、ビスフェノールA、ノニルフェノール等のフェノール化合物;酢酸、安息香酸、サリチル酸、p−トルエンスルホン酸等の有機酸;等、またはこの混合物が挙げられる。硬化触媒(C−1)として、これらの中の誘導体も含めて1種類を単独で用いることもできるし、これらの誘導体も含めて2種類以上を併用することもできる。
本実施形態に係る熱伝導性シート中に含まれる硬化触媒(C−1)の含有量は、特に限定されないが、熱伝導性シート100質量%に対し、0.001質量%以上1質量%以下が好ましい。
また、フェノール系硬化剤(C−2)としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂、アミノトリアジンノボラック樹脂、ノボラック樹脂、トリスフェニルメタン型のフェノールノボラック樹脂等のノボラック型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン骨格及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のアラルキル型樹脂;ビスフェノールA、ビスフェノールF等のビスフェノール化合物;レゾール型フェノール樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
これらの中でも、ガラス転移温度の向上及び線膨張係数の低減の観点から、フェノール系硬化剤(C−2)がノボラック型フェノール樹脂またはレゾール型フェノール樹脂が好ましい。
フェノール系硬化剤(C−2)の含有量は、特に限定されないが、熱伝導性シート100質量%に対し、1質量%以上30質量%以下が好ましく、5質量%以上15質量%以下がより好ましい。
(カップリング剤(D))
さらに、本実施形態に係る熱伝導性シートは、カップリング剤(D)を含んでもよい。
カップリング剤(D)は、熱硬化性樹脂(A)と無機充填材(B)との界面の濡れ性を向上させることができる。
カップリング剤(D)としては、通常用いられるものなら何でも使用できるが、具体的にはエポキシシランカップリング剤、カチオニックシランカップリング剤、アミノシランカップリング剤、チタネート系カップリング剤およびシリコーンオイル型カップリング剤の中から選ばれる1種以上のカップリング剤を使用することが好ましい。
カップリング剤(D)の添加量は無機充填材(B)の比表面積に依存するので、特に限定されないが、無機充填材(B)100質量部に対して0.1質量部以上10質量部以下が好ましく、特に0.5質量部以上7質量部以下が好ましい。
(フェノキシ樹脂(E))
本実施形態に係る熱伝導性シートは、さらにフェノキシ樹脂(E)を含んでもよい。フェノキシ樹脂(E)を含むことにより熱伝導性シートおよびその硬化物の耐屈曲性をより一層向上できる。
また、フェノキシ樹脂(E)を含むことにより、熱伝導性シートおよびその硬化物の弾性率を低下させることが可能となり、熱伝導性シートおよびその硬化物の応力緩和力を向上させることができる。
また、フェノキシ樹脂(E)を含むと、粘度上昇により流動性が低減し、ボイド等が発生することを抑制できる。また、熱伝導性シートと放熱部材との密着性を向上できる。これらの相乗効果により、半導体装置の絶縁信頼性をより一層高めることができる。
フェノキシ樹脂(E)としては、たとえば、ビスフェノール骨格を有するフェノキシ樹脂、ナフタレン骨格を有するフェノキシ樹脂、アントラセン骨格を有するフェノキシ樹脂、ビフェニル骨格を有するフェノキシ樹脂等が挙げられる。また、これらの骨格を複数種有した構造のフェノキシ樹脂を用いることもできる。
フェノキシ樹脂(E)の含有量は、たとえば、熱伝導性シート100質量%に対し、3質量%以上10質量%以下である。
(その他の成分)
本実施形態に係る熱伝導性シートには、本発明の効果を損なわない範囲で、酸化防止剤、レベリング剤等を含むことができる。
本実施形態に係る熱伝導性シートは、たとえば次のようにして作製することができる。
まず、上述の各成分を溶媒へ添加して、ワニス状の樹脂組成物を得る。本実施形態においては、たとえば溶媒中に熱硬化性樹脂(A)等を添加して樹脂ワニスを作製したのち、当該樹脂ワニスへ無機充填材(B)を入れて三本ロール等を用いて混練することにより樹脂組成物を得ることができる。これにより、無機充填材(B)をより均一に、熱硬化性樹脂(A)中へ分散させることができる。
上記溶媒としては特に限定されないが、メチルエチルケトン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテル、シクロヘキサノン等が挙げられる。
次いで、熱伝導性シート用樹脂組成物に対しエージングを行う。これにより、得られる熱伝導性シートについて、無機充填材(B)の上記ピーク(P1)の第1の極大値における細孔径を大きくし、上記ピーク(P2)の第2の極大値における細孔径を小さくすることができる。
これは、エージングによって熱硬化性樹脂(A)の無機充填材(B)に対する親和性が上昇するため、熱硬化性樹脂(A)が無機充填材(B)の内部に十分に染み込み、その結果、熱伝導性シート製造前後において、無機充填材(B)の粒子内の空隙を保持することができるため、上記第1の極大値における細孔径を大きくすることができると推定される。
また、エージングによって熱硬化性樹脂(A)の無機充填材(B)に対する親和性が上昇し、熱硬化性樹脂(A)中での無機充填材(B)の分散性が向上する。これにより無機充填材(B)の充填性が上がるため、上記第2の極大値における細孔径を小さくすることができると推定される。
エージングは、たとえば30〜80℃、8〜25時間、好ましくは12〜24時間、0.1〜1.0MPaの条件により行うことができる。通常は、エージング温度を上げたり、エージング時間を増加させたりするほど、上記ピーク(P1)の第1の極大値における細孔径を大きくし、上記ピーク(P2)の第2の極大値における細孔径を小さくすることができる。
次いで、上記樹脂組成物をシート状に成形して、熱伝導性シートを形成する。本実施形態においては、たとえば基材上にワニス状の上記樹脂組成物を塗布した後、これを熱処理して乾燥することにより熱伝導性シートを得ることができる。基材としては、たとえば放熱部材やリードフレーム、剥離可能なキャリア材等を構成する金属箔が挙げられる。また、樹脂組成物を乾燥するための熱処理は、たとえば80〜150℃、5分〜1時間の条件において行われる。熱伝導性シートの膜厚は、たとえば60μm以上500μm以下である。
次いで、上記樹脂シートを二本のロール間に通して圧縮することにより、樹脂シート内の気泡を除去することが好ましい。
本実施形態においては、このようにロールによる圧縮圧力をかけて気泡を除去する工程を含むことにより、圧縮圧力に起因して無機充填材(B)が変形し、無機充填材(B)の上記ピーク(P2)の第2の極大値における細孔径を小さくすることができる。
次に、本実施形態に係る半導体装置について説明する。図1は、本発明の一実施形態に係る半導体装置100の断面図である。
以下においては、説明を簡単にするため、半導体装置100の各構成要素の位置関係(上下関係等)が各図に示す関係であるものとして説明を行う場合がある。ただし、この説明における位置関係は、半導体装置100の使用時や製造時の位置関係とは無関係である。
本実施形態では、金属板がヒートシンクである例を説明する。本実施形態に係る半導体装置100は、ヒートシンク130と、ヒートシンク130の第1面131側に設けられた半導体チップ110と、ヒートシンク130の第1面131とは反対側の第2面132に接合された熱伝導材140と、半導体チップ110およびヒートシンク130を封止している封止樹脂180と、を備えている。
以下、詳細に説明する。
半導体装置100は、たとえば上記の構成の他に、導電層120、金属層150、リード160およびワイヤ(金属配線)170を有する。
半導体チップ110の上面111には図示しない電極パターンが形成され、半導体チップ110の下面112には図示しない導電パターンが形成されている。半導体チップ110の下面112は、銀ペースト等の導電層120を介してヒートシンク130の第1面131に固着されている。半導体チップ110の上面111の電極パターンは、ワイヤ170を介してリード160の電極161に対して電気的に接続されている。
ヒートシンク130は、金属により構成されている。
封止樹脂180は、半導体チップ110およびヒートシンク130の他に、ワイヤ170と、導電層120と、リード160の一部分ずつと、を内部に封止している。各リード160の他の一部分ずつは、封止樹脂180の側面より、該封止樹脂180の外部に突出している。本実施形態の場合、たとえば、封止樹脂180の下面182とヒートシンク130の第2面132とが互いに同一平面上に位置している。
熱伝導材140の上面141は、ヒートシンク130の第2面132と、封止樹脂180の下面182と、に対して貼り付けられている。つまり、封止樹脂180は、ヒートシンク130の周囲において熱伝導材140のヒートシンク130側の面(上面141)に接している。
熱伝導材140の下面142には、金属層150の上面151が固着されている。すなわち、金属層150の一方の面(上面151)は、熱伝導材140におけるヒートシンク130側とは反対側の面(下面142)に対して固着されている。
平面視において、金属層150の上面151の外形線と、熱伝導材140におけるヒートシンク130側とは反対側の面(下面142)の外形線と、が重なっていることが好ましい。
また、金属層150は、その一方の面(上面151)に対する反対側の面(下面152)の全面が封止樹脂180から露出している。なお、本実施形態の場合、上記のように、熱伝導材140は、その上面141が、ヒートシンク130の第2面132および封止樹脂180の下面182に貼り付けられているため、熱伝導材140は、その上面141を除き、封止樹脂180の外部に露出している。そして、金属層150は、その全体が封止樹脂180の外部に露出している。
なお、ヒートシンク130の第2面132および第1面131は、たとえば、それぞれ平坦に形成されている。
半導体装置100の実装床面積は、特に限定されないが、一例として、10×10mm以上100×100mm以下とすることができる。ここで、半導体装置100の実装床面積とは、金属層150の下面152の面積である。
また、一のヒートシンク130に搭載された半導体チップ110の数は、特に限定されない。1つであってもよいし、複数であってもよい。たとえば、3つ以上(6個等)とすることもできる。すなわち、一例として、一のヒートシンク130の第1面131側に3つ以上の半導体チップ110が設けられ、封止樹脂180はこれら3つ以上の半導体チップ110を一括して封止してもよい。
半導体装置100は、たとえば、パワー半導体装置である。この半導体装置100は、たとえば、封止樹脂180内に2つの半導体チップ110が封止された2in1、封止樹脂180内に6つの半導体チップ110が封止された6in1または封止樹脂180内に7つの半導体チップ110が封止された7in1の構成とすることができる。
次に、本実施形態に係る半導体装置100を製造する方法の一例を説明する。
先ず、ヒートシンク130および半導体チップ110を準備し、銀ペースト等の導電層120を介して、半導体チップ110の下面112をヒートシンク130の第1面131に固着する。
次に、リード160を含むリードフレーム(全体図示略)を準備し、半導体チップ110の上面111の電極パターンとリード160の電極161とをワイヤ170を介して相互に電気的に接続する。
次に、半導体チップ110と、導電層120と、ヒートシンク130と、ワイヤ170と、リード160の一部分ずつと、を封止樹脂180により一括して封止する。
次に、熱伝導材140を準備し、この熱伝導材140の上面141を、ヒートシンク130の第2面132と、封止樹脂180の下面182と、に対して貼り付ける。更に、金属層150の一方の面(上面151)を、熱伝導材140におけるヒートシンク130側とは反対側の面(下面142)に対して固着する。なお、熱伝導材140をヒートシンク130および封止樹脂180に対して貼り付ける前に、予め熱伝導材140の下面142に金属層150を固着しておいてもよい。
次に、各リード160をリードフレームの枠体(図示略)から切断する。こうして、図1に示すような構造の半導体装置100が得られる。
以上のような実施形態によれば、半導体装置100は、ヒートシンク130と、ヒートシンク130の第1面131側に設けられた半導体チップ110と、ヒートシンク130の第1面131とは反対側の第2面132に貼り付けられた絶縁性の熱伝導材140と、半導体チップ110およびヒートシンク130を封止している封止樹脂180と、を備えている。
上述のように、半導体装置のパッケージがある程度よりも小さい場合には熱伝導材の絶縁性の悪化が問題として顕在化しなくても、半導体装置のパッケージが大面積となるほど、熱伝導材の面内で電界が最も集中する箇所での電界が強くなる。このため、熱伝導材の僅かな膜厚の変動による絶縁性の悪化も、問題として顕在化する可能性があると考えられる。
これに対し、本実施形態に係る半導体装置100は、たとえば、その実装床面積が10×10mm以上100×100mm以下の大型のパッケージであったとしても、上記の構造の熱伝導材140を備えることにより、十分な耐久性を得ることが期待できる。
また、本実施形態に係る半導体装置100は、たとえば、一のヒートシンク130の第1面131側に3つ以上の半導体チップ110が設けられ、これら3つ以上の半導体チップを封止樹脂180が一括して封止している構造のものであったとしても、すなわち、半導体装置100が大型のパッケージであったとしても、上記の構造の熱伝導材140を備えることにより、十分な耐久性を得ることが期待できる。
また、熱伝導材140におけるヒートシンク130側とは反対側の面(下面142)に対して一方の面(上面151)が固着された金属層150を半導体装置100が更に備える場合、この金属層150によって好適に放熱することができるため、半導体装置100の放熱性が向上する。
また、金属層150の上面151が熱伝導材140の下面142よりも小さいと、熱伝導材140の下面142が外部に露出し、異物などの突起物により熱伝導材140にクラックが発生する懸念が生じる。一方、金属層150の上面151が熱伝導材140の下面142よりも大きいと金属層150の端部が宙に浮いたような格好になり、製造工程での取り扱いの際などにおいて、金属層150が剥がれてしまう可能性がある。
これに対し、平面視において、金属層150の上面151の外形線と、熱伝導材140の下面142の外形線と、が重なっている構造とすることにより、熱伝導材140におけるクラックの発生および金属層150の剥離を抑制することができる。
また、金属層150の下面152の全面が封止樹脂180から露出しているので、金属層150の下面152の全面での放熱が可能となり、半導体装置100の高い放熱性が得られる。
図2は、本発明の一実施形態に係る半導体装置100の断面図である。この半導体装置100は、以下に説明する点で、図1に示した半導体装置100と相違し、その他の点では、図1に示した半導体装置100と同様に構成されている。
本実施形態の場合、熱伝導材140は、封止樹脂180内に封止されている。また、金属層150も、その下面152を除き、封止樹脂180内に封止されている。そして、金属層150の下面152と、封止樹脂180の下面182とが互いに同一平面上に位置している。
なお、図2には、ヒートシンク130の第1面131に少なくとも2つ以上の半導体チップ110が搭載されている例が示されている。これら半導体チップ110の上面111の電極パターンどうしが、ワイヤ170を介して相互に電気的に接続されている。第1面131には、たとえば、合計6つの半導体チップ110が搭載されている。すなわち、たとえば、2つずつの半導体チップ110が、図2の奥行き方向において3列に配置されている。
なお、上記の図1または図2に示した半導体装置100を基板(図示略)上に搭載することにより、基板と、半導体装置100と、を備えるパワーモジュールが得られる。
なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。なお、実施例では、部はとくに特定しない限り質量部を表す。また、それぞれの厚みは平均膜厚で表わされている。
(鱗片状窒化ホウ素の一次粒子により構成された二次凝集粒子の作製)
市販の炭化ホウ素粉末をカーボンるつぼの中に投入し、窒素雰囲気下、2000℃、10時間の条件で窒化処理した。
次いで、得られた窒化ホウ素粉末に市販の三酸化二ホウ素粉末を加え、ブレンダ―で1時間混合した(窒化ホウ素:三酸化二ホウ素=7:3(質量比))。得られた混合物をカーボンるつぼの中に投入し、窒素雰囲気下、2000℃、10時間の条件で焼成することにより、平均粒径が80μmの凝集窒化ホウ素を得た。
ここで、凝集窒化ホウ素の平均粒径は、レーザー回折式粒度分布測定装置(HORIBA社製、LA−500)により、粒子の粒度分布を体積基準で測定し、そのメディアン径(D50)とした。
(熱伝導性シートの作製)
実施例1〜7について、以下のように熱伝導性シートを作製した。
まず、表1に示す配合に従い、熱硬化性樹脂と、硬化剤とを溶媒であるメチルエチルケトンに添加し、これを撹拌して熱硬化性樹脂組成物の溶液を得た。次いで、この溶液に無機充填材を入れて予備混合した後、三本ロールにて混練し、無機充填材を均一に分散させた熱伝導性シート用樹脂組成物を得た。次いで、得られた熱伝導性シート用樹脂組成物に対し、60℃、0.6MPa、15時間の条件によりエージングを行った。次いで、熱伝導性シート用樹脂組成物を、銅箔上にドクターブレード法を用いて塗布した後、これを100℃、30分間の熱処理により乾燥して、膜厚が400μmである樹脂シートを作製した。次いで、上記樹脂シートを二本のロール間に通して圧縮することにより、樹脂シート内の気泡を除去し、膜厚が200μmであるBステージ状の熱伝導性シートを得た。
なお、表1中における各成分の詳細は下記のとおりである。
実施例8については、熱伝導性シート用樹脂組成物に対し、80℃、0.6MPa、20時間の条件によりエージングを行った以外は、実施例1と同様にして熱伝導性シートを作製した。
実施例9については、熱伝導性シート用樹脂組成物に対し、40℃、0.6MPa、10時間の条件によりエージングを行った以外は、実施例1と同様にして熱伝導性シートを作製した。
実施例10については、熱伝導性シート用樹脂組成物に対し、50℃、0.6MPa、15時間の条件によりエージングを行った以外は、実施例1と同様にして熱伝導性シートを作製した。
実施例11については、熱伝導性シート用樹脂組成物に対し、30℃、0.6MPa、15時間の条件によりエージングを行い、エポキシ樹脂の種類をエポキシ樹脂7に変更した以外は、実施例1と同様にして熱伝導性シートを作製した。
実施例12については、熱伝導性シート用樹脂組成物に対し、30℃、0.6MPa、20時間の条件によりエージングを行い、エポキシ樹脂の種類をエポキシ樹脂8に変更した以外は、実施例1と同様にして熱伝導性シートを作製した。
比較例1については、熱伝導性シート用樹脂組成物に対してエージングを行わなかったことと、無機充填材として充填材1の代わりに充填材2を用いた点を除き、実施例1と同様にして熱伝導性シートを作製した。
比較例2については、熱伝導性シート用樹脂組成物に対してエージングを行わなかったことと、無機充填材として充填材1の代わりに充填材3を用いた点を除き、実施例1と同様にして熱伝導性シートを作製した。
比較例3については、熱伝導性シート用樹脂組成物に対してエージングを行わなかった点を除き、実施例1と同様にして熱伝導性シートを作製した。
なお、表1中における各成分の詳細は下記のとおりである。
(熱硬化性樹脂(A))
エポキシ樹脂1:ジシクロペンタジエン骨格を有するエポキシ樹脂(XD−1000、日本化薬社製)
エポキシ樹脂2:ビフェニル骨格を有するエポキシ樹脂(YX−4000、三菱化学社製)
エポキシ樹脂3:アダマンタン骨格を有するエポキシ樹脂(E201、出光興産社製)
エポキシ樹脂4:フェノールアラルキル骨格を有するエポキシ樹脂(NC−2000−L、日本化薬社製)
エポキシ樹脂5:ビフェニルアラルキル骨格を有するエポキシ樹脂(NC−3000、日本化薬社製)
エポキシ樹脂6:ナフタレンアラルキル骨格を有するエポキシ樹脂(NC−7000、日本化薬社製)
エポキシ樹脂7:ビスフェノールF型エポキシ樹脂(830S、大日本インキ社製)
エポキシ樹脂8:ビスフェノールA型エポキシ樹脂(828、三菱化学社製)
シアネート樹脂1:フェノールノボラック型シアネート樹脂(PT−30、ロンザジャパン社製)
(硬化触媒C−1)
硬化触媒1:2−フェニル−4,5−ジヒドロキシメチルイミダゾール(2PHZ−PW、四国化成社製)
硬化触媒2:トリフェニルホスフィン(北興化学社製)
(硬化剤C−2)
フェノール系硬化剤1:トリスフェニルメタン型のフェノールノボラック樹脂(MEH−7500、明和化成社製)
(無機充填材(B))
充填材1:上記鱗片状窒化ホウ素の一次粒子により構成された二次凝集粒子の作製により作製された凝集窒化ホウ素
充填材2:上記作製例において、焼成温度を2100℃、焼成時間を15時間に変更した以外は上記二次凝集粒子の作製例と同様の方法により作製された、平均粒径が80μmの凝集窒化ホウ素
充填材3:上記作製例において、焼成温度を1500℃、焼成時間を8時間に変更した以外は上記二次凝集粒子の作製例と同様の方法により作製された、平均粒径が80μmの凝集窒化ホウ素
(細孔径分布曲線の測定)
はじめに、得られた熱伝導性シートを180℃、10MPaで40分間熱処理することにより、熱伝導性シートの硬化物を得た。次いで、熱伝導性シートの硬化物を大気圧下で、700℃、4時間加熱処理して灰化した。次いで、得られた灰化残渣に含まれる無機充填材(B)の細孔径分布曲線を水銀圧入式のポロシメータ(島津製作所社製マイクロメリテックス 細孔分布測定装置オートポア9520型)により計測した。
具体的には以下の通りである。灰化残渣を100℃、1時間、大気圧下で、加熱乾燥し水分を蒸発させることにより測定試料(無機充填材(B))を得た。次いで、得られた測定試料約0.2gを標準5cc粉体用セル(ステム容積0.4cc)に採り、初期圧7kPa(約1psia、細孔径約180μm相当)の条件で測定した。水銀パラメーターは、装置デフォルトの水銀接触角130degrees、水銀表面張力は485dynes/cmに設定した。
得られた細孔径分布曲線から、各ピークを求めた。また、細孔径Rが1μm以上10μm以下の範囲におけるピークについて、重なり合うピークの数を求めた。
また、得られた細孔径分布曲線から、細孔径Rが1.0μm以上10.0μm以下の範囲における累積細孔体積V1、細孔径Rが10.0μmを超えて30.0μm以下の範囲における累積細孔体積V2、および細孔径Rが0.01μm以上1.0μm未満の範囲における累積細孔体積V3をそれぞれ求めた。
(Tg(ガラス転移温度)の測定)
熱伝導性シートの硬化物のガラス転移温度を次のように測定した。まず、得られた熱伝導性シートを180℃、10MPaで40分間熱処理することにより、熱伝導性シートの硬化物を得た。次いで、得られた硬化物のガラス転移温度(Tg)を、DMA(動的粘弾性測定)により昇温速度5℃/min、周波数1Hzの条件で測定した。
(絶縁信頼性評価)
実施例1〜12および比較例1〜3のそれぞれについて、半導体パッケージの絶縁信頼性を次のように評価した。まず、熱伝導性シートの硬化物を用いて図1に示す半導体パッケージを作製した。次いで、この半導体パッケージを用いて、温度85℃、湿度85%、交流印加電圧1.5kVの条件で連続湿中絶縁抵抗を評価した。なお、抵抗値10Ω以下を故障とした。評価基準は以下の通りである。
◎◎:300時間以上故障なし
◎ :200時間以上300時間未満で故障あり
○ :150時間以上200時間未満で故障あり
△ :100時間以上150時間未満で故障あり
× :100時間未満で故障あり
(ヒートサイクル試験)
実施例1〜12および比較例1〜3のそれぞれについて、半導体パッケージのヒートサイクル性を次のように評価した。まず、熱伝導性シートの硬化物を用いて図1に示す半導体パッケージを作製した。次いで、この半導体パッケージ3個を用いて、ヒートサイクル試験を実施した。ヒートサイクル試験は、−40℃5分〜+125℃5分を1サイクルとして3000回行なった。
つぎに、超音波映像装置(日立建機ファインテック社製、FS300)を用いて、半導体チップ、導電層に異常がないか観察した。
◎:半導体チップ、導電層ともに異常なし。
○:半導体チップおよび/または導電層の一部にクラックが見られるが実用上問題なし。
△:半導体チップおよび/または導電層の一部にクラックが見られ実用上問題あり。
×:半導体チップ、導電層ともにクラックが見られ使用できない。
Figure 2016027144
細孔径Rが1μm以上10μm以下の範囲にピーク(P)を有し、ピーク(P)が2以上のピークが重なり合っている熱伝導性シートを用いた実施例1〜12の半導体パッケージは、絶縁信頼性およびヒートサイクル性に優れていた。
一方、細孔径Rが1μm以上10μm以下の範囲に2以上のピークが重なり合っていない比較例1〜3の半導体パッケージは、絶縁信頼性およびヒートサイクル性に劣っていた。
したがって、本発明による熱伝導性シートを用いることにより、耐久性の高い半導体装置が得られることが分かった。
100 半導体装置
110 半導体チップ
111 上面
112 下面
120 導電層
130 ヒートシンク(金属板)
131 第1面
132 第2面
140 熱伝導性シート(熱伝導材)
141 上面
142 下面
150 金属層
151 上面
152 下面
160 リード
161 電極
170 ワイヤ
180 封止樹脂
182 下面

Claims (15)

  1. 熱硬化性樹脂と、前記熱硬化性樹脂中に分散された無機充填材とを含む熱伝導性シートであって、
    当該熱伝導性シートの硬化物を700℃、4時間加熱処理して灰化した後の灰化残渣に含まれる上記無機充填材について、水銀圧入法による細孔径分布測定を行ったとき、
    前記水銀圧入法により測定される、細孔径Rを横軸とし、対数微分細孔容積(dV/dlogR)を縦軸としたときの細孔径分布曲線において、
    前記細孔径Rが1.0μm以上10.0μm以下の範囲にピーク(P)を有し、
    前記ピーク(P)は2以上のピークが重なり合っている、熱伝導性シート。
  2. 請求項1に記載の熱伝導性シートにおいて、
    前記細孔径Rが1.0μm以上10.0μm以下の範囲における累積細孔体積V1が0.1mL/g以上2.0mL/g以下である、熱伝導性シート。
  3. 請求項1または2に記載の熱伝導性シートにおいて、
    前記ピーク(P)において、
    前記細孔径Rが1.0μm以上3.0μm以下の範囲に第1の極大値を有し、
    前記細孔径Rが3.0μmを超えて10.0μm以下の範囲に第2の極大値を有する、熱伝導性シート。
  4. 請求項1乃至3いずれか一項に記載の熱伝導性シートにおいて、
    前記細孔径Rが10.0μmを超えて30.0μm以下の範囲に1以上3以下のピークをさらに有する、熱伝導性シート。
  5. 請求項1乃至4いずれか一項に記載の熱伝導性シートにおいて、
    前記細孔径Rが10.0μmを超えて30.0μm以下の範囲における累積細孔体積V2が0.07mL/g以上0.17mL/g以下である、熱伝導性シート。
  6. 請求項1乃至5いずれか一項に記載の熱伝導性シートにおいて、
    前記細孔径Rが0.01μm以上1.0μm未満の範囲には実質的にピークを有さない、熱伝導性シート。
  7. 請求項6に記載の熱伝導性シートにおいて、
    前記細孔径Rが0.01μm以上1.0μm未満の範囲における累積細孔体積V3が0.30mL/g以下である、熱伝導性シート。
  8. 請求項1乃至7いずれか一項に記載の熱伝導性シートにおいて、
    前記無機充填材は、鱗片状窒化ホウ素の一次粒子により構成されている二次凝集粒子である、熱伝導性シート。
  9. 請求項8に記載の熱伝導性シートにおいて、
    前記二次凝集粒子を構成する前記一次粒子の平均長径が0.01μm以上40μm以下である、熱伝導性シート。
  10. 請求項1乃至9いずれか一項に記載の熱伝導性シートにおいて、
    前記無機充填材の平均粒径が5μm以上180μm以下である、熱伝導性シート。
  11. 請求項1乃至10いずれか一項に記載の熱伝導性シートにおいて、
    前記無機充填材の含有量が、当該熱伝導性シート100質量%に対し、50質量%以上95質量%以下である、熱伝導性シート。
  12. 請求項1乃至11いずれか一項に記載の熱伝導性シートにおいて、
    前記熱硬化性樹脂がジシクロペンタジエン骨格を有するエポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、アダマンタン骨格を有するエポキシ樹脂、フェノールアラルキル骨格を有するエポキシ樹脂、ビフェニルアラルキル骨格を有するエポキシ樹脂、ナフタレンアラルキル骨格を有するエポキシ樹脂、およびシアネート樹脂から選択される一種または二種以上である、熱伝導性シート。
  13. 請求項1乃至12いずれか一項に記載の熱伝導性シートにおいて、
    昇温速度5℃/min、周波数1Hzの条件で動的粘弾性測定により測定される、当該熱伝導性シートの硬化物のガラス転移温度が175℃以上である、熱伝導性シート。
  14. 請求項1乃至13いずれか一項に記載の熱伝導性シートを硬化してなる熱伝導性シートの硬化物。
  15. 金属板と、
    前記金属板の第1面側に設けられた半導体チップと、
    前記金属板の前記第1面とは反対側の第2面に接合された熱伝導材と、
    前記半導体チップおよび前記金属板を封止する封止樹脂とを備え、
    前記熱伝導材が、請求項1乃至13いずれか一項に記載の熱伝導性シートにより形成された半導体装置。
JP2015130021A 2014-07-02 2015-06-29 熱伝導性シート、熱伝導性シートの硬化物および半導体装置 Active JP6657616B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015130021A JP6657616B2 (ja) 2014-07-02 2015-06-29 熱伝導性シート、熱伝導性シートの硬化物および半導体装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014137237 2014-07-02
JP2014137237 2014-07-02
JP2015130021A JP6657616B2 (ja) 2014-07-02 2015-06-29 熱伝導性シート、熱伝導性シートの硬化物および半導体装置

Publications (2)

Publication Number Publication Date
JP2016027144A true JP2016027144A (ja) 2016-02-18
JP6657616B2 JP6657616B2 (ja) 2020-03-04

Family

ID=55016571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015130021A Active JP6657616B2 (ja) 2014-07-02 2015-06-29 熱伝導性シート、熱伝導性シートの硬化物および半導体装置

Country Status (3)

Country Link
US (1) US20160002520A1 (ja)
JP (1) JP6657616B2 (ja)
CN (1) CN105244334A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020256005A1 (ja) * 2019-06-21 2021-09-13 住友ベークライト株式会社 熱硬化性樹脂組成物、樹脂シートおよび金属ベース基板
JP7090831B1 (ja) * 2021-01-06 2022-06-24 デンカ株式会社 凝集窒化ホウ素粒子、窒化ホウ素粉末、熱伝導性樹脂組成物及び放熱シート
WO2022149553A1 (ja) * 2021-01-06 2022-07-14 デンカ株式会社 凝集窒化ホウ素粒子、窒化ホウ素粉末、熱伝導性樹脂組成物及び放熱シート

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7073716B2 (ja) * 2015-07-21 2022-05-24 住友ベークライト株式会社 熱伝導性樹脂組成物、熱伝導性シートおよび半導体装置
WO2021079912A1 (ja) * 2019-10-23 2021-04-29 デンカ株式会社 窒化ホウ素粉末及びその製造方法、炭窒化ホウ素粉末、並びに、複合材及び放熱部材
JP7231068B2 (ja) * 2020-02-27 2023-03-01 住友ベークライト株式会社 熱硬化性樹脂組成物、樹脂シートおよび金属ベース基板
CN114207044A (zh) * 2020-05-15 2022-03-18 迪睿合株式会社 导热性片和导热性片的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306594A (ja) * 2002-04-17 2003-10-31 Hitachi Ltd エポキシ樹脂組成物およびそれを用いた回転機
JP2010157563A (ja) * 2008-12-26 2010-07-15 Mitsubishi Electric Corp 熱伝導性シート及びパワーモジュール
JP2013048257A (ja) * 2010-10-06 2013-03-07 Hitachi Chemical Co Ltd 半導体装置
JP2014040533A (ja) * 2012-08-23 2014-03-06 Mitsubishi Electric Corp 熱硬化性樹脂組成物、熱伝導性樹脂シートの製造方法と熱伝導性樹脂シート、並びに電力用半導体装置
WO2014136959A1 (ja) * 2013-03-07 2014-09-12 電気化学工業株式会社 窒化ホウ素粉末及びこれを含有する樹脂組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306594A (ja) * 2002-04-17 2003-10-31 Hitachi Ltd エポキシ樹脂組成物およびそれを用いた回転機
JP2010157563A (ja) * 2008-12-26 2010-07-15 Mitsubishi Electric Corp 熱伝導性シート及びパワーモジュール
JP2013048257A (ja) * 2010-10-06 2013-03-07 Hitachi Chemical Co Ltd 半導体装置
JP2014040533A (ja) * 2012-08-23 2014-03-06 Mitsubishi Electric Corp 熱硬化性樹脂組成物、熱伝導性樹脂シートの製造方法と熱伝導性樹脂シート、並びに電力用半導体装置
WO2014136959A1 (ja) * 2013-03-07 2014-09-12 電気化学工業株式会社 窒化ホウ素粉末及びこれを含有する樹脂組成物

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020256005A1 (ja) * 2019-06-21 2021-09-13 住友ベークライト株式会社 熱硬化性樹脂組成物、樹脂シートおよび金属ベース基板
JP7090831B1 (ja) * 2021-01-06 2022-06-24 デンカ株式会社 凝集窒化ホウ素粒子、窒化ホウ素粉末、熱伝導性樹脂組成物及び放熱シート
WO2022149553A1 (ja) * 2021-01-06 2022-07-14 デンカ株式会社 凝集窒化ホウ素粒子、窒化ホウ素粉末、熱伝導性樹脂組成物及び放熱シート
JP2022125061A (ja) * 2021-01-06 2022-08-26 デンカ株式会社 凝集窒化ホウ素粒子、窒化ホウ素粉末、熱伝導性樹脂組成物及び放熱シート
JP7362839B2 (ja) 2021-01-06 2023-10-17 デンカ株式会社 凝集窒化ホウ素粒子、窒化ホウ素粉末、熱伝導性樹脂組成物及び放熱シート

Also Published As

Publication number Publication date
CN105244334A (zh) 2016-01-13
JP6657616B2 (ja) 2020-03-04
US20160002520A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
JP7073716B2 (ja) 熱伝導性樹脂組成物、熱伝導性シートおよび半導体装置
JP6657616B2 (ja) 熱伝導性シート、熱伝導性シートの硬化物および半導体装置
JP6634717B2 (ja) 熱伝導性シート、熱伝導性シートの硬化物および半導体装置
JP6627303B2 (ja) 熱伝導性樹脂組成物、回路基板用積層体、回路基板および半導体装置
JP5854062B2 (ja) 熱伝導性シートおよび半導体装置
JPWO2015056523A1 (ja) エポキシ樹脂組成物、樹脂層付きキャリア材料、金属ベース回路基板および電子装置
JP2016094599A (ja) 熱伝導性シート用樹脂組成物、基材付き樹脂層、熱伝導性シートおよび半導体装置
JP2017028128A (ja) パワーモジュール用基板、パワーモジュール用回路基板およびパワーモジュール
JP6572643B2 (ja) 熱伝導性シート、熱伝導性シートの硬化物および半導体装置
JP6508384B2 (ja) 熱伝導性シートおよび半導体装置
CN106133900B (zh) 导热片和半导体装置
JP6579105B2 (ja) 熱伝導性シートおよび半導体装置
JP6648402B2 (ja) 熱伝導性シート、熱伝導性シートの硬化物および半導体装置
JP7200674B2 (ja) 放熱構造体の製造方法
JP2017028130A (ja) パワーモジュール用基板、パワーモジュール用回路基板およびパワーモジュール
JP2017028129A (ja) パワーモジュール用基板、パワーモジュール用回路基板およびパワーモジュール
JP6579106B2 (ja) 熱伝導性シートおよび半導体装置
WO2017014237A1 (ja) パワーモジュール用基板、パワーモジュール用回路基板およびパワーモジュール
JP6795285B2 (ja) 熱伝導性シート、熱伝導性シートの硬化物および半導体装置
WO2023002789A1 (ja) 熱硬化性樹脂組成物、パワーモジュール用基板、プリント配線基板および放熱シート
WO2022176448A1 (ja) 熱硬化性樹脂組成物、パワーモジュール用基板およびパワーモジュール
WO2015163056A1 (ja) 金属ベース基板、金属ベース回路基板および電子装置
JP2015207667A (ja) 金属ベース基板、金属ベース基板の製造方法、金属ベース回路基板および電子装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R150 Certificate of patent or registration of utility model

Ref document number: 6657616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150