WO2014119665A1 - アニオン伝導性材料及び電池 - Google Patents

アニオン伝導性材料及び電池 Download PDF

Info

Publication number
WO2014119665A1
WO2014119665A1 PCT/JP2014/052116 JP2014052116W WO2014119665A1 WO 2014119665 A1 WO2014119665 A1 WO 2014119665A1 JP 2014052116 W JP2014052116 W JP 2014052116W WO 2014119665 A1 WO2014119665 A1 WO 2014119665A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive material
anion conductive
anion
battery
group
Prior art date
Application number
PCT/JP2014/052116
Other languages
English (en)
French (fr)
Inventor
米原 宏司
博信 小野
小川 賢
康行 高澤
弘子 原田
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to CN201480006943.3A priority Critical patent/CN104969384B/zh
Priority to US14/764,386 priority patent/US10297861B2/en
Priority to EP14745764.2A priority patent/EP2953191B1/en
Priority to KR1020157023221A priority patent/KR20150113089A/ko
Publication of WO2014119665A1 publication Critical patent/WO2014119665A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an anion conductive material and a battery. More specifically, an anion conductive material that can be suitably applied as a battery separator, an electrolyte or an electrode protective agent, and a battery component such as a separator including the anion conductive material, an electrolyte or an electrode protective agent, etc.
  • a battery comprising:
  • Anion conductive materials that can selectively permeate ions in solution are widely used in various industrial fields.
  • the use of storage batteries is expanding in various fields including not only the field of electronic devices such as portable devices and notebook computers but also the fields of automobiles and aircrafts.
  • One of the materials used for these storage batteries is a storage battery.
  • positioned between the positive electrode and negative electrode of this are mentioned,
  • an anion conductive material can be used as this separator and electrolyte material.
  • an alkaline electrolyte membrane comprising a layered double hydroxide represented by a specific general formula
  • a quaternizing agent for forming an anion exchange resin film comprising a compound represented by a specific general formula is disclosed (for example, see Patent Document 2).
  • the electrolyte membrane / resin membrane described in Patent Documents 1 and 2 may not have sufficient durability depending on use conditions, and an anion conductive material that can be used more widely has been strongly demanded.
  • an anion conductive material that can be used more widely has been strongly demanded.
  • fuel cells since there is no anion conductive material that can withstand practical use, currently fuel cells generally use a cationic conductive material such as Nafion, which is an acidic electrolyte (membrane). It is virtually inevitable to use expensive platinum.
  • an anion conductive material can be newly developed, it can be used as a separator for a fuel cell, an electrolyte (membrane), a protective agent for an electrode, etc., and can be used with an inexpensive catalyst. Therefore, there is a possibility that a suitable fuel cell using the electrolyte solution can be produced and widely used.
  • alkaline (ion) (storage) batteries alkaline earth (ion) (storage) batteries, manganese / zinc (storage) batteries, nickel / hydrogen (storage) batteries, nickel / zinc (storage) batteries, nickel / cadmium ( Storage) batteries, zinc ion (storage) batteries, silver / zinc (storage) batteries, zinc / halogen (storage) batteries, lead storage batteries, air (storage) batteries, capacitors and other electrochemical device applications, ion exchange materials, trace amounts It can also be used as an element adsorbent.
  • the present invention has been made in view of the above situation, and has excellent anion conductivity and durability, such as an alkaline (storage) battery, a nickel / hydrogen (storage) battery, a nickel / zinc (storage) battery, Zinc ion (storage) battery, silver / zinc (storage) battery, zinc / halogen (storage) battery, air (storage) battery, fuel cell, capacitor separator, electrolyte, electrode protective agent, etc.
  • An object of the present invention is to provide an anion conductive material that can be used. Moreover, it aims at providing the battery provided with the separator comprised including this anion conductive material, electrolyte, and an electrode.
  • the inventors of the present invention formed a film containing a zinc-containing compound and a polymer such as polyvinylidene fluoride on a current collector, and applied an aqueous solution of potassium hydroxide saturated with zinc oxide as an electrolytic solution.
  • the present inventors have found that zinc dissolution and precipitation, that is, electrodeposition, is possible on the current collector under the film.
  • a film containing a layered double hydroxide such as hydrotalcite and a polymer such as polytetrafluoroethylene is formed on the zinc compound-containing electrode and a current is passed, the shape change of the zinc electrode active material is suppressed. I also found. In other words, it has also been found that only specific anions can be conducted and permeated.
  • the membrane when the reduction is performed by passing an electric current, the membrane conducts and permeates zinc-containing ions such as [Zn (OH) 4 ] 2 ⁇ in the electrolytic solution, and thereby the zinc on the current collector.
  • zinc-containing ions such as [Zn (OH) 4 ] 2 ⁇
  • hydroxide ions in the electrolytic solution are also conducted and permeated, and these hydroxide ions react with zinc particles, thereby It has been found that a reaction occurs in which zinc oxide particles are deposited on a part of the current collector.
  • the material functions as a separator / electrolyte (membrane) / electrode protective agent capable of conducting / permeating only specific anions, and hydroxide ions
  • zinc-containing ions such as [Zn (OH) 4 ] 2 ⁇ are not conducted / permeated, and the change in the shape of the zinc electrode active material is suppressed.
  • the present inventors have conceived that the above-mentioned membrane can function as an anion conductive material from such experimental results, and conducted research on anion conductive materials that can be applied to various uses other than the use as an active material layer. Newly started. Then, the present inventors have found that in such anion conductive material, the same action and effect can be exhibited even in polymers and inorganic compounds other than those described above. That is, when the anion conductive material contains a polymer and further contains a compound containing at least one element selected from Group 1 to Group 17 of the periodic table, high anion conductivity and durability can be obtained. It has been found that it can be achieved and is a good anion conductor. Furthermore, the specific structure of the anion conductive material which was excellent in anion conductivity and durability was discovered.
  • the present inventors have used such an anion conductive material as a material for a battery separator that uses, for example, an alkaline aqueous solution-containing electrolyte, and have sufficient durability under the conditions of an alkaline electrolyte, It has been found that anions can be suitably conducted. Moreover, it discovered that such an anion conductive material could be applied suitably other than the constituent material of a battery.
  • the anion conductive material of the present invention is durable to alkaline electrolytes, and batteries using an alkaline aqueous solution-containing electrolyte, such as alkaline (storage) batteries, nickel / hydrogen (storage) batteries, Nickel / zinc (storage) batteries, nickel / cadmium batteries, zinc ion (storage) batteries, silver / zinc (storage) batteries, zinc / halogen (storage) batteries, air (storage) batteries, separators for fuel cells, electrolytes, etc.
  • alkaline (storage) batteries such as alkaline (storage) batteries, nickel / hydrogen (storage) batteries, Nickel / zinc (storage) batteries, nickel / cadmium batteries, zinc ion (storage) batteries, silver / zinc (storage) batteries, zinc / halogen (storage) batteries, air (storage) batteries, separators for fuel cells, electrolytes, etc.
  • alkaline (storage) batteries such as alkaline (storage) batteries,
  • Patent Document 1 is disclosing the alkaline electrolyte membrane which consists of a layered double hydroxide as mentioned above, it is not disclosed at all about the anion conductive material containing a polymer, and the anion conductivity of this invention and It was not able to demonstrate durability.
  • Patent Document 2 discloses a quaternizing agent for forming an anion exchange resin film.
  • quaternary ammonium salts are easily decomposed in an alkali (particularly at a high temperature of 50 ° C. or more). There was room for ingenuity to be able to withstand various use conditions.
  • the present invention is a material having anion conductivity
  • the anion conductivity material includes a polymer and a compound containing at least one element selected from Groups 1 to 17 of the periodic table.
  • Anion conductive material is the said anion conductive material whose said compound is at least 1 compound chosen from the group which consists of an oxide, a hydroxide, a layered double hydroxide, a phosphoric acid compound, and a sulfuric acid compound.
  • the hydroxide refers to a hydroxide other than the layered double hydroxide.
  • the anion conductive polymer contains at least one selected from the group consisting of an aromatic group, a halogen atom, a carboxyl group, a carboxylate group, a hydroxyl group, an amino group, and an ether group, Or it is preferable that it is a hydrocarbon.
  • this invention is a battery provided with the battery structural member comprised including the said anion conductive material.
  • this invention is a battery whose said battery structural member is at least 1 sort (s) selected from the group which consists of a separator, a positive electrode, a negative electrode, and electrolyte.
  • s 1 sort
  • the anion conductive material of the present invention is a material that transmits the anion involved in the battery reaction with the above-described configuration.
  • the material may have selectivity for the permeating anion.
  • anions such as hydroxide ions are easy to permeate, and even if they are anions, diffusion of metal-containing ions having a large ion radius is sufficiently prevented.
  • the anion conductivity means that an anion having a small ion radius such as a hydroxide ion is sufficiently transmitted, or the permeation performance of the anion.
  • Anions having a large ion radius, such as metal-containing ions are more difficult to permeate and may not permeate at all.
  • the compound containing at least one element selected from Group 1 to Group 17 of the periodic table is alkali metal, alkaline earth metal, Sc, Y, lanthanoid, Ti, Zr, Hf, V, Nb, Ta , Cr, Mo, W, Mn, Fe, Ru, Co, Ni, Pd, Cu, Ag, Au, Zn, Cd, B, Al, Ga, In, Tl, C, Si, Ge, Sn, Pb, N , P, Sb, Bi, S, Se, Te, F, Cl, and at least one element selected from the group consisting of Br is preferable.
  • a compound containing at least one element selected from Group 1 to Group 15 of the periodic table is preferable, and Li, Na, K, Cs, Mg, Ca, Sr, Ba, Sc, Y, a lanthanoid, Ti, Zr, Nb, Cr, Mn, Fe, Ru, Co, Ni, Pd, Cu, Ag, Au, Zn, Cd, B, Al, Ga, In, Tl, C, Si, Ge, Sn, Pb, Those containing at least one element selected from the group consisting of N, P, Sb, and Bi are preferred.
  • Li Li, Na, K, Mg, Ca, Ba, Sc, Y, lanthanoid, Ti, Zr, Nb, Cr, Mn, Fe, Ru, Co, Ni, Pd, Cu, Zn, Cd, B, It contains at least one element selected from the group consisting of Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, and Bi.
  • a compound containing at least one element selected from Group 1 to Group 17 of the periodic table is also simply referred to as an inorganic compound. 1 type may be sufficient as the said inorganic compound, and 2 or more types may be sufficient as it.
  • Examples of the compound containing at least one element selected from Group 1 to Group 17 of the periodic table include oxides; complex oxides; layered double hydroxides; hydroxides; clay compounds; solid solutions; Zeolite; Halide; Carboxylate compound; Carbonate compound; Hydrogen carbonate compound; Nitric acid compound; Sulfuric acid compound; Phosphoric acid compound such as hydroxyapatite; Phosphorous compound; Hypophosphorous acid compound, Boric acid compound; Examples thereof include silicic acid compounds; aluminate compounds; sulfides; onium compounds; Preferably, oxides; complex oxides; layered double hydroxides such as hydrotalcite; hydroxides; clay compounds; solid solutions; zeolites; fluorides; phosphoric acid compounds; boric acid compounds; A salt.
  • it is at least one compound selected from the group consisting of oxides, hydroxides, layered double hydroxides, phosphoric acid compounds, and sulfuric acid compounds. More preferred are layered double hydroxides and / or oxides. Most preferably, the layered double hydroxide is essential.
  • the oxide examples include lithium oxide, sodium oxide, potassium oxide, cesium oxide, magnesium oxide, calcium oxide, barium oxide, scandium oxide, yttrium oxide, lanthanoid oxide, titanium oxide, zirconium oxide, niobium oxide, and ruthenium oxide. , Cobalt oxide, nickel oxide, palladium oxide, copper oxide, cadmium oxide, boron oxide, gallium oxide, indium oxide, thallium oxide, silicon oxide, germanium oxide, tin oxide, lead oxide, phosphorus oxide, and bismuth oxide What contains at least 1 compound chosen from more is preferable.
  • magnesium oxide, calcium oxide, barium oxide, lanthanoid oxide, zirconium oxide, niobium oxide, copper oxide, gallium oxide, indium oxide, germanium oxide, tin oxide, lead oxide, phosphorus oxide, and bismuth oxide More preferred are cerium oxide and zirconium oxide, and particularly preferred is cerium oxide.
  • the cerium oxide may be, for example, a material doped with a metal oxide such as samarium oxide, gadolinium oxide, or bismuth oxide, or a solid solution with a metal oxide such as zirconium oxide. It may have an oxygen defect.
  • a compound, a compound obtained by exchanging anions in the interlayer with hydroxide ions, a natural mineral such as Mg 6 Al 2 (OH) 16 CO 3 .mH 2 O, or the like may be used as the inorganic compound.
  • the hydrotalcite may be coordinated with a compound having a functional group such as a hydroxyl group, an amino group, a carboxyl group, or a silanol group.
  • hydroxide examples include lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, scandium hydroxide, yttrium hydroxide, lanthanoid hydroxide, water Titanium oxide, zirconium hydroxide, niobium hydroxide, ruthenium hydroxide, cobalt hydroxide, nickel hydroxide, palladium hydroxide, copper hydroxide, cadmium hydroxide, boric acid, gallium hydroxide, indium hydroxide, thallium hydroxide, Those containing at least one compound selected from the group consisting of silicic acid, germanium hydroxide, tin hydroxide, lead hydroxide, phosphoric acid, and bismuth hydroxide are preferred.
  • magnesium hydroxide, calcium hydroxide, barium hydroxide, lanthanoid hydroxide, zirconium hydroxide, niobium hydroxide, copper hydroxide, gallium hydroxide, indium hydroxide, germanium hydroxide, tin hydroxide, hydroxide Lead, phosphorus hydroxide, and bismuth hydroxide are preferable, and cerium hydroxide and zirconium hydroxide are more preferable.
  • the sulfuric acid compound is preferably ettringite, for example.
  • the phosphoric acid compound is preferably, for example, hydroxyapatite.
  • the hydroxyapatite is a compound typified by Ca 10 (PO 4 ) 6 (OH) 2 , a compound in which the amount of Ca is reduced depending on the conditions during preparation, a hydroxyapatite compound into which an element other than Ca is introduced, etc. May be used as the inorganic compound. Fluorine may be contained.
  • the anion conductive material of the present invention is preferably solidified (film-formed) by the following polymer fiberizing, thickening, and binding effects, and may be in the form of a gel. When used in a battery, it functions as a (gel) electrolyte, a separator, a protective agent for electrodes, and the like.
  • a solvent such as water / organic solvent, an electrolytic solution raw material, an electrolytic solution, a (gel) electrolyte, a binder, a thickener, etc., the dissolved state, colloid, etc. Any of a dispersed state, an insoluble state, a fiber state, etc. may be sufficient.
  • a part of the surface may be charged with plus or minus charge.
  • the charged state of the particles can be inferred by measuring the zeta potential.
  • these inorganic compounds are formed by covalent bonds, coordinate bonds, non-covalent bonds such as ionic bonds, hydrogen bonds, ⁇ bonds, van der Waals bonds, and agostic interactions, as described later. May interact.
  • a layered compound such as hydrotalcite is used, a polymer is formed in the layer, and as a result, a crosslinked state may be obtained.
  • the inorganic compound is used in a state where a part of its surface is not charged with a positive or negative charge (corresponding to an isoelectric point) when it is introduced into an electrolytic solution raw material, electrolytic solution, gel electrolyte, or the like.
  • a positive or negative charge corresponding to an isoelectric point
  • van der Waals bonds, coordination bonds, and the like are preferable interaction driving forces.
  • the inorganic compound preferably contains particles satisfying the following average particle diameter and / or the following specific surface area. Moreover, it is more preferable that the inorganic compound satisfies the following average particle diameter and / or the following specific surface area.
  • the inorganic compound preferably has an average particle size of 1000 ⁇ m or less, more preferably 200 ⁇ m or less, still more preferably 100 ⁇ m or less, particularly preferably 75 ⁇ m or less, and most preferably 20 ⁇ m or less. It is. On the other hand, the average particle size is preferably 5 nm or more. More preferably, it is 10 nm or more. The average particle diameter can be measured by a particle size distribution measuring device. Examples of the shape of the inorganic compound particles include fine powder, powder, granules, granules, scales, polyhedrons, rods, and curved surfaces.
  • the particles having an average particle size in the above-described range are, for example, a method of pulverizing particles with a ball mill or the like, dispersing the obtained coarse particles in a dispersant to obtain a desired particle size, and drying to solidify,
  • a method of pulverizing particles with a ball mill or the like dispersing the obtained coarse particles in a dispersant to obtain a desired particle size
  • drying to solidify In addition to the method of selecting the particle diameter by sieving the coarse particles, etc., it is possible to optimize the preparation conditions at the stage of producing the particles to obtain (nano) particles having a desired particle diameter.
  • the inorganic compound preferably has a specific surface area of 0.01 m 2 / g or more, more preferably 0.1 m 2 / g or more, and still more preferably 0.5 m 2 / g or more.
  • the specific surface area is preferably 500 m 2 / g or less.
  • the specific surface area can be measured by a specific surface area measuring apparatus or the like by a nitrogen adsorption BET method.
  • the particles having a specific surface area as described above can be produced, for example, by making the particles into nanoparticles or by making the particle surface uneven by selecting the preparation conditions for particle production. is there.
  • the aspect ratio (vertical / horizontal) is preferably 1.1 or more.
  • the aspect ratio (vertical / horizontal) is more preferably 2 or more, and further preferably 3 or more.
  • the aspect ratio (vertical / horizontal) is preferably 100,000 or less.
  • the aspect ratio (vertical / horizontal) is more preferably 50000 or less.
  • the aspect ratio (vertical / horizontal) can be determined from, for example, the shape of particles observed by SEM.
  • the longest side can be obtained by dividing the vertical length by the horizontal length, with the longest side being vertical and the second longest side being horizontal.
  • a point is placed in the two-dimensional shape that is created when one part is placed on the bottom so that the aspect ratio is maximized and projected from the direction that maximizes the aspect ratio. Is measured by measuring the length of one point farthest from the vertical axis and dividing the vertical length by the horizontal length with the longest side as the vertical, the longest side of the straight line passing through the vertical center point as the horizontal. be able to.
  • particles having an aspect ratio (vertical / horizontal) in the above-described range are, for example, a method for selecting particles having such an aspect ratio, and optimization of preparation conditions at the stage of manufacturing the particles. It can be obtained by a method of obtaining selectively.
  • the proportion of the inorganic compound is preferably 0.1% by mass or more with respect to 100% by mass of the anion conductive material. More preferably, it is 0.5 mass% or more, More preferably, it is 1 mass% or more. More preferably, it is 3 mass% or more, Most preferably, it is 20 mass% or more. Moreover, it is preferable that it is 99.9 mass% or less. More preferably, it is 90 mass% or less, More preferably, it is 75 mass% or less, More preferably, it is less than 70 mass%, Most preferably, it is less than 60 mass%, Most preferably, it is 55 mass %.
  • the mass ratio of the inorganic compound By making the mass ratio of the inorganic compound within the above range, the effect of the present invention can be exhibited, and the effect of making it difficult to cause cracks in the anion conductive material can be exhibited.
  • the mass ratio of the layered double hydroxide is within the above range.
  • polymer examples include hydrocarbon moiety-containing polymers such as polyethylene and polypropylene, aromatic group-containing polymers typified by polystyrene, etc .; ether group-containing polymers typified by alkylene glycol, etc .; polyvinyl alcohol and poly ( ⁇ -hydroxymethylacrylic) Hydroxyl group-containing polymers represented by acid salts); amide bond-containing polymers represented by polyamide, nylon, polyacrylamide, polyvinylpyrrolidone, N-substituted polyacrylamide, etc .; imide bond-containing polymers represented by polymaleimide, etc.
  • hydrocarbon moiety-containing polymers such as polyethylene and polypropylene, aromatic group-containing polymers typified by polystyrene, etc .
  • ether group-containing polymers typified by alkylene glycol, etc .
  • amide bond-containing polymers represented
  • Carboxyl group-containing polymers represented by (meth) acrylic acid, polymaleic acid, polyitaconic acid, polymethyleneglutaric acid, etc .; poly (meth) acrylate, polymaleate, polyitaconate, polymethyleneglutaric acid Carboxylate-containing polymers typified by, such as: Halogen-containing polymers such as polyvinyl chloride, polyvinylidene fluoride, and polytetrafluoroethylene; Polymers that are bonded by the ring opening of epoxy groups such as epoxy resins; Polymer; Quaternary ammonium salt or quaternary phosphonium salt-containing polymer; Ion exchange polymer used for cation / anion exchange membrane, etc .; Natural rubber; Artificial rubber represented by styrene butadiene rubber (SBR) Saccharides represented by cellulose, cellulose acetate, hydroxyalkyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, chitin, chitos
  • the polymer contains at least one selected from the group consisting of aromatic groups, halogen atoms, carboxyl groups, carboxylate groups, hydroxyl groups, amino groups, and ether groups, or is a hydrocarbon. It is preferable.
  • the anion conductive polymer of the present invention contains at least one selected from the group consisting of an aromatic group, a halogen atom, a carboxyl group, a carboxylate group, a hydroxyl group, an amino group, and an ether group, Or it is preferable that it is a hydrocarbon.
  • the crosslinked polymer when a crosslinked polymer is used, the crosslinked polymer may cause cracks in the anion conductive material, particularly when it has water absorption, so that the crosslinked polymer does not have water absorption. Is good. 1 type may be sufficient as the said polymer, and 2 or more types may be sufficient as it.
  • Polymers are radical (co) polymerization, anion (co) polymerization, cation (co) polymerization, graft (co) polymerization, living (co) polymerization, dispersion (co) polymerization, emulsion (copolymerization), from monomers corresponding to the structural unit. ) Polymerization, suspension (co) polymerization, ring-opening (co) polymerization, cyclization (co) polymerization, (co) polymerization, metathesis (co) polymerization, electrolysis (co) polymerization by light, ultraviolet or electron beam irradiation, etc. Obtainable.
  • polymers When these polymers have a functional group, they may be present in the main chain and / or side chain, and may exist as a binding site with a crosslinking agent. These polymers may be used alone or in combination of two or more.
  • the polymer is composed of an ester bond, an amide bond, an ionic bond, a van der Waals bond, an agostic interaction, a hydrogen bond, an acetal bond, a ketal bond, an ether bond, a peroxide bond, a carbon- It may be crosslinked via a carbon bond, carbon-nitrogen bond, carbon-oxygen bond, carbon-sulfur bond, carbamate bond, thiocarbamate bond, carbamide bond, thiocarbamide bond, oxazoline moiety-containing bond, triazine bond, etc. Most preferably, however, it is preferred that the polymer is not crosslinked.
  • the polymer preferably has a weight average molecular weight of 200 to 7000000. Thereby, the ion conductivity, flexibility, etc. of an anion conductive material can be adjusted.
  • the weight average molecular weight is more preferably 400 to 6500000, and still more preferably 500 to 5000000.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC) or a UV detector.
  • the mass ratio of the polymer is preferably 0.1% by mass or more with respect to 100% by mass of the anion conductive material. More preferably, it is 1% by mass or more, further preferably 25% by mass or more, more preferably more than 30% by mass, particularly preferably more than 40% by mass, most preferably. Is more than 45% by mass. Moreover, it is preferable that it is 99.9 mass% or less. More preferably, it is 99.5 mass% or less, More preferably, it is 99 mass% or less, More preferably, it is 97 mass% or less. Especially preferably, it is 80 mass% or less. Thereby, the effect which makes it hard to produce the crack of an anion conductive material is exhibited, and the effect of this invention can be made remarkable.
  • the mass ratio of the polymer and the inorganic compound is preferably 5000000/1 to 1 / 100,000. More preferably, it is 2000000/1 to 1 / 50,000, and still more preferably 1000000/1 to 1/10000. More preferably, it is 1000000/1 to 1/100. Even more preferably, it is 100/3 to 75/100. Particularly preferred is 100/50 to 75/100.
  • the inorganic compound contained in the anion conductive material according to the present invention is hydrotalcite, by satisfying the above mass ratio, the effect of improving the anion conductivity in the anion conductive material and cracking are less likely to occur. Both effects can be remarkably improved.
  • the anion conductive material of the present invention may further contain other components as long as it contains a polymer and an inorganic compound. Moreover, each of these components may contain 1 type and may contain 2 or more types.
  • the said other component is not specifically limited, For example, a zinc containing compound, an alumina, a silica, a polymer, conductive carbon, conductive ceramics, a polymer, etc. are mentioned.
  • the other component is preferably a compound different from the polymer preferable for the inorganic compound or the above-described anion conductive material.
  • the other components can assist in ion conductivity or can be removed by using a method such as solvent, heat, baking, electricity, etc. to form pores as described below. .
  • the preferable average particle diameter of the other components is the same as the preferable average particle diameter of the inorganic compound described above.
  • the average particle size of the other components can be measured by the same method as the average particle size of the inorganic compound described above.
  • the shape of the particles of the other components and the method for preparing the particles having a desired average particle diameter are the same as the method for preparing the inorganic compound particles having the shape of the inorganic compound and the desired average particle diameter.
  • the preferred specific surface area of the other component particles is the same as the method for preparing particles of an inorganic compound having a specific surface area.
  • the preferred aspect ratio (vertical / horizontal) of the above-mentioned other components, the method of measuring the aspect ratio, and the method of preparing particles of the other components having the desired aspect ratio are the same as the aspect ratio (vertical / horizontal) and aspect ratio of the inorganic compound described above. This is the same as the method for measuring the ratio and the method for preparing particles of an inorganic compound having a desired aspect ratio.
  • the proportion of the other components is preferably 0.001% by mass or more with respect to 100% by mass of the anion conductive material. More preferably, it is 0.01 mass% or more, More preferably, it is 0.05 mass% or more. Moreover, it is preferable that it is 90 mass% or less. More preferably, it is 80 mass% or less, More preferably, it is 70 mass% or less, Most preferably, it is 45 mass% or less. Other components may not be contained at all.
  • Examples of the method for preparing the anion conductive material of the present invention include the following methods.
  • the above-mentioned other components are mixed together with the polymer and the inorganic compound as necessary.
  • a polymer and an inorganic compound are mixed.
  • a mixer, blender, kneader, bead mill, ready mill, ball mill, or the like can be used.
  • water, an organic solvent such as methanol, ethanol, propanol, isopropanol, butanol, hexanol, tetrahydrofuran, N-methylpyrrolidone, or a mixed solvent of water and an organic solvent may be added.
  • operations such as sieving may be performed in order to align the particles with a desired particle size.
  • Mixing may be performed by either a wet method in which a liquid component such as water or an organic solvent is added to the solid component, or a dry method in which only the solid component is added without adding the liquid component.
  • a wet method after mixing, liquid components such as water and organic solvent may be removed by drying.
  • Mixing can also be performed by combining a wet method and a dry method. During mixing, pressurization / decompression may be performed, or temperature may be applied.
  • a slurry or paste mixture is obtained by the preparation method described above.
  • the obtained slurry or paste mixture may be coated, pressure-bonded, bonded, piezoelectric, rolled, stretched, melted, etc., as necessary.
  • a film-like (sheet-like) anion conductive material can be formed by coating, pressure bonding, adhesion, piezoelectricity, rolling, stretching, melting, or the like.
  • the strength of the active material (layer) and the anion conductive material, anion conductivity, and the like can be adjusted by fiberizing the polymer during coating, pressure bonding, adhesion, piezoelectricity, rolling, stretching, melting, and the like.
  • an anion conductive material can be applied, pressure-bonded, bonded, piezoelectric, rolled, stretched, melted, etc. so that the film thickness is as constant as possible.
  • the slurry or paste mixture is dried at 0 to 400 ° C. during coating, pressure bonding, adhesion, piezoelectricity, rolling, stretching, melting, and / or after coating, pressure bonding, adhesion, piezoelectricity, rolling, stretching, melting. It is preferable.
  • the polymer contained in the slurry or paste mixture may be melted.
  • the drying temperature is more preferably 15 to 380 ° C. Drying may be performed under reduced pressure or vacuum drying.
  • the drying time is preferably 5 minutes to 48 hours. You may repeat the process of coating and drying.
  • a pressure of normal pressure to 20 t may be applied by a roll press machine before and after drying the slurry or paste mixture.
  • the magnitude of the pressure is more preferably normal pressure to 15 t.
  • a temperature of 10 to 400 ° C. may be applied during pressing.
  • the pressing process may be performed once or a plurality of times. When pressing, improve adhesion between inorganic compounds and / or inorganic compounds and polymers, fiberize polymers, and adjust thickness, strength, flexibility, etc. of anion conductive materials It is also possible to do.
  • As the structure it is preferable to use various materials, mesh materials, punching materials and the like having a smooth surface, but the material is not particularly limited.
  • non-woven fabric, microporous membrane, the following separator, glass filter, carbon paper, membrane filter, water repellent material, glass, metal foil, metal mesh (expanded metal), insulators such as punching metal, conductors, electrodes, etc. can be used.
  • anion conductive material is integrated with the structure by coating, pressure bonding, adhesion, piezoelectric, rolling, stretching, melting, etc., it is obtained because the anion conductive material contains a polymer. As a result, the strength and flexibility of the obtained material increase, and the sliding of the anion conductive material and the solid electrolyte from the structure is greatly reduced.
  • the anion conductive material may be integrated with the structure by coating, pressure bonding, adhesion, piezoelectricity, rolling, stretching, melting, or the like.
  • the anion conductive material or the structure integrated with the anion conductive material may include a catalyst layer or a gas diffusion layer.
  • the membrane-like anion conductive material can be changed into various forms such as a folding type and a winding type.
  • One type or two or more types of anion conductive materials can be used, and the form thereof is not particularly limited, such as mixing, melting, lamination, and composite.
  • the anion conductive material of the present invention is usually in the form of a membrane and is used to selectively conduct ions.
  • the thickness of the film can be appropriately selected depending on the application, but is preferably 0.01 ⁇ m or more, for example. More preferably, it is 0.1 ⁇ m or more. More preferably, it is 1 ⁇ m or more. Moreover, it is preferable that this thickness is 50 mm or less, for example. More preferably, it is 20 mm or less. More preferably, it is 10 mm or less, Most preferably, it is 1 mm or less.
  • the film may have pores on the surface or inside thereof, or may not have pores.
  • the form of the battery when the anion conductive material of the present invention is used as a battery separator, electrolyte, or electrode protective agent is as follows: primary battery; chargeable / dischargeable secondary battery (storage battery); mechanical charge (of zinc negative electrode) Utilization of mechanical replacement); any form such as utilization of a third electrode different from the positive electrode and the negative electrode (for example, an electrode for removing oxygen and hydrogen generated during charge and discharge) may be used.
  • a secondary battery storage battery
  • a battery including any one of the separator, the positive electrode, the negative electrode, and the electrolytic solution (electrolyte) including the anion conductive material of the present invention is also one aspect of the present invention.
  • the battery of the present invention has one important technical significance in that a good anion conductive material can be provided as an electrolytic solution, particularly in an alkaline electrolytic solution.
  • a good anion conductive material can be provided as an electrolytic solution, particularly in an alkaline electrolytic solution.
  • the ion conductive material is used as an air battery or fuel cell material, it is preferable that the ion conductive material has low gas permeability such as oxygen or hydrogen.
  • the gas permeation amount is more preferably about 0 to 100 ⁇ L / (min ⁇ cm 2 ).
  • the said separator is a member which isolate
  • the separator is composed of the above-described anion conductive material of the present invention, and can serve its function.
  • Nonwoven fabric glass filter; membrane filter; paper; polymer containing hydrocarbon moiety such as polyethylene; polystyrene Aromatic group-containing polymer such as alkylene glycol; ether group-containing polymer such as alkylene glycol; hydroxyl group-containing polymer such as polyvinyl alcohol; amide group-containing polymer such as polyacrylamide; imide group-containing polymer such as polymaleimide; poly (meth) acrylic acid, etc.
  • polymer containing hydrocarbon moiety such as polyethylene
  • polystyrene Aromatic group-containing polymer such as alkylene glycol; ether group-containing polymer such as alkylene glycol; hydroxyl group-containing polymer such as polyvinyl alcohol; amide group-containing polymer such as polyacrylamide; imide group-containing polymer such as polymaleimide; poly (meth) acrylic acid, etc.
  • Carboxyl group-containing polymers include carboxylate group-containing polymers such as poly (meth) acrylates; halogen-containing polymers such as polyvinylidene fluoride and polytetrafluoroethylene; sulfonate group moiety-containing polymers; quaternary ammonium salts and quaternary salts Grade phospho Um base-containing polymer; ion-exchange polymer; natural rubber; artificial rubber such as styrene butadiene rubber (SBR); sugar such as hydroxyalkyl cellulose (for example, hydroxyethyl cellulose) and carboxymethyl cellulose; amino group-containing polymer such as polyethyleneimine; Examples thereof include ester group-containing polymers; carbonate group-containing polymers; carbamate group-containing polymers; agar; gel compounds; organic-inorganic hybrid (composite) compounds;
  • the anion conductive material may be integrated with the separator by coating, pressure bonding, adhesion, piezoelectricity, rolling, stretching
  • the polymer since the polymer is contained in the anion conductive material, the strength and flexibility of the obtained material are increased, and the sliding of the anion conductive material and the solid electrolyte from the structure is greatly reduced. It will be.
  • the separator increases the function of wetting the positive and negative electrodes, the function of improving the periphery of the electrolyte, and the function of avoiding liquid erosion.
  • the polymer contains a specific site / functional group as long as the polymer includes a monomer unit having the site / functional group in part. It may also include a monomer unit having no such site / functional group.
  • the polymer may be a copolymer.
  • the separator may contain a compound having at least one element selected from the group consisting of elements belonging to Groups 1 to 17 of the periodic table.
  • the functional group when the separator uses a polymer in combination, when the polymer has a functional group, the functional group may be in the main chain or in the side chain.
  • the main chain is ester bond, amide bond, ionic bond, van der Waals bond, agostic interaction, hydrogen bond, acetal bond, ketal bond, ether bond, peroxide bond, carbon-carbon bond, carbon-nitrogen bond, carbamate bond.
  • the separator can be used singly or in combination of two or more, and any number can be used as long as the resistance increases and the battery performance does not deteriorate.
  • the separator may have pores, micropores, a water repellent material (layer), a catalyst (layer), and a gas diffusion material (layer).
  • a water-containing electrolytic solution it is preferable to subject the separator to a hydrophilic treatment by a surfactant treatment, sulfonation treatment, fluorine gas treatment, plasma treatment, acrylic acid graft treatment, corona treatment, or the like.
  • a water-containing electrolyte and a solid (gel) electrolyte may be used in combination.
  • the present invention is also an anion conductive material containing a polymer and hydrotalcite.
  • the preferable form regarding the said polymer, a hydrotalcite, and an anion conductive material is the same as the preferable form regarding the polymer, inorganic compound, and anion conductive material which were mentioned above by this invention, respectively.
  • 1 type (s) or 2 or more types can be used for a polymer and a hydrotalcite.
  • the present invention is also a membrane in which the anion conductive material of the present invention and a structure are integrated. The integration can be appropriately performed by techniques such as coating, pressure bonding, adhesion, piezoelectricity, rolling, stretching, and melting.
  • the structure is preferably in the form of a film (sheet), and the same structure as the separator described above in the present invention can be suitably used.
  • the membrane of the present invention for a battery electrode or the like, as described in Example 11, it is possible to exhibit outstanding charge / discharge cycle characteristics.
  • the positive electrode active material those normally used as the positive electrode active material of primary batteries and secondary batteries can be used, and are not particularly limited.
  • oxygen when oxygen becomes the positive electrode active material, the positive electrode is Perovskite type compounds capable of reducing oxygen and oxidizing water, cobalt containing compounds, iron containing compounds, copper containing compounds, manganese containing compounds, vanadium containing compounds, nickel containing compounds, iridium containing compounds, platinum containing compounds; palladium containing compounds; Gold-containing compounds; silver compounds; air electrodes composed of carbon-containing compounds, etc.); nickel-containing compounds such as nickel oxyhydroxide, nickel hydroxide, cobalt-containing nickel hydroxide; manganese-containing compounds such as manganese dioxide; oxidation Silver; lithium-containing compounds such as lithium cobaltate; iron-containing compounds; carbon-containing compounds And the like.
  • the positive electrode active material is a nickel-containing compound or a manganese-containing compound.
  • the positive electrode active material such as an air battery or a fuel cell is oxygen. That is, it is also one of the preferred embodiments of the present invention that the positive electrode of the battery of the present invention is an electrode having oxygen reducing ability.
  • the positive electrode may have the anion conductive material.
  • the negative electrode active material materials commonly used as negative electrode active materials for batteries, such as noble metal-containing materials such as carbon, lithium, sodium, magnesium, zinc, cadmium, lead, tin, silicon, hydrogen storage alloys, platinum, etc., are used. be able to.
  • the negative electrode may have the anion conductive material.
  • the anion conductive material of the present invention is a separator for lithium ion batteries, nickel / hydrogen batteries, nickel / zinc batteries, nickel / cadmium batteries, manganese / zinc batteries, zinc ion batteries, lead batteries, air batteries, fuel cells, etc. It can be used as a solid (gel) electrolyte / electrode protective agent, and can also be used as an ion exchange material or a trace element adsorbent.
  • negative electrode active material of the fuel cell those normally used as the negative electrode active material of the fuel cell can be used, and are not particularly limited.
  • hydrogen, methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, Ammonia etc. are mentioned.
  • an ion conductive material When an ion conductive material is used as a battery material and an electrolytic solution is used, it is not particularly limited as long as it is normally used as a battery electrolytic solution, and examples thereof include water-containing electrolytic solutions and organic solvent-based electrolytic solutions.
  • Water-containing electrolyte is preferable.
  • the water-containing electrolytic solution refers to an electrolytic solution using only water as an electrolytic solution raw material (aqueous electrolytic solution) or an electrolytic solution using a solution obtained by adding an organic solvent to water as an electrolytic solution raw material.
  • the anion conductive material can also exhibit anion conductivity under humidification conditions, non-humidification conditions, heating conditions, conditions in the absence of the electrolytic solution and solvent, and the like.
  • aqueous electrolyte examples include alkaline electrolytes such as an aqueous potassium hydroxide solution, an aqueous sodium hydroxide solution, and an aqueous lithium hydroxide solution, an aqueous zinc sulfate solution, an aqueous zinc nitrate solution, an aqueous zinc phosphate solution, and an aqueous zinc acetate solution.
  • alkaline electrolytes such as an aqueous potassium hydroxide solution, an aqueous sodium hydroxide solution, and an aqueous lithium hydroxide solution, an aqueous zinc sulfate solution, an aqueous zinc nitrate solution, an aqueous zinc phosphate solution, and an aqueous zinc acetate solution.
  • the aqueous electrolyte solution can be used alone or in combination of two or more.
  • the said water containing electrolyte solution may contain the organic solvent used for an organic solvent type electrolyte solution.
  • organic solvent examples include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ⁇ -butyrolactone, dimethoxymethane, diethoxymethane, dimethoxyethane, tetrahydrofuran, methyltetrahydrofuran, diethoxyethane, dimethyl sulfoxide, sulfolane, acetonitrile, Examples include benzonitrile, ionic liquid, fluorine-containing carbonates, fluorine-containing ethers, polyethylene glycols, fluorine-containing polyethylene glycols and the like.
  • the organic solvent electrolyte can be used alone or in combination of two or more.
  • the electrolyte of the organic solvent-based electrolytic solution is not particularly limited, but LiPF 6 , LiBF 4 , LiB (CN) 4 , lithium bis (fluorosulfonyl) imide (LiFSI), lithium bis (trifluoromethylsulfonyl) imide ( LiTFSI) and the like are preferable.
  • LiFSI lithium bis (fluorosulfonyl) imide
  • LiTFSI lithium bis (trifluoromethylsulfonyl) imide
  • the content of the water-based electrolyte is preferably 10 to 99.9% by mass with respect to a total of 100% by mass of the water-based electrolyte and the organic solvent-based electrolyte. More preferably, it is 20 to 99.9% by mass.
  • a solid (gel) electrolyte, the anion conductive material, or the anion conductive material having the electrolytic solution may be used as a solid (gel) electrolyte.
  • the solid (gel) electrolyte is not particularly limited as long as it can be used as an electrolyte for a battery.
  • a solid (gel) electrolyte containing a compound similar to the above anion conductive material or separator, or a cross-linking agent examples thereof include a crosslinked solid (gel) electrolyte.
  • a battery including any one of the separator, the positive electrode, the negative electrode, and the electrolytic solution (electrolyte) including the anion conductive material is also one aspect of the present invention. More preferably, alkaline (storage) battery, nickel / hydrogen (storage) battery, nickel / cadmium (storage) battery, nickel / zinc (storage) battery, zinc ion (storage) battery, lead battery, silver / zinc (storage)
  • the battery uses an alkaline electrolyte (electrolyte) such as a battery, an air (storage) battery, and a fuel cell.
  • the anion conductive material of the present invention is particularly preferable for use in separators, electrolytes, and electrodes for the alkaline (storage) battery.
  • the anion conductor material of the present invention is used for applications other than battery separators, such as ion exchange resin applications, oxygen removal applications, contaminant anion removal applications, water treatment applications, purification applications, decolorization applications, etc. It can also be used in other applications.
  • the anion conductive material of the present invention has the above-described configuration and has excellent anion conductivity and durability.
  • separators for alkaline (storage) batteries, fuel cells, air cells, etc. can be suitably used.
  • FIG. 1 is a graph showing the results of an impedance test for the anion conductive material of Example 1.
  • FIG. 2 is a graph showing the results of an impedance test performed on the anion conductive material of Comparative Example 1.
  • FIG. 3 is a graph showing the results of the charge / discharge test of Example 2, showing a charge curve at the 10th cycle and a discharge curve at the 10th cycle.
  • FIG. 4 is a schematic cross-sectional view of the battery of Example 10.
  • FIG. 5 is a graph showing the results of the charge / discharge test of Example 12 and Comparative Example 2.
  • FIG. 6 is a graph showing rate characteristics of Example 13.
  • FIG. 7 is a graph showing rate characteristics of Comparative Example 3.
  • Example 1 Zinc oxide (27.6 g), cerium (IV) oxide (2.4 g), ethanol (99.5%) (92.7 g), and water (92.7 g) were added to the ball mill, and ball mill mixing was performed. . Then, it dried at 100 degreeC under pressure reduction for 2 hours with the evaporator, and also dried at 110 degreeC under pressure reduction with the stationary type vacuum dryer overnight. The solid after drying was pulverized for 60 seconds at a rotational speed of 18000 rpm using a pulverizer (X-TREME MX1200XTM manufactured by WARING).
  • a pulverizer X-TREME MX1200XTM manufactured by WARING
  • the obtained solid (1.1 g), 12% polyvinylidene fluoride / N-methylpyrrolidone solution (2.0 g) and N-methylpyrrolidone (0.90 g) were added to a glass vial, and a stirrer bar was used. Stir overnight.
  • the obtained slurry was coated on a copper foil using an automatic coating apparatus and dried at 80 ° C. for 12 hours.
  • the copper foil coated with the zinc mixture was pressed at a press pressure of 3 t, and then punched with a punching machine (diameter: 15.95 mm).
  • the film-like compound obtained by peeling the copper foil from the above material was immersed in a 4 mol / L aqueous potassium hydroxide solution in which zinc oxide was dissolved until saturated, and then placed on the copper foil again.
  • a 4 mol / L potassium hydroxide aqueous solution in which zinc oxide is dissolved as an electrolyte solution, a zinc plate as a counter electrode, a zinc wire as a reference electrode, and a current value of 0.64 mA / cm 2 using a triode cell was performed for 10 cycles to remove zinc oxide and form vacancies, and to produce an anion conductive material.
  • the anion conductive material was peeled off from the copper foil, placed on a new copper foil again, and subjected to 40 cycles of charge / discharge test (charge / discharge time: 1 hour each) under the same conditions.
  • FIG. 1 is a graph which shows the result of having conducted the impedance test about the anion conductive material of Example 1.
  • SEM scanning electron microscope
  • the obtained solid (1.1 g), 12% polyvinylidene fluoride / N-methylpyrrolidone solution (2.0 g) and N-methylpyrrolidone (0.90 g) were added to a glass vial, and a stirrer bar was used. Stir overnight.
  • the obtained slurry was coated on a copper foil using an automatic coating apparatus and dried at 80 ° C. for 12 hours.
  • the copper foil coated with the zinc mixture was pressed at a press pressure of 3 t, and then punched with a punching machine (diameter: 15.95 mm).
  • the film-like compound obtained by peeling the copper foil from the above material was immersed in a 4 mol / L aqueous potassium hydroxide solution in which zinc oxide was dissolved until saturated, and then placed on the copper foil again. This was used as a zinc mixture electrode, and was used so as to be a working electrode having an apparent area of 0.48 cm 2 (zinc mixture weight: 1.43 mg).
  • a 4 mol / L potassium hydroxide aqueous solution in which zinc oxide is dissolved as an electrolyte solution, a zinc plate as a counter electrode, a zinc wire as a reference electrode, and a current value of 0.93 mA / cm 2 using a three-electrode cell Then, the charge / discharge test (charge / discharge time: 1 hour each) was performed for 10 cycles to remove zinc oxide and form vacancies, and to produce an anion conductive material.
  • the anion conductive material was peeled off from the copper foil, placed on a new copper foil again, and subjected to 40 cycles of charge / discharge test (charge / discharge time: 1 hour each) under the same conditions.
  • FIG. 2 is a graph showing the results of an impedance test performed on the anion conductive material of Comparative Example 1. Further, it was confirmed from the observation with a scanning electron microscope (SEM) that the zinc precipitation and deposition reaction (electrodeposition) occurred and the passivation of the zinc species deposited on the copper foil proceeded. Passivation is considered to proceed due to the lack of hydroxide ions, that is, the lack of anion conductivity of the anion conductive material of Comparative Example 1.
  • SEM scanning electron microscope
  • Example 2 A 60% polytetrafluoroethylene aqueous solution (11 mg) and water were added to zinc oxide (149 mg), and the mixture was sufficiently kneaded in an agate mortar.
  • the obtained zinc oxide paste was affixed to a copper mesh (50 mesh) having a diameter of 14 mm and pressed with a press pressure of 6 kN to obtain an active material layer (A).
  • polytetrafluoroethylene (3.2 g) and water were added to hydrotalcite (2.5 g) and sufficiently kneaded in an agate mortar.
  • the obtained hydrotalcite paste was rolled to a thickness of 1 mm to obtain an anion conductive material, and punched out to a diameter of 14 mm to obtain an electrode protective agent (B).
  • the electrode protective agent (B) was pressure-bonded to the active material layer (A) with a press pressure of 6 kN to obtain an anion conductive material-containing zinc mixture electrode (C).
  • This electrode (C) was used so as to be a working electrode (zinc mixture weight: 79 mg) having an apparent area of 0.79 cm 2 .
  • the counter electrode is an air electrode with air holes (QSI-Nano manganese gas diffusion electrode manufactured by Sakai Kogyo Co., Ltd.), and the electrolyte is an 8 mol / L potassium hydroxide aqueous solution dissolved until zinc oxide is saturated.
  • FIG. 3 is a graph showing the results of the charge / discharge test of Example 2, showing a charge curve at the 10th cycle and a discharge curve at the 10th cycle, and it can be evaluated that stable charge / discharge is possible.
  • FE-SEM field emission scanning electron microscope
  • Example 3 Palladium chloride (0.1 g) and a small amount of concentrated hydrochloric acid were dissolved in water (250 mL), and two stainless wire meshes (9 cm long, 9 cm wide) were immersed in the plate for 1 hour to prepare an electrode.
  • Polytetrafluoroethylene (3.2 g), 2% aqueous sodium acrylate solution (0.3 g) and water were added to hydrotalcite (2.5 g), and the mixture was sufficiently kneaded in an agate mortar.
  • the obtained hydrotalcite paste was rolled to a thickness of 2 mm to obtain an anion conductive material, cut into a length of 10 cm and a width of 10 cm, and then the electrodes were mounted on both sides.
  • anion conductive material is moistened with a 1 mol / L potassium hydroxide aqueous solution, hydrogen is supplied to one electrode and oxygen is supplied to the other electrode, thereby generating electricity as a fuel cell by using an ammeter and a voltmeter. confirmed.
  • Example 4 An experiment was conducted in the same manner as in Example 3 except that a mixture obtained by kneading hydrotalcite, cerium oxide, and polytetrafluoroethylene at a mass ratio of 4: 1: 6 was used as the anion conductive material. Confirmed to work.
  • Example 5 An experiment was conducted in the same manner as in Example 3 except that a mixture obtained by kneading hydrotalcite, niobium oxide and polytetrafluoroethylene at a mass ratio of 4: 1: 6 was used as the anion conductive material. Confirmed to work.
  • Example 6 An experiment was performed in the same manner as in Example 3 except that a mixture obtained by kneading cerium oxide and polytetrafluoroethylene at a mass ratio of 4: 6 was used as the anion conductive material, and it was confirmed that the fuel cell was operated. .
  • Example 7 An experiment was performed in the same manner as in Example 3 except that a mixture obtained by kneading ettringite and polytetrafluoroethylene at a mass ratio of 4: 6 was used as the anion conductive material, and it was confirmed that the fuel cell was operated.
  • Example 8 An experiment was conducted in the same manner as in Example 3 except that a mixture obtained by kneading hydrotalcite, ethyleneimine, and polytetrafluoroethylene at a mass ratio of 4: 0.5: 6 was used as the anion conductive material. It was confirmed that the battery operated.
  • Example 9 The experiment was conducted in the same manner as in Example 3 except that a mixture obtained by kneading hydrotalcite, sodium polyacrylate and polytetrafluoroethylene at a mass ratio of 4: 0.2: 6 was used as the anion conductive material. The fuel cell was confirmed to work.
  • Example 10 In practicing the present invention, a battery having the configuration shown in FIG. 4 was formed and a charge / discharge cycle test was conducted as described later.
  • a zinc oxide active material layer which is a negative electrode active material, was pressure-bonded to a copper mesh current collector, and this was covered with an anion conductive material to produce an anion conductive material-containing zinc negative electrode.
  • Zn (OH) 4 2- ions can be effectively confined in the anion conductive material of the negative electrode, and diffusion of the ions can be suppressed.
  • the anion conductive material 10 a mixture obtained by kneading hydrotalcite and polytetrafluoroethylene at a mass ratio of 4: 6 was used. Polytetrafluoroethylene is preferable because (1) it is an insulator, (2) it can bind the powder of an anion conductive material, and (3) it is excellent in physical strength.
  • a 2% sodium polyacrylate aqueous solution was applied between the zinc negative electrode and the anion conductive membrane in order to improve adhesion.
  • Anion-conducting material-containing zinc negative electrode produced as a negative electrode, a nickel electrode as a positive electrode, an electrode charged with 50% of the same electrode as the positive electrode, a non-woven fabric placed between the positive electrode and the negative electrode, and saturated zinc oxide as an electrolyte
  • a triode cell was constructed using the 8 mol / L potassium hydroxide aqueous solution, the electrode area was 1.95 cm 2 , and the current value was 25 mA / cm 2 (charge / discharge time: 1 hour each). went. At this time, stable charge / discharge at least 200 cycles or more was possible without lowering the Coulomb efficiency.
  • Example 11 In the same manner as in Example 10, an anion conductive material 10 was produced. Furthermore, in order to raise the physical strength of an anion conductive material, it rolled with the nonwoven fabric and arrange
  • An anion conductive material-containing zinc electrode prepared as a negative electrode, a nickel electrode as a positive electrode, an electrode charged with 50% of the same electrode as the positive electrode as a reference electrode, a non-woven fabric placed between the positive electrode and the negative electrode, and saturated with zinc oxide as an electrolyte
  • a triode cell was constructed using the 8 mol / L potassium hydroxide aqueous solution, and a charge / discharge cycle test was conducted.
  • the electrode area was 1.95 cm 2 and the current value was 25 mA / cm 2 (charge / discharge time: 1 hour each). At this time, stable charge / discharge at least 200 cycles or more was possible without lowering the Coulomb efficiency.
  • charge / discharge time 1 hour each.
  • stable charge / discharge at least 200 cycles or more was possible without lowering the Coulomb efficiency.
  • the same cycle life was observed regardless of whether the nonwoven fabric was on both sides or one side of the anion conductive membrane.
  • a 2% sodium polyacrylate aqueous solution was applied between the anion conductive membrane and the nonwoven fabric in order to enhance the adhesion between the anion conductive membrane and the nonwoven fabric, the same cycle life was observed.
  • Example 12 A zinc negative electrode was produced in the same manner as in Example 10.
  • An anion conductive material-containing zinc electrode prepared as a negative electrode, a nickel electrode as a positive electrode, an electrode charged with 50% of the same electrode as the positive electrode as a reference electrode, a non-woven fabric placed between the positive electrode and the negative electrode, and saturated with zinc oxide as an electrolyte
  • a triode cell was constructed using the 8 mol / L potassium hydroxide aqueous solution, and a charge / discharge cycle test was conducted.
  • the electrode area was 1.95 cm 2 and the current value was 25 mA / cm 2 (charge / discharge time: 1 hour each).
  • the potential with respect to the charge / discharge capacity is shown as “Example 12” in FIG.
  • FIG. 5 shows the potential with respect to the charge / discharge capacity in the same manner as in Example 12 except that two hydrophilic microporous membranes were inserted instead of the anion conductive membrane as “Comparative Example 2”.
  • Example 13 and Comparative Example 3 A zinc negative electrode was produced in the same manner as in Example 10.
  • An anion conductive material-containing zinc electrode prepared as a negative electrode, a nickel electrode as a positive electrode, an electrode charged with 50% of the same electrode as the positive electrode as a reference electrode, a non-woven fabric placed between the positive electrode and the negative electrode, and saturated with zinc oxide as an electrolyte
  • a triode cell was constructed using the 8 mol / L potassium hydroxide aqueous solution, and a charge / discharge cycle test was conducted. The electrode area was 1.95 cm 2 .
  • a triode cell in which two hydrophilic microporous membranes were inserted instead of the anion conducting membrane was prepared.
  • the electrodes of Examples 10 to 13 have the above-described configuration.
  • the active material and / or the anion conductive material covering the active material layer is used for the battery reaction.
  • Involved hydroxide ions and other anions are easy to permeate, make battery performance sufficiently excellent, sufficiently prevent diffusion of metal ions, and sufficiently suppress short circuit due to dendrite even after repeated charge / discharge cycles can do.
  • An anion-conducting material comprising an anion-conducting material and a polymer and a compound containing at least one element selected from Groups 1 to 17 of the periodic table has excellent anion conductivity and It has been demonstrated that it has durability and can be suitably used as a constituent member of a battery such as an alkaline battery separator, an electrolyte, and an electrode protective agent.
  • a specific fluorine-based polymer is used as the polymer, and a compound containing a specific element is used as the inorganic compound.
  • the anion conductive material of the present invention has excellent anion conduction. In the case where the anion conductive material contains a polymer and an inorganic compound, it can be suitably used as, for example, a separator for an alkaline battery.
  • the zinc dissolution and precipitation reaction occurs, and the anion conductive material is preferable because the anion conductivity is improved by generating voids.
  • the anion conductive material is preferable because the anion conductivity is improved by generating voids.
  • it is considered preferable not to have pores in order to prevent the crossover phenomenon as much as possible.
  • it has pores by not adding zinc oxide in advance.
  • No anion conducting material can be prepared.
  • the vacancies are formed by repeating the charge / discharge test, but any operation that can form vacancies by dissolving and removing soluble particles such as zinc oxide may be used. The operation is not limited to repeating the test.
  • the pores may be formed by dissolving and removing the particles by an operation of washing the anion conductive material containing the basic solvent-soluble particles with a basic solvent.
  • Example 2 when an anion conductive material containing a polymer and an inorganic compound is used as a protective agent for protecting the active material layer, polytetrafluoroethylene is used as the polymer and hydrotalcite is used as the inorganic compound.
  • an anion conductive material membrane
  • the shape change of the active material such as the zinc electrode active material is sufficiently suppressed even when an electric current is applied.
  • the anion conductive material conducts and permeates hydroxide ions, but conduction and permeation of zinc-containing ions such as [Zn (OH) 4 ] 2- is suppressed as much as possible, and conducts only specific anions.
  • the composition of the membrane is adjusted so that the anion conductive material contains a polymer and a layered double hydroxide as an inorganic compound. All are the same.
  • Such an anion conductive material can be suitably used for other battery components such as separators and electrolytes other than the electrode protective agent.
  • Example 3 when an anion conductive material containing a polymer and an inorganic compound is used as the battery electrolyte, polytetrafluoroethylene is used as the polymer and hydrotalcite is used as the inorganic compound.
  • the fuel cell using the anion conductive material as an electrolyte can generate electricity.
  • Such an anion conductive material can be suitably used for other battery constituent members such as a separator other than an electrolyte and an electrode protective agent.
  • the applied battery is not limited to the fuel cell, and can be suitably applied to various batteries such as an alkaline battery other than the fuel cell. Therefore, it can be said from the results of the above-described embodiments that the present invention can be applied in the entire technical scope of the present invention and in various forms disclosed in this specification, and can exhibit advantageous effects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cell Separators (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

優れたアニオン伝導性及び耐久性を有し、例えばアルカリ電池のセパレーター、電解質、電極用保護剤等として好適に用いることができる、アニオン伝導性材料を提供することを目的とする。また、このアニオン伝導性材料を含んで構成される電池構成部材を備える電池を提供することを目的とする。本発明は、アニオン伝導性を有する材料であって、上記アニオン伝導性材料は、ポリマーと、周期表の第1族~第17族から選ばれる少なくとも1種の元素を含有する化合物とを含むアニオン伝導性材料である。

Description

アニオン伝導性材料及び電池
本発明は、アニオン伝導性材料及び電池に関する。より詳しくは、電池のセパレーター、電解質や電極用保護剤等として好適に適用できるアニオン伝導性材料、及び、アニオン伝導性材料を含んで構成されるセパレーター、電解質や電極用保護剤等の電池構成部材を備える電池に関する。
溶液中でイオンを選択的に透過できるアニオン伝導性材料は、種々の産業分野において広く用いられている。例えば、携帯機器やノートパソコン等の電子機器の分野はもちろん、自動車や航空機等の分野も含め、様々な分野で蓄電池の使用が広がっているところ、これら蓄電池に用いられる材料の1つに、蓄電池の正極と負極との間に配置されるセパレーターや電解質が挙げられ、例えば、このセパレーターや電解質材料としてアニオン伝導性材料を使用することができる。
従来のアニオン伝導性材料としては、特定の一般式で表される層状複水酸化物からなることを特徴とするアルカリ電解質膜が開示されている(例えば、特許文献1参照。)。また、特定の一般式で表される化合物からなる陰イオン交換樹脂膜形成用4級化剤が開示されている(例えば、特許文献2参照。)。
国際公開第2010/109670号 特開2007-188788号公報
しかしながら、上記特許文献1、2に記載の電解質膜・樹脂膜は、使用条件によっては耐久性が充分でない場合もあり、より広範に使用できるアニオン伝導性材料が強く求められていた。例えば、アルカリ性条件下において充分な耐久性を持つとともに、高度なアニオン伝導性を達成できるようにして、種々の用途に好適に適用する上で更なる工夫の余地があった。具体的には、実用に耐え得るアニオン伝導性材料がないことから、現状では燃料電池においては一般的に酸性の電解質(膜)であるナフィオン等のカチオン伝導性材料を用いており、そのため触媒として高価な白金を使用することを実質上免れない。しかしながら、このようなアニオン伝導性材料を新たに開発することができれば、これを燃料電池のセパレーター、電解質(膜)や電極用保護剤等として用いることができるとともに、安価な触媒が使用可能なアルカリ性の電解液を用いる好適な燃料電池を作製することができ、これを広く普及させることができる可能性がある。また、アルカリ(イオン)(蓄)電池、アルカリ土類(イオン)(蓄)電池、マンガン・亜鉛(蓄)電池、ニッケル・水素(蓄)電池、ニッケル・亜鉛(蓄)電池、ニッケル・カドミウム(蓄)電池、亜鉛イオン(蓄)電池、銀・亜鉛(蓄)電池、亜鉛・ハロゲン(蓄)電池、鉛蓄電池、空気(蓄)電池、キャパシタ等の電気化学デバイス用途や、イオン交換材料、微量元素吸着剤等としても使用可能である。
本発明は、上記現状に鑑みてなされたものであり、優れたアニオン伝導性及び耐久性を有し、例えばアルカリ(蓄)電池、ニッケル・水素(蓄)電池、ニッケル・亜鉛(蓄)電池、亜鉛イオン(蓄)電池、銀・亜鉛(蓄)電池、亜鉛・ハロゲン(蓄)電池、空気(蓄)電池、燃料電池、キャパシタのセパレーター、電解質や、電極用保護剤等として好適に用いることができる、アニオン伝導性材料を提供することを目的とする。また、このアニオン伝導性材料を含んで構成されるセパレーター、電解質や電極を備える電池を提供することを目的とする。
本発明者らは、亜鉛含有化合物とポリフッ化ビニリデン等のポリマーとを含む膜を集電体上に形成し、酸化亜鉛を飽和させた水酸化カリウム水溶液を電解液に使用して電流を流すと、上記膜下の集電体上において、亜鉛の溶解析出反応、すなわち電析が可能であることを見出した。また、ハイドロタルサイト等の層状複水酸化物とポリテトラフルオロエチレン等のポリマーとを含む膜を亜鉛化合物含有極上に形成して電流を流すと、亜鉛極活物質の形態変化が抑制されることも見出した。換言すれば、特定のアニオンのみを伝導・透過させ得ることも見出した。
すなわち、電流を流して還元を行う際に、上記膜は、例えば電解液中の〔Zn(OH)2-のような亜鉛含有イオンを伝導・透過し、これにより集電体上に亜鉛粒子が析出すること、更に、電流を流して酸化を行う際には電解液中の水酸化物イオンをも伝導・透過し、この水酸化物イオンが亜鉛粒子と反応することにより、亜鉛粒子の溶解と一部集電体上に酸化亜鉛粒子が析出する反応が起こることを見出した。また、上記のように膜の組成や作製方法を調節することにより、該材料が特定のアニオンのみを伝導・透過させ得るセパレーター・電解質(膜)・電極用保護剤として機能し、水酸化物イオンは伝導・透過するが、〔Zn(OH)2-のような亜鉛含有イオンは伝導・透過させず、亜鉛極活物質の形態変化が抑制されることも見出した。
本発明者らは、このような実験結果から上記膜がアニオン伝導性材料として機能できるものと想到し、活物質層としての用途以外の種々の用途に適用し得るアニオン伝導性材料についての研究を新たに開始した。そして、本発明者らは、このようなアニオン伝導性材料において、上述した以外のポリマー、無機化合物においても同様の作用効果を発揮することができることを見出した。すなわち、アニオン伝導性材料が、ポリマーを含むとともに、更に周期表の第1族~第17族から選ばれる少なくとも1種の元素を含有する化合物を含むものとすると、高度なアニオン伝導性及び耐久性を達成でき、良好なアニオン伝導体となることを見出した。更に、アニオン伝導性及び耐久性に特に優れるようなアニオン伝導性材料の特定の構成を見出した。
本発明者らは、このようなアニオン伝導性材料を、例えばアルカリ水溶液含有電解液を使用する電池のセパレーターの材料として用い、アルカリ性電解液の条件下での耐久性が充分なものであるとともに、アニオンを好適に伝導させることができることを見出した。また、このようなアニオン伝導性材料を、電池の構成材料以外にも好適に適用することができることを見出した。すなわち、本発明のアニオン伝導性材料は、アルカリ性電解液に対して耐久性がある点で、アルカリ水溶液含有電解液を使用する電池、例えば、アルカリ(蓄)電池、ニッケル・水素(蓄)電池、ニッケル・亜鉛(蓄)電池、ニッケル・カドミウム電池、亜鉛イオン(蓄)電池、銀・亜鉛(蓄)電池、亜鉛・ハロゲン(蓄)電池、空気(蓄)電池、燃料電池等のセパレーター、電解質や電極用保護剤として用いることが特に好ましいが、その他の電池や、キャパシタ、ハイブリッドキャパシタ等の他の電気化学デバイス用途や、イオン交換材料、微量元素吸着剤等といった電気化学デバイス以外の用途にも好適に適用できる。そして、本発明者らは、上記課題を見事に解決することができることに想到し、本発明に到達したものである。
なお、上記特許文献1は、上述したように層状複水酸化物からなるアルカリ電解質膜を開示するが、ポリマーを含むアニオン伝導性材料について、何ら開示されておらず、本発明のアニオン伝導性及び耐久性を発揮できるものではなかった。また、上記特許文献2は、上述したように陰イオン交換樹脂膜形成用4級化剤を開示するが、4級アンモニウム塩はアルカリ中(特に50℃以上の高温)で分解しやすく、実際的な使用条件に耐え得るものとするうえで工夫の余地があった。
すなわち本発明は、アニオン伝導性を有する材料であって、上記アニオン伝導性材料は、ポリマーと、周期表の第1族~第17族から選ばれる少なくとも1種の元素を含有する化合物とを含むアニオン伝導性材料である。
また本発明は、上記化合物が、酸化物、水酸化物、層状複水酸化物、リン酸化合物、及び、硫酸化合物からなる群より選ばれる少なくとも1つの化合物である上記アニオン伝導性材料である。なお、本明細書中、水酸化物は、層状複水酸化物以外の水酸化物を言う。
更に本発明は、上記アニオン伝導性ポリマーが、芳香族基、ハロゲン原子、カルボキシル基、カルボン酸塩基、水酸基、アミノ基、及び、エーテル基からなる群より選択される少なくとも1種を含有するか、又は、炭化水素であることが好ましい。
そして本発明は、上記アニオン伝導性材料を含んで構成される電池構成部材を備える電池である。
また本発明は、上記電池構成部材が、セパレーター、正極、負極、及び、電解質からなる群より選択される少なくとも1種である電池である。
以下に本発明を詳述する。
なお、以下において記載される本発明の個々の好ましい形態を2つ以上組み合わせた形態もまた、本発明の好ましい形態である。
本発明のアニオン伝導性材料は、上記構成により、電池反応に関与するアニオンを透過する材料である。上記材料は、透過するアニオンの選択性を有していてもよい。例えば、水酸化物イオン等のアニオンは透過しやすく、アニオンであってもイオン半径の大きな金属含有イオン等の拡散は充分に防止する等である。本明細書中、アニオン伝導性とは、水酸化物イオン等のイオン半径の小さなアニオンを充分に透過すること、ないし、当該アニオンの透過性能を意味する。金属含有イオン等のイオン半径の大きなアニオンは、より透過しにくいものであり、全く透過しなくても構わない。
上記周期表の第1族~第17族から選ばれる少なくとも1種の元素を含有する化合物は、アルカリ金属、アルカリ土類金属、Sc、Y、ランタノイド、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Ru、Co、Ni、Pd、Cu、Ag、Au、Zn、Cd、B、Al、Ga、In、Tl、C、Si、Ge、Sn、Pb、N、P、Sb、Bi、S、Se、Te、F、Cl、及び、Brからなる群より選択される少なくとも1つの元素であることが好ましい。中でも、上記周期表の第1族~第15族から選ばれる少なくとも1種の元素を含有する化合物が好ましく、Li、Na、K、Cs、Mg、Ca、Sr、Ba、Sc、Y、ランタノイド、Ti、Zr、Nb、Cr、Mn、Fe、Ru、Co、Ni、Pd、Cu、Ag、Au、Zn、Cd、B、Al、Ga、In、Tl、C、Si、Ge、Sn、Pb、N、P、Sb、及び、Biからなる群より選ばれる少なくとも1つの元素を含むものが好ましい。より好ましくは、Li、Na、K、Mg、Ca、Ba、Sc、Y、ランタノイド、Ti、Zr、Nb、Cr、Mn、Fe、Ru、Co、Ni、Pd、Cu、Zn、Cd、B、Al、Ga、In、Tl、Si、Ge、Sn、Pb、P、及び、Biからなる群より選ばれる少なくとも1つの元素を含むものである。以下、上記周期表の第1族~第17族から選ばれる少なくとも1種の元素を含有する化合物を、単に無機化合物とも言う。
上記無機化合物は、1種でもよいし、2種以上でもよい。
上記周期表の第1族~第17族から選ばれる少なくとも1種の元素を含有する化合物としては、例えば、酸化物;複合酸化物;層状複水酸化物;水酸化物;粘土化合物;固溶体;合金;ゼオライト;ハロゲン化物;カルボキシラート化合物;炭酸化合物;炭酸水素化合物;硝酸化合物;硫酸化合物;スルホン酸化合物;ヒドロキシアパタイト等のリン酸化合物;亜リン化合物;次亜リン酸化合物、ホウ酸化合物;ケイ酸化合物;アルミン酸化合物;硫化物;オニウム化合物;塩等が挙げられる。好ましくは、酸化物;複合酸化物;ハイドロタルサイト等の層状複水酸化物;水酸化物;粘土化合物;固溶体;ゼオライト;フッ化物;リン酸化合物;ホウ酸化合物;ケイ酸化合物;アルミン酸化合物;塩である。より好ましくは、上述したように、酸化物、水酸化物、層状複水酸化物、リン酸化合物、及び、硫酸化合物からなる群より選ばれる少なくとも1つの化合物である。更に好ましくは、層状複水酸化物及び/又は酸化物である。最も好ましくは、層状複水酸化物を必須とすることである。
なお、上記酸化物としては、例えば酸化リチウム、酸化ナトリウム、酸化カリウム、酸化セシウム、酸化マグネシウム、酸化カルシウム、酸化バリウム、酸化スカンジウム、酸化イットリウム、酸化ランタノイド、酸化チタン、酸化ジルコニウム、酸化ニオブ、酸化ルテニウム、酸化コバルト、酸化ニッケル、酸化パラジウム、酸化銅、酸化カドミウム、酸化ホウ素、酸化ガリウム、酸化インジウム、酸化タリウム、酸化ケイ素、酸化ゲルマニウム、酸化スズ、酸化鉛、酸化リン、及び、酸化ビスマスからなる群より選ばれる少なくとも1つの化合物を含むものが好ましい。より好ましくは、酸化マグネシウム、酸化カルシウム、酸化バリウム、酸化ランタノイド、酸化ジルコニウム、酸化ニオブ、酸化銅、酸化ガリウム、酸化インジウム、酸化ゲルマニウム、酸化スズ、酸化鉛、酸化リン、及び、酸化ビスマスであり、更に好ましくは、酸化セリウム、酸化ジルコニウムであり、特に好ましくは、酸化セリウムである。また、酸化セリウムは、例えば、酸化サマリウム、酸化ガドリニウム、酸化ビスマス等の金属酸化物がドープされたものや、酸化ジルコニウム等の金属酸化物との固溶体であってもよい。酸素欠陥を持つものであってもよい。
上記ハイドロタルサイトとは、下記式;
[M 1-x (OH)](An-x/n・mH
(M=Mg、Fe、Zn、Ca、Li、Ni、Co、Cu等;M=Al、Fe、Mn等;A=CO 2-等、mは0以上の正数、nは2又は3、xは、0.20≦x≦0.40程度)に代表される化合物であり、150℃~900℃で焼成することにより、脱水した化合物や、層間内の陰イオンを分解させた化合物、層間内の陰イオンを水酸化物イオン等に交換した化合物、天然鉱物であるMgAl(OH)16CO・mHO等を上記無機化合物として使用してもよい。ハイドロタルサイトを使用する固体電解質が、ポリマーやオリゴマーを含まない場合には、ハイドロタルサイト以外の多価イオン及び/又は無機化合物を共存させるか、もしくは、x=0.33のハイドロタルサイトを使用することがより好ましい。上記ハイドロタルサイトには、水酸基、アミノ基、カルボキシル基、シラノール基等の官能基を持つ化合物が配位していてもよい。
上記水酸化物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、水酸化スカンジウム、水酸化イットリウム、水酸化ランタノイド、水酸化チタン、水酸化ジルコニウム、水酸化ニオブ、水酸化ルテニウム、水酸化コバルト、水酸化ニッケル、水酸化パラジウム、水酸化銅、水酸化カドミウム、ホウ酸、水酸化ガリウム、水酸化インジウム、水酸化タリウム、ケイ酸、水酸化ゲルマニウム、水酸化スズ、水酸化鉛、リン酸、及び、水酸化ビスマスからなる群より選ばれる少なくとも1つの化合物を含むものが好ましい。より好ましくは、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、水酸化ランタノイド、水酸化ジルコニウム、水酸化ニオブ、水酸化銅、水酸化ガリウム、水酸化インジウム、水酸化ゲルマニウム、水酸化スズ、水酸化鉛、水酸化リン、及び、水酸化ビスマスであり、更に好ましくは、水酸化セリウム、水酸化ジルコニウムである。上記硫酸化合物は、例えばエトリンガイトが好ましい。
上記リン酸化合物は、例えばヒドロキシアパタイトが好ましい。
上記ヒドロキシアパタイトとは、Ca10(PO(OH)に代表される化合物であり、調製時の条件によりCaの量を減らした化合物や、Ca以外の元素を導入したヒドロキシアパタイト化合物等を上記無機化合物として使用してもよい。フッ素を含有していてもよい。
本発明のアニオン伝導性材料は、下記ポリマーの繊維化・増粘・結着効果により固形化(膜化)されていることが好ましく、ゲル状であってもよい。電池に使用する場合には、(ゲル)電解質、セパレーター、電極用保護剤等として機能することになる。上記無機化合物は、それを活物質、水・有機溶剤等の溶媒、電解液原料、電解液、(ゲル)電解質、結着剤、増粘剤等に導入した際に、溶解状態、コロイド等の分散状態、不溶状態、繊維状態等のいずれであってもよい。その表面の一部がプラスやマイナスの電荷に帯電していてもよい。その場合、ゼータ電位の測定等により、粒子の帯電状態を推察することができる。これら無機化合物は、後述するように、上記ポリマーが有する官能基との共有結合、配位結合や、イオン結合、水素結合、π結合、ファンデルワールス結合、アゴスチック相互作用等の非共有性結合により相互作用してもよい。また、ハイドロタルサイト等の層状化合物を用いる場合には、その層内にポリマーが形成され、結果として架橋された状態となることもある。また、上記無機化合物は、それを電解液原料、電解液、ゲル電解質等に導入した際に、その表面の一部がプラスやマイナスの電荷に帯電しない状態(等電点に相当)で使用しても良く、その場合には、ファンデルワールス結合や配位結合等が好ましい相互作用駆動力となる。
上記無機化合物は、下記平均粒子径、及び/又は、下記比表面積を満たす粒子を含むことが好ましい。また、該無機化合物が、下記平均粒子径、及び/又は、下記比表面積を満たすものであることがより好ましい。
上記無機化合物は、平均粒子径が1000μm以下であるものが好ましく、より好ましくは、200μm以下であり、更に好ましくは、100μm以下であり、特に好ましくは、75μm以下であり、最も好ましくは、20μm以下である。一方、平均粒子径は、5nm以上であることが好ましい。より好ましくは、10nm以上である。
上記平均粒子径は、粒度分布測定装置により測定することができる。
上記無機化合物の粒子の形状としては、微粉状、粉状、粒状、顆粒状、鱗片状、多面体状、ロッド状、曲面含有状等が挙げられる。なお、平均粒子径が上述のような範囲の粒子は、例えば、粒子をボールミル等により粉砕し、得られた粗粒子を分散剤に分散させて所望の粒子径にした後に乾固する方法や、該粗粒子をふるい等にかけて粒子径を選別する方法のほか、粒子を製造する段階で調製条件を最適化し、所望の粒径の(ナノ)粒子を得る方法等により製造することが可能である。
上記無機化合物は、比表面積が0.01m/g以上であることが好ましく、より好ましくは、0.1m/g以上であり、更に好ましくは、0.5m/g以上である。一方、該比表面積は、500m/g以下であることが好ましい。
上記比表面積は、窒素吸着BET法で比表面積測定装置等により測定することができる。なお、比表面積が上述のような範囲の粒子は、例えば、粒子をナノ粒子化したり、粒子製造の際の調製条件を選択することにより粒子表面に凹凸をつけたりすることにより製造することが可能である。
上記無機化合物は、主に直方体型や円柱型(繊維状型)等の細長い形状の粒子である場合、アスペクト比(縦/横)が1.1以上であることが好ましい。該アスペクト比(縦/横)は、より好ましくは、2以上であり、更に好ましくは、3以上である。また、該アスペクト比(縦/横)は、100000以下であることが好ましい。該アスペクト比(縦/横)は、より好ましくは50000以下である。
上記アスペクト比(縦/横)は、例えば、SEMにより観察した粒子の形状から求めることができる。例えば、上記無機化合物の粒子が直方体状の場合は、最も長い辺を縦、2番目に長い辺を横として、縦の長さを横の長さで除することにより求めることができる。その他の形状の場合には、アスペクト比が最も大きくなるように、ある一つの部分を底面に置き、それをアスペクト比が最も大きくなるような方向から投影した時にできる二次元の形において、ある一点から最も離れた一点の長さを測定し、その最も長い辺を縦、縦の中心点を通る直線のうち最も長い辺を横として、縦の長さを横の長さで除することにより求めることができる。
なお、アスペクト比(縦/横)が上述のような範囲の粒子は、例えば、そのようなアスペクト比を有する粒子を選択する方法や、粒子を製造する段階で調製条件を最適化し、該粒子を選択的に得る方法等により得ることが可能である。
上記無機化合物の割合としては、アニオン伝導性材料100質量%に対して、0.1質量%以上であることが好ましい。より好ましくは、0.5質量%以上であり、更に好ましくは、1質量%以上である。一層好ましくは3質量%以上であり、特に好ましくは20質量%以上である。また、99.9質量%以下であることが好ましい。より好ましくは、90質量%以下であり、更に好ましくは、75質量%以下であり、一層好ましくは、70質量%未満であり、特に好ましくは、60質量%未満であり、最も好ましくは、55質量%未満である。
上記無機化合物の質量割合を上記範囲内とすることにより、本発明の効果を発揮できるとともに、アニオン伝導性材料のクラックを生じにくくする効果を発揮することができる。中でも、層状複水酸化物の質量割合を上記範囲内とすることが特に好ましい。
上記ポリマーとしては、ポリエチレンやポリプロピレン等の炭化水素部位含有ポリマー、ポリスチレン等に代表される芳香族基含有ポリマー;アルキレングリコール等に代表されるエーテル基含有ポリマー;ポリビニルアルコールやポリ(α-ヒドロキシメチルアクリル酸塩)等に代表される水酸基含有ポリマー;ポリアミド、ナイロン、ポリアクリルアミド、ポリビニルピロリドンやN-置換ポリアクリルアミド等に代表されるアミド結合含有ポリマー;ポリマレイミド等に代表されるイミド結合含有ポリマー;ポリ(メタ)アクリル酸、ポリマレイン酸、ポリイタコン酸、ポリメチレングルタル酸等に代表されるカルボキシル基含有ポリマー;ポリ(メタ)アクリル酸塩、ポリマレイン酸塩、ポリイタコン酸塩、ポリメチレングルタル酸塩等に代表されるカルボン酸塩含有ポリマー;ポリ塩化ビニル、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のハロゲン含有ポリマー;エポキシ樹脂等のエポキシ基が開環することにより結合したポリマー;スルホン酸塩部位含有ポリマー;第四級アンモニウム塩や第四級ホスホニウム塩含有ポリマー;陽イオン・陰イオン交換膜等に使用されるイオン交換性重合体;天然ゴム;スチレンブタジエンゴム(SBR)等に代表される人工ゴム;セルロース、酢酸セルロース、ヒドロキシアルキルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、キチン、キトサン、アルギン酸(塩)等に代表される糖類;ポリエチレンイミンに代表されるアミノ基含有ポリマー;カルバメート基部位含有ポリマー;カルバミド基部位含有ポリマー;エポキシ基部位含有ポリマー;複素環、及び/又は、イオン化した複素環部位含有ポリマー;ポリマーアロイ;ヘテロ原子含有ポリマー;低分子量界面活性剤などが挙げられる。中でも、上記ポリマーは、芳香族基、ハロゲン原子、カルボキシル基、カルボン酸塩基、水酸基、アミノ基、及び、エーテル基からなる群より選択される少なくとも1種を含有するか、又は、炭化水素であることが好ましい。言い換えれば、本発明のアニオン伝導性ポリマーが、芳香族基、ハロゲン原子、カルボキシル基、カルボン酸塩基、水酸基、アミノ基、及び、エーテル基からなる群より選択される少なくとも1種を含有するか、又は、炭化水素であることが好ましい。これらポリマーのうち、架橋されたポリマーを用いる場合、架橋されたポリマーは、特に吸水性を有するとき、アニオン伝導性材料にクラックを生じることがあるため、架橋されたポリマーは吸水性を持たない方がよい。
上記ポリマーは、1種でもよいし、2種以上でもよい。
ポリマーはその構成単位に該当するモノマーより、ラジカル(共)重合、アニオン(共)重合、カチオン(共)重合、グラフト(共)重合、リビング(共)重合、分散(共)重合、乳化(共)重合、懸濁(共)重合、開環(共)重合、環化(共)重合、光、紫外線や電子線照射による(共)重合、メタセシス(共)重合、電解(共)重合等により得ることができる。これらポリマーが官能基を有する場合には、それを主鎖及び/又は側鎖に有していても良く、架橋剤との結合部位として存在してもよい。これらポリマーは、1種を用いてもよいし、2種以上を用いてもよい。上記ポリマーは、上記無機化合物以外の有機架橋剤化合物により、エステル結合、アミド結合、イオン結合、ファンデルワールス結合、アゴスチック相互作用、水素結合、アセタール結合、ケタール結合、エーテル結合、ペルオキシド結合、炭素-炭素結合、炭素-窒素結合、炭素-酸素結合、炭素-硫黄結合、カルバメート結合、チオカルバメート結合、カルバミド結合、チオカルバミド結合、オキサゾリン部位含有結合、トリアジン結合等を介して、架橋されていてもよいが、最も好ましくは、ポリマーが架橋されていないことが好ましい。
上記ポリマーは、重量平均分子量が、200~7000000であることが好ましい。これにより、アニオン伝導性材料のイオン伝導性、可とう性等を調節することができる。該重量平均分子量は、より好ましくは、400~6500000であり、更に好ましくは、500~5000000である。
上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)やUV検出器により測定することができる。
上記ポリマーの質量割合は、アニオン伝導性材料100質量%に対して、0.1質量%以上であることが好ましい。より好ましくは、1質量%以上であり、更に好ましくは、25質量%以上であり、一層好ましくは、30質量%を超えることであり、特に好ましくは、40質量%を超えることであり、最も好ましくは45質量%を超えることである。また、99.9質量%以下であることが好ましい。より好ましくは、99.5質量%以下であり、更に好ましくは、99質量%以下であり、一層好ましくは、97質量%以下である。特に好ましくは、80質量%以下である。これにより、アニオン伝導性材料のクラックを生じにくくする効果をも発揮し、本発明の効果を顕著なものとすることができる。
ポリマーと、無機化合物との質量割合は、5000000/1~1/100000であることが好ましい。より好ましくは、2000000/1~1/50000であり、更に好ましくは、1000000/1~1/10000である。一層好ましくは、1000000/1~1/100である。より一層好ましくは、100/3~75/100である。特に好ましくは、100/50~75/100である。本発明に係るアニオン伝導性材料に含まれる無機化合物がハイドロタルサイトである場合に上記質量割合を満たすことにより、アニオン伝導性材料におけるアニオン伝導性を優れたものとする効果及びクラックを生じにくくする効果の両方を顕著に優れたものとすることができる。
本発明のアニオン伝導性材料は、ポリマーと、無機化合物とを含む限り、更にその他の成分を含んでいてもよい。また、これらの各成分は、1種を含んでいてもよいし2種以上を含んでいてもよい。
上記その他の成分は、特に限定されないが、例えば、亜鉛含有化合物、アルミナ、シリカ、ポリマー、導電性カーボン、導電性セラミックス、ポリマー等が挙げられる。上記その他の成分は、上記無機化合物や上述したアニオン伝導性材料に好ましいポリマーとは異なる化合物であることが好ましい。上記その他の成分は、イオン伝導性を補助したり、溶媒・熱・焼成・電気等の手法を用いて除去することにより、下記に記載する空孔を形成したりする等の働きが可能である。
上記その他の成分の好ましい平均粒子径は、上述した無機化合物の好ましい平均粒子径と同様である。
上記その他の成分の平均粒子径は、上記した無機化合物の平均粒子径と同様の方法で測定することができる。
上記その他の成分の粒子の形状、所望の平均粒子径をもつ粒子の調製方法は、上記した無機化合物の形状、所望の平均粒子径をもつ無機化合物の粒子の調製方法と同様である。
上記その他の成分の粒子の好ましい比表面積、比表面積の測定方法、所望の比表面積をもつその他の成分の粒子の調製方法は、上記した無機化合物の好ましい比表面積、比表面積の測定方法、所望の比表面積をもつ無機化合物の粒子の調製方法と同様である。
上記その他の成分の好ましいアスペクト比(縦/横)、アスペクト比の測定方法、所望のアスペクト比をもつその他の成分の粒子の調製方法は、上記した無機化合物のアスペクト比(縦/横)、アスペクト比の測定方法、所望のアスペクト比をもつ無機化合物の粒子の調製方法と同様である。
上記その他の成分の割合としては、アニオン伝導性材料100質量%に対して、0.001質量%以上であることが好ましい。より好ましくは、0.01質量%以上であり、更に好ましくは、0.05質量%以上である。また、90質量%以下であることが好ましい。より好ましくは、80質量%以下であり、更に好ましくは、70質量%以下であり、特に好ましくは、45質量%以下である。その他の成分は、全く含まなくてもよい。
本発明のアニオン伝導性材料の調製方法としては、例えば、次のような方法が挙げられる。
ポリマー、及び、無機化合物等とともに、必要に応じて、上記その他の成分を混合する。なお、本発明のアニオン伝導性材料において、ポリマー及び無機化合物等が混合されていることが好ましい。混合には、ミキサー、ブレンダー、ニーダー、ビーズミル、レディミル、ボールミル等を使用することができる。混合の際、水や、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ヘキサノール、テトラヒドロフラン、N-メチルピロリドン等の有機溶剤、又は、水と有機溶剤との混合溶剤を加えてもよい。混合前後に、粒子を所望の粒子径に揃えるために、ふるいにかける等の操作を行ってもよい。混合は、固体成分に水や有機溶剤等の液体成分を加えて行う湿式法、又は液体成分を加えずに固体成分のみで行う乾式法のいずれの方法で行ってもよい。混合を湿式法で行った場合は、混合した後、乾燥により水や有機溶剤等の液体成分を除去してもよい。混合は、湿式法と乾式法を組み合わせて行うこともできる。混合の際に加圧・減圧を行ってもよいし、温度をかけてもよい。
上述した調製方法により、スラリー又はペースト混合物を得る。得られたスラリー又はペースト混合物は、必要に応じて塗工、圧着、接着、圧電、圧延、延伸、溶融等してもよい。塗工、圧着、接着、圧電、圧延、延伸、溶融等により、膜状(シート状)のアニオン伝導性材料を形成することができる。塗工、圧着、接着、圧電、圧延、延伸、溶融等時のポリマーの繊維化により、活物質(層)やアニオン伝導性材料の強度、アニオン伝導度等を調節することもできる。所望の構造体の上に、できる限り膜厚が一定になるようにアニオン伝導性材料を塗工、圧着、接着、圧電、圧延、延伸、溶融等することもできる。
上記スラリー又はペースト混合物は、塗工・圧着・接着・圧電・圧延・延伸・溶融中、及び/又は、塗工・圧着・接着・圧電・圧延・延伸・溶融後、0~400℃で乾燥することが好ましい。この時、上記スラリー又はペースト混合物内に含まれる上記ポリマーは、溶融してもよい。乾燥温度としてより好ましくは、15~380℃である。乾燥は減圧もしくは真空乾燥で行ってもよい。乾燥時間は、5分間~48時間であることが好ましい。塗工と乾燥の工程を繰り返し行ってもよい。また、上記スラリー又はペースト混合物の乾燥前後にロールプレス機等により常圧~20tの圧力をかけてもよい。圧力の大きさは、より好ましくは、常圧~15tである。プレス時に、10~400℃の温度をかけてもよい。また、プレス工程は1回であってもよいし、複数回であってもよい。プレスを行う際に、無機化合物同士、及び/又は、無機化合物とポリマーとの密着性を向上させたり、ポリマーを繊維化したり、また、アニオン伝導性材料の厚み、強度、可とう性等を調節することも可能である。
上記構造体としては、表面が平滑な種々の材料・メッシュ材料・パンチング材料等を用いることが好適であるが、その材料は特に限定されない。例えば、不織布、微多孔膜、下記セパレーター、ガラスフィルター、カーボンペーパー、メンブランフィルター、撥水材料、ガラス、金属箔、金属メッシュ(エキスパンドメタル)、パンチングメタル等の絶縁体、導電体、電極等、種々のものを用いることができる。
アニオン伝導性材料を、上記構造体に塗工、圧着、接着、圧電、圧延、延伸、溶融等することにより、一体化させた場合、アニオン伝導性材料にポリマーが含まれていることにより、得られる材料の強度や可とう性が増すと共に、上記構造体からの、アニオン伝導性材料や固体電解質の滑落が大きく低減されることになる。
アニオン伝導性材料を、上記構造体に塗工、圧着、接着、圧電、圧延、延伸、溶融等することにより、一体化させてもよい。アニオン伝導性材料を空気電池や燃料電池等の部材に使用する際には、アニオン伝導性材料、アニオン伝導性材料と一体化した構造体は、触媒層やガス拡散層を備えていてもよい。
膜状のアニオン伝導性材料は、折り畳み型、巻回型等、様々な形態に変えることができる。
アニオン伝導性材料は、1種でも2種以上でも使用することができ、混合、溶融、積層、コンポジット等、その形態は特に限定されない。
本発明のアニオン伝導性材料は、通常は膜状であり、選択的にイオンを伝導するために用いられる。
該膜の厚さは、用途に応じて適宜選択できるが、例えば0.01μm以上であることが好ましい。より好ましくは、0.1μm以上である。更に好ましくは、1μm以上である。また、該厚さは、例えば50mm以下であることが好ましい。より好ましくは、20mm以下である。更に好ましくは、10mm以下であり、最も好ましくは、1mm以下である。
上記膜は、本発明の効果を発揮できる限り、その表面、内部に空孔を有するものであってもよく、空孔を有さないものであってもよい。例えば、アニオン伝導性を向上する観点からは空孔を有することが好ましい場合がある。また、燃料電池や空気電池に使用する観点からは空孔を有さないことが好ましい場合がある。亜鉛極を使用した(蓄)電池のセパレーター、電解質、電極用保護剤として使用する場合には、亜鉛極活物質のデンドライト成長に起因する短絡が生じない程度の空孔を有していてもよい。
本発明のアニオン伝導性材料を電池のセパレーター、電解質、電極用保護剤として用いた場合の電池の形態としては、一次電池;充放電が可能な二次電池(蓄電池);メカニカルチャージ(亜鉛負極の機械的な交換)の利用;正極や負極とは別の第3極(例えば、充放電中に発生する酸素や水素を除去する極)の利用等、いずれの形態であってもよい。例えば、二次電池(蓄電池)であることが好ましい。
このように、本発明のアニオン伝導性材料を含んで構成されるセパレーター・正極・負極、及び、電解液(電解質)のいずれかを備える電池も、本発明の1つである。
また本発明の電池は、電解液として特にアルカリ性電解液において、良好なアニオン伝導性材料を提供できる点に、1つの重要な技術的意義がある。上記イオン伝導性材料を空気電池や燃料電池材料として使用する場合には、該イオン伝導性材料は、酸素や水素等の気体の透過性が低いことが好ましい。気体の透過量は、0~100μL/(分・cm)程度であることがより好ましい。
上記セパレーターとは、正極と負極を隔離し、電解液を保持して正極と負極との間のイオン伝導性を確保する部材である。また、亜鉛極等、活物質の形態変化が起こる極を使用した電池の場合には、活物質の変質やデンドライトの形成を抑制する働きをする。
上記セパレーターは、上述した本発明のアニオン伝導性材料を含んで構成されるものがその機能を担うことができるが、不織布;ガラスフィルター;メンブレンフィルター;紙;ポリエチレン等の炭化水素部位含有ポリマー;ポリスチレン等の芳香族基含有ポリマー;アルキレングリコール等のエーテル基含有ポリマー;ポリビニルアルコール等の水酸基含有ポリマー;ポリアクリルアミド等のアミド基含有ポリマー;ポリマレイミド等のイミド基含有ポリマー;ポリ(メタ)アクリル酸等のカルボキシル基含有ポリマー;ポリ(メタ)アクリル酸塩等のカルボン酸塩基含有ポリマー;ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のハロゲン含有ポリマー;スルホン酸塩基部位含有ポリマー;第四級アンモニウム塩や第四級ホスホニウム塩基含有ポリマー;イオン交換性重合体;天然ゴム;スチレンブタジエンゴム(SBR)等の人工ゴム;ヒドロキシアルキルセルロース(例えば、ヒドロキシエチルセルロース)、カルボキシメチルセルロース等の糖類;ポリエチレンイミン等のアミノ基含有ポリマー;エステル基含有ポリマー;カーボネート基含有ポリマー;カルバメート基含有ポリマー;寒天;ゲル化合物;有機無機ハイブリッド(コンポジット)化合物;セラミックス等の無機物等が挙げられる。
アニオン伝導性材料を、上記セパレーターに塗工、圧着、接着、圧電、圧延、延伸、溶融等することにより、一体化させてもよい。この場合、アニオン伝導性材料にポリマーが含まれていることにより、得られる材料の強度や可とう性が増すと共に、上記構造体からの、アニオン伝導性材料や固体電解質の滑落が大きく低減されることになる。
上記セパレーターは、正負極を湿潤させる働き、電解液まわりをよくする働き、液枯れを回避する働き等を増すことにもなる。
なお、上記セパレーターが上記ポリマーを併用する場合に、ポリマーが特定の部位・官能基を含有するとは、ポリマーが、その一部において当該部位・官能基を有する単量体単位を含むものであればよく、当該部位・官能基を有さない単量体単位を含むものであってもよい。ポリマーは、コポリマーであってもよい。
上記セパレーターは、上記周期表の第1族~第17族に属する元素からなる群より選択される少なくとも1つの元素を有する化合物を含んでいてもよい。上記セパレーターがポリマーを併用する場合に、ポリマーが官能基を有する場合には、該官能基は主鎖にあっても側鎖にあってもよい。また、主鎖がエステル結合、アミド結合、イオン結合、ファンデルワールス結合、アゴスチック相互作用、水素結合、アセタール結合、ケタール結合、エーテル結合、ペルオキシド結合、炭素-炭素結合、炭素-窒素結合、カルバメート結合、チオカルバメート結合、カルバミド結合、チオカルバミド結合、オキサゾリン部位含有結合、トリアジン結合等を介して架橋されていてもよい。
上記セパレーターは、1種でも2種以上でも使用することができ、抵抗が上昇し電池性能が低下しなければ、任意の枚数を使用することができる。セパレーターは、細孔、微細孔、撥水材料(層)、触媒(層)、ガス拡散材料(層)を有していてもよい。水含有電解液を使用する場合、界面活性剤処理・スルホン化処理・フッ素ガス処理・プラズマ処理・アクリル酸グラフト処理・コロナ処理等により、セパレーターの親水処理を施すことが好ましい。水含有電解液と、固体(ゲル)電解質とを併用してもよい。
また本発明の別形態として、本発明は、ポリマーと、ハイドロタルサイトとを含むアニオン伝導性材料でもある。
上記ポリマー、ハイドロタルサイト、及び、アニオン伝導性材料に関する好ましい形態は、それぞれ、本発明で上述したポリマー、無機化合物、及び、アニオン伝導性材料に関する好ましい形態と同様である。なお、ポリマー、ハイドロタルサイトは、1種又は2種以上を用いることができる。
本発明は、本発明のアニオン伝導性材料と構造体とが一体化した膜でもある。
一体化は、例えば塗工、圧着、接着、圧電、圧延、延伸、溶融等の手法により適宜行うことができる。
構造体は、膜状(シート状)のものが好ましく、また、本発明で上述したセパレーターと同じものを好適に用いることができる。
本発明の膜を電池用電極等に用いることにより、実施例11に記載されるように、際立って優れた充放電サイクル特性を発揮することができる。
上記正極の活物質としては、一次電池や二次電池の正極活物質として通常用いられるものを用いることができ、特に制限されないが、例えば、酸素(酸素が正極活物質となる場合、正極は、酸素の還元や水の酸化が可能なペロブスカイト型化合物、コバルト含有化合物、鉄含有化合物、銅含有化合物、マンガン含有化合物、バナジウム含有化合物、ニッケル含有化合物、イリジウム含有化合物、白金含有化合物;パラジウム含有化合物;金含有化合物;銀化合物;炭素含有化合物等より構成される空気極となる);オキシ水酸化ニッケル、水酸化ニッケル、コバルト含有水酸化ニッケル等のニッケル含有化合物;二酸化マンガン等のマンガン含有化合物;酸化銀;コバルト酸リチウム等のリチウム含有化合物;鉄含有化合物;炭素含有化合物等が挙げられる。
これらの中でも、正極活物質がニッケル含有化合物、マンガン含有化合物であることが、本発明の好適な実施形態の1つである。
また、空気電池や燃料電池等、正極活物質が酸素であることもまた、本発明の好適な実施形態の1つである。すなわち、本発明の電池の、正極が酸素還元能を有する極であることもまた、本発明の好適な実施形態の1つである。
上記正極は、上記アニオン伝導性材料を有していてもよい。
上記負極の活物質としては、炭素・リチウム・ナトリウム・マグネシウム・亜鉛・カドミウム・鉛・錫・シリコン・水素吸蔵合金・白金等の貴金属含有材料等、電池の負極活物質として通常用いられるものを用いることができる。上記負極は、上記アニオン伝導性材料を有していてもよい。なお、本発明のアニオン伝導性材料は、リチウムイオン電池、ニッケル・水素電池、ニッケル・亜鉛電池、ニッケル・カドミウム電池、マンガン・亜鉛電池、亜鉛イオン電池、鉛電池、空気電池、燃料電池等のセパレーター・固体(ゲル)電解質・電極用保護剤としても使用することができるとともに、イオン交換材料や微量元素吸着剤等としても使用することが可能である。燃料電池の負極の活物質としては、燃料電池の負極活物質として通常用いられるものを用いることができ、特に制限されないが、例えば、水素、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、プロピレングリコール、アンモニア等が挙げられる。
イオン伝導性材料を電池材料として使用し、電解液を使用する場合、電池の電解液として通常用いられるものであれば特に制限されず、例えば、水含有電解液、有機溶剤系電解液等が挙げられ、水含有電解液が好ましい。水含有電解液とは、水のみを電解液原料として使用する電解液(水系電解液)や、水に有機溶剤を加えた液を電解液原料として使用する電解液を指す。また、上記アニオン伝導性材料は、加湿条件・無加湿条件・加温条件・上記電解液や溶媒等非存在下条件等においても、アニオン伝導性を発現することも可能である。
上記水系電解液としては、例えば、水酸化カリウム水溶液、水酸化ナトリウム水溶液、水酸化リチウム水溶液等のアルカリ性電解液や、硫酸亜鉛水溶液、硝酸亜鉛水溶液、リン酸亜鉛水溶液、酢酸亜鉛水溶液等が挙げられる。上記水系電解液は、1種でも2種以上でも使用することができる。
また、上記水含有電解液は、有機溶剤系電解液に用いられる有機溶剤を含んでいてもよい。該有機溶剤としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ-ブチロラクトン、ジメトキシメタン、ジエトキシメタン、ジメトキシエタン、テトラヒドロフラン、メチルテトラヒドロフラン、ジエトキシエタン、ジメチルスルホキシド、スルホラン、アセトニトリル、ベンゾニトリル、イオン性液体、フッ素含有カーボネート類、フッ素含有エーテル類、ポリエチレングリコール類、フッ素含有ポリエチレングリコール類等が挙げられる。上記有機溶剤系電解液は、1種でも2種以上でも使用することができる。上記有機溶剤系電解液の電解質としては、特に制限はないが、LiPF、LiBF、LiB(CN)、リチウムビス(フルオロスルホニル)イミド(LiFSI)、リチウムビス(トリフルオロメチルスルホニル)イミド(LiTFSI)等が好ましい。
有機溶剤系電解液を含む水含有電解液の場合、水系電解液と有機溶剤系電解液の合計100質量%に対して、水系電解液の含有量は、好ましくは10~99.9質量%、より好ましくは20~99.9質量%である。
固体(ゲル)電解質や、上記アニオン伝導性材料や、上記電解液を有する上記アニオン伝導性材料を固体(ゲル)電解質として使用することもできる。
上記電解質として、固体(ゲル)電解質を使用することも可能である。固体(ゲル)電解質としては、電池の電解質として用いることができるものであれば特に制限されないが、例えば、上記アニオン伝導性材料やセパレーターと同様の化合物を含む固体(ゲル)電解質や、架橋剤により架橋された固体(ゲル)電解質等が挙げられる。
上述のように、上記アニオン伝導性材料を含んで構成されるセパレーター・正極・負極、及び、電解液(電解質)のいずれかを備える電池も、本発明の一つである。より好ましくは、アルカリ(蓄)電池、ニッケル・水素(蓄)電池、ニッケル・カドミウム(蓄)電池、ニッケル・亜鉛(蓄)電池、亜鉛イオン(蓄)電池、鉛電池、銀・亜鉛(蓄)電池、空気(蓄)電池、燃料電池等、アルカリ性電解液(電解質)を使用する電池である。
本発明のアニオン伝導性材料は、上記アルカリ(蓄)電池のセパレーター・電解質・電極用保護剤用途に特に好ましい。なお、本発明のアニオン伝導体材料は、イオン交換樹脂用途・酸素除去用途・汚染物アニオンの除去用途・水処理用途・精製用途・脱色用途等、電池のセパレーター以外の用途、電池の構成部材以外の用途においても使用することができる。
本発明のアニオン伝導性材料は、上述の構成よりなり、優れたアニオン伝導性及び耐久性を有し、例えばアルカリ(蓄)電池、燃料電池、空気電池等のセパレーター・電解質・電極用保護剤等として好適に用いることができる。
図1は、実施例1のアニオン伝導性材料についてインピーダンス試験を行った結果を示すグラフである。 図2は、比較例1のアニオン伝導性材料についてインピーダンス試験を行った結果を示すグラフである。 図3は、実施例2の充放電試験の結果を示したグラフであり、10サイクル目の充電曲線と、10サイクル目の放電曲線を示す。 図4は、実施例10の電池の断面模式図である。 図5は、実施例12及び比較例2の充放電試験の結果を示したグラフである。 図6は、実施例13のレート特性を示すグラフである。 図7は、比較例3のレート特性を示すグラフである。
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
(実施例1)
酸化亜鉛(27.6g)、酸化セリウム(IV)(2.4g)、エタノール(99.5%)(92.7g)、水(92.7g)をボールミル中に添加し、ボールミル混合を行った。その後、エバポレーターにて減圧下100℃で2時間乾燥し、更に、静置式の減圧乾燥機にて減圧下110℃で1晩乾燥した。乾燥後の固体は、粉砕機(WARING社製X-TREME MX1200XTM)を用いて、回転数18000rpmで60秒間粉砕した。得られた固体(1.1g)、12%ポリフッ化ビニリデン/N-メチルピロリドン溶液(2.0g)、N-メチルピロリドン(0.90g)をガラスバイアルに加え、スターラーバーを用いて、スターラーで一夜間撹拌した。得られたスラリーを銅箔に自動塗工装置を用いて塗工し、80℃で12時間乾燥した。亜鉛合剤を塗工した銅箔を3tのプレス圧でプレスした後、これを打ち抜き機(直径:15.95mm)で打ち抜いた。
上記材料から銅箔をはがすことにより得られた膜状化合物を、酸化亜鉛を飽和するまで溶解させた4mol/L水酸化カリウム水溶液に浸した後、再度銅箔の上に設置した。これを亜鉛合剤電極とし、見かけ面積0.48cmのワーキング電極(亜鉛合剤重さ:0.98mg)となるようにして使用した。
電解液として酸化亜鉛を飽和するまで溶解させた4mol/L水酸化カリウム水溶液、カウンター電極として亜鉛板、参照極として亜鉛ワイヤーを使用し、三極セルを用いて0.64mA/cmの電流値で充放電試験(充放電時間:各1時間)を10サイクル行うことにより、酸化亜鉛を除去し空孔を形成させるとともに、アニオン伝導性材料を作製した。
上記アニオン伝導性材料を銅箔からはがして、再度新しい銅箔上に設置し、同様の条件で充放電試験(充放電時間:各1時間)を40サイクル行った。10サイクル毎にインピーダンス試験を行ったところ、抵抗値が全く変化しないことが明らかとなった(図1)。なお、図1は、実施例1のアニオン伝導性材料についてインピーダンス試験を行った結果を示すグラフである。また、走査型電子顕微鏡(SEM)観察から、亜鉛の溶解析出反応(電析)が起こること、及び、アニオン伝導性材料に変化がないことを確認した。
(比較例1)
酸化亜鉛(27.6g)、エタノール(99.5%)(92.7g)、水(92.7g)をボールミル中に添加し、ボールミル混合を行った。その後、エバポレーターにて減圧下100℃で2時間乾燥し、更に、静置式の減圧乾燥機にて減圧下110℃で1晩乾燥した。乾燥後の固体は、粉砕機(WARING社製X-TREME MX1200XTM)を用いて、回転数18000rpmで60秒間粉砕した。得られた固体(1.1g)、12%ポリフッ化ビニリデン/N-メチルピロリドン溶液(2.0g)、N-メチルピロリドン(0.90g)をガラスバイアルに加え、スターラーバーを用いて、スターラーで一夜間撹拌した。得られたスラリーを銅箔に自動塗工装置を用いて塗工し、80℃で12時間乾燥した。亜鉛合剤を塗工した銅箔を3tのプレス圧でプレスした後、これを打ち抜き機(直径:15.95mm)で打ち抜いた。
上記材料から銅箔をはがすことにより得られた膜状化合物を、酸化亜鉛を飽和するまで溶解させた4mol/L水酸化カリウム水溶液に浸した後、再度銅箔の上に設置した。これを亜鉛合剤電極とし、見かけ面積0.48cmのワーキング電極(亜鉛合剤重さ:1.43mg)となるようにして使用した。
電解液として酸化亜鉛を飽和するまで溶解させた4mol/L水酸化カリウム水溶液、カウンター電極として亜鉛板、参照極として亜鉛ワイヤーを使用し、三極セルを用いて0.93mA/cmの電流値で充放電試験(充放電時間:各1時間)を10サイクル行うことにより、酸化亜鉛を除去し空孔を形成させるとともに、アニオン伝導性材料を作製した。
上記アニオン伝導性材料を銅箔からはがして、再度新しい銅箔上に設置し、同様の条件で充放電試験(充放電時間:各1時間)を40サイクル行った。10サイクル毎にインピーダンス試験を行ったところ、抵抗値が上昇することが明らかとなった(図2)。なお、図2は、比較例1のアニオン伝導性材料についてインピーダンス試験を行った結果を示すグラフである。また、走査型電子顕微鏡(SEM)観察から、亜鉛の溶解析出反応(電析)が起きるとともに、銅箔上に析出する亜鉛種の不動態化が進行することを確認した。不動態化は水酸化物イオンが不足すること、すなわち比較例1のアニオン伝導性材料のアニオン伝導性の欠如により進行するものと考えられる。
(実施例2)
酸化亜鉛(149mg)に60%ポリテトラフルオロエチレン水溶液(11mg)及び水を加え、メノウ乳鉢で十分に混練した。得られた酸化亜鉛ペーストを直径14mmの銅メッシュ(50メッシュ)に貼り付け、6kNのプレス圧で圧着し、活物質層(A)を得た。別途、ハイドロタルサイト(2.5g)にポリテトラフルオロエチレン(3.2g)及び水を加え、メノウ乳鉢で十分に混練した。得られたハイドロタルサイトペーストを厚さ1mmに圧延してアニオン伝導性材料とし、直径14mmに打ち抜き、電極用保護剤(B)を得た。この後、電極用保護剤(B)を活物質層(A)に6kNのプレス圧で圧着し、アニオン伝導性材料含有亜鉛合剤電極(C)を得た。この電極(C)を見かけ面積0.79cmのワーキング電極(亜鉛合剤重さ:79mg)となるようにして使用した。
カウンター電極には、空気穴を持たせた空気極(巴工業株式会社製 QSI-Nanoマンガンガス拡散電極)、電解液には酸化亜鉛が飽和するまで溶解させた8mol/L水酸化カリウム水溶液を使用し、二極セルを用いて5mAの電流値で空気亜鉛蓄電池の充放電試験を行った(充放電時間:各20分/2.0V及び0.5Vでカットオフ)。図3は、実施例2の充放電試験の結果を示したグラフであり、10サイクル目の充電曲線と、10サイクル目の放電曲線を示すが、安定的に充放電が可能であると評価できる。少なくとも50サイクルまで同様に安定的に充放電が可能であり、また、亜鉛極活物質成分はアニオン伝導層内に入り込んでいないことを、電界放射型走査型電子顕微鏡(FE-SEM)により確認した。
(実施例3)
水(250mL)に塩化パラジウム(0.1g)及び微量の濃塩酸を溶かし、ここにステンレス金網2枚(縦9cm、横9cm)を1時間浸してメッキすることにより電極を作製した。ハイドロタルサイト(2.5g)にポリテトラフルオロエチレン(3.2g)、2%アクリル酸ナトリウム水溶液(0.3g)、及び水を加え、メノウ乳鉢で十分に混練した。得られたハイドロタルサイトペーストを厚さ2mmに圧延してアニオン伝導性材料とし、縦10cm、横10cmに切り取った後、両側に上記電極を装着した。アニオン伝導性材料を1mol/L水酸化カリウム水溶液で湿らせた後、一方の電極に水素、もう一方の電極に酸素を供給することにより、燃料電池として発電することを、電流計及び電圧計により確認した。
(実施例4)
アニオン伝導性材料として、ハイドロタルサイトと酸化セリウムとポリテトラフルオロエチレンを4:1:6の質量割合で混練した混合物を使用した以外は、実施例3と同様にして実験を行い、燃料電池が作動することを確認した。
(実施例5)
アニオン伝導性材料として、ハイドロタルサイトと酸化ニオブとポリテトラフルオロエチレンを4:1:6の質量割合で混練した混合物を使用した以外は、実施例3と同様にして実験を行い、燃料電池が作動することを確認した。
(実施例6)
アニオン伝導性材料として、酸化セリウムとポリテトラフルオロエチレンを4:6の質量割合で混練した混合物を使用した以外は、実施例3と同様にして実験を行い、燃料電池が作動することを確認した。
(実施例7)
アニオン伝導性材料として、エトリンガイトとポリテトラフルオロエチレンを4:6の質量割合で混練した混合物を使用した以外は、実施例3と同様にして実験を行い、燃料電池が作動することを確認した。
(実施例8)
アニオン伝導性材料として、ハイドロタルサイトとエチレンイミンとポリテトラフルオロエチレンを4:0.5:6の質量割合で混練した混合物を使用した以外は、実施例3と同様にして実験を行い、燃料電池が作動することを確認した。
(実施例9)
アニオン伝導性材料として、ハイドロタルサイトとポリアクリル酸ナトリウムとポリテトラフルオロエチレンを4:0.2:6の質量割合で混練した混合物を使用した以外は、実施例3と同様にして実験を行い、燃料電池が作動することを確認した。
(実施例10)
本発明を実施するにあたり、図4に示した構成の電池を形成し後述するように充放電サイクル試験を行った。実施例10では、負極活物質である酸化亜鉛活物質層を銅メッシュ集電体に圧着し、これをアニオン伝導性材料で覆うことでアニオン伝導性材料含有亜鉛負極を作製した。この時、Zn(OH) 2-イオンを負極のアニオン伝導性材料内に効果的に閉じ込め、該イオンの拡散を抑制することができる。アニオン伝導性材料10としては、ハイドロタルサイトとポリテトラフルオロエチレンを4:6の質量割合で混錬した混合物を使用した。なお、ポリテトラフルオロエチレンは、(1)絶縁物であること、(2)アニオン伝導性材料の粉末を結着させることができること、(3)物理的強度に優れることから好ましい。
上記のように作製したアニオン伝導性材料10を亜鉛負極上に配置する際に、密着性を高めるために2%ポリアクリル酸ナトリウム水溶液を、亜鉛負極とアニオン伝導膜の間に塗工した。
負極として上記作製したアニオン伝導性材料含有亜鉛負極、正極としてニッケル極、参照極として正極と同じ電極を50%充電した電極、正極及び負極間には不織布を配置し、電解液として酸化亜鉛を飽和させた8mol/L水酸化カリウム水溶液を用いて三極セルを構成し、電極面積は1.95cmとし、電流値は25mA/cm(充放電時間:各1時間)として充放電サイクル試験を行った。この時、クーロン効率は低下することなく、少なくとも200サイクル以上安定な充放電が可能であった。
(実施例11)
実施例10と同様にして、アニオン伝導性材料10を作製した。さらに、アニオン伝導性材料の物理的強度を高めるために不織布と共に圧延し、それを亜鉛負極上に配置した。負極として上記作製したアニオン伝導性材料含有亜鉛極、正極としてニッケル極、参照極として正極と同じ電極を50%充電した電極、正極及び負極間には不織布を配置し、電解液として酸化亜鉛を飽和させた8mol/L水酸化カリウム水溶液を用いて三極セルを構成し、充放電サイクル試験を行った。電極面積は1.95cmとし、電流値は25mA/cm(充放電時間:各1時間)とした。この時、クーロン効率は低下することなく、少なくとも200サイクル以上安定な充放電が可能であった。
尚、アニオン伝導膜と不織布を圧延する際に、不織布がアニオン伝導膜の両面にあっても、片面にあっても同等なサイクル寿命を観測した。また、アニオン伝導膜と不織布の密着性を高めるために2%ポリアクリル酸ナトリウム水溶液をアニオン伝導膜と不織布の間に塗工しても同等のサイクル寿命を観測した。
(実施例12及び比較例2)
実施例10と同様にして亜鉛負極を作製した。
負極として上記作製したアニオン伝導性材料含有亜鉛極、正極としてニッケル極、参照極として正極と同じ電極を50%充電した電極、正極及び負極間には不織布を配置し、電解液として酸化亜鉛を飽和させた8mol/L水酸化カリウム水溶液を用いて三極セルを構成し、充放電サイクル試験を行った。電極面積は1.95cmとし、電流値は25mA/cm(充放電時間:各1時間)とした。充放電容量に対する電位を「実施例12」として図5に示す。
一方、上記アニオン伝導膜の代わりに親水性微多孔膜を2枚挿入した三極セルを作製し、比較実験を行った。その結果、抵抗成分の増加によりオーム損の増加を観測した。アニオン伝導膜の代わりに親水性微多孔膜を2枚挿入した以外は実施例12と同様にした場合の充放電容量に対する電位を「比較例2」として図5に示す。
(実施例13及び比較例3)
実施例10と同様にして亜鉛負極を作製した。
負極として上記作製したアニオン伝導性材料含有亜鉛極、正極としてニッケル極、参照極として正極と同じ電極を50%充電した電極、正極及び負極間には不織布を配置し、電解液として酸化亜鉛を飽和させた8mol/L水酸化カリウム水溶液を用いて三極セルを構成し、充放電サイクル試験を行った。電極面積は1.95cmとした。一方、上記アニオン伝導膜の代わりに親水性微多孔膜を2枚挿入した三極セルを作製した。これらの構成について、放電レートに関する比較実験を行うために、充電レートを25mA/cm(0.25C)に固定し、放電レートを0.25C、0.5C、0.75C、1C、2C、5Cについて、それぞれ5サイクルずつ充放電を行った。アニオン伝導膜を用いた場合の三極セルのレート特性のグラフを図6に示す(実施例13)。また、2枚の親水性微多孔膜を用いた場合の三極セルのレート特性のグラフを図7に示す(比較例3)。
その結果、上記アニオン伝導膜を用いた場合と、親水性微多孔膜を用いた場合で放電レート特性には差がほとんど現れなかったが、放電レートの切り替わりの際に膜電位によって放電容量が低下することを観測した。この膜電位の影響について比較すると、親水性微多孔膜を用いた場合(図7)に比べて、アニオン伝導膜を用いた場合(図6)のほうが膜電位の影響が小さいことを観測した。
実施例10~13の電極は、上述の構成よりなり、実施例10~13の電極を用いて構成される電池において、活物質及び/又は活物質層を覆うアニオン伝導性材料により、電池反応に関与する水酸化物イオン等のアニオンは透過しやすく、電池性能を充分に優れたものとし、かつ金属イオンの拡散を充分に防止し、充放電サイクルを繰り返した後もデンドライトによる短絡を充分に抑制することができる。
実施例の結果から、以下のことが分かった。
アニオン伝導性を有する材料であって、ポリマーと、周期表の第1族~第17族から選ばれる少なくとも1種の元素を含有する化合物とを含むアニオン伝導性材料は、優れたアニオン伝導性及び耐久性を有し、例えばアルカリ電池のセパレーター、電解質、電極用保護剤等の電池の構成部材として好適に用いることができることが実証された。
なお、上記実施例1においては、ポリマーとして、特定のフッ素系ポリマーを用い、無機化合物として、特定の元素を含有する化合物を用いているが、本発明のアニオン伝導性材料が、優れたアニオン伝導性及び耐久性を有し、例えばアルカリ電池のセパレーター等として好適に用いることができることは、上記アニオン伝導性材料が、ポリマーと、無機化合物とを含む場合には全て同様である。
特に、実施例1で示されたように、亜鉛の溶解析出反応(電析)が起こり、アニオン伝導性材料は空孔が生じることにより、アニオン伝導性が向上し、好適である。なお、燃料電池や空気電池に使用する観点からは、クロスオーバー現象を極力防ぐために、空孔を有さないことが好ましいと考えられるが、酸化亜鉛を予め添加しないこと等により空孔を有さないアニオン伝導性材料を調製することができる。なお、上記実施例においては、充放電試験を繰り返す操作により空孔を形成しているが、酸化亜鉛等の可溶粒子を溶解・除去して空孔を形成できる操作であればよく、充放電試験を繰り返す操作に限定されない。例えば、塩基性溶媒可溶粒子を含むアニオン伝導性材料を塩基性溶媒で洗浄する操作によって該粒子を溶解・除去して空孔を形成してもよい。
また実施例2においては、ポリマーと、無機化合物とを含むアニオン伝導性材料を、活物質層を保護する保護剤として使用する際に、ポリマーとしてポリテトラフルオロエチレンを用い、無機化合物としてハイドロタルサイトを用いているが、アニオン伝導性材料(膜)を亜鉛化合物含有極等の電極上に形成すると、電流を流しても、亜鉛極活物質等の活物質の形態変化が充分に抑制されること、また、アニオン伝導性材料は、水酸化物イオンは伝導・透過するが、〔Zn(OH)2-のような亜鉛含有イオンの伝導・透過は極力抑制され、特定のアニオンのみを伝導・透過させ得ることは、少なくとも、上記アニオン伝導性材料が、ポリマーを含むとともに、無機化合物として層状複水酸化物を含むように膜の組成を調節した場合には全て同様である。このようなアニオン伝導性材料は、電極用保護剤以外のセパレーター、電解質等のその他の電池の構成部材にも好適に用いることができる。
更に、実施例3においては、ポリマーと、無機化合物とを含むアニオン伝導性材料を電池の電解質として使用する際に、ポリマーとしてポリテトラフルオロエチレンを用い、無機化合物としてハイドロタルサイトを用いているが、アニオン伝導性材料を電解質として使用した燃料電池を発電させ得ることは、上記アニオン伝導性材料が、ポリマーと、無機化合物とを含む場合には全て同様である。このようなアニオン伝導性材料は、電解質以外のセパレーター、電極用保護剤等のその他の電池の構成部材にも好適に用いることができる。また、適用される電池も燃料電池に限られず、燃料電池以外の、アルカリ電池等の種々の電池に好適に適用することができる。
従って、上記実施例の結果から、本発明の技術的範囲全般において、また、本明細書において開示した種々の形態において本発明が適用でき、有利な作用効果を発揮することができると言える。
10:アニオン伝導性材料
11、21:集電体
13、23:活物質層
30:セパレーター

Claims (7)

  1. アニオン伝導性を有する材料であって、
    該アニオン伝導性材料は、ポリマーと、周期表の第1族~第17族から選ばれる少なくとも1種の元素を含有する化合物とを含む
    ことを特徴とするアニオン伝導性材料。
  2. 前記化合物は、酸化物、水酸化物、層状複水酸化物、リン酸化合物、及び、硫酸化合物からなる群より選ばれる少なくとも1つの化合物である
    ことを特徴とする請求項1に記載のアニオン伝導性材料。
  3. 前記アニオン伝導性ポリマーは、芳香族基、ハロゲン原子、カルボキシル基、カルボン酸塩基、水酸基、アミノ基、及び、エーテル基からなる群より選択される少なくとも1種を含有するか、又は、炭化水素である
    ことを特徴とする請求項1又は2に記載のアニオン伝導性材料。
  4. 請求項1~3のいずれかに記載のアニオン伝導性材料を含んで構成される電池構成部材を備える
    ことを特徴とする電池。
  5. 前記電池構成部材は、セパレーター、正極、負極、及び、電解質からなる群より選択される少なくとも1種である
    ことを特徴とする請求項4に記載の電池。
  6. ポリマーと、ハイドロタルサイトとを含むことを特徴とするアニオン伝導性材料。
  7. 請求項1~3、6のいずれかに記載のアニオン伝導性材料と構造体とが一体化したことを特徴とする膜。
PCT/JP2014/052116 2013-02-01 2014-01-30 アニオン伝導性材料及び電池 WO2014119665A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480006943.3A CN104969384B (zh) 2013-02-01 2014-01-30 阴离子传导性材料和电池
US14/764,386 US10297861B2 (en) 2013-02-01 2014-01-30 Anion conducting material and cell
EP14745764.2A EP2953191B1 (en) 2013-02-01 2014-01-30 Anion conducting material and battery
KR1020157023221A KR20150113089A (ko) 2013-02-01 2014-01-30 음이온 전도성 재료 및 전지

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-018635 2013-02-01
JP2013018635 2013-02-01
JP2013-120928 2013-06-07
JP2013120928 2013-06-07

Publications (1)

Publication Number Publication Date
WO2014119665A1 true WO2014119665A1 (ja) 2014-08-07

Family

ID=51262375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052116 WO2014119665A1 (ja) 2013-02-01 2014-01-30 アニオン伝導性材料及び電池

Country Status (6)

Country Link
US (1) US10297861B2 (ja)
EP (1) EP2953191B1 (ja)
JP (1) JP6292906B2 (ja)
KR (1) KR20150113089A (ja)
CN (1) CN104969384B (ja)
WO (1) WO2014119665A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015225904A (ja) * 2014-05-27 2015-12-14 ニッポン高度紙工業株式会社 アルミ電解コンデンサ用セパレータ及びアルミ電解コンデンサ
JP2016046256A (ja) * 2014-08-21 2016-04-04 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. 生体適合性通電素子で使用するための電解質配合物
WO2016051934A1 (ja) * 2014-10-01 2016-04-07 日本碍子株式会社 層状複水酸化物を用いた電池
JP2016076373A (ja) * 2014-10-06 2016-05-12 株式会社日本触媒 アニオン伝導性材料
JP2016138813A (ja) * 2015-01-28 2016-08-04 日本碍子株式会社 水酸化物イオン伝導緻密膜の評価方法
WO2016194872A1 (ja) * 2015-06-03 2016-12-08 株式会社日本触媒 アニオン伝導性膜
WO2016204050A1 (ja) * 2015-06-15 2016-12-22 日本碍子株式会社 ニッケル亜鉛電池セルパック及びそれを用いた組電池
JP2017059529A (ja) * 2015-09-14 2017-03-23 日本碍子株式会社 ラミネート型ニッケル亜鉛電池セルパック及びそれを用いた電池
JP2017084663A (ja) * 2015-10-29 2017-05-18 株式会社日本触媒 アニオン伝導性膜
CN107210081A (zh) * 2015-01-28 2017-09-26 日本碍子株式会社 氢氧化物离子传导致密膜及复合材料
JP2017208291A (ja) * 2016-05-20 2017-11-24 スズキ株式会社 金属空気電池
CN108028339A (zh) * 2015-07-09 2018-05-11 奥普图多特公司 用于电池的纳米多孔分隔器以及相关的制造方法
JP2018160410A (ja) * 2017-03-23 2018-10-11 株式会社日本触媒 電池
WO2019124213A1 (ja) * 2017-12-18 2019-06-27 日本碍子株式会社 Ldhセパレータ及び亜鉛二次電池
WO2019124212A1 (ja) * 2017-12-18 2019-06-27 日本碍子株式会社 Ldhセパレータ及び亜鉛二次電池
WO2019124214A1 (ja) * 2017-12-18 2019-06-27 日本碍子株式会社 Ldhセパレータ及び亜鉛二次電池
US10381623B2 (en) * 2015-07-09 2019-08-13 Optodot Corporation Nanoporous separators for batteries and related manufacturing methods
JPWO2019124212A1 (ja) * 2018-06-15 2020-12-10 日本碍子株式会社 Ldhセパレータ及び亜鉛二次電池
US10879513B2 (en) 2013-04-29 2020-12-29 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
JP2021163543A (ja) * 2020-03-30 2021-10-11 日本碍子株式会社 膜電極接合体、及び電気化学セル
US11532855B2 (en) 2017-12-18 2022-12-20 Ngk Insulators, Ltd. LDH separator and secondary zinc battery
US11652204B2 (en) 2019-09-12 2023-05-16 The Doshisha Metal negative electrode, method for fabricating the same and secondary battery including the same
DE112021005259T5 (de) 2020-11-30 2023-07-20 Ngk Insulators, Ltd. Batterie, die eine Verbindung nach Art eines geschichteten Doppelhydroxids verwendet

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883354B2 (en) 2006-02-15 2014-11-11 Optodot Corporation Separators for electrochemical cells
CN103283060B (zh) 2010-07-19 2017-02-15 奥普图多特公司 用于电化学电池的隔膜
JP2016152082A (ja) * 2015-02-16 2016-08-22 株式会社日本触媒 アニオン伝導性膜及びその製造方法
US12040506B2 (en) 2015-04-15 2024-07-16 Lg Energy Solution, Ltd. Nanoporous separators for batteries and related manufacturing methods
KR102329471B1 (ko) * 2015-05-12 2021-11-19 한국전기연구원 전기적 충전식 아연공기 이차전지용 분리막 및 이를 적용한 전기적 충전식 아연공기 이차전지
JP6587837B2 (ja) * 2015-06-10 2019-10-09 日本碍子株式会社 ニッケル電池
US10541450B2 (en) * 2015-09-14 2020-01-21 Maxell Holdings, Ltd. Alkaline secondary battery
JP6765855B2 (ja) * 2015-10-29 2020-10-07 株式会社日本触媒 アニオン伝導性膜
JP6390917B2 (ja) * 2015-11-05 2018-09-19 トヨタ自動車株式会社 非水電解液二次電池
KR101852672B1 (ko) * 2016-02-06 2018-04-27 인하대학교 산학협력단 연료전지용 한천 기반 고분자 전해질막 및 그 제조방법
JP6716315B2 (ja) * 2016-03-29 2020-07-01 株式会社日本触媒 金属亜鉛電池
US10622623B2 (en) 2016-06-14 2020-04-14 Samsung Electronics Co., Ltd. Composite cathode active material, cathode and lithium battery including the composite cathode active material and method of preparing the composite cathode active material
WO2017221499A1 (ja) * 2016-06-24 2017-12-28 日本碍子株式会社 層状複水酸化物を含む機能層及び複合材料
WO2017221451A1 (ja) 2016-06-24 2017-12-28 日本碍子株式会社 層状複水酸化物を含む機能層及び複合材料
CN107565144A (zh) * 2016-06-30 2018-01-09 深圳新宙邦科技股份有限公司 一种锂‑二硫化铁电池
JP6293318B1 (ja) * 2017-01-20 2018-03-14 株式会社トーキン 固体電解コンデンサ
CN109285985A (zh) * 2017-07-20 2019-01-29 天津凯普瑞特新能源科技有限公司 一种pvdp锂电池隔膜
CN107403941B (zh) * 2017-07-24 2020-12-29 湖北工程学院 水滑石包覆碳纳米管复合碱性聚电解质膜及其制备方法
AU2018305973B2 (en) * 2017-07-26 2023-07-13 Nippon Shokubai Co., Ltd. Diaphragm for alkaline water electrolysis, method for producing same, and method for producing inorganic-organic composite membrane
EP3460884A1 (de) * 2017-09-20 2019-03-27 Justus-Liebig-Universität Gießen Zinkelektrode
CN107994275B (zh) * 2017-12-15 2020-04-28 淄博君行电源技术有限公司 一种镍氢电池电解液的制备方法
EP3534432B1 (en) * 2017-12-27 2023-10-25 NGK Insulators, Ltd. Ldh separator and zinc secondary battery
CN108110316B (zh) * 2017-12-29 2020-01-10 成都新柯力化工科技有限公司 一种以水滑石层堆积的锂电池聚合物电解质及制备方法
US11031189B2 (en) * 2018-01-17 2021-06-08 Chao Huang Aqueous hybrid super capacitor
US10193139B1 (en) * 2018-02-01 2019-01-29 The Regents Of The University Of California Redox and ion-adsorbtion electrodes and energy storage devices
US11433371B2 (en) * 2018-03-23 2022-09-06 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Composites for chemical sequestration decontamination
FR3080957B1 (fr) * 2018-05-07 2020-07-10 I-Ten Electrodes mesoporeuses pour dispositifs electrochimiques en couches minces
CA3119948A1 (en) * 2018-11-22 2020-05-28 Phinergy Ltd. Separators with layered double hydroxides for electrochemical cells
CN109818023B (zh) * 2019-01-17 2020-12-01 湖北工程学院 一种花状水滑石复合碱性聚电解质膜及其制备方法和应用
WO2020158719A1 (ja) * 2019-01-30 2020-08-06 株式会社日本触媒 電極付きアルカリ水電解用隔膜、その製造方法、及び水電解装置
CN113906612B (zh) * 2019-06-05 2024-07-19 日本碍子株式会社 空气极/隔板接合体及金属空气二次电池
CN114041233B (zh) * 2019-06-19 2024-03-29 日本碍子株式会社 氢氧化物离子传导隔板及锌二次电池
JP7368798B2 (ja) 2019-12-25 2023-10-25 国立大学法人豊橋技術科学大学 純チタン金属材料の加工方法
CN111584800A (zh) * 2020-01-15 2020-08-25 武汉理工大学 氧缺陷二氧化钛纳米片修饰锂离子电池隔膜及其制备方法和应用
CN112694635B (zh) * 2020-12-04 2022-08-19 齐鲁工业大学 一种双网络结构的纤维素/paa阴离子交换膜的制备方法
CN112892246B (zh) * 2021-01-14 2022-06-10 清华大学 一种聚四氟乙烯的无机纳米粒子复合膜的制备方法
CN118056288A (zh) 2021-10-12 2024-05-17 学校法人同志社 二次电池用负极结构体及具备该结构体的二次电池
CN114171711B (zh) * 2021-11-12 2023-10-31 西南民族大学 水系锌离子电池的电极制备方法、电极与电池
US11404747B1 (en) * 2022-02-18 2022-08-02 ZAF Energy Systems, Incorporated Ceria coatings and structures for zinc-based battery separators

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201298A (ja) * 2000-10-30 2002-07-19 Sumitomo Chem Co Ltd 多孔性フィルム、電池用セパレータおよび電池
JP2007157584A (ja) * 2005-12-07 2007-06-21 Nippon Shokubai Co Ltd 電解質材料
JP2007188788A (ja) 2006-01-13 2007-07-26 Tokuyama Corp 陰イオン交換樹脂膜形成用4級化剤、ガス拡散電極膜、固体電解質膜及びそれを具備する固体高分子型燃料電池
WO2010109670A1 (ja) 2009-03-27 2010-09-30 住友商事株式会社 アルカリ電解質膜、電極接合体及び直接アルコール燃料電池
JP2010283928A (ja) * 2009-06-02 2010-12-16 Kuraray Co Ltd 高分子トランスデューサ
JP2011108499A (ja) * 2009-11-18 2011-06-02 Konica Minolta Holdings Inc 固体電解質およびリチウムイオン二次電池
WO2013027767A1 (ja) * 2011-08-23 2013-02-28 株式会社日本触媒 負極合剤又はゲル電解質、及び、該負極合剤又はゲル電解質を使用した電池
JP2013120727A (ja) * 2011-12-08 2013-06-17 Noritake Co Ltd アルカリ電解質および該電解質を備えた燃料電池
JP2013218877A (ja) * 2012-04-09 2013-10-24 Yokohama Rubber Co Ltd:The 光電変換素子用電解質ならびにその電解質を用いた光電変換素子および色素増感太陽電池

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415636A (en) 1975-08-22 1983-11-15 Energy Research Corporation Secondary batteries having a zinc negative electrode
JPS57163963A (en) * 1981-04-01 1982-10-08 Yuasa Battery Co Ltd Alkaline zinc secondary battery
EP0578501B1 (en) * 1992-07-10 1998-05-27 Nippon Oil Co. Ltd. Zinc electrode for alkaline storage battery
JP3359164B2 (ja) * 1994-10-19 2002-12-24 キヤノン株式会社 二次電池
NL1008003C2 (nl) * 1998-01-09 1999-07-12 Tno Nanocomposiet-materiaal.
JP4249495B2 (ja) 2002-04-02 2009-04-02 株式会社日本触媒 イオン伝導性材料
GB0219955D0 (en) * 2002-08-28 2002-10-02 Univ Newcastle Fuel cell electrode
JP4439797B2 (ja) * 2002-10-03 2010-03-24 株式会社日本触媒 イオン伝導体用材料
US20060009948A1 (en) * 2003-10-04 2006-01-12 Dannis Wulf Method and apparatus for inspecting parts with high frequency linear array
US20090269645A1 (en) 2006-09-05 2009-10-29 Sumitomo Chemical Company, Limited Polymer, polymer electrolyte and fuel cell using the same
JP5266691B2 (ja) 2006-09-05 2013-08-21 住友化学株式会社 ポリマー、高分子電解質およびそれを用いてなる燃料電池
US20080206636A1 (en) * 2007-02-21 2008-08-28 Riken Technos Corporation Lithium secondary battery with a laminate housing material
JP4871225B2 (ja) 2007-07-02 2012-02-08 ニッポン高度紙工業株式会社 高イオン伝導性固体電解質及びその製造方法並びに該固体電解質を使用した電気化学システム
JP2009026665A (ja) * 2007-07-20 2009-02-05 Dainippon Printing Co Ltd アルカリ型燃料電池用電解質膜とこれを用いた電解質膜−触媒層接合体及び電解質膜−電極接合体、並びに燃料電池
EP2639855A3 (en) * 2008-03-27 2013-12-25 ZPower, LLC Electrode separator
JP2011190384A (ja) * 2010-03-16 2011-09-29 Tokuyama Corp 陰イオン交換膜、遷移金属酸化物粒子およびそれらの製造方法
JP5221626B2 (ja) 2010-10-29 2013-06-26 国立大学法人京都大学 金属空気二次電池用空気極、並びに当該空気極を備える金属空気二次電池用膜・空気極接合体及び金属空気二次電池
JP2012102060A (ja) 2010-11-12 2012-05-31 Shiseido Co Ltd ゲル状組成物
JP5736931B2 (ja) 2011-04-19 2015-06-17 Dic株式会社 有機無機複合ゲル
JP6425539B2 (ja) * 2011-05-04 2018-11-21 ボレアリス エージー 電気デバイスのためのポリマー組成物
CN103828115B (zh) * 2011-09-26 2016-10-26 住友化学株式会社 二次电池用粘合树脂组合物
US20150188175A1 (en) * 2012-08-14 2015-07-02 University Of Central Florida Research Foundation, Inc. Polymer membranes with rare earth or transition metal modifiers
WO2015006066A1 (en) * 2013-07-11 2015-01-15 Boston Scientific Scimed, Inc. Multiple electrode conductive balloon

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201298A (ja) * 2000-10-30 2002-07-19 Sumitomo Chem Co Ltd 多孔性フィルム、電池用セパレータおよび電池
JP2007157584A (ja) * 2005-12-07 2007-06-21 Nippon Shokubai Co Ltd 電解質材料
JP2007188788A (ja) 2006-01-13 2007-07-26 Tokuyama Corp 陰イオン交換樹脂膜形成用4級化剤、ガス拡散電極膜、固体電解質膜及びそれを具備する固体高分子型燃料電池
WO2010109670A1 (ja) 2009-03-27 2010-09-30 住友商事株式会社 アルカリ電解質膜、電極接合体及び直接アルコール燃料電池
JP2010283928A (ja) * 2009-06-02 2010-12-16 Kuraray Co Ltd 高分子トランスデューサ
JP2011108499A (ja) * 2009-11-18 2011-06-02 Konica Minolta Holdings Inc 固体電解質およびリチウムイオン二次電池
WO2013027767A1 (ja) * 2011-08-23 2013-02-28 株式会社日本触媒 負極合剤又はゲル電解質、及び、該負極合剤又はゲル電解質を使用した電池
JP2013120727A (ja) * 2011-12-08 2013-06-17 Noritake Co Ltd アルカリ電解質および該電解質を備えた燃料電池
JP2013218877A (ja) * 2012-04-09 2013-10-24 Yokohama Rubber Co Ltd:The 光電変換素子用電解質ならびにその電解質を用いた光電変換素子および色素増感太陽電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2953191A4
SHOJI TOMITA ET AL.: "Shinki Yuki-Muki Hybrid Hydrogel Denkaishitsu no Sakusei to Denki Kagaku Device eno Oyo", ABSTRACTS OF ANNUAL MEETING OF THE ELECTROCHEMICAL SOCIETY OF JAPAN, vol. 78, 29 March 2011 (2011-03-29), pages 52, XP008180642 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11387521B2 (en) 2013-04-29 2022-07-12 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
US10879513B2 (en) 2013-04-29 2020-12-29 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
US11217859B2 (en) 2013-04-29 2022-01-04 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
JP2015225904A (ja) * 2014-05-27 2015-12-14 ニッポン高度紙工業株式会社 アルミ電解コンデンサ用セパレータ及びアルミ電解コンデンサ
JP2016046256A (ja) * 2014-08-21 2016-04-04 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. 生体適合性通電素子で使用するための電解質配合物
WO2016051934A1 (ja) * 2014-10-01 2016-04-07 日本碍子株式会社 層状複水酸化物を用いた電池
US10700385B2 (en) 2014-10-01 2020-06-30 Ngk Insulators, Ltd. Battery using layered double hydroxide
JP2016076373A (ja) * 2014-10-06 2016-05-12 株式会社日本触媒 アニオン伝導性材料
JP2016138813A (ja) * 2015-01-28 2016-08-04 日本碍子株式会社 水酸化物イオン伝導緻密膜の評価方法
US10193118B2 (en) * 2015-01-28 2019-01-29 Ngk Insulators, Ltd. Hydroxide-ion-conductive dense membrane and composite material
CN107210081A (zh) * 2015-01-28 2017-09-26 日本碍子株式会社 氢氧化物离子传导致密膜及复合材料
WO2016194872A1 (ja) * 2015-06-03 2016-12-08 株式会社日本触媒 アニオン伝導性膜
US10804518B2 (en) 2015-06-03 2020-10-13 Nippon Shokubai Co., Ltd. Anion conducting membrane
KR20180014762A (ko) 2015-06-03 2018-02-09 가부시키가이샤 닛폰 쇼쿠바이 아니온 전도성막
US20180175354A1 (en) * 2015-06-03 2018-06-21 Nippon Shokubai Co., Ltd. Anion conducting membrane
JPWO2016204050A1 (ja) * 2015-06-15 2017-06-29 日本碍子株式会社 ニッケル亜鉛電池セルパック及びそれを用いた組電池
WO2016204050A1 (ja) * 2015-06-15 2016-12-22 日本碍子株式会社 ニッケル亜鉛電池セルパック及びそれを用いた組電池
US10700328B2 (en) 2015-06-15 2020-06-30 Ngk Insulators, Ltd. Nickel-zinc battery cell pack and battery pack using same
US10381623B2 (en) * 2015-07-09 2019-08-13 Optodot Corporation Nanoporous separators for batteries and related manufacturing methods
CN108028339A (zh) * 2015-07-09 2018-05-11 奥普图多特公司 用于电池的纳米多孔分隔器以及相关的制造方法
JP2017059529A (ja) * 2015-09-14 2017-03-23 日本碍子株式会社 ラミネート型ニッケル亜鉛電池セルパック及びそれを用いた電池
JP2017084663A (ja) * 2015-10-29 2017-05-18 株式会社日本触媒 アニオン伝導性膜
JP2017208291A (ja) * 2016-05-20 2017-11-24 スズキ株式会社 金属空気電池
JP6999283B2 (ja) 2017-03-23 2022-01-18 株式会社日本触媒 電池
JP2018160410A (ja) * 2017-03-23 2018-10-11 株式会社日本触媒 電池
US11145935B2 (en) 2017-12-18 2021-10-12 Ngk Insulators, Ltd. LDH separator and zinc secondary cell
JPWO2019124214A1 (ja) * 2017-12-18 2020-12-03 日本碍子株式会社 Ldhセパレータ及び亜鉛二次電池
WO2019124214A1 (ja) * 2017-12-18 2019-06-27 日本碍子株式会社 Ldhセパレータ及び亜鉛二次電池
US11158906B2 (en) 2017-12-18 2021-10-26 Ngk Insulators, Ltd. LDH separator and zinc secondary battery
JPWO2019124213A1 (ja) * 2017-12-18 2020-11-26 日本碍子株式会社 Ldhセパレータ及び亜鉛二次電池
WO2019124212A1 (ja) * 2017-12-18 2019-06-27 日本碍子株式会社 Ldhセパレータ及び亜鉛二次電池
WO2019124213A1 (ja) * 2017-12-18 2019-06-27 日本碍子株式会社 Ldhセパレータ及び亜鉛二次電池
US11532855B2 (en) 2017-12-18 2022-12-20 Ngk Insulators, Ltd. LDH separator and secondary zinc battery
JPWO2019124212A1 (ja) * 2018-06-15 2020-12-10 日本碍子株式会社 Ldhセパレータ及び亜鉛二次電池
US11652204B2 (en) 2019-09-12 2023-05-16 The Doshisha Metal negative electrode, method for fabricating the same and secondary battery including the same
JP2021163543A (ja) * 2020-03-30 2021-10-11 日本碍子株式会社 膜電極接合体、及び電気化学セル
DE112021005259T5 (de) 2020-11-30 2023-07-20 Ngk Insulators, Ltd. Batterie, die eine Verbindung nach Art eines geschichteten Doppelhydroxids verwendet

Also Published As

Publication number Publication date
JP6292906B2 (ja) 2018-03-14
KR20150113089A (ko) 2015-10-07
EP2953191A4 (en) 2016-09-21
JP2015015229A (ja) 2015-01-22
CN104969384B (zh) 2019-01-08
US10297861B2 (en) 2019-05-21
CN104969384A (zh) 2015-10-07
US20150364790A1 (en) 2015-12-17
EP2953191A1 (en) 2015-12-09
EP2953191B1 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
JP6292906B2 (ja) アニオン伝導性材料及び電池
JP6244174B2 (ja) アニオン伝導膜及び電池
JP6190101B2 (ja) ゲル電解質又は負極合剤、及び、該ゲル電解質又は負極合剤を使用した電池
JP6368097B2 (ja) 亜鉛負極及び電池
JP6532186B2 (ja) 電極前駆体、電極、及び、二次電池
KR102256769B1 (ko) 전극 전구체, 전극 및 전지
WO2013027767A1 (ja) 負極合剤又はゲル電解質、及び、該負極合剤又はゲル電解質を使用した電池
JP6148873B2 (ja) 亜鉛負極合剤、亜鉛負極及び電池
JP6306914B2 (ja) 電極及び電池
JP6397646B2 (ja) 亜鉛電極用合剤
JP6558906B2 (ja) セパレータ及びそれを含んで構成される電池
JP2014149993A (ja) 亜鉛負極、電池及び電極下地層
JP2016186895A (ja) アニオン伝導性膜、電極及び電池
JP6616565B2 (ja) アニオン伝導性材料
JP6454496B2 (ja) 電極及びそれを用いて構成される電池
JP6324783B2 (ja) 電池用電極及び電池
JP2015170390A (ja) 電池用電極組成物、電池用電極、及び、電池
JP2016152082A (ja) アニオン伝導性膜及びその製造方法
JP2016149257A (ja) ゲル状電極前駆体
JP2023055467A (ja) 蓄電池用正極及びビスマス亜鉛蓄電池
JP2024121345A (ja) 二次電池及び電池構成部材
JP2024121344A (ja) 電池構成部材及び電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14745764

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14764386

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014745764

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157023221

Country of ref document: KR

Kind code of ref document: A