CN112892246B - 一种聚四氟乙烯的无机纳米粒子复合膜的制备方法 - Google Patents

一种聚四氟乙烯的无机纳米粒子复合膜的制备方法 Download PDF

Info

Publication number
CN112892246B
CN112892246B CN202110046844.XA CN202110046844A CN112892246B CN 112892246 B CN112892246 B CN 112892246B CN 202110046844 A CN202110046844 A CN 202110046844A CN 112892246 B CN112892246 B CN 112892246B
Authority
CN
China
Prior art keywords
polytetrafluoroethylene
membrane
inorganic
transition metal
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110046844.XA
Other languages
English (en)
Other versions
CN112892246A (zh
Inventor
王保国
万磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN202110046844.XA priority Critical patent/CN112892246B/zh
Publication of CN112892246A publication Critical patent/CN112892246A/zh
Application granted granted Critical
Publication of CN112892246B publication Critical patent/CN112892246B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/46Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种聚四氟乙烯的无机纳米粒子复合膜,其特征在于使用聚四氟乙烯多孔膜作为基体;将基体在硫酸亚铁的乙醇水溶液中浸渍1‑10分钟;然后在氢氧化钾的乙醇水溶液中浸渍1‑10分钟;此浸渍过程重复进行1‑5次,促进无机纳米粒子在膜孔道内原位生长,填充聚四氟乙烯基体的膜孔,形成聚四氟乙烯的无机纳米粒子复合膜。本制膜方法能够得到耐碱性良好的阴离子交换膜,克服现有阴离子交换膜碱性稳定性差的缺点,适用于碱性电解水制取氢气,或者碱性电解水制取氧气过程。该制膜过程具有工艺简单,易于工业实施于工程放大的优点。

Description

一种聚四氟乙烯的无机纳米粒子复合膜的制备方法
技术领域
本发明属于无机纳米粒子复合膜制备技术领域,特别是制造用于碱性电解水的阴离子传导膜的技术方法。
技术背景
随着石油、煤炭等传统能源的日益枯竭和环境问题的日益严重,开发高效且清洁的能源势在必行。氢气质量热值高,是一种比其它燃料更适合的储能介质。氢气的能量密度是140MJ/kg,是典型固体燃料(50MJ/kg)的两倍多。氢气燃烧仅产生水,这一特点使氢气成为一种环境友好的能源储存介质。
传统的制氢技术,包括化石燃料的重整、分解和水解。然而,这些传统的制氢过程往往会产生大量的温室气体,从而对环境造成危害。目前的电解水制氢技术主要包括碱性电解水和质子交换膜电解水。由于低成本的优势,碱性电解水已得到商业化应用。其操作温度在60-80℃之间,以KOH或NaOH水溶液为电解液,电解液浓度约为20%-30%。碱性电解水的多孔隔膜起着传导氢氧根,阻隔电极两侧所产生的气体。目前碱性电解水采用石棉布作为隔膜。由于石棉布的高致癌性,高电阻和低阻气性的缺点,导致碱性电解水性能较低,最大工作电流密度小于500mA/cm2
为了提高隔膜的离子传导率,文献(Int.J.Hydrogen Energy,2007(32):5094-5097)在不锈钢基底上沉积金属Ni制备厚度和孔结构可控的多孔无机膜,有效地调控了膜电阻。然而,其大孔结构无法满足阻隔气体渗透的要求。由于聚苯并咪唑(PBI)膜具有低气体渗透特性,文献(J Membr Sci,2013(447):424-432)利用交联的聚苯并咪唑膜(mPBI)掺杂KOH,提高膜的氢氧根传导率。将聚苯并咪唑膜浸泡于4mol L-1的KOH溶液数天,其室温的氢氧根传导率可提高至26mS cm-1。为了提高PBI膜的离子传导率,文献(J.Power Sources,2016(312):128-136)制备了一种多咪唑结构单元的聚苯并咪唑(ABPBI)聚合物,通过交联反应的ABPBI膜用于碱性电解水中,电压为2.0V时电流密度达335mA cm-2。为了提高PBI膜的机械稳定性,多种聚合物材料与PBI进行共混制备复合膜用于碱性电解水,其中包括聚乙烯醇(J Membr Sci,2017(535):45-55),FAA3(J Membr Sci,2018(564):653-662)和聚乙烯基氯(Renew.Energy,2020(157):71-82)。尽管上述研究在一定程度上提高氢氧根离子传导率和阻气性,但普遍存在两方面问题。1)膜材料在强碱高温条件下使用往往会发生降解,从而导致电解性能衰减;2)合成以上聚合物和无机膜过程常常包括多个步骤,难以适用于大规模批量化生产。
针对上述离子传导膜制备技术的不足之处,本发明提出如下思路:以廉价的商业化聚四氟乙烯微孔膜为基体,将基体在硫酸亚铁的有机溶剂和水的混合溶液中浸渍1-10分钟;然后在氢氧化钾的有机溶剂和水的混合溶液中浸渍1-10分钟;此浸渍过程循环1-5次,促进无机纳米离子原位生长与膜孔道内形成聚四氟乙烯的无机纳米离子复合膜。其中的基体材料具备良好的耐强碱稳定性和柔韧性,金属氢氧化物具有阴离子(氢氧根)交换能力,提供传导氢氧根的离子通道。该聚四氟乙烯的无机纳米粒子复合膜可作为离子传导膜,用于碱性电解水制氢过程。利用本发明的聚四氟乙烯的无机纳米粒子复合膜耐碱性高的特点,可以有效提高碱性电解水工作寿命,为发展新型离子传导膜制备提供普适性方法,为进一步工业化奠定基础。
发明内容
本发明目的在于提供一种聚四氟乙烯的无机纳米粒子复合膜的制备方法,尤其是制备适用于碱性电解水的隔膜,其技术特征在于制备过程由以下步骤组成;
步骤一:使用聚四氟乙烯多孔膜作为基体,将其浸入乙醇水溶液中加热;
步骤二:将步骤一得到的聚四氟乙烯多孔膜在氯化铁的乙醇水溶液(1)中浸渍1-10分钟;
步骤三:将经过步骤二处理的聚四氟乙烯多孔膜在氢氧化钾的乙醇水溶液(2)中浸渍1-10分钟;
步骤四:将经过步骤三处理的聚四氟乙烯多孔膜再次按照步骤二方法处理,并且将步骤二和步骤三依次循环1-5次;
步骤五:使用去离子水清洗上述步骤得到的聚四氟乙烯多孔膜,在室温下晾干后得到聚四氟乙烯无机纳米粒子复合膜。
所述聚四氟乙烯多孔膜孔径为0.1~1μm;所述氯化铁的乙醇水溶液(1)可以使用过渡金属盐代替,其中包括氯化盐、硫酸盐、硝酸盐;可以使用其它过渡金属代替铁元素,其中包括镍、钛、锰、钴;溶液(1)可以为1~2种过渡金属盐的混合物,两种过渡金属盐摩尔配比为10:0~0:10;可以使用其它有机溶剂代替乙醇,所述其它有机溶剂包括正丙醇、异丙醇、己烷。
所述氢氧化钾的乙醇水溶液(2)中,可以使用氢氧化钠代替氢氧化钾;可以使用其它有机溶剂代替乙醇,所述其它有机溶剂包括正丙醇、异丙醇、己烷。
所述步骤二和步骤三中,所述溶液(1)和溶液(2)的温度范围为0~80℃。
使用多层通过上述方法制备的聚四氟乙烯的无机纳米粒子复合膜,或者所述聚四氟乙烯多孔膜与聚四氟乙烯的无机纳米粒子复合膜的组合体。
所述复合膜用于电解水过程,包括电解水制取氢气、电解水制取氧气过程。
本发明所述的聚四氟乙烯的无机纳米粒子复合离子膜制备方法简单、易于工业放大,制备过程中避免使用强挥发性的有机溶剂,显著改善工艺环境条件。该聚四氟乙烯的无机纳米粒子复合离子膜可作为离子传导膜用于碱性电解水制氢过程。利用本发明的聚四氟乙烯的无机纳米粒子复合离子膜耐碱性高的特点,可以有效提高碱性电解水工作寿命,为发展新型离子传导膜制备提供普适性方法,为进一步工业化奠定基础。
附图说明
图1.聚四氟乙烯的无机纳米粒子复合膜制备流程;
图2.聚四氟乙烯复合膜用于电解水制氢过程技术性能。
具体实施方式
本发明的实施步骤如下:
1)使用廉价的商业化多孔膜为基体材料。将基体膜在乙醇溶液中溶胀3小时,然后将处理后的基体膜在过渡金属盐的有机溶剂和水的混合溶液中浸渍,紧接着在无机碱的有机溶剂和水的混合溶液中浸渍。此浸渍过程循环多次,促进无机纳米离子原位生长与膜孔道内形成聚四氟乙烯的无机纳米离子复合离子膜。
2)所述的聚四氟乙烯多孔膜孔径为0.1~1μm,优先选择0.1μm。
3)所述的过渡金属盐包括氯化盐、硫酸盐、硝酸盐,优先选择硝酸盐。1)中所述的过渡金属可以为镍、钛、锰、钴,优先选择金属镍。另外,过渡金属盐可为1~2种过渡金属盐的混合物,两种过渡金属盐摩尔配比为10:0~0:10,优先选择硝酸镍和硫酸亚铁,其摩尔配比为1:1。1)中所述的过渡金属盐溶液中的有机溶剂可为乙醇,正丙醇、异丙醇和己烷,优先选择乙醇。
4)所述的无机碱,可为氢氧化钾和氢氧化钠,优先选择氢氧化钾。1)中所述的无机碱溶液中的有机溶剂可为乙醇、正丙醇、异丙醇和己烷,优先选择乙醇。
5)所述的浸渍的温度范围为0~80℃,优先选择室温。
6)所述的浸渍过程循环次数为1~5次,优先选择3次。
7)使用多层通过1)中所述方法制备的聚四氟乙烯的无机纳米粒子复合离子膜,或者1)中所述聚四氟乙烯多孔膜与聚四氟乙烯的无机纳米粒子复合离子膜的组合体。
8)所述方法制备的聚四氟乙烯的无机纳米粒子复合离子膜,可以用于电解水过程,包括电解水制取氢气、电解水制取氧气过程。
将孔径为0.1μm的聚四氟乙烯多孔膜浸入乙醇的烧杯中,60℃加热3小时。然后,在室温下,将溶胀的聚四氟乙烯膜浸入摩尔配比为1:1的硝酸镍和硫酸亚铁的乙醇和水混合溶液中1~10分钟。随后将处理后的聚四氟乙烯膜浸入氢氧化钾的乙醇和水混合溶液中1~10分钟。此浸渍过程循环3次,然后用去离子水清洗3~5次后室温烘干,可以得到所需的聚四氟乙烯的无机纳米离子复合膜。
表一、聚四氟乙烯的无机纳米离子复合膜实施例
Figure BDA0002897597700000051
注:采用交流阻抗法测定膜的氢氧根传导率,将膜置于自制电导池中,膜两侧均充入1.0mol L-1的KOH电解质溶液,扫描频率在100-106HZ,交流电压为10mV。
使用多层通过1)中所述方法制备的聚四氟乙烯的无机纳米粒子复合离子膜进行膜的氢氧根传导率测试,两层膜的氢氧根传导率为5.0mS cm-1;三层膜的氢氧根传导率为3.7mScm-1
在上述实例中,以耐碱稳定的聚四氟乙烯多孔膜为基体,将基体在硫酸亚铁的有机溶剂和水的混合溶液中浸渍1-10分钟;然后在氢氧化钾的有机溶剂和水的混合溶液中浸渍1-10分钟;此浸渍过程循环1-5次,促进无机纳米离子原位生长与膜孔道内形成聚四氟乙烯的无机纳米离子复合离子膜。如图2所示,将1-3层聚四氟乙烯的无机纳米粒子复合离子膜的组合体用于碱性电解水中,表现出良好的电解水性能。

Claims (7)

1.一种聚四氟乙烯无机纳米粒子复合膜的制备方法,其特征在于,由以下步骤组成;
1)使用聚四氟乙烯多孔膜作为基体,将其浸入乙醇中溶胀;
2)将步骤1)处理后的聚四氟乙烯多孔膜,依次在过渡金属盐溶液和无机碱溶液中循环浸渍;金属盐溶液和无机碱溶液中溶剂为有机溶剂和水的混合溶液;有机溶剂包括乙醇,正丙醇、异丙醇和己烷;无机碱溶液中无机碱为氢氧化钾或氢氧化钠;
3)使用去离子水清洗上述浸渍后的聚四氟乙烯多孔膜,干燥后得到聚四氟乙烯无机纳米粒子复合膜;
过渡金属盐溶液中,过渡金属盐包括氯化盐、硫酸盐或硝酸盐任意一种或两种组合;过渡金属包括镍、钛、锰或钴任意两种组合;所述任意两种过渡金属盐摩尔配比为1:1。
2.根据权利要求1所述方法,其特征在于,有机溶剂为乙醇。
3.根据权利要求1所述方法,其特征在于,过渡金属盐为硝酸镍和硫酸亚铁,其摩尔配比为1:1。
4.根据权利要求1所述方法,其特征在于,所述无机碱溶液中无机碱为氢氧化钾。
5.根据权利要求1所述方法,其特征在于,所述的聚四氟乙烯多孔膜孔径为0.1~1 µm;步骤1)溶胀温度为60℃,溶胀时间为3小时。
6.根据权利要求1所述方法,其特征在于,所述步骤2)浸渍的温度范围为0~80 ℃;浸渍过程中循环次数为1~5次;浸渍时间为1~10 min。
7.权利要求1-6任一项所述方法制备得到的聚四氟乙烯无机纳米粒子复合离子膜的应用,其特征在于,用于碱性电解水过程,包括电解水制取氢气、电解水制取氧气过程。
CN202110046844.XA 2021-01-14 2021-01-14 一种聚四氟乙烯的无机纳米粒子复合膜的制备方法 Active CN112892246B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110046844.XA CN112892246B (zh) 2021-01-14 2021-01-14 一种聚四氟乙烯的无机纳米粒子复合膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110046844.XA CN112892246B (zh) 2021-01-14 2021-01-14 一种聚四氟乙烯的无机纳米粒子复合膜的制备方法

Publications (2)

Publication Number Publication Date
CN112892246A CN112892246A (zh) 2021-06-04
CN112892246B true CN112892246B (zh) 2022-06-10

Family

ID=76113195

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110046844.XA Active CN112892246B (zh) 2021-01-14 2021-01-14 一种聚四氟乙烯的无机纳米粒子复合膜的制备方法

Country Status (1)

Country Link
CN (1) CN112892246B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114181426B (zh) * 2021-12-07 2022-08-23 清华大学 一种有机-无机复合膜及其制备方法与应用
CN117604571B (zh) * 2024-01-18 2024-05-14 山东东岳高分子材料有限公司 碱性电解水制氢用多孔复合膜及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104969384A (zh) * 2013-02-01 2015-10-07 株式会社日本触媒 阴离子传导性材料和电池
CN106129305A (zh) * 2016-08-05 2016-11-16 大连理工大学 一种用于镍锌电池的微孔膜及其制备方法
US20200227773A1 (en) * 2017-10-20 2020-07-16 Ngk Insulators, Ltd. Zinc secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014011000A (ja) * 2012-06-29 2014-01-20 Hitachi Ltd イオン伝導体およびこれを用いた電気化学デバイス
CN105107393B (zh) * 2015-09-28 2017-07-28 河北工业大学 一种基于模板法的单价离子选择性复合膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104969384A (zh) * 2013-02-01 2015-10-07 株式会社日本触媒 阴离子传导性材料和电池
CN106129305A (zh) * 2016-08-05 2016-11-16 大连理工大学 一种用于镍锌电池的微孔膜及其制备方法
US20200227773A1 (en) * 2017-10-20 2020-07-16 Ngk Insulators, Ltd. Zinc secondary battery

Also Published As

Publication number Publication date
CN112892246A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
Vincent et al. Low cost hydrogen production by anion exchange membrane electrolysis: A review
Wan et al. Green preparation of highly alkali-resistant PTFE composite membranes for advanced alkaline water electrolysis
CN112892246B (zh) 一种聚四氟乙烯的无机纳米粒子复合膜的制备方法
JP6460987B2 (ja) 水の電気分解のための複合電極
CA3036352C (en) Method for producing anode for alkaline water electrolysis, and anode for alkaline water electrolysis
US20190036142A1 (en) Bipolar ionomer membrane
CN115244220B (zh) 碱性水电解方法及碱性水电解用阳极
JP7475072B2 (ja) 水素の製造のための装置
Jung et al. Polyvinylidene fluoride nanofiber composite membrane coated with perfluorinated sulfuric acid for microbial fuel cell application
CN112194810B (zh) 一种采用气相诱导相转化法制备基于聚苯并咪唑的多孔聚合物离子交换膜的方法及其应用
CN111188057A (zh) 一种自支撑复合电极材料的制备方法
CN116770362A (zh) 一种复合隔膜及其制备方法和电化学能源器件
Ganesh EPDM rubber-based membranes for electrochemical water splitting and carbon dioxide reduction reactions
Joe et al. Production of hydrogen by anion exchange membrane using AWE
CN114908373A (zh) 一种高纯氢气的纯水电解制氢膜电极的制备方法
CN106611865A (zh) 一种可用于燃料电池的聚乙烯醇阴离子交换膜的制备方法
CN118086974A (zh) 一种可调控的NiCoFe LDH/PTFE复合多孔隔膜的制备方法
CN114181426B (zh) 一种有机-无机复合膜及其制备方法与应用
Wang et al. A high durable and conductive Mg (OH) 2-filled PP/PE composite membrane for alkaline water electrolysis
CN108948739A (zh) 一种用于制备燃料电池用氢的隔膜材料及制备方法
CN110940770B (zh) 一种液流电池用聚合物多孔离子传导膜溶剂处理过程参数的筛选方法
US20240218541A1 (en) Ion-conducting membrane and method for producing such a membrane
Santos et al. Towards the Hydrogen Economy—A Review of the Parameters That Influence the Efficiency of Alkaline Water Electrolyzers. Energies 2021, 14, 3193
Bae Overview of Ion-Conducting Polymer Membranes and Membrane Separators for Water Electrolysis
Verma et al. Advanced Materials in Energy Conversion Devices: Fuel Cells and Biofuel Cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant