WO2010109670A1 - アルカリ電解質膜、電極接合体及び直接アルコール燃料電池 - Google Patents

アルカリ電解質膜、電極接合体及び直接アルコール燃料電池 Download PDF

Info

Publication number
WO2010109670A1
WO2010109670A1 PCT/JP2009/056399 JP2009056399W WO2010109670A1 WO 2010109670 A1 WO2010109670 A1 WO 2010109670A1 JP 2009056399 W JP2009056399 W JP 2009056399W WO 2010109670 A1 WO2010109670 A1 WO 2010109670A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte membrane
alkaline electrolyte
fuel cell
electrode assembly
alcohol fuel
Prior art date
Application number
PCT/JP2009/056399
Other languages
English (en)
French (fr)
Inventor
清治 忠永
昌弘 辰巳砂
晃敏 林
正昭 上村
康弘 藤田
Original Assignee
住友商事株式会社
公立大学法人大阪府立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友商事株式会社, 公立大学法人大阪府立大学 filed Critical 住友商事株式会社
Priority to PCT/JP2009/056399 priority Critical patent/WO2010109670A1/ja
Publication of WO2010109670A1 publication Critical patent/WO2010109670A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an alkaline electrolyte membrane, an electrode assembly, and a direct alcohol fuel cell.
  • a type using a proton exchange membrane such as a perfluorosulfonic acid polymer membrane has been mainly used.
  • the proton exchange membrane is made of a strongly acidic substance, noble metal catalysts such as Pt and PtRu alloys having excellent corrosion resistance are used as catalysts for the cathode catalyst layer and the anode catalyst layer. It is necessary to use it.
  • the proton exchange membrane is directly applied to an alcohol fuel cell, it is necessary to increase the reaction rate of the anode. Therefore, it is necessary to use a high noble metal-supported catalyst having a large amount of noble metal used as the catalyst for the anode catalyst layer. There is a big problem in terms of resources and cost.
  • FIG. 8 is a diagram for explaining a fuel cell 900 described in Non-Patent Document 1 and using a conventional alkaline electrolyte membrane.
  • a conventional fuel cell 900 using an alkaline electrolyte membrane includes an alkaline electrolyte membrane 920 made of a hydrocarbon-based anion exchange membrane, cathodes 930 disposed on both sides of the alkaline electrolyte membrane 920, and A direct ethanol fuel cell with an anode 940.
  • OH ⁇ is generated from O 2 , H 2 O and electrons in the air at the cathode 930.
  • the generated OH ⁇ reaches the anode 940 through the alkaline electrolyte membrane 920.
  • ethanol is oxidized by the reached OH ⁇ to generate CO 2 , H 2 O and electrons. In these processes, electrons can flow through the external circuit 950 to extract current.
  • the conventional fuel cell 900 using an alkaline electrolyte membrane has a feature that it is not necessary to use a noble metal, and (a) a noble metal catalyst by CO due to the fact that a noble metal catalyst is not required. (B) It is possible to use high-concentration fuel because it is possible to suppress crossover of fuel, and (c) water is generated on the anode side, It also has a feature that the water on the cathode side is easily managed.
  • JP 2007-188788 A Yasuhiro Fujita, “The latest technology of small fuel cells, Chapter 9, Other micro fuel cells (especially, section 1.2 Fuel cell using alkaline electrolyte membrane)”, Japan, CM Publishing Co., Ltd., October 30, 2008 Issued in Japan, pages 191-200
  • the present invention has been made in view of the above circumstances, and has an alkaline electrolyte membrane that has higher heat resistance and durability than conventional ones and can exhibit excellent power generation performance when directly used in an alcohol fuel cell.
  • the purpose is to provide.
  • it aims at providing an electrode assembly provided with such an alkaline electrolyte membrane, and a direct alcohol fuel cell.
  • the alkaline electrolyte membrane of the present invention is characterized by comprising a layered double hydroxide represented by the following general formula (1).
  • M 2+ is a divalent metal ion
  • M 3+ is a trivalent metal ion
  • x is the range of 0.1-0.8 Indicates the number within.
  • the alkaline electrolyte membrane of the present invention is originally composed of an inorganic layered double hydroxide excellent in heat resistance and durability, it becomes an alkaline electrolyte membrane having higher heat resistance and durability than before.
  • the alkaline electrolyte membrane of the present invention has anion conductivity because OH ⁇ can easily move through water molecules present between the layers, and can be directly used for an alcohol fuel cell as can be seen from the test examples described later. It becomes an alkaline electrolyte membrane that can exhibit excellent power generation performance.
  • the M 2+ for example Mg 2+, Ca 2+
  • Zn 2+ as the M 3+
  • M 3+ can be used, for example Al 3+ or Cr 3+
  • a n- For example, CO 3 2 ⁇ and OH ⁇ can be used.
  • the M 2+ is preferably an alkaline earth metal ion.
  • M 2+ is a strongly basic alkaline earth metal ion, it has high anion conductivity, and can be directly used for an alcohol fuel cell as can be seen from the test examples described later. It becomes an alkaline electrolyte membrane that can exhibit excellent power generation performance. Further, since M 2+ is a strongly basic alkaline earth metal ion, the solubility in a basic aqueous solution is extremely low, and the alkaline electrolyte membrane does not dissolve during long-term operation.
  • the M 2+ is preferably Mg 2+ .
  • Such a configuration provides an alkaline electrolyte membrane that can exhibit excellent power generation performance when directly used in an alcohol fuel cell, as can be seen from test examples described later.
  • the M 3+ is preferably Al 3+ .
  • Such a configuration provides an alkaline electrolyte membrane that can exhibit excellent power generation performance when directly used in an alcohol fuel cell, as can be seen from test examples described later.
  • the A n- is preferably CO 3 2-.
  • KOH is sometimes used as an auxiliary electrolyte in order to enhance anion conductivity.
  • CO 2 in the air is absorbed and “2KOH + CO 2 ⁇ K 2.
  • CO 3 + H 2 O has a risk of damaging the electrode structure during long-term operation.
  • an- is CO 3 2- and the layered double hydroxide is originally composed of a substance mainly containing carbonate. Therefore, the produced carbonate is absorbed in the layered double hydroxide, and the risk of damaging the electrode structure during long-term operation can be greatly reduced.
  • the electrode assembly of the present invention is an electrode assembly (membrane electrode assembly) comprising an alkaline electrolyte membrane, and a cathode catalyst layer and an anode catalyst layer disposed on both sides of the alkaline electrolyte membrane,
  • the alkaline electrolyte membrane of the present invention is provided as the alkaline electrolyte membrane.
  • the electrode assembly of the present invention is an electrode assembly that has higher heat resistance and durability than conventional ones and can exhibit excellent power generation performance when directly used in an alcohol fuel cell.
  • each of the cathode catalyst layer and the anode catalyst layer includes a catalyst layer not containing a noble metal catalyst.
  • the electrode assembly of the present invention is an electrode that can exhibit excellent power generation performance when directly used in an alcohol fuel cell even when used in combination with a cathode catalyst layer and an anode catalyst layer that do not contain a noble metal catalyst. It becomes a joined body.
  • the direct alcohol fuel cell of the present invention comprises the electrode assembly of the present invention.
  • the direct alcohol fuel cell of the present invention is a direct ethanol fuel cell.
  • the direct alcohol fuel cell of the present invention is a direct ethanol fuel cell
  • electric power of 30 mW / cm 2 or more can be produced during room temperature operation.
  • the direct alcohol fuel cell of the present invention is a direct ethanol fuel cell
  • an electric power of 90 mW / cm 2 or more can be produced during operation at 60 ° C.
  • FIG. 3 is a diagram for explaining a power generation characteristic evaluation system 100 for evaluating the power generation characteristics of alkaline electrolyte membranes according to Test Examples 1 to 3.
  • FIG. 4 is a graph showing power generation characteristics of alkaline electrolyte membranes according to Test Examples 1 to 3.
  • FIG. 6 is a graph showing power generation characteristics of alkaline electrolyte membranes according to Test Examples 4 to 6.
  • 10 is a graph showing power generation characteristics of an alkaline electrolyte membrane according to Test Example 7.
  • FIG. 3 is a diagram for explaining a power generation characteristic evaluation system 100 for evaluating the power generation characteristics of alkaline electrolyte membranes according to Test Examples 1 to 3.
  • FIG. 4 is a graph showing power generation characteristics of alkaline electrolyte membranes according to Test Examples 1 to 3.
  • FIG. 6 is a graph showing power generation characteristics of alkaline electrolyt
  • FIG. 10 is a diagram showing measurement results of electromotive force of an alkaline electrolyte membrane according to Test Example 10 and an electrolyte membrane according to Test Example 11.
  • FIG. It is a figure shown in order to demonstrate the fuel cell 900 using the conventional alkaline electrolyte membrane.
  • FIG. 1 is a view for explaining an alkaline electrolyte membrane 40 according to the embodiment.
  • FIG. 1A is a partial cross-sectional view showing the structure of the layered double hydroxide 10
  • FIG. 1B is a perspective view schematically showing the appearance of the alkaline electrolyte membrane 40.
  • the alkaline electrolyte membrane 40 is composed of a layered double hydroxide represented by the following general formula (1).
  • M 2+ is a divalent metal ion
  • M 3+ is a trivalent metal ion
  • x is the range of 0.1-0.8 Indicates the number within.
  • alkaline electrolyte membrane 40 is, for example, Mg 2+, M 3+ is, for example, Al 3+, A n- for example CO 3 2-. Therefore, the alkaline electrolyte membrane 40 according to the embodiment is made of a layered double hydroxide represented by the following general formula (2), for example. Mg 2+ 1-x Al 3+ x (OH) 2 CO 3 2- x / 2 ⁇ mH 2 O (2)
  • the layered double hydroxide is a kind of viscosity mineral, and has a layered structure in which metal hydroxide layers 20 made of oxygen hexacoordinate octahedrons are two-dimensionally stacked, as shown in FIG.
  • the portion of “M 2+ 1-x M 3+ x (OH) 2 ” constitutes the metal hydroxide layer 20.
  • the metal hydroxide layer 20 is positively charged by being partially replaced with M 3+ .
  • anions 30 exist between the layers, and the remaining interlayer space is filled with water molecules.
  • the portion “A n ⁇ ” constitutes the anion 30.
  • the alkaline electrolyte membrane 40 according to the embodiment is used as a pellet-like alkaline electrolyte membrane as shown in FIG. 1B by, for example, cold pressing fine particles of the layered double hydroxide 10 having such a structure. be able to. Therefore, in the present specification, such a pellet-shaped alkaline electrolyte membrane is also referred to as an alkaline electrolyte membrane.
  • x is preferably in the range of 0.1 to 0.8. This is because when x is less than 0.1, the concentration of the anion An n ⁇ becomes too low and the alkali conductivity is lowered, and when x exceeds 0.8, the solubility in a basic solution is reduced. Because it becomes too high. From these viewpoints, x is more preferably in the range of 0.2 to 0.5.
  • Electrode assembly is an electrode assembly including an alkaline electrolyte membrane, and a cathode catalyst layer and an anode catalyst layer disposed on both sides of the alkaline electrolyte membrane, and as an alkaline electrolyte membrane, The alkaline electrolyte membrane 40 according to the embodiment is provided.
  • the electrode assembly according to the embodiment may include a catalyst layer that does not include a noble metal catalyst as both the cathode catalyst layer and the anode catalyst layer.
  • Direct alcohol fuel cell The direct alcohol fuel cell according to the embodiment includes the electrode assembly according to the above-described embodiment.
  • the direct alcohol fuel cell according to the embodiment is, for example, a direct methanol fuel cell or a direct ethanol fuel cell.
  • the direct alcohol fuel cell which concerns on embodiment is a direct ethanol fuel cell
  • the direct alcohol fuel cell which concerns on embodiment can produce the electric power of 30 mW / cm ⁇ 2 > or more at the time of a room temperature operation, Electric power of 90 mW / cm 2 or more can be produced.
  • the alkaline electrolyte membrane 40 according to the embodiment configured as described above is composed of a layered double hydroxide originally excellent in heat resistance and durability, it has hitherto been used. Becomes an alkaline electrolyte membrane having high heat resistance and high durability.
  • the alkaline electrolyte membrane according to the embodiment has anion conductivity because OH ⁇ can easily move through water molecules present between the layers, and as can be seen from the test examples described later, the alkaline electrolyte membrane is directly applied to the alcohol fuel cell. When used, the alkaline electrolyte membrane can exhibit excellent power generation performance.
  • the alkaline electrolyte membrane according to the embodiment has high anion conductivity because M 2+ is a strongly basic alkaline earth metal ion.
  • M 2+ is a strongly basic alkaline earth metal ion
  • the solubility in a basic aqueous solution is extremely low, and the alkaline electrolyte membrane does not dissolve during long-term operation.
  • the alkaline electrolyte membrane 40 according to the embodiment is M 2+ is Mg 2+ and M 3+ is Al 3+ , for example, as can be seen from a test example described later, An alkaline electrolyte membrane capable of exhibiting excellent power generation performance is obtained.
  • a n-for example CO 3 is 2, since they are formed of a material originally containing carbonate as a main component, carbonates during long-term operation Even if it produces
  • the electrode assembly according to Embodiment 1 has higher heat resistance and durability than conventional ones and can exhibit excellent power generation performance when used directly in an alcohol fuel cell.
  • it is an electrode joined body that can exhibit excellent power generation performance even when used in combination with a cathode catalyst layer and an anode catalyst layer that do not contain a noble metal catalyst.
  • the direct alcohol fuel cell according to the embodiment is 30 mW / cm during room temperature operation when the direct alcohol fuel cell according to the embodiment is a direct ethanol fuel cell. Two or more electric powers can be produced, and an electric power of 90 mW / cm 2 or more can be produced during operation at 60 ° C.
  • Test example The following test examples are test examples for clarifying that the alkaline electrolyte membrane of the present invention has the above-described effects of the present invention.
  • FIG. 2 is a diagram for explaining a power generation characteristic evaluation system 100 for evaluating the power generation characteristics of the alkaline electrolyte membranes according to Test Examples 1 to 3. As shown in FIG. FIG. 2A is an exploded perspective view of the power generation characteristic evaluation system 100, and FIG. 2B is a diagram showing a process of attaching the alkaline electrolyte membrane 40 to the support film 122.
  • the power generation characteristic evaluation system 100 includes an electrode assembly 110, an air electrode side tank 170 disposed on the air electrode side of the electrode assembly 110 via a metal grid 160, A fuel electrode side tank 180 disposed on the fuel electrode side of the electrode assembly 110 via a gasket 164, a metal grid 162, and a gasket 166.
  • the electrode assembly 110 includes an alkaline electrolyte membrane unit 120 in which the alkaline electrolyte membrane 40 is fixed to a fluororesin support film 122 using a polyimide adhesive tape 124, and a cathode catalyst disposed on both sides of the alkaline electrolyte membrane 40. Layer 130 and anode catalyst layer 140.
  • the power generation characteristic evaluation system 100 corresponds to the direct ethanol fuel cell of the present invention.
  • the alkaline electrolyte membrane 40 is made of a pellet-like layered double hydroxide having a diameter of 12 mm and a thickness of 0.3 mm. As shown in FIG. 2B, the alkaline electrolyte membrane 40 is 10 mm using an adhesive tape 124 having a 10 mm circular hole. It fixes to the support film 122 which has a circular hole.
  • the method for producing the alkaline electrolyte membrane 40 is as described below.
  • a precipitate was obtained by dropping a mixed aqueous solution of Mg (NO 3 ) 2 and Al (NO 3 ) 3 into an aqueous Na 2 CO 3 solution.
  • an appropriate NaOH solution was added so that the pH in the solution was constant at about 10.
  • a layered double hydroxide having an average particle size (primary particle size) of 0.5 ⁇ m or less and an average particle size (secondary particle size) of 5 ⁇ m or less is obtained. Obtained.
  • the obtained layered double hydroxide (sample 1) was cold-pressed to produce a pellet-shaped alkaline electrolyte membrane having a diameter of 12 mm and a thickness of 0.3 mm as described above.
  • An alkaline electrolyte membrane was obtained.
  • a pellet-shaped alkaline electrolyte membrane is produced by cold pressing the layered double hydroxide (sample 2) to obtain an alkaline electrolyte membrane according to Test Example 2, and the layered double hydroxide (sample 3) is cold pressed.
  • a pellet-shaped alkaline electrolyte membrane was produced, and the alkaline electrolyte membrane according to Test Example 3 was obtained.
  • a cathode catalyst not containing a noble metal catalyst (trade name: Hypermec K14, supplier: Ikuni Acta) is used, and as the anode catalyst layer 140, an anode catalyst not containing a noble metal catalyst (trade name: Hypermec® 3010, purchased from Ikuni Acta).
  • the cathode catalyst layer 130 is obtained by applying and fixing the cathode catalyst on a carbon cloth using a fluororesin (PTFE) as a binder.
  • the anode catalyst layer 140 is obtained by applying and fixing the anode catalyst on a Ni mesh using a fluororesin (PTFE) as a binder.
  • the metal grids 160 and 162 each function as a current collector, and electric power is taken out from the metal grids 160 and 162.
  • the fuel used was a mixture of 100 g of pure water and 10 g of ethanol with 10 g of KOH added.
  • the power generation characteristic evaluation system 100 is a so-called passive direct ethanol fuel cell, and in each test example, forced fuel or air supply using a pump or a fan is not performed.
  • FIG. 3 is a graph showing the power generation characteristics of the alkaline electrolyte membranes according to Test Examples 1 to 3.
  • FIG. 3A is a diagram illustrating the power generation characteristics of the alkaline electrolyte membrane according to Test Example 1
  • FIG. 3B is a diagram illustrating the power generation characteristics of the alkaline electrolyte membrane according to Test Example 2
  • FIG. ) Is a graph showing the power generation characteristics of the alkaline electrolyte membrane according to Test Example 3.
  • FIG. 3A to 3C the horizontal axis represents current density, and the vertical axis represents voltage (left side) and power density (right side).
  • any of the alkaline electrolyte membranes according to Test Examples 1 to 3 can produce a constant power (for example, a power of 20 mW / cm 2 or more) under a room temperature condition, and is a direct ethanol fuel cell. It was clarified that the membrane may be an alkaline electrolyte membrane that can exhibit excellent power generation performance when used in the above. In addition, among the alkaline electrolyte membranes according to Test Examples 1 to 3, it was also clarified that the power generation efficiency increases as x increases.
  • Test Examples 4 to 6 While using the alkaline electrolyte membrane which concerns on said test example 2 as it was, electric power generation was performed on three conditions, room temperature, 40 degreeC, and 60 degreeC on normal-pressure conditions.
  • the case performed at room temperature was set as Test Example 4, the case performed at 40 ° C. as Test Example 5, and the case performed at 60 ° C. as Test Example 6.
  • Other conditions are the same as in Test Examples 1 to 3.
  • FIG. 4 is a graph showing the power generation characteristics of the alkaline electrolyte membranes according to Test Examples 4 to 6.
  • 4A is a diagram illustrating the power generation characteristics of the alkaline electrolyte membrane according to Test Example 4
  • FIG. 4B is a diagram illustrating the power generation characteristics of the alkaline electrolyte membrane according to Test Example 5, and
  • FIG. ) Is a graph showing the power generation characteristics of the alkaline electrolyte membrane according to Test Example 6.
  • FIG. 4A to 4C the horizontal axis represents current density, and the vertical axis represents voltage (left side) and power density (right side). 4A is exactly the same as FIG. 3B.
  • Test Example 7 While using the alkaline electrolyte membrane according to Test Example 2 as it was, power generation was continuously performed for 10 hours under room temperature and normal pressure conditions. Other conditions are the same as in Test Examples 1 to 3.
  • FIG. 5 is a graph showing the power generation characteristics of the alkaline electrolyte membrane according to Test Example 7.
  • FIG. 5 (a) is a diagram showing power generation characteristics immediately after the start of power generation
  • FIG. 5 (b) is a diagram showing power generation characteristics after 10 hours have elapsed from the start of power generation
  • FIG. 5 (c) is 111 mA / cm 2. It is a figure which shows the time-dependent change of the electric potential under a current density. 5A and 5B, the horizontal axis represents current density, and the vertical axis represents voltage (left side) and power density (right side). In FIG.5 (c), a horizontal axis is time and a vertical axis
  • shaft is a voltage.
  • FIGS. 5 (a) to 5 (c) it has become clear that the power generation characteristics do not deteriorate even after 10 hours from the start of power generation.
  • Fig.5 (a) and FIG.5 (b) were compared, the tendency for a power generation characteristic to improve as time passed rather than the power generation start was seen rather.
  • Test Examples 8 and 9 An alkaline electrolyte membrane according to Test Example 8 was produced according to the same method as in Test Example 2. Further, an alkaline electrolyte membrane according to Test Example 9 was produced by the same method as the production method of the alkaline electrolyte membrane according to Test Example 8 except that Mg was replaced with Zn.
  • FIG. 6 is a graph showing the power generation characteristics of the alkaline electrolyte membranes according to Test Examples 8 and 9.
  • 6A is a diagram illustrating the power generation characteristics of the alkaline electrolyte membrane according to Test Example 8
  • FIG. 6B is a diagram illustrating the power generation characteristics of the alkaline electrolyte membrane according to Test Example 9.
  • 6A and 6B the horizontal axis represents current density, and the vertical axis represents voltage (left side) and power density (right side).
  • the alkaline electrolyte membrane according to Test Example 9 is slightly inferior to the alkaline electrolyte membrane according to Test Example 8, but has a constant power (for example, 30 mW / cm 2 or more) at room temperature. It became clear that it could be produced. Accordingly, the layered double hydroxide represented by the following general formula (3) is also used when directly used in an ethanol fuel cell as in the case of the layered double hydroxide represented by the general formula (2). It was found to be an alkaline electrolyte membrane that can exhibit excellent power generation performance. Zr 2+ 1-x Al 3+ x (OH) 2 CO 3 2- x / n ⁇ mH 2 O (3)
  • a perfluorosulfonic acid polymer membrane Duont Nafion (registered trademark)
  • a platinum-supported carbon sheet was adhered to both sides of the alkaline electrolyte membrane according to each test example to prepare an electrode assembly.
  • An air concentration cell was constructed by flowing dry N 2 and O 2 and wet N 2 and O 2 on both sides of the electrode assembly, and the electromotive force was measured.
  • FIG. 7 is a diagram showing measurement results of electromotive force of the alkaline electrolyte membrane according to Test Example 10 and the electrolyte membrane according to Test Example 11.
  • FIG. 7A is a diagram showing the measurement result of the electromotive force of the alkaline electrolyte membrane according to Test Example 10
  • FIG. 7B is a diagram showing the measurement result of the electromotive force of the electrolyte membrane according to Test Example 11.
  • 7A and 7B the horizontal axis is time, and the vertical axis is electromotive force.
  • the electrolyte membrane according to Test Example 11 generates a positive electromotive force (about +1.3 V), whereas the alkaline electrolyte membrane according to Test Example 10 has a negative electromotive force (about -0.1V) was generated.
  • the electrolyte membrane according to Test Example 11 has proton conductivity, whereas the alkaline electrolyte membrane according to Test Example 10 has anion conductivity.
  • An alkaline electrolyte membrane was produced using the layered double hydroxide represented by the following, and the same test as in Test Example 10 was performed. As a result, any alkaline electrolyte membrane generated a positive electromotive force and had proton conductivity. I understood that.
  • the alkaline electrolyte membrane, electrode assembly, and direct alcohol fuel cell of the present invention have been described based on the above embodiment, but the present invention is not limited to the above embodiment and does not depart from the gist thereof. Can be implemented in various modes, and for example, the following modifications are possible.
  • Mg 2+ is used as M 2+ of the layered double hydroxide, but the present invention is not limited to this.
  • Ca 2+ other alkaline earth metals or divalent metal ions other than alkaline earth metals can be used.
  • Al 3+ is used as M 3+ of the layered double hydroxide, but the present invention is not limited to this.
  • Cr 3+ and other trivalent metals can be used.
  • the cathode catalyst for example, a catalyst containing no noble metal is used, but the present invention is not limited to this.
  • a catalyst containing a noble metal can be used.
  • anode catalyst for example, a catalyst containing no noble metal is used.
  • the present invention is not limited to this.
  • a catalyst containing a noble metal can be used.
  • the present invention has been described by taking a direct ethanol fuel cell as an example of a direct alcohol fuel cell, but the present invention is not limited to this.
  • direct methanol fuel cells and other direct alcohol fuel cells are also included in the present invention.
  • the present invention has been described using a fuel obtained by adding 10 g of KOH as an auxiliary electrolyte to a mixed solution of 100 g of pure water and 10 g of ethanol. It is not limited.
  • a battery to which an auxiliary electrolyte other than KOH is added a battery with a smaller amount of auxiliary electrolyte added, or a battery without an auxiliary electrolyte added can be used.
  • SYMBOLS 10 Layered double hydroxide, 20 ... Metal hydroxide layer, 30 ... Anion, 40, 920 ... Alkaline electrolyte membrane, 100 ... Power generation characteristic evaluation system, 110 ... Electrode assembly, 120 ... Alkaline electrolyte membrane unit, 930 ... Cathode catalyst layer, 940 ... Anode catalyst layer, 160, 162 ... Metal grid, 164, 166 ... Gasket, 170 ... Air electrode side tank, 180 ... Fuel electrode side tank, 900 ... Direct alcohol fuel cell, 930 ... Caso 940 ... Anode, 950 ... External circuit

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 本発明のアルカリ電解質膜40は、以下の一般式(1)で表される層状複水酸化物10からなるものである。但し、M2+は2価の金属イオンを示し、M3+は3価の金属イオンを示し、An-は1価又は2価の陰イオンを示し、xは0.1~0.8の範囲内にある数を示す。 M2+ 1-x3+ (OH)n- x/n・mHO ・・・ (1) M2+は、好ましくはMg2+であり、M3+は、好ましくはAl3+であり、An-は、好ましくはCO 2-である。xは、好ましくは0.2~0.5の範囲内にある。 本発明のアルカリ電解質膜40は、従来よりも耐熱性及び耐久性が高く、かつ、直接アルコール燃料電池に用いたときに優れた発電性能を発揮し得るアルカリ電解質膜となる。

Description

アルカリ電解質膜、電極接合体及び直接アルコール燃料電池
 本発明は、アルカリ電解質膜、電極接合体及び直接アルコール燃料電池に関する。
 従来、固体電解質型燃料電池においては、パーフルオロスルホン酸系ポリマー膜などのプロトン交換膜を用いたタイプが主流である。しかしながら、「プロトン交換膜を用いた燃料電池」は、プロトン交換膜が強酸性物質からなるため、カソード触媒層やアノード触媒層に用いる触媒として、耐食性に優れたPt、PtRu合金などの貴金属触媒を使う必要がある。また、プロトン交換膜を直接アルコール燃料電池に適用した場合には、アノードの反応速度をより高くする必要があるため、アノード触媒層に用いる触媒として貴金属使用量の大きい高貴金属担持触媒を用いる必要があり、資源的にもコスト的にも大きな問題となっている。
 そこで、近年、貴金属触媒を用いる必要のない「アルカリ電解質膜(アニオン交換膜)を用いた燃料電池」が注目され、活発に研究開発が行われているようになってきている(例えば、特許文献1及び非特許文献1参照。)。図8は、非特許文献1に記載された、従来のアルカリ電解質膜を用いた燃料電池900を説明するために示す図である。
 従来のアルカリ電解質膜を用いた燃料電池900は、図8に示すように、炭化水素系陰イオン交換膜からなるアルカリ電解質膜920と、当該アルカリ電解質膜920の両面に配設されたカソード930及びアノード940とを備えた直接エタノール燃料電池である。従来のアルカリ電解質膜を用いた燃料電池900においては、カソード930では、空気中のO、HO及び電子からOHが生成する。生成したOHは、アルカリ電解質膜920を通ってアノード940に到達する。アノード940では、到達したOHによりエタノールが酸化され、CO、HO及び電子が生成する。これらの過程で外部回路950に電子が流れて電流を取り出すことができる。
 従来のアルカリ電解質膜を用いた燃料電池900は、上記したように、貴金属を用いる必要がないという特徴を有するほか、(a)貴金属触媒を用いる必要がないことに起因して、COによる貴金属触媒の被毒という問題がなく、(b)燃料のクロスオーバーを抑制することが可能であることから高濃度の燃料を使用することが可能であり、(c)アノード側で水が生成するため、カソード側の水の管理が容易であるという特徴をも有する。
特開2007-188788号公報 藤田康弘、「小型燃料電池の最新技術 第9章 その他のマイクロ燃料電池(特に、1.2 アルカリ電解質膜を用いた燃料電池の欄)」、日本、株式会社シーエムシー出版、2008年10月30日発行、191頁~200頁
 しかしながら、従来のアルカリ電解質膜を用いた燃料電池900は、炭化水素系陰イオン交換膜からなる有機系のアルカリ電解質膜を用いているため、耐熱性及び耐久性に問題がある。
 そこで、燃料電池のアルカリ電解質膜として、有機系のアルカリ電解質膜に代えて、耐熱性及び耐久性が高い無機系のアルカリ電解質膜を用いることが考えられる。しかしながら、無機系のアルカリ電解質膜のなかで、直接アルコール燃料電池に用いたときに優れた発電性能を発揮し得るものは知られていない。特に、貴金属触媒を含まないカソード触媒層及びアノード触媒層と併用したときにおいても優れた発電性能を発揮し得るものは知られていない。
 そこで、本発明は、上記事情に鑑みてなされたもので、従来よりも耐熱性及び耐久性が高く、かつ、直接アルコール燃料電池に用いたときに優れた発電性能を発揮し得るアルカリ電解質膜を提供することを目的とする。また、そのようなアルカリ電解質膜を備える電極接合体及び直接アルコール燃料電池を提供することを目的とする。
[1]本発明のアルカリ電解質膜は、以下の一般式(1)で表される層状複水酸化物からなることを特徴とする。
 但し、M2+は2価の金属イオンを示し、M3+は3価の金属イオンを示し、An-は1価又は2価の陰イオンを示し、xは0.1~0.8の範囲内にある数を示す。
   M2+ 1-x3+ (OH)n- x/n・mHO ・・・ (1)
 本発明のアルカリ電解質膜は、本来耐熱性及び耐久性に優れた無機系の層状複水酸化物からなるものであるため、従来よりも耐熱性及び耐久性の高いアルカリ電解質膜となる。
 また、本発明のアルカリ電解質膜は、層間に存在する水分子を介してOHが容易に移動できることからアニオン伝導性を有し、後述する試験例からも分かるように、直接アルコール燃料電池に用いたときに優れた発電性能を発揮し得るアルカリ電解質膜となる。
 なお、本発明のアルカリ電解質膜において、M2+としては、例えばMg2+、Ca2+、Zn2+を用いることができ、M3+としては、例えばAl3+又はCr3+を用いることができ、An-としては、例えばCO 2-、OHを用いることができる。
[2]なかでも、本発明のアルカリ電解質膜においては、前記M2+は、アルカリ土類金属イオンであることが好ましい。
 このような構成とすることにより、M2+が強塩基性のアルカリ土類金属イオンであることから、高いアニオン伝導性を有し、後述する試験例からも分かるように、直接アルコール燃料電池に用いたときに優れた発電性能を発揮し得るアルカリ電解質膜となる。また、M2+が強塩基性のアルカリ土類金属イオンであることから、塩基性水溶液に対する溶解性が極めて低く、長期運転中にアルカリ電解質膜が溶解してしまうことがない。
[3]また、本発明のアルカリ電解質膜においては、前記M2+は、Mg2+であることが好ましい。
 このような構成とすることにより、後述する試験例からも分かるように、直接アルコール燃料電池に用いたときに優れた発電性能を発揮し得るアルカリ電解質膜となる。
[4]また、本発明のアルカリ電解質膜においては、前記M3+は、Al3+であることが好ましい。
 このような構成とすることにより、後述する試験例からも分かるように、直接アルコール燃料電池に用いたときに優れた発電性能を発揮し得るアルカリ電解質膜となる。
[5]また、本発明のアルカリ電解質膜においては、前記An-は、CO 2-であることが好ましい。
 ところで、従来のアルカリ電解質膜においては、アニオン伝導性を高めるために補助電解質としてKOHを用いることがあるが、このような場合には、空気中のCOを吸収して「2KOH+CO→KCO+HO」の反応が進行することによって生成する炭酸塩が長期運転中に電極構造に損傷を与える危険性があるという重大な問題がある。
 これに対して、本発明のアルカリ電解質膜によれば、上記したように、An-がCO 2-であり、層状複水酸化物が元来炭酸塩を主成分として含有する物質からなるものであるため、生成した炭酸塩は層状複水酸化物中に吸収されることとなり、長期運転中に電極構造に損傷を与える危険性を大幅に低減することができる。
[6]本発明の電極接合体は、アルカリ電解質膜と、前記アルカリ電解質膜の両面に配設されたカソード触媒層及びアノード触媒層とを備える電極接合体(膜電極接合体)であって、前記アルカリ電解質膜として、本発明のアルカリ電解質膜を備えることを特徴とする。
 本発明の電極接合体は、従来よりも耐熱性及び耐久性が高く、かつ、直接アルコール燃料電池に用いたときに優れた発電性能を発揮し得る電極接合体となる。
[7]本発明の電極接合体においては、前記カソード触媒層及び前記アノード触媒層としていずれも、貴金属触媒を含まない触媒層を備えることが好ましい。
 本発明の電極接合体は、このように貴金属触媒を含まないカソード触媒層及びアノード触媒層と併用したときであっても、直接アルコール燃料電池に用いたときに優れた発電性能を発揮し得る電極接合体となる。
[8]本発明の直接アルコール燃料電池は、本発明の電極接合体を備えるものである。
[9]本発明の直接アルコール燃料電池は、直接エタノール燃料電池である。
[10]本発明の直接アルコール燃料電池が直接エタノール燃料電池である場合に、室温運転時に30mW/cm以上の電力を産生可能である。
[11]本発明の直接アルコール燃料電池が直接エタノール燃料電池である場合に、60℃運転時に90mW/cm以上の電力を産生可能である。
実施形態に係るアルカリ電解質膜40を説明するために示す図である。 試験例1~3に係るアルカリ電解質膜の発電特性を評価するための発電特性評価系100を説明するために示す図である。 試験例1~3に係るアルカリ電解質膜の発電特性を示す図である。 試験例4~6に係るアルカリ電解質膜の発電特性を示す図である。 試験例7に係るアルカリ電解質膜の発電特性を示す図である。 試験例8及び9に係るアルカリ電解質膜の発電特性を示す図である。 試験例10に係るアルカリ電解質膜及び試験例11に係る電解質膜の起電力の測定結果を示す図である。 従来のアルカリ電解質膜を用いた燃料電池900を説明するために示す図である。
 以下、本発明のアルカリ電解質膜、電極接合体及び直接アルコール燃料電池について、図に示す実施の形態に基づいて説明する。
[実施形態]
1.アルカリ電解質膜
 図1は、実施形態に係るアルカリ電解質膜40を説明するために示す図である。図1(a)は層状複水酸化物10の構造を示す部分断面図であり、図1(b)はアルカリ電解質膜40の外観を模式的に示す斜視図である。
 実施形態に係るアルカリ電解質膜40は、以下の一般式(1)で表される層状複水酸化物からなる。
 但し、M2+は2価の金属イオンを示し、M3+は3価の金属イオンを示し、An-は1価又は2価の陰イオンを示し、xは0.1~0.8の範囲内にある数を示す。
   M2+ 1-x3+ (OH)n- x/n・mHO ・・・ (1)
 実施形態に係るアルカリ電解質膜40において、M2+は例えばMg2+であり、M3+は例えばAl3+であり、An-は例えばCO 2-である。従って、実施形態に係るアルカリ電解質膜40は、例えば以下の一般式(2)で表される層状複水酸化物からなる。
   Mg2+ 1-xAl3+ (OH)CO 2- x/2・mHO ・・・ (2)
 層状複水酸化物は、粘度鉱物の一種で、図1(a)に示すように、酸素六配位の八面体からなる金属水酸化物層20が二次元的に積み重なった層状構造を有する。「M2+ 1-x3+ (OH)」の部分が金属水酸化物層20を構成する。金属水酸化物層20は、一部がM3+で置換されることによって正に帯電している。そして、金属水酸化物層20の正電荷を補うため層間には陰イオン30が存在しており、残りの層間スペースを水分子が埋めた構造を有する。「An-」の部分が陰イオン30を構成する。
 実施形態に係るアルカリ電解質膜40は、このような構造の層状複水酸化物10の微粒子を例えばコールドプレスすることによって、図1(b)に示すような、ペレット状のアルカリ電解質膜にして用いることができる。従って、本明細書においては、このようなペレット状のアルカリ電解質膜をもアルカリ電解質膜と呼ぶこととする。
 実施形態に係るアルカリ電解質膜40においては、上述したように、xは0.1~0.8の範囲内にあることが好ましい。xが0.1未満の場合には、陰イオンAn-の濃度が低くなりすぎてアルカリ伝導性が低下するためであり、xが0.8を超える場合には、塩基性溶液に対する溶解性が高くなりすぎるからである。これらの観点から言えば、xは、0.2~0.5の範囲内にあることがより好ましい。
2.電極接合体
 実施形態に係る電極接合体は、アルカリ電解質膜と、当該アルカリ電解質膜の両面に配設されたカソード触媒層及びアノード触媒層とを備える電極接合体であって、アルカリ電解質膜として、実施形態に係るアルカリ電解質膜40を備える。
 実施形態に係る電極接合体は、カソード触媒層及びアノード触媒層としていずれも、貴金属触媒を含まない触媒層を備えることとしてもよい。
3.直接アルコール燃料電池
 実施形態に係る直接アルコール燃料電池は、上記したような実施形態に係る電極接合体を備える。
 実施形態に係る直接アルコール燃料電池は、例えば、直接メタノール燃料電池又は直接エタノール燃料電池である。
 そして、実施形態に係る直接アルコール燃料電池は、実施形態に係る直接アルコール燃料電池が直接エタノール燃料電池である場合に、室温運転時に30mW/cm以上の電力を産生可能であり、60℃運転時に90mW/cm以上の電力を産生可能である。
4.実施形態に係るアルカリ電解質膜40の効果
 以上のように構成された実施形態に係るアルカリ電解質膜40は、本来耐熱性及び耐久性に優れた層状複水酸化物からなるものであるため、従来よりも耐熱性及び耐久性の高いアルカリ電解質膜となる。
 また、実施形態に係るアルカリ電解質膜は、層間に存在する水分子を介してOHが容易に移動できることからアニオン伝導性を有し、後述する試験例からも分かるように、直接アルコール燃料電池に用いたときに優れた発電性能を発揮し得るアルカリ電解質膜となる。
 また、実施形態に係るアルカリ電解質膜は、M2+が強塩基性のアルカリ土類金属イオンであることから、高いアニオン伝導性を有し、後述する試験例からも分かるように、直接アルコール燃料電池に用いたときに優れた発電性能を発揮し得るアルカリ電解質膜となる。また、M2+が強塩基性のアルカリ土類金属イオンであることから、塩基性水溶液に対する溶解性が極めて低く、長期運転中にアルカリ電解質膜が溶解してしまうことがない。
 また、実施形態に係るアルカリ電解質膜40は、M2+が例えばMg2+であり、M3+が例えばAl3+であるため、後述する試験例からも分かるように、直接アルコール燃料電池に用いたときに優れた発電性能を発揮し得るアルカリ電解質膜となる。
 また、実施形態に係るアルカリ電解質膜40によれば、An-が例えばCO 2-であり、元来炭酸塩を主成分として含有する物質からなるものであるため、長期運転中に炭酸塩を生成したとしても、当該炭酸塩は本発明のアルカリ電解質膜中に吸収されることとなり、長期運転中に電極構造に損傷を与える危険性を大幅に低減することができる。
5.実施形態に係る電極接合体の効果
 実施形態1に係る電極接合体は、従来よりも耐熱性及び耐久性が高く、かつ、直接アルコール燃料電池に用いたときに優れた発電性能を発揮し得る電極接合体となるるとともに、貴金属触媒を含まないカソード触媒層及びアノード触媒層と併用したときであっても優れた発電性能を発揮し得る電極接合体となる。
6.実施形態に係る直接アルコール燃料電池の効果
 実施形態に係る直接アルコール燃料電池は、上記したように、実施形態に係る直接アルコール燃料電池が直接エタノール燃料電池である場合には、室温運転時に30mW/cm以上の電力を産生可能であり、60℃運転時に90mW/cm以上の電力を産生可能である。
[試験例]
 以下の試験例は、本発明のアルカリ電解質膜が、上述した本発明の効果を有することを明らかにするための試験例である。
[試験例1~3]
 図2は、試験例1~3に係るアルカリ電解質膜の発電特性を評価するための発電特性評価系100を説明するために示す図である。図2(a)は発電特性評価系100の分解斜視図であり、図2(b)はアルカリ電解質膜40を支持フィルム122に取り付ける工程を示す図である。
 発電特性評価系100は、図2(a)に示すように、電極接合体110と、金属製格子160を介して電極接合体110の空気極側に配設された空気極側タンク170と、ガスケット164、金属製格子162及びガスケット166を介して電極接合体110の燃料極側に配設された燃料極側タンク180とを備える。電極接合体110は、アルカリ電解質膜40をポリイミド製の粘着テープ124を用いてフッ素樹脂製の支持フィルム122に固定したアルカリ電解質膜ユニット120と、アルカリ電解質膜40の両面に配設されたカソード触媒層130及びアノード触媒層140とからなる。発電特性評価系100は、本発明の直接エタノール燃料電池に相当するものである。
 アルカリ電解質膜40は、直径12mm、厚さ0.3mmのペレット状の層状複水酸化物からなり、図2(b)に示すように、10mmの円形孔を有する粘着テープ124を用いて10mmの円形孔を有する支持フィルム122に固定する。アルカリ電解質膜40の作製方法は、以下に示した通りである。
 Mg(NOとAl(NOとの混合水溶液をNaCO水溶液中に滴下することによって沈殿物を得た。沈殿物を得る際、溶液中のpHが約10で一定になるよう適宜NaOH溶液を加えた。得られた沈殿物をろ過、洗浄、乾燥させることで、平均粒径(1次粒径)が0.5μm以下で、平均粒径(2次粒径)が5μm以下の層状複水酸化物を得た。このとき、Mg(NOとAl(NOとの比率を変化させて、層状複水酸化物中でMg/Alが4となるように調整したものを試料1(x=0.20)とし、層状複水酸化物中でMg/Alが3となるように調整したものを試料2(x=0.25)とし、層状複水酸化物中でMg/Alが2となるように調整したものを試料3(x=0.33)とした。
 その後、得られた層状複水酸化物(試料1)をコールドプレスすることにより、上述したように、直径12mm、厚さ0.3mmのペレット状のアルカリ電解質膜を作製し、試験例1に係るアルカリ電解質膜とした。同様に、層状複水酸化物(試料2)をコールドプレスすることによりペレット状のアルカリ電解質膜を作製し、試験例2に係るアルカリ電解質膜とし、層状複水酸化物(試料3)をコールドプレスすることによりペレット状のアルカリ電解質膜を作製し、試験例3に係るアルカリ電解質膜とした。
 カソード触媒層130としては、貴金属触媒を含まないカソード触媒(商品名:Hypermec K14、購入先:伊国Acta社)を用い、アノード触媒層140としては、貴金属触媒を含まないアノード触媒(商品名:Hypermec 3010、購入先:伊国Acta社)を用いた。カソード触媒層130は、カーボンクロス上に上記カソード触媒をフッ素樹脂(PTFE)をバインダーとして塗布・固定したものである。アノード触媒層140は、Niメッシュ上に上記アノード触媒をフッ素樹脂(PTFE)をバインダーとして塗布・固定したものである。金属製格子160,162がそれぞれ集電体として機能し、これら金属製格子160,162より電力を取り出す。
 燃料には、純水100gとエタノール10gとの混合溶液にKOHを10g添加したものを用いた。
 発電は、常圧条件下において、室温で行った。なお、発電特性評価系100は、いわゆるパッシブ型の直接エタノール燃料電池であり、各試験例においては、ポンプやファンを用いた強制的な燃料や空気の供給は行っていない。
 図3は、試験例1~3に係るアルカリ電解質膜の発電特性を示す図である。図3(a)は試験例1に係るアルカリ電解質膜の発電特性を示す図であり、図3(b)は試験例2に係るアルカリ電解質膜の発電特性を示す図であり、図3(c)は試験例3に係るアルカリ電解質膜の発電特性を示す図である。図3(a)~図3(c)において、横軸は電流密度であり、縦軸は電圧(左側)及び電力密度(右側)である。
 図3からも分かるように、試験例1~3に係るアルカリ電解質膜のいずれについても、室温条件下で一定の電力(例えば20mW/cm以上の電力)を産生可能であり、直接エタノール燃料電池に用いたときに優れた発電性能を発揮し得るアルカリ電解質膜であることがあることが明らかとなった。また、試験例1~3に係るアルカリ電解質膜のなかでは、xが大きいほど発電効率が高くなることも明らかとなった。
[試験例4~6]
 上記の試験例2に係るアルカリ電解質膜をそのまま用いるとともに、発電を、常圧条件下において、室温、40℃、60℃の3条件で行った。室温で行った場合を試験例4とし、40℃で行った場合を試験例5とし、60℃で行った場合を試験例6とした。その他の条件は試験例1~3の場合と同様である。
 図4は、試験例4~6に係るアルカリ電解質膜の発電特性を示す図である。図4(a)は試験例4に係るアルカリ電解質膜の発電特性を示す図であり、図4(b)は試験例5に係るアルカリ電解質膜の発電特性を示す図であり、図4(c)は試験例6に係るアルカリ電解質膜の発電特性を示す図である。図4(a)~図4(c)において、横軸は電流密度であり、縦軸は電圧(左側)及び電力密度(右側)である。なお、図4(a)は図3(b)と全く同じものである。
 図4からも分かるように、室温で発電を行った場合で30mW/cm以上の電力を産生可能であり、40℃で発電を行った場合で60mW/cm以上の電力を産生可能であり、60℃で発電を行った場合で90mW/cm以上の電力を産生可能であることが明らかとなった。
[試験例7]
 上記の試験例2に係るアルカリ電解質膜をそのまま用いるとともに、発電を、室温・常圧条件下において連続して10時間行った。その他の条件は試験例1~3の場合と同様である。
 図5は、試験例7に係るアルカリ電解質膜の発電特性を示す図である。図5(a)は発電開始直後における発電特性を示す図であり、図5(b)は発電開始後10時間経過後における発電特性を示す図であり、図5(c)は111mA/cm2の電流密度下における電位の経時変化を示す図である。図5(a)及び図5(b)において、横軸は電流密度であり、縦軸は電圧(左側)及び電力密度(右側)である。図5(c)において、横軸は時間であり、縦軸は電圧である。
 図5(a)~図5(c)からも分かるように、発電開始後10時間経過後においても発電特性が低下しないことが明らかとなった。なお、図5(a)及び図5(b)を比較すると、むしろ、発電開始後、時間が経過するに従って発電特性が向上する傾向が見られた。
[試験例8及び9]
 試験例2の場合と同様の方法に従って試験例8に係るアルカリ電解質膜を作製した。また、MgをZnに代えたこと以外は試験例8に係るアルカリ電解質膜の作製方法と同様の方法によって試験例9に係るアルカリ電解質膜を作製した。
 発電は、室温・常圧条件下において行った。その他の条件は試験例1~3の場合と同様である。
 図6は、試験例8及び9に係るアルカリ電解質膜の発電特性を示す図である。図6(a)は試験例8に係るアルカリ電解質膜の発電特性を示す図であり、図6(b)は試験例9に係るアルカリ電解質膜の発電特性を示す図である。図6(a)及び図6(b)において、横軸は電流密度であり、縦軸は電圧(左側)及び電力密度(右側)である。
 図6からも分かるように、試験例9に係るアルカリ電解質膜は、試験例8に係るアルカリ電解質膜には若干劣るものの、室温条件下で一定の電力(例えば30mW/cm以上の電力)を産生可能であることが明らかとなった。従って、以下の一般式(3)で表される層状複水酸化物も、上記した一般式(2)で表される層状複水酸化物の場合と同様に直接エタノール燃料電池に用いたときに優れた発電性能を発揮し得るアルカリ電解質膜であることがわかった。
  Zr2+ 1-xAl3+ (OH)CO 2- x/n・mHO ・・・ (3)
 なお、長時間連続運転した後のアルカリ電解質膜を観測したところ、試験例9に係るアルカリ電解質膜は、試験例8に係るアルカリ電解質膜よりも溶解性に劣る(溶解性が高い)ことがわかった。
[試験例10及び11]
 試験例2の場合と同様の方法に従って試験例10に係るアルカリ電解質膜を作製した。但し、層状複水酸化物としてMg/Alが3となるように調整したもの(x=0.25)を用いた。また、パーフルオロスルホン酸系ポリマー膜(デュポン社のNafion(登録商標))を試験例11に係る電解質膜とした。
 白金担持カーボンシートを各試験例に係るアルカリ電解質膜の両側に密着させて電極接合体を作製した。当該電極接合体の両側に乾燥N及びOと湿潤N及びOとを流して空気濃淡電池を構成し、起電力を測定した。
 図7は、試験例10に係るアルカリ電解質膜及び試験例11に係る電解質膜の起電力の測定結果を示す図である。図7(a)は試験例10に係るアルカリ電解質膜の起電力の測定結果を示す図であり、図7(b)は試験例11に係る電解質膜の起電力の測定結果を示す図である。図7(a)及び図7(b)において、横軸は時間であり、縦軸は起電力である。
 図7からも分かるように、試験例11に係る電解質膜が正の起電力(約+1.3V)を発生させるのに対して、試験例10に係るアルカリ電解質膜は、負の起電力(約-0.1V)を発生させることが明らかとなった。これは、試験例11に係る電解質膜がプロトン伝導性を有するのに対して、試験例10に係るアルカリ電解質膜がアニオン伝導性を有することを示している。
 なお、Mg2+ 1-xAl3+ (OH)Cl ・mHOで表される層状複水酸化物及びZn2+ 1-xAl3+ (OH)Cl ・mHOで表される層状複水酸化物を用いてアルカリ電解質膜を作製し、試験例10と同様の試験を行ったところいずれのアルカリ電解質膜も、正の起電力を発生させ、プロトン伝導性を有することが分かった。
 以上、本発明のアルカリ電解質膜、電極接合体及び直接アルコール燃料電池を上記の実施形態に基づいて説明したが、本発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
[1]上記実施形態においては、層状複水酸化物のM2+として、例えばMg2+を用いたが、本発明はこれに限定されるものではない。例えば、Ca2+その他のアルカリ土類金属又はアルカリ土類金属以外の2価の金属イオンを用いることもできる。
[2]上記実施形態においては、層状複水酸化物のM3+として、例えばAl3+を用いたが、本発明はこれに限定されるものではない。例えば、Cr3+その他の3価の金属を用いることもできる。
[3]上記実施形態においては、層状複水酸化物のAn-として、例えばCO 2-を用いたが、本発明はこれに限定されるものではない。例えば、OHその他の陰イオンを用いることもできる。
[4]上記実施形態においては、カソード触媒として、例えば貴金属を含まない触媒を用いたが、本発明はこれに限定されるものではない。例えば、貴金属を含む触媒を用いることもできる。
[5]上記実施形態においては、アノード触媒として、例えば貴金属を含まない触媒を用いたが、本発明はこれに限定されるものではない。例えば、貴金属を含む触媒を用いることもできる。
[6]上記実施形態においては、直接アルコール燃料電池として例えば直接エタノール燃料電池を例にとって本発明を説明したが、本発明はこれに限定されるものではない。例えば、直接メタノール燃料電池その他の直接アルコール燃料電池をも本発明に含まれる。
[7]上記各試験例においては、燃料として、純水100gとエタノール10gとの混合溶液に補助電解質としてのKOHを10g添加したものを用いて、本発明を説明したが、本発明はこれに限定されるものではない。本発明の直接アルコール燃料電池においては、例えば、KOH以外の補助電解質を添加したもの、補助電解質の添加量がもっと少ないもの又は補助電解質を添加しないものを用いることもできる。
符号の説明
 10…層状複水酸化物、20…金属水酸化物層、30…陰イオン、40,920…アルカリ電解質膜、100…発電特性評価系、110…電極接合体、120…アルカリ電解質膜ユニット、930…カソード触媒層、940…アノード触媒層、160,162…金属製格子、164,166…ガスケット、170…空気極側タンク,180…燃料極側タンク、900…直接アルコール燃料電池、930…カソ-ド、940…アノード、950…外部回路

Claims (11)

  1.  以下の一般式(1)で表される層状複水酸化物からなることを特徴とするアルカリ電解質膜。
     但し、M2+は2価の金属イオンを示し、M3+は3価の金属イオンを示し、An-は1価又は2価の陰イオンを示し、xは0.1~0.8の範囲内にある数を示す。
       M2+ 1-x3+ (OH)n- x/n・mHO ・・・ (1)
  2.  前記M2+は、アルカリ土類金属イオンであることを特徴とする請求項1に記載のアルカリ電解質膜。
  3.  前記M2+は、Mg2+であることを特徴とする請求項2に記載のアルカリ電解質膜。
  4.  前記M3+は、Al3+であることを特徴とする請求項1~3のいずれかに記載のアルカリ電解質膜。
  5.  前記An-は、CO 2-であることを特徴とする請求項1~4のいずれかに記載のアルカリ電解質膜。
  6.  アルカリ電解質膜と、前記アルカリ電解質膜の両面に配設されたカソード触媒層及びアノード触媒層とを備える電極接合体であって、
     前記アルカリ電解質膜として、請求項1~5のいずれかに記載のアルカリ電解質膜を備えることを特徴とする電極接合体。
  7.  請求項6に記載の電極接合体において、
     前記カソード触媒層及び前記アノード触媒層としていずれも、貴金属触媒を含まない触媒層を備えることを特徴とする電極接合体。
  8.  請求項7に記載の電極接合体を備えることを特徴とする直接アルコール燃料電池。
  9.  直接エタノール燃料電池であることを特徴とする請求項8に記載の直接アルコール燃料電池。
  10.  室温運転時に30mW/cm以上の電力を産生可能であることを特徴とする請求項9に記載の直接アルコール燃料電池。
  11.  60℃運転時に90mW/cm以上の電力を産生可能であることを特徴とする請求項9に記載の直接アルコール燃料電池。
PCT/JP2009/056399 2009-03-27 2009-03-27 アルカリ電解質膜、電極接合体及び直接アルコール燃料電池 WO2010109670A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/056399 WO2010109670A1 (ja) 2009-03-27 2009-03-27 アルカリ電解質膜、電極接合体及び直接アルコール燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/056399 WO2010109670A1 (ja) 2009-03-27 2009-03-27 アルカリ電解質膜、電極接合体及び直接アルコール燃料電池

Publications (1)

Publication Number Publication Date
WO2010109670A1 true WO2010109670A1 (ja) 2010-09-30

Family

ID=42780379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056399 WO2010109670A1 (ja) 2009-03-27 2009-03-27 アルカリ電解質膜、電極接合体及び直接アルコール燃料電池

Country Status (1)

Country Link
WO (1) WO2010109670A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073292A1 (ja) 2011-11-16 2013-05-23 日本碍子株式会社 亜鉛空気二次電池
JP2013120727A (ja) * 2011-12-08 2013-06-17 Noritake Co Ltd アルカリ電解質および該電解質を備えた燃料電池
WO2013118561A1 (ja) 2012-02-06 2013-08-15 日本碍子株式会社 亜鉛二次電池
JP2013191523A (ja) * 2012-03-15 2013-09-26 Osaka Prefecture Univ 全固体アルカリ燃料電池用電解質膜
WO2013161516A1 (ja) 2012-04-26 2013-10-31 日本碍子株式会社 リチウム空気二次電池
WO2014002756A1 (ja) * 2012-06-29 2014-01-03 株式会社 日立製作所 イオン伝導体およびこれを用いた電気化学デバイス
JP2014110148A (ja) * 2012-11-30 2014-06-12 Kobe Steel Ltd 固体電解質材料およびこれを用いた金属−空気全固体二次電池
WO2014119665A1 (ja) 2013-02-01 2014-08-07 株式会社日本触媒 アニオン伝導性材料及び電池
WO2014156578A1 (ja) 2013-03-25 2014-10-02 日本碍子株式会社 層状複水酸化物緻密体及びその製造方法
JP2014225344A (ja) * 2013-05-15 2014-12-04 日本碍子株式会社 金属空気二次電池の使用方法
WO2015012078A1 (ja) * 2013-07-25 2015-01-29 株式会社ノリタケカンパニーリミテド 陰イオン伝導材料およびその製造方法
JP2016072207A (ja) * 2014-10-01 2016-05-09 日本碍子株式会社 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
US20160141582A1 (en) * 2013-12-27 2016-05-19 Ngk Insulators, Ltd. Layered-double-hydroxide-containing composite material and method for producing same
JP2016115540A (ja) * 2014-12-15 2016-06-23 日本碍子株式会社 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
CN106471669A (zh) * 2014-07-09 2017-03-01 日本碍子株式会社 金属空气电池用附带有隔板的空气极
JP2017134890A (ja) * 2016-01-25 2017-08-03 ダイハツ工業株式会社 膜電極接合体および燃料電池
US9793529B2 (en) 2013-12-27 2017-10-17 Ngk Insulators, Ltd. Layered-double-hydroxide-oriented film and method for producing same
WO2019124317A1 (ja) * 2017-12-18 2019-06-27 日本碍子株式会社 固体アルカリ形燃料電池
JP2020040872A (ja) * 2018-09-10 2020-03-19 共栄社化学株式会社 イオン伝導性材料、電池用機能層及びその製造方法
JP2020098782A (ja) * 2018-12-17 2020-06-25 日本碍子株式会社 燃料電池
US10957930B2 (en) 2017-12-18 2021-03-23 Ngk Insulators, Ltd. Solid alkaline fuel cell including inorganic solid electrolyte enabled to permeate water
CN112928315A (zh) * 2019-12-06 2021-06-08 中国科学院大连化学物理研究所 一种碱性锌基液流电池用复合膜的制备和应用
JP2021163543A (ja) * 2020-03-30 2021-10-11 日本碍子株式会社 膜電極接合体、及び電気化学セル

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63218165A (ja) * 1987-03-06 1988-09-12 Tosoh Corp アルカリ電解質型ホルムアルデヒド燃料電池
JP2002151132A (ja) * 2000-11-07 2002-05-24 Japan Storage Battery Co Ltd グリコールを燃料にした燃料電池
JP2003151580A (ja) * 2001-11-15 2003-05-23 Catalysts & Chem Ind Co Ltd 無機電解質膜および無機電解質膜型燃料電池
JP2004217921A (ja) * 2002-12-26 2004-08-05 Tokuyama Corp イオン交換膜及びその製造方法
JP2007188788A (ja) * 2006-01-13 2007-07-26 Tokuyama Corp 陰イオン交換樹脂膜形成用4級化剤、ガス拡散電極膜、固体電解質膜及びそれを具備する固体高分子型燃料電池
JP2008527658A (ja) * 2005-01-11 2008-07-24 アクタ ソシエタ ペル アチオニ 燃料電池用の膜/電極接合体、その製造方法並びにその使用方法及び膜/電極接合体を含む燃料電池
WO2008120675A1 (ja) * 2007-03-30 2008-10-09 Tokuyama Corporation 直接液体燃料型燃料電池用隔膜およびその製造方法
JP2008300215A (ja) * 2007-05-31 2008-12-11 Toyota Motor Corp 燃料電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63218165A (ja) * 1987-03-06 1988-09-12 Tosoh Corp アルカリ電解質型ホルムアルデヒド燃料電池
JP2002151132A (ja) * 2000-11-07 2002-05-24 Japan Storage Battery Co Ltd グリコールを燃料にした燃料電池
JP2003151580A (ja) * 2001-11-15 2003-05-23 Catalysts & Chem Ind Co Ltd 無機電解質膜および無機電解質膜型燃料電池
JP2004217921A (ja) * 2002-12-26 2004-08-05 Tokuyama Corp イオン交換膜及びその製造方法
JP2008527658A (ja) * 2005-01-11 2008-07-24 アクタ ソシエタ ペル アチオニ 燃料電池用の膜/電極接合体、その製造方法並びにその使用方法及び膜/電極接合体を含む燃料電池
JP2007188788A (ja) * 2006-01-13 2007-07-26 Tokuyama Corp 陰イオン交換樹脂膜形成用4級化剤、ガス拡散電極膜、固体電解質膜及びそれを具備する固体高分子型燃料電池
WO2008120675A1 (ja) * 2007-03-30 2008-10-09 Tokuyama Corporation 直接液体燃料型燃料電池用隔膜およびその製造方法
JP2008300215A (ja) * 2007-05-31 2008-12-11 Toyota Motor Corp 燃料電池

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073292A1 (ja) 2011-11-16 2013-05-23 日本碍子株式会社 亜鉛空気二次電池
US9070953B2 (en) 2011-11-16 2015-06-30 Ngk Insulators, Ltd. Zinc-air secondary battery having inorganic solid electrolyte body
JP5574516B2 (ja) * 2011-11-16 2014-08-20 日本碍子株式会社 亜鉛空気二次電池
CN103947036A (zh) * 2011-11-16 2014-07-23 日本碍子株式会社 锌空气二次电池
JP2013120727A (ja) * 2011-12-08 2013-06-17 Noritake Co Ltd アルカリ電解質および該電解質を備えた燃料電池
WO2013118561A1 (ja) 2012-02-06 2013-08-15 日本碍子株式会社 亜鉛二次電池
US9293791B2 (en) 2012-02-06 2016-03-22 Ngk Insulators, Ltd. Zinc secondary battery
CN104067437A (zh) * 2012-02-06 2014-09-24 日本碍子株式会社 锌二次电池
JP2013191523A (ja) * 2012-03-15 2013-09-26 Osaka Prefecture Univ 全固体アルカリ燃料電池用電解質膜
US9391349B2 (en) 2012-04-26 2016-07-12 Ngk Insulators, Ltd. Lithium air secondary battery
WO2013161516A1 (ja) 2012-04-26 2013-10-31 日本碍子株式会社 リチウム空気二次電池
JPWO2013161516A1 (ja) * 2012-04-26 2015-12-24 日本碍子株式会社 リチウム空気二次電池
CN104221214A (zh) * 2012-04-26 2014-12-17 日本碍子株式会社 锂空气二次电池
EP2843753A4 (en) * 2012-04-26 2015-06-17 Ngk Insulators Ltd LITHIUM SECONDARY BATTERY AIR
WO2014002756A1 (ja) * 2012-06-29 2014-01-03 株式会社 日立製作所 イオン伝導体およびこれを用いた電気化学デバイス
JP2014110148A (ja) * 2012-11-30 2014-06-12 Kobe Steel Ltd 固体電解質材料およびこれを用いた金属−空気全固体二次電池
JP2015015229A (ja) * 2013-02-01 2015-01-22 株式会社日本触媒 アニオン伝導性材料及び電池
US10297861B2 (en) 2013-02-01 2019-05-21 Nippon Shokubai Co., Ltd. Anion conducting material and cell
WO2014119665A1 (ja) 2013-02-01 2014-08-07 株式会社日本触媒 アニオン伝導性材料及び電池
WO2014156578A1 (ja) 2013-03-25 2014-10-02 日本碍子株式会社 層状複水酸化物緻密体及びその製造方法
US9708194B2 (en) 2013-03-25 2017-07-18 Ngk Insulators, Ltd. Dense layered double hydroxide, and method for producing same
JP2014225344A (ja) * 2013-05-15 2014-12-04 日本碍子株式会社 金属空気二次電池の使用方法
WO2015012078A1 (ja) * 2013-07-25 2015-01-29 株式会社ノリタケカンパニーリミテド 陰イオン伝導材料およびその製造方法
KR20160023793A (ko) 2013-07-25 2016-03-03 가부시키가이샤 노리타케 캄파니 리미티드 음이온 전도 재료 및 그 제조 방법
JPWO2015012078A1 (ja) * 2013-07-25 2017-03-02 株式会社ノリタケカンパニーリミテド 陰イオン伝導材料およびその製造方法
US20160141582A1 (en) * 2013-12-27 2016-05-19 Ngk Insulators, Ltd. Layered-double-hydroxide-containing composite material and method for producing same
US11152668B2 (en) 2013-12-27 2021-10-19 Ngk Insulators, Ltd. Layered-double-hydroxide-containing composite material and method for producing same
US9793529B2 (en) 2013-12-27 2017-10-17 Ngk Insulators, Ltd. Layered-double-hydroxide-oriented film and method for producing same
US10020480B2 (en) * 2013-12-27 2018-07-10 Ngk Insulators, Ltd. Layered-double-hydroxide-containing composite material and method for producing same
CN106471669A (zh) * 2014-07-09 2017-03-01 日本碍子株式会社 金属空气电池用附带有隔板的空气极
US10601094B2 (en) 2014-07-09 2020-03-24 Ngk Insulators, Ltd. Separator-equipped air electrode for air-metal battery
EP3168925A4 (en) * 2014-07-09 2017-12-13 NGK Insulators, Ltd. Separator-equipped air electrode for air-metal battery
JP2016072207A (ja) * 2014-10-01 2016-05-09 日本碍子株式会社 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
JP2016115540A (ja) * 2014-12-15 2016-06-23 日本碍子株式会社 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
JP2017134890A (ja) * 2016-01-25 2017-08-03 ダイハツ工業株式会社 膜電極接合体および燃料電池
WO2019124317A1 (ja) * 2017-12-18 2019-06-27 日本碍子株式会社 固体アルカリ形燃料電池
JP6560478B1 (ja) * 2017-12-18 2019-08-14 日本碍子株式会社 固体アルカリ形燃料電池
US10593977B2 (en) 2017-12-18 2020-03-17 Ngk Insulators, Ltd. Solid alkaline fuel cell
US10957930B2 (en) 2017-12-18 2021-03-23 Ngk Insulators, Ltd. Solid alkaline fuel cell including inorganic solid electrolyte enabled to permeate water
JP2020040872A (ja) * 2018-09-10 2020-03-19 共栄社化学株式会社 イオン伝導性材料、電池用機能層及びその製造方法
WO2020053920A1 (ja) * 2018-09-10 2020-03-19 共栄社化学株式会社 イオン伝導性材料、電池用機能層及びその製造方法
JP7401889B2 (ja) 2018-09-10 2023-12-20 共栄社化学株式会社 イオン伝導性材料、電池用機能層及びその製造方法
JP2020098782A (ja) * 2018-12-17 2020-06-25 日本碍子株式会社 燃料電池
CN112928315A (zh) * 2019-12-06 2021-06-08 中国科学院大连化学物理研究所 一种碱性锌基液流电池用复合膜的制备和应用
CN112928315B (zh) * 2019-12-06 2022-09-16 中国科学院大连化学物理研究所 一种碱性锌基液流电池用复合膜的制备和应用
JP2021163543A (ja) * 2020-03-30 2021-10-11 日本碍子株式会社 膜電極接合体、及び電気化学セル

Similar Documents

Publication Publication Date Title
WO2010109670A1 (ja) アルカリ電解質膜、電極接合体及び直接アルコール燃料電池
JP5207407B2 (ja) 空気極
Chang et al. Recent advances in electrode design for rechargeable zinc–air batteries
JP3936702B2 (ja) 直接メタノール燃料電池のカソード用触媒
Park et al. High-performance anion exchange membrane water electrolyzer enabled by highly active oxygen evolution reaction electrocatalysts: Synergistic effect of doping and heterostructure
JP2013191523A (ja) 全固体アルカリ燃料電池用電解質膜
JP2014516465A (ja) 形状制御コアシェル触媒
EP4060088A2 (en) Carbon dioxide electrolytic device
JP2022541385A (ja) 水素の製造のための装置
JP2008311223A (ja) 酸素還元電極触媒およびこれを用いた酸素還元電極、並びに電池
JP5135747B2 (ja) 燃料電池および燃料電池システム
US9190678B2 (en) Alkaline fuel cell and alkaline fuel cell system
JP2007284705A (ja) 電解型水素発生装置、水素ガスの発生方法及び燃料電池
JP4537469B2 (ja) 発電装置及び発電方法
JP2007128665A (ja) 燃料電池用電極触媒層、および、それを用いた膜電極接合体の製造方法
JP4996823B2 (ja) 燃料電池用電極、及びそれを用いた燃料電池
JP2009266681A (ja) 燃料電池
JP2021163543A (ja) 膜電極接合体、及び電気化学セル
JP2009170175A (ja) 膜電極構造体及び燃料電池
JP2006079840A (ja) 燃料電池用電極触媒、および、これを用いた燃料電池用mea
US12012663B2 (en) Carbon dioxide electrolysis device
WO2018023716A1 (en) Membraneless direct-type fuel cells
JP5786634B2 (ja) 2次電池型燃料電池
US20160104895A1 (en) Templated non-carbon metal oxide catalyst support
WO2016108255A1 (ja) 膜/電極接合体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP