JP2016072207A - 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池 - Google Patents

水酸化物イオン伝導性セラミックスセパレータを用いた二次電池 Download PDF

Info

Publication number
JP2016072207A
JP2016072207A JP2014232921A JP2014232921A JP2016072207A JP 2016072207 A JP2016072207 A JP 2016072207A JP 2014232921 A JP2014232921 A JP 2014232921A JP 2014232921 A JP2014232921 A JP 2014232921A JP 2016072207 A JP2016072207 A JP 2016072207A
Authority
JP
Japan
Prior art keywords
secondary battery
negative electrode
separator
hydroxide
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014232921A
Other languages
English (en)
Other versions
JP6408878B2 (ja
Inventor
昌平 横山
Shohei Yokoyama
昌平 横山
翔 山本
Sho Yamamoto
翔 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JP2016072207A publication Critical patent/JP2016072207A/ja
Application granted granted Critical
Publication of JP6408878B2 publication Critical patent/JP6408878B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】水酸化物イオン伝導性セラミックスセパレータのアルカリ電解液による劣化を有意に低減可能な、信頼性の高い二次電池を提供する。【解決手段】正極と、負極と、アルカリ金属水酸化物水溶液である電解液と、電解液と接触し、かつ、正極と負極を隔離する、水酸化物イオン伝導性を有する無機固体電解質体からなるセラミックスセパレータとを備えてなる二次電池。無機固体電解質体は、M2+1−xM3+x(OH)2An−x/n・mH2O(式中、M2+は2価の陽イオンであり、M3+は3価の陽イオンであり、An−はn価の陰イオンであり、nは1以上の整数であり、xは0.1〜0.4である)の基本組成を有する層状複水酸化物からなる。M2+及び/又はM3+に対応する金属元素を含む金属化合物が電解液に溶解され、それにより層状複水酸化物の電解液による浸食が抑制されるように構成されてなる。【選択図】図1

Description

本発明は、水酸化物イオン伝導性セラミックスセパレータを用いた二次電池に関する。
ニッケル亜鉛二次電池や亜鉛空気二次電池等の亜鉛二次電池は古くから開発及び検討がなされてきたものの、未だ実用化に至っていない。これは、充電時に負極を構成する亜鉛がデンドライトという樹枝状結晶を生成し、このデンドライトがセパレータを突き破って正極と短絡を引き起こすという問題があるためである。したがって、ニッケル亜鉛二次電池や亜鉛空気二次電池等の亜鉛二次電池において、亜鉛デンドライトによる短絡を防止する技術が強く望まれている。
そのような問題ないし要望に対処すべく、水酸化物イオン伝導性セラミックスセパレータを用いた電池が提案されている。例えば、特許文献1(国際公開第2013/118561号)には、ニッケル亜鉛二次電池において、亜鉛デンドライトによる短絡の防止を目的として、水酸化物イオン伝導性の無機固体電解質体からなるセパレータを正極及び負極間に設けることが開示されており、無機固体電解質体として一般式:M2+ 1−x3+ (OH)n− x/n・mHO(式中、M2+は少なくとも1種以上の2価の陽イオンであり、M3+は少なくとも1種以上の3価の陽イオンであり、An−はn価の陰イオンであり、nは1以上の整数、xは0.1〜0.4である)の基本組成を有する層状複水酸化物(LDH)を用いることが提案されている。また、特許文献2(国際公開第2013/073292号)には、亜鉛空気二次電池において、上記同様の基本組成の層状複水酸化物(LDH)からなるセパレータを空気極の一面側に密着させて設けることにより、充電時における亜鉛デンドライトによる正負極間の短絡と、二酸化炭素の電解液への混入との両方を防止できることが提案されている。
水酸化物イオン伝導性セラミックスセパレータの亜鉛二次電池以外への適用例として、特許文献3(国際公開第2013/161516号)には、上記同様の基本組成の層状複水酸化物(LDH)で構成される無機固体電解質体を陰イオン交換体として用いたリチウム空気二次電池が開示されており、この陰イオン交換体により二酸化炭素の電池内への混入を防止できるとされている。
ところで、上述した多くのアルカリ二次電池において電解液として水酸化カリウム(KOH)水溶液が用いられており、その改良も提案されている。例えば、引用文献4(特表2001−500661号公報)には、亜鉛負極に接触している電解液が70〜100gのアルミニウムが溶解している初期濃度4〜8MのKOH水溶液で構成されているアルカリ蓄電池が開示されており、アルミニウムの添加により電解液における亜鉛の溶解度を制限している。なお、この文献の実施例で用いられるイオン交換膜は炭化水素系イオン交換膜であり、セラミックスセパレータではない。
国際公開第2013/118561号 国際公開第2013/073292号 国際公開第2013/161516号 特表2001−500661号公報
本出願人は、水酸化物イオン伝導性を有するが透水性及び通気性を有しない程に高度に緻密化されたセラミックスセパレータ(無機固体電解質セパレータ)の開発に先だって成功している。このようなセパレータ(あるいは多孔質基材付きセパレータ)を用いて亜鉛ニッケル電池、亜鉛空気二次電池等の二次電池を構成した場合、亜鉛デンドライトによる短絡や(特に金属空気二次電池の場合に問題となる)二酸化炭素の混入を防止できる。そして、この効果を長期的に発揮させるためには、セラミックスセパレータの劣化を抑制することが望まれる。しかしながら、水酸化物イオン伝導性セラミックスセパレータが適用される二次電池(例えば金属空気電池やニッケル亜鉛電池)の電解液には、高い水酸化物イオン伝導度が要求され、それ故、pHが14程度で強アルカリ性のKOH水溶液が用いられることが望まれる。このため、セラミックスセパレータにはこのような強アルカリ性電解液中においても殆ど劣化しないといった高度な耐アルカリ性が望まれる。
本発明者らは、今般、アルカリ電解液中に所定の金属化合物を意図的に溶解させておくことで、水酸化物イオン伝導性セラミックスセパレータのアルカリ電解液による劣化を有意に低減できるとの知見を得た。そして、この電解液を用いて、水酸化物イオン伝導性セラミックスセパレータのアルカリ電解液による劣化を有意に低減可能な、信頼性の高い二次電池を提供できるとの知見も得た。
したがって、本発明の目的は、水酸化物イオン伝導性セラミックスセパレータの劣化を有意に低減可能な、信頼性の高い二次電池を提供することにある。
本発明の一態様によれば、水酸化物イオン伝導性セラミックスセパレータを用いた二次電池であって、該二次電池が、正極と、負極と、アルカリ金属水酸化物水溶液である電解液と、該電解液と接触し、かつ、前記正極と前記負極を隔離する、水酸化物イオン伝導性を有する無機固体電解質体からなるセラミックスセパレータとを備えてなり、
前記無機固体電解質体が、M2+ 1−x3+ (OH)n− x/n・mHO(式中、M2+は2価の陽イオンであり、M3+は3価の陽イオンであり、An−はn価の陰イオンであり、nは1以上の整数であり、xは0.1〜0.4である)の基本組成を有する層状複水酸化物からなり、
2+及び/又はM3+に対応する金属元素を含む金属化合物が前記電解液に溶解され、それにより前記層状複水酸化物の前記電解液による浸食が抑制されるように構成されてなる、二次電池が提供される。
本発明の好ましい態様によれば、前記正極が水酸化ニッケル及び/又はオキシ水酸化ニッケルを含み、
前記電解液が、前記正極が浸漬される正極電解液と、前記負極が浸漬される負極電解液から構成され、
前記二次電池が、前記正極、前記正極電解液、前記負極、及び前記負極電解液を収容する容器を備え、
前記セラミックスセパレータが、前記容器内に、前記正極及び前記正極電解液を収容する正極室と、前記負極及び前記負極電解液を収容する負極室とを区画するように設けられ、それにより該電池がニッケル亜鉛二次電池とされうる。
本発明の好ましい態様によれば、前記正極が空気極であり、
前記負極が前記電解液に浸漬され、
前記二次電池が、前記負極及び前記電解液を収容する容器を備え、該容器が開口部を有してなり、
前記セラミックスセパレータが、前記開口部を前記電解液と接触可能に塞いで前記容器と負極側密閉空間を形成し、それにより前記空気極と前記電解液を水酸化物イオン伝導可能に隔離し、それにより該電池が亜鉛空気二次電池とされうる。
本発明の一態様によるニッケル亜鉛電池の一例を模式的に示す概念図であり、放電末状態を示す。 図1に示されるニッケル亜鉛電池の満充電状態を示す図である。 本発明の一態様による亜鉛空気二次電池の一例を模式的に示す概念図である。 図3Aに示される亜鉛空気二次電池の斜視図である。 多孔質基材付きセパレータの一態様を示す模式断面図である。 多孔質基材付きセパレータの他の一態様を示す模式断面図である。 層状複水酸化物(LDH)板状粒子を示す模式図である。 例2においてKOH水溶液に浸漬される前のLDH緻密体の微構造を観察したSEM画像である。 例2においてAl濃度0.7mol/LのKOH水溶液に30℃で1週間浸漬された後のLDH緻密体の微構造を観察したSEM画像である。 例2においてAl濃度0.7mol/LのKOH水溶液に70℃で1週間浸漬された後のLDH緻密体の微構造を観察したSEM画像である。 例2においてAl濃度0mol/LのKOH水溶液に30℃で1週間浸漬された後のLDH緻密体の微構造を観察したSEM画像である。 例3で作製したアルミナ製多孔質基材の表面のSEM画像である。 例3において試料の結晶相に対して得られたXRDプロファイルである。 例3において観察された膜試料の表面微構造を示すSEM画像である。 例3において観察された複合材料試料の研磨断面微構造のSEM画像である。 例3で使用された緻密性判別測定系の分解斜視図である。 例3で使用されたる緻密性判別測定系の模式断面図である。 例3の緻密性判定試験IIで使用された測定用密閉容器の分解斜視図である。 例3の緻密性判定試験IIで使用された測定系の模式断面図である。
二次電池
本発明の二次電池は、水酸化物イオン伝導性セラミックスセパレータを用いたものである。本発明の二次電池は、ニッケル亜鉛二次電池、酸化銀亜鉛二次電池、酸化マンガン亜鉛二次電池、亜鉛空気二次電池、及びその他各種のアルカリ亜鉛二次電池、並びにリチウム空気二次電池等、水酸化物イオン伝導性セラミックスセパレータを適用可能な各種二次電池であることができる。特に、ニッケル亜鉛二次電池及び亜鉛空気二次電池が好ましい。したがって、以下の一般的説明において、ニッケル亜鉛二次電池に関する図1及び亜鉛空気二次電池に関する図3A及び3Bに言及することがあるが、本発明の二次電池はニッケル亜鉛二次電池及び亜鉛空気二次電池に限定されるべきではなく、水酸化物イオン伝導性セラミックスセパレータを採用可能な上述の各種二次電池を概念的に包含するものである。
本発明の一態様による二次電池は、正極と、負極と、電解液と、セラミックスセパレータとを備えてなる。電解液はアルカリ金属水酸化物水溶液である。セラミックスセパレータは、電解液と接触し、かつ、正極と負極を隔離する。セラミックスセパレータは、水酸化物イオン伝導性を有する無機固体電解質体からなり、この無機固体電解質体は、M2+ 1−x3+ (OH)n− x/n・mHO(式中、M2+は2価の陽イオンであり、M3+は3価の陽イオンであり、An−はn価の陰イオンであり、nは1以上の整数であり、xは0.1〜0.4である)の基本組成を有する層状複水酸化物からなる。正極は二次電池の種類に応じて適宜選択すればよく、空気極であってもよい。負極も二次電池の種類に応じて適宜選択すればよく、例えば各種亜鉛二次電池の場合、亜鉛、亜鉛合金及び/又は亜鉛化合物を含みうる。所望により、セラミックスセパレータの片面又は両面には多孔質基材(好ましくはセラミックス多孔質基材)が設けられてよい。上述した二次電池の構成部材のうち少なくとも負極及びアルカリ電解液は容器(好ましくは樹脂製容器)に収容されうる。図1に示されるニッケル亜鉛電池10のように、容器22は正極12及び正極電解液14も収容しうるが、図3Aに示される亜鉛空気二次電池30のように正極を空気極32として構成する場合には、空気極32(正極)は容器46に完全に収容されている必要はなく、単に容器46の開口部46aを塞ぐような形で(例えば蓋のような形で)取り付けられてよい。なお、正極及びアルカリ電解液は必ずしも分離している必要はなく、正極とアルカリ電解液が混合された正極合材として構成されてもよいし、正極が空気極の場合にはそもそも正極側に電解液は不要である。また、負極及びアルカリ電解液は必ずしも分離している必要はなく、負極とアルカリ電解液が混合された負極合材として構成されてもよい。所望により、正極集電体が正極に接触して設けられてよい。また、所望により、負極集電体が負極に接触して設けられてよい。
前述のとおり、このようなセラミックスセパレータを用いて亜鉛ニッケル電池、亜鉛空気二次電池等の二次電池を構成した場合、亜鉛デンドライトによる短絡や(特に金属空気二次電池の場合に問題となる)二酸化炭素の混入を防止できる。そして、この効果を長期的に発揮させるためには、セラミックスセパレータの劣化を抑制することが望まれる。しかしながら、水酸化物イオン伝導性セラミックスセパレータが適用される二次電池(例えば金属空気電池やニッケル亜鉛電池)の電解液には、高い水酸化物イオン伝導度が要求され、それ故、pHが14程度で強アルカリ性のKOH水溶液が用いられることが望まれる。このため、セラミックスセパレータにはこのような強アルカリ性電解液中においても殆ど劣化しないといった高度な耐アルカリ性が望まれる。この点、本発明者らは、今般、アルカリ電解液中に所定の金属化合物を意図的に溶解させておくことで、水酸化物イオン伝導性セラミックスセパレータのアルカリ電解液による劣化を有意に低減できるとの知見を得た。すなわち、本発明の二次電池は、層状複水酸化物の一般式:M2+ 1−x3+ (OH)n− x/n・mHOにおけるM2+及び/又はM3+に対応する金属元素を含む金属化合物が電解液に溶解され、それにより層状複水酸化物の電解液による浸食が抑制されるように構成されてなる。特に、層状複水酸化物の電解液による浸食が抑制されることで、層状複水酸化物の本来有する優れた水酸化物イオン伝導性やセラミックスセパレータの有する優れた緻密性を長期間にわたって望ましく維持することができる。すなわち、本発明によれば、水酸化物イオン伝導性セラミックスセパレータのアルカリ電解液による劣化を有意に低減可能な、信頼性の高い二次電池を提供することができる。
セラミックスセパレータ(以下、単に「セパレータ」ともいう)は、電解液と接触し、かつ、正極と負極を隔離するように設けられる。例えば、図1に示されるニッケル亜鉛二次電池10のように、セパレータ20が、容器22内に、正極12及び正極電解液14を収容する正極室24と、負極16及び負極電解液18を収容する負極室26とを区画するように設けられてもよいし、図3Aに示される亜鉛空気二次電池30のように、セパレータ40が容器46の開口部46aを電解液36と接触可能に塞いで容器46と負極側密閉空間を形成するように設けられてもよい。セパレータないしそれを構成する無機固体電解質体は水酸化物イオン伝導性を有するが透水性及び通気性を有しないのが好ましい。すなわち、セパレータないし無機固体電解質体が透水性及び通気性を有しないということは、セパレータないし無機固体電解質体が水及び気体を通さない程の高度な緻密性を有することを意味し、透水性や通気性を有する多孔性フィルムやその他の多孔質材料ではないことを意味する。このため、亜鉛二次電池の場合には、充電時に生成する亜鉛デンドライトによるセパレータの貫通を物理的に阻止して正負極間の短絡を防止するのに極めて効果的な構成となっている。また、金属空気二次電池の場合には、空気中の二酸化炭素の侵入を阻止して電解液中での(二酸化炭素に起因する)アルカリ炭酸塩の析出を防止するのに極めて効果的な構成となっている。いずれにしても、セラミックスセパレータは水酸化物イオン伝導性を有するため、正極側(例えばアルカリ電解液又は空気極)と負極側(例えばアルカリ電解液)との間で必要な水酸化物イオンの効率的な移動を可能として正極及び負極における充放電反応を実現することができる。
セラミックスセパレータは水酸化物イオン伝導性を有する無機固体電解質体からなる。セパレータとして水酸化物イオン伝導性の無機固体電解質体を用いることで、正負極間の電解液を隔離するとともに水酸化物イオン伝導性を確保する。無機固体電解質体は透水性及び通気性を有しない程にまで緻密化されていることが望まれる。例えば、無機固体電解質体は、アルキメデス法で算出して、90%以上の相対密度を有するのが好ましく、より好ましくは92%以上、さらに好ましくは95%以上であるが、亜鉛デンドライトの貫通を防止する程度に緻密で硬いものであればこれに限定されない。このような緻密で硬い無機固体電解質体は水熱処理を経て製造することが可能である。したがって、水熱処理を経ていない単なる圧粉体は、緻密でなく、溶液中で脆いことから本発明の無機固体電解質体として好ましくない。もっとも、水熱処理を経たものでなくても、緻密で硬い無機固体電解質体が得られるかぎりにおいて、あらゆる製法が採用可能である。
セラミックスセパレータないし無機固体電解質体は、水酸化物イオン伝導性を有する無機固体電解質を含んで構成される粒子群と、これら粒子群の緻密化や硬化を助ける補助成分との複合体であってもよい。あるいは、セパレータは、基材としての開気孔性の多孔質体と、この多孔質体の孔を埋めるように孔中に析出及び成長させた無機固体電解質(例えば層状複水酸化物)との複合体であってもよい。この多孔質体を構成する物質の例としては、アルミナ、ジルコニア等のセラミックスや、発泡樹脂又は繊維状物質からなる多孔性シート等の絶縁性の物質が挙げられる。
無機固体電解質体は、一般式:M2+ 1−x3+ (OH)n− x/n・mHO(式中、M2+は2価の陽イオンであり、M3+は3価の陽イオンであり、An−はn価の陰イオンであり、nは1以上の整数であり、xは0.1〜0.4である)の基本組成を有する層状複水酸化物(LDH)を含んでなるのが好ましく、より好ましくはそのようなLDHからなる。上記一般式において、M2+は任意の2価の陽イオンでありうるが、好ましい例としてはMg2+、Ca2+及びZn2+が挙げられ、より好ましくはMg2+である。M3+は任意の3価の陽イオンでありうるが、好ましい例としてはAl3+又はCr3+が挙げられ、より好ましくはAl3+である。An−は任意の陰イオンでありうるが、好ましい例としてはOH及びCO 2−が挙げられる。したがって、上記一般式において、M2+がMg2+を含み、M3+がAl3+を含み、An−がOH及び/又はCO 2−を含むのが好ましい。nは1以上の整数であるが、好ましくは1又は2である。xは0.1〜0.4であるが、好ましくは0.2〜0.35である。mは任意の実数である。また、上記一般式においてM3+の一部または全部を4価またはそれ以上の価数の陽イオンで置き換えてもよく、その場合は、上記一般式における陰イオンAn−の係数x/nは適宜変更されてよい。
無機固体電解質体は水熱処理によって緻密化されたものであるのが好ましい。水熱処理は、層状複水酸化物、とりわけMg−Al型層状複水酸化物の一体緻密化に極めて有効である。水熱処理による緻密化は、例えば、特許文献1(国際公開第2013/118561号)に記載されるように、耐圧容器に純水と板状の圧粉体を入れ、120〜250℃、好ましくは180〜250℃の温度、2〜24時間、好ましくは3〜10時間で行うことができる。もっとも、水熱処理を用いたより好ましい製造方法については後述するものとする。
無機固体電解質体は、板状、膜状又は層状のいずれの形態であってもよく、膜状又は層状の形態である場合、膜状又は層状の無機固体電解質体が多孔質基材上又はその中に形成されたものであるのが好ましい。板状の形態であると十分な堅さを確保して亜鉛デンドライトの貫通をより効果的に阻止することができる。一方、板状よりも厚さが薄い膜状又は層状の形態であると亜鉛デンドライトの貫通を阻止するための必要最低限の堅さを確保しながらセパレータの抵抗を有意に低減できるとの利点がある。板状の無機固体電解質体の好ましい厚さは、0.01〜0.5mmであり、より好ましくは0.02〜0.2mm、さらに好ましくは0.05〜0.1mmである。また、無機固体電解質体の水酸化物イオン伝導度は高ければ高い方が望ましいが、典型的には10−4〜10−1S/mの伝導度を有する。一方、膜状又は層状の形態の場合には、厚さが100μm以下であるのが好ましく、より好ましくは75μm以下、さらに好ましくは50μm以下、特に好ましくは25μm以下、最も好ましくは5μm以下である。このように薄いことでセパレータの低抵抗化を実現できる。厚さの下限値は用途に応じて異なるため特に限定されないが、セパレータ膜ないし層として望まれるある程度の堅さを確保するためには厚さ1μm以上であるのが好ましく、より好ましくは2μm以上である。
セラミックスセパレータの片面又は両面に多孔質基材を設けてもよい。多孔質基材28は透水性を有し、それ故アルカリ電解液がセパレータに到達可能であることはいうまでもないが、多孔質基材があることでセパレータ上により安定に水酸化物イオンを保持することも可能となる。また、多孔質基材により強度を付与できるため、セパレータを薄くして低抵抗化を図ることもできる。また、多孔質基材上又はその中に無機固体電解質体(好ましくはLDH)の緻密膜ないし緻密層を形成することもできる。セパレータの片面に多孔質基材を設ける場合には、多孔質基材を用意して、この多孔質基材に無機固体電解質を成膜する手法が考えられる(この手法については後述する)。一方、セパレータの両面に多孔質基材を設ける場合には、2枚の多孔質基材の間に無機固体電解質の原料粉末を挟んで緻密化を行うことが考えられる。例えば、図1において多孔質基材28はセパレータ20の片面の全面にわたって設けられているが、セパレータ20の片面の一部(例えば充放電反応に関与する領域)にのみ設ける構成としてもよい。例えば、多孔質基材上又はその中に無機固体電解質体を膜状又は層状に形成した場合、その製法に由来して、セパレータの片面の全面にわたって多孔質基材が設けられた構成になるのが典型的である。一方、無機固体電解質体を(基材を必要としない)自立した板状に形成した場合には、セパレータの片面の一部(例えば充放電反応に関与する領域)にのみ多孔質基材を後付けしてもよいし、片面の全面にわたって多孔質基材を後付けしてもよい。
電解液は、アルカリ金属水酸化物水溶液であれば、二次電池に採用可能ないかなるアルカリ電解液であってもよい。図1に示されるように正極電解液14及び負極電解液18が存在する場合には、アルカリ金属水酸化物水溶液が正極電解液14及び負極電解液18として用いられるのが好ましい。アルカリ金属水酸化物の例としては、水酸化カリウム、水酸化ナトリウム、水酸化リチウム、水酸化アンモニウム等が挙げられるが、水酸化カリウムがより好ましい。亜鉛二次電池の場合、亜鉛合金の自己溶解を抑制するために、電解液中に酸化亜鉛、水酸化亜鉛等の亜鉛化合物を添加してもよい。前述のとおり、アルカリ電解液は正極及び/又は負極と混合させて正極合材及び/又は負極合材の形態で存在させてもよい。また、電解液の漏洩を防止するために電解液をゲル化してもよい。ゲル化剤としては電解液の溶媒を吸収して膨潤するようなポリマーを用いるのが望ましく、ポリエチレンオキサイド,ポリビニルアルコール,ポリアクリルアミドなどのポリマーやデンプンが用いられる。
前述のとおり、電解液には層状複水酸化物の一般式:M2+ 1−x3+ (OH)n− x/n・mHOにおけるM2+及び/又はM3+に対応する金属元素を含む金属化合物が溶解される。金属化合物は電解液に意図的に溶解されるものであり、電解液に予め溶解されるのが好ましく、例えば電池又は電解液の製造時や電池の使用前に溶解されればよい。もっとも、金属化合物は電解液に事後的に(例えば電池使用時に)溶解される構成としてもよく、この場合、金属化合物が電池の使用等に伴い徐々に溶解されるような構成としてもよい。この金属元素は、何らかの形態で電解液に溶解されていればよく、典型的には、金属イオン、水酸化物及び/又はヒドロキシ錯体の形態で電解液に溶解されうる。例えば、Alが溶解される形態としては、Al3+、Al(OH)2+、Al(OH) 、Al(OH) 、Al(OH) 、Al(OH) 2−等が挙げられる。金属化合物はM3+に対応する金属元素を含むのが好ましく、そのような金属元素の好ましい例としてはAl及びCrが挙げられ、最も好ましくはAlである。
Alを含む金属化合物の好ましい例としては、水酸化アルミニウム、γアルミナ、αアルミナ、ベーマイト、ダイアスポア、ハイドロタルサイト、及びそれらの任意の組合せが挙げられ、より好ましくは水酸化アルミニウム及び/又はγアルミナであり、最も好ましくは水酸化アルミニウムである。電解液におけるAlの濃度が好ましくは0.001mol/L以上、好ましくは0.01mol/L以上、より好ましくは0.1mol/L以上、さらに好ましくは1.0mol/L以上、特に好ましくは2.0mol/L以上、特により好ましくは3.0mol/Lを超え、最も好ましくは3.3mol/L以上である。このようにAlは意図的に多く溶解させるのが好ましく、例えば、セラミックスセパレータに含まれるAlよりも多い量を溶解させるのがより好ましい。したがって、電解液におけるAlの濃度の上限値は特に限定されず、Al化合物の飽和溶解度に達していてもよいが、例えば20mol/L以下又は10mol/L以下である。
容器は、少なくとも負極及びアルカリ電解液を収容する。前述のとおり、図1に示されるニッケル亜鉛電池10のように容器22は正極12及び正極電解液14も収容しうるが、図3Aに示される亜鉛空気二次電池30のように正極を空気極32として構成する場合には空気極32(正極)は容器46に完全に収容されている必要はなく、単に容器46の開口部46aを塞ぐような形で(例えば蓋のような形で)取り付けられてよい。いずれにしても、容器は液密性及び気密性を有する構造を有するのが好ましい。容器は好ましくは樹脂製容器であり、樹脂製容器を構成する樹脂は水酸化カリウム等のアルカリ金属水酸化物に対する耐性を有する樹脂であるのが好ましく、より好ましくはポリオレフィン樹脂及びABS樹脂であり、さらに好ましくはABS樹脂である。容器にはセラミックスセパレータ及び/又は多孔質部材が市販の接着剤を用いて又は熱融着により固定されるのが好ましい。
ニッケル亜鉛電池
本発明の好ましい態様によれば、ニッケル亜鉛二次電池が提供される。図1に、本態様によるニッケル亜鉛電池の一例を模式的に示す。図1に示されるニッケル亜鉛電池は充電が行われる前の初期状態を示しており、放電末状態に相当する。もっとも、本態様のニッケル亜鉛電池は満充電状態で構成されてもよいのはいうまでもない。図1に示されるように、本態様によるニッケル亜鉛電池10は、正極12、正極電解液14、負極16、負極電解液18、及びセラミックスセパレータ20を容器22内に備えてなる。正極12は、水酸化ニッケル及び/又はオキシ水酸化ニッケルを含んでなる。正極電解液14はアルカリ金属水酸化物を含んでなるアルカリ電解液であり、正極12が浸漬される。負極16は亜鉛及び/又は酸化亜鉛を含んでなる。負極電解液18はアルカリ金属水酸化物を含んでなるアルカリ電解液であり、負極16が浸漬される。容器22は、正極12、正極電解液14、負極16、及び負極電解液18を収容する。正極12及び正極電解液14は必ずしも分離している必要はなく、正極12と正極電解液14が混合された正極合材として構成されてもよい。同様に、負極16及び負極電解液18は必ずしも分離している必要はなく、負極16と負極電解液18が混合された負極合材として構成されてもよい。所望により、正極集電体13が正極12に接触して設けられる。また、所望により、負極集電体17が負極16に接触して設けられる。
セパレータ20は、容器22内に、正極12及び正極電解液14を収容する正極室24と、負極16及び負極電解液18を収容する負極室26とを区画するように設けられる。セパレータ20は水酸化物イオン伝導性を有するが透水性を有しない。すなわち、セパレータ20が透水性を有しないということは、セパレータ20が水を通さない程の高度な緻密性を有することを意味し、透水性を有する多孔性フィルムやその他の多孔質材料ではないことを意味する。このため、充電時に生成する亜鉛デンドライトによるセパレータの貫通を物理的に阻止して正負極間の短絡を防止するのに極めて効果的な構成となっている。もっとも、図1に示されるようにセパレータ20に多孔質基材28が付設されてよいのはいうまでもない。いずれにしても、セパレータ20は水酸化物イオン伝導性を有するため、正極電解液14と負極電解液18との間で必要な水酸化物イオンの効率的な移動を可能として正極室24及び負極室26における充放電反応を実現することができる。正極室24及び負極室26における充電時における反応は以下に示されるとおりであり、放電反応はその逆となる。
‐ 正極: Ni(OH)+OH→NiOOH+HO+e
‐ 負極: ZnO+HO+2e→Zn+2OH
ただし、上記負極反応は以下の2つの反応で構成されるものである。
‐ ZnOの溶解反応: ZnO+HO+2OH→Zn(OH) 2−
‐ Znの析出反応: Zn(OH) 2−+2e→Zn+4OH
ニッケル亜鉛電池10は、正極室24に充放電時の正極反応に伴う水分量の増減を許容する容積の正極側余剰空間25を有し、かつ、負極室26に充放電時の負極反応に伴う水分量の減増を許容する容積の負極側余剰空間27を有するのが好ましい。これにより正極室24及び負極室26における水分量の増減に伴う不具合(例えば、液漏れ、容器内圧の変化に伴う容器の変形等)を効果的に防止して、ニッケル亜鉛電池の信頼性を更に向上することができる。すなわち、上記反応式から分かるように、充電時には正極室24で水が増加する一方、負極室26で水が減少する。一方、放電時には正極室24で水が減少する一方、負極室26で水が増加する。この点、従来の殆どのセパレータは、透水性を有するものであるため、セパレータを介して水が自由に行き来できる。しかしながら、本態様に用いるセパレータ20は透水性を有しないという緻密性の高い構造を有するため、セパレータ20を介して水が自由に行き来できず、充放電に伴い正極室24内及び/又は負極室26内において電解液量が一方的に増大して液漏れ等の不具合を引き起こしうる。そこで、正極室24に充放電時の正極反応に伴う水分量の増減を許容する容積の正極側余剰空間25を有することで、図2に示されるように、充電時において正極電解液14の増加に対処可能なバッファとして機能させることができる。すなわち、図2に示されるように、満充電後においても正極側余剰空間25がバッファとして機能することで、増量した正極電解液14を溢れ出させることなく確実に正極室24内に保持することができる。同様に、負極室26に充放電時の負極反応に伴う水分量の減増を許容する容積の負極側余剰空間27を有することで、放電時に負極電解液18の増加に対処可能なバッファとして機能させることができる。
正極室24及び負極室26における水分の増減量は、前述した反応式に基づいて算出することができる。前述した反応式から分かるように、充電時における正極12でのHOの生成量は、負極16におけるHOの消費量の2倍に相当する。したがって、正極側余剰空間25の容積を負極側余剰空間27よりも大きくしてもよい。いずれにしても、正極側余剰空間25の容積は、正極室24において見込まれる水分増加量のみならず、正極室24に予め存在している空気等のガスや過充電時に正極12より発生しうる酸素ガスをも適切な内圧で収容できるように若干ないしある程度余裕を持たせた容積とするのが好ましい。この点、負極側余剰空間27は、図1のように正極側余剰空間25と同程度の容積とすれば十分であるとはいえるが、放電末状態で電池を構成する際には充電に伴う水の減少量を超える余剰空間を設けておくことが望まれる。いずれにしても、負極側余剰空間27は正極室24内の半分程度の量しか水の増減がないため正極側余剰空間25よりも小さくしてもよい。
ニッケル亜鉛電池10が放電末状態で構築される場合には、正極側余剰空間25が、充電時の正極反応に伴い増加することが見込まれる水分量を超える容積を有し、正極側余剰空間25には正極電解液14が予め充填されておらず、かつ、負極側余剰空間27が、充電時の負極反応に伴い減少することが見込まれる水分量を超える容積を有し、負極側余剰空間27には減少することが見込まれる量の負極電解液18が予め充填されているのが好ましい。一方、ニッケル亜鉛電池10が満充電状態で構築される場合には、正極側余剰空間25が、放電時の正極反応に伴い減少することが見込まれる水分量を超える容積を有し、正極側余剰空間25には減少することが見込まれる量の正極電解液14が予め充填されており、かつ、負極側余剰空間27が、放電時の負極反応に伴い増加することが見込まれる水分量を超える容積を有し、負極側余剰空間27には負極電解液18が予め充填されていないのが好ましい。
正極側余剰空間25には正極12が充填されておらず且つ/又は負極側余剰空間27には負極16が充填されていないのが好ましく、正極側余剰空間25及び負極側余剰空間27に正極12及び負極16がそれぞれ充填されていないのがより好ましい。これらの余剰空間においては充放電時に水分量の減少による電解液の枯渇が起こりうる。すなわち、これらの余剰空間に正極12や負極16が充填されていても充放電反応に十分に関与させることができないため、非効率となる。したがって、正極側余剰空間25及び負極側余剰空間27に正極12及び負極16をそれぞれ充填させないことで、正極12及び負極16を無駄無くより効率的且つ安定的に電池反応に関与させることができる。
セパレータ20は水酸化物イオン伝導性を有するが透水性を有しない部材であり、典型的には板状、膜状又は層状の形態である。セパレータ20は、容器22内に設けられ、正極12及び正極電解液14を収容する正極室24と、負極16及び負極電解液18を収容する負極室26とを区画する。また、前述のとおり、正極12とセパレータ20の間及び/又は負極16とセパレータ20の間に不織布等の吸水性樹脂又は保液性樹脂製の第2のセパレータ(樹脂セパレータ)を配置して、電解液が減少した場合であっても電解液を正極及び/又は負極の反応部分に電解液を保持可能とする構成としてもよい。吸水性樹脂又は保液性樹脂の好ましい例としては、ポリオレフィン系樹脂が挙げられる。
正極12は水酸化ニッケル及び/又はオキシ水酸化ニッケルを含んでなる。例えば、ニッケル亜鉛電池を図1に示されるような放電末状態で構成する場合には正極12として水酸化ニッケルを用いればよく、図2に示されるような満充電状態で構成する場合には正極12としてオキシ水酸化ニッケルを用いればよい。水酸化ニッケル及びオキシ水酸化ニッケル(以下、水酸化ニッケル等という)は、ニッケル亜鉛電池に一般的に用いられている正極活物質であり、典型的には粒子形態である。水酸化ニッケル等には、その結晶格子中にニッケル以外の異種元素が固溶されていてもよく、それにより高温下での充電効率の向上が図れる。このような異種元素の例としては、亜鉛及びコバルトが挙げられる。また、水酸化ニッケル等はコバルト系成分と混合されたものであってもよく、そのようなコバルト系成分の例としては、金属コバルトやコバルト酸化物(例えば一酸化コバルト)の粒状物が挙げられる。さらに、水酸化ニッケル等の粒子(異種元素が固溶されていてよい)の表面をコバルト化合物で被覆してもよく、そのようなコバルト化合物の例としては、一酸化コバルト、2価のα型水酸化コバルト、2価のβ型水酸化コバルト、2価を超える高次コバルトの化合物、及びそれらの任意の組合せが挙げられる。
正極12は、水酸化ニッケル系化合物及びそれに固溶されうる異種元素以外にも、追加元素をさらに含んでいてもよい。そのような追加元素の例としては、スカンジウム(Sc)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルピウム(Er)、ツリウム(Tm)、ルテチウム(Lu)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、レニウム(Re)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)、金(Au)および水銀(Hg)、及びそれらの任意の組合せが挙げられる。追加元素の含有形態は特に限定されず、金属単体又は金属化合物(例えば、酸化物、水酸化物、ハロゲン化物及び炭酸化物)の形態で含まれていてよい。追加元素を含む金属単体又は金属化合物を添加する場合、その添加量は、水酸化ニッケル系化合物100重量部に対し、好ましくは0.5〜20重量部であり、より好ましくは2〜5重量部である。
正極12は電解液等をさらに含むことにより正極合材として構成されてもよい。正極合剤は、水酸化ニッケル系化合物粒子、電解液、並びに所望により炭素粒子等の導電材やバインダー等を含んでなることができる。
正極12に接触して正極集電体13が設けられるのが好ましい。正極集電体13は図1に示されるように容器22を貫通してその外側にまで延在して正極端子をそれ自体で構成してもよいし、別途設けられた正極端子に容器22内又は外で接続される構成としてもよい。正極集電体13の好ましい例としては、発泡ニッケル板等のニッケル製多孔質基板が挙げられる。この場合、例えば、ニッケル製多孔質基板上に水酸化ニッケル等の電極活物質を含むペーストを均一に塗布して乾燥させることにより正極12/正極集電体13からなる正極板を好ましく作製することができる。その際、乾燥後の正極板(すなわち正極12/正極集電体13)にプレス処理を施して、電極活物質の脱落防止や電極密度の向上を図ることも好ましい。
負極16は亜鉛及び/又は酸化亜鉛を含んでなる。亜鉛は、負極に適した電気化学的活性を有するものであれば、亜鉛金属、亜鉛化合物及び亜鉛合金のいずれの形態で含まれていてもよい。負極材料の好ましい例としては、酸化亜鉛、亜鉛金属、亜鉛酸カルシウム等が挙げられるが、亜鉛金属及び酸化亜鉛の混合物がより好ましい。負極16はゲル状に構成してもよいし、電解液と混合して負極合材としてもよい。例えば、負極活物質に電解液及び増粘剤を添加することにより容易にゲル化した負極を得ることができる。増粘剤の例としては、ポリビニルアルコール、ポリアクリル酸塩、CMC、アルギン酸等が挙げられるが、ポリアクリル酸が強アルカリに対する耐薬品性に優れているため好ましい。
亜鉛合金として、無汞化亜鉛合金として知られている水銀及び鉛を含まない亜鉛合金を用いることができる。例えば、インジウムを0.01〜0.06質量%、ビスマスを0.005〜0.02質量%、アルミニウムを0.0035〜0.015質量%を含む亜鉛合金が水素ガス発生の抑制効果があるので好ましい。とりわけ、インジウムやビスマスは放電性能を向上させる点で有利である。亜鉛合金の負極への使用は、アルカリ性電解液中での自己溶解速度を遅くすることで、水素ガス発生を抑制して安全性を向上できる。
負極材料の形状は特に限定されないが、粉末状とすることが好ましく、それにより表面積が増大して大電流放電に対応可能となる。好ましい負極材料の平均粒径は、亜鉛合金の場合、90〜210μmの範囲であり、この範囲内であると表面積が大きいことから大電流放電への対応に適するとともに、電解液及びゲル化剤と均一に混合しやすく、電池組み立て時の取り扱い性も良い。
負極16に接触して負極集電体17が設けられるのが好ましい。負極集電体17は図1に示されるように容器22を貫通してその外側にまで延在して負極端子をそれ自体で構成してもよいし、別途設けられた負極端子に容器22内又は外で接続される構成としてもよい。負極集電体17の好ましい例としては、銅パンチングメタルが挙げられる。この場合、例えば、銅パンチングメタル上に、酸化亜鉛粉末及び/又は亜鉛粉末、並びに所望によりバインダー(例えばポリテトラフルオロエチレン粒子)を含んでなる混合物を塗布して負極16/負極集電体17からなる負極板を好ましく作製することができる。その際、乾燥後の負極板(すなわち負極16/負極集電体17)にプレス処理を施して、電極活物質の脱落防止や電極密度の向上を図ることも好ましい。
亜鉛空気二次電池
本発明の別の好ましい態様によれば、亜鉛空気二次電池が提供される。図3A及び3Bに、本態様による亜鉛空気二次電池の一例を模式的に示す。図3A及び3Bに示されるように、本態様による亜鉛空気二次電池30は、空気極32、負極34、アルカリ電解液36、セラミックスセパレータ40、容器46、及び所望により第三電極38を備えてなる。空気極32は正極として機能する。負極34は亜鉛、亜鉛合金及び/又は亜鉛化合物を含んでなる。電解液36は、負極34が浸漬される水系電解液である。容器46は、開口部46aを有し、負極34、電解液36及び第三電極38を収容する。セパレータ40は開口部46aを電解液36と接触可能に塞いで容器46と負極側密閉空間を形成し、それにより空気極32と電解液36を水酸化物イオン伝導可能に隔離する。所望により、正極集電体42が空気極32に接触して設けられてよい。また、所望により、負極集電体44が負極34に接触して設けられてよく、その場合、負極集電体44も容器46内に収容されうる。
セパレータ40は、前述したとおり、水酸化物イオン伝導性を有するが透水性及び通気性を有しない部材であるのが好ましく、典型的には板状、膜状又は層状の形態である。セパレータ40が開口部46aを電解液36と接触可能に塞いで容器46と負極側密閉空間を形成することで、空気極32と電解液36を水酸化物イオン伝導可能に隔離する。セパレータ40の片面又は両面、好ましくは片面(電解液側)に多孔質基材48を設けてもよい。また、負極34とセパレータ40の間に不織布等の吸水性樹脂又は保液性樹脂製の保水部材を配置して、電解液36が減少した場合であっても電解液36を負極34及びセパレータ40に常時接触可能に保持する構成としてもよい。この保水部材は前述した第三電極38用の保水部材を兼ねたものであってもよいし、セパレータ40用の保水部材を別途用いてもよい。保水部材として市販の電池用セパレータも使用可能である。吸水性樹脂又は保液性樹脂の好ましい例としては、ポリオレフィン系樹脂が挙げられる。
空気極32は、亜鉛空気電池等の金属空気電池に使用される公知の空気極であってよく特に限定されない。空気極32は、空気極触媒、電子伝導性材料、及び所望により水酸化物イオン伝導性材料を含んでなるのが典型的である。もっとも、電子伝導性材料としても機能する空気極触媒を用いる場合には、空気極32は、そのような電子伝導性材料兼空気極触媒、及び所望により水酸化物イオン伝導性材料を含んでなるものであってもよい。
空気極触媒は、金属空気電池における正極として機能するものであれば特に限定されず、酸素を正極活物質として利用可能な種々の空気極触媒が使用可能である。空気極触媒の好ましい例としては、黒鉛等の酸化還元触媒機能を有するカーボン系材料、白金、ニッケル等の酸化還元触媒機能を有する金属、ペロブスカイト型酸化物、二酸化マンガン、酸化ニッケル、酸化コバルト、スピネル酸化物等の酸化還元触媒機能を有する無機酸化物が挙げられる。空気極触媒の形状は特に限定されないが、粒子形状であるのが好ましい。空気極12における空気極触媒の含有量は特に限定されないが、空気極12の合計量に対して、5〜70体積%が好ましく、より好ましくは5〜60体積%、さらに好ましくは5〜50体積%である。
電子伝導性材料は、導電性を有し、空気極触媒とセパレータ40(又は該当する場合には後述する中間層)との間で電子伝導を可能とするものであれば特に限定されない。電子伝導性材料の好ましい例としては、ケッチェンブラック、アセチレンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、鱗片状黒鉛のような天然黒鉛、人造黒鉛、膨張黒鉛等のグラファイト類、炭素繊維、金属繊維等の導電性繊維類、銅、銀、ニッケル、アルミニウム等の金属粉末類、ポリフェニレン誘導体等の有機電子伝導性材料、及びこれらの任意の混合物が挙げられる。電子伝導性材料の形状は、粒子形状であってもよいし、その他の形状であってもよいが、空気極32において厚さ方向に連続した相(即ち電子伝導相)をもたらす形態で用いられるのが好ましい。例えば、電子伝導性材料は、多孔質材料であってもよい。また、電子伝導性材料は空気極触媒との混合物ないし複合体の形態(例えば白金担持カーボン)であってもよく、前述したように電子伝導性材料としても機能する空気極触媒(例えば遷移金属を含有するペロブスカイト型化合物)であってもよい。空気極32における電子伝導性材料の含有量は特に限定されないが、空気極32の合計量に対して、10〜80体積%が好ましく、より好ましくは15〜80体積%、さらに好ましくは20〜80体積%である。
空気極32は、水酸化物イオン伝導性材料を任意成分としてさらに含んでいてもよい。特にセパレータ40が緻密質セラミックスである水酸化物イオン伝導性無機固体電解質からなる場合、そのようなセパレータ40上に(所望により水酸化物イオン伝導性を有する中間層を介在させて)、従来から使用される空気極触媒及び電子伝導性材料のみならず、水酸化物イオン伝導性材料をも含有させた空気極32を形成することで、緻密質セラミックス製のセパレータ40による所望の特性を確保しながら、金属空気電池において空気極の反応抵抗を低減することが可能となる。すなわち、空気極触媒及び電子伝導性材料のみならず、水酸化物イオン伝導性材料をも空気極32中に含有させることで、電子伝導相(電子伝導性材料)と、気相(空気)とからなる三相界面がセパレータ40(又は該当する場合には中間層)と空気極32の界面のみならず空気極32中にも存在することになり、電池反応に寄与する水酸化物イオンの授受がより広い表面積で効果的に行われることになる結果、金属空気電池において空気極の反応抵抗が低減されるものと考えられる。水酸化物イオン伝導性材料は、水酸化物イオンを透過可能な材料であれば特に限定されず、無機材料及び有機材料を問わず、各種の材質及び形態の材料が使用可能であり、前述した基本組成の層状複水酸化物であってもよい。水酸化物イオン伝導性材料は、粒子形態に限らず、空気極触媒及び電子伝導性材料を部分的に又は概ね全体的に被覆するような塗布膜の形態であってもよい。もっとも、この塗布膜の形態においても、イオン伝導性材料は緻密質ではなく、開気孔を有しており、空気極32の外側表面からセパレータ40(又は該当する場合には中間層)との界面に向かって、OやHOが気孔中を拡散できるように構成されるのが望ましい。空気極32における水酸化物イオン伝導性材料の含有量は特に限定されないが、空気極32の合計量に対して、0〜95体積%が好ましく、より好ましくは5〜85体積%、さらに好ましくは10〜80体積%である。
空気極32の形成はあらゆる手法で行われてよく、特に限定されない。例えば、空気極触媒、電子伝導性材料、及び所望により水酸化物イオン伝導性材料をエタノール等の溶媒を用いて湿式混合して乾燥及び解砕した後、バインダーと混合してフィブリル化し、得られたフィブリル状混合物を集電体に圧着して空気極32を形成し、この空気極32/集電体の積層シートの空気極32側をセパレータ40(又は該当する場合には中間層)に圧着してもよい。あるいは、空気極触媒、電子伝導性材料、及び所望により水酸化物イオン伝導性材料をエタノール等の溶媒と共に湿式混合してスラリー化し、このスラリーを中間層に塗布して乾燥させて空気極32を形成してもよい。したがって、空気極32はバインダーを含んでいてもよい。バインダーは、熱可塑性樹脂や熱硬化性樹脂であってよく特に限定されない。
空気極32は5〜200μmの厚さを有する層状の形態であるのが好ましく、より好ましくは5〜100μmであり、さらに好ましくは5〜50μm、特に好ましくは5〜30μmである。例えば、水酸化物イオン伝導性材料を含む場合、上記範囲内の厚さであると、ガス拡散抵抗の増大を抑えながら三相界面の面積を比較的大きく確保することができ、空気極の反応抵抗の低減をより好ましく実現することができる。
空気極32のセパレータ40と反対側に、通気性を有する正極集電体42が設けられるのが好ましい。この場合、正極集電体42は空気極32に空気が供給されるように通気性を有するのが好ましい。正極集電体42の好ましい例としては、ステンレス鋼、銅、ニッケル等の金属板若しくは金属メッシュ、カーボンペーパー、カーボンクロス、及び電子伝導性酸化物等が挙げられ、耐食性及び通気性の点でステンレス金網が特に好ましい。
セパレータ40及び空気極32の間には中間層が設けられてもよい。中間層はセパレータ40と空気極32の密着性を向上し、かつ、水酸化物イオン伝導性を有するものであれば特に限定されず、有機材料及び無機材料を問わず、公知各種の組成及び構成の層であることができる。中間層は高分子材料及び/又はセラミックス材料を含んでなるのが好ましく、この場合、中間層に含まれる高分子材料及びセラミックス材料の少なくともいずれか一方が水酸化物イオン伝導性を有していればよい。中間層は複数設けられてもよく、これら複数の中間層は互いに同種の及び/又は異なる層であってよい。すなわち、中間層は単層構成であってもよいし、2層以上の構成であってもよい。中間層は1〜200μmの厚さを有するのが好ましく、より好ましくは1〜100μmであり、さらに好ましくは1〜50μm、特に好ましくは1〜30μmである。このような厚さであると、セパレータ40と空気極32の密着性を向上しやすく、亜鉛空気二次電池において電池抵抗(特に空気極及びセパレータ間の界面抵抗)をより効果的に低減することができる。
負極34は、負極活物質として機能する亜鉛、亜鉛合金及び/又は亜鉛化合物を含んでなる。負極34は、粒子状、板状、ゲル状等のいかなる形状又は形態であってもよいが、粒子状またはゲル状とするのが反応速度の点で好ましい。粒子状の負極としては、30〜350μmの粒径のものを好ましく用いることができる。ゲル状の負極としては、100〜300μmの粒径の無汞化亜鉛合金粉、アルカリ電解液及び増粘剤(ゲル化剤)を混合攪拌してゲル状に形成したものを好ましく用いることができる。亜鉛合金は、マグネシウム、アルミニウム、リチウム、ビスマス、インジウム、鉛等の汞化又は無汞化の合金であることができ、負極活物質として所望の性能を確保できる限り、その含有量は特に限定されない。好ましい亜鉛合金は、無水銀かつ鉛無添加の無汞化亜鉛合金であり、アルミニウム、ビスマス、インジウム又はこれらの組合せを含むものがより好ましい。さらに好ましくは、ビスマスを50〜1000ppm、インジウムを100〜1000ppmで、アルミニウム及び/又はカルシウムを10〜100ppm含む無汞化亜鉛合金であり、特に好ましくはビスマスを100〜500ppm、インジウムを300〜700ppm、アルミニウム及び/又はカルシウムを20〜50ppm含む。好ましい亜鉛化合物の例としては酸化亜鉛が挙げられる。
負極34に接触して負極集電体44が設けられるのが好ましい。負極集電体44は図3A及び3Bに示されるように容器46を貫通してその外側にまで延在して負極端子をそれ自体で構成してもよいし、別途設けられた負極端子に容器46内又は外で接続される構成としてもよい。負極集電体の好ましい例としては、ステンレス鋼、銅(例えば銅パンチングメタル)、ニッケル等の金属板若しくは金属メッシュ、カーボンペーパー、及び酸化物導電体等が挙げられる。例えば、銅パンチングメタル上に、酸化亜鉛粉末及び/又は亜鉛粉末、並びに所望によりバインダー(例えばポリテトラフルオロエチレン粒子)を含んでなる混合物を塗布して負極34/負極集電体44からなる負極板を好ましく作製することができる。その際、乾燥後の負極板(すなわち負極34/負極集電体44)にプレス処理を施して、電極活物質の脱落防止や電極密度の向上を図ることも好ましい。
所望により、第三電極38が、電解液36と接触するが負極34と接触しないように設けられてもよく、この場合、外部回路を経て空気極32と接続される。かかる構成とすることで、負極34から副反応により発生しうる水素ガスを第三電極38に接触させて以下の反応:
第三電極: H+2OH→2HO+2e
正極放電: O+2HO+4e→4OH
により水に戻すことができる。別の表現をすれば、負極34で発生した水素ガスが第三電極38で吸収され自己放電をすることになる。これにより、水素ガスの発生による負極側密閉空間における内圧の上昇及びそれに伴う不具合を抑制又は回避できるとともに、(放電反応に伴い上記反応式に従い減少することになる)水を発生させて負極側密閉空間内での水不足を抑制又は回避することができる。すなわち、負極から発生した水素ガスを負極側密閉空間内で水に戻して再利用することができる。その結果、亜鉛デンドライトによる短絡及び二酸化炭素の混入の両方を防止するのに極めて効果的な構成を有しながら、水素ガス発生の問題にも対処可能な、信頼性の高い亜鉛空気二次電池を提供することができる。
第三電極38は、外部回路を経て空気極32と接続されることで、上述したような反応により水素ガス(H)を水(HO)に変換可能な電極であれば特に限定されないが、空気極32よりも酸素過電圧が大きいことが望まれる。また、第三電極38は通常の充放電反応に関与しないことも望まれる。第三電極38は、白金及び/又は炭素材料を含んでなるのが好ましく、より好ましくは炭素材料を含んでなる。炭素材料の好ましい例としては、天然黒鉛、人造黒鉛、ハードカーボン、ソフトカーボン、炭素繊維、カーボンナノチューブ、グラフェン、活性炭、及びそれらの任意の組合せが挙げられる。第三電極38の形状は特に限定されないが、比表面積が大きくなるような形状(例えばメッシュ状や粒子状)とするのが好ましい。第三電極38(好ましくは比表面積の大きい形状の第三電極)は集電体上に塗工及び/又は配置されるのがより好ましい。第三電極38用の集電体はいかなる形状であってもよいが、好ましい例としては、線材(例えばワイヤ)、パンチングメタル、メッシュ、発泡金属、及びそれらの任意の組合せが挙げられる。第三電極38用集電体の材質としては第三電極38の材質と同様の材質であってもよいし、金属(例えばニッケル)、合金又はその他の導電性材料であってもよい。
第三電極38は電解液36と接触するが、通常の充放電反応と直接関係の無い場所に配置されることが望ましい。この場合、負極側密閉空間内に第三電極38と接触可能に不織布等の吸水性樹脂又は保液性樹脂製の保水部材を配置して、電解液が減少した場合であっても電解液36を第三電極38と常時接触可能に保持する構成とするのが好ましい。保水部材として市販の電池用セパレータも使用可能である。吸水性樹脂又は保液性樹脂の好ましい例としては、ポリオレフィン系樹脂が挙げられる。第三電極38は、必ずしも多量の電解液36で含浸されている必要はなく、少量ないし微量の電解液36で湿っている程度でも所望の機能を発揮することができるので、その程度の保水性能を保水部材が有していればよい。
多孔質基材付きLDHセパレータ
前述のとおり、本発明においてセパレータを構成する無機固体電解質体は膜状又は層状の形態であることができる。この場合、膜状又は層状の無機固体電解質体が多孔質基材上又はその中に形成されてなる、多孔質基材付きセパレータとするのが好ましい。特に好ましい多孔質基材付きセパレータは、多孔質基材と、この多孔質基材上及び/又は多孔質基材中に形成されるセパレータ層とを備えてなり、セパレータ層が前述したような層状複水酸化物(LDH)を含んでなるものである。セパレータ層は透水性及び通気性を有しないのが好ましい。すなわち、多孔質材料は孔の存在により透水性及び通気性を有しうるが、セパレータ層は透水性及び通気性を有しない程にまでLDHで緻密化されているのが好ましい。セパレータ層は多孔質基材上に形成されるのが好ましい。例えば、図4に示されるように、多孔質基材28上にセパレータ層20がLDH緻密膜として形成されるのが好ましい。この場合、多孔質基材28の性質上、図4に示されるように多孔質基材28の表面及びその近傍の孔内にもLDHが形成されてよいのはいうまでもない。あるいは、図5に示されるように、多孔質基材28中(例えば多孔質基材28の表面及びその近傍の孔内)にLDHが緻密に形成され、それにより多孔質基材28の少なくとも一部がセパレータ層20’を構成するものであってもよい。この点、図5に示される態様は図4に示される態様のセパレータ層20における膜相当部分を除去した構成となっているが、これに限定されず、多孔質基材28の表面と平行にセパレータ層が存在していればよい。いずれにしても、セパレータ層は透水性及び通気性を有しない程にまでLDHで緻密化されているため、水酸化物イオン伝導性を有するが透水性及び通気性を有しない(すなわち基本的に水酸化物イオンのみを通す)という特有の機能を有することができる。
多孔質基材は、その上及び/又は中にLDH含有セパレータ層を形成できるものが好ましく、その材質や多孔構造は特に限定されない。多孔質基材上及び/又は中にLDH含有セパレータ層を形成するのが典型的ではあるが、無孔質基材上にLDH含有セパレータ層を成膜し、その後公知の種々の手法により無孔質基材を多孔化してもよい。いずれにしても、多孔質基材は透水性を有する多孔構造を有するのが、電池用セパレータとして電池に組み込まれた場合に電解液をセパレータ層に到達可能に構成できる点で好ましい。
多孔質基材は、セラミックス材料、金属材料、及び高分子材料からなる群から選択される少なくとも1種で構成されるのが好ましい。多孔質基材は、セラミックス材料で構成されるのがより好ましい。この場合、セラミックス材料の好ましい例としては、アルミナ、ジルコニア、チタニア、マグネシア、スピネル、カルシア、コージライト、ゼオライト、ムライト、フェライト、酸化亜鉛、炭化ケイ素、窒化アルミニウム、窒化ケイ素、及びそれらの任意の組合せが挙げられ、より好ましくは、アルミナ、ジルコニア、チタニア、及びそれらの任意の組合せであり、特に好ましくはアルミナ及びジルコニアであり、最も好ましくはアルミナである。特にAlを溶解させた電解液とともにアルミナ製多孔質基材を用いた場合、アルミナ製多孔質基材からのAl溶出抑制効果も期待でき、多孔質基材の劣化をも抑制可能となる。これらの多孔質セラミックスを用いると緻密性に優れたLDH含有セパレータ層を形成しやすい。金属材料の好ましい例としては、アルミニウム及び亜鉛が挙げられる。高分子材料の好ましい例としては、ポリスチレン、ポリエーテルサルフォン、ポリプロピレン、エポキシ樹脂、ポリフェニレンサルファイド、及びそれらの任意の組合せが挙げられる。上述した各種の好ましい材料から電池の電解液に対する耐性として耐アルカリ性に優れたものを適宜選択するのが更に好ましい。
多孔質基材は0.001〜1.5μmの平均気孔径を有するのが好ましく、より好ましくは0.001〜1.25μm、さらに好ましくは0.001〜1.0μm、特に好ましくは0.001〜0.75μm、最も好ましくは0.001〜0.5μmである。これらの範囲内とすることで多孔質基材に所望の透水性を確保しながら、透水性を有しない程に緻密なLDH含有セパレータ層を形成することができる。本発明において、平均気孔径の測定は多孔質基材の表面の電子顕微鏡(SEM)画像をもとに気孔の最長距離を測長することにより行うことができる。この測定に用いる電子顕微鏡(SEM)画像の倍率は20000倍であり、得られた全ての気孔径をサイズ順に並べて、その平均値から上位15点及び下位15点、合わせて1視野あたり30点で2視野分の平均値を算出して、平均気孔径を得ることができる。測長には、SEMのソフトウェアの測長機能や画像解析ソフト(例えば、Photoshop、Adobe社製)等を用いることができる。
多孔質基材の表面は、10〜60%の気孔率を有するのが好ましく、より好ましくは15〜55%、さらに好ましくは20〜50%である。これらの範囲内とすることで多孔質基材に所望の透水性を確保しながら、透水性を有しない程に緻密なLDH含有セパレータ層を形成することができる。ここで、多孔質基材の表面の気孔率を採用しているのは、以下に述べる画像処理を用いた気孔率の測定がしやすいことによるものであり、多孔質基材の表面の気孔率は多孔質基材内部の気孔率を概ね表しているといえるからである。すなわち、多孔質基材の表面が緻密であれば多孔質基材の内部もまた同様に緻密であるといえる。本発明において、多孔質基材の表面の気孔率は画像処理を用いた手法により以下のようにして測定することができる。すなわち、1)多孔質基材の表面の電子顕微鏡(SEM)画像(倍率10000倍以上)を取得し、2)Photoshop(Adobe社製)等の画像解析ソフトを用いてグレースケールのSEM画像を読み込み、3)[イメージ]→[色調補正]→[2階調化]の手順でヒストグラムのしきい値を調整して白黒の2値画像を作成し、4)黒い部分が占めるピクセル数を画像の全ピクセル数で割った値を気孔率(%)とする。なお、この画像処理による気孔率の測定は多孔質基材表面の6μm×6μmの領域について行われるのが好ましく、より客観的な指標とするためには、任意に選択された3箇所の領域について得られた気孔率の平均値を採用するのがより好ましい。
セパレータ層は、多孔質基材上及び/又は多孔質基材中、好ましくは多孔質基材上に形成される。例えば、図4に示されるようにセパレータ層20が多孔質基材28上に形成される場合には、セパレータ層20はLDH緻密膜の形態であり、このLDH緻密膜は典型的にはLDHからなる。また、図5に示されるようにセパレータ層20’が多孔質基材28中に形成される場合には、多孔質基材28中(典型的には多孔質基材28の表面及びその近傍の孔内)にLDHが緻密に形成されることから、セパレータ層20’は典型的には多孔質基材28の少なくとも一部及びLDHからなる。図5に示されるセパレータ層20’は、図4に示されるセパレータ層20における膜相当部分を研磨、切削等の公知の手法により除去することにより得ることができる。
セパレータ層は透水性及び通気性を有しないのが好ましい。例えば、セパレータ層はその片面を25℃で1週間水と接触させても水を透過させず、また、その片面に0.5atmの内外差圧でヘリウムガスを加圧してもヘリウムガスを透過させない。すなわち、セパレータ層は透水性及び通気性を有しない程にまでLDHで緻密化されているのが好ましい。もっとも、局所的且つ/又は偶発的に透水性を有する欠陥が機能膜に存在する場合には、当該欠陥を適当な補修剤(例えばエポキシ樹脂等)で埋めて補修することで水不透性及び気体不透過性を確保してもよく、そのような補修剤は必ずしも水酸化物イオン伝導性を有する必要はない。いずれにしても、セパレータ層(典型的にはLDH緻密膜)の表面が20%以下の気孔率を有するのが好ましく、より好ましくは15%以下、さらに好ましくは10%以下、特に好ましくは7%以下である。セパレータ層の表面の気孔率が低ければ低いほど、セパレータ層(典型的にはLDH緻密膜)の緻密性が高いことを意味し、好ましいといえる。ここで、セパレータ層の表面の気孔率を採用しているのは、以下に述べる画像処理を用いた気孔率の測定がしやすいことによるものであり、セパレータ層の表面の気孔率はセパレータ層内部の気孔率を概ね表しているといえるからである。すなわち、セパレータ層の表面が緻密であればセパレータ層の内部もまた同様に緻密であるといえる。本発明において、セパレータ層の表面の気孔率は画像処理を用いた手法により以下のようにして測定することができる。すなわち、1)セパレータ層の表面の電子顕微鏡(SEM)画像(倍率10000倍以上)を取得し、2)Photoshop(Adobe社製)等の画像解析ソフトを用いてグレースケールのSEM画像を読み込み、3)[イメージ]→[色調補正]→[2階調化]の手順でヒストグラムのしきい値を調整して白黒の2値画像を作成し、4)黒い部分が占めるピクセル数を画像の全ピクセル数で割った値を気孔率(%)とする。なお、この画像処理による気孔率の測定はセパレータ層表面の6μm×6μmの領域について行われるのが好ましく、より客観的な指標とするためには、任意に選択された3箇所の領域について得られた気孔率の平均値を採用するのがより好ましい。
層状複水酸化物は複数の板状粒子(すなわちLDH板状粒子)の集合体で構成され、当該複数の板状粒子がそれらの板面が多孔質基材の表面(基材面)と略垂直に又は斜めに交差するような向きに配向してなるのが好ましい。この態様は、図4に示されるように、多孔質基材28上にセパレータ層20がLDH緻密膜として形成される場合に特に好ましく実現可能な態様であるが、図5に示されるように、多孔質基材28中(典型的には多孔質基材28の表面及びその近傍の孔内)にLDHが緻密に形成され、それにより多孔質基材28の少なくとも一部がセパレータ層20’を構成する場合においても実現可能である。
すなわち、LDH結晶は図6に示されるような層状構造を持った板状粒子の形態を有することが知られているが、上記略垂直又は斜めの配向は、LDH含有セパレータ層(例えばLDH緻密膜)にとって極めて有利な特性である。というのも、配向されたLDH含有セパレータ層(例えば配向LDH緻密膜)には、LDH板状粒子が配向する方向(即ちLDHの層と平行方向)の水酸化物イオン伝導度が、これと垂直方向の伝導度よりも格段に高いという伝導度異方性があるためである。実際、本出願人は、LDHの配向バルク体において、配向方向における伝導度(S/cm)が配向方向と垂直な方向の伝導度(S/cm)と比べて1桁高いとの知見を得ている。すなわち、本態様のLDH含有セパレータ層における上記略垂直又は斜めの配向は、LDH配向体が持ちうる伝導度異方性を層厚方向(すなわちセパレータ層又は多孔質基材の表面に対して垂直方向)に最大限または有意に引き出すものであり、その結果、層厚方向への伝導度を最大限又は有意に高めることができる。その上、LDH含有セパレータ層は層形態を有するため、バルク形態のLDHよりも低抵抗を実現することができる。このような配向性を備えたLDH含有セパレータ層は、層厚方向に水酸化物イオンを伝導させやすくなる。その上、緻密化されているため、層厚方向への高い伝導度及び緻密性が望まれるセパレータに極めて適する。
特に好ましくは、LDH含有セパレータ層(典型的にはLDH緻密膜)においてLDH板状粒子が略垂直方向に高度に配向してなる。この高度な配向は、セパレータ層の表面をX線回折法により測定した場合に、(003)面のピークが実質的に検出されないか又は(012)面のピークよりも小さく検出されることで確認可能なものである(但し、(012)面に起因するピークと同位置に回折ピークが観察される多孔質基材を用いた場合には、LDH板状粒子に起因する(012)面のピークを特定できないことから、この限りでない)。この特徴的なピーク特性は、セパレータ層を構成するLDH板状粒子がセパレータ層に対して略垂直方向(すなわち垂直方向又はそれに類する斜め方向、好ましくは垂直方向)に配向していることを示す。すなわち、(003)面のピークは無配向のLDH粉末をX線回折した場合に観察される最も強いピークとして知られているが、配向LDH含有セパレータ層にあっては、LDH板状粒子がセパレータ層に対して略垂直方向に配向していることで(003)面のピークが実質的に検出されないか又は(012)面のピークよりも小さく検出される。これは、(003)面が属するc軸方向(00l)面(lは3及び6である)がLDH板状粒子の層状構造と平行な面であるため、このLDH板状粒子がセパレータ層に対して略垂直方向に配向しているとLDH層状構造も略垂直方向を向くこととなる結果、セパレータ層表面をX線回折法により測定した場合に(00l)面(lは3及び6である)のピークが現れないか又は現れにくくなるからである。特に(003)面のピークは、それが存在する場合、(006)面のピークよりも強く出る傾向があるから、(006)面のピークよりも略垂直方向の配向の有無を評価しやすいといえる。したがって、配向LDH含有セパレータ層は、(003)面のピークが実質的に検出されないか又は(012)面のピークよりも小さく検出されるのが、垂直方向への高度な配向を示唆することから好ましいといえる。
セパレータ層は100μm以下の厚さを有するのが好ましく、より好ましくは75μm以下、さらに好ましくは50μm以下、特に好ましくは25μm以下、最も好ましくは5μm以下である。このように薄いことでセパレータの低抵抗化を実現できる。セパレータ層が多孔質基材上にLDH緻密膜として形成されるのが好ましく、この場合、セパレータ層の厚さはLDH緻密膜の厚さに相当する。また、セパレータ層が多孔質基材中に形成される場合には、セパレータ層の厚さは多孔質基材の少なくとも一部及びLDHからなる複合層の厚さに相当し、セパレータ層が多孔質基材上及び中にまたがって形成される場合にはLDH緻密膜と上記複合層の合計厚さに相当する。いずれにしても、上記のような厚さであると、電池用途等への実用化に適した所望の低抵抗を実現することができる。LDH配向膜の厚さの下限値は用途に応じて異なるため特に限定されないが、セパレータ等の機能膜として望まれるある程度の堅さを確保するためには厚さ1μm以上であるのが好ましく、より好ましくは2μm以上である。
上述した多孔質基材付きLDHセパレータは、(1)多孔質基材を用意し、(2)マグネシウムイオン(Mg2+)及びアルミニウムイオン(Al3+)を0.20〜0.40mol/Lの合計濃度で含み、かつ、尿素を含んでなる原料水溶液に、多孔質基材を浸漬させ、(3)原料水溶液中で多孔質基材を水熱処理して、層状複水酸化物を含んでなるセパレータ層を多孔質基材上及び/又は多孔質基材中に形成させることにより製造することができる。
(1)多孔質基材の用意
多孔質基材は、前述したとおりであり、セラミックス材料、金属材料、及び高分子材料からなる群から選択される少なくとも1種で構成されるのが好ましい。多孔質基材は、セラミックス材料で構成されるのがより好ましい。この場合、セラミックス材料の好ましい例としては、アルミナ、ジルコニア、チタニア、マグネシア、スピネル、カルシア、コージライト、ゼオライト、ムライト、フェライト、酸化亜鉛、炭化ケイ素、窒化アルミニウム、窒化ケイ素、及びそれらの任意の組合せが挙げられ、より好ましくは、アルミナ、ジルコニア、チタニア、及びそれらの任意の組合せであり、特に好ましくはアルミナ及びジルコニアであり、最も好ましくはアルミナである。これらの多孔質セラミックスを用いるとLDH含有セパレータ層の緻密性を向上しやすい傾向がある。セラミックス材料製の多孔質基材を用いる場合、超音波洗浄、イオン交換水での洗浄等を多孔質基材に施すのが好ましい。
(2)原料水溶液への浸漬
次に、多孔質基材を原料水溶液に所望の向きで(例えば水平又は垂直に)浸漬させる。多孔質基材を水平に保持する場合は、吊るす、浮かせる、容器の底に接するように多孔質基材を配置すればよく、例えば、容器の底から原料水溶液中に浮かせた状態で多孔質基材を固定としてもよい。多孔質基材を垂直に保持する場合は、容器の底に多孔質基材を垂直に設置できるような冶具を置けばよい。いずれにしても、多孔質基材にLDHを略垂直方向又はそれに近い方向(すなわちLDH板状粒子がそれらの板面が多孔質基材の表面(基材面)と略垂直に又は斜めに交差するような向きに)に成長させる構成ないし配置とするのが好ましい。原料水溶液は、マグネシウムイオン(Mg2+)及びアルミニウムイオン(Al3+)を所定の合計濃度で含み、かつ、尿素を含んでなる。尿素が存在することで尿素の加水分解を利用してアンモニアが溶液中に発生することによりpH値が上昇し、共存する金属イオンが水酸化物を形成することによりLDHを得ることができる。また、加水分解に二酸化炭素の発生を伴うため、陰イオンが炭酸イオン型のLDHを得ることができる。原料水溶液に含まれるマグネシウムイオン及びアルミニウムイオンの合計濃度(Mg2++Al3+)は0.20〜0.40mol/Lが好ましく、より好ましくは0.22〜0.38mol/Lであり、さらに好ましくは0.24〜0.36mol/L、特に好ましくは0.26〜0.34mol/Lである。このような範囲内の濃度であると核生成と結晶成長をバランスよく進行させることができ、配向性のみならず緻密性にも優れたLDH含有セパレータ層を得ることが可能となる。すなわち、マグネシウムイオン及びアルミニウムイオンの合計濃度が低いと核生成に比べて結晶成長が支配的となり、粒子数が減少して粒子サイズが増大する一方、この合計濃度が高いと結晶成長に比べて核生成が支配的となり、粒子数が増大して粒子サイズが減少するものと考えられる。
好ましくは、原料水溶液に硝酸マグネシウム及び硝酸アルミニウムが溶解されており、それにより原料水溶液がマグネシウムイオン及びアルミニウムイオンに加えて硝酸イオンを含んでなる。そして、この場合、原料水溶液における、尿素の硝酸イオン(NO )に対するモル比(尿素/NO )が、2〜6が好ましく、より好ましくは4〜5である。
(3)水熱処理によるLDH含有セパレータ層の形成
そして、原料水溶液中で多孔質基材を水熱処理して、LDHを含んでなるセパレータ層を多孔質基材上及び/又は多孔質基材中に形成させる。この水熱処理は密閉容器中、60〜150℃で行われるのが好ましく、より好ましくは65〜120℃であり、さらに好ましくは65〜100℃であり、特に好ましくは70〜90℃である。水熱処理の上限温度は多孔質基材(例えば高分子基材)が熱で変形しない程度の温度を選択すればよい。水熱処理時の昇温速度は特に限定されず、例えば10〜200℃/hであってよいが、好ましくは100〜200℃/hである、より好ましくは100〜150℃/hである。水熱処理の時間はLDH含有セパレータ層の目的とする密度と厚さに応じて適宜決定すればよい。
水熱処理後、密閉容器から多孔質基材を取り出し、イオン交換水で洗浄するのが好ましい。
上記のようにして製造されたLDH含有複合材料におけるLDH含有セパレータ層は、LDH板状粒子が高度に緻密化したものであり、しかも伝導に有利な略垂直方向に配向したものである。したがって、亜鉛デンドライト進展が実用化の大きな障壁となっているニッケル亜鉛電池に極めて好適といえる。
ところで、上記製造方法により得られるLDH含有セパレータ層は多孔質基材の両面に形成されうる。このため、LDH含有複合材料をセパレータとして好適に使用可能な形態とするためには、成膜後に多孔質基材の片面のLDH含有セパレータ層を機械的に削るか、あるいは成膜時に片面にはLDH含有セパレータ層が成膜できないような措置を講ずるのが望ましい。
LDH緻密板の製造方法
板状の無機固体電解質の好ましい形態として、層状複水酸化物(LDH)緻密体が挙げられる。LDH緻密体はあらゆる方法によって作製されたものであってもよいが、以下に好ましい製造方法の一態様を説明する。この製造方法は、ハイドロタルサイトに代表されるLDHの原料粉末を成形及び焼成して酸化物焼成体とし、これを層状複水酸化物へ再生した後、余剰の水分を除去することにより行われる。この方法によれば、88%以上の相対密度を有する高品位な層状複水酸化物緻密体を簡便に且つ安定的に提供及び製造することができる。
(1)原料粉末の用意
原料粉末として、一般式:M2+ 1−x3+ (OH)n− x/n・mHO(式中、M2+は2価の陽イオン、M3+は3価の陽イオンであり、An−はn価の陰イオン、nは1以上の整数、xは0.1〜0.4である)で表される層状複水酸化物の粉末を用意する。上記一般式において、M2+は任意の2価の陽イオンでありうるが、好ましい例としてはMg2+、Ca2+及びZn2+が挙げられ、より好ましくはMg2+である。M3+は任意の3価の陽イオンでありうるが、好ましい例としてはAl3+又はCr3+が挙げられ、より好ましくはAl3+である。An−は任意の陰イオンでありうるが、好ましい例としてはOH及びCO 2−が挙げられる。したがって、上記一般式は、少なくともM2+がMg2+を、M3+がAl3+を含み、An−がOH及び/又はCO 2−を含むのが好ましい。nは1以上の整数であるが、好ましくは1又は2である。xは0.1〜0.4であるが、好ましくは0.2〜0.35である。このような原料粉末は市販の層状複水酸化物製品であってもよいし、硝酸塩や塩化物を用いた液相合成法等の公知の方法にて作製した原料であってもよい。原料粉末の粒径は、所望の層状複水酸化物緻密体が得られる限り限定されないが、体積基準D50平均粒径が0.1〜1.0μmであるのが好ましく、より好ましくは0.3〜0.8μmである。原料粉末の粒径が細かすぎると粉末が凝集しやすく、成形時に気孔が残留する可能性が高く、大きすぎると成形性が悪くなるためである。
所望により、原料粉末を仮焼して酸化物粉末としてもよい。この際の仮焼温度は、構成するM2+及びM3+によって多少の差があるが、500℃以下が好ましく、より好ましくは380〜460℃とし、原料粒径が大きく変化しない領域で行う。
(2)成形体の作製
原料粉末を成形して成形体を得る。この成形は、成形後且つ焼成前の成形体(以下、成形体という)が、43〜65%、より好ましくは45〜60%であり、さらに好ましくは47%〜58%の相対密度を有するように、例えば加圧成形により行われるのが好ましい。成形体の相対密度は、成形体の寸法及び重量から密度を算出し、理論密度で除して求められるが、成形体の重量は吸着水分の影響を受けるため、一義的な値を得るために、室温、相対湿度20%以下のデシケータ内で24時間以上保管した原料粉末を用いた成形体か、もしくは成形体を前記条件下で保管した後に相対密度を測定するのが好ましい。ただし、原料粉末を仮焼して酸化物粉末とした場合は、成形体の相対密度が26〜40%であるのが好ましく、より好ましくは29〜36%である。なお、酸化物粉末を用いる場合の相対密度は、層状複水酸化物を構成する各金属元素が仮焼により各々酸化物に変化したと仮定し、各酸化物の混合物として求めた換算密度を分母として求めた。一例に挙げた加圧成形は、金型一軸プレスにより行ってもよいし、冷間等方圧加圧(CIP)により行ってもよい。冷間等方圧加圧(CIP)を用いる場合は原料粉末をゴム製容器中に入れて真空封じするか、あるいは予備成形したものを用いるのが好ましい。その他、スリップキャストや押出成形など、公知の方法で成形してもよく、成形方法については特に限定されない。ただし、原料粉末を仮焼して酸化物粉末とした場合は、乾式成形法に限られる。これらの成形体の相対密度は、得られる緻密体の強度だけではなく、通常板状形状を有する層状複水酸化物の配向度への影響もあることから、その用途等を考慮して成形時の相対密度を上記の範囲で適宜設定するのが好ましい。
(3)焼成工程
上記工程で得られた成形体を焼成して酸化物焼成体を得る。この焼成は、酸化物焼成体が、成形体の重量の57〜65%の重量となり、且つ/又は、成形体の体積の70〜76%以下の体積となるように行われるのが好ましい。成形体の重量の57%以上であると、後工程の層状複水酸化物への再生時に再生できない異相が生成しにくくなり、65%以下であると焼成が十分に行われて後工程で十分に緻密化する。また、成形体の体積の70%以上であると、後工程の層状複水酸化物への再生時に異相が生成にくくなるとともに、クラックも生じにくくなり、76%以下であると、焼成が十分に行われて後工程で十分に緻密化する。原料粉末を仮焼して酸化物粉末とした場合は、成形体の重量の85〜95%、及び/又は成形体の体積の90%以上の酸化物焼成体を得るのが好ましい。原料粉末が仮焼されるか否かに関わらず、焼成は、酸化物焼成体が、酸化物換算で20〜40%の相対密度を有するように行われるのが好ましく、より好ましくは20〜35%であり、さらに好ましくは20〜30%である。ここで、酸化物換算での相対密度とは、層状複水酸化物を構成する各金属元素が焼成により各々酸化物に変化したと仮定し、各酸化物の混合物として求めた換算密度を分母として求めた相対密度である。酸化物焼成体を得るための好ましい焼成温度は400〜850℃であり、より好ましくは700〜800℃である。この範囲内の焼成温度で1時間以上保持されるのが好ましく、より好ましい保持時間は3〜10時間である。また、急激な昇温により水分や二酸化炭素が放出して成形体が割れるのを防ぐため、上記焼成温度に到達させるための昇温は100℃/h以下の速度で行われるのが好ましく、より好ましくは5〜75℃/hであり、さらに好ましくは10〜50℃/hである。したがって、昇温から降温(100℃以下)に至るまでの全焼成時間は20時間以上確保するのが好ましく、より好ましくは30〜70時間、さらに好ましくは35〜65時間である。
(4)層状複水酸化物への再生工程
上記工程で得られた酸化物焼成体を上述したn価の陰イオン(An−)を含む水溶液中又はその直上に保持して層状複水酸化物へと再生し、それにより水分に富む層状複水酸化物固化体を得る。すなわち、この製法により得られる層状複水酸化物固化体は必然的に余分な水分を含んでいる。なお、水溶液中に含まれる陰イオンは原料粉末中に含まれる陰イオンと同種の陰イオンとしてよいし、異なる種類の陰イオンとしてもよい。酸化物焼成体の水溶液中又は水溶液直上での保持は密閉容器内で水熱合成の手法により行われるのが好ましく、そのような密閉容器の例としてはテフロン(登録商標)製の密閉容器が挙げられ、より好ましくはその外側にステンレス製等のジャケットを備えた密閉容器である。層状複水酸化物化は、酸化物焼成体を20℃以上200℃未満で、少なくとも酸化物焼成体の一面が水溶液に接する状態に保持することにより行われるのが好ましく、より好ましい温度は50〜180℃であり、さらに好ましい温度は100〜150℃である。このような層状複水酸化物化温度で酸化物焼結体が1時間以上保持されるのが好ましく、より好ましくは2〜50時間であり、さらに好ましくは5〜20時間である。このような保持時間であると十分に層状複水酸化物への再生を進行させて異相が残るのを回避又は低減できる。なお、この保持時間は、長すぎても特に問題はないが、効率性を重視して適時設定すればよい。
層状複水酸化物への再生に使用するn価の陰イオンを含む水溶液の陰イオン種として空気中の二酸化炭素(炭酸イオン)を想定する場合は、イオン交換水を用いることが可能である。なお、密閉容器内の水熱処理の際には、酸化物焼成体を水溶液中に水没させてもよいし、治具を用いて少なくとも一面が水溶液に接する状態で処理を行ってもよい。少なくとも一面が水溶液に接する状態で処理した場合、完全水没と比較して余分な水分量が少ないので、その後の工程が短時間で済むことがある。ただし、水溶液が少なすぎるとクラックが発生しやすくなるため、焼成体重量と同等以上の水分を用いるのが好ましい。
(5)脱水工程
上記工程で得られた水分に富む層状複水酸化物固化体から余剰の水分を除去する。こうして本発明の層状複水酸化物緻密体が得られる。この余剰の水分を除去する工程は、300℃以下、除去工程の最高温度での推定相対湿度25%以上の環境下で行われるのが好ましい。層状複水酸化物固化体からの急激な水分の蒸発を防ぐため、室温より高い温度で脱水する場合は層状複水酸化物への再生工程で使用した密閉容器中に再び封入して行うことが好ましい。その場合の好ましい温度は50〜250℃であり、さらに好ましくは100〜200℃である。また、脱水時のより好ましい相対湿度は25〜70%であり、さらに好ましくは40〜60%である。脱水を室温で行ってもよく、その場合の相対湿度は通常の室内環境における40〜70%の範囲内であれば問題はない。
本発明を以下の例によってさらに具体的に説明する。
例1:LDH緻密体の作製及び評価
(1)LDH緻密体の作製
原料粉末として、市販の層状複水酸化物であるハイドロタルサイト粉末(DHT−4H、協和化学工業株式会社製)粉末を用意した。この原料粉末の組成はMg2+ 0.68Al3+ 0.32(OH)CO 2− 0.16・mHOであった。原料粉末を直径16mmの金型に充填して500kgf・cmの成形圧で一軸プレス成形して、相対密度53%、厚さ約2mmの成形体を得た。なお、この相対密度の測定は、室温、相対湿度20%以下で24時間保管した成形体について行った。得られた成形体をアルミナ鞘中で焼成した。この焼成は、急激な昇温により水分や二酸化炭素が放出して成形体が割れるのを防ぐため、100℃/h以下の速度で昇温を行い、750℃の最高温度に達した時点で5時間保持した後、冷却することにより行った。この昇温から降温(100℃以下)に至るまでの全焼成時間は62時間であり、得られた焼結体の重量、体積及び相対密度はそれぞれ59重量%、72体積%、23%であった。なお、上記「重量」及び「体積」は焼成前の成形体を100%とした算出された相対値(%)であり、「相対密度」はハイドロタルサイトの構成金属元素であるMg及びAlを酸化物として算出した理論密度を用いて得た、酸化物換算での相対密度である。こうして得られた焼成体を、外側にステンレス製ジャケットを備えたテフロン(登録商標)製の密閉容器に大気中でイオン交換水と共に封入し、100℃で5時間保持する再生条件(温度及びその温度での保持時間)で水熱処理を施して、試料を得た。室温まで冷めた試料は余分な水分を含んでいるため、ろ紙等で軽く表面の水分を拭き取った。こうして得られた試料を25℃、相対湿度が50%程度の室内で自然脱水(乾燥)してLDH緻密体試料を得た。
(2)相対密度の測定
LDH緻密体試料の寸法及び重量から密度を算出し、この密度を理論密度で除することにより決定したところ、91%であった。なお、理論密度の算出にあたり、Mg/Al=2のハイドロタルサイトの理論密度としてJCPDSカードNo.70−2151に記載される2.09g/cmとを用いた。
(3)クラックの判定
LDH緻密体試料を目視にて観察したところ、クラックは観察されなかった。
(4)結晶相の同定
X線回折装置(D8 ADVANCE、Bulker AXS社製)により、電圧:40kV、電流値:40mA、測定範囲:5〜70°の測定条件で、LDH緻密体試料の結晶相を測定し、JCPDSカードNO.35−0965に記載されるハイドロタルサイトの回折ピークを用いて同定した。その結果、ハイドロタルサイトに起因するピークのみが観察された。
例2:各種電解液におけるLDH緻密体の耐アルカリ性試験
LDH緻密体を各種Al濃度の電解液(KOH水溶液)に浸漬して耐アルカリ性(特にAl溶出の有無及びその程度)を以下のようにして調べた。なお、電解液への浸漬に先立ち、例1で作製されたLDH緻密体試料の表面微構造を走査型電子顕微鏡(SEM、JSM−6610LV、JEOL社製)を用いて10〜20kVの加速電圧で観察した。得られたLDH緻密体試料の表面微構造のSEM画像は図7に示されるとおりであった。また、電解液への浸漬に先立ち、例1で作製されたLDH緻密体試料の組成をエネルギー分散型X線分析にて分析したところ、表1に示されるAl/Mg比が得られた。
イオン交換水にKOH粉末とAl(OH)粉末を添加して40℃〜80℃で48時間〜30日間撹拌し、電解液試料1〜7を作製した。また、比較のため、Al(OH)粉末を添加しないこと以外は上記同様にして電解液試料8を作製した。得られた各Al添加KOH水溶液は、ICP分析の結果、KOH濃度が9Mであり、Al濃度は表1に示されるとおりであった。こうして得られた電解液試料1〜8の各々に例1で作製されたLDH緻密体を30℃で1週間浸漬させた。1週間浸漬させた後のLDH緻密体を取り出し、エネルギー分散型X線分析にて組成を分析した。また、電解液試料1〜4については、加速試験として、浸漬温度を70℃とした場合についても上記同様にして評価を行った。その結果、浸漬後LDH緻密体のAl/Mg比は表1に示されるとおりであった。表1に示される結果から、Alを電解液(KOH水溶液)に意図的に予め溶解させることにより、LDH緻密体のAl/Mg比の変化が有意に抑制され(すなわちLDH緻密体からのAlの溶出が有意に抑制され)、その結果、LDHの耐アルカリ性が有意に向上することが分かる。
電解液試料3に30℃又は70℃で1週間浸漬させたLDH緻密体試料の表面微構造を走査型電子顕微鏡(SEM、JSM−6610LV、JEOL社製)を用いて10〜20kVの加速電圧で観察した。得られたLDH緻密体試料の表面微構造のSEM画像(二次電子像)は図8(30℃)及び図9(70℃)に示されるとおりであった。また、Alを溶解させなかった電解液試料8に30℃で1週間浸漬させたLDH緻密体試料の表面微構造を上記同様にして観察したところ、図10に示されるとおりであった。
例3:多孔質基材付きLDHセパレータの作製及び評価
(1)多孔質基材の作製
ベーマイト(サソール社製、DISPAL 18N4−80)、メチルセルロース、及びイオン交換水を、(ベーマイト):(メチルセルロース):(イオン交換水)の質量比が10:1:5となるように秤量した後、混練した。得られた混練物を、ハンドプレスを用いた押出成形に付し、5cm×8cmを十分に超える大きさで且つ厚さ0.5cmの板状に成形した。得られた成形体を80℃で12時間乾燥した後、1150℃で3時間焼成して、アルミナ製多孔質基材を得た。こうして得られた多孔質基材を5cm×8cmの大きさに切断加工した。
得られた多孔質基材について、画像処理を用いた手法により、多孔質基材表面の気孔率を測定したところ、24.6%であった。この気孔率の測定は、1)表面微構造を走査型電子顕微鏡(SEM、JSM−6610LV、JEOL社製)を用いて10〜20kVの加速電圧で観察して多孔質基材表面の電子顕微鏡(SEM)画像(倍率10000倍以上)を取得し、2)Photoshop(Adobe社製)等の画像解析ソフトを用いてグレースケールのSEM画像を読み込み、3)[イメージ]→[色調補正]→[2階調化]の手順でヒストグラムのしきい値を調整して白黒の2値画像を作成し、4)黒い部分が占めるピクセル数を画像の全ピクセル数で割った値を気孔率(%)とすることにより行った。この気孔率の測定は多孔質基材表面の6μm×6μmの領域について行われた。なお、図11に多孔質基材表面のSEM画像を示す。
また、多孔質基材の平均気孔径を測定したところ約0.1μmであった。本発明において、平均気孔径の測定は多孔質基材の表面の電子顕微鏡(SEM)画像をもとに気孔の最長距離を測長することにより行った。この測定に用いた電子顕微鏡(SEM)画像の倍率は20000倍であり、得られた全ての気孔径をサイズ順に並べて、その平均値から上位15点及び下位15点、合わせて1視野あたり30点で2視野分の平均値を算出して、平均気孔径を得た。測長には、SEMのソフトウェアの測長機能を用いた。
(2)多孔質基材の洗浄
得られた多孔質基材をアセトン中で5分間超音波洗浄し、エタノール中で2分間超音波洗浄、その後、イオン交換水中で1分間超音波洗浄した。
(3)原料水溶液の作製
原料として、硝酸マグネシウム六水和物(Mg(NO・6HO、関東化学株式会社製)、硝酸アルミニウム九水和物(Al(NO・9HO、関東化学株式会社製)、及び尿素((NHCO、シグマアルドリッチ製)を用意した。カチオン比(Mg2+/Al3+)が2となり且つ全金属イオンモル濃度(Mg2++Al3+)が0.320mol/Lとなるように、硝酸マグネシウム六水和物と硝酸アルミニウム九水和物を秤量してビーカーに入れ、そこにイオン交換水を加えて全量を600mlとした。得られた溶液を攪拌した後、溶液中に尿素/NO =4の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得た。
(4)水熱処理による成膜
テフロン(登録商標)製密閉容器(内容量800ml、外側がステンレス製ジャケット)に上記(3)で作製した原料水溶液と上記(2)で洗浄した多孔質基材を共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように水平に設置した。その後、水熱温度70℃で168時間(7日間)水熱処理を施すことにより基材表面に層状複水酸化物配向膜(セパレータ層)の形成を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、層状複水酸化物(以下、LDHという)の緻密膜(以下、膜試料という)を基材上に得た。得られた膜試料の厚さは約1.5μmであった。こうして、層状複水酸化物含有複合材料試料(以下、複合材料試料という)を得た。なお、LDH膜は多孔質基材の両面に形成されていたが、セパレータとして形態を複合材料に付与するため、多孔質基材の片面のLDH膜を機械的に削り取った。
(5)各種評価
(5a)膜試料の同定
X線回折装置(リガク社製 RINT TTR III)にて、電圧:50kV、電流値:300mA、測定範囲:10〜70°の測定条件で、膜試料の結晶相を測定したところ、図12に示されるXRDプロファイルが得られた。得られたXRDプロファイルについて、JCPDSカードNO.35−0964に記載される層状複水酸化物(ハイドロタルサイト類化合物)の回折ピークを用いて同定した。その結果、膜試料は層状複水酸化物(LDH、ハイドロタルサイト類化合物)であることが確認された。なお、図12に示されるXRDプロファイルにおいては、膜試料が形成されている多孔質基材を構成するアルミナに起因するピーク(図中で○印が付されたピーク)も併せて観察されている。
(5b)微構造の観察
膜試料の表面微構造を走査型電子顕微鏡(SEM、JSM−6610LV、JEOL社製)を用いて10〜20kVの加速電圧で観察した。得られた膜試料の表面微構造のSEM画像(二次電子像)を図13に示す。
また、複合材料試料の断面をCP研磨によって研磨して研磨断面を形成し、この研磨断面の微構造を走査型電子顕微鏡(SEM)を用いて10〜20kVの加速電圧で観察した。こうして得られた複合材料試料の研磨断面微構造のSEM画像を図14に示す。
(5c)気孔率の測定
膜試料について、画像処理を用いた手法により、膜の表面の気孔率を測定した。この気孔率の測定は、1)表面微構造を走査型電子顕微鏡(SEM、JSM−6610LV、JEOL社製)を用いて10〜20kVの加速電圧で観察して膜の表面の電子顕微鏡(SEM)画像(倍率10000倍以上)を取得し、2)Photoshop(Adobe社製)等の画像解析ソフトを用いてグレースケールのSEM画像を読み込み、3)[イメージ]→[色調補正]→[2階調化]の手順でヒストグラムのしきい値を調整して白黒の2値画像を作成し、4)黒い部分が占めるピクセル数を画像の全ピクセル数で割った値を気孔率(%)とすることにより行った。この気孔率の測定は配向膜表面の6μm×6μmの領域について行われた。その結果、膜の表面の気孔率は19.0%であった。また、この膜表面の気孔率を用いて、膜表面から見たときの密度D(以下、表面膜密度という)をD=100%−(膜表面の気孔率)により算出したところ、81.0%であった。
また、膜試料について、研磨断面の気孔率についても測定した。この研磨断面の気孔率についても測定は、上記(5b)に示される手順に従い膜の厚み方向における断面研磨面の電子顕微鏡(SEM)画像(倍率10000倍以上)を取得したこと以外は、上述の膜表面の気孔率と同様にして行った。この気孔率の測定は配向膜断面の膜部分について行われた。こうして膜試料の断面研磨面から算出した気孔率は平均で3.5%(3箇所の断面研磨面の平均値)であり、多孔質基材上でありながら非常に高密度な膜が形成されていることが確認された。
(5d)緻密性判定試験I
膜試料が透水性を有しない程の緻密性を有することを確認すべく、緻密性判定試験を以下のとおり行った。まず、図15Aに示されるように、上記(1)において得られた複合材料試料120(1cm×1cm平方に切り出されたもの)の膜試料側に、中央に0.5cm×0.5cm平方の開口部122aを備えたシリコンゴム122を接着し、得られた積層物を2つのアクリル製容器124,126で挟んで接着した。シリコンゴム122側に配置されるアクリル製容器124は底が抜けており、それによりシリコンゴム122はその開口部122aが開放された状態でアクリル製容器124と接着される。一方、複合材料試料120の多孔質基材側に配置されるアクリル製容器126は底を有しており、その容器126内にはイオン交換水128が入っている。すなわち、組み立て後に上下逆さにすることで、複合材料試料120の多孔質基材側にイオン交換水128が接するように各構成部材が配置されてなる。これらの構成部材等を組み立て後、総重量を測定した。なお、容器126には閉栓された通気穴(図示せず)が形成されており、上下逆さにした後に開栓されることはいうまでもない。図15Bに示されるように組み立て体を上下逆さに配置して25℃で1週間保持した後、総重量を再度測定した。このとき、アクリル製容器124の内側側面に水滴が付着している場合には、その水滴を拭き取った。そして、試験前後の総重量の差を算出することにより緻密度を判定した。その結果、25℃で1週間保持した後においても、イオン交換水の重量に変化は見られなかった。このことから、膜試料(すなわち機能膜)は透水性を有しない程に高い緻密性を有することが確認された。
(5e)緻密性判定試験II
膜試料が通気性を有しない程の緻密性を有することを確認すべく、緻密性判定試験を以下のとおり行った。まず、図16A及び16Bに示されるように、蓋の無いアクリル容器130と、このアクリル容器130の蓋として機能しうる形状及びサイズのアルミナ治具132とを用意した。アクリル容器130にはその中にガスを供給するためのガス供給口130aが形成されている。また、アルミナ治具132には直径5mmの開口部132aが形成されており、この開口部132aの外周に沿って膜試料載置用の窪み132bが形成されてなる。アルミナ治具132の窪み132bにエポキシ接着剤134を塗布し、この窪み132bに複合材料試料136の膜試料136b側を載置してアルミナ治具132に気密かつ液密に接着させた。そして、複合材料試料136が接合されたアルミナ治具132を、アクリル容器130の開放部を完全に塞ぐようにシリコーン接着剤138を用いて気密かつ液密にアクリル容器130の上端に接着させて、測定用密閉容器140を得た。この測定用密閉容器140を水槽142に入れ、アクリル容器130のガス供給口130aを圧力計144及び流量計146に接続して、ヘリウムガスをアクリル容器130内に供給可能に構成した。水槽142に水143を入れて測定用密閉容器140を完全に水没させた。このとき、測定用密閉容器140の内部は気密性及び液密性が十分に確保されており、複合材料試料136の膜試料136b側が測定用密閉容器140の内部空間に露出する一方、複合材料試料136の多孔質基材136a側が水槽142内の水に接触している。この状態で、アクリル容器130内にガス供給口130aを介してヘリウムガスを測定用密閉容器140内に導入した。圧力計144及び流量計146を制御して膜試料136a内外の差圧が0.5atmとなる(すなわちヘリウムガスに接する側に加わる圧力が反対側に加わる水圧よりも0.5atm高くなる)ようにして、複合材料試料136から水中にヘリウムガスの泡が発生するか否かを観察した。その結果、ヘリウムガスに起因する泡の発生は観察されなかった。よって、膜試料136bは通気性を有しない程に高い緻密性を有することが確認された。
例4(参考):ニッケル亜鉛電池の作製及び評価
(1)多孔質基材付きセパレータの用意
例1と同様の手順により、多孔質基材付きセパレータとして、アルミナ基材上ハイドロタルサイト膜(サイズ:5cm×8cm)を用意した。
(2)正極板の作製
亜鉛及びコバルトを固溶体となるように添加した水酸化ニッケル粒子を用意した。この水酸化ニッケル粒子を水酸化コバルトで被覆して正極活物質を得た。得られた正極活物質と、カルボキシメチルセルロースの2%水溶液とを混合してペーストを調製した。正極活物質の多孔度が50%となるように、多孔度が約95%のニッケル金属多孔質基板からなる集電体に上記得られたペーストを均一に塗布して乾燥し、活物質部分が5cm×5cmの領域にわたって塗工された正極板を得た。このとき、4Ah相当の水酸化ニッケル粒子が活物質中に含まれるように塗工量を調整した。
(3)負極板の作製
銅パンチングメタルからなる集電体上に、酸化亜鉛粉末80重量部、亜鉛粉末20重量部及びポリテトラフルオロエチレン粒子3重量部からなる混合物を塗布して、多孔度約50%で、活物質部分が5cm×5cmの領域にわたって塗工された負極板を得た。このとき、正極板容量の4Ah相当の酸化亜鉛粉末が活物質中に含まれるように塗工量を調整した。
(4)電池の組み立て
上記得られた正極板、負極板、及び多孔質基材付きセパレータを用いて、図1に示されるようなニッケル亜鉛電池を以下のような手順で組み立てた。
まず、ケース上蓋が外されたABS樹脂製の直方体ケース本体を用意した。このケース本体の中央付近に多孔質基材付きセパレータ(アルミナ基材上ハイドロタルサイト膜)を挿入し、その3辺を市販の接着剤を用いてケース本体の内壁に固定した。正極板及び負極板を正極室及び負極室にそれぞれ挿入した。このとき、正極集電体及び負極集電体がケース本体内壁に接するような向きで正極板及び負極板を配置した。正極室に、正極活物質塗工部分が十分に隠れる量の6mol/LのKOH水溶液を電解液として注液した。正極室の液面高さはケース底より約5.2cmであった。一方、負極室には、負極活物質塗工部分が十分に隠れるだけでなく、充電時に減少することが見込まれる水分量を考慮した過剰量の6mol/LのKOH水溶液を電解液として注液した。負極室における液面高さはケース底より約6.5cmであった。正極集電体及び負極集電体の端子部をそれぞれケース上部の外部端子と接続した。ケース上蓋を熱融着でケース本体に固定して、電池ケース容器を密閉化した。こうしてニッケル亜鉛電池を得た。なお、この電池においては、セパレータのサイズが幅5cm×高さ8cmであり、かつ、正極板及び負極板の活物質塗工部分のサイズが幅5cm×高さ5cmであるため、正極室及び負極室の上部3cm相当の空間が正極側余剰空間及び負極側余剰空間といえる。
(5)評価
作製したニッケル亜鉛電池に対して、設計容量4Ahの0.1C相当の0.4mAの電流で10時間定電流充電を実施した。充電後、ケースの変形や電解液の漏れは観察されなかった。充電後の電解液量を観察したところ、正極室の電解液の液面高さはケース底より約7.5cm、負極室の電解液の液面高さはケース底より約5.2cmであった。充電により、正極室電解液が増加し、負極室電解液が減少したものの、負極活物質塗工部分には十分な電解液があり、充放電を通して、塗工した正極活物質及び負極活物質が、十分な充放電反応を起こす電解液をケース内に保持できていた。
例5(参考):亜鉛空気二次電池の作製
(1)多孔質基材付きセパレータの用意
例1と同様の手順により、多孔質基材付きセパレータ(以下、単にセパレータという)として、アルミナ基材上ハイドロタルサイト膜を用意した。
(2)空気極層の作製
空気極触媒としてのα−MnO粒子を次のようにして作製した。まず、Mn(SO)・5HO及びKMnOを5:13のモル比で脱イオン水に溶かして混合した。得られた混合液をテフロン(登録商標)が内貼りされたステンレス製密閉容器に入れ、140℃で水熱合成を2時間行う。水熱合成により得られた沈殿物をろ過し、蒸留水で洗浄した後、80℃で6時間乾燥した。こうしてα−MnOの粉末を得た。
水酸化物イオン伝導性材料としての層状複水酸化物粒子(以下、LDH粒子という)を次のようにして作製した。まず、Ni(NO・6HO及びFe(NO・9HOを脱イオン水にNi:Fe=3:1のモル比になるように溶かして混合した。得られた混合液を70℃で0.3MのNaCO溶液に撹拌しながら滴下した。この際、2MのNaOH溶液を加えながら混合液のpHを10に調整して、70℃で24時間保持する。混合液中に生成した沈殿物をろ過し、蒸留水で洗浄後、80℃で乾燥してLDHの粉末を得た。
先に得られたα−MnO粒子及びLDH粒子、並びに電子伝導性材料としてのカーボンブラック(Cabot社製、品番VXC72)を所定の配合比となるように秤量して、エタノール溶媒の共存下で湿式混合した。得られた混合物を70℃で乾燥した後、解砕する。得られた解砕粉をバインダー(PTFE、エレクトロケム社製、品番EC−TEF−500ML)及び水と混合してフィブリル化した。このとき、水の添加量は空気極に対して1質量%とした。こうして得られたフィブリル状混合物を厚さ50μmとなるように集電体(カーボンクロス(エレクトロケム社製、品番EC−CC1−060T))にシート状に圧着して空気極層/集電体の積層シートを得た。こうして得られた空気極層は、電子伝導相(カーボンブラック)を20体積%、触媒層(α−MnO粒子)を5体積%、水酸化物イオン伝導相(LDH粒子)を70体積%及びバインダー相(PTFE)を5体積%含むものであった。
(3)セパレータ付き空気極の作製
アニオン交換膜(アストム社、ネオセプタAHA)を1MのNaOH水溶液に一晩浸漬させた。このアニオン交換膜をセパレータのハイドロタルサイト膜上に中間層として積層して、セパレータ/中間層積層体を得る。中間層の厚さは30μmである。得られたセパレータ/中間層積層体に、先に作製した空気極層/集電体の積層シートを、空気極層側が中間層と接するように圧着して、セパレータ付き空気極試料を得る。
(4)負極板の作製
銅パンチングメタルからなる集電体上に、酸化亜鉛粉末80重量部、亜鉛粉末20重量部及びポリテトラフルオロエチレン粒子3重量部からなる混合物を塗布して、多孔度約50%で活物質部分が塗工された負極板を得る。
(5)第三電極の作製
ニッケルメッシュからなる集電体上に白金ペーストを塗布して、第三電極を得る。
(6)電池の組み立て
上記得られたセパレータ付き空気極、負極板、及び第三電極を用いて、図3Aに示されるような横型構造の亜鉛空気二次電池を以下のような手順で作製する。まず、ABS樹脂製で直方体形状を有する蓋の無い容器(以下、樹脂容器という)を用意する。この樹脂容器の底に負極板を、負極活物質が塗工された側が上を向くように載置する。このとき、負極集電体が樹脂容器の底部に接しており、負極集電体の端部が樹脂容器側面に貫通して設けられる外部端子と接続する。次に、樹脂容器内壁の負極板の上面よりも高い位置に(すなわち負極板と接触せず充放電反応に関与しない位置)に第三電極を設け、不織布セパレータを第三電極と接触するように配置する。樹脂容器の開口部をセパレータ付き空気極で空気極側が外側になるように塞ぎ、その際、開口部の外周部分に市販の接着剤を塗工して気密性及び液密性を与えるように封止して接着する。樹脂容器の上端近傍に設けられた小さな注入口を介して樹脂容器内に6mol/LのKOH水溶液を電解液として注入する。こうして、セパレータが電解液と接触するとともに、不織布セパレータの保液性により電解液の増減に関わらず電解液が第三電極に常時接触可能な状態とされる。このとき、注入する電解液の量は、放電末状態で電池を作製すべく、樹脂容器内で負極活物質塗工部分が十分に隠れるだけでなく、充電時に減少することが見込まれる水分量を考慮した過剰量とする。したがって、樹脂容器は上記過剰量の電解液を収容できるように設計されている。最後に、樹脂容器の注入口を封止する。こうして樹脂容器及びセパレータで区画された内部空間は気密且つ液密に密閉されている。最後に第三電極と空気極の集電層とを外部回路を介して接続する。こうして亜鉛空気二次電池を得る。
かかる構成によれば、セパレータが水及び気体を通さない程の高度な緻密性を有するため、充電時に生成する亜鉛デンドライトによるセパレータの貫通を物理的に阻止して正負極間の短絡を防止し、かつ、空気中の二酸化炭素の侵入を阻止して電解液中での(二酸化炭素に起因する)アルカリ炭酸塩の析出を防止することができる。その上、負極34から副反応により発生しうる水素ガスを第三電極38に接触させて前述した反応を経て水に戻すことができる。すなわち、亜鉛デンドライトによる短絡及び二酸化炭素の混入の両方を防止するのに好適な構成を有しながら、水素ガス発生の問題にも対処可能な、信頼性の高い亜鉛空気二次電池が提供される。
10 ニッケル亜鉛電池
12 正極
13 正極集電体
14 正極電解液
16 負極
17 負極集電体
18 負極電解液
20 セラミックスセパレータ
22 容器
24 正極室
25 正極側余剰空間
26 負極室
27 負極側余剰空間
28 多孔質基材
30 亜鉛空気二次電池
32 空気極
34 負極
36 電解液
38 第三電極
40 セラミックスセパレータ
42 正極集電体
44 負極集電体
46 容器
46a 開口部
48 多孔質基材

Claims (17)

  1. 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池であって、該二次電池が、正極と、負極と、アルカリ金属水酸化物水溶液である電解液と、該電解液と接触し、かつ、前記正極と前記負極を隔離する、水酸化物イオン伝導性を有する無機固体電解質体からなるセラミックスセパレータとを備えてなり、
    前記無機固体電解質体が、M2+ 1−x3+ (OH)n− x/n・mHO(式中、M2+は2価の陽イオンであり、M3+は3価の陽イオンであり、An−はn価の陰イオンであり、nは1以上の整数であり、xは0.1〜0.4である)の基本組成を有する層状複水酸化物からなり、
    2+及び/又はM3+に対応する金属元素を含む金属化合物が前記電解液に溶解され、それにより前記層状複水酸化物の前記電解液による浸食が抑制されるように構成されてなる、二次電池。
  2. 前記アルカリ金属水酸化物水溶液が水酸化カリウム水溶液である、請求項1に記載の二次電池。
  3. 前記金属元素が、金属イオン、水酸化物及び/又はヒドロキシ錯体の形態で前記電解液に溶解されてなる、請求項1又は2に記載の二次電池。
  4. 前記金属化合物が前記電解液に予め溶解されてなる、請求項1〜3のいずれか一項に記載の二次電池。
  5. 前記一般式において、M2+がMg2+を含み、M3+がAl3+を含み、An−がOH及び/又はCO 2−を含む、請求項1〜4のいずれか一項に記載の二次電池。
  6. 前記金属化合物がM3+に対応する金属元素を含む、請求項1〜5のいずれか一項に記載の二次電池。
  7. 前記金属化合物がAlを含む、請求項1〜6のいずれか一項に記載の二次電池。
  8. 前記金属化合物が、水酸化アルミニウム及び/又はγアルミナである、請求項1〜7のいずれか一項に記載の二次電池。
  9. 前記電解液におけるAlの濃度が0.1mol/L以上である、請求項7又は8に記載の二次電池。
  10. 前記電解液におけるAlの濃度が2.0mol/L以上である、請求項7〜9のいずれか一項に記載の二次電池。
  11. 前記無機固体電解質体が90%以上の相対密度を有する、請求項1〜10のいずれか一項に記載の二次電池。
  12. 前記無機固体電解質体が、板状、膜状又は層状の形態を有する、請求項1〜11のいずれか一項に記載の二次電池。
  13. 前記セラミックスセパレータの片面又は両面に多孔質基材をさらに備えた、請求項1〜12のいずれか一項に記載の二次電池。
  14. 前記多孔質基材がアルミナ製又はジルコニア製である、請求項13に記載の二次電池。
  15. 前記無機固体電解質体が膜状又は層状の形態であり、該膜状又は層状の無機固体電解質体が前記多孔質基材上又はその中に形成されたものである、請求項13又は14に記載の二次電池。
  16. 前記無機固体電解質体が透水性及び通気性を有しない程に緻密化されたものである、請求項1〜15のいずれか一項に記載の二次電池。
  17. 前記無機固体電解質体が水熱処理によって緻密化されたものである、請求項1〜16のいずれか一項に記載の二次電池。
JP2014232921A 2014-10-01 2014-11-17 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池 Active JP6408878B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014203386 2014-10-01
JP2014203386 2014-10-01

Publications (2)

Publication Number Publication Date
JP2016072207A true JP2016072207A (ja) 2016-05-09
JP6408878B2 JP6408878B2 (ja) 2018-10-17

Family

ID=55864941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014232921A Active JP6408878B2 (ja) 2014-10-01 2014-11-17 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池

Country Status (1)

Country Link
JP (1) JP6408878B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204050A1 (ja) * 2015-06-15 2016-12-22 日本碍子株式会社 ニッケル亜鉛電池セルパック及びそれを用いた組電池
WO2018150919A1 (ja) * 2017-02-17 2018-08-23 国立大学法人名古屋工業大学 マンガン二次電池
CN109314213A (zh) * 2016-06-24 2019-02-05 日本碍子株式会社 包含层状双氢氧化物的功能层及复合材料
WO2021024664A1 (ja) * 2019-08-06 2021-02-11 日本碍子株式会社 電池モジュール
CN114497711A (zh) * 2022-01-26 2022-05-13 合肥国轩高科动力能源有限公司 一种复合固态电解质及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02276891A (ja) * 1988-12-29 1990-11-13 Kawasaki Steel Corp ガス中の硫化カルボニルの除去方法
JP2007227032A (ja) * 2006-02-21 2007-09-06 Osaka Prefecture Univ 全固体アルカリ二次電池用無機ヒドロゲル電解質とその製法及び全固体アルカリ二次電池
WO2010109670A1 (ja) * 2009-03-27 2010-09-30 住友商事株式会社 アルカリ電解質膜、電極接合体及び直接アルコール燃料電池
WO2013073292A1 (ja) * 2011-11-16 2013-05-23 日本碍子株式会社 亜鉛空気二次電池
WO2013118561A1 (ja) * 2012-02-06 2013-08-15 日本碍子株式会社 亜鉛二次電池
WO2014119663A1 (ja) * 2013-02-01 2014-08-07 株式会社日本触媒 電極前駆体、電極、及び、電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02276891A (ja) * 1988-12-29 1990-11-13 Kawasaki Steel Corp ガス中の硫化カルボニルの除去方法
JP2007227032A (ja) * 2006-02-21 2007-09-06 Osaka Prefecture Univ 全固体アルカリ二次電池用無機ヒドロゲル電解質とその製法及び全固体アルカリ二次電池
WO2010109670A1 (ja) * 2009-03-27 2010-09-30 住友商事株式会社 アルカリ電解質膜、電極接合体及び直接アルコール燃料電池
WO2013073292A1 (ja) * 2011-11-16 2013-05-23 日本碍子株式会社 亜鉛空気二次電池
WO2013118561A1 (ja) * 2012-02-06 2013-08-15 日本碍子株式会社 亜鉛二次電池
WO2014119663A1 (ja) * 2013-02-01 2014-08-07 株式会社日本触媒 電極前駆体、電極、及び、電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ELECTROCHEMICAL AND SOLID-STATE LETTERS, vol. 12(3), JPN6018013901, 2009, pages 58 - 60, ISSN: 0003879815 *
JOURNAL OF ASIAN CERAMIC SOCIETIES, vol. 2, JPN6018013902, April 2014 (2014-04-01), pages 165 - 168, ISSN: 0003879816 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204050A1 (ja) * 2015-06-15 2016-12-22 日本碍子株式会社 ニッケル亜鉛電池セルパック及びそれを用いた組電池
US10700328B2 (en) 2015-06-15 2020-06-30 Ngk Insulators, Ltd. Nickel-zinc battery cell pack and battery pack using same
CN109314213A (zh) * 2016-06-24 2019-02-05 日本碍子株式会社 包含层状双氢氧化物的功能层及复合材料
CN109314213B (zh) * 2016-06-24 2021-09-21 日本碍子株式会社 包含层状双氢氧化物的功能层及复合材料
WO2018150919A1 (ja) * 2017-02-17 2018-08-23 国立大学法人名古屋工業大学 マンガン二次電池
WO2021024664A1 (ja) * 2019-08-06 2021-02-11 日本碍子株式会社 電池モジュール
US11942650B2 (en) 2019-08-06 2024-03-26 Ngk Insulators, Ltd. Battery module with multiple secondary batteries
CN114497711A (zh) * 2022-01-26 2022-05-13 合肥国轩高科动力能源有限公司 一种复合固态电解质及其制备方法

Also Published As

Publication number Publication date
JP6408878B2 (ja) 2018-10-17

Similar Documents

Publication Publication Date Title
JP6001198B2 (ja) 層状複水酸化物を用いた電池
JP6067925B2 (ja) 亜鉛空気二次電池
JP5986697B2 (ja) 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
JP5940237B1 (ja) 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
JP6189469B2 (ja) ニッケル亜鉛電池
JP6429378B2 (ja) 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
JP6030780B2 (ja) 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
JP5936788B1 (ja) ニッケル亜鉛電池
JP5936789B1 (ja) ニッケル亜鉛電池
JP6598290B2 (ja) 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
JP6408878B2 (ja) 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
JP5936787B1 (ja) ニッケル亜鉛電池
JP6580379B2 (ja) ニッケル亜鉛電池
JP6313156B2 (ja) 亜鉛空気二次電池
JP7037002B1 (ja) 層状複水酸化物様化合物を用いた電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180921

R150 Certificate of patent or registration of utility model

Ref document number: 6408878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150