JP2016046256A - 生体適合性通電素子で使用するための電解質配合物 - Google Patents

生体適合性通電素子で使用するための電解質配合物 Download PDF

Info

Publication number
JP2016046256A
JP2016046256A JP2015162553A JP2015162553A JP2016046256A JP 2016046256 A JP2016046256 A JP 2016046256A JP 2015162553 A JP2015162553 A JP 2015162553A JP 2015162553 A JP2015162553 A JP 2015162553A JP 2016046256 A JP2016046256 A JP 2016046256A
Authority
JP
Japan
Prior art keywords
battery
electrolyte
biocompatible battery
biocompatible
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015162553A
Other languages
English (en)
Inventor
フレデリック・エイ・フリッチュ
A Flitsch Frederick
ダニエル・ビー・オッツ
B Otts Daniel
ランドール・ビー・ピュー
B Pugh Randall
ジェームズ・ダニエル・リオール
Daniel Riall James
アダム・トナー
Toner Adam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson and Johnson Vision Care Inc
Original Assignee
Johnson and Johnson Vision Care Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson and Johnson Vision Care Inc filed Critical Johnson and Johnson Vision Care Inc
Publication of JP2016046256A publication Critical patent/JP2016046256A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • B29D11/00048Production of contact lenses composed of parts with dissimilar composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00807Producing lenses combined with electronics, e.g. chips
    • B29D11/00817Producing electro-active lenses or lenses with energy receptors, e.g. batteries or antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/045Cells with aqueous electrolyte characterised by aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/22Immobilising of electrolyte
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】 生体適合性通電素子で使用するための、電解質配合物を提供する。
【解決手段】 いくつかの実施例において、生体適合性通電素子において使用するための電解質配合物は、生体適合性、電気性能、及び物理性能を最適化するための、液状電解質配合物を含む。電解質の活性要素は、生体適合性材料で封止される。いくつかの実施例では、器具の使用分野は、通電素子を必要とする任意の生体適合性装置又は製品を含み得る。
【選択図】 図1A

Description

(関連出願の相互参照)
本特許出願は2014年8月21日に出願された米国仮特許出願第62/040178号の利益を主張するものである。
(発明の分野)
生体適合性電池で使用するための、電解質配合物が記載される。いくつかの実施例において、生体適合性電池において使用するための電解質配合物の使用分野は、エネルギーを必要とする任意の生体適合性装置又は製品を含み得る。
近年、医療用装置の数及びその機能が急速に発達し始めている。これらの医療用装置としては、例えば、埋め込み型ペースメーカー、生物学的機能のモニタリング及び/又は検査を行うための電子ピル、能動構成要素を備える外科用装置、コンタクトレンズ、輸液ポンプ、及び神経刺激装置を挙げ得る。上記医療用装置の多くに対する追加機能及び性能の向上が理論上想定され、開発されている。しかしながら、理論上想定される追加機能を実現するには、これらの装置の多くで、これらの装置の寸法及び形状に関する要件、並びに新たな通電構成要素のエネルギー要件に適合する内蔵型の通電手段が必要とされている。
一部の医療用装置は、様々な機能を実行し、かつ多くの生体適合性及び/又は埋め込み型装置に組み込まれる場合がある、半導体装置などの電気的な構成要素を含み得る。しかしながら、かかる半導体構成要素は、エネルギーを必要とする。したがって、かかる生体適合性装置も、好ましくは、通電素子を含むべきである。生体適合性装置のトポロジー及び比較的小さい寸法は、様々な機能を定義するために、困難な環境をもたらし得る。多くの実施例では、生体適合性装置内の半導体構成要素を通電するための、安全で、信頼性が高く、小型で、かつ費用効率の高い手段を提供することが重要であり得る。したがって、生体適合性装置内、又は生体適合性装置上への埋め込みのために形成される生体適合性通電素子であって、ミリメートル以下の大きさの通電素子の構造体が、通電素子の機能の向上をもたらす一方で、生体適合性を維持する、生体適合性通電素子の必要性が存在する。
装置に電力を供給するために必要な1つのこのような通電素子は、電池であり得る。電池内での共通要素は、電池電解質である。電池電解質は、電池内のイオン伝導により、電池から電子が出て移動するのを促進する。電池の機能は、構造設計、材料、及び電池電解質の形成に関連するプロセスに大きく依存し得る。更に、いくつかの実施例において、電池電解質材料の収容が、生体適合性の重要な態様になる場合がある。したがって、生体適合性通電素子で使用するための生体適合性電解質を形成する、新規の実施例に対する必要性が存在する。
したがって、電気化学及び生体適合性による利益を可能にする一方で、生体適合性通電素子にとって必要な生体適合性、性能、及び機能を維持する、生体適合性電池において使用するための電解質配合物が開示される。
1つの一般的な態様は、電解質配合物を含有する生体適合性電池であって、第1及び第2の集電体を含む、生体適合性電池を含む。生体適合性電池はまた、カソードも含む。生体適合性電池はまた、アノードも含む。電池は、層状構造体を有してもよく、層状構造体の少なくとも1つの層は、キャビティを形成するように一定の容積が除去されている。キャビティは電解質溶液を収容し、電解質溶液はイオン化塩、及び溶媒を含む。
実現形態は、以下の特徴の1つ以上を含み得る。いくつかの実施例では、生体適合性電池のイオン化塩は、塩化亜鉛、塩化アンモニウム、酢酸亜鉛、硫酸亜鉛、臭化亜鉛、グルコン酸亜鉛、硝酸亜鉛、及びヨウ化亜鉛の1つ以上であってもよい。いくつかの実施例において、溶媒は水である。
生体適合性電池内に、他の添加物が含まれていてもよい。例えば、生体適合性電池は、酢酸インジウムとして供給される、インジウム(III)イオンを含む場合がある。更に、生体適合性電池は、硫酸インジウムを含む場合がある。
電解質が生体適合性電池から漏れる可能性を低減することによる、安全性の向上などを含む、様々な目的のために、生体適合性電池にゲル化剤が追加されてもよい。いくつかの実施例において、生体適合性電池に追加され得るゲル化剤は、寒天、カルボキシメチルセルロース、及びヒドロキシプロピルメチルセルロースのうちの1つ以上を含んでもよい。
生体適合性電池としては、多くの塩の中でもとりわけ、塩化ナトリウム、ホウ酸ナトリウムなどの、充填溶液(パッケージング溶液とも称される)中に一般的に含まれる塩を含んでもよい。
生体適合性電池は、界面活性剤を含んでもよい。いくつかの実施例において、界面活性剤はトリトンqs44である。
生体適合性電池は、生体適合性装置に電力を供給してもよい。いくつかの実施例において、本発明の様々な生体適合性電池は、電力を提供された生体適合性装置内に含まれ得る。これらの実施例のいくつかにおいて、生体適合性装置はコンタクトレンズである。
生体適合性電池は、内部に多数のセルが形成されていてもよく、これらのセルはいくつかの実施例において、異なる機能を個別に有する場合がある。1つの一般的な態様は、生体適合性電池を含み、生体適合性電池は、第1及び第2の集電体と、カソードと、アノードと、層状構造体と、を含む。いくつかの実施例では、層状構造体の少なくとも1つの層は、第1のキャビティを形成するように第1の容積が除去され、第2のキャビティを形成するために第2の容積が除去されていてもよい。電解質配合物は、第1のキャビティ内に収容され得る。生体適合性電池はまた、第1のキャビティと第2のキャビティとの間にチャネルを含んでもよく、電気活性素子は、チャネルを通した流れを制御する。いくつかの実施例では、層状構造体の少なくとも1つの層は、第3のキャビティを形成するように第3の容積が除去されていてもよい。この第3の部キャビティもまた電極を含んでもよく、電解質溶液は、外部位置から第3のキャビティ内へと拡散してもよい。電解質が外部位置から第3の部キャビティ内へと拡散すると、第3のキャビティ内の注液電池(reserve cell)が活性化され得る。いくつかの実施例では、生体適合性電池はまた、光信号に応答してもよく、これは第3のキャビティ内の注液電池によって電力を供給される電子回路に接続された、光電池と相互作用し得る。光信号を受信すると、これはひいては、生体適合性電池の電気活性素子を活性化し、電解質が第2のキャビティに流れるようにし得る。
1つの一般的な態様は、電解質配合物を収容する、生体適合性電池を含み、生体適合性電池は、第1及び第2の集電体と、カソードと、アノードと、層状構造体と、を含む。層状構造体は、キャビティを形成するために容積が除去されてもよく、キャビティには電解質が充填される。いくつかの実施例において、電解質はおよそ10〜20%の塩化亜鉛、約250〜500ppmのトリトンqs44、及び酢酸インジウムとして供給される、約100〜200ppmのインジウム(III)イオンを含有し得る。
1つの一般的な態様は、電解質配合物を収容する、生体適合性電池を含み、生体適合性電池は、第1及び第2の集電体と、カソードと、アノードと、層状構造体と、を含む。層状構造体は、キャビティを形成するためにある容積を除去してもよく、キャビティの少なくとも一部内にゲル化電解質が形成される。いくつかの実施例において、ゲル化電解質は、脱イオン水中において約2モルの硝酸カルシウム、およそ1重量%のカルボキシメチルセルロース、及び約10重量%の二酸化ケイ素を含み得る。
1つの一般的な態様は、インサート装置を含む生物医学的装置器具を含む。インサート装置は、制御用電圧信号に反応する電気活性素子、及び生体適合性電池を含み得る。生体適合性電池は、第1及び第2の集電体と、カソードと、アノードと、セパレータと、層状構造体と、を含み得る。層状構造体は、キャビティを形成するために容積が除去されてもよく、キャビティにはとりわけ電解質が充填される。生体適合性電池は、イオン化塩、及び溶媒を含み得る。生物医学的装置器具はまた、生体適合性電池に電気的に接続され、電気活性素子に制御用電圧信号を送信する、回路を含み得る。いくつかの例において、生物医学的装置は、コンタクトレンズであり得る。
生体適合性電池は内部構造を有してもよく、これらの内部に形成されたキャビティを有する層(複数可)は、第3の種類のキャビティを形成するために除去される、少なくとも第3の容積を有する。第3のキャビティもまた、電極を有し得る。いくつかの場合では、電解質溶液は、外部位置から第3のキャビティ内へと拡散し得る。電解質溶液がこのような様式で拡散することにより、注液電池として第3のキャビティが活性化され、電池が活性化する。いくつかの実施例において、この注液電池は、外部信号に応答し得る検出素子を含む回路に電力を供給し得る。外部信号が検出素子と相互作用すると、この相互作用により生じる電気信号は、電池の残部内の電気活性素子を活性化する場合があり、これにより電解質が、第1の種類のキャビティ内の保存位置から、第2の種類のキャビティの注液電池セル内へと流れることができる。このようにして生体適合性電池素子内へと形成される、追加的な電池セル及び注液電池が存在し得る。
本発明の上記の及び他の特徴及び利点は、添付の図面に図示するように、以下のより具体的な本発明の好ましい実施形態の記載から明らかとなるであろう。
例示的なコンタクトレンズの用途と協調して生体適合性通電素子の例示的な態様を示す図である。 例示的なコンタクトレンズの用途と協調して生体適合性通電素子の例示的な態様を示す図である。 例示的なコンタクトレンズの用途と協調して生体適合性通電素子の例示的な態様を示す図である。 例示的なコンタクトレンズの用途と協調して生体適合性通電素子の例示的な態様を示す図である。 例示的な電池設計の個々のセルの例示的な寸法及び形状を示す図である。 例示的なアノード及びカソード接続部を有する第1の独立型のパッケージ化された生体適合性通電素子を示す図である。 例示的なアノード及びカソード接続部を有する第2の独立型のパッケージ化された生体適合性通電素子を示す図である。 A〜Fは、生物医学的装置用の生体適合性通電素子を形成するための例示的な方法工程を示す図である。 G〜Lは、生物医学的装置用の生体適合性通電素子を形成するための例示的な方法工程を示す図である。 M及びNは、生物医学的装置用の生体適合性通電素子を形成するための例示的な方法工程を示す図である。 例示的な、完全に形成された生体適合性通電素子を示す図である。 A〜Fは、生体適合性通電素子の構造体形成のための例示的な方法工程を示す図である。 A〜Fは、代替の電気めっき法を用いた、生体適合性通電素子の構造体形成のための例示的な方法工程を示す図である。 A〜Fは、生物医学的装置用のヒドロゲルセパレータを有する、生体適合性通電素子の形成のための例示的な方法工程を示す図である。 G及びHは、生物医学的装置用のヒドロゲルセパレータを有する、生体適合性通電素子の形成のための例示的な方法工程を示す図である。 A〜Cは、代替のヒドロゲル処理の実施例を利用する、生体適合性通電素子の構造体形成のための例示的な方法工程を示す図である。 A〜Fは、カソード混合物のキャビティ内への最適な堆積、及び非最適な堆積を示す図である。 キャビティの内側におけるカソード混合物の凝集を示す図である。 A〜Fは、生体適合性通電素子内のゲル化した電解質の例示的な用途を示す図である。
生体適合性電池で使用するための、電解質配合物が、本出願において開示される。以下の各項において、様々な実施例の詳細な説明が記載される。実施例の説明は、単なる例示的な実施形態に過ぎず、当業者には、様々な変型、修正、及び変更が明白であり得る。したがって、例示的な実施形態は、本出願の範囲を制限するものではない。電解質配合物、及びこれらを含む構造体は、生体適合性電池内で使用するように設計され得る。いくつかの実施例において、これらの生体適合性電池は、生物の身体内、又は身体付近において使用するように設計されてもよい。
用語集
本説明及び下記の特許請求の範囲では、様々な用語が下記の定義が適用されることになるところで、使用される場合がある。
本明細書で使用するとき、「アノード」は、そこを通って電流が有極電気装置に流れ込む電極を指す。電流の方向は、通常、電子流とは逆方向である。換言すれば、電子は、例えば、アノードから、電気回路に流入する。
本明細書で使用するとき、「結合剤」は、機械的変形に対する弾性応答を呈することができ、他の通電素子構成要素と化学的に適合するポリマーを指す。例えば、結合剤としては、電気活物質、電解質、ポリマーなどを挙げることができる。
本明細書で使用するとき、「生体適合性」とは、特定用途において適切な宿主反応を伴って機能実行する材料又は装置を指す。例えば、生体適合性装置は、生体系に対して毒性又は有害な影響を及ぼさない。
本明細書で使用するとき、「カソード」は、そこを通って電流が有極電気装置から流出する電極を指す。電流の方向は、通常、電子流とは逆方向である。したがって、電子流は有極電気装置のカソードに流入し、例えば、接続された電気回路から流出する。
本明細書で使用するとき、「コーティング」は、材料の薄型堆積物を指す。いくつかの用途では、この用語は、その上に堆積物が形成される基板の表面を実質的に被覆する、薄型堆積物を指す。他のより特定の用途では、この用語は、表面のより小さい領域内にある小さい薄型堆積物を説明するために使用されてもよい。
本明細書で使用するとき、「電極」は、エネルギー源内の活物質を指し得る。例えば、電極は、アノード及びカソードの一方又は両方を含んでもよい。
本明細書で使用するとき、「通電された」とは、電流を供給することができるか、又は内部に蓄積された電気的エネルギーを有することができる状態を指す。
本明細書で使用するとき、「エネルギー」は、仕事を行うための物理的システムの能力を指す。通電素子の多くの用途は、電気的作用を実行できる能力に関するものであってもよい。
本明細書で使用するとき、「エネルギー源」又は「通電素子」又は「通電装置」は、エネルギーを供給できるか、論理装置又は電気装置を通電された状態にすることができる、任意の装置又は層を指す。通電素子は、電池を含み得る。電池は、アルカリ型セル用化学物質で形成されてもよく、固体電池又は湿電池であってもよい。
本明細書で使用するとき、「充填剤」は、酸性電解質又はアルカリ性電解質のいずれとも反応しない、1つ以上の通電素子用セパレータを指す。一般に、充填剤としては、カーボンブラックなどの実質的に非水溶性の物質;炭塵;黒鉛;シリコン、アルミニウム、カルシウム、マグネシウム、バリウム、チタン、鉄、亜鉛、及び錫などの金属酸化物及び水酸化物;カルシウム及びマグネシウムなどの金属炭酸塩;雲母、モンモリロナイト、カオリナイト、アタパルジャイト、及びタルクなどの鉱物;ポルトランドセメントなどの合成ゼオライト及び天然ゼオライト;ケイ酸カルシウムなどの析出金属ケイ酸塩;中空又は中実のポリマー又はガラス微小球、フレーク、及び繊維;などを挙げ得る。
本明細書で使用するとき、「機能化」は、例えば、通電、起動、又は制御などを含む機能を、層又は装置が実行できるようにすることを指す。
本明細書において使用するとき、「イオン化塩」は溶液中に溶解したイオンを生成するために、溶媒内に溶解する、イオン性固体を指す。いくつかの実施例において、溶媒は水を含み得る。
本明細書で使用するとき、「成形型」は、未硬化配合物から三次元の物体を形成するために使用され得る、剛性又は半剛性の物体を指す。いくつかの例示的な成形型は、互いに対向するときに、三次元の物体の構造を画定する2つの成形型部分を含む。
本明細書で使用するとき、「仕事率」は、単位時間当たりに行われる仕事、又は移送されるエネルギーを指す。
本明細書で使用するとき、「再充電可能」又は「再通電可能」は、仕事をするためのより高い能力を有する状態へと復元可能な能力を指す。多くの使用は、特定の再度確立された期間、特定の率で、電流を流す能力で復元できることに関連し得る。
本明細書で使用するとき、「再充電」又は「再通電」は、仕事をするためのより高い能力を有する状態に復元することを指す。多くの使用は、特定の再度確立された期間、特定の率で電流を流すことができる能力に装置を復元することに関連して得る。
本明細書で使用するとき、「離型させる」(「成形型から離型させる」と言われることもある)は、三次元の物体が成形型から完全に分離した状態、又は穏やかな振動によって取り外すことができるように、ほんの軽く成形型に取り付けられている状態のいずれかであることを意味する。
本明細書で使用するとき、「積層された」は、少なくとも2つの構成成分層を、層のうちの1層の1つの面の少なくとも一部が、第2の層の第1の面と接触するように、互いに近接して配置することを意味する。いくつかの実施形態では、接着のためであれ、又は他の機能のためであれ、コーティングが2つの層の間に存在する場合があり、これらの層は前記コーティングを通じて互いに接触している。
本明細書で使用するとき、「トレース」は、回路構成要素を接続することができる通電素子構成要素を指す。例えば、回路トレースは、基板がプリント回路基板である場合、銅又は金を含むことができ、典型的には、フレックス回路内の銅、金、又は印刷された膜であり得る。特殊な種類の「トレース」は、集電体である。集電体は電気化学的適合性を有するトレースであり、この電気化学的適合性により、集電体は、電解質の存在下でアノード又はカソードとの間で電子を伝達する際に使用するのに適したものとなる。
本明細書に示される方法及び器具は、平面状又は三次元の生体適合性装置内又はその上に含めるための生体適合性通電素子を形成することに関する。特定の種類の通電素子は、層状に製造される電池であってもよい。層は、積層層として分類され得る。このようにして形成された電池は、積層電池に分類され得る。
本発明による電池を組み立てて構成する方法には他の例が存在する場合があり、そのうちのいくつかを以下の項に記載することができる。しかしながら、これらの例の多くに関して、独自のものとして説明することができる、電池の選択されたパラメータ及び特徴が存在する。以下の項では、いくつかの特徴及びパラメータに焦点が当てられる。
生体適合性通電素子を有する例示的な生物医学的装置の構成
本開示の通電素子である電池を組み込むことができる生物医学的装置の例は、焦点を調節する電気活性のコンタクトレンズであり得る。図1Aを参照すると、このようなコンタクトレンズのインサートの例は、コンタクトレンズのインサート100として図示される。このコンタクトレンズのインサート100には、制御用電圧に応答して焦点特性の変化を調整し得る電気活性素子120が存在し得る。こうした制御用電圧信号を提供し、かつ外部制御信号に対する環境感知を制御するなどの他の機能も同様に提供する回路105は、生体適合性電池素子110によって給電され得る。図1Aに示すように、電池素子110は、複数の主要部分(この事例では3個の部分)として見られる場合があり、既に述べた電池化学素子の種々の構成を含んでいてもよい。電池素子110は、相互接続領域114の下に描かれる場合がある部分を共に結合するための、様々な相互接続特徴部を有し得る。電池素子110は、それ自体の基板111を有する場合がある回路素子に接続されてもよく、基板111上には相互接続特徴部125が位置している場合がある。集積回路の形態であってもよい回路105は、基板111及びその相互接続特徴部125と電気的及び物理的に接続されることができる。
図1Bを参照すると、コンタクトレンズ150の断面のレリーフ図は、コンタクトレンズのインサート100と、論じられているその構成要素とを含み得る。コンタクトレンズのインサート100は、コンタクトレンズヒドロゲル155のスカート内に封入され得、このスカートは、コンタクトレンズインサート100を封入し得、かつコンタクトレンズ150とユーザーの目との快適な境界面を提供し得る。
本開示の概念を参照すると、電池素子は、図1Cに示されるような二次元形態に形成されてもよい。この図では、電池構成要素165の領域内の電池セルの2つの主要な領域と、電池化学素子160の領域内の第2の電池構成要素とが存在し得る。図1Cにおいて平坦な形状で示される電池素子が回路素子163に接続されていてもよく、図1Cにおいてこの素子は、2つの主要回路領域167を含み得る。回路素子163は、電気接点161及び物理的接点162において電池素子に接続することができる。平面構造は、本発明に関連して既に説明したように三次元的な円錐構造に曲げられてもよい。このプロセスでは、この三次元構造体を接続し、かつ物理的に安定させるために、第2の電気接点166及び第2の物理的接点164を使用することができる。図1Dを参照すると、この三次元円錐構造体180を示す図を見ることができる。物理的及び電気接触点181も見ることができ、この図は、得られた構造体の三次元表示として見ることができる。この構造体は、レンズインサートと共に生体適合性装置に組み込まれる、モジュール化された電気及び電池構成要素を含んでいてもよい。
セグメント化された電池配列
図2を参照すると、コンタクトレンズタイプの例のための例示的な電池素子の、異なるタイプのセグメント化された電池配列の例が示されている。セグメント化された構成要素は、比較的円形状271、正方形状272、又は矩形状であってよい。矩形状の例では、矩形は、小さい矩形形状273、より大きい矩形形状274、又は更に大きい矩形形状275であり得る。
カスタム形状の平型電池素子
生体適合性電池のいくつかの例では、電池は平型素子として形成されてもよい。図3Aを参照すると、電池素子の矩形の輪郭310の例は、アノード接続部311及びカソード接続部312と共に描かれる。図3Bを参照すると、電池素子の円形の輪郭330の例が、アノード接続部331及びカソード接続部332と共に描かれる。
平型に形成された電池のいくつかの例では、電池形状の輪郭は、カスタム製品に合うように、寸法的及び幾何学的に構成され得る。矩形又は円形の輪郭の例に加えて、「自由形態」又は「自由形状」のカスタム輪郭を形成してもよく、これにより、電池の構成を、所与の製品内に収まるように最適化することが可能となり得る。
可変光学素子の例示的な生物医学的装置の事例では、平型輪郭の「自由形態」の例は、弓状形態であり得る。自由形態とは、三次元形状に形成されたときに、コンタクトレンズの制限領域内に適合する円錐形環状スカートの形態をとるような幾何学的形状であり得る。医療用装置が二次元又は三次元形状という限定的要件を有する場合には、同様の有利な幾何学的形状が形成されてもよいことは明らかであり得る。
電池の生体適合性の態様
一例として、本発明による電池は、安全性及び生体適合性に関する重要な態様を有し得る。いくつかの例では、生物医学的装置用電池は、典型的な使用例で求められる要件以上の要件を満たす必要があり得る。いくつかの例では、設計的態様は、ストレスを与える事象に関連するものが考えられる。例えば、電子コンタクトレンズの安全性は、レンズの挿入又は取り外しの際にユーザーがレンズを破壊した場合を考慮する必要があり得る。別の例では、設計的態様は、ユーザーの目に異物が当たる可能性を考慮してもよい。設計のパラメータを作製する上で考慮され、かつ制約を生じさせ得るストレスの多い状況の更なる例は、非限定的な例として、水中環境又は高地環境のような厳しい環境においてユーザーがレンズを装着する可能性に関する場合がある。
こうした装置の安全性は、それにより又はそれから装置が作製される材料、装置を製造する際に使用するこうした材料の量、更には、周囲環境又は体内環境から装置を隔てるために適用されるパッケージの影響を受ける場合がある。一例において、ペースメーカーは、電池を含む場合があり、かつ長期間にわたってユーザーの体内に埋め込まれる可能性がある、典型的な種類の生物医学的装置であり得る。したがって、いくつかの例では、そのようなペースメーカーは、典型的には、溶接されたチタン気密容器で、又は他の例では、複数の封入層でパッケージ化される場合がある。新たに出現した電動式生物医学的装置は、パッケージング(特に電池パッケージング)に関する新たな課題を提供し得る。こうした新たな装置は、既存の生物医学的装置よりもかなり小さい場合があり、例えば、電子コンタクトレンズ又はピルカメラは、ペースメーカーよりも大幅に小さい場合がある。そのような例では、パッケージングのために利用可能な体積及び面積は、大幅に減少する場合がある。
超小型電池の電気的要件
設計の際に考慮すべき別の分野は、電池によりもたらされる、装置の電気的要件に関する場合がある。適切な電池は、医療用装置の電源として機能するために、システムが非接続形態又は外部給電されていない形態で動作しているときに全ての電気的要件を満たす必要があり得る。接続されていない又は外部給電されていない生物医学的装置の新興分野は、例えば、視力矯正コンタクトレンズ、健康状態監視装置、ピルカメラ、及び新型装置を含むことができる。集積回路(IC)技術における近年の進歩により、非常に低い電流レベル(例えば、ピコアンペアの待機電流及びマイクロアンペアの動作電流)での有意義な電気的操作が可能となり得る。IC技術は、微小装置を可能にすることもできる。
生物医学的用途用の超小型電池は、多くの困難な要件を同時に満たすことが要求される場合がある。例えば、超小型電池は、組み込まれている電気回路に適した動作電圧を供給する能力を有することが要求される場合がある。この動作電圧は、ICプロセス「ノード」、回路から別の装置への出力電圧、及び特定の消費電流目標値(これは、所望の装置寿命にも関連する場合がある)などのいくつかの要因の影響を受け得る。
ICプロセスに関して、ノードは、典型的には「いわゆる」トランジスタチャネルなどの、トランジスタの最小外形寸法によって区別され得る。この物理的特徴部を、他のIC製造パラメータ(ゲート酸化膜厚など)と共に、得られる「ターンオン」時定格標準、又は所与のプロセスノードに製造された電界効果トランジスタ(FET)の「閾値」電圧と関連付けることができる。例えば、最小外形寸法が0.5マイクロメートルのノードでは、FETのターンオン電圧は5.0Vであることが一般的である場合がある。しかしながら、90nmの最小特徴寸法では、FETは、1.2、1.8、及び2.5Vでターンオンし得る。ICファウンドリは、特定の圧力範囲にわたって使用することを特徴とし、かつそのように定格化されているデジタルブロック(例えば、逆変換装置及びフリップフロップ)の標準セルを供給することができる。設計者は、デジタル素子の密度、アナログ/デジタル混合信号装置、リーク電流、ワイヤリング層、及び高電圧FETのような特殊装置のアベイラビリティといったいくつかの要因に基づいて、ICプロセスノードを選択する。超小型電池から電力を引き出すことができる電気的構成要素のこうしたパラメータに関する態様を前提として、超小型電池の電源を、特に利用可能な電圧及び電流の点で、選択したプロセスノード及びIC設計の要件に一致させることが重要となり得る。
いくつかの例では、超小型電池により給電される電気回路は、他の装置に接続されてもよい。非限定的な例において、超小型電池により給電される電気回路は、作動装置又は変換器に接続されてもよい。こうした装置としては、用途に応じて、発光ダイオード(LED)、センサ、微小電気機械システム(MEMS)ポンプ、又は多くの他のこのような装置を挙げることができる。いくつかの実施例において、このように接続された装置は、一般的なICプロセスノードよりも高い動作電圧条件を必要とし得る。例えば、可変焦点レンズは、起動するのに35Vを必要とし得る。したがって、電池が提供する動作電圧は、そのようなシステムを設計する上での重要な考慮事項となり得る。この種の考慮事項のいくつかの例では、1Vの電池から35Vを生成するレンズ駆動装置の効率は、2Vの電池で動作する場合に得られるであろう効率と比べて明らかに低い。ダイ寸法などの更なる要件も、超小型電池の作動パラメータを考慮すると、著しく異なる場合がある。
個々の電池セルは、典型的に、開回路、負荷時、及びカットオフで定格電圧が規定される。開回路電圧は、負荷抵抗が無限大の状態の電池セルによって生成される電位である。負荷時電圧は、適切かつ典型的な規定された負荷インピーダンスがセル端子間に加えられた状態でセルによって生成される電位である。カットオフ電圧は、典型的には、ほとんどの電池が放電された状態となる電圧である。カットオフ電圧は、有害な影響(過剰なガスの発生など)を回避するために、それ以下になると電池が放電されるべきではない電圧、又は放電度合いを表すことができる。カットオフ電圧は、典型的には、電池自体だけでなく、電池が接続されている回路(例えば、電子回路の最小動作電圧)の影響を受け得る。一例として、アルカリ電池は、1.6Vの開回路電圧、1.0〜1.5Vの範囲の負荷時電圧、及び1.0Vのカットオフ電圧を有していてもよい。所与の超小型電池セル設計の電圧は、採用するセル用化学物質の他の要因により異なる場合がある。したがって、異なるセル用化学物質は、異なるセル電圧を有してもよい。
セルは、電圧を上昇させるために直列につながれてもよいが、この組み合わせでは、寸法、内部抵抗、及び電池の複雑性がトレードオフとなる場合がある。セルは、抵抗を低下させかつ容量を増大させるように並列構成で組み合わされてもよいが、そのような組み合わせでは、寸法と貯蔵寿命がトレードオフとなる場合がある。
電池容量は、電池が一定期間の間電流を供給する、又は仕事を行う能力であってもよい。電池容量は、典型的には、マイクロアンペア時間などの単位で指定される場合がある。1マイクロアンペアの電流を1時間供給することができる電池は、1マイクロアンペア時間の容量を有する。容量は、典型的には、電池装置内の反応物質の質量(したがって容積)を増加させることによって増加させることができるが、生物医学的装置は、利用可能な容積の点で著しく制約される可能性があることが理解できる。電池容量はまた、電極及び電解質材料の影響も受ける場合がある。
電池が接続される回路の要件に応じて、電池は、ある値の範囲にわたる電流を流入させることを要求される場合がある。実際に使用する前の保管中、ピコアンペアからナノアンペア程度のリーク電流が、回路、相互接続部、及び絶縁体を通って流れる場合がある。回路は、活動的な動作中、センサをサンプリングすること、タイマーを動作すること、及びそのような低消費電力機能を実行するために、静止電流を消費する場合がある。静止電流消費は、ナノアンペアからミリアンペア程度であり得る。回路は、例えば、フラッシュ・メモリに書き込むとき、又は無線周波数(RF)で通信するときに、更に大きなピーク電流を要求する場合がある。このピーク電流は、数十ミリアンペア以上に及ぶ場合がある。超小型電池装置の抵抗及びインピーダンスもまた、設計考慮事項にとって重要である場合がある。
貯蔵寿命は、典型的には、電池が保管に耐え、かつ依然として有用な作動パラメータを維持することができる期間を指す。有効寿命は、いくつかの理由から、生物医学的装置にとって特に重要である場合がある。電子素子は、例えば、電子コンタクトレンズが導入される事例のように、無動力の装置に取って代わる場合がある。こうした既存の市場空間における製品は、顧客、サプライチェーン、及びその他の要件に起因して、確立された貯蔵寿命要件(例えば、3年)を有している場合がある。典型的には、そのような規格は新しい製品のために変更されないことが望ましい場合がある。貯蔵寿命要件はまた、超小型電池を含む装置の流通方法、在庫管理方法、及び使用方法に従っても設定される場合がある。したがって、生物医学的装置用超小型電池は、例えば年数で測定することができる具体的な貯蔵寿命要件を有し得る。
いくつかの実施例では、三次元の生体適合性通電素子は再充電可能であってもよい。例えば、三次元表面上には、更に誘導コイルが製造されていてもよい。次いで、誘導コイルは、無線周波数(「RF」)フォブで通電されてもよい。誘導コイルは、三次元の生体適合性通電素子に接続されて、RFが誘導コイルに印加されると通電素子を再充電することができる。別の例では、太陽電池もまた三次元表面上に製造され、三次元の生体適合性通電素子に接続されてもよい。太陽電池が光、つまり光子に曝露されると電子を生じさせて、通電素子を再充電する。
いくつかの例では、電池は、電気システムに電気的エネルギーを提供するように機能してもよい。こうした例では、電池は、電気システムの回路に電気的に接続されてもよい。回路と電池との間の接続は、相互接続に分類される場合がある。こうした相互接続は、いくつかの要因により、生物医学超小型電池にとってますます困難になっている。いくつかの例では、電動式生物医学的装置は非常に小さいので、相互接続のための面積及び容積がほとんどない場合がある。寸法及び面積の制約は、相互接続部の電気抵抗及び信頼性に影響を与える場合がある。
その他の点において、電池は、高温で沸騰する可能性がある液体電解質を収容していてもよい。この制約は、例えば、比較的高い溶融温度(例えば、250℃)を必要とする場合があるハンダ相互接続を用いたいという要望と、直接的に対立する。しかし、いくつかの実施例では、電解質を含む電池化学物質と、ハンダ付けによる相互接続を形成するために使用され得る熱源とは、互いに空間的に隔離され得る。新しい生物医学的装置の事例では、寸法が小さいことにより、熱伝導を低減するための十分な距離による電解質とハンダ接合の分離が排除する場合がある。
相互接続
相互接続は、外部回路と接続された電池との間で電流を流すことができるようにする。そのような相互接続は、電池の内部環境と外部環境とを相互作用させることができ、これらの環境の間の境界又は封止を越えることができる。こうした相互接続は、外部回路との接続を形成し、電池封止材を通過した後、電池内の集電体と接続するトレースと見なされてもよい。そのため、こうした相互接続はいくつかの要件を有し得る。電池外部において、相互接続は、典型的なプリント回路トレースに類似していてもよい。トレースは他のトレースとハンダ付けされるか、又は別の方法で接続されてもよい。電池が、集積回路を含む回路基板とは別の物理的要素である例では、電池相互接続は、外部回路との接続が可能となってもよい。この接続は、ハンダ付け、導電性テープ、導電性インク若しくは導電性エポキシ樹脂、又は他の手段で形成されてもよい。相互接続トレースは、電池外部の環境に耐える(例えば、酸素の存在下で腐食しない)必要がある場合がある。
相互接続部は電池封止材を貫通するので、相互接続が封止材と共存し、かつ封止を可能にすることが非常に重要であり得る。封止材と電池パッケージとの間で必要となる場合がある接着に加えて、封止材と相互接続部との間の接着が必要となる場合がある。電池内部の電解質及び他の材料の存在下では、封止完全性が維持される必要があり得る。相互接続部は、典型的には金属性であり、電池パッケージングの破損点として知られている場合がある。電位及び/又は電流の流れにより、電解質が相互接続部に沿って「クリープ」する傾向が増大する場合がある。したがって、相互接続は、封止完全性を維持するように設計する必要があり得る。
電池内部において、相互接続は、集電体と相互作用してもよく、又は集電体を実際に形成してもよい。この点で、相互接続は、本明細書に記載する集電体の要件を満たす必要があり得、又は、かかる集電体と電気的接続を形成する必要があり得る。
相互接続部及び集電体の候補となる1つの種類は、金属ホイルである。かかる金属ホイルは、25マイクロメートル以下の厚さで利用可能であり、この厚さにより金属ホイルは、非常に薄型の電池に適したものとなる。かかるホイルはまた、低表面粗さ及び低汚染の状態で得ることができ、これら2つの要素は電池性能にとって重要である場合がある。ホイルとしては、亜鉛、ニッケル、真鍮、銅、チタン、他の金属、及び種々の合金を挙げることができる。
モジュール化された電池構成要素
いくつかの例では、モジュール化された電池構成要素は、本発明のいくつかの態様及び実施例に従って形成され得る。こうした実施例では、モジュール化された電池アセンブリは、生物医学的装置の他の部品とは別個の構成要素である場合がある。眼科用コンタクトレンズ装置の実施例では、かかる設計は、媒体インサートの残りの部分から分離された、モジュール化された電池を含んでいてもよい。モジュール化された電池構成要素を形成することによる利点は数多く存在し得る。例えば、コンタクトレンズの実施例では、モジュール化された電池構成要素は、別個の非一体的なプロセスで形成され、それにより、三次元に形成された剛性光学的プラスチック構成要素を処理する必要性が軽減され得る。加えて、複数の供給メーカーをよりフレキシブルに選択することができ、この複数の供給メーカーは、生物医学的装置内部の他の構成要素の製造に対して、より平行した形態で、作業を行うことが可能である。更に、モジュール化された電池構成要素の製造を、三次元(3D)形状に成形される装置の特徴と切り離すことができる。例えば、最終的に三次元形態である必要がある用途では、モジュール化された電池システムは、平坦に、又はおおよそ二次元的全体像で製造された後、適切な三次元形状に成形されてもよい。モジュール化された電池構成要素は、残りの生物医学的装置とは独立に試験することができ、また、電池構成要素は組み立て前に選別される場合があるので、ロスが生じる場合がある。得られたモジュール化された電池構成要素は、その上に電池構成要素を形成することができるような適切な剛性領域を有しない様々な媒体インサート構造体内で使用することができ、更なる実施例では、モジュール化された電池構成要素の使用は、別の方法で用いられる場合がある製造技術とは異なる選択肢(例えば、ウェブベースの技術(ロールツーロール処理)、シートベースの技術(シートツーシート処理)、プリント処理、リソグラフィ処理、及び「スキージ」処理など)の使用を容易にする場合がある。モジュール化された電池のいくつかの実施例では、かかる装置は個別に収容されるという態様を有するので、結果的に生物医学的装置の構造全体に追加材料が加えられることになり得る。そうした影響は、利用可能な空間パラメータが溶液の最小厚さ及び容積を必要とする場合に、モジュール化電池溶液の使用に制約を課する場合がある。
電池の形状要件は、少なくとも一部には、電池を使用する用途によって決定される場合がある。従来の電池形状因子は、金属で製造された円筒形又は四角柱であり得、長期間にわたり大量の電力を必要とする製品を対象にしている場合がある。こうした用途は、形状因子の大きい電池を収容することができる程度に十分に大きい場合がある。別の例では、平型(2D)固体電池は薄い四角柱であり得、典型的には非可撓性のシリコン又はガラス上に形成される。こうした平型固体電池は、いくつかの例では、シリコンウェハ加工技術を用いて形成され得る。別の種類の電池形状因子では、低出力のフレキシブル電池を、薄いホイル又はプラスチックを使用して、電池化学物質を封じ込めるように袋状構造物に形成することができる。こうした電池は平型とすることができ、緩やかな面外(3D)湾曲状に曲げられたときに機能するように設計され得る。
電池が可変視覚レンズ内で使用され得る本発明の電池用途例のいくつかにおいて、形状因子は、電池構成要素の三次元的な湾曲を必要とする場合があり、この湾曲の曲率半径は約8.4mm程度であり得る。そのような湾曲特性は比較的急であると考えられる場合があり、参考として、ヒトの指先に見られるタイプの湾曲に近づけられる場合がある。比較的急な湾曲特性により、製造態様において課題が生じる。本発明のいくつかの実施例では、モジュール化された電池構成要素は、平坦で二次元的に製造された後、比較的曲率の高い三次元形態に形成されるように設計され得る。
電池モジュールの厚さ
生物医学的用途用の電池構成要素を設計する際には、様々なパラメータのトレードオフを図って、技術的な要件と、安全要件と、機能要件とのバランスをとる場合がある。電池構成要素の厚さは、重要かつ制約的なパラメータであり得る。例えば、光学レンズ用途では、ユーザーが快適に装着できる装置の能力は、生物医学的装置全体の厚さに重要な依存を有する場合がある。したがって、電池をより薄く設計する際の重要で実現可能な態様が存在し得る。いくつかの例では、電池の厚さは、上部シートと、底部シートと、スペーサシートを合わせた厚さ、及び接着剤層の厚さによって決定される場合がある。実際の製造態様は、膜厚のある種のパラメータを、使用可能なシート原材料の標準値に決定してもよい。加えて、膜は、厚さの最小値を有する場合があり、化学的適合性、湿気/ガス不透性、表面仕上げ、及び膜層上に堆積することができるコーティングとの適合性に関する技術的考慮事項に基づき、膜厚は、この値に特定される場合がある。
いくつかの例では、完成した電池構成要素の望ましい又は目標とする厚さは、220μm未満である構成要素厚さであってもよい。こうした例では、この望ましい厚さは、エンドユーザーの快適性、生体適合性、及び容認に関する制約を前提として、ヒドロゲルレンズ形状によって画定される利用可能な容積内部に電池構成要素を適合する必要があり得る、例示的な眼科用レンズ装置の三次元形状によって決定される場合がある。この容積及びこの容積が電池構成要素の厚さの必要性に与える影響は、装置全厚に関する仕様、並びに装置の幅、円錐角、及び内径に関する装置仕様の関数である場合がある。得られる電池構成要素の設計に関する別の重要な設計考慮事項は、結果として得られる化学エネルギー(これは設計に起因し得る)に関する、所与の電池構成要素の設計において、活性電池化学物質及び材料が使用可能な容積に関連し得る。次いで、目標寿命及び動作条件に関する電気的要件に関して、この結果として得られる化学エネルギーと、機能的生物医学的装置とのバランスをとってもよい。
電池モジュールの可撓性
電池の設計、及び電池をエネルギー源として利用する関連装置の設計と関係する別の態様は、電池構成要素の可撓性である。可撓性の電池形態によって与えられる利点は数多く存在し得る。例えば、可撓性の電池モジュールは、電池形態を二次元平面形態に形成するという前述の能力を容易にすることができる。形態の可撓性により、二次元の電池を、後に、コンタクトレンズなどの生物医学的装置内に適合するように適切な三次元形状に形成することが可能となり得る。
電池モジュールの可撓性により得ることができる利益の別の例において、電池及びそれに続く装置が可撓性である場合には、装置の使用に関連した利点が存在し得る。一例では、コンタクトレンズの形態の生物医学的装置は、媒体インサートベースのコンタクトレンズの挿入/取り外しが、非充填型の標準的なヒドロゲルコンタクトレンズの挿入/取り外しに近い場合があるという利点を有する場合がある。
曲げ回数は、電池のエンジニアリングにとって重要であり得る。例えば、平面形態からコンタクトレンズにとって好適な形状へと1回だけ曲がることができる電池は、複数回曲がることができる電池と著しく異なる設計を有する場合がある。電池の曲げは、曲げ事象に機械的に耐える能力以外に及ぶ場合もある。例えば、電極は、破損せずに物理的に曲げることができるが、電極の機械的及び電気化学的特性は、曲げにより変化する場合がある。曲げによって誘発される変化は、例えば、インピーダンスの変化としてすぐに現れる場合もあり、又は、曲げは、長期に及ぶ貯蔵寿命試験においてのみ明らかとなる変化を誘発する場合もある。
電池モジュールの幅
本開示の生体適合性通電素子又は電池をその中で使用することができる多くの用途が存在し得る。広くは、電池の幅要件は、主に、電池が適用される用途の関数であり得る。例示的な事例では、コンタクトレンズの電池システムは、モジュール化された電池構成要素の幅に関する仕様に対する、制約付きのニーズを有する場合がある。装置が電池構成要素により給電される可変光学機能を有する眼科用装置のいくつかの例では、装置の可変光学部分は、直径約7.0mmの中央球面領域を占める場合がある。例示的な電池素子は、中央光学系の周囲に環円錐状スカートとして適合する三次元物体と考えてもよく、切頭円錐状のリングに形成されてもよい。剛性インサートの必要とされる最大直径が直径8.50mmであり、ある直径(例えば、おおよそ直径8.40mm)の球体に接触することが目標であり得る場合には、幾何学的形状が電池の可能な許容幅を決定する場合がある。得られる幾何学的形状の望ましい仕様を計算するのに有用であり得る幾何学的形状モデルが存在する場合があり、これは、いくつかの例では、円環の扇形になるように平坦化された円錐台と呼ばれる場合もある。
平坦化された電池の幅は、電池素子の2つの特徴である活性電池構成要素及び封止幅によって決定され得る。眼科用装置に関連したいくつかの例では、ターゲット厚は、片面当たり0.100mm〜0.500mmであってもよく、活性電池構成要素のターゲット幅はおよそ0.800mmであってもよい。他の生物医学的装置は異なる設計制約を有していてもよいが、可撓性平型電池素子の原理を同じように適用することが可能である。
電池構成要素の設計における設計要素としてのキャビティ
いくつかの例では、電池素子は、活性電池用化学物質の領域を分割する様式で設計されてもよい。活性電池構成要素を個別のセグメントに分割することにより、多くの利点を得ることができる。非限定的な例において、製作する素子を個別で比較的小さくすることにより、こうした素子の製造を容易にすることができる。多数の比較的小さい素子を含む電池素子の機能を改善することができる。様々な種類の不具合を分割することができ、機能しない素子を隔離することができるので、事例によっては、機能喪失が低減される場合もある。これは、電池電解質の損失が生じ得る例に関連し得る。個別化された構成要素を隔離することにより、電池の重要領域からの電解質の漏れを生じさせる不具合を、電池素子全体のうちのこの小さなセグメントの機能喪失に限定することができる一方、この不具合による電解質の損失は、単一セルとして構成された電池の著しくより大きな領域を空にする可能性がある。セルを小さくすることにより、全体としては有効な電池用化学物質の量は低減することになり得る場合があるが、より小さいセルそれぞれを取り囲む材料の網目は、結果として全体構造を強化する場合がある。
電池素子の内部封止
生物医学的装置で用いる電池素子のいくつかの例では、電池の化学作用は水溶性化学物質を含み、その場合、水又は水分は制御すべき重要な構成成分となる。したがって、電池本体から出入りする水分の移動を抑制又は防止する封止機構を組み込むことが重要であり得る。防湿バリアは、内部の水分レベルを、ある程度の許容範囲内で、設計されたレベルに維持するように設計され得る。いくつかの例では、防湿バリアは2つのセクション又は構成要素(すなわち、パッケージと封止材)に分割されていてもよい。
パッケージは、エンクロージャの主要材料を指す場合がある。いくつかの例では、パッケージはバルク材を含んでもよい。水蒸気透過率(WVTR)は、試験手順を制御するISO、ASTM規格を用いて性能を表す指標であってもよく、試験中に影響を与える環境条件を含む。理想的には、良好な電池パッケージの水蒸気透過率(WVTR)は「ゼロ」であり得る。水蒸気透過率(WVTR)がゼロに近い例示的な材料は、ガラス及び金属ホイルであり得る。一方で、プラスチックは、本質的に、水分に対して多孔性であり得、プラスチックの種類によって著しく異なる場合がある。エンジニアリングされた材料、積層体、又は共押出物は、一般的なパッケージ材料の混成物である場合がある。
封止部は、2つのパッケージ表面間の境界面であってもよい。封止部の表面を接続することにより、パッケージに沿ってエンクロージャを完成させる。多くの例において、封止設計の特性により、封止部の水蒸気透過率(WVTR)の特性評価が困難である場合があり、その理由は、サンプルの寸法又は表面積がこうした手順に適合しない場合があるので、ISO又はASTM規格を用いて測定を行うのが困難であることによる。いくつかの例では、封止完全性を試験するための実践的な様式は、実際の封止設計の、いくつかの定義された条件についての機能試験であり得る。封止性能は、封止材料、封止厚、封止長、封止幅、及びパッケージ基材に対する封止部の接着又は密着性の関数であり得る。
いくつかの例では、封止は、熱加工、レーザー加工、溶媒加工、摩擦加工、超音波加工、又はアーク加工を含み得る溶接プロセスによって形成されてもよい。他の例では、封止は、接着剤、エポキシ樹脂、アクリル樹脂、天然ゴム、及び合成ゴムなどの接着封止剤を使用して形成されてもよい。他の例は、ガスケットタイプの材料を利用することにより得てもよく、これは、非限定的な例を挙げると、コルク、天然及び合成ゴム、ポリテトラフルオロエチレン(PTFE)、ポリプロピレン、及びシリコーンから形成され得る。
いくつかの例では、本発明による電池は、特定の作動期間を有するように設計されてもよい。作動期間は、特定の電池システムを用いて得ることができる実際の水分透過量を測定した後、そのような水分の漏れがいつ電池の寿命末期状態をもたらし得るのかを推定することによって、推定することができる。例えば、電池が湿潤環境において保存される場合には、電池の外側と内側の分圧差は最小となるので、水分損失率は低くなり、したがって電池の寿命は長くなる場合がある。非常に乾燥して暑い環境において保存される同じ例示的な電池は、水分を損失させる作用が強いので、著しく短い予想寿命を有する場合がある。
電池素子のセパレータ
本発明に記載される種類の電池は、アノード及びアノード集電体部分を、カソード及びカソード集電体部分から物理的かつ電気的に分離するセパレータ材料を使用してもよい。セパレータは、水及び溶解している電解質構成成分に対して透過性である膜であってもよいが、典型的には非導電性であってもよい。無数の市販のセパレータ材料が当業者に既知であり得るが、本開示の新規な形状因子は、セパレータの選択、加工、及び取り扱いの任務に固有の制約を提示し得る。
本発明の設計は超薄型の輪郭を有し得るので、選択肢は、一般に入手可能な最も薄いセパレータ材料に限定され得る。例えば、厚さ約25マイクロメートルのセパレータが望ましい場合がある。有利であり得るいくつかの実施例は、厚さ約12マイクロメートルであり得る。許容できる多くの市販のセパレータが存在し得、例えば、Celgard(Charlotte,NC)製のセパレータのような、ミクロフィブリル化された微多孔性のポリエチレン単層及び/又はポリプロピレン−ポリエチレン−ポリプロピレン(PP/PE/PP)3層セパレータ膜が挙げられる。セパレータ材料の望ましい実施例は、厚さ12マイクロメートルのCelgard M824 PP/PE/PP 3層膜であり得る。本発明の実施例に有用なセパレータ材料の代替実施例としては、再生セルロース(例えばセロファン)を含むセパレータ膜を挙げることができる。
PP/PE/PP 3層セパレータ膜は、そのポリオレフィンの特性により、有利な厚さ及び機械的特性を有し得るが、本発明の実施例において有用とするためには克服しなければならない多くの不利な点に悩まされる場合がある。PP/PE/PP 3層セパレータ材料のロール又はシート材料は、本明細書に記載される電池に適用可能なマイクロメートルレベルの公差に悪影響を与える可能性のある、多数の皺又は他の形態の不良を有する場合がある。更に、ポリオレフィンセパレータは、本発明の設計に含ませるためには超精密な公差で切断される必要があり得るので、したがって、個々の集電体を厳しい公差で望ましい形状に形成するための例示的な方法としてレーザー切断を行う必要があり得る。こうしたセパレータのポリオレフィンの特性により、マイクロ素子の製造に有用なある種の切断用レーザーはレーザー波長(例えば355nm)を使用する場合があるが、この波長ではポリオレフィンは切断されない。ポリオレフィンは、レーザーエネルギーを認め得るほどに吸収しないので、切断不可能である。最後に、ポリオレフィンセパレータは、本明細書に記載される電池で使用される水性電解質に対して本質的に湿潤性でない場合がある。
しかし、ポリオレフィン系の膜に固有のこうした制限を克服するための方法が存在し得る。微多孔性セパレータ膜に高精度の切断用レーザー処理を施して、膜片を円弧状のセグメント又は他の有利なセパレータ設計になるように切断するために、膜は平坦で皺のない状態である必要があり得る。こうした2つの条件を満たさない場合、入射レーザーエネルギーの焦点を合わせることができないか、あるいは別様に入射レーザーエネルギーが散乱してしまうため、切断ビームが妨げられ、それによりセパレータ膜を完全に切断することはできない。加えて、膜が平坦で皺のない状態でない場合、セパレータ膜の形状精度及び幾何公差を十分に得ることができない。現在の実施例の許容できるセパレータの公差は、例えば、特性長さ及び/又は半径に対して+0マイクロメートル及び−20マイクロメートルであってもよい。+0マイクロメートル及び−10マイクロメートルの公差、更には+0マイクロメートル及び−5マイクロメートルといったより厳しい公差に関する利点が存在し得る。セパレータストック材料は、適切な低揮発性液体を有するフロートガラス製のキャリアにこの材料を一時的に積層することにより、平坦で皺のない状態にすることができる。セパレータ膜の脆弱性、及びセパレータ膜を接着剤層から剥離することが要求される場合があるプロセス時間の長さに起因して、低揮発性液体は仮接着剤よりも有利である好ましい場合がある。更に、いくつかの実施例では、液体を使用してフロートガラス上に平坦で皺のないセパレータ膜を得ることは、接着剤を使用するよりもはるかに容易であることが認められている。セパレータ膜は、積層する前に、粒子を含まないものとしてもよい。これは、表面に接着したあらゆる粒子を除去するために、セパレータ膜を超音波洗浄することにより達成することができる。いくつかの実施例では、セパレータ膜の取り扱いは、ラミナーフローフード又は少なくともクラス10,000のクリーンルームのような好適な低粒子環境内で行われてもよい。更に、フロートガラス基板は、適切な溶媒を用いたすすぎ、超音波洗浄、及び/又はクリーンルームワイプで拭き取ることによって、粒子を含まないものとしてもよい。
微多孔性ポリオレフィンセパレータ膜をフロートガラスキャリアに積層する機械的な目的で、多種多様な低揮発性液体を使用することができるが、後続の別個のセパレータ形状のレーザー切断を容易にするための液体には特定の要件が課せられる場合がある。要件のうちの1つは、液体が、セパレータ材料の孔に染み込むほど十分に低い表面張力を有し、それを目視検査で容易に確認することができることであり得る。いくつかの実施例では、セパレータ材料は、液体が材料のミクロ細孔を充填すると、白色から半透明の外観に変化する。セパレータの調製及び切断作業にさらされることになる作業者にとって無害で「安全」であり得る液体を選択することが望ましい場合がある。加工の時間スケール(1日程度)の間に相当量の蒸発が生じないように、蒸気圧が十分に低くあり得る液体を選択することが望ましい場合がある。最後に、いくつかの実施例では、液体は、レーザー切断作業を容易にすることができる場合がある好都合な紫外線吸収剤を溶解するだけの十分な溶媒和力を有していてもよい。一実施例では、アボベンゾン紫外線吸収剤の12パーセント(w/w)ベンジルベンゾエート溶液は上記要件を満たす場合があり、かつ、高精度及び程度の低い公差で、切断用レーザービームの通過回数が過剰になることなく、ポリオレフィンセパレータのレーザー切断を促進するのに役立ち得ることが見られる。いくつかの実施例では、セパレータは、8W 355nmナノ秒ダイオード励起固体レーザーで、このアプローチを用いて切断されてもよく、その場合レーザーの設定は、低電力損失(例えば3パーセント電力)、1〜10mm/秒の適度な速度、及びレーザービームの通過は1〜3回だけとすることができる。この紫外線吸収性油状組成物は、効果的な積層及び切断加工助剤であることが証明されているが、当業者であれば他の油性配合物を想定する場合があり、これを制限なく使用してもよい。
いくつかの実施例では、セパレータは、フロートガラスに固定された状態で切断されてもよい。フロートガラスに固定した状態でセパレータをレーザー切断することの利点の1つは、非常に高い数密度のセパレータを1枚のセパレータストックシートから切断することができることである。これは半導体ダイがシリコンウェハ上に密に配列され得るのとよく似ている。かかるアプローチは、半導体プロセスに固有の規模の経済及び並列処理の利点をもたらすことができる。更に、セパレータ膜のスクラップの生成を最低限に抑える場合がある。セパレータが切断されると、混和性溶媒を用いる一連の抽出工程により、油性の加工助剤を除去してもよく、最後の抽出は、いくつかの実施例では、イソプロピルアルコールなどの高揮発性溶媒を用いて行ってもよい。個々のセパレータは、抽出が終わると、任意の好適な低粒子環境内で無期限に保管されてもよい。
前述したように、ポリオレフィンセパレータ膜は、本質的に疎水性であり得、本発明の電池内で使用する水溶性界面活性剤に対して湿潤性を有する状態にする必要があり得る。セパレータ膜を湿潤性にするアプローチの1つは、酸素プラズマ処理であり得る。例えば、セパレータを、酸素100パーセントのプラズマ中で、様々な電力設定及び酸素流量にて、1〜5分間処理してもよい。このアプローチは、湿潤性を一時的に改善することができるが、プラズマ表面改質は一過性の効果をもたらすことが既知であり得、この効果は、電解質溶液で確実に湿潤するのに十分なだけ長く続かない場合がある。セパレータ膜の湿潤性を改善するための別のアプローチは、膜に好適な界面活性剤を組み込むことによって表面を処理することであってもよい。場合によっては、界面活性剤は親水性ポリマーコーティングと共に使用してもよく、このコーティングはセパレータ膜の孔内部に留まる。
酸化プラズマ処理によって付与された親水性をより永続的にするための別のアプローチは、好適な親水性オルガノシランで引き続き処理することであってもよい。このように、酸素プラズマを用いて活性化し、微多孔性セパレータの全表面面積全体に官能基を付与してもよい。次に、プラズマ処理された表面にオルガノシランを共有結合させ、かつ/又は非共有的に付着させてもよい。オルガノシランを用いる実施例では、微多孔性セパレータの固有多孔性は感知できるほどは変化させられない場合があり、単層で表面を被覆することも可能であり、かつ望ましい場合がある。ポリマーコーティングと共に界面活性剤を組み込む従来技術の方法は、膜に塗布するコーティングの実際の量の厳密な制御を必要とする場合があり、その結果プロセス変動を受ける場合がある。極端な事例では、セパレータの孔が閉塞される場合があり、それにより電気化学セルの動作中にセパレータの有用性に悪影響が及ぶ可能性がある。本発明で有用な例示的なオルガノシランは、(3−アミノプロピル)トリエトキシシランであり得る。他の親水性オルガノシランが当業者には既知であり、制限なく使用することができる。
セパレータ膜を水性電解質にして湿潤性にするための更に別の方法は、好適な界面活性剤を電解質配合物に組み込むことであり得る。セパレータ膜を湿潤性にするための界面活性剤を選択する際の考慮事項の1つは、界面活性剤が、例えば、セルの電気インピーダンスを上昇させることにより、電気化学セル内の1つ以上の電極の活性に与える可能性がある影響であり得る。場合によっては、界面活性剤は、特に水性電解質中のアノードが亜鉛の事例では、有利な防食性を有し得る。亜鉛は、水とゆっくり反応して水素ガスを放散させることで知られる例であり得、これは望ましくない場合がある。前記反応の速度を有利なレベルまで制限する多くの界面活性剤が、当業者には既知であり得る。他の事例では、界面活性剤は亜鉛電極表面ととても強く相互作用するので、電池性能を阻害する場合がある。したがって、セルの電気化学的性能に悪影響を及ぼすことなくセパレータの湿潤性を確実に得ることができるように、界面活性剤の適切な種類及び充填レベルを選択する際には、多くの注意を払う必要があり得る。場合によっては、一方はセパレータ膜に湿潤性を付与するために存在し、もう一方は亜鉛アノードに対する防食性を促進するために存在するといったように、複数の界面活性剤を使用してもよい。一実施例では、セパレータ膜に親水化処理が施されておらず、セパレータ膜を湿潤性にするのに十分な量の界面活性剤(複数可)又は複数の界面活性剤(複数可)が電解質配合物に添加される。
個々のセパレータは、アセンブリ内に設計されているキャビティ、ポケット、又は構造体を含む保存手段の中に直接定置することによって、超小型層状電池に組み込まれる場合がある。望ましくはこの保存手段は、セパレータ形状の幾何学的オフセットであり得る、切り取り部を有する層状構造体により形成されてもよく、結果としてアセンブリ内にキャビティ、ポケット、又は構造体を生じる。更に、この保存手段は、組み立て中にセパレータがその上に載る出っ張り又は階段状部を有していてもよい。上記出っ張り又は階段状部は、必要に応じて、個々のセパレータを保持する感圧接着剤を有していてもよい。有利にも、感圧接着剤は、例示的な超小型層状電池の他の素子を構成及び積み重ねる際に使用するものと同じであってもよい。
感圧接着剤
いくつかの実施例では、本発明の超小型層状電池を構成する複数の構成要素は、感圧接着剤(PSA)によって一体に保持されてもよく、この感圧接着剤は封止剤としてしての役割も果たす。無数の市販の感圧接着剤配合物が存在し得るが、そうした配合物はほとんどの場合、そのせいで感圧接着剤が生体適合性超小型層状電池内で使用するのに適さないものとなり得る構成成分を含んでいる。感圧接着剤で使用するのに望ましくない構成成分の例としては、低分子量の浸出性構成成分、酸化防止剤(例えばBHT及び/又はMEHQ)、可塑化用オイル、不純物、酸化に不安定な部分(例えば、不飽和化学結合、残留溶媒、及び/又はモノマー、重合開始フラグメント、極性粘着付与剤等を含む)が挙げられ得る。
一方、好適なPSAは以下の特性を示す場合がある。これらを層状構成要素に塗布して、約2〜20マイクロメートル程度の薄層を得ることが可能であり得る。その上、これらは、望ましくない又は非生体適合性構成成分の含有量が最低限である、例えば、全く含有していない場合がある。加えて、好適なPSAは十分な接着性及び凝集性を有するので、層状電池の構成要素を結合することができる。また、好適なPSAは、電池内の電解質を確実に封止しながら、本構成の装置に固有のマイクロメートルスケールの特徴部に流入することが可能であり得る。好適なPSAのいくつかの実施例では、電池が極度の湿度に長時間さらされる場合であっても所望の水性電解質構成成分を電池内部に維持するために、PSAは水蒸気に対する透過性が低くてもよい。PSAは、酸、界面活性剤、及び塩などの電解質の構成成分に対して、良好な耐化学性を有していてもよい。好適なPSAは、水への浸漬の影響に対して不活性であり得る。好適なPSAは、自己放電の形態をとり得る亜鉛アノードの直接酸化速度を最小限に抑えるために、酸素に対する透過性が低い場合がある。また、水性電解質中の亜鉛アノードからゆっくりと放出され得る水素ガスに対する有限透過性を促進する場合がある。水素ガスに対する有限透過性という特性により、内部圧力が蓄積されるのを防ぐことができる。
こうした要件を考慮すると、望ましい要件の全てではないにしても、その多くを満たすPSA組成物に配合することができる市販材料は、ポリイソブチレン(PIB)であり得る。更に、PIBは、吸水性が非常に低く、かつ酸素透過性が低い、優れたバリア封止剤であり得る。本発明の実施例で有用なPIBの例は、BASF CorporationのOppanol(登録商標)B15であり得る。Oppanol(登録商標)B15は、トルエン、ヘプタン、ドデカン、ミネラルスピリット等のような炭化水素溶媒に溶解することができる。1つの例示的なPSA組成物は、70パーセント(w/w)のトルエンと30パーセントのドデカンとを含む溶媒混合物中に溶解した30パーセントのOppanol(登録商標)B15(w/w)を含むことができる。PIBベースのPSAの接着性及びレオロジー特性は、いくつかの実施例では、異なる分子量グレードのPIBをブレンドすることにより決定され得る。一般的なアプローチは、湿潤性、粘着性、及び接着性に影響を与えるために、低モル質量のPIB、例えばOppanol(登録商標)B10を多く使用し、強靭性及び流れ抵抗性を生じるために、高モル質量のPIBを少量使用するといったものであってもよい。したがって、モル質量グレードの異なる任意の数のPIBのブレンドを想定することができ、該ブレンドは本発明の範囲内で実施可能であり得る。更に、上記要件を満たすことができるのであれば、PSA配合物に粘着付与剤を添加してもよい。粘着付与剤は、その性質上、PSA配合物に極性を付与するので、PSAのバリア特性に悪影響を与えないように注意して使用する必要があり得る。更に、粘着付与剤は、場合によっては酸化的に不安定であり得、また、酸化防止剤を含む場合があり、酸化防止剤がPSAから浸出する可能性がある。こうした理由から、生体適合性超小型層状電池用のPSAに用いられる例示的な粘着付与剤としては、全面的に又は大部分が水素化された炭化水素樹脂粘着付与剤(例えばEastman Chemical CorporationのRegalrezシリーズの粘着付与剤など)を挙げることができる。
生体適合性電池モジュールのパッケージ及び基板に関する更なる考慮事項
パッケージング及び基板に関する考慮事項は数多く存在し得、そうした考慮事項が、生体適合性超小型層状電池で用いられるパッケージ設計の望ましい特性を決定する。例えば、パッケージングは、主にホイル及び/又は膜ベースであるのが望ましくあり得、パッケージング層は極力薄くてもよい(例えば、10〜50マイクロメートル)。加えて、パッケージングは、貯蔵寿命中の水分の得失に対する十分な拡散バリアを提供することができる。多くの望ましい実施例において、パッケージングは、酸素の侵入に対する十分な拡散バリアを提供して、直接酸化による亜鉛アノードの劣化を制限する場合がある。
いくつかの実施例では、パッケージングは、亜鉛による水の直接還元により放出される水素ガスに対する有限透過経路を提供することができる。また、パッケージングは、電池の内容物を十分に封じ込めることができ、かつこれを隔離することができるのが望ましく、それにより、ユーザーへの暴露の可能性を最小限にすることができる。
本発明において、パッケージング構造体は、以下の種類の機能構成要素;上部及び底部パッケージング層、PSA層、スペーサ層、相互接続ゾーン、充填ポート、並びに二次パッケージングを含み得る。
いくつかの実施例では、上部及び底部パッケージング層は、金属ホイル又はポリマー膜を含み得る。上部及び底部パッケージング層は、複数のポリマー及び/又はバリア層を含む多層膜構造体を含み得る。そうした膜構造体は、共押出バリア積層膜と呼ぶことができる。本発明において特に有用な市販の共押出バリア積層膜の例は、3M(登録商標)Scotchpak 1109裏材であり得、この裏材は、ポリエチレンテレフタレート(PET)キャリアウェブ、蒸着アルミニウムバリア層、及びポリエチレン層からなり、合計平均膜厚さは33マイクロメートルである。数多くの他の同様の多層バリア膜を利用することができ、本発明の代替実施例において使用することができる。
PSAを含む設計構造体では、PSAはパッケージング層の対向面を封止する必要もあり得るので、パッケージング層の表面粗さは特に重要となり得る。表面粗さは、ホイル及び膜の製造で用いる製造プロセス(例えば、数ある中でも、圧延、押出、エンボス加工、及び/又はカレンダー工法を用いるプロセス)によって生じる場合がある。表面が粗すぎる場合、所望のPSA厚さが表面粗さRa(粗さプロファイルの算術平均)程度であり得るとき、PSAを均一な厚さで塗布することができない場合がある。更に、対向面がPSA層厚さ程度であり得る粗さを有する場合、PSAは、対向面を適切に封止することができない。本開示において、10マイクロメートル未満の表面粗さRaを有するパッケージング材は、許容可能な実施例であり得る。いくつかの実施例では、表面粗さの値は、5マイクロメートル以下であってもよい。また、更なる実施例では、表面粗さは1マイクロメートル以下であってもよい。表面粗さの値は、白色光干渉法、スタイラス形状測定等のような測定技法が挙げられるが、これらに限定されない、様々な方法によって測定することができる。表面粗さをいくつかの代替パラメータで記載する場合があり、かつ本明細書で論じる平均表面粗さRaの値が、前述の製造プロセスに固有の特徴の種類を表すことを意味する場合がある、多くの例が、表面形状測定の分野に存在し得る。
生体適合性通電の例示的な加工の図示−セパレータの配置
生体適合性通電素子の加工に関与し得る工程の実施例を、図4A〜図4Nに見ることができる。例示的な工程のいくつかにおける加工を、個々の図に見ることができる。図4Aでは、PETカソードスペーサ401とPETギャップスペーサ404の組み合わせが図示されている。PETカソードスペーサ401は、PET膜403を適用することによって形成されてもよく、この膜の厚さは、例えば、およそ76ミリメートル(3ミル)とすることができる。PET層の両側にはPSA層を見出すことができ、又はこれらの層は、PVDF剥離層402で覆われていてもよく、この層の厚さは、およそ25マイクロメートル(1ミル)とすることができる。PETギャップスペーサ404は、PVDF層409から形成されてもよく、この層の厚さはおよそ76マイクロメートル(3ミル)とすることができる。キャッピングPET層405が存在してもよく、この層の厚さはおよそ13マイクロメートル(0.5ミル)とすることができる。いくつかの実施例では、PVDF層409とキャッピングPET層405との間は、PSA層であってもよい。
図4Bに進むと、レーザー切断処理によってPETギャップスペーサ層404に孔406を切断することができる。次に、図4Cでは、切断したPETギャップスペーサ層404をPETカソードスペーサ層に積層408することができる。図4Dに進むと、カソードスペーサ孔410を、レーザー切断処理によって切断することができる。この切断工程のアラインメントは、PETギャップスペーサ層404内の予め切断した特徴部に対して位置合わせされ得る。図4Eでは、最終的にセパレータ層になるCelgardの層412が、キャリア411に接合され得る。図4Fに進むと、Celgard材料が、以前の2つのレーザー切断された孔の寸法の間であり、かつPETギャップスペーサの孔406の寸法に近い形状に切断されて、予め切断されたセパレータ420が形成され得る。図4Gに進むと、ピックアンドプレイスツール421を使用して、Celgardの個々の片を成長装置上の所望の位置に取り上げて定置することができる。図4Hにおいて、定置されたCelgard片422を適所に固定した後、PVDF剥離層423を除去することができる。図4Iに進むと、成長装置構造体を、アノード425の膜に接合することができる。アノード425は、その上に亜鉛アノード膜が電着されているアノードコレクタ膜を備えてもよい。
図4Jに進むと、カソードスラリー430が、形成されたギャップ内に定置されてもよい。いくつかの実施例では、スキージ431を使用して、カソード混合物を被加工物全体に広げ、このプロセスでは、形成される電池装置のギャップを充填してもよい。充填後、残っているPVDF剥離層432を除去することができ、そうすることにより図4Kに示す構造体を得ることができる。図4Lでは、構造体全体に乾燥プロセスを施すことができ、これによりカソードスラリー440も、PET層の上部の高さまで収縮する場合がある。図4Mに進むと、その上にカソードコレクタ膜を既に有している場合があるカソード膜層450が、成長構造体に接合され得る。最後の図である図4Nでは、レーザー切断プロセスが行われて、側部領域460を除去し、電池素子470を得ることができる。本発明の趣旨の範囲内で有用であり得る、材料及び目標厚さに対する多くの修正、削除、変更が存在し得る。
例示的な加工の結果が図5にある程度詳細に示され得る。一実施例では、以下の参照特徴部が画定され得る。カソード化学物質510は、カソード及びカソードコレクタ520と接触した状態で位置していてもよい。感圧性接着剤層530は、カソードコレクタ520をPETスペーサ層540に対して保持しかつ封止することができる。PETスペーサ層540の反対側は別のPSA層550であってもよく、このPSA層550は、PETスペーサ層540をPETギャップ層560に対して封止及び接着する。別のPSA層565は、PETギャップ層560をアノード及びアノード集電体層に対して封止及び接着する場合がある。亜鉛めっき層570がアノード集電体580にめっきされ得る。セパレータ層590は構造体内部に位置して、本発明で定義した関連機能を行うことができる。いくつかの実施例では、装置の加工中に電解質を加えてもよく、他の実施例では、セパレータは既に電解質を含んでいてもよい。
生体適合性通電の例示的加工の図示−セパレータの堆積
生体適合性通電素子の加工に関与し得る工程の実施例が、図6A〜図6Fに見られ得る。例示的な工程のいくつかにおける加工を、個々の図に見ることができる。本発明の趣旨の範囲内で有用であり得る、材料及び目標厚さに対する多くの修正、削除、変更が存在し得る。
図6Aでは、層状構造体600が図示される。層状構造体は、2つの層状構造剥離層602及び602a、層状構造剥離層602と層状構造剥離層602aとの間に位置する2つの層状構造接着剤層604及び604a、並びに2つの層状構造接着剤層604と604aとの間に位置する層状構造コア606で構成され得る。層状構造剥離層602及び602a、並びに接着剤層604及び604aは、製造してもよく、又は一次ライナー層を有する市販の感圧接着剤転写テープなどを購入してもよい。層状構造接着剤層は、厚さ約1〜3ミリメートルであり得るPVDF層であってもよく、層状構造コア606をキャップしてもよい。層状構造コア606は、例えば、厚さおよそ3ミリメートルであってもよい、ポリエチレンテレフタレートなどの熱可塑性ポリマー樹脂を含み得る。図6Bに進むと、カソードポケット608用のキャビティなど、カソード混合物の保存手段を、レーザー切断処理によって、層状構造体に切り込むことができる。
次に、図6Cにおいて、底部層状構造剥離層602aを層状構造体から除去し、層状構造接着剤層604aを露出させることができる。次に、層状構造接着剤層604aを使用してアノード接続ホイル610を接着し、カソードポケット608の底部開口部を覆うことができる。図6Dに進むと、アノード接続ホイル610は、マスキング層612を接着させることにより、露出した底部上に保護され得る。マスキング層612は、一次ライナーを有する市販のPSA転写テープであってもよい。次に、図6Eにおいて、アノード接続ホイル610は、コヒーレント金属614(例えば亜鉛)で電気めっきされてもよく、このコヒーレント金属614は、カソードポケット内部のアノード接続ホイル610の露出部分をコーティングする。図6Fに進むと、電気めっきの後、アノード集電マスキング層612がアノード接続ホイル610の底部から除去される。
図7A〜図7Fは、図6A〜図6Fに図示した工程の、代替的な加工の形態を図示する。図7A〜図7Bは、図6A〜図6Bに図示したのと同様のプロセスを示す。層状構造体は、両端に1層ずつ配置されている2つの層状構造剥離層702及び702aと、層状構造剥離層702と層状構造剥離層702aとの間に位置する2つの層状構造接着剤層704及び704aと、2つの層状構造接着剤層704と層状構造接着剤層704aとの間に位置する層状構造コア706と、を備え得る。層状構造剥離層及び接着剤層を、製造してもよく、又は一次ライナー層を有する市販の感圧接着剤転写テープなどを購入してもよい。層状構造接着剤層は、厚さ約1〜3ミリメートルであり得るポリビニリデンフルオリド(PVDF)層であってもよく、層状構造コア706をキャップしてもよい。層状構造コア706は、例えば、厚さおよそ3ミリメートルであってもよい、ポリエチレンテレフタレートなどの熱可塑性ポリマー樹脂を含み得る。図7Bに進むと、カソードポケット708のためのキャビティなどの保存手段を、レーザー切断処理によって、層状構造体に切り込むことができる。図7Cでは、アノード接続ホイル710を得ることができ、保護マスキング層712が片側に塗布される。次に、図7Dにおいて、アノード接続ホイル710を密着した金属(例えば、亜鉛)の層714で電気めっきすることができる。図7Eに進むと、図7Bの構造体を図7Dの電気めっきされた層714に接着することによって、図7B及び図7Dの層状構造体を組み合わせて、図7Eに示す新たな層状構造体を形成することができる。図7Bの剥離層702aは、図7Bの接着剤層704aを露出させて、図7Dの電気めっきされた層714上に接着するために除去され得る。図7Fに進むと、アノード保護マスキング層712は、アノード接続ホイル710の底部から除去され得る。
図8Aは、生体適合性層状構造体への通電素子の実装を図示し、この生体適合性層状構造体は本明細書において、層状アセンブリ又は積層アセンブリと呼ぶこともあり、例えば、図6A〜図6F及び図7A〜図7Fに示されているものと類似している。図8Aに進むと、ヒドロゲルセパレータ前駆体混合物820は、積層アセンブリの表面上に堆積され得る。いくつかの実施例では、図示するように、ヒドロゲルセパレータ前駆体混合物820は剥離層802の上方に塗布されてもよい。次に、図8Bにおいて、ヒドロゲルセパレータ前駆体混合物820は、剥離層802から取り去ると同時に、カソードポケットの中へとスキージ850され得る。用語「スキージされる」は、一般に、平坦化又は掻き取り工具を使用して表面全体をこすり、液体物質を該表面上で移動させてキャビティ(存在する場合)の中に移動させることを指す。スキージングプロセスは、一般に言うところの「スキージ」タイプの装置と同様の器具によって、あるいは、移動させる物質と化学的に一致し得る多くの物質で製造されていてもよい、ナイフの刃、かみそりの刃等のような平坦化装置によって実施され得る。
図8Bに示す加工は、カソードポケットを確実にコーティングし、得られる特徴部の厚さを増加させるために、数回行われてもよい。次に図8Cにおいて、典型的には様々な種類の溶媒又は希釈剤であり得る物質をヒドロゲルセパレータ前駆体混合物から蒸発させるために、ヒドロゲルセパレータ前駆体混合物を乾燥させてもよく、次に分与されかつ塗布された材料を硬化させてもよい。いくつかの実施例では、図8B及び図8Cに示されるプロセスの両方を組み合わせて繰り返すことが可能であり得る。いくつかの実施例では、ヒドロゲルセパレータ前駆体混合物は、熱に暴露することによって硬化する場合があるが、他の実施例では、硬化は、光子エネルギーに暴露することによって行われてもよい。なお更なる実施例では、硬化は、光子エネルギー及び熱の両方に暴露することが関与する場合がある。ヒドロゲルセパレータ前駆体混合物を硬化する方法は数多く存在し得る。
硬化の結果、ヒドロゲルセパレータ前駆体材料はキャビティの壁、並びに、アノード又はカソード特徴部(本実施例ではアノード特徴部であり得る)に近接した表面領域へと形成され得る。キャビティの側壁への材料の付着は、セパレータの分離機能にとって有用であり得る。硬化の結果、脱水重合された前駆体混合濃縮物822が形成され得、これは単純に、セルのセパレータと考えることができる。図8Dに進むと、層状構造剥離層802の表面上にカソードスラリー830を堆積させることができる。次に、図8Eにおいて、カソードスラリー830が、カソードポケットの中及び無水重合前駆体混合濃縮物822の上へとスキージされ得る。カソードスラリーは、キャビティ内の所望の位置へと移動させてもよく、一方で同時に、層状構造剥離層802からその大部分が拭い取られる。図8Eのプロセスは、カソードスラリー830を無水重合前駆体混合濃縮物822の上へと確実にコーティングするために、数回実施されてもよい。次に、図8Fでは、カソードスラリーを乾燥させて、無水重合前駆体混合濃縮物822の上に隔離されたカソード充填物832を形成して、カソードポケットの残部を充填することができる。
図8Gに進むと、電解質配合物840を隔離されたカソード充填物832の上に加えてもよく、隔離カソード充填物832及び無水重合前駆体混合濃縮物822に水和させることができる。次に、図8Hでは、残存している層状構造剥離層802を除去し、接続ホイル816を適所に押圧することによって、カソード接続ホイル816を、残存している層状構造接着剤層804に付着させることができる。こうして得られた配置により、水和したカソード充填物842を覆うことができると共に、カソード集電体及び接続手段としてのカソード充填物842との電気的接点を確立することができる。
図9A〜図9Cは、図7Dから得られる積層アセンブリの代替実施例を図示する。図9Aでは、アノード接続ホイル710が与えられる場合があり、保護マスキング層712が片面に塗布される。アノード接続ホイル710は、密着した金属(例えば、亜鉛)の層714でめっきされ得る。前の図で記載したのと同様な様式で行われる。図9Bに進むと、ヒドロゲルセパレータ910を、図8Eに示すスキージ法を用いずに塗布してもよい。ヒドロゲルセパレータ前駆体混合物は、様々な方法で塗布することができ、例えば、混合物の予備成形膜を、物理的付着によって接着させてもよく、あるいは、ヒドロゲルセパレータ前駆体混合物の希釈混合物を分与した後、スピンコーティングによる加工によって所望の厚さに調整してもよい。あるいは、材料を、スプレーコーティングによって、又は任意の他の同等の加工法によって塗布してもよい。次に、図9Cでは、セパレータ領域を囲む収容体として機能し得る、ヒドロゲルセパレータの一部を形成する加工を図示している。この加工は、電解質などの材料が、形成された電池素子の内部構造の外へと流れ出るか又は拡散するのを制限する領域を形成する場合がある。したがって、様々な種類のかかるブロッキング特徴920を形成することができる。ブロッキング特徴は、いくつかの実施例で、ブロッキング特徴920の所望の領域を光子エネルギーに長く暴露することによって形成されると、いくつかの実施例では、セパレータ層の高架橋領域に対応する場合がある。別の実施例では、ヒドロゲルセパレータ材料を硬化して、硬化するとブロッキング特徴920となる領域的に差別化された部分を形成する前に、材料をヒドロゲルセパレータ材料に添加してもよい。なお更なる実施例では、ヒドロゲルセパレータ材料の領域を、例えば、領域範囲を画定するマスキングを用いた層の化学エッチングを含む種々の技法によって、硬化の前又は後のいずれかに除去してもよい。材料が除去された領域は、それ自体でブロッキング特徴を形成してもよく、あるいは、実質的にボイドの中に戻されて、ブロッキング特徴を形成してもよい。不透過性部分の加工は、イメージアウト(image out)加工、架橋の増加、大量の光線量(heavy photodosing)、裏込め、又はボイドを形成するためのヒドロゲル接着性の欠落などを含むいくつかの方法で実施することができる。いくつかの実施例では、図9Cにおける加工の結果として示される、図示される種類の層状構造体又はアセンブリは、ブロッキング機構920を有さずに形成されてもよい。
重合した電池素子セパレータ
一部の電池設計では、個々のセパレータの使用(前項で説明した)は、非限定的な例として、コスト、材料の入手可能性、材質、又は一部の材料選択肢に関する加工の複雑性といった様々な理由から、不可能な場合がある。かかる事例では、例えば、図8A〜図8Hのプロセスにおいて図示したものであってもよいキャスト又は現場成形(form-in-place)セパレータが、所望の利益をもたらし得る。デンプン又はペーストを用いたセパレータは、単3電池及び他の形式のルクランシェ電池又は亜鉛炭素電池において商業ベースで成功裏に使用されているが、こうしたセパレータは、色々な意味で、超小型層状電池のある種の実施例で使用するのに適さない場合がある。本開示の電池で使用するあらゆるセパレータに関して特に注意を払う必要があり得るのは、形状の均一性及び一貫性である。既知のカソード容積を後に精密に組み込み、かつ一貫した放電容量及びセル性能を後に実現するのを容易にするために、セパレータ容積の精密な制御が必要であり得る。
均一で機械的に頑丈な現場成形セパレータを得る方法は、UV硬化性ヒドロゲル配合物を使用することであり得る。多くの水透過性ヒドロゲル配合物が、種々の業界(例えば、コンタクトレンズ業界)において既知であり得る。コンタクトレンズ業界において一般的なヒドロゲルの例は、ポリ(ヒドロキシエチルメタクリレート)架橋ゲル、又は単にpHEMAであり得る。本発明の多くの用途に関し、pHEMAは、ルクランシェ及び亜鉛炭素電池で使用するのに多くの魅力的な特性を有する場合がある。pHEMAは、典型的には、約0.7MPa(100psi)以上の弾性率を維持しながら、水和状態において約30〜40パーセントの含水量を維持することができる。更に、当業者は、追加の親水性モノマー(例えばメタクリル酸)又はポリマー(例えばポリビニルピロリドン)構成成分を組み込むことによって、架橋ヒドロゲルの弾性率及び含水量特性を調整することができる。このようにして、ヒドロゲルの含水量、又は、より詳細には、ヒドロゲルのイオン透過性を、配合によって調整することができる。
特に有利な点として、いくつかの実施例では、注型可能及び重合可能なドロゲル配合物は、加工を容易にするために、1種以上の希釈剤を含有していてもよい。希釈剤は、注型可能な混合物をキャビティ内にスキージした後、揮発性溶媒構成成分を除去するのに十分な乾燥時間がとれるように、揮発性であるように選択してもよい。乾燥後、選択した光開始剤(CGI 819など)に適した波長(420nmの青色/UV光など)の化学線に暴露することによって、バルク光重合を開始してもよい。揮発性希釈剤は、重合性材料の均一層をキャビティ内に注型成形するのを容易にするように、望ましい塗布時の粘度をもたすのに役立ち得る。揮発性希釈剤はまた、特に強い極性のモノマーを配合物に組み込む事例では、有益な表面張力低減効果をもたらすことができる。キャビティ内への重合性材料の均一層の注型成形を達成するために重要であり得る別の態様は、塗布時の粘度であり得る。一般的な低モル質量の反応性モノマーは典型的に、粘度があまり高くなく、典型的にはわずか数センチポアズであり得る。注型可能かつ重合可能なセパレータ材料の有利な粘度を制御を提供する目的で、重合性材料と適合性があることで知られている高モル質量のポリマー構成成分を選択して、配合物に組み込んでもよい。例示の配合物に組み込むのに適している場合がある高モル質量のポリマーの例としては、ポリビニルピロリドン及びポリエチレンオキシドを挙げることができる。
いくつかの実施例では、注型可能かつ重合可能なセパレータは、前述したように、設計されたキャビティに好都合に塗布することができる。代替実施例では、重合時にキャビティが存在しなくてもよい。代わりに、注型可能かつ重合可能なセパレータ配合物を電極含有基板(例えば、パターニングして亜鉛めっきを施した真鍮)にコーティングした後、続いてフォトマスクを使用して化学線に暴露して、標的領域内のセパレータ材料を選択的に重合させてもよい。次に、適切なリンス溶媒に暴露することにより、未反応のセパレータ材料を除去することができる。こうした実施例では、セパレータ材料は、フォトパターニング可能なセパレータとして設計され得る。
多成分セパレータ配合物
本発明の実施例により有用であるセパレータは、その機能にとって重要であり得る、多数の特性を有し得る。いくつかの実施例において、セパレータは望ましくは、セパレータの両側の層が、互いに物理的に接触しないように、物理的障壁を形成するような様式で形成され得る。したがって様々な理由により薄層が望ましい一方で、ボイド又はギャップのない層が重要であるため、均一な厚さという重要な特性を有し得る。加えて、薄層は、イオンの自由な流れを可能にするために、高い透過性を有することが望ましい場合がある。また、セパレータは、セパレータの機械的特性を最適化するために、最適な水吸収を必要とする。したがって、配合物は、架橋構成成分、親水性ポリマー構成成分、及び溶媒構成成分を含有し得る。
架橋剤は、2つ以上の重合可能な二重結合を有するモノマーであり得る。好適な架橋剤は、2つ以上の重合可能な官能基を備える化合物であり得る。好適な親水性架橋剤の例としては、2つ以上の重合可能官能基、並びに親水性官能基(例えば、ポリマー、アミド、又はヒドロキシル基)を有する、化合物を含み得る。具体的な実施例としては、TEGDMA(テトラエチレングリコールジメタクリレート)、TrEGDMA(トリエチレングリコールジメタクリレート)、エチレングリコールジメタクリレート(EGDMA)、エチレンジアミンジメタクリルアミド、グリセロールジメタクリレート、及びこれらの組み合わせが挙げられ得る。
いくつかの実施例において使用され得る架橋剤の量は、例えば、反応混合物の反応構成成分、100グラム当たり約0.000415〜約0.0156モルの範囲であり得る。使用される親水性架橋剤の量は一般的に、約0〜約2重量%、例えば、約0.5〜約2重量%であり得る。反応性混合物の粘度を増加させることができ、及び/又は遅反応親水性モノマーとの水素結合の度合いを増加ことができる、親水性ポリマー構成成分(例えば、高分子量親水性ポリマー)が望ましい場合がある。
高分子量親水性ポリマーは、湿潤性の改善をもたらし、いくつかの実施例においては、本発明のセパレータへの湿潤性を改善し得る。いくつかの非限定的な実施例において、高分子量親水性ポリマーは、水素結合受容体であり、これは水生環境において、水と水素結合し、効果的により親水性となるものと考えられる。水の不在により、親水性ポリマーの反応性混合物への導入が促進される場合がある。特に指定される高分子量親水性ポリマー以外にも、あらゆる高分子量ポリマーが本発明において有用であるものと考えられるが、ただし前記ポリマーが例示的なシリコーンヒドロゲル配合物に添加されるときに、親水性ポリマーは(a)反応性混合物から実質的に相分離せず、かつ(b)結果として生じる硬化したポリマーに湿潤性を付与する。
いくつかの実施例において、高分子量親水性ポリマーが、処理温度において希釈剤中に溶解可能であり得る。水、又はイソプロピルアルコール(IPA)などの水溶性希釈剤を使用する製造プロセスは、その単純性及びコストの低さのために望ましい例であり得る。これらの実施例において、処理温度において、水溶性である高分子量親水性ポリマーもまた、望ましい実施例であり得る。
高分子量親水性ポリマーの例としては、ポリアミド、ポリラクトン、ポリイミド、ポリラクタム、及び官能化ポリアミド、ポリラクトン、ポリイミド、ポリラクタム(PVP、及びそのコポリマーなどの)、又は代替的に、DMAを、よりモル量の低い、HEMAなどのヒドロキシル基モノマーと共重合させ、その後、結果として生じたコポリマーのヒドロキシル基を、ラジカル重合可能基を含む物質と反応させることにより、官能化させたDMA、が挙げられ得るがこれらに限定されない。高分子量親水性ポリマーとしては、ポリ−N−ビニルピロリドン、ポリ−N−ビニル−2−ピペリドン、ポリ−N−ビニル−2−カプロラクタム、ポリ−N−ビニル−3−メチル−2−カプロラクタム、ポリ−N−ビニル−3−メチル−2−ピペリドン、ポリ−Nービニル−4−メチル−2−ピペリドン、ポリ−N−ビニル−4−メチル−2−カプロラクタム、ポリ−N−ビニル−3−エチル−2−ピロリドン、及びポリ−N−ビニル−4,5−ジメチル−2−ピロリドン、ポリビニルイミダゾール、ポリ−N−−N−ジメチルアクリルアミド、ポリビニルアルコール、ポリアクリル酸、ポリエチレンオキシド、ポリ2エチルオキサゾリン、ヘパリン多糖類、多糖類、これらの混合物及びコポリマー(ブロック又はランダム、分枝、多鎖、櫛状、又は星形を含む)、が挙げられるがこれらに限定されず、ポリ−N−ビニルピロリドン(PVP)は望ましい実施例であり得、PVPがヒドロゲル組成物に添加されて、低い表面摩擦、及び低い脱水速度を呈する相互貫入ネットワークを形成する。
当該技術分野において一般的に既知であり得る追加的な構成成分又は添加物も含まれてもよい。添加物としては、紫外線吸収化合物、CGI 819などの光開始剤、反応性インク、抗菌性化合物、顔料、フォトクロミック、剥離剤、これらの組み合わせなどが挙げられ得るが、これらに限定されない。
これらの種類のセパレータと関連する方法はまた、CGI 819を受け取ること、その後PVP、HEMA、EGDMA、及びIPAと混合すること、その後結果として生じた混合物を熱源、又は光子への暴露を用いて硬化することを含み得る。いくつかの実施例では、光子への暴露は、光子エネルギーが、電磁スペクトルの紫外線領域において生じる波長と一致するところで、行われる場合がある。重合反応において一般的に行われる、重合開始の他の方法は一般的に、本発明の範囲内である。
集電体及び電極
亜鉛炭素電池及びルクランシェ電池のいくつかの実施例では、カソード集電体は、焼結した炭素棒であってもよい。この種の材料は、本発明の薄型電気化学セルの技術的障害に直面する場合がある。いくつかの実施例では、印刷されたカーボンインクが、薄型電気化学セルにおいて、焼結した炭素棒の代わりにカソード集電体で使用される場合があり、こうした実施例では、結果として得られる電気化学セルに著しい損害を与えることなく、結果として得られる装置を形成することができる。典型的には、前記カーボンインクは、ポリマー膜、又は事例によっては金属ホイルを含む場合があるパッケージング材に、直接適用される場合がある。パッケージング膜が金属ホイルであり得る実施例では、カーボンインクは、下にある金属ホイルを、電解質による化学的な劣化及び/又は腐食から保護する必要があり得る。更に、こうした実施例では、カーボンインク集電体は、電気化学セルの内側から電気化学セルの外側まで電気伝導性を提供する必要があり得るので、カーボンインクの周り又はカーボンインクを通した封止を暗示する。カーボンインクは多孔質であるので、これは簡単に達成することはできず、非常に困難であり得る。カーボンインクはまた、厚さが有限の比較的薄い(例えば、10〜20マイクロメートルの)層で塗布されてもよい。パッケージ内部の総厚さがわずか約100〜150マイクロメートルであり得る薄型電気化学セル設計では、カーボンインク層の厚さは電気化学セルの総内容積のかなりの割合を占め、それによりセルの電気的性能に負の影響を与える場合がある。更に、電池全体、特に集電体が薄いということは、集電体の断面積が小さいことを意味し得る。トレースの抵抗はトレースの長さにより増大し、断面積により低減するので、集電体の厚さと抵抗との間には直接的なトレードオフが存在し得る。カーボンインクのバルク抵抗率は、薄型電池の抵抗要件を満たすには不十分であり得る。銀又は他の導電性金属を充填したインクはまた、抵抗及び/又は厚さを低下させると考えられるが、新規な電解質との不適合性といった新たな課題をもたらし得る。こうした要因を考慮すると、いくつかの実施例では、薄い金属ホイルを集電体として使用することによって、又は薄い金属膜を下にあるポリマーパッケージング層に塗布して集電体として作用させることによって、本発明の高効率で高性能の薄型電気化学セルを実現するのが望ましい場合がある。そのような金属ホイルの固有抵抗は有意に低い場合があるので、印刷されたカーボンインクよりもはるかに薄い厚さで、電気的抵抗に関する要件を満たすのが可能となる。
いくつかの実施例では、上部及び/又は底部パッケージング層の1つ以上は、スパッタリングされた集電体用金属又は金属積層体のための基板としての役割を果たし得る。例えば、3M(登録商標)Scotchpak 1109裏材は、カソードの集電体として有用な1つ以上の金属層の物理気相蒸着(PVD)を用いて金属化されてもよい。カソード集電体として有用な金属積層体の実施例は、Ti−W(チタン−タングステン)接着層及びTi(チタン)導体層であり得る。アノード集電体として有用な例示的な金属積層体は、Ti−W接着層、Au(金)導体層、及びIn(インジウム)蒸着層であり得る。PVD層の厚さは、好ましくは、合計で500nm未満であってもよい。金属の多層を用いる場合、電気化学的特性及びバリア特性は電池と適合している必要があり得る。例えば、導電体の厚い層を成長させるために、シード層の上に銅を電気めっきしてもよい。銅の上に追加の層をめっきしてもよい。しかしながら、銅は、特に亜鉛の存在下において、特定の電解質と電気化学的に不適合であり得る。したがって、電池内の層として銅を使用する場合、電池電解質から銅を十分に隔離する必要があり得る。あるいは、銅を除外してもよく、又は他の金属で置き換えてもよい。
いくつかの他の実施例では、上部及び/又は底部パッケージングホイルはまた、集電体として機能し得る。例えば、25マイクロメートルの真鍮ホイルは、亜鉛アノードのアノード集電体として有用であり得る。真鍮ホイルは、所望により、亜鉛で電気めっきする前にインジウムで電気めっきしてもよい。一実施例では、カソード集電体パッケージングホイルは、チタンホイル、ハステロイC−276ホイル、クロムホイル、及び/又はタンタルホイルを含んでもよい。ある種の設計では、1つ以上のパッケージングホイルを精密打ち披き、エンボス加工、エッチング、テクスチャ加工、レーザー加工するか、又は別の方法で加工して、最終的なセルパッケージングにとって望ましい形態、表面粗さ、及び/又は形状を得てもよい。
アノード及びアノード腐食防止剤
本発明の層状電池のアノードは、例えば、亜鉛を含んでもよい。従来の亜鉛炭素電池では、亜鉛アノードは物理的に缶の形状をとることができ、その中に電気化学セルの内容物を収容してもよい。本発明の電池では、亜鉛缶は一実施例であり得るが、超小型電池設計を実現するために望ましい形状を提供することができる、他の物理的形状の亜鉛が存在してもよい。
電気めっき亜鉛の使用例はいくつかの業界で、例えば、金属部品の保護コーティング又は美観コーティングのために見出すことができる。いくつかの実施例では、電気めっき亜鉛は、本発明の電池に有用な薄型の応従するアノードを形成するために使用される場合がある。更に、電気めっき亜鉛は、設計意図に応じて無限と思われるような形状にパターニングすることができる。電気めっき亜鉛をパターニングするための容易な手段は、フォトマスク又は物理的なマスクを用いた加工であり得る。様々な手法でめっきマスクを作製することができる。手法の一つは、フォトマスクの使用であり得る。こうした実施例では、フォトレジストが導電性基板に塗布されてもよく、引き続いてこの基板上に亜鉛がめっきされる場合がある。次に、フォトマスクを用いてフォトレジストに所望のめっきパターンを投影し、それによってフォトレジストの選択領域を硬化させることができる。次に、適切な溶媒及び清掃技術を用いて、硬化していないフォトレジストを除去することができる。結果として、導電材料のパターン領域が得られ、このパターン領域上に亜鉛電気めっき処理を施すことができる。この方法は、めっきされる亜鉛の形状又は設計に利益をもたらすことができるが、この技法は入手可能なフォトパターニング可能な材料を使用する必要があり得、該材料はセルパッケージ構造体全体に対して拘束性を有する場合がある。したがって、本発明の超小型薄型電池のいくつかの設計を実現するために、亜鉛をパターニングするための新しい新規な方法が必要とされ得る。
亜鉛アノードのパターニングの代替的な手段は、物理的なマスクの適用によるものであってもよい。物理的なマスクは、所望のバリア及び/又はパッケージング特性を有する膜に所望の開口を切り込むことによって作製され得る。加えて、膜の片面又は両面に感圧接着剤を塗布してもよい。最後に、膜の片面又は両面の接着剤に保護剥離ライナーを適用してもよい。剥離ライナーは、開口の切断中に接着剤を保護する目的と、以下の記述で説明される、電気化学セルの組み立ての特定の加工工程(具体的にはカソード充填工程)の間、接着剤を保護する目的の両方に役立ち得る。いくつかの実施例では、亜鉛用マスクは、厚さ約100マイクロメートルのPET膜を含んでいてもよく、この膜の両面に感圧接着剤を層厚約10〜20マイクロメートルで塗布してもよい。両方のPSA層は、PET剥離膜で覆われてもよく、このPET剥離膜は、低表面エネルギー表面処理が施されていてもよく、およその厚さが50マイクロメートルであってもよい。こうした実施例では、多層亜鉛用マスクは、PSA及びPETフィルを含み得る。本明細書に記載するPET膜及びPET/PSA亜鉛用マスク構造体は、マスクに超精密な開口を形成してその後のめっきを容易にするために、Oxford Lasers Eシリーズレーザー微細加工ワークステーションのような正確なナノ秒レーザー微細加工機器で処理されるのが望ましい場合がある。本質的に、亜鉛用マスクを製造したら、片面の剥離ライナーを除去してよく、開口を有するマスクを、アノード集電体及び/又はアノード側のパッケージ膜/ホイルに積層することができる。このようにして、PSAは開口の内側縁部に封止部を形成し、電気めっきを施している間、亜鉛を清浄かつ精密にマスキングするのが容易となる。
亜鉛用マスクを定置した後に、1つ以上の金属材料の電気めっきを行ってもよい。いくつかの実施例では、亜鉛を、真鍮などの電気化学的に適合性のあるアノード集電体ホイル上に直接電気めっきしてもよい。アノード側のパッケージングがポリマー膜又は多層ポリマー膜を含み、その膜の上にシードメタライゼーション(seed metallization)が適用されている代替設計例では、亜鉛、及び/又は亜鉛を堆積させるために使用するめっき溶液が、下にあるシードメタライゼーションと化学的に適合性がない場合がある。適合性の欠落は、膜の亀裂、腐食、及び/又はセル電解質と接触した際のH発生の悪化として顕在化し得る。そのような事例では、シード金属に追加の金属を塗布して、システムの全体的な化学的適合性の改善に影響を与えてもよい。電気化学セル構造体において特に有用性を見出すことができる金属の1種は、インジウムであり得る。インジウムは、電池グレードの亜鉛において合金化剤として広く使用することができ、その主な役割は、電解質の存在下で亜鉛に防食性をもたらすことである。いくつかの実施例では、インジウムは、Ti−W及びAuなどの様々なシードメタライゼーション上に首尾良く堆積させることができる。上記シードメタライゼーション層上に得られる1〜3マイクロメートルのインジウム膜は、応力が低く、接着性であり得る。このようにして、アノード側のパッケージング膜、及びインジウム最上層を有する取り付けられた集電体は、応従可能で耐久性があってもよい。いくつかの実施例では、インジウム処理の施された表面上に亜鉛を堆積させることが可能であり得るが、得られる堆積物は非常に不均一で小塊を有する場合がある。この影響は、低電流密度設定(例えば、20ASF)を生じ得る。顕微鏡で見ると、下にある滑らかなインジウム堆積物上に亜鉛の小塊が形成されているのを観察することができる。ある種の電気化学セル設計では、亜鉛アノード層のための垂直空間許容度は、最大で約5〜10マイクロメートルであり得るが、いくつかの実施例では、より低い電流密度を用いて亜鉛めっきを行う場合があり、その結果生じる小塊の成長は、アノードの最大垂直許容度よりも高くなる可能性がある。亜鉛小塊の成長は、インジウムの過電圧が高いことと、インジウムの酸化物層の存在が組み合わさることにより生じる可能性がある。
いくつかの実施例では、より高い電流密度での直流めっきにより、インジウム表面上の比較的大きな亜鉛小塊成長パターンを克服する場合がある。例えば、100ASFめっき条件は小塊亜鉛を生じさせ得るが、亜鉛小塊の寸法は、20ASFめっき条件と比べて著しく縮小され得る。更に、小塊の数は、100ASFめっき条件下で非常に多くなり得る。結果として得られる亜鉛膜は、最終的には、約5〜10マイクロメートルの垂直空間許容度を満たしながらも、小塊成長の残存特徴を若干有する、ほぼ均一な層へと融合することができる。
電気化学セルにおけるインジウムの別の利益は、亜鉛を含有する水性電気化学セルで起こるゆっくりとしたプロセスであり得る、H形成の減少であり得る。インジウムは、アノード集電体の1つ以上に、共めっき合金化構成成分としてアノード自体に、又は電気めっき亜鉛上の表面コーティングとして、有利に塗布され得る。後者の事例では、インジウム表面コーティングは、三塩化インジウム、硫酸インジウム、又は酢酸インジウムなどの電解質添加剤を通じてその場で塗布されるのが望ましい場合がある。そのような添加剤が低濃度で電解質に添加され得る場合、インジウムは、露出している亜鉛表面、並びに露出しているアノード集電体の一部に、自然発生的にめっきされ得る。
市販の一次電池で一般に使用される亜鉛及び類似のアノードは、典型的には、シート、ロッド、及びペーストの形態で見出される。小形生体適合性電池のアノードは、同様な形態のもの(例えば薄いホイル)であってもよく、又は前述したようにめっきされてもよい。このアノードの特性は、例えば、機械加工及びめっきプロセスに起因する汚染物質又は表面仕上げが異なるため、既存の電池の特性と著しく異なり得る。したがって、電極及び電解質は、容量、インピーダンス、及び貯蔵寿命要件を満たす特別な設計を必要とし得る。例えば、電極性能を最適化するために、特別なめっきプロセスパラメータ、めっき浴構成成分、表面処理、及び電解質組成が必要であり得る。
カソード混合物
本発明の概念と一致し得る多数のカソード化学物質の混合物が存在し得る。いくつかの実施例では、カソード混合物とは、電池カソードを形成するために使用される化学配合物のための用語であり得、ペースト、ゲル、懸濁液、又はスラリーとして適用され得、酸化マグネシウムなどの金属遷移酸化物、例えば、カーボンブラック、又はグラファイトなどの導電性粉末の形態であり得る何らかの形態の導電性添加物、及びポリビニルピロリドン(PVP)又は他の何らかの結合剤添加物などの水溶性ポリマーを含み得る。いくつかの実施例では、結合剤、電解質塩、腐食防止剤、水又は他の溶媒、界面活性剤、レオロジー変性剤、及び導電性ポリマーなどの他の導電性添加剤のうちの1つ以上など、他の構成成分が含まれてもよい。カソード混合物は、配合されて適切に混合されると、セパレータ及び/又はカソード集電体の所望部分の上に分与することができるか、あるいは同様の方法でスキージによりスクリーン又はステンシルに通すことができる、望ましいレオロジーを有することができる。いくつかの実施例では、カソード混合物は、後のセル組み立て工程に使用される前に乾燥させてもよいが、他の実施例では、カソードは、電解質構成成分の一部又は全てを含んでいてもよく、選択した含水量まで部分的に乾燥させるだけであってもよい。
遷移酸化金属は例えば、酸化マグネシウムであり得る。カソード混合物で使用され得る二酸化マンガンは、例えば、電解二酸化マンガン(EMD)であり得、これは、天然二酸化マンガン(NMD)又は化学二酸化マンガン(CMD)などの他の形態と比べ、この種類の酸化マグネシウムがもたらす有益な追加的な特定のエネルギーによるものである。更に、本発明の電池で有用なEMDは、堆積可能又は印刷可能なカソード混合物ペースト/スラリーの形成を助ける場合がある粒径及び粒径分布を有する必要があり得る。具体的には、EMDを処理して、電池の内寸、セパレータ厚さ、分与チップの直径、ステンシル開口部寸法、又はスクリーンメッシュ寸法などの他の特徴に対して大きいと思われる、著しく大きな粒子構成成分を除去してもよい。粒径の最適化はまた、例えば、内部インピーダンス、及び放電容量などの、電池性能を改善するために使用されてもよい。
ミリングは、圧壊、粉砕、切断、振動、又は他のプロセスにより、ある平均粒径の個体材料をより小さい平均粒径にするものである。ミリングはまた、有用な物質を、これらが埋め込まれている場合があるマトリックス材料から解放し、鉱物を濃縮するために使用されてもよい。ミルは、粉砕、圧壊、又は切断により、個体材料をより小さい断片へと分割する装置である。ミリングのためのいくつかの手段が存在し、これにより多くの種類の材料を処理することができる。このようなミリング手段としては、他のミリングの代替手段の中でもとりわけ、ボールミル、ビードミル、乳鉢と乳棒、ローラープレス、及びジェットミルが挙げられる。ミリングの一例は、ジェットミリングであり得る。ミリングの後、個体の状態、例えば、粒径、粒径配置(particle size disposition)、及び粒子の形状が変更される。汚染物質又は湿分を、凝集体から除去又は分離して、移送又は構造的充填の前に「乾燥充填物(dry fill)」を生成するために、アグリゲートミリング(Aggregate milling)プロセスも使用されてもよい。いくつかの装置は、個体材料を、その寸法に最小粒径、及び最大粒径の両方の境界が与えられた、粒子混合物へと分類するために、様々な技法を組み合わせ得る。このような処理は、「分級法」、又は「分級」と称される場合がある。
ミリングは、カソード混合物成分の均一な粒径分布のための、カソード混合物生産の一態様であり得る。カソード混合物における均一の粒径は、カソードの粘度、レオロジー、導電性、及び他の特性を補助し得る。ミリングは、カソード混合物成分の凝集、又は集団収集を制御することにより、これらの特性を補助し得る。凝集(別個の要素の集塊化であり、カソード混合物の事例では炭素同素体、及び遷移金属酸化物)は、図11に例示されるような、所望のカソードキャビティにボイドを残すことにより、充填プロセスに負の影響を与え得る。
また、濾過は、集塊又は望ましくない粒子の除去のための別の重要な工程であり得る。望ましくない粒子は、大きすぎる粒子、汚染物質、調整プロセスにおいて明示的に説明されない、他の粒子を含み得る。濾過は、濾紙による濾過、真空濾過、クロマトグラフィー、精密濾過、及び他の濾過手段によって達成され得る。
いくつかの実施例では、EMDは、7マイクロメートルの平均粒径を有していてもよく、最大約70マイクロメートルまでの粒子を含み得る大径粒子を含有する。代替実施例では、大径粒子の含有を一定の閾値未満(例えば、25マイクロメートル以下)に限定するために、EMDをふるいにかけ、更に粉砕し、又は別の方法で分離若しくは処理してもよい。
カソードは、二酸化銀又はオキシ水酸化ニッケルを更に含み得る。かかる材料は、二酸化マンガンと比べて、容量を増大させ、かつ放電時の負荷時電圧の低下を少なくすることができ、これらは共に電池において望ましい特性である。こうしたカソードに基づく電池は、業界及び文献に見られる現行例を有し得る。二酸化銀カソードを用いる新規な超小型電池は、生体適合性電解質(例えば、水酸化カリウムの代わりに塩化亜鉛及び/又は塩化アンモニウムを含むもの)を含んでいてもよい。
カソード混合物のいくつかの例には、ポリマー結合剤が挙げられる。結合剤は、カソード混合物においていくつかの機能を果たすことができる。結合剤の主要機能は、EMD粒子と炭素粒子との間に、粒子間の十分な電気的ネットワークを作り出すことであり得る。結合剤の2つ目の機能は、カソード集電体に対する機械的接着及び電気的接触を促進することであり得る。結合剤の3つ目の機能は、有利に分与及び/又はステンシリング/スクリーニングするために、カソード混合物のレオロジー特性に影響を与えることであり得る。更に、結合剤の4つ目の機能は、カソード内への電解質の吸い上げ及び分布を向上させることであり得る。
結合剤ポリマー並びに使用される量の選択は、本発明の電気化学セルにおけるカソードの機能にとって有益であり得る。使用する電解質に結合剤ポリマーが可溶性であり過ぎる場合には、結合剤の主要機能である電気的導通は、セルが機能しなくなる程度まで大幅な影響を受け得る。これとは反対に、使用する電解質に結合剤ポリマーが不溶性である場合には、EMDの一部は電解質からイオン的に絶縁され、その結果、容量低下、開回路電圧の低下、及び/又は内部抵抗の上昇など、セル性能が衰える。
結合剤は疎水性であってもよく、これは親水性であってもよい。本発明にとって有用な結合剤ポリマーの例としては、とりわけ、PVP、ポリイソブチレン(PIB)、Kraton Polymers製のもののようなスチレン末端ブロックを含むゴムトリブロックコポリマー、スチレン−ブタジエンラテックスブロックコポリマー、ポリアクリル酸、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリテトラフルオロエチレンなどのフルオロカーボン固体が挙げられる。
溶媒は、カソード混合物の1つの構成成分であり得る。溶媒はカソード混合物の湿潤において有用であり得、これは混合物内の粒子の分布を補助し得る。溶媒の一実施例はトルエンであり得る。また、界面活性剤は、カソード混合物の湿潤、したがって分布において有用であり得る。界面活性剤の一実施例は、トリトン(Triton)(商標)QS−44であり得る。トリトン(商標)QS−44は、カソード混合物内の凝集成分の溶解を補助し、カソード混合物の成分のより均一な分布を可能にする場合がある。
導電性炭素は典型的には、カソードの生成において使用され得る。炭素は、多くの同素体、又は異なる構造変形を形成することができる。異なる炭素同素体は、異なる物理的特性を有し、導電性の変化を可能にする。例えば、カーボンブラックの「弾力性」は、カソード混合物の集電体への接着を補助し得る。しかしながら、比較的少ない量のエネルギーを要求する通電素子において、電気伝導性のこれらの変化は、他の特性の中でもとりわけ、密度、粒径、熱伝導性、及び相対的均一性など、他の好ましい特性ほど重要ではないことがある。炭素同素体の例としては、ダイヤモンド、グラファイト、グラフェン、非晶質炭素(非正式にはカーボンブラックと称される)、バックミンスターフローレン、ガラス状炭素(ガラス質炭素とも称される)、カーボンエーロゲル、及び導電性の炭素の他の可能な形態が挙げられる。炭素同素体の一例はグラファイトであり得る。
完成したカソード混合配合物の一例は、以下の表に与えられ得る
Figure 2016046256
ここでPIBはポリイソブチレン、JMEMDはジェットミルをかけた二酸化マンガン、KS6はTimcalにより製造されるグラファイト、PIB B10はB10の分子量等級のポリイソブチレンである。
一度カソード混合物が配合及び加工されると、混合物はヒドロゲルセパレータ、又はカソード集電体などの表面上に、又は層状構造体内のキャビティなどの容積内へと、分与、適用、及び/又は保存され得る。表面への充填により、結果として一定容積が時間をかけて充填される。混合物を適用、分与、及び/又は保存するために、分与、適用、及び/又は保存プロセスを最適化するためにある特定のレオロジーが望ましい場合がある。例えば、より粘度の低いレオロジーにより、キャビティをより良好に充填することができる一方で、同時に場合によって粒子分布を犠牲にすることがある。より粘稠なレオロジーは、粒子分布の最適化を可能にし得る一方で、場合によりキャビティを充填する能力を低減し、場合により導電性を失うこととなる。
例えば、図10A〜10Fは、最適及び非最適な、キャビティ内への分与又は適用を図示する。図10Aは、適用、分与、及び/又は保存の後に、カソード混合物により最適に充填されたキャビティを図示する。図10Bは、四分区間の左下1002において充填が不十分であるキャビティを図示し、これは望ましくないカソード混合物レオロジーの直接的な結果であり得る。図10Cは、四分区間の右上1004において充填が不十分であるキャビティを示し、これは望ましくないカソード混合物レオロジーの直接的な結果であり得る。図10D及び図10Eは、キャビティの中部1006及び底部1008において充填が不十分であるキャビティを示し、これは望ましくないカソード混合物レオロジーの直接的な結果により生じる気泡であり得る。図10Fは、キャビティの上方1010に向かって充填が不十分であるキャビティを示し、これは望ましくないカソード混合物レオロジーの直接的な結果であり得る。図10B〜図10Fに図示される欠陥は、結果として例えば、容量の低下、内部抵抗の増加、及び安定性の低下など、いくつかの電池の問題を生じ得る。
更に、図11では、望ましくないカソード混合物レオロジーの結果として、凝集1102が生じ得る。凝集は、カソード混合物の性能の減少、例えば、放電容量の減少、及び内部抵抗の増加を生じ得る。
一実施例では、カソード混合物は、層状構造キャビティをスキージ充填する一方で、導電性を維持するために最適な、ピーナッツバター様の稠度と類似していてもよい。別の実施例において、混合物は、キャビティ内に印刷するのに十分な粘稠度であり得る。更に別の実施例において、カソード混合物はキャビティ内で乾燥、定置、及び貯蔵され得る。
電解質
電解質は、電極の化学物質の間で生じる化学反応を促進する、電池の構成要素である。典型的な電解質は、電極に対して電気化学的に活性であってよく、例えば、酸化還元反応を生じさせる。本明細書において使用するとき、電解質は、好適な溶媒、及びイオン種を含む溶液であり得る。この溶液は、溶液がこれらのイオン種の存在を助けるという点において好適であり得る。イオン化溶質は、溶媒に添加された際に、溶媒和イオン種へと溶解する、物質であり得る。いくつかの例では、イオン化溶質は、イオン化塩であり得る。イオン種を含む電解質溶液は、イオン種が溶液中に拡散することによって、導電性を補助する能力を有し得る。
いくつかの例では、この重要な電気化学的活性は、生体適合性である装置を作る上での課題を生じさせる場合がある。例えば、水酸化カリウム(KOH)は、アルカリ電池で一般的に使用される電解質である。この物質は、高濃度で高いpHを有し、様々な生体組織に対して不都合に作用し得る。一方、いくつかの例では、電気化学的に活性がより低い場合がある電解質を使用する場合があるが、こうした物質は典型的に低い電気的性能をもたらし、例えば、セル電圧は低くなり、セル抵抗は高くなる場合がある。したがって、生物医学超小型電池の設計及びエンジニアリングの重要な態様の1つは、電解質であり得る。電解質は、電気的要件を満たすのに十分なほど活性であると同時に、身体内又は身体上で使用しても比較的安全であるのが望ましい場合がある。
様々な試験シナリオを用いて、生体細胞に対する電池構成要素(例えば、電解質)の安全性プロファイルを判定することができる。これらの試験の結果を、電池パッケージの試験と共に用いることにより、要件を満たすことができる電池システムのエンジニアリング設計が可能となり得る。例えば、電動式コンタクトレンズを開発する場合、電池電解質をヒト角膜細胞モデル上で試験してもよい。かかる試験は、電解質濃度、暴露時間、及び添加剤に関する実験を含み得る。かかる試験の結果は、細胞代謝及び他の生理学的態様を示す場合がある。
本発明において使用する電解質は、塩化亜鉛、酢酸亜鉛、硫酸亜鉛、臭化亜鉛、グルコン酸亜鉛水和物、硝酸亜鉛、及びヨウ化亜鉛、酢酸亜鉛、及び塩化アンモニウムを、約0.1%〜50%、非限定的な実施例においては約25%の質量濃度で含む場合がある。具体的な濃度は、依存する他の特性の中でもとりわけ、溶解性、電気化学的活性、電池性能、貯蔵寿命、封止完全性、及び生体適合性に依存し得る。いくつかの例では、電池システムの組成物中で数種類の添加剤を使用する場合がある。添加剤を基盤となる電解質配合物に混入させて、その特性を変化させてもよい。例えば、寒天などのゲル化剤は、電解質が包装から漏れ出す能力を低下させることができ、それにより安全性が高くなる。他の実施例には、カルボキシメチルセルロース、又はセルロースガムが挙げられる。他の実施例は、ヒドロキシプロピルメチルセルロースを含み得る。例えば、亜鉛アノードなどの電極材料の電解質中への望ましくない溶解を低減させることによって貯蔵寿命を長くするために、酢酸インジウムなどの腐食防止剤を電解質に添加してもよい。こうした防止剤は、電池の安全性プロファイルに良い又は悪い影響を及ぼし得る。例えば、電解質がセパレータを濡らすことができるように、又は電解質を電池パッケージ内に充填することができるように、湿潤剤又は界面活性剤を添加する場合がある。この場合も同様に、こうした湿潤剤は安全性にとって良い場合又は悪い場合があり得る。電解質への界面活性剤の添加は、セルの電気インピーダンスを増加させ得る。したがって、所望の湿潤、又は他の特性を達成するための、界面活性剤の最低濃度が望ましい場合がある。例示的な界面活性剤としては、0.01パーセント〜2パーセントの濃度の、トリトン(Triton)(商標)X−100、トリトン(商標)QS44、及びDowfax(商標)3B2を挙げることができる。1つの例示的な電解質配合物は、約10〜20%のZnClと、約250〜500ppmのトリトン(商標)QS44と、酢酸インジウムとして供給される、約100〜200ppmのインジウム(III)イオンと、水を含む残部と、を含み得る。
生物医学超小型電池の安全性プロファイルを飛躍的に改善することができる新規な電解質も登場してきている。例えば、ある種類の固体電解質は、好適な電気的性能を提供しながらも、漏れに対する耐性を本来的に有している場合がある。ゲル化、又はヒドロゲル化電解質はまた、適切な電解質機能をもたらす一方で、漏れに対する弾力も維持し、よって生体適合性を保持する。ゲル化電解質はまた、電池セパレータの必要性を置き換える場合があり、ゲル化電解質の透過性はまた、電極間の電気的短絡を防ぐように機能し得る。例えば、水性Ca(NO−SiOゲル電解質中の、超薄型二次元MnOナノシート、及びグラフェンを使用した可撓性非対称超コンデンサは、優れた電気化学特性(例えば、従来のMnO系超コンデンサをはるかに超える、最大97.2Wh kg−1のエネルギー密度、及び10000サイクル以降でも3%以下の容量損失)を実現し、一方で生体適合性を維持する。
これらの種類のゲル化電解質は、例えば、脱イオン水中、2モルの硝酸カルシウム(Ca(NO)の水溶液を生成し、1重量%のカルボキシメチルセルロース(CMC)を加え、10重量%の二酸化ケイ素(SiO)を加え、均一になるまで混合し、その後ゲル化するまで放置することによって配合され得る。
図12A〜図12Fは、生体適合性通電素子内のゲル化した電解質の例示的な使用を図示する。図12Aでは、ピックアンドプレイスツール1221を使用して、ゲル化した電解質の切断又は予備形成された断片を、通電素子上の所望の位置へと取り上げて定置することができる。図12Bでは、配置されたゲル化電解質片1222を適所に固定した後、PVDF剥離層1223を除去することができる。図12Cに進むと、成長装置構造体を、アノード1225の膜に接合することができる。アノード1225は、その上に亜鉛アノード膜が電着されているアノードコレクタ膜からなっていてもよい。
図12Dに進むと、カソードスラリー1230が、形成されたギャップに入れられてもよい。いくつかの実施例では、スキージ1231を使用して、カソード混合物を被加工物全体に広げ、このプロセスでは、形成される電池装置のギャップを充填してもよい。充填後、残っているPVDF剥離層1232を除去することができ、そうすることにより結果として図12Eに示す構造体を得ることができる。図12Fでは、構造体全体に乾燥プロセスを施すことができ、これによりカソードスラリー1240は、PET層の上部の高さまで収縮することができる。本発明の趣旨の範囲内で有用であり得る、材料及び目標厚さに対する多くの修正、削除、変更が存在し得る。
注液電池
注液電池は、活性物質、電極、及び電解質が、使用時まで分離されている電池である。この分離により、セルの自己放電は大幅に低減され、貯蔵寿命は大幅に延長される。「塩水」電解質を使用する例示的な電池は、海上で使用するための注液電池として一般的に使用される。魚雷、ブイ、及び非常時用照明は、こうした電池を使用することができる。塩水電池は、亜鉛、マグネシウム、アルミニウム、銅、スズ、二酸化マンガン、及び酸化銀などの様々な電極材料から設計される場合がある。電解質は、実際の塩水であってもよく(例えば、接触すると電池が海水で満たされる)、又は特別に設計された生理食塩水製剤であってもよい。
他の実施例では、注液電池は、本明細書において記載されたような電解質配合物のいずれかにより配合され、電解質は保存手段によって電池セルから隔離されている。いくつかの実施例では、保存手段に対する力の適用などの物理的動作により、保存装置が計画的な様式で破裂する場合があり、これにより電解質が電池セル内に流入し、電極の化学物質の電位が電気エネルギーに変換されるように活性化する。いくつかの他の実施例では、保存手段のシールが電気的に活性化されてもよい。例えば、薄い金属シールに対する電荷の印加が、シールを溶融させて、電解質が保存手段から逃れるのを可能にする。また更なる実施例において、電解質がその保存手段から解放させるために、電気的に活性化された孔が使用されてもよい。これらの実施例において、典型的には、電解質の一次電池への流れを活性化するために、電源が存在し得る。誘導性電源、又は光活性エネルギー(すなわち、光電池)源により、制御された信号が、電気エネルギーを供給して電解質を解放してもよい。
第2の注液電池もまた、信号を受信した際の、電解質の一次電池への流れを活性化するこの目的のために理想的であり得る。第2の注液電池は、流体がその周辺から、電池内へと拡散することを可能にするより小さな電池であり得る。電解質なしに第2の注液電池装置が形成された後、貯蔵寿命が延び得る。電池装置が、コンタクトレンズなどの生体適合性装置内に形成された後、これは生理食塩水内に保存される場合がある。この生理食塩水が電池内に拡散し、これによって第2の注液電池が活性化され得る。コンタクトレンズを収容するパッケージが開かれた後の光の存在などの、その後の活性化信号が、主要(注液)電池を活性化し、これにより電解質が電池装置内に流入して、電池を活性化する。
生理食塩電解液は、水酸化カリウム及び塩化亜鉛のような従来の電解質と比較してより優れた生体適合性を有し得る。コンタクトレンズは「パッキング溶液」内に保存され、これは典型的には、塩化ナトリウムと、恐らくは他の塩及び緩衝剤、例えば、ホウ酸ナトリウム、ホウ酸、クエン酸、クエン酸塩、重炭酸塩、TRIS(2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール)、ビス−トリス(ビス−(2−ヒドロキシエチル)−イミノ−トリス−(ヒドロキシメチル)−メタン)、ビス−アミノポリオール、トリエタノールアミン、ACES(N−(2−ヒドロキシエチル)−2−アミノエタンスルホン酸)、BES(N,N−ビス(2−ヒドロキシエチル)−2−アミノエタンスルホン酸、HEPES(4−(2−ヒドロキシエチル)−1−ピペラジンエタンスルホン酸)、MES(2−(N−モルホリノ)エタンスルホン酸)、MOPS(3−[N−モルホリノ]−プロパンスルホン酸)、PIPES(ピペラジン−N,N’−ビス(2−エタンスルホン酸)、TES(N−[トリス(ヒドロキシメチル)メチル]−2−アミノエタンスルホン酸)、これらの塩、リン酸緩衝液(例えば、Na2HPO4、NaH2PO4、及びKH2PO4、又はこれらの混合物)の混合物である。パッキング溶液の配合物は、亜鉛アノード及び二酸化マンガンカソードと組み合わされる電池電解質であることが実証されている。他の電解質と電極の組み合わせが可能である。
「塩水」電池を使用するコンタクトレンズは、塩化ナトリウム系電解質、パッキング溶液、又は更には涙液と類似した特別に設計された電解質を含んでいてもよい。いくつかの実施例において、人間の涙液への暴露が、電池装置の動作を可能にすることができる。
より涙液に類似した電解質を使用することによる、又は実際に涙液を使用することによる生体適合性に関する考えられる利益に加えて、あるいはその代わりに、注液電池を使用して、コンタクトレンズ製品の貯蔵寿命要件を満たしてもよい。典型的なコンタクトレンズの貯蔵期間は3年以上と指定されている。この期間は、パッケージが小さくて薄い電池にとっては課題となる要件であり得る。コンタクトレンズで用いる注液電池は、図1〜図3に示すものと類似の設計を有し得るが、製造時に電解質は加えられないことがある。上記のように、電解質は、コンタクトレンズ内のアンプル内に保存され、空の電池セルに接続されてもよい。層状構電池造体のキャビティのうちの1つはまた、電解質を、電極から隔離するような様式で保存するように機能してもよい。他の実施例では、コンタクトレンズ、及びしたがって電池を囲む生理食塩水は、電解質として使用され得る。コンタクトレンズ及び電池パッケージの内部には、ユーザーがレンズを起動させるまで電解質を電極から隔離しておくために、弁又はポートが設計されてもよい。グロースティックを起動するのと同様に、恐らくは、コンタクトレンズの縁部を単につまむなどしてコンタクトレンズが起動されると、電解質は、電池に流入して、電極間にイオン経路を形成することができる場合がある。これにより、電解質が1回だけ移送されてもよく、又は電池が継続的な拡散に暴露されてもよい。
電池システムによっては、化学反応の間に電解質を使用又は消費する場合がある。したがって、電解質のある特定の量を設計して、パッケージ化されたシステムに入れることが必要であり得る。この電解質は、セパレータ又はリザーバを含む様々は場所に保存することができる。
いくつかの例では、電池システムの設計は、電池システムの放電容量を制限するように機能し得る構成要素(複数可)を含んでもよい。例えば、アノード、カソード、又は電解質の材料及び材料の量を、電池システムの反応過程の間にそれらのうちの1つが最初に枯渇するように設計するのが望ましい場合がある。そのような例では、アノード、カソード、又は電解質のうちの1つが枯渇することにより、問題となる放電及び副反応が生じる可能性が低減され、より低い放電電圧で起きないようにすることができる。こうした問題となる反応は、例えば、安全性及び他の要因を損なう可能性のある過剰なガス又は副生成物を生成し得る。
電池アーキテクチャ及び製造
電池アーキテクチャと製造技術は密接に関連し合っている場合がある。本発明の前の項で論じたように、電池は、次の素子、すなわち、カソードと、アノードと、セパレータと、電解質と、カソード集電体と、アノード集電体と、パッケージングと、を有する。巧みな設計により、こうした素子を、製造が容易なサブアセンブリに組み付ける試みがなされてもよい。他の実施例では、最適化された設計は、例えば金属パッケージが集電体の役割も果たすといったように、二重用途の構成要素を有していてもよい。相対容積及び厚さの観点から、こうした素子は、カソードを除き、ほぼ全て同じ容積であってもよい。いくつかの実施例では、機械的密度、エネルギー密度、放電効率、材料純度、並びに、結合剤、充填剤、及び導電剤の存在が著しく異なることから、電気化学システムは、カソードの容積の約2〜10倍のアノードを必要とし得る。こうした実施例では、様々な構成要素の相対的な大きさは、次の素子厚さに近づけられ得る。アノード集電体=1μm、カソード集電体=1μm、電解質=間隙液(実質的に0μm)、セパレータ=所望通りの薄さ又は厚さであり、計画最大厚は約15μmであり得、アノード=5μm、及びカソード=50μm。素子のこうした実施例については、使用環境において電池化学物質を維持するために十分な保護を提供するのに必要なパッケージングは、最大約50μmの計画最大厚さを有し得る。
円筒形状又は矩形形状といった大型の角柱構造体とは本質的に異なっている場合があり、かつウェハベースのソリッドステート構造体と異なっている場合がある、いくつかの実施例では、かかる実施例は、電池素子がその内部に配置されている、様々な構成に作製されたウェブ又はシートを使用した「パウチ」状の構造体とすることができる。この収容体は、2枚の膜又は他面の上に曲げられた1枚の膜を有してもよく、これらの構造体のいずれもほぼ平面状の表面を2つ形成することができ、次にこれらの平面の外周を封止して容器を形成することができる。この薄いが幅広の形状因子により、電池素子自体を薄くかつ幅広とすることができる。更に、こうした実施例は、コーティング、グラビア印刷、スクリーン印刷、スパッタリング、又は他の同様の製造技術を通した用途に好適であり得る。
薄いが幅広の形状因子を有するこうした「パウチ状」電池の実施例では、アノード、セパレータ、及びカソードなどの内部構成要素の配置は数多く存在し得る。2枚の膜によって形成された密閉領域内において、こうした基本素子は、同一平面上に隣り合っている「共平面」であるか、又は対向面上で向かい合っていてもよい「共対面」のいずれかであり得る。共平面配置では、アノード、セパレータ、及びカソードは、同一表面上に堆積され得る。共対面配置では、アノードは表面−1に堆積されてもよく、カソードは表面−2に堆積されてもよく、セパレータは、これら2つの面の間に定置するか、両面のうちの一方に堆積するか、又はそれ自体個別の素子として挿入するかのいずれかで定置されてもよい。
別の種類の実施例は積層アセンブリとして分類することができ、このアセンブリは、ウェブ又はシートの形態の膜を使用して、電池層を一層ずつ構築することを含み得る。シートは、感圧接着剤、熱活性接着剤、又は化学反応型接着剤などの接着剤を使用して互いに接合されてもよい。いくつかの実施例では、シートは、熱溶着、超音波溶接等などの溶接技法によって接合されてもよい。シートは、ロール・ツー・ロール(R2R)、又はシート・ツー・シートアセンブリのような標準的な工業的手法に適していてもよい。先に指摘したように、カソード用の内部容積は、電池内の他の活性素子よりも実質的に大きい必要があり得る。電池構造体の多くは、このカソード材料のスペースを作り出し、電池が屈曲する際にカソードが移動しないように支持する必要があり得る。厚さのかなりの部分を消費する場合がある電池構造体の別の部分は、セパレータ材料であり得る。いくつかの実施例では、シート形状のセパレータは、積層加工の有利な解決法を生み出すことができる。他の実施例では、セパレータは、セパレータとして機能する層にヒドロゲル材料を分与することによって形成されてもよい。
こうした積層電池アセンブリの実施例では、成形品は、アノードシート(これはパッケージ層とアノード集電体の組み合わせであってもよい)並びにアノード層の基板を有し得る。成形品はまた、任意選択のセパレータスペーサシート、カソードスペーサシート、及びカソードシートを有し得る。カソードシートは、パッケージ層とカソード集電体層の組み合わせであってもよい。
電極と集電体との間が密接に接触していることが、インピーダンスを低減し、かつ放電容量を増大させるために非常に重要である。電極の一部が集電体と接触していない場合、電気の伝導が電極を通って生じることから(電極の導電性は典型的には、集電体よりも低い)、又は電極の一部が完全に切断された状態になることから、抵抗が増大し得る。コインセル及び円筒電池において、密着性は、缶をクリンプする機械的力、缶内へのペースト充填、又は同様の手段によって実現される。市販のセルでは、電池内の力を維持するために、波形座金又は同様のバネが使用されているが、これらは小型電池の全厚を増大させることがある。典型的なパッチ電池(patch batteries)では、セパレータは、電解質に浸漬され、電極を挟んで定置され、外部パッケージングによって押圧され得る。共対面層状電池では、電極密着性を増強させるための方法がいくつか存在する。アノードは、ペーストを使用するのではなく、集電体上に直接めっきされてもよい。この方法は本質的に、高レベルの密着性及び導電性をもたらす。しかしながら、カソードは、典型的にはペーストである。カソードペースト中に存在する結合剤材料は接着力と凝集性を提供することができるが、カソードペーストを確実にカソード集電体と接触した状態に保つためには、機械的圧縮が必要となり得る。パッケージが曲げられる、電池が経年劣化して放電することから、例えば、薄くて小さい封止部を通って水分がパッケージから放出するので、これは特に重要であり得る。共対面層状電池では、カソードの圧縮は、アノードとカソードとの間に柔軟なセパレータ及び/又は電解質を導入することによって達成し得る。例えば、ゲル電解質又はヒドロゲルセパレータは、アセンブリを圧縮することができ、液体電解質のように電池から簡単に流れ出ることはない。電池を封止し終わったら、電解質及び/又はセパレータはカソードを押し返すことができる。層状スタックの組み立て後にエンボス加工工程を行って、積層体を圧縮してもよい。
生体適合性電池において使用するためのカソード混合物は、例えば、ペースメーカー及びマイクロエネルギーハーベスタなどの埋め込み型電子装置、生物学的機能のモニタリング及び/又は検査を行うための電子ピル、能動構成要素を備える外科用装置、眼科用装置、マイクロサイズのポンプ、除細動器、ステントなどの生体適合性装置内で使用され得る。
生体適合性電池において使用するためのカソード混合物のサンプル実施形態を例示するために、特定の実施例が記載されてきた。これらの実施例は、前記の例示のためであり、いかなる様式でも特許請求の範囲を限定することを意図するものではない。したがって、本明細書は、当業者には明らかであり得る全ての実施例を含むことを意図する。
〔実施の態様〕
(1) 電解質配合物を含む生体適合性電池であって、前記生体適合性電池は、
第1及び第2の集電体と、
カソードと、
アノードと、
層状構造体と、を含み、
前記層状構造体の少なくとも1つの層が、キャビティを形成するためにある容積を除去されており、前記キャビティは電解質溶液を収容し、前記電解質溶液が、
イオン化塩と、
溶媒と、を含む、生体適合性電池。
(2) 前記イオン化塩が塩化亜鉛である、実施態様1に記載の生体適合性電池。
(3) 前記イオン化塩が塩化アンモニウムである、実施態様1に記載の生体適合性電池。
(4) 前記イオン化塩が酢酸亜鉛である、実施態様1に記載の生体適合性電池。
(5) 前記イオン化塩が硫酸亜鉛である、実施態様1に記載の生体適合性電池。
(6) 前記イオン化塩が臭化亜鉛である、実施態様1に記載の生体適合性電池。
(7) 前記イオン化塩がグルコン酸亜鉛水和物である、実施態様1に記載の生体適合性電池。
(8) 前記イオン化塩が硝酸亜鉛である、実施態様1に記載の生体適合性電池。
(9) 前記イオン化塩がヨウ化亜鉛である、実施態様1に記載の生体適合性電池。
(10) 前記溶媒が水である、実施態様1に記載の生体適合性電池。
(11) 酢酸インジウムとして供給されるインジウム(III)イオンを更に含む、実施態様1に記載の生体適合性電池。
(12) 硫酸インジウムを更に含む、実施態様1に記載の生体適合性電池。
(13) ゲル化剤を更に含む、実施態様1に記載の生体適合性電池。
(14) 寒天を更に含む、実施態様1に記載の生体適合性電池。
(15) カルボキシメチルセルロースを更に含む、実施態様1に記載の生体適合性電池。
(16) ヒドロキシプロピルメチルセルロースを更に含む、実施態様1に記載の生体適合性電池。
(17) 塩化ナトリウムを更に含む、実施態様1に記載の生体適合性電池。
(18) ホウ酸ナトリウムを更に含む、実施態様1に記載の生体適合性電池。
(19) 前記電解質溶液が、界面活性剤を更に含む、実施態様1に記載の生体適合性電池。
(20) 前記界面活性剤はトリトン(Triton)(商標)QS44である、実施態様19に記載の生体適合性電池。
(21) 電解質配合物を含む生体適合性電池であって、前記生体適合性電池は、
第1及び第2の集電体と、
カソードと、
アノードと、
層状構造体と、を含み、
前記層状構造体の少なくとも1つの層が、キャビティを形成するためにある容積を除去されており、前記キャビティは電解質を充填され、前記電解質が、
ZnClと、
界面活性剤と、
インジウム(III)イオンと、
水と、を含む、生体適合性電池。
(22) 電解質配合物を含む生体適合性電池であって、前記生体適合性電池は、
第1及び第2の集電体と、
カソードと、
アノードと、
層状構造体と、を含み、
前記層状構造体の少なくとも1つの層が、キャビティを形成するためにある容積を除去されており、前記キャビティは電解質を充填され、前記電解質が、
約10〜20%のZnClと、
約250〜500ppmのトリトン(Triton)(商標)QS44と、
酢酸インジウムとして供給される、約100〜200ppmのインジウム(III)イオンと、
水と、を含む、生体適合性電池。
(23) 電解質配合物を含む生体適合性電池であって、前記生体適合性電池は、
第1及び第2の集電体と、
カソードと、
アノードと、
層状構造体と、を含み、
前記層状構造体の少なくとも1つの層が、キャビティを形成するためにある容積を除去されており、前記キャビティの少なくとも一部内にゲル化電解質が形成され、前記ゲル化電解質が、
硝酸カルシウム、
カルボキシメチルセルロース、及び
二酸化ケイ素を含む、生体適合性電池。
(24) 電解質配合物を含む生体適合性電池であって、前記生体適合性電池は、
第1及び第2の集電体と、
カソードと、
アノードと、
層状構造体と、を含み、
前記層状構造体の少なくとも1つの層が、キャビティを形成するためにある容積を除去されており、前記キャビティの少なくとも一部内にゲル化電解質が形成され、前記ゲル化電解質が、
脱イオン水中の、約2モルの硝酸カルシウム(Ca(NO)と、
約1重量%のカルボキシメチルセルロース(CMC)と、
約10重量%の二酸化ケイ素(SiO)と、を含む、生体適合性電池。
(25) 生物医学的装置器具であって、
インサート装置を含み、前記インサート装置が、
制御用電圧信号に反応する電気活性素子と、
生体適合性電池であって、
前記生体適合性電池が、
第1及び第2の集電体と、
カソードと、
アノードと、
セパレータと、
層状構造体であって、前記層状構造体の少なくとも1つの層が、キャビティを形成するようにある容積が除去されている、層状構造体と、
電解質であって、前記電解質が、
イオン化塩、及び
溶媒を含む、電解質と、を含み、
前記生体適合性電池に電気的に接続された回路が、前記制御用電圧信号を提供する、生体適合性電池とを含む、生物医学的装置器具。
(26) 前記生物医学的装置が、コンタクトレンズである、実施態様25に記載の器具。
(27) 生物医学的装置器具であって、
インサート装置を含み、前記インサート装置が、
制御用電圧信号に反応する電気活性素子と、
生体適合性電池であって、
前記生体適合性電池が、
第1及び第2の集電体と、
カソードと、
アノードと、
セパレータと、
層状構造体であって、前記層状構造体の少なくとも1つの層が、キャビティを形成するようにある容積が除去されている、層状構造体と、
電解質であって、前記電解質が、
約10〜20%のZnClと、
約250〜500ppmのトリトン(Triton)(商標)QS44と、
酢酸インジウムとして供給される、約100〜200ppmのインジウム(III)イオンと、
水と、を含む、電解質と、を含み、
前記生体適合性電池に電気的に接続された回路が、前記制御用電圧信号を供給する、生体適合性電池と、を含む、生物医学的装置器具。
(28) 前記生物医学的装置が、コンタクトレンズである、実施態様27に記載の器具。
(29) 生物医学的装置器具であって、
インサート装置を含み、前記インサート装置が、
制御用電圧信号に反応する電気活性素子と、
生体適合性電池であって、
前記生体適合性電池が、
第1及び第2の集電体と、
カソードと、
アノードと、
セパレータと、
層状構造体であって、前記層状構造体の少なくとも1つの層が、キャビティを形成するようにある容積が除去されている、層状構造体と、
電解質であって、前記電解質が、
ZnClと、
トリトン(Triton)(商標)QS44と、
酢酸インジウムとして供給されるインジウム(III)イオンと、
水を含む残部と、を含む、電解質と、を含み、
前記生体適合性電池に電気的に接続された回路が、前記制御用電圧信号を提供する、生体適合性電池とを含む、生物医学的装置器具。
(30) 前記生物医学的装置が、コンタクトレンズである、実施態様29に記載の器具。
(31) 生体適合性電池であって、前記生体適合性電池が、
第1及び第2の集電体と、
カソードと、
アノードと、
層状構造体であって、
前記層状構造体の少なくとも1つの層は、第1のキャビティを形成するように第1の容積が除去され、第2のキャビティを形成するために第2の容積が除去されている、層状構造体と、
電解質配合物であって、前記電解質配合物が、前記第1のキャビティ内に収容されている、電解質配合物と、
前記第1のキャビティと前記第2のキャビティとの間のチャネルであって、電気活性素子が前記チャネルを通じた流れを制御する、チャネルと、を含み、
外部信号が、前記電気活性素子を活性化させ、これにより電解質が前記第1のキャビティから前記第2のキャビティに流れる、生体適合性電池。
(32) 前記層状構造体の前記少なくとも1つの層が、第3のキャビティを形成するために第3の容積を除去されており、前記第3のキャビティは電極を含み、外部位置から前記第3のキャビティ内へと電解質溶液が拡散することができる、実施態様31に記載の生体適合性電池。
(33) 電解質が前記外部位置から前記第3のキャビティ内へと拡散することにより、前記第3のキャビティ内の注液電池が活性化される、実施態様32に記載の生体適合性電池。
(34) 光信号が、前記第3のキャビティ内の前記注液電池により電力を供給される電子回路に接続された光電池と相互作用し、前記信号の前記相互作用が前記電気活性素子を活性化し、これにより電解質が前記第2のキャビティ内へと流れる、実施態様33に記載の生体適合性電池。

Claims (34)

  1. 電解質配合物を含む生体適合性電池であって、前記生体適合性電池は、
    第1及び第2の集電体と、
    カソードと、
    アノードと、
    層状構造体と、を含み、
    前記層状構造体の少なくとも1つの層が、キャビティを形成するためにある容積を除去されており、前記キャビティは電解質溶液を収容し、前記電解質溶液が、
    イオン化塩と、
    溶媒と、を含む、生体適合性電池。
  2. 前記イオン化塩が塩化亜鉛である、請求項1に記載の生体適合性電池。
  3. 前記イオン化塩が塩化アンモニウムである、請求項1に記載の生体適合性電池。
  4. 前記イオン化塩が酢酸亜鉛である、請求項1に記載の生体適合性電池。
  5. 前記イオン化塩が硫酸亜鉛である、請求項1に記載の生体適合性電池。
  6. 前記イオン化塩が臭化亜鉛である、請求項1に記載の生体適合性電池。
  7. 前記イオン化塩がグルコン酸亜鉛水和物である、請求項1に記載の生体適合性電池。
  8. 前記イオン化塩が硝酸亜鉛である、請求項1に記載の生体適合性電池。
  9. 前記イオン化塩がヨウ化亜鉛である、請求項1に記載の生体適合性電池。
  10. 前記溶媒が水である、請求項1に記載の生体適合性電池。
  11. 酢酸インジウムとして供給されるインジウム(III)イオンを更に含む、請求項1に記載の生体適合性電池。
  12. 硫酸インジウムを更に含む、請求項1に記載の生体適合性電池。
  13. ゲル化剤を更に含む、請求項1に記載の生体適合性電池。
  14. 寒天を更に含む、請求項1に記載の生体適合性電池。
  15. カルボキシメチルセルロースを更に含む、請求項1に記載の生体適合性電池。
  16. ヒドロキシプロピルメチルセルロースを更に含む、請求項1に記載の生体適合性電池。
  17. 塩化ナトリウムを更に含む、請求項1に記載の生体適合性電池。
  18. ホウ酸ナトリウムを更に含む、請求項1に記載の生体適合性電池。
  19. 前記電解質溶液が、界面活性剤を更に含む、請求項1に記載の生体適合性電池。
  20. 前記界面活性剤はトリトン(Triton)(商標)QS44である、請求項19に記載の生体適合性電池。
  21. 電解質配合物を含む生体適合性電池であって、前記生体適合性電池は、
    第1及び第2の集電体と、
    カソードと、
    アノードと、
    層状構造体と、を含み、
    前記層状構造体の少なくとも1つの層が、キャビティを形成するためにある容積を除去されており、前記キャビティは電解質を充填され、前記電解質が、
    ZnClと、
    界面活性剤と、
    インジウム(III)イオンと、
    水と、を含む、生体適合性電池。
  22. 電解質配合物を含む生体適合性電池であって、前記生体適合性電池は、
    第1及び第2の集電体と、
    カソードと、
    アノードと、
    層状構造体と、を含み、
    前記層状構造体の少なくとも1つの層が、キャビティを形成するためにある容積を除去されており、前記キャビティは電解質を充填され、前記電解質が、
    約10〜20%のZnClと、
    約250〜500ppmのトリトン(Triton)(商標)QS44と、
    酢酸インジウムとして供給される、約100〜200ppmのインジウム(III)イオンと、
    水と、を含む、生体適合性電池。
  23. 電解質配合物を含む生体適合性電池であって、前記生体適合性電池は、
    第1及び第2の集電体と、
    カソードと、
    アノードと、
    層状構造体と、を含み、
    前記層状構造体の少なくとも1つの層が、キャビティを形成するためにある容積を除去されており、前記キャビティの少なくとも一部内にゲル化電解質が形成され、前記ゲル化電解質が、
    硝酸カルシウム、
    カルボキシメチルセルロース、及び
    二酸化ケイ素を含む、生体適合性電池。
  24. 電解質配合物を含む生体適合性電池であって、前記生体適合性電池は、
    第1及び第2の集電体と、
    カソードと、
    アノードと、
    層状構造体と、を含み、
    前記層状構造体の少なくとも1つの層が、キャビティを形成するためにある容積を除去されており、前記キャビティの少なくとも一部内にゲル化電解質が形成され、前記ゲル化電解質が、
    脱イオン水中の、約2モルの硝酸カルシウム(Ca(NO)と、
    約1重量%のカルボキシメチルセルロース(CMC)と、
    約10重量%の二酸化ケイ素(SiO)と、を含む、生体適合性電池。
  25. 生物医学的装置器具であって、
    インサート装置を含み、前記インサート装置が、
    制御用電圧信号に反応する電気活性素子と、
    生体適合性電池であって、
    前記生体適合性電池が、
    第1及び第2の集電体と、
    カソードと、
    アノードと、
    セパレータと、
    層状構造体であって、前記層状構造体の少なくとも1つの層が、キャビティを形成するようにある容積が除去されている、層状構造体と、
    電解質であって、前記電解質が、
    イオン化塩、及び
    溶媒を含む、電解質と、を含み、
    前記生体適合性電池に電気的に接続された回路が、前記制御用電圧信号を提供する、生体適合性電池とを含む、生物医学的装置器具。
  26. 前記生物医学的装置が、コンタクトレンズである、請求項25に記載の器具。
  27. 生物医学的装置器具であって、
    インサート装置を含み、前記インサート装置が、
    制御用電圧信号に反応する電気活性素子と、
    生体適合性電池であって、
    前記生体適合性電池が、
    第1及び第2の集電体と、
    カソードと、
    アノードと、
    セパレータと、
    層状構造体であって、前記層状構造体の少なくとも1つの層が、キャビティを形成するようにある容積が除去されている、層状構造体と、
    電解質であって、前記電解質が、
    約10〜20%のZnClと、
    約250〜500ppmのトリトン(Triton)(商標)QS44と、
    酢酸インジウムとして供給される、約100〜200ppmのインジウム(III)イオンと、
    水と、を含む、電解質と、を含み、
    前記生体適合性電池に電気的に接続された回路が、前記制御用電圧信号を供給する、生体適合性電池と、を含む、生物医学的装置器具。
  28. 前記生物医学的装置が、コンタクトレンズである、請求項27に記載の器具。
  29. 生物医学的装置器具であって、
    インサート装置を含み、前記インサート装置が、
    制御用電圧信号に反応する電気活性素子と、
    生体適合性電池であって、
    前記生体適合性電池が、
    第1及び第2の集電体と、
    カソードと、
    アノードと、
    セパレータと、
    層状構造体であって、前記層状構造体の少なくとも1つの層が、キャビティを形成するようにある容積が除去されている、層状構造体と、
    電解質であって、前記電解質が、
    ZnClと、
    トリトン(Triton)(商標)QS44と、
    酢酸インジウムとして供給されるインジウム(III)イオンと、
    水を含む残部と、を含む、電解質と、を含み、
    前記生体適合性電池に電気的に接続された回路が、前記制御用電圧信号を提供する、生体適合性電池とを含む、生物医学的装置器具。
  30. 前記生物医学的装置が、コンタクトレンズである、請求項29に記載の器具。
  31. 生体適合性電池であって、前記生体適合性電池が、
    第1及び第2の集電体と、
    カソードと、
    アノードと、
    層状構造体であって、
    前記層状構造体の少なくとも1つの層は、第1のキャビティを形成するように第1の容積が除去され、第2のキャビティを形成するために第2の容積が除去されている、層状構造体と、
    電解質配合物であって、前記電解質配合物が、前記第1のキャビティ内に収容されている、電解質配合物と、
    前記第1のキャビティと前記第2のキャビティとの間のチャネルであって、電気活性素子が前記チャネルを通じた流れを制御する、チャネルと、を含み、
    外部信号が、前記電気活性素子を活性化させ、これにより電解質が前記第1のキャビティから前記第2のキャビティに流れる、生体適合性電池。
  32. 前記層状構造体の前記少なくとも1つの層が、第3のキャビティを形成するために第3の容積を除去されており、前記第3のキャビティは電極を含み、外部位置から前記第3のキャビティ内へと電解質溶液が拡散することができる、請求項31に記載の生体適合性電池。
  33. 電解質が前記外部位置から前記第3のキャビティ内へと拡散することにより、前記第3のキャビティ内の注液電池が活性化される、請求項32に記載の生体適合性電池。
  34. 光信号が、前記第3のキャビティ内の前記注液電池により電力を供給される電子回路に接続された光電池と相互作用し、前記信号の前記相互作用が前記電気活性素子を活性化し、これにより電解質が前記第2のキャビティ内へと流れる、請求項33に記載の生体適合性電池。
JP2015162553A 2014-08-21 2015-08-20 生体適合性通電素子で使用するための電解質配合物 Pending JP2016046256A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462040178P 2014-08-21 2014-08-21
US62/040,178 2014-08-21
US14/810,997 US20160056508A1 (en) 2014-08-21 2015-07-28 Electrolyte formulations for use in biocompatible energization elements
US14/810,997 2015-07-28

Publications (1)

Publication Number Publication Date
JP2016046256A true JP2016046256A (ja) 2016-04-04

Family

ID=53938217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015162553A Pending JP2016046256A (ja) 2014-08-21 2015-08-20 生体適合性通電素子で使用するための電解質配合物

Country Status (13)

Country Link
US (1) US20160056508A1 (ja)
EP (2) EP2996182B1 (ja)
JP (1) JP2016046256A (ja)
KR (1) KR20160023609A (ja)
CN (1) CN105390727A (ja)
AU (1) AU2015215928A1 (ja)
BR (1) BR102015019917A2 (ja)
CA (1) CA2900511A1 (ja)
DK (1) DK2996182T3 (ja)
HK (2) HK1221554A1 (ja)
RU (1) RU2684170C2 (ja)
SG (2) SG10201704696QA (ja)
TW (1) TW201624813A (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9668916B2 (en) 2013-11-04 2017-06-06 Vance M. Thompson Conjunctival cover and methods therefor
US9869883B2 (en) 2015-03-11 2018-01-16 Vance M. Thompson Tear shaping for refractive correction
US10353220B2 (en) 2016-10-17 2019-07-16 Vance M. Thompson Tear shaping for refractive correction
US20180104921A1 (en) * 2016-10-17 2018-04-19 Johnson & Johnson Vision Care, Inc. Biomedical device batteries with electrodeposited cathodes
EP3619759A4 (en) * 2017-05-01 2021-03-31 Salient Energy Inc. ELECTROLYTE ADDITIVES FOR ZINC METAL ELECTRODES
WO2019116767A1 (ja) * 2017-12-15 2019-06-20 ソニー株式会社 コンタクトレンズおよび通信システム
US10547059B2 (en) 2018-02-21 2020-01-28 Duracell U.S. Operations, Inc. Sulfate and sulfonate based surfactants for alkaline battery anode
US10678067B2 (en) 2018-04-06 2020-06-09 Vance M. Thompson Tear shaping for refractive correction
US20200085564A1 (en) 2018-09-18 2020-03-19 Vance M. Thompson Structures and methods for tear shaping for refractive correction
CN111403431B (zh) * 2019-01-02 2023-09-05 京东方科技集团股份有限公司 柔性体及控制其发生形变的方法
US11961972B1 (en) * 2019-06-25 2024-04-16 Ccl Label, Inc. Flexible multi-battery assemblies, flexible electrochemical cells forming such assemblies, and methods of fabricating thereof
WO2021217682A1 (zh) * 2020-05-01 2021-11-04 杭州高烯科技有限公司 一种纯无机胶状体的制备方法及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04366563A (ja) * 1991-06-11 1992-12-18 Sanyo Chem Ind Ltd 電解液組成物および高分子固体電解質
JP2007535099A (ja) * 2004-04-21 2007-11-29 シン バッテリー テクノロジーズ,インク. 印刷可能な薄型可撓性電気化学セルおよびその製造方法
JP2008130559A (ja) * 2006-11-16 2008-06-05 Korea Electronics Telecommun 水系電解質組成物、及びそれから得られる電解質層を備えた密閉型フィルム一次電池
JP2008536262A (ja) * 2005-03-22 2008-09-04 シン バッテリー テクノロジーズ,インク. 画像フレームを利用する印刷可能な薄型電気化学セルおよびその製造方法
JP2011508384A (ja) * 2007-12-19 2011-03-10 ブルー スパーク テクノロジーズ,インク. 大電流薄型電気化学セルおよびその製造方法
JP2013218326A (ja) * 2012-04-03 2013-10-24 Johnson & Johnson Vision Care Inc 可変光学電子眼科用レンズのレンズ駆動機構
JP2014021500A (ja) * 2012-07-18 2014-02-03 Johnson & Johnson Vision Care Inc 可変光学電子式眼科用レンズのための神経筋検知
WO2014119665A1 (ja) * 2013-02-01 2014-08-07 株式会社日本触媒 アニオン伝導性材料及び電池

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS485185B1 (ja) * 1969-05-16 1973-02-14
WO1997017737A1 (en) * 1995-11-06 1997-05-15 Battery Technologies Inc. Rechargeable alkaline cells containing zinc anodes without added mercury
US6379835B1 (en) * 1999-01-12 2002-04-30 Morgan Adhesives Company Method of making a thin film battery
US7550230B2 (en) * 2001-03-15 2009-06-23 Powergenix Systems, Inc. Electrolyte composition for nickel-zinc batteries
KR100980355B1 (ko) * 2002-02-12 2010-09-06 에버레디 배터리 컴퍼니, 인크. 가요성의 얇은 인쇄 전지 및 장치와 그것의 제조 방법
KR20030075815A (ko) * 2002-03-18 2003-09-26 이기방 Mems용 마이크로배터리와 이를 이용한 시스템
EP1760515A3 (en) * 2003-10-03 2011-08-31 Invisia Ltd. Multifocal ophthalmic lens
RU2307429C1 (ru) * 2006-04-20 2007-09-27 Институт химии твердого тела и механохимии Сибирского отделения Российской академии наук (ИХТТМ СО РАН) Способ получения поверхностно-модифицированного катодного материала со слоистой структурой для литиевых и литий-ионных аккумуляторов
US20090042066A1 (en) * 2007-08-10 2009-02-12 Mphase Technologies, Inc. Adjustable Barrier For Regulating Flow Of A Fluid
US20090042065A1 (en) * 2007-08-10 2009-02-12 Mphase Technologies, Inc. Event Activated Micro Control Devices
RU78007U1 (ru) * 2008-07-04 2008-11-10 Открытое акционерное общество "Энергия" Марганцево-цинковый химический источник тока с солевым электролитом и батарея на его основе
EP2564454A1 (en) * 2010-04-28 2013-03-06 Flexel, LLC A thin flexible electrochemical energy cell
US20130252065A1 (en) * 2011-08-29 2013-09-26 Panasonic Corporation Thin battery
US20140000101A1 (en) * 2012-06-29 2014-01-02 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form printed batteries on ophthalmic devices
EP2900319B8 (en) * 2012-09-28 2017-08-30 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Implantable devices
US9406969B2 (en) * 2013-03-15 2016-08-02 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form three-dimensional biocompatible energization elements
US9472789B2 (en) * 2014-04-08 2016-10-18 International Business Machines Corporation Thin, flexible microsystem with integrated energy source

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04366563A (ja) * 1991-06-11 1992-12-18 Sanyo Chem Ind Ltd 電解液組成物および高分子固体電解質
JP2007535099A (ja) * 2004-04-21 2007-11-29 シン バッテリー テクノロジーズ,インク. 印刷可能な薄型可撓性電気化学セルおよびその製造方法
JP2008536262A (ja) * 2005-03-22 2008-09-04 シン バッテリー テクノロジーズ,インク. 画像フレームを利用する印刷可能な薄型電気化学セルおよびその製造方法
JP2013080712A (ja) * 2005-03-22 2013-05-02 Blue Spark Technologies Inc 電気化学セル、バッテリ
JP2008130559A (ja) * 2006-11-16 2008-06-05 Korea Electronics Telecommun 水系電解質組成物、及びそれから得られる電解質層を備えた密閉型フィルム一次電池
JP2011508384A (ja) * 2007-12-19 2011-03-10 ブルー スパーク テクノロジーズ,インク. 大電流薄型電気化学セルおよびその製造方法
JP2013218326A (ja) * 2012-04-03 2013-10-24 Johnson & Johnson Vision Care Inc 可変光学電子眼科用レンズのレンズ駆動機構
JP2014021500A (ja) * 2012-07-18 2014-02-03 Johnson & Johnson Vision Care Inc 可変光学電子式眼科用レンズのための神経筋検知
WO2014119665A1 (ja) * 2013-02-01 2014-08-07 株式会社日本触媒 アニオン伝導性材料及び電池

Also Published As

Publication number Publication date
EP2996182B1 (en) 2018-03-07
BR102015019917A2 (pt) 2016-06-21
AU2015215928A1 (en) 2016-03-10
HK1221554A1 (zh) 2017-06-02
CN105390727A (zh) 2016-03-09
RU2684170C2 (ru) 2019-04-04
TW201624813A (zh) 2016-07-01
SG10201704696QA (en) 2017-07-28
CA2900511A1 (en) 2016-02-21
US20160056508A1 (en) 2016-02-25
KR20160023609A (ko) 2016-03-03
DK2996182T3 (en) 2018-05-07
EP3352271A1 (en) 2018-07-25
EP2996182A1 (en) 2016-03-16
RU2015134503A (ru) 2017-02-22
HK1256905A1 (zh) 2019-10-04
RU2015134503A3 (ja) 2018-06-18
SG10201506610UA (en) 2016-03-30

Similar Documents

Publication Publication Date Title
US10598958B2 (en) Device and methods for sealing and encapsulation for biocompatible energization elements
TWI659556B (zh) 製造用於生物相容電池中之生物相容陰極漿料之方法
US9715130B2 (en) Methods and apparatus to form separators for biocompatible energization elements for biomedical devices
TWI656683B (zh) 使用於生物可相容電池的陰極混合物
JP2016046253A (ja) 生物医学的装置のための再充電可能な生体適合性通電素子を形成する方法
DK2996182T3 (en) ELECTROLYTE FORMULAS FOR USE IN BIO-COMPATIBLE ENERGY ELECTRIC ELEMENTS
JP2016045499A (ja) 生物医学的通電素子の生体適合性
JP2016048679A (ja) 積層体と堆積したセパレータとを含む生物医学的装置のための生体適合性通電素子を形成するための方法
JP2018186086A (ja) コンタクトレンズ用の生体適合性電池において使用するための生体適合性カソードスラリーの製造方法
JP2016046255A (ja) 生体適合性電池において使用するためのペレット形態のカソード
JP2016046257A (ja) 生体適合性通電素子内で使用するためのアノード
JP2019009120A (ja) 無電解密閉層を有する生物医学的装置のための生体適合性通電一次素子を形成するための方法及び器具
JP2019009121A (ja) 無電解密閉層を有する生物医学的装置のための充電可能な生体適合性通電素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200121