JP2016045499A - 生物医学的通電素子の生体適合性 - Google Patents

生物医学的通電素子の生体適合性 Download PDF

Info

Publication number
JP2016045499A
JP2016045499A JP2015162576A JP2015162576A JP2016045499A JP 2016045499 A JP2016045499 A JP 2016045499A JP 2015162576 A JP2015162576 A JP 2015162576A JP 2015162576 A JP2015162576 A JP 2015162576A JP 2016045499 A JP2016045499 A JP 2016045499A
Authority
JP
Japan
Prior art keywords
battery
layer
layered structure
cathode
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015162576A
Other languages
English (en)
Inventor
フレデリック・エイ・フリッチュ
A Flitsch Frederick
ダニエル・ビー・オッツ
B Otts Daniel
ランドール・ビー・ピュー
B Pugh Randall
ジェームズ・ダニエル・リオール
Daniel Riall James
アダム・トナー
Toner Adam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson and Johnson Vision Care Inc
Original Assignee
Johnson and Johnson Vision Care Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson and Johnson Vision Care Inc filed Critical Johnson and Johnson Vision Care Inc
Publication of JP2016045499A publication Critical patent/JP2016045499A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00807Producing lenses combined with electronics, e.g. chips
    • B29D11/00817Producing electro-active lenses or lenses with energy receptors, e.g. batteries or antennas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C13/00Assembling; Repairing; Cleaning
    • G02C13/001Assembling; Repairing
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • G02C7/081Ophthalmic lenses with variable focal length
    • G02C7/083Electrooptic lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】通電素子の生体適合性を改善するための、設計、方策、及び方法を提供する。
【解決手段】生物医学的装置であって、電気活性構成要素120と、生体適合性電池110であって、生体適合性電池が、第1の集電体及び第2の集電体と、カソードと、アノードと、層状構造体であって、層状構造体の少なくとも1つの層が、キャビティを形成するように容積を除去されており、キャビティが電解質溶液、セパレータ、及びカソードを含む、層状構造体と、を含む、生体適合性電池と、を含み、生体適合性電池の生体適合性が、およそ10重量%以下の亜鉛塩を含むように、電解質溶液の組成を配合する。
【選択図】図1A

Description

(関連出願の相互参照)
本特許出願は2014年8月21日に出願された米国仮特許出願第62/040178号の利益を主張するものである。
(発明の分野)
電池の生体適合性の態様を改善するための設計及び方法が記載される。いくつかの実施例では、生体適合性電池の使用分野は、エネルギーを必要とする任意の生体適合性装置又は製品を含み得る。
近年、医療用装置の数及びその機能が急速に発達し始めている。これらの医療用装置としては、例えば、埋め込み型ペースメーカー、生物学的機能のモニタリング及び/又は検査を行うための電子ピル、能動構成要素を備える外科用装置、コンタクトレンズ、輸液ポンプ、及び神経刺激装置を挙げ得る。上記医療用装置の多くに対する追加機能及び性能の向上が理論上想定され、開発されている。しかしながら、理論上想定される追加機能を実現するには、これらの装置の多くで、これらの装置の寸法及び形状に関する要件、並びに新たな通電構成要素のエネルギー要件に適合する内蔵型の通電手段が必要とされている。
一部の医療用装置は、様々な機能を実行し、かつ多くの生体適合性及び/又は埋め込み型装置に組み込み可能な、半導体装置などの電気的な構成要素を含み得る。しかしながら、かかる半導体構成要素は、エネルギーを必要とする。したがって、かかる生体適合性装置は、好ましくは、通電素子を含むべきである。生体適合性装置のトポロジー及び比較的小さい寸法は、様々な機能を定義するために、困難な環境をもたらし得る。多くの実施例では、生体適合性装置内の半導体構成要素を通電するための、安全で、信頼性が高く、小型で、かつ費用効率の高い手段を提供することが重要であり得る。したがって、生体適合性装置内、又は生体適合性装置上への埋め込みのために形成される、生体適合性通電素子であって、ミリメートル以下の大きさの通電素子の構造体が、通電素子のより高い機能を提供する一方で、生体適合性を維持する、生体適合性通電素子の必要性が存在する。
装置に電力を供給するために使用される1つのかかる通電素子は、電池であり得る。生物医学的種類の用途において電池を使用する際に、電池構造体及び設計が、生体適合性の態様に適合することが重要であり得る。したがって、生体適合性電池素子において使用するための、生体適合性電池を形成する、新規の実施例に対する必要性が存在する。
したがって、生体適合性通電素子で使用するための、生体適合性に関連する方策及び設計が、開示されてきた。
一般的な一態様は、電気活性構成要素、生体適合性電池、及び封入層を含む、生物医学的装置を含む。本態様における生体適合性電池は、層状構造体を含み、層状構造体の少なくとも1つの層は、キャビティを形成するために容積を除去されている。封入層は、少なくとも電気活性構成要素、及び生体適合性電池を封入し得る、ヒドロゲルを含み得る。いくつかの実施例では、ヒドロゲルの封入層は、ユーザーの目の表面と相互作用するヒドロゲルの生体適合性層を備える、電気活性レンズの内部構成要素を取り囲むコンタクトレンズのスカートを画定するために使用される。いくつかの実施例では、電解質溶液の特性は、生物医学的装置の生体適合性の改善をもたらす。例えば、電解質溶液の組成は、典型的な電池の組成よりも、低い電解質濃度を有し得る。他の実施例において、電解質の組成は、非限定的な実施例における、涙液の組成などの、生物医学的装置が存在する生物学的環境を模倣し得る。
別の種類の生体適合性の改善では、電池、及び生物医学的装置全体の形状因子は、非常に小さい限界まで縮小され得る。例えば、ある寸法に沿った電池厚さ、又は生物医学的装置の合計厚さは、1mm未満であり得る。いくつかの実施例では、ある寸法、又は装置の範囲に沿った、電池厚さ、又は生物学的装置の合計厚さは、500マイクロメートル未満、又は250マイクロメートル未満であり得る。
別の一般的な態様は、電解質溶液を調製することであって、電解質溶液がおよそ10重量%以下の濃度の亜鉛塩を含む、ことと、層状構造体の層を得ることと、層状構造体の層からある容積を切り取ることであって、層状構造体の層から容積を除去することがキャビティの少なくとも一部を形成する、ことと、電解質溶液、セパレータ、アノード、アノード集電体、カソード、及びカソード集電体を追加して、生体適合性電池を形成することと、を含む、電池の生体適合性を改善する方法を含む。
1つの一般的な態様は、電解質溶液を調製することであって、電解質溶液がコンタクトレンズパッケージング溶液を含む、ことと、層状構造体の層を得ることと、層状構造体の層からある容積を切り取ることであって、層状構造体の層から容積を除去することがキャビティの少なくとも一部を形成する、ことと、電解質溶液、セパレータ、アノード、アノード集電体、カソード、及びカソード集電体を追加して、層状構造体を形成することとを含む、電池の生体適合性を改善する方法を含む。
別の一般的態様は、電解質溶液を調製することであって、電解質溶液がコンタクトレンズパッケージング溶液を含む、ことと、層状構造体の層を得ることと、層状構造体の層からある容積を切り取ることであって、層状構造体の層から容積を除去するがキャビティの少なくとも第1の部分を形成する、ことと、電解質溶液、セパレータ、アノード、アノード集電体、カソード、及びカソード集電体を追加して、層状構造体を形成することと、第2のエンベロープ層への第1のエンベロープ層の封止を形成することであって、第1のエンベロープ層及び第2のエンベロープ層が層状構造の少なくとも第2の部分を取り囲む、ことと、アノード集電体を電気活性装置に接続することと、カソード集電体を電気活性装置に接続することと、層状構造及び電気活性装置をヒドロゲル内に封入して、眼科用装置を形成することとを含む、コンタクトレンズの生体適合性を改善する方法を含む。
1つの一般的態様は、電解質溶液を調製することと、層状構造体の層を得ることと、層状構造体の層からある容積を切り取ることであって、層状構造体の層から容積を除去することがキャビティの少なくとも第1の部分を形成することと、電解質溶液、セパレータ、アノード、アノード集電体、カソード、及びカソード集電体を追加して、層状構造体を形成することと、第2のエンベロープ層への第1のエンベロープ層の封止を形成することであって、第1のエンベロープ層及び第2のエンベロープ層が層状構造体の少なくとも第2の部分を取り囲む、ことと、アノード集電体を電気活性装置に接続することと、カソード集電体を電気活性装置に接続することと、層状構造体及び電気活性装置をヒドロゲル内に封入して、眼科用装置を形成することとを含む、コンタクトレンズの生体適合性を改善する方法を含む。
いくつかの実施例では、生体適合性電池は、層状構造体の封止封入部を更に含み、この封止封入部は、外部環境への電解質の滲出を低減することによって、生物医学的装置の生体適合性を改善する。また、生物医学的装置は、層状構造体の封止封入部を含む場合があり、この封止封入部は、生体適合性電池の内部環境への水の滲出を低減することによって、生物医学的装置の生体適合性を改善する。
本発明の上記の、並びに他の特徴及び利点は、添付の図面に図示するように、以下のより具体的な本発明の好ましい実施形態の記載から明らかになるであろう。
例示的なコンタクトレンズの用途と協調して生体適合性通電素子の例示的な態様を示す図である。 例示的なコンタクトレンズの用途と協調して生体適合性通電素子の例示的な態様を示す図である。 例示的なコンタクトレンズの用途と協調して生体適合性通電素子の例示的な態様を示す図である。 例示的なコンタクトレンズの用途と協調して生体適合性通電素子の例示的な態様を示す図である。 例示的な電池設計の個々のセルの例示的な寸法及び形状を示す図である。 例示的なアノード及びカソード接続部を有する第1の独立型のパッケージ化された生体適合性通電素子を示す図である。 例示的なアノード及びカソード接続部を有する第2の独立型のパッケージ化された生体適合性通電素子を示す図である。 A〜Fは、生物医学的装置用の生体適合性通電素子を形成するための例示的な方法工程を示す図である。 G〜Lは、生物医学的装置用の生体適合性通電素子を形成するための例示的な方法工程を示す図である。 M及びNは、生物医学的装置用の生体適合性通電素子を形成するための例示的な方法工程を示す図である。 例示的な、完全に形成された生体適合性通電素子を示す図である。 A〜Fは、生体適合性通電素子の構造体形成のための例示的な方法工程を示す図である。 A〜Fは、代替の電気めっき法を用いた、生体適合性通電素子の構造体形成のための例示的な方法工程を示す図である。 A〜Fは、生物医学的装置用のヒドロゲルセパレータを有する、生体適合性通電素子の形成のための例示的な方法工程を示す図である。 G及びHは、生物医学的装置用のヒドロゲルセパレータを有する、生体適合性通電素子の形成のための例示的な方法工程を示す図である。 A〜Cは、代替のヒドロゲル処理の実施例を利用する、生体適合性通電素子の構造体形成のための例示的な方法工程を示す図である。 A〜Fは、カソード混合物のキャビティ内への最適及び非最適な堆積を示す図である。 キャビティの内側におけるカソード混合物の凝集を示す図である。 A〜Cは、生体適合性電池設計の例示的な封止及び封入の態様を示す図である。
電池の生体適合性を改善する方法が、本出願において開示される。以下の各項において、様々な実施例の詳細な説明を記載する。実施例の記載は、単なる例示的な実施形態に過ぎず、当業者には、様々な変型、修正、及び変更が明白であり得る。したがって、実施形態は、本出願の範囲を制限するものではない。生体適合性の改善方法、及びこれに関連する構造体が、電池で使用するために設計され得る。いくつかの実施例において、これらの生体適合性電池は、生物の身体内又はこれに近接して使用するために設計され得る。
用語集
本説明及び下記の特許請求の範囲では、様々な用語が使用される場合があり、下記の定義が適用される。
本明細書で使用するとき、「アノード」は、そこを通って電流が有極電気装置に流れ込む電極を指す。電流の方向は、通常、電子流とは逆方向である。換言すれば、電子は、例えば、アノードから、電気回路に流入する。
本明細書で使用するとき、「結合剤」は、機械的変形に対する弾性応答を呈することができ、他の通電素子構成要素と化学的に適合するポリマーを指す。例えば、結合剤としては、電気活性物質、電解質、ポリマーなどを挙げることができる。
本明細書で使用するとき、「生体適合性」とは、特定用途において適切な宿主反応を伴って機能する材料又は装置を指す。例えば、生体適合性装置は、生体系に対して毒性又は有害な影響を及ぼさない。
本明細書で使用するとき、「カソード」は、そこを通って電流が有極電気装置から流出する電極を指す。電流の方向は、通常、電子流とは逆方向である。したがって、電子は有極電気装置のカソードに流入し、例えば、接続された電気回路から流出する。
本明細書で使用するとき、「コーティング」は、材料の薄型堆積物を指す。いくつかの用途では、この用語は、その上に堆積物が形成される基板の表面を実質的に被覆する、薄型堆積物を指す。他のより特定の用途では、この用語は、表面のより小さい領域内にある小さい薄型堆積物を説明するために使用されてもよい。
本明細書で使用するとき、「電極」は、エネルギー源内の活性物質を指し得る。例えば、電極は、アノード及びカソードの一方又は両方を含んでよい。
本明細書で使用するとき、「通電された」とは、電流を供給することができるか、又は内部に蓄積された電気的エネルギーを有することができる状態を指す。
本明細書で使用するとき、「エネルギー」は、仕事を行うための物理的システムの能力を指す。通電素子の多くの用途は、電気的作用を実行できる能力に関するものであってもよい。
本明細書で使用するとき、「エネルギー源」又は「通電素子」又は「通電装置」は、エネルギーを供給することができるか、論理装置又は電気装置を通電された状態にすることができる、任意の装置又は層を指す。通電素子は、電池を含み得る。電池は、アルカリ型セル用化学物質で形成されてもよく、固体電池又は湿電池であってもよい。
本明細書で使用するとき、「充填剤」は、酸性電解質又はアルカリ性電解質のいずれとも反応しない、1つ以上の通電素子用セパレータを指す。一般に、充填剤としては、カーボンブラックなどの実質的に非水溶性の物質;炭塵;黒鉛;シリコン、アルミニウム、カルシウム、マグネシウム、バリウム、チタン、鉄、亜鉛、及び錫などの金属酸化物及び水酸化物;カルシウム及びマグネシウムなどの金属炭酸塩;雲母、モンモリロナイト、カオリナイト、アタパルジャイト、及びタルクなどの鉱物;ポルトランドセメントなどの合成ゼオライト及び天然ゼオライト;ケイ酸カルシウムなどの析出金属ケイ酸塩;中空又は中実のポリマー又はガラス微小球、フレーク、及び繊維;などを挙げ得る。
本明細書で使用するとき、「機能化」は、例えば、通電、起動、又は制御などを含む機能を、層又は装置が実行できるようにすることを指す。
本明細書で使用するとき、「成形型」は、未硬化配合物から三次元の物体を形成するために使用され得る、剛性又は半剛性の物体を指す。いくつかの例示的な成形型は、互いに対向するときに、三次元の物体の構造を画定する2つの成形型部分を含む。
本明細書で使用するとき、「仕事率」は、単位時間当たりに行われる仕事、又は移送されるエネルギーを指す。
本明細書で使用するとき、「再充電可能」又は「再通電可能」は、仕事をするためのより高い能力を有する状態へと復元可能な能力を指す。多くの使用は、特定の再度確立された期間、特定の率で、電流を流す能力で復元できることに関連し得る。
本明細書で使用するとき、「再充電」又は「再通電」は、仕事をするためのより高い能力を有する状態に復元することを指す。多くの使用は、特定の再度確立された期間、特定の率で電流を流すことができる能力に装置を復元することに関連して用い得る。
本明細書で使用するとき、「離型させる」(「成形型から離型させる」と言われることもある)は、三次元の物体が成形型から完全に分離した状態、又は穏やかな振動によって取り外すことができるように、ほんの軽く成形型に取り付けられている状態のいずれかであることを意味する。
本明細書で使用するとき、「積層された」は、少なくとも2つの構成成分層を、層のうちの1つの層の1つの面の少なくとも一部が、第2の層の第1の面と接触するように、互いに近接して配置することを意味する。いくつかの実施例では、接着のためであれ、又は他の機能のためであれ、コーティングが2つの層の間に存在する場合があり、これらの層は前記コーティングを通じて互いに接触している。
本明細書で使用するとき、「トレース」は、回路構成要素を接続することができる通電素子構成要素を指す。例えば、回路トレースは、基板がプリント回路基板である場合、銅又は金を含むことができ、典型的には、フレックス回路内の銅、金、又は印刷された膜であり得る。特殊な種類の「トレース」は、集電体である。集電体は電気化学的適合性を有するトレースであり、この電気化学的適合性により、集電体は、電解質の存在下でアノード又はカソードとの間で電子を伝達する際に使用するのに適したものとなる。
本明細書に示される方法及び器具は、平面状又は三次元の生体適合性装置内又はその上に含めるための生体適合性通電素子を形成することに関する。特定の種類の通電素子は、層状に製造される電池であってもよい。層は、積層層として分類され得る。このようにして形成された電池は、積層電池に分類され得る。
本発明による電池を組み立てて構成する方法には他の例が存在する場合があり、そのうちのいくつかを以下の項に記載することができる。しかしながら、これらの例の多くに関して、独自のものとして説明することができる、電池の選択されたパラメータ及び特徴が存在する。以下の項では、いくつかの特徴及びパラメータに焦点が当てられる。
生体適合性通電素子を有する例示的な生物医学的装置の構成
本発明の通電素子である電池を組み込むことができる生物医学的装置の例は、焦点を調節する電気活性のコンタクトレンズであり得る。図1Aを参照すると、かかるコンタクトレンズのインサートの例は、コンタクトレンズのインサート100として図示することができる。このコンタクトレンズのインサート100には、制御用電圧に応答して焦点特性の変化を調整することができる電気活性素子120が存在し得る。こうした制御用電圧信号を提供し、かつ、外部制御信号に対する環境感知を制御するなどの他の機能も同様に提供する回路105は、生体適合性電池素子110によって給電され得る。図1Aに示すように、電池素子110は、複数の主要部分(この事例では3個の部分)として見られる場合があり、既に述べた電池化学素子の種々の構成を含んでいてもよい。電池素子110は、相互接続領域114の下に描かれる場合がある部品を共に結合するための、様々な相互接続特徴部を有し得る。電池素子110は、それ自体の基板111を有する場合がある回路素子に接続されてもよく、基板111上には相互接続特徴部125が位置している場合がある。集積回路の形態であってもよい回路105は、基板111及びその相互接続特徴部125と電気的及び物理的に接続されることができる。
図1Bを参照すると、コンタクトレンズ150の断面のレリーフ図は、コンタクトレンズのインサート100と、論じられているその構成要素とを含み得る。コンタクトレンズのインサート100は、コンタクトレンズヒドロゲル155のスカート内に封入され得、このスカートは、コンタクトレンズインサート100を封入し得、かつコンタクトレンズ150とユーザーの目との快適な境界面を提供し得る。
本発明の概念を参照すると、電池素子は、図1Cに示されるような二次元形態に形成されてもよい。この図では、電池構成要素165の領域内の電池セルの2つの主要な領域と、電池化学素子160の領域内の第2の電池構成要素とが存在し得る。図1Cにおいて平坦な形状で示される電池素子は、回路素子163に接続されていてもよく、図1Cにおいてこの素子は、2つの主要回路領域167を含み得る。回路素子163は、電気接点161及び物理的接点162において電池素子に接続することができる。平面構造体は、本発明に関連して既に説明したように三次元的な円錐構造に曲げられてもよい。このプロセスでは、この三次元構造を接続し、かつ物理的に安定させるために、第2の電気接点166及び第2の物理的接点164を使用することができる。図1Dを参照すると、この三次元円錐構造体180を示す図を見ることができる。物理的及び電気接触点181も見ることができ、この図は、得られた構造体の三次元表示として見ることができる。この構造体は、レンズインサートと共に生体適合性装置に組み込まれる、モジュール化された電気及び電池構成要素を含んでいてもよい。
セグメント化された電池配列
図2を参照すると、コンタクトレンズタイプの例のための例示的な電池素子の、異なるタイプのセグメント化された電池配列の例が示されている。セグメント化された構成要素は、比較的円形状271、正方形状272、又は矩形状であってもよい。矩形状の例では、矩形は、小さい矩形形状273、より大きい矩形形状274、又は更に大きい矩形形状275であり得る。
カスタム形状の平型電池素子
生体適合性電池のいくつかの例では、電池は平型素子として形成されてもよい。図3Aを参照すると、電池素子の矩形の輪郭310は、アノード接続部311及びカソード接続部312と共に描かれ得る。図3Bを参照すると、電池素子の円形の輪郭330の例が、アノード接続部331及びカソード接続部332と共に描かれ得る。
平型に形成された電池のいくつかの例では、電池形状の輪郭は、カスタム製品に合うように、寸法的及び幾何学的に構成され得る。矩形又は円形の輪郭の例に加えて、「自由形態」又は「自由形状」のカスタム輪郭を形成してもよく、これにより、電池の構成を、所与の製品内に収まるように最適化することが可能となり得る。
可変光学素子の例示的な生物医学的装置の事例では、平型輪郭の「自由形態」の例は、弓状形態であり得る。自由形態とは、三次元形状に形成されたときに、コンタクトレンズの制限領域内に適合する円錐形環状スカートの形態をとるような幾何学的形状であり得る。医療用装置が二次元又は三次元形状という限定的要件を有する場合には、同様の有利な幾何学的形状が形成されてもよいことは明らかであり得る。
超小型電池の電気的要件
設計の際に考慮すべき別の分野は、電池によりもたらされ得る、装置の電気的要件に関連する場合がある。適切な電池は、医療用装置の電源として機能するために、システムが非接続形態又は外部給電されていない形態で動作しているときに全ての電気的要件を満たす必要があり得る。接続されていない又は外部給電されていない生物医学的装置の新興分野は、例えば、視力矯正コンタクトレンズ、健康状態監視装置、ピルカメラ、及び新型装置を含むことができる。集積回路(IC)技術における近年の進歩により、非常に低い電流レベル(例えば、ピコアンペアの待機電流及びマイクロアンペアの動作電流)での有意義な電気的操作が可能となり得る。IC技術は、微小装置を可能にする場合がある。
生物医学的用途用の超小型電池は、多くの困難な要件を同時に満たすことが要求される場合がある。例えば、超小型電池は、組み込まれている電気回路に適した動作電圧を供給する能力を有することが要求される場合がある。この動作電圧は、ICプロセス「ノード」、回路から別の装置への出力電圧、及び特定の消費電流目標値(これは、所望の装置寿命にも関連する場合がある)などのいくつかの要因の影響を受け得る。
ICプロセスに関して、ノードは、典型的には、「いわゆる」トランジスタチャネルなどの、トランジスタの最小外形寸法によって区別され得る。この物理的特徴部を、他のIC製造パラメータ(ゲート酸化膜厚など)と共に、得られる「ターンオン」時定格標準、又は所与のプロセスノードに製造された電界効果トランジスタ(FET)の「閾値」電圧と関連付けることができる。例えば、最小外形寸法が0.5マイクロメートルのノードでは、FETのターンオン電圧は5.0Vであることが一般的である場合がある。しかしながら、90nmの最小特徴寸法では、FETは、1.2、1.8、及び2.5Vでターンオンし得る。ICファウンドリは、特定の圧力範囲にわたって使用することを特徴とし、かつそのように定格化されているデジタルブロック(例えば、逆変換装置及びフリップフロップ)の標準セルを供給することができる。設計者は、デジタル素子の密度、アナログ/デジタル混合信号装置、リーク電流、ワイヤリング層、及び高電圧FETのような特殊装置のアベイラビリティといったいくつかの要因に基づいて、ICプロセスノードを選択する。超小型電池から電力を引き出すことができる電気的構成要素のこうしたパラメータに関する態様を前提として、超小型電池の電源を、特に利用可能な電圧及び電流の点で、選択したプロセスノード及びIC設計の要件に一致させることが重要となり得る。
いくつかの例では、超小型電池により給電される電気回路は、他の装置に接続されてもよい。非限定的な例において、超小型電池により給電される電気回路は、作動装置又は変換器に接続されてもよい。こうした装置としては、用途に応じて、発光ダイオード(LED)、センサ、微小電気機械システム(MEMS)ポンプ、又は多くの他のかかる装置を挙げることができる。いくつかの実施例において、かかる接続された装置は、一般的なICプロセスノードよりも高い動作電圧条件を必要とし得る。例えば、可変焦点レンズは、実現するために35Vを必要とし得る。したがって、電池が提供する動作電圧は、かかるシステムを設計する上での重要な考慮事項となり得る。この種の考慮事項のいくつかの例では、1Vの電池から35Vを生成するレンズ駆動装置の効率は、2Vの電池で動作する場合に得られるであろう効率と比べて明らかに低い。ダイ寸法などの更なる要件も、超小型電池の作動パラメータを考慮すると、著しく異なる場合がある。
個々の電池セルは、典型的に、開回路、負荷時、及びカットオフで定格電圧が規定される。開回路電圧は、負荷抵抗が無限大の状態の電池セルによって生成される電位である。負荷時電圧は、適切かつ典型的な規定された負荷インピーダンスがセル端子間に加えられた状態でセルによって生成される電位である。カットオフ電圧は、典型的には、ほとんどの電池が放電された状態となる電圧である。カットオフ電圧は、有害な影響(過剰なガスの発生など)を回避するために、それ以下になると電池が放電されるべきではない電圧、又は放電度合いを表すことができる。カットオフ電圧は、典型的には、電池自体だけでなく、電池が接続されている回路(例えば、電子回路の最小動作電圧)の影響を受け得る。一例として、アルカリ電池は、1.6Vの開回路電圧、1.0〜1.5Vの範囲の負荷時電圧、及び1.0Vのカットオフ電圧を有していてもよい。所与の超小型電池セル設計の電圧は、採用するセル用化学物質の他の要因により異なる場合がある。したがって、異なるセル用化学物質は、異なるセル電圧を有してもよい。
セルは、電圧を上昇させるために直列につながれてもよいが、この組み合わせでは、寸法、内部抵抗、及び電池の複雑性がトレードオフとなる場合がある。セルは、抵抗を低下させかつ容量を増大させるように並列構成で組み合わされてもよいが、かかる組み合わせでは、寸法と貯蔵寿命がトレードオフとなる場合がある。
電池容量は、電池が一定期間の間電流を供給する、又は仕事を行う能力であってもよい。電池容量は、典型的には、マイクロアンペア時間などの単位で指定される場合がある。1マイクロアンペアの電流を1時間供給し得る電池は、1マイクロアンペア時間の容量を有する。容量は、典型的には、電池装置内の反応物質の質量(したがって容積)を増加させることによって増加させることができるが、生物医学的装置は、利用可能な容積の点で著しく制約される可能性があることが理解できる。電池容量はまた、電極及び電解質材料の影響も受ける場合がある。
電池が接続される回路の要件に応じて、電池は、ある値の範囲にわたる電流を流入させることを要求される場合がある。実際に使用する前の保管中、ピコアンペアからナノアンペア程度のリーク電流が、回路、相互接続部、及び絶縁体を通って流れる場合がある。回路は、活動的な動作中、センサをサンプリングすること、タイマーを動作させること、及びかかる低消費電力機能を実行することのために、静止電流を消費する場合がある。静止電流消費は、ナノアンペアからミリアンペア程度であり得る。回路は、例えば、フラッシュ・メモリに書き込むとき、又は無線周波数(RF)で通信するときに、更に大きなピーク電流を要求する場合がある。このピーク電流は、数十ミリアンペア以上に及ぶ場合がある。超小型電池装置の抵抗及びインピーダンスもまた、設計考慮事項にとって重要である場合がある。
貯蔵寿命は、典型的には、電池が保管に耐え、かつ依然として有用な作動パラメータを維持することができる期間を指す。貯蔵寿命は、いくつかの理由から、生物医学的装置にとって特に重要である場合がある。電子素子は、例えば、電子コンタクトレンズが導入される事例のように、無動力の装置に取って代わる場合がある。こうした既存の市場空間における製品は、顧客、サプライチェーン、及びその他の要件に起因して、確立された貯蔵寿命要件(例えば、3年)を有している場合がある。典型的には、かかる規格は新しい製品のために変更されないことが望ましい場合がある。貯蔵寿命要件はまた、超小型電池を含む装置の流通方法、在庫管理方法、及び使用方法に従っても設定される場合がある。したがって、生物医学的装置用超小型電池は、例えば年数で測定することができる具体的な貯蔵寿命要件を有し得る。
いくつかの実施形態では、三次元の生体適合性通電素子は再充電可能であってもよい。例えば、三次元表面上には、更に誘導コイルが製造されていてもよい。次いで、誘導コイルは、無線周波数(「RF」)フォブで通電されてもよい。誘導コイルは、三次元の生体適合性通電素子に接続されて、RFが誘導コイルに印加されると通電素子を再充電することができる。別の例では、太陽電池もまた三次元表面上に製造され、三次元の生体適合性通電素子に接続されてもよい。太陽電池が光、つまり光子に曝露されると電子を生じさせて、通電素子を再充電する。
いくつかの例では、電池は、電気システムに電気的エネルギーを提供するように機能してもよい。こうした例では、電池は、電気システムの回路に電気的に接続されてもよい。回路と電池との間の接続は、相互接続に分類される場合がある。こうした相互接続は、いくつかの要因により、生物医学超小型電池にとってますます困難になっている。いくつかの例では、電動式生物医学的装置は非常に小さいので、相互接続のための面積及び容積がほとんどない場合がある。寸法及び面積の制約は、相互接続部の電気抵抗及び信頼性に影響を与える場合がある。
その他の点において、電池は、高温で沸騰する可能性がある液体電解質を収容している場合がある。この制約は、例えば、溶融するために比較的高温(250℃)を必要とするハンダ相互接続を用いたいという要望と、対立する。しかし、いくつかの実施例では、電解質を含む電池化学物質と、ハンダ付けによる相互接続を形成するために使用され得る熱源とは、互いに空間的に離間され得る。新興の生物医学的装置の事例では、寸法が小さいことにより、熱伝導を低減するための十分な距離による電解質とハンダ接合部の分離を排除する場合がある。
相互接続
相互接続は、外部回路と接続された電池との間で電流を流すことができるようにする。かかる相互接続は、電池の内部環境と外部環境とを相互作用させることができ、これらの環境の間の境界又は封止を越えることができる。こうした相互接続は、外部回路との接続を形成し、電池封止材を通過した後、電池内の集電体と接続するトレースと見なされてもよい。そのため、こうした相互接続はいくつかの要件を有し得る。電池外部において、相互接続は、典型的なプリント回路トレースに類似していてもよい。トレースは他のトレースとハンダ付けされるか、又は別の方法で接続されてもよい。電池が、集積回路を含む回路基板とは別の物理的要素である例では、電池相互接続は、外部回路との接続が可能となる場合がある。この接続は、ハンダ付け、導電性テープ、導電性インク若しくは導電性エポキシ樹脂、又は他の手段で形成されてもよい。相互接続トレースは、電池外部の環境に耐える(例えば、酸素の存在下で腐食しない)必要がある場合がある。
相互接続部は電池封止材を貫通するので、相互接続が封止材と共存し、かつ封止を可能にすることが非常に重要であり得る。封止材と電池パッケージとの間で必要となる場合がある接着に加えて、封止材と相互接続部との間の接着が必要となる場合がある。電池内部の電解質及び他の材料の存在下では、封止完全性が維持される必要があり得る。相互接続部は、典型的には金属性であり、電池パッケージングの破損点として知られている場合がある。電位及び/又は電流の流れにより、電解質が相互接続部に沿って「クリープ」する傾向が増大する場合がある。したがって、相互接続は、封止完全性を維持するように設計する必要があり得る。
電池内部において、相互接続は、集電体と相互作用してもよく、又は集電体を実際に形成してもよい。この点で、相互接続は、本明細書に記載する集電体の要件を満たす必要があり得、又は、かかる集電体と電気的接続を形成する必要があり得る。
相互接続部及び集電体の候補となる1つの種類は、金属ホイルである。かかる金属ホイルは、25マイクロメートル以下の厚さで利用可能であり、この厚さにより金属ホイルは、非常に薄型の電池に適したものとなる。かかるホイルはまた、低表面粗さ及び低汚染の状態で得ることができ、これら2つの要素は電池性能にとって重要である場合がある。ホイルとしては、亜鉛、ニッケル、真鍮、銅、チタン、他の金属、及び種々の合金を挙げることができる。
モジュール化された電池構成要素
いくつかの例では、モジュール化された電池構成要素は、本開示のいくつかの態様及び実施例に従って形成され得る。こうした実施例では、モジュール化された電池アセンブリは、生物医学的装置の他の部品とは別個の構成要素である場合がある。眼科用コンタクトレンズ装置の実施例では、かかる設計は、媒体インサートの残りの部分から分離された、モジュール化された電池を含んでいてもよい。モジュール化された電池構成要素を形成することによる利点は数多く存在し得る。例えば、コンタクトレンズの実施例では、モジュール化された電池構成要素は、別個の非一体的なプロセスで形成され、それにより、三次元に形成された剛性光学プラスチック構成要素を処理する必要性が軽減され得る。加えて、複数の供給メーカーをよりフレキシブルに選択することができ、この複数の供給メーカーは、生物医学的装置内部の他の構成要素の製造に対して、より平行した形態で、作業を行うことが可能である。更に、モジュール化された電池構成要素の製造を、三次元形状に成形される装置の特徴と切り離すことができる。例えば、最終的に三次元形態である必要がある用途では、モジュール化された電池システムは、平坦に、又はおおよそ二次元的全体像で製造された後、適切な三次元形状に成形されてもよい。モジュール化された電池構成要素は、残りの生物医学的装置とは独立に試験することができ、また、電池構成要素は組み立て前に選別される場合があるので、ロスが生じる場合がある。得られたモジュール化された電池構成要素は、その上に電池構成要素を形成することができるような適切な剛性領域を有しない様々な媒体インサート構造体内で使用することができ、更なる実施例では、モジュール化された電池構成要素の使用は、別の方法で用いられる場合がある製造技術とは異なる選択肢(例えば、ウェブベースの技術(ロールツーロール処理)、シートベースの技術(シートツーシート処理)、プリント処理、リソグラフィ処理、及び「スキージ」処理など)の使用を容易にする場合がある。モジュール化された電池のいくつかの実施例では、かかる装置は個別に収容されるという態様を有するので、結果的に生物医学的装置の構造体全体に追加材料が加えられることになり得る。そうした影響は、利用可能な空間パラメータが溶液の最小厚さ及び容積を必要とする場合に、モジュール化電池溶液の使用に制約を課する場合がある。
電池の形状要件は、少なくとも一部には、電池を使用する用途によって決定される場合がある。従来の電池形状因子は、金属で製造された円筒形又は四角柱であり得、長期間にわたり大量の電力を必要とする製品を対象にしている場合がある。こうした用途は、形状因子の大きい電池を収容することができる程度に十分に大きい場合がある。別の例では、平型(2D)固体電池は薄い四角柱であり得、典型的には非可撓性のシリコン又はガラス上に形成される。こうした平型固体電池は、いくつかの例では、シリコンウェハ加工技術を用いて形成され得る。別の種類の電池形状因子では、低出力のフレキシブル電池を、薄いホイル又はプラスチックを使用して、電池化学物質を封じ込めるように袋状構造体に形成することができる。こうした電池は平型(2D)とすることができ、緩やかな面外(3D)湾曲状に曲げられたときに機能するように設計され得る。
電池が可変視覚レンズ内で使用され得る本発明の電池用途例のいくつかにおいて、形状因子は、電池構成要素の三次元的な湾曲を必要とする場合があり、この湾曲の曲率半径は約8.4mm程度であり得る。そのような湾曲特性は比較的急であると考えられる場合があり、参考として、ヒトの指先に見られるタイプの湾曲に近い場合がある。比較的急な湾曲特性により、製造面で困難な態様が生じる。本発明のいくつかの実施例では、モジュール化された電池構成要素は、平坦で二次元的に製造された後、比較的曲率の高い三次元形態に形成され得るように設計され得る。
電池モジュールの厚さ
生物医学的用途用の電池構成要素を設計する際には、様々なパラメータのトレードオフを図って、技術的な要件と、安全要件と、機能要件とのバランスをとる場合がある。電池構成要素の厚さは、重要かつ制約的なパラメータであり得る。例えば、光学レンズ用途では、ユーザーが快適に装着できる装置の能力は、生物医学的装置全体の厚さに重要な依存を有する場合がある。したがって、電池をより薄く設計する際の重要で実現可能な態様が存在し得る。いくつかの例では、電池の厚さは、上部シートと、底部シートと、スペーサシートとを合わせた厚さ、及び接着剤層の厚さによって決定される場合がある。実際の製造態様は、膜厚のある種のパラメータを、使用可能なシート原材料の標準値に決定してもよい。加えて、膜は、厚さの最小値を有する場合があり、化学的適合性、湿気/ガス不透性、表面仕上げ、及び膜層上に堆積することができるコーティングとの適合性に関する技術的考慮事項に基づき、膜厚は、この値に特定される場合がある。
いくつかの例では、完成した電池構成要素の望ましい又は目標とする厚さは、220μm未満である構成要素厚さであってもよい。こうした例では、この望ましい厚さは、エンドユーザーの快適性、生体適合性、及び容認に関する制約を前提として、ヒドロゲルレンズ形状によって画定される利用可能な容積内部に電池構成要素を適合する必要があり得る、例示的な眼科用レンズ装置の三次元形状によって決定される場合がある。この容積及びこの容積が電池構成要素の厚さの必要性に与える影響は、装置全厚に関する仕様、並びに装置の幅、円錐角、及び内径に関する装置仕様の関数である場合がある。得られる電池構成要素の設計に関する別の重要な設計考慮事項は、結果として得られる化学エネルギー(これは設計に起因し得る)に関する、所与の電池構成要素の設計において、活性電池化学物質及び材料が使用可能な容積に関連し得る。次いで、目標寿命及び動作条件に関する電気的要件に関して、この結果として得られる化学エネルギーと、機能的生物医学的装置とのバランスをとってもよい。
電池モジュールの可撓性
電池の設計、及び電池をエネルギー源として利用する関連装置の設計と関係する別の態様は、電池構成要素の可撓性である。可撓性の電池形態によって与えられる利点は数多く存在し得る。例えば、可撓性の電池モジュールは、電池形態を二次元(2D)平面形態に製造するという前述の能力を促進することができる。形態の可撓性により、二次元の電池を、後に、コンタクトレンズなどの生物医学的装置内に適合するように適切な三次元(3D)形状に形成することが可能となり得る。
電池モジュールの可撓性により得ることができる利益の別の例では、電池及びそれに続く装置が可撓性である場合には、装置の使用に関連した利点が存在し得る。一例では、コンタクトレンズの形態の生物医学的装置は、媒体インサートベースのコンタクトレンズの挿入/取り外しが、非充填型の標準的なヒドロゲルコンタクトレンズの挿入/取り外しに近い場合があるという利点を有する場合がある。
曲げ回数は、電池のエンジニアリングにとって重要であり得る。例えば、平面形態からコンタクトレンズにとって好適な形状へと1回だけ曲がることができる電池は、複数回曲がることができる電池と著しく異なる設計を有する場合がある。電池の曲げは、曲げ事象に機械的に耐える能力以外に及ぶ場合もある。例えば、電極は、破損せずに物理的に曲げることができ得るが、電極の機械的及び電気化学的特性は、曲げにより変化する場合がある。曲げによって誘発される変化は、例えば、インピーダンスの変化としてすぐに現れる場合もあり、又は、曲げは、長期に及ぶ貯蔵寿命試験においてのみ明らかとなる変化を誘発する場合もある。
電池モジュールの幅
本開示の生体適合性通電素子又は電池をその中で使用することができる多くの用途が存在し得る。広くは、電池の幅要件は、主に、電池が適用される用途の関数であり得る。例示的な事例では、コンタクトレンズの電池システムは、モジュール化された電池構成要素の幅に関する仕様に対する、制約付きのニーズを有する場合がある。装置が電池構成要素により給電される可変光学機能を有する眼科用装置のいくつかの例では、装置の可変光学部分は、直径約7.0mmの中央球面領域を占める場合がある。例示的な電池素子は、中央光学系の周囲に環円錐状スカートとして適合する三次元物体と考えてもよく、切頭円錐状のリングに形成されてもよい。剛性インサートの必要とされる最大直径が直径8.50mmであり、ある直径(例えば、おおよそ直径8.40mm)の球体に接触することが目標であり得る場合には、幾何学的形状が電池の可能な許容幅を決定する場合がある。得られる幾何学的形状の望ましい仕様を計算するのに有用であり得る幾何学的形状モデルが存在する場合があり、これは、いくつかの例では、円環の扇形になるように平坦化された円錐台と呼ばれる場合もある。
平坦化された電池の幅は、電池素子の2つの特徴である活性電池構成要素及び封止幅によって決定され得る。眼科用装置に関連したいくつかの例では、ターゲット厚さは、片面当たり0.100mm〜0.500mmであってもよく、活性電池構成要素のターゲット幅はおよそ0.800mmであってもよい。他の生物医学的装置は異なる設計制約を有していてもよいが、可撓性平型電池素子の原理を同じように適用することが可能である。
電池構成要素の設計における設計要素としてのキャビティ
いくつかの例では、電池素子は、活性電池用化学物質の領域を分割する様式で設計されてもよい。活性電池構成要素を個別のセグメントに分割することにより、多くの利点を得ることができる。非限定的な例において、製作する素子を個別で比較的小さくすることにより、こうした素子の製造を容易にすることができる。多数の比較的小さい素子を含む電池素子の機能を改善することができる。様々な種類の不具合を分割することができ、機能しない素子を隔離することができるので、事例によっては、機能喪失が低減される場合もある。これは、電池電解質の損失が生じ得る例に関連し得る。個別化された構成要素を隔離することにより、電池の重要領域からの電解質の漏れを生じさせる不具合を、電池素子全体のうちのこの小さなセグメントの機能喪失に限定することができる一方、この不具合による電解質の損失は、単一セルとして構成された電池の著しくより大きな領域を空にする可能性がある。セルを小さくすることにより、総じてみると、全体としては有効な電池用化学物質の量は低減することになる場合があるが、より小さいセルそれぞれを取り囲む材料の網目は、結果として全体構造を強化する場合がある。
電池素子の内部封止
生物医学的装置で用いる電池素子のいくつかの例では、電池の化学作用は水溶性化学物質を含み、その場合、水又は水分は制御すべき重要な構成成分となる。したがって、電池本体から出入りする水分の移動を抑制又は防止する封止機構を組み込むことが重要であり得る。防湿バリアは、内部の水分レベルを、ある程度の許容範囲内で、設計されたレベルに維持するように設計され得る。いくつかの例では、防湿バリアは2つのセクション又は構成要素(すなわち、パッケージと封止材)に分割されてもよい。
パッケージは、エンクロージャの主要材料を指す場合がある。いくつかの例では、パッケージはバルク材を含んでもよい。水蒸気透過率(WVTR)は、試験手順を制御するISO、ASTM規格を用いて性能を表す指標であってもよく、試験中に影響を与える環境条件を含む。理想的には、良好な電池パッケージの水蒸気透過率(WVTR)は「ゼロ」であり得る。水蒸気透過率(WVTR)がゼロに近い例示的な材料は、ガラス及び金属ホイルであり得る。一方で、プラスチックは、本質的に、水分に対して多孔性であり得、プラスチックの種類によって著しく異なる場合がある。エンジニアリングされた材料、積層体、又は共押出物は、通常、一般的なパッケージ材料の混成物である場合がある。
封止部は、2つのパッケージ表面間の境界面であってもよい。封止部の表面を接続することにより、パッケージに沿ってエンクロージャを完成させる。多くの例において、封止設計の特性により、封止部の水蒸気透過率(WVTR)の特性評価が困難である場合があり、その理由は、サンプルの寸法又は表面積がこうした手順に適合しない場合があるので、ISO又はASTM規格を用いて測定を行うのが困難であることによる。いくつかの例では、封止完全性を試験するための実践的な様式は、実際の封止設計の、いくつかの定義された条件についての機能試験であり得る。封止性能は、封止材料、封止厚、封止長、封止幅、及びパッケージ基材に対する封止部の接着又は密着性の関数であり得る。
いくつかの例では、封止は、熱加工、レーザー加工、溶媒加工、摩擦加工、超音波加工、又はアーク加工を含み得る溶接プロセスによって形成されてもよい。他の例では、封止は、接着剤、エポキシ樹脂、アクリル樹脂、天然ゴム、及び合成ゴムなどの接着封止剤を使用して形成されてもよい。他の例は、ガスケットタイプの材料を利用することにより得てもよく、これは、非限定的な例を挙げると、コルク、天然及び合成ゴム、ポリテトラフルオロエチレン(PTFE)、ポリプロピレン、並びにシリコーンから形成され得る。
いくつかの例では、本発明による電池は、特定の作動期間を有するように設計されてもよい。作動期間は、特定の電池システムを用いて得ることができる実際の水分透過量を測定した後、そのような水分の漏れがいつ電池の寿命末期状態をもたらし得るのかを推定することによって、推定することができる。例えば、電池が湿潤環境において保存される場合には、電池の外側と内側の分圧差は最小となるので、水分損失率は低くなり、したがって電池の寿命は長くなる場合がある。非常に乾燥して暑い環境において保存される同じ例示的な電池は、水分を損失させる作用が強いので、著しく短い予想寿命を有する場合がある。
電池素子のセパレータ
本発明に記載される種類の電池は、アノード及びアノード集電体部分を、カソード及びカソード集電体部分から物理的かつ電気的に分離するセパレータ材料を使用してもよい。セパレータは、水及び溶解している電解質成分に対して透過性である膜であってもよいが、典型的には非導電性であってもよい。無数の市販のセパレータ材料が当業者に既知であり得るが、本開示の新規な形状因子は、セパレータの選択、加工、及び取り扱いの任務に固有の制約を提示し得る。
本発明の設計は超薄型の輪郭を有し得るので、選択肢は、一般に入手可能な最も薄いセパレータ材料に限定され得る。例えば、厚さ約25マイクロメートルのセパレータが望ましい場合がある。有利であり得るいくつかの実施例は、厚さ約12マイクロメートルであり得る。許容できる多くの市販のセパレータが存在し得、例えば、Celgard(Charlotte,NC)製のセパレータのような、ミクロフィブリル化された微多孔性のポリエチレン単層及び/又はポリプロピレン−ポリエチレン−ポリプロピレン(PP/PE/PP)3層セパレータ膜が挙げられる。セパレータ材料の望ましい実施例は、厚さ12マイクロメートルのCelgard M824 PP/PE/PP 3層膜であり得る。本発明の実施例に有用なセパレータ材料の代替実施例としては、再生セルロース(例えばセロファン)を含むセパレータ膜を挙げることができる。
PP/PE/PP 3層セパレータ膜は、そのポリオレフィンの特性により、有利な厚さ及び機械的特性を有し得るが、本発明の実施例において有用とするためには克服しなければならないいくつかの不利な点に悩まされる場合がある。PP/PE/PP 3層セパレータ材料のロール又はシート材料は、本明細書に記載される電池に適用可能なマイクロメートルレベルの公差に悪影響を与える可能性のある、多数の皺又は他の形態の不良を有する場合がある。更に、ポリオレフィンセパレータは、本発明の設計に含ませるためには超精密な公差で切断される必要があり得るので、したがって、個々の集電体を厳しい公差で望ましい形状に形成するための例示的な方法としてレーザー切断を行う必要があり得る。こうしたセパレータのポリオレフィンの特性により、マイクロ素子の製造に有用なある種の切断用レーザーはレーザー波長(例えば355nm)を使用する場合があるが、この波長ではポリオレフィンは切断されない。ポリオレフィンは、レーザーエネルギーを認め得るほどに吸収しないので、切断不可能である。最後に、ポリオレフィンセパレータは、本明細書に記載される電池で使用される水性電解質に対して本質的に湿潤性でない場合がある。
しかし、ポリオレフィン系の膜に固有のこうした制限を克服するための方法が存在し得る。微多孔性セパレータ膜に高精度の切断用レーザー処理を施して、膜片を円弧状のセグメント又は他の有利なセパレータ設計になるように切断するために、膜は平坦で皺のない状態である必要があり得る。こうした2つの条件を満たさない場合、入射レーザーエネルギーの焦点を合わせることができないか、あるいは別様に入射レーザーエネルギーが散乱してしまうため、切断ビームが妨げられ、それによりセパレータ膜を完全に切断することはできない。加えて、膜が平坦で皺のない状態でない場合、セパレータ膜の形状精度及び幾何公差を十分に得ることができない。現在の実施例の許容できるセパレータの公差は、例えば、好ましくは、特性長さ及び/又は半径に対して+0マイクロメートル及び−20マイクロメートルであってもよい。+0マイクロメートル及び−10マイクロメートルの公差、更には+0マイクロメートル及び−5マイクロメートルといったより厳しい公差に関する利点が存在し得る。セパレータストック材料は、適切な低揮発性液体を有するフロートガラス製のキャリアにこの材料を一時的に積層することにより、平坦で皺のない状態にすることができる。セパレータ膜の脆弱性、及びセパレータ膜を接着剤層から剥離するために必要である場合がある加工時間の長さに起因して、低揮発性液体は仮接着剤よりも有利である場合がある。更に、いくつかの実施例では、液体を使用してフロートガラス上に平坦で皺のないセパレータ膜を得ることは、接着剤を使用するよりもはるかに容易であることが認められている。セパレータ膜は、積層する前に、粒子を含まないものとしてもよい。これは、表面に接着したあらゆる粒子を除去するために、セパレータ膜を超音波洗浄することにより達成することができる。いくつかの実施例では、セパレータ膜の取り扱いは、ラミナーフローフード又は少なくともクラス10,000のクリーンルームのような好適な低粒子環境内で行われてもよい。更に、フロートガラス基板は、適切な溶媒、超音波洗浄、及び/又はクリーンルームワイプで拭き取ることによって、粒子を含まないものとしてもよい。
微多孔性ポリオレフィンセパレータ膜をフロートガラスキャリアに積層する機械的な目的で、多種多様な低揮発性液体を使用することができるが、後続の別個のセパレータ形状のレーザー切断を容易にするための液体には特定の要件が課せられる場合がある。要件のうちの1つは、液体が、セパレータ材料の孔に染み込むほど十分に低い表面張力を有し、それを目視検査で容易に確認することができることであり得る。いくつかの実施例では、セパレータ材料は、液体が材料のミクロ細孔を充填すると、白色から半透明の外観に変化する。セパレータの調製及び切断作業にさらされることになる作業者にとって無害で「安全」であり得る液体を選択することが望ましい場合がある。加工の時間スケール(1日程度)の間に相当量の蒸発が生じないように、蒸気圧が十分に低くあり得る液体を選択することが望ましい場合がある。最後に、いくつかの実施例では、液体は、レーザー切断作業を容易にする場合がある好都合な紫外線吸収剤を溶解するだけの十分な溶媒和力を有していてもよい。一実施例では、アボベンゾン紫外線吸収剤の12パーセント(w/w)ベンジルベンゾエート溶液は上記要件を満たす場合があり、かつ、高精度及び程度の低い公差で、切断用レーザービームの通過回数が過剰になることなく、ポリオレフィンセパレータのレーザー切断を促進するのに役立ち得ることが見られる。いくつかの実施例では、セパレータは、8W 355nmナノ秒ダイオード励起固体レーザーで、このアプローチを用いて切断されてもよく、その場合レーザーの設定は、低電力損失(例えば3パーセント電力)、1〜10mm/秒の適度な速度、及びレーザービームの通過は1〜3回だけとすることができる。この紫外線吸収性油状組成物は、効果的な積層及び切断加工助剤であることが証明されているが、当業者であれば他の油性配合物を想定する場合があり、これを制限なく使用してもよい。
いくつかの実施例では、セパレータは、フロートガラスに固定された状態で切断されてもよい。フロートガラスに固定した状態でセパレータをレーザー切断することの利点の1つは、非常に高い数密度のセパレータを1枚のセパレータストックシートから切断することができることである。これは半導体ダイがシリコンウェハ上に密に配列され得るのとよく似ている。かかるアプローチは、半導体プロセスに固有の規模の経済及び並列処理の利点をもたらすことができる。更に、セパレータ膜のスクラップの生成を最低限に抑える場合がある。セパレータが切断されると、混和性溶媒を用いる一連の抽出工程により、油性の加工助剤を除去してもよく、最後の抽出は、いくつかの実施例では、イソプロピルアルコールなどの高揮発性溶媒を用いて行ってもよい。個々のセパレータは、抽出が終わると、任意の好適な低粒子環境内で無期限に保管されてもよい。
前述したように、ポリオレフィンセパレータ膜は、本質的に疎水性であり得、本発明の電池内で使用する水溶性界面活性剤に対して湿潤性を有する状態にする必要があり得る。セパレータ膜を湿潤性にするアプローチの1つは、酸素プラズマ処理であり得る。例えば、セパレータを、酸素100パーセントのプラズマ中で、様々な電力設定及び酸素流量にて、1〜5分間処理してもよい。このアプローチは、湿潤性を一時的に改善することができるが、プラズマ表面改質は一過性の効果をもたらすことが既知であり得、この効果は、電解質溶液で確実に湿潤するのに十分なだけ長く続かない場合がある。セパレータ膜の湿潤性を改善するための別のアプローチは、膜に好適な界面活性剤を組み込むことによって表面を処理することであってもよい。場合によっては、界面活性剤は親水性ポリマーコーティングと共に使用してもよく、このコーティングはセパレータ膜の孔内部に留まる。
酸化プラズマ処理によって付与された親水性をより永続的にするための別のアプローチは、好適な親水性オルガノシランで引き続き処理することであってもよい。このように、酸素プラズマを用いて活性化し、微多孔性セパレータの全表面面積全体に官能基を付与してもよい。次に、プラズマ処理された表面にオルガノシランを共有結合させ、かつ/又は非共有的に付着させてもよい。オルガノシランを用いる実施例では、微多孔性セパレータの固有多孔性は感知できるほどは変化させられない場合があり、単層で表面を被覆することも可能であり、かつ望ましい場合がある。ポリマーコーティングと共に界面活性剤を組み込む従来技術の方法は、膜に塗布するコーティングの実際の量の厳密な制御を必要とする場合があり、その結果プロセス変動を受ける場合がある。極端な事例では、セパレータの孔が閉塞される場合があり、それにより電気化学セルの動作中にセパレータの有用性に悪影響が及ぶ可能性がある。本発明で有用な例示的なオルガノシランは、(3−アミノプロピル)トリエトキシシランであり得る。他の親水性オルガノシランが当業者には既知であり、制限なく使用することができる。
セパレータ膜を水性電解質にして湿潤性にするための更に別の方法は、好適な界面活性剤を電解質配合物に組み込むことであり得る。セパレータ膜を湿潤性にするための界面活性剤を選択する際の考慮事項の1つは、界面活性剤が、例えば、セルの電気インピーダンスを上昇させることにより、電気化学セル内の1つ以上の電極の活性に与える可能性がある影響であり得る。場合によっては、界面活性剤は、特に水性電解質中のアノードが亜鉛の事例では、有利な防食性を有し得る。亜鉛は、水とゆっくり反応して水素ガスを放散させることで知られる例であり得、これは望ましくない場合がある。前記反応の速度を有利なレベルまで制限する多くの界面活性剤が、当業者には既知であり得る。他の事例では、界面活性剤は亜鉛電極表面ととても強く相互作用するので、電池性能を阻害する場合がある。したがって、セルの電気化学的性能に悪影響を及ぼすことなくセパレータの湿潤性を確実に得ることができるように、界面活性剤の適切な種類及び充填レベルを選択する際には、多くの注意を払う必要があり得る。場合によっては、一方はセパレータ膜に湿潤性を付与するために存在し、もう一方は亜鉛アノードに対する防食性を促進するために存在するといったように、複数の界面活性剤を使用してもよい。一実施例では、セパレータ膜に親水化処理が施されておらず、セパレータ膜の湿潤性に影響を与えるのに十分な量の界面活性剤(複数可)が電解質配合物に添加される。
個々のセパレータは、アセンブリ内に設計されているキャビティ、ポケット、又は構造体を含む保存手段の中に直接定置することによって、超小型層状電池に組み込まれる場合がある。望ましくはこの保存手段は、セパレータ形状の幾何学的オフセットであり得る、切り取り部を有する層状構造体により形成されてもよく、アセンブリ内にキャビティ、ポケット、又は構造体が生じる。更に、この保存手段は、組み立て中にセパレータがその上に載る出っ張り又は階段状部を有していてもよい。この出っ張り又は階段状部は、必要に応じて、個々のセパレータを保持する感圧接着剤を有していてもよい。有利にも、感圧接着剤は、例示的な超小型層状電池の他の素子を構成及び積み重ねる際に使用するものと同じであってもよい。
感圧接着剤
いくつかの実施例では、本発明の超小型層状電池を構成する複数の構成要素は、感圧接着剤(PSA)によって一体に保持されてもよく、この感圧接着剤は封止剤としての役割も果たす。無数の市販の感圧接着剤配合物が存在し得るが、かかる配合物はほとんどの場合、そのせいで感圧接着剤が生体適合性超小型層状電池内で使用するのに適さないものとなり得る構成成分を含んでいる。感圧接着剤で使用するのに望ましくない構成成分の例としては、低分子量の浸出性構成成分、酸化防止剤(例えばBHT及び/又はMEHQ)、可塑化用オイル、不純物、酸化に不安定な部分(例えば、不飽和化学結合、残留溶媒、及び/又はモノマー、重合開始フラグメント、極性粘着付与剤等を含む)が挙げられ得る。
一方、好適なPSAは以下の特性を示す場合がある。これらを層状構成要素に塗布して、約2〜20マイクロメートル程度の薄層を得ることが可能であり得る。その上、これらは、望ましくない又は非生体適合性の構成成分の含有量が最低限であり、例えば、全く含有していない場合がある。加えて、好適なPSAは十分な接着性及び凝集性を有するので、層状電池の構成要素を結合することができる。また、好適なPSAは、電池内の電解質を確実に封止しながら、本構成の装置に固有のマイクロメートルスケールの特徴部に流入することが可能であり得る。好適なPSAのいくつかの実施例では、電池が極度の湿度に長時間さらされる場合であっても所望の水性電解質構成成分を電池内部に維持するために、PSAは水蒸気に対する透過性が低くてもよい。PSAは、酸、界面活性剤、及び塩などの電解質構成成分に対して、良好な耐薬品性を有していてもよい。好適なPSAは、水への浸漬の影響に対して不活性であり得る。好適なPSAは、自己放電の形態をとり得る亜鉛アノードの直接酸化速度を最小限に抑えるために、酸素に対する透過性が低い場合がある。また、水性電解質中の亜鉛アノードからゆっくりと放出され得る水素ガスに対する有限透過性を促進する場合がある。水素ガスに対する有限透過性という特性により、内部圧力が蓄積されるのを防ぐことができる。
こうした要件を考慮すると、望ましい要件の全てではないにしても、その多くを満たすPSA組成物に配合することができる市販材料は、ポリイソブチレン(PIB)であり得る。更に、PIBは、吸水性が非常に低く、かつ酸素透過性が低い、優れたバリア封止剤であり得る。本発明の実施例で有用なPIBの例は、BASF CorporationのOppanol(登録商標)B15であり得る。Oppanol(登録商標)B15は、トルエン、ヘプタン、ドデカン、ミネラルスピリット等のような炭化水素溶媒に溶解することができる。1つの例示的なPSA組成物は、70パーセント(w/w)のトルエンと30パーセントのドデカンとを含む溶媒混合物中に溶解した30パーセントのOppanol(登録商標)B15(w/w)を含むことができる。PIBベースのPSAの接着性及びレオロジー特性は、いくつかの実施例では、異なる分子量グレードのPIBをブレンドすることにより決定され得る。一般的なアプローチは、湿潤性、粘着性、及び接着性を生じるために、低モル質量のPIB、例えばOppanol(登録商標)B10を多く使用し、強靭性及び流れ抵抗性を生じるために、高モル質量のPIBを少量使用するといったものであってもよい。したがって、モル質量グレードの異なる任意の数のPIBのブレンドを想定することができ、このブレンドは本発明の範囲内で実施可能であり得る。更に、上記要件を満たすことができるのであれば、PSA配合物に粘着付与剤を添加してもよい。粘着付与剤は、その性質上、PSA配合物に極性を付与するので、PSAのバリア特性に悪影響を与えないように注意して使用する必要があり得る。更に、粘着付与剤は、場合によっては酸化的に不安定であり得、また、酸化防止剤を含む場合があり、酸化防止剤がPSAから浸出する可能性がある。こうした理由から、生体適合性超小型層状電池用のPSAに用いられる例示的な粘着付与剤としては、全面的に又は大部分が水素化された炭化水素樹脂粘着付与剤(例えばEastman Chemical CorporationのRegalrezシリーズの粘着付与剤など)を挙げることができる。
生体適合性電池モジュールのパッケージ及び基板に関する更なる考慮事項
パッケージング及び基板に関する考慮事項は数多く存在し得、そうした考慮事項が、生体適合性超小型層状電池で用いられるパッケージ設計の望ましい特性を決定する。例えば、パッケージングは、主にホイル及び/又は膜ベースであるのが望ましくあり得、パッケージング層は極力薄くてもよい(例えば、10〜50マイクロメートル)。加えて、パッケージングは、貯蔵寿命中の水分の得失に対する十分な拡散バリアを提供することができる。多くの望ましい実施例において、パッケージングは、酸素の侵入に対する十分な拡散バリアを提供して、直接酸化による亜鉛アノードの劣化を制限する場合がある。
いくつかの実施例では、パッケージングは、亜鉛による水の直接還元により放出される水素ガスに対する有限透過経路を提供することができる。また、パッケージングは、電池の内容物を好ましくは封じ込めることができ、かつこれを隔離することができ、それにより、ユーザーへの暴露の可能性を最小限にすることができる。
本発明において、パッケージング構造体は、以下の種類の機能構成要素、すなわち上部及び底部パッケージング層、PSA層、スペーサ層、相互接続ゾーン、充填ポート、並びに二次パッケージングを含み得る。
いくつかの実施例では、上部及び底部パッケージング層は、金属ホイル又はポリマー膜を含み得る。上部及び底部パッケージング層は、複数のポリマー及び/又はバリア層を含む多層膜構造体を含み得る。そうした膜構造体は、共押出バリア積層膜と呼ぶことができる。本発明において特に有用な市販の共押出バリア積層膜の例は、3M(登録商標)Scotchpak 1109裏材であり得、この裏材は、ポリエチレンテレフタレート(PET)キャリアウェブ、蒸着アルミニウムバリア層、及びポリエチレン層からなり、合計平均膜厚さは33マイクロメートルである。数多くの他の同様の多層バリア膜を利用することができ、本発明の代替実施例において使用することができる。
PSAを含む設計構造体では、PSAはパッケージング層の対向面を封止する必要もあり得るので、パッケージング層の表面粗さは特に重要となり得る。表面粗さは、ホイル及び膜の製造で用いる製造プロセス(例えば、数ある中でも、圧延、押出、エンボス加工、及び/又はカレンダー工法を用いるプロセス)によって生じる場合がある。表面が粗すぎる場合、所望のPSA厚さが表面粗さRa(粗さプロファイルの算術平均)程度であり得るとき、PSAを均一な厚さで塗布することができない場合がある。更に、対向面がPSA層厚さ程度であり得る粗さを有する場合、PSAは、対向面を適切に封止することができない。本開示において、10マイクロメートル未満の表面粗さRaを有するパッケージング材は、許容可能な実施例であり得る。いくつかの実施例では、表面粗さの値は、5マイクロメートル以下であってもよい。また、更なる実施例では、表面粗さは1マイクロメートル以下であってもよい。表面粗さの値は、白色光干渉法、スタイラス形状測定等のような測定技法が挙げられるが、これらに限定されない、様々な方法によって測定することができる。表面粗さをいくつかの代替パラメータで記載することが場合があり、かつ本明細書で論じる平均表面粗さRaの値が、前述の製造プロセスに固有の特徴の種類を表すことを意味する場合がある、多くの例が、表面形状測定の分野に存在し得る。
生体適合性通電素子の例示的な加工の図示−セパレータの配置
生体適合性通電素子の加工に関与し得る工程の実施例を、図4A〜図4Nに見ることができる。例示的な工程のいくつかにおける加工を、個々の図で見ることができる。図4Aでは、PETカソードスペーサ401とPETギャップスペーサ404の組み合わせが図示される。PETカソードスペーサ401は、例えば、PET 403の膜を適用することによって形成することができ、この膜の厚さは、例えば、約76マイクロメートル(3ミル)であってもよい。PET層の両側にはPSA層が見られてもよく、又はこれらの層は、PVDF剥離層402で覆われていてもよく、この層の厚さは、約25マイクロメートル(1ミル)であってもよい。PETギャップスペーサ404は、PVDF層409から形成されていてもよく、この層の厚さは約76マイクロメートル(3ミル)であってもよい。キャッピングPET層405が存在してもよく、この層の厚さは約13マイクロメートル(0.5ミル)であってもよい。いくつかの実施例では、PVDF層409とキャッピングPET層405との間に、PSA層であってもよい。
図4Bに進むと、レーザー切断処理によってPETギャップスペーサ層404に孔406を切断してもよい。次に、図4Cでは、切断したPETギャップスペーサ層404をPETカソードスペーサ層401に積層408してもよい。図4Dに進むと、カソードスペーサ孔410を、レーザー切断処理によって切断してもよい。この切断工程の整列は、PETギャップスペーサ層404の以前切断した特徴部に対して位置合わせされてもよい。図4Eでは、最終的にセパレータ層になるCelgard 412の層が、キャリア411に接合されてもよい。図4Fに進むと、Celgard材料が、以前にレーザー切断された2つの孔の寸法の間であり、かつPETギャップスペーサの孔406の寸法に近い形状に切断されて、予備切断されたセパレータ420を形成する。図4Gに進むと、ピックアンドプレイスツール421を使用して、Celgardの個々の片を成長装置上の所望の位置に取り上げて定置することができる。図4Hにおいて、定置されたCelgard片422を適所に固定した後、PVDF剥離層423を除去してもよい。図4Iに進むと、成長装置構造体を、アノード425の膜に接合してもよい。アノード425は、その上に亜鉛アノード膜が電着されているアノードコレクタ膜を含んでもよい。
図4Jに進むと、カソードスラリー430が、形成された間隙内に入れられてもよい。いくつかの実施例では、スキージ431を使用して、カソード混合物を被加工物全体に広げ、このプロセスで、形成される電池装置の間隙を充填してもよい。充填後、残っているPVDF剥離層432を除去してもよく、これによって図4Kに示す構造体が得られ得る。図4Lでは、構造体全体に乾燥プロセスを施すことができ、これによりカソードスラリー440は、PET層の頂部の高さまで収縮する場合がある。図4Mに進むと、その上にカソードコレクタ膜を既に有していてもよいカソード膜層450が、成長構造体に接合され得る。最後の図である図4Nでは、レーザー切断プロセスが行われて、側部領域460を除去し、電池素子470を得ることができる。本発明の趣旨の範囲内で有用であり得る、材料及び目標厚さに対する多くの修正、削除、変更が存在し得る。
例示的な処理の結果が図5においてある程度詳細に示される。一実施例では、以下の参照特徴部が画定され得る。カソード化学物質510は、カソード及びカソードコレクタ520と接触した状態で位置していてもよい。感圧性接着剤層530は、カソードコレクタ520をPETスペーサ層540に対して保持しかつ封止することができる。PETスペーサ層540の反対側は別のPSA層550であってもよく、このPSA層550は、PETスペーサ層540をPETギャップ層560に対して封止及び接着する。別のPSA層565は、PET間隙層560をアノード及びアノード集電体層に対して封止及び接着する場合がある。亜鉛めっき層570がアノード集電体580にめっきされ得る。セパレータ層590は構造体内部に位置して、本発明で定義した関連機能を行うことができる。いくつかの実施例では、装置の加工中に電解質を加えてもよく、他の実施例では、セパレータは既に電解質を含んでいてもよい。
生体適合性通電の例示的加工の図示−セパレータの堆積
生体適合性通電素子の加工に関与し得る工程の実施例が、図6A〜図6Fに見られる。例示的な工程のいくつかにおける加工を、個々の図に見ることができる。本発明の趣旨の範囲内で有用であり得る、材料及び目標厚さに対する多くの修正、削除、変更が存在し得る。
図6Aでは、層状構造体600が例示される。層状構造体は、2つの層状構造剥離層602及び602a、層状構造剥離層602と層状構造剥離層602aとの間に位置する2つの層状構造接着剤層604及び604a、並びに2つの層状構造接着剤層604と604aとの間に位置する層状構造コア606を含み得る。層状構造剥離層602及び602a、並びに接着剤層604及び604aは、製造してもよく、又は一次ライナー層を有する市販の感圧接着剤転写テープなどを購入してもよい。層状構造接着剤層は、厚さ約1〜3ミリメートルであり得るPVDF層であってもよく、層状構造コア606をキャップしてもよい。層状構造コア606は、例えば、厚さおよそ3ミリメートルであってもよい、ポリエチレンテレフタレートなどの熱可塑性ポリマー樹脂を含み得る。図6Bに進むと、カソードポケット608用のキャビティなど、カソード混合物の保存手段を、レーザー切断処理によって、層状構造体に切り込むことができる。
次に、図6Cにおいて、底部層状構造剥離層602aを層状構造体から除去し、層状構造接着剤層604aを露出させることができる。次に、層状構造接着剤層604aを使用してアノード接続ホイル610を接着し、カソードポケット608の底部開口部を覆うことができる。図6Dに進むと、アノード接続ホイル610は、マスキング層612を接着させることにより、露出した底部上に保護され得る。マスキング層612は、一次ライナーを有する市販のPSA転写テープであってもよい。次に、図6Eにおいて、アノード接続ホイル610は、コヒーレント金属614(例えば亜鉛)で電気めっきされてもよく、このコヒーレント金属614は、カソードポケット内部のアノード接続ホイル610の露出部分をコーティングする。図6Fに進むと、電気めっきの後、アノード集電マスキング層612がアノード接続ホイル610の底部から除去される。
図7A〜図7Fは、図6A〜図6Fに図示した工程の、代替加工モードを図示する。図7A〜図7Bは、図6A〜図6Bに図示したのと同様のプロセスを図示し得る。層状構造体は、両端に1層ずつ配置されている2つの層状構造剥離層702及び702aと、層状構造剥離層702と層状構造剥離層702aとの間に位置する2つの層状構造接着剤層704及び704aと、2つの層状構造接着剤層704と層状構造接着剤層704aとの間に位置する層状構造コア706で構成され得る。層状構造剥離層及び接着剤層を、製造してもよく、又は一次ライナー層を有する市販の感圧接着剤転写テープなど購入してもよい。層状構造接着剤層は、厚さ約1〜3ミリメートルであり得るポリビニリデンフルオリド(PVDF)層であってもよく、層状構造コア706をキャップしてもよい。層状構造コア706は、例えば、厚さおよそ3ミリメートルであってもよい、ポリエチレンテレフタレートなどの熱可塑性ポリマー樹脂を含み得る。図7Bに進むと、カソードポケット708のためのキャビティなどの保存手段を、レーザー切断処理によって、層状構造体に切り込むことができる。図7Cでは、アノード接続ホイル710を得ることができ、保護マスキング層712が片面に塗布される。次に、図7Dにおいて、アノード接続ホイル710をコヒーレント金属(例えば、亜鉛)の層714で電気めっきすることができる。図7Eに進むと、図7Bの構造体を図7Dの電気めっきされた層714に接着することによって、図7B及び図7Dの層状構造体を組み合わせて、図7Eに示す新たな層状構造体を形成することができる。図7Bの剥離層702aは、図7Bの接着剤層704aを露出させて、図7Dの電気めっきされた層714上に接着するために除去され得る。図7Fに進むと、アノード保護マスキング層712は、アノード接続ホイル710の底部から除去され得る。
図8A〜図8Hは、生体適合性層状構造体への通電素子の例示的な実装を図示し、この生体適合性層状構造体は本明細書において、層状アセンブリ又は積層アセンブリと呼ぶこともあり、例えば、図6A〜図6F及び図7A〜図7Fに示されているものと類似している。図8Aに進むと、ヒドロゲルセパレータ前駆体混合物820は、積層アセンブリの表面上に堆積される。いくつかの実施例では、示されるように、ヒドロゲル前駆体混合物820は剥離層802の上に塗布されてもよい。次に、図8Bにおいて、ヒドロゲルセパレータ前駆体混合物820は、剥離層802から拭い取ると同時に、カソードポケットの中へとスキージされ850得る。用語「スキージされる」は、一般に、平坦化又は掻き取り工具を使用して表面全体をこすり、液体物質をその表面上で移動させてキャビティ(存在する場合)の中に移動させることを指す。スキージングプロセスは、一般に言うところの「スキージ」タイプの装置と同様の器具によって、あるいは、移動させる物質と化学的に一致し得る多くの物質で製造されていてもよい、ナイフの刃、かみそりの刃等のような平坦化装置によって実施され得る。
図8Bに示す加工は、カソードポケットを確実にコーティングし、得られる特徴部の厚さを増加させるために、数回行われてもよい。次に図8Cにおいて、典型的には様々な種類の溶媒又は希釈剤であり得る物質をヒドロゲルセパレータ前駆体混合物から蒸発させるために、ヒドロゲルセパレータ前駆体混合物を乾燥させてもよく、次に、分与され塗布された材料を硬化させてもよい。いくつかの実施例では、図8B及び図8Cに示されるプロセスの両方を組み合わせて繰り返すことが可能であり得る。いくつかの実施例では、ヒドロゲルセパレータ前駆体混合物は、熱に暴露することによって硬化されてもよいが、他の実施例では、硬化は、光子エネルギーに暴露することによって行われてもよい。更なる実施例では、硬化は、光子エネルギーに暴露すること及び熱の両方を伴い得る。ヒドロゲルセパレータ前駆体混合物を硬化する方法は数多く存在し得る。
硬化の結果、ヒドロゲルセパレータ前駆体材料はキャビティの壁、並びに、アノード又はカソード特徴部(本実施例ではアノード特徴部であり得る)に近接した表面領域へと形成され得る。キャビティの側壁への材料の付着は、セパレータの分離機能にとって有用であり得る。硬化の結果、無水重合された前駆体混合濃縮物822が形成され得、これは単純に、セルのセパレータと考えることができる。図8Dに進むと、層状構造剥離層802の表面上にカソードスラリー830が堆積されてもよい。次に、図8Eにおいて、カソードスラリー830が、カソードポケットの中及び無水重合前駆体混合濃縮物822の上へと装置850によりスキージされ得る。カソードスラリーは、キャビティ内の所望の位置へと移動させることができると同時に、層状構造剥離層802からその大部分が拭い取られる。図8Eのプロセスは、カソードスラリー830を無水重合前駆体混合濃縮物822の上へと確実にコーティングするために、数回実施されてもよい。次に、図8Fでは、カソードスラリーを乾燥させて、無水重合前駆体混合濃縮物822の上に隔離されたカソード充填物832を形成して、カソードポケットの残部を充填することができる。
図8Gに進むと、電解質配合物840を隔離されたカソード充填物832の上に加えてもよく、隔離カソード充填物832及び無水重合前駆体混合濃縮物822に水和させることができる。次に、図8Hでは、残存している層状構造剥離層802を除去し、接続ホイル816を適所に押圧することによって、カソード接続ホイル816を、残存している層状構造接着剤層804に付着させてもよい。結果として得られた配置により、水和したカソード充填物842を覆うことができると共に、カソード集電体及び接続手段としてのカソード充填物842との電気的接点を確立することができる。
図9A〜図9Cは、図7Dから得られる積層アセンブリの代替実施例を図示する。図9Aでは、アノード接続ホイル710が与えられる場合があり、保護マスキング層712が片面に塗布される。アノード接続ホイル710は、コヒーレント金属(例えば、亜鉛)の層714でめっきされ得る。前の図で記載したのと同様な様式で行われる。図9Bに進むと、ヒドロゲルセパレータ910を、図8Eに示すスキージ法を用いずに塗布してもよい。ヒドロゲルセパレータ前駆体混合物は、様々な方法で塗布することができ、例えば、混合物の予備成形膜を、物理的付着によって接着させてもよく、あるいは、ヒドロゲルセパレータ前駆体混合物の希釈混合物を分与した後、スピンコーティングによる加工によって所望の厚さに調整してもよい。あるいは、材料を、スプレーコーティングによって、又は任意の他の同等の加工法によって塗布してもよい。次に、図9Cでは、セパレータ領域を囲む収容体として機能し得る、ヒドロゲルセパレータの一部を形成する加工を図示している。この加工は、電解質などの材料が、形成された電池素子の内部構造体の外へと流れ出るか又は拡散するのを制限する領域を形成する場合がある。したがって、様々な種類のかかるブロッキング特徴920を形成することができる。ブロッキング特徴920は、いくつかの実施例で、ブロッキング特徴920の所望の領域を光子エネルギーに長く暴露することによって形成されると、いくつかの実施例では、セパレータ層の高架橋領域に対応する場合がある。他の実施例では、硬化するとブロッキング特徴920となる、領域的に差別化された部分を、硬化して形成する前に、材料をヒドロゲルセパレータ材料に添加してもよい。なお更なる実施例では、ヒドロゲルセパレータ材料の領域を、例えば、領域範囲を画定するマスキングを用いた層の化学エッチングを含む種々の技法によって、硬化の前又は後のいずれかに除去してもよい。材料が除去された領域は、それ自体でブロッキング特徴を形成してもよく、あるいは、材料がボイドの中に戻されて、ブロッキング特徴を形成してもよい。不透過性部分の加工は、イメージアウト(image out)加工、架橋の増加、大量の光線量(heavy photodosing)、埋め戻し、又はボイドを形成するためのヒドロゲル接着性の欠落などを含むいくつかの方法で実施することができる。いくつかの実施例では、図9Cにおける加工の結果として得られる、図示される種類の積層構造体又はアセンブリは、ブロッキング特徴920を有さずに形成されてもよい。
重合した電池素子のセパレータ
一部の電池設計では、個々のセパレータの使用(前項で説明した)は、非限定的な例として、コスト、材料の入手可能性、材質、又は一部の材料選択肢に関する加工の複雑性といった様々な理由から、不可能な場合がある。かかる事例では、例えば、図8A〜図8Hのプロセスにおいて図示されるキャスト又は現場成形(form-in-place)セパレータが、望ましい利益をもたらす場合がある。デンプン又はペーストを用いたセパレータは、単3電池及び他のルクランシェ電池又は亜鉛炭素電池において商業ベースで成功裏に使用されているが、こうしたセパレータは、何らかの形で、超小型層状電池のある種の実施例で使用するのに適さない場合がある。本発明の電池で使用するあらゆるセパレータに関して特に注意を払う必要があり得るのは、形状の均一性及び一貫性である。既知のカソード容積を後に精密に組み込み、かつ一貫した放電容量及びセル性能を後に実現するのを容易にするために、セパレータ容積の精密な制御が必要であり得る。
均一で機械的に頑丈な現場成形セパレータを得る方法は、UV硬化性ヒドロゲル配合物を使用することであり得る。多くの水透過性ヒドロゲル配合物が、種々の業界(例えば、コンタクトレンズ業界)において既知であり得る。コンタクトレンズ業界において一般的なヒドロゲルの例は、ポリ(ヒドロキシエチルメタクリレート)架橋ゲル、又は単にpHEMAであり得る。本発明の多くの用途に関し、pHEMAは、ルクランシェ及び亜鉛炭素電池で使用するのに多くの魅力的な特性を有する場合がある。pHEMAは、典型的には、約0.7MPa(100psi)以上の弾性率を維持しながら、水和状態において約30〜40パーセントの含水量を維持することができる。更に、当業者は、追加の親水性モノマー(例えばメタクリル酸)又はポリマー(例えばポリビニルピロリドン)構成成分を組み込むことによって、架橋ヒドロゲルの弾性率及び含水量特性を調整することができる。このようにして、ヒドロゲルの含水量、又はより詳細には、ヒドロゲルのイオン透過性を、配合によって調整することができる。
特に有利な点として、いくつかの実施例では、注型可能及び重合可能なヒドロゲル配合物は、加工を容易にするために、1種以上の希釈剤を含有していてもよい。希釈剤は、注型可能な混合物をキャビティ内にスキージした後、揮発性溶媒構成成分を除去するのに十分な乾燥時間がとれるように、揮発性であるように選択してもよい。乾燥後、選択した光開始剤(CGI 819など)に適した波長(420nmの青色/UV光など)の化学線に暴露することによって、バルク光重合を開始してもよい。揮発性希釈剤は、重合性材料の均一層をキャビティ内に注型成形するのを容易にするように、望ましい塗布時の粘度をもたすのに役立ち得る。揮発性希釈剤はまた、特に強い極性のモノマーを配合物に組み込む事例では、有益な表面張力低減効果をもたらすことができる。キャビティ内への重合性材料の均一層の注型成形を達成するために重要であり得る別の態様は、塗布時の粘度であり得る。一般的な低モル質量の反応性モノマーは典型的に、粘度があまり高くなく、典型的にはわずか数センチポアズであり得る。注型可能かつ重合可能なセパレータ材料の有利な粘度の制御を提供する目的で、重合性材料と適合性があることで知られている高モル質量のポリマー構成成分を選択して、配合物に組み込んでもよい。例示の配合物に組み込むのに適している場合がある高モル質量のポリマーの例としては、ポリビニルピロリドン及びポリエチレンオキシドを挙げることができる。
いくつかの実施例では、注型可能かつ重合可能なセパレータは、前述したように、設計されたキャビティに好都合に塗布することができる。代替実施例では、重合時にキャビティが存在しなくてもよい。代わりに、注型可能かつ重合可能なセパレータ配合物を電極含有基板(例えば、パターニングして亜鉛めっきを施した真鍮)にコーティングした後、続いてフォトマスクを使用して化学線に暴露して、標的領域内のセパレータ材料を選択的に重合させてもよい。次に、適切なリンス溶媒に暴露することにより、未反応のセパレータ材料を除去することができる。こうした実施例では、セパレータ材料は、フォトパターニング可能なセパレータとして設計され得る。
多成分セパレータ配合物
本発明の実施例により有用であるセパレータは、その機能にとって重要であり得る、多数の特性を有し得る。いくつかの実施例において、セパレータは望ましくは、セパレータの両側の層が、互いに物理的に接触しないように、物理的障壁を形成するような様式で形成され得る。したがって層は様々な理由により薄層が望ましい一方で、ボイド又はギャップの無い層が重要であるため、均一な厚さという重要な特性を有し得る。加えて、薄層は望ましくは高い透過性を有し、イオンの自由な流れを可能にする。また、セパレータは、セパレータの機械的特性を最適化するために、最適な水吸収を必要とする。したがって、配合物は、架橋成分、親水性ポリマー成分、及び溶媒成分を含み得る。
架橋剤は、2つ以上の重合可能な二重結合を有するモノマーであり得る。好適な架橋剤は、2つ以上の重合可能な官能基を備える化合物であり得る。好適な親水性架橋剤の例としては、2つ以上の重合可能官能基、並びに親水性官能基(例えば、ポリマー、アミド、又はヒドロキシル基)を有する、化合物も挙げられ得る。具体的な実施例としては、TEGDMA(テトラエチレングリコールジメタクリレート)、TrEGDMA(トリエチレングリコールジメタクリレート)、エチレングリコールジメタクリレート(EGDMA)、エチレンジアミンジメタクリルアミド、グリセロールジメタクリレート、及びこれらの組み合わせが挙げられ得る。
いくつかの実施例において使用され得る架橋剤の量は、例えば、反応混合物の反応性構成成分100グラム当たり約0.000415〜約0.0156モルの範囲であり得る。使用される親水性架橋剤の量は一般的に、約0〜約2重量%、例えば、約0.5〜約2重量%であり得る。反応性混合物の粘度を増加させることができ、及び/又は遅反応親水性モノマーとの水素結合の度合いを増加することができる、親水性ポリマー構成成分(例えば、高分子量親水性ポリマー)が望ましい場合がある。
高分子量親水性ポリマーは、湿潤性の改善をもたらし、いくつかの実施例において、本発明のセパレータに対する湿潤性を改善し得る。いくつかの非限定的な実施例において、高分子量親水性ポリマーは、水素結合受容体であり、これは水生環境において、水と水素結合し、よって効果的により親水性となる。水の不在により、反応性混合物への親水性ポリマーの導入が促進される。具体的に挙げられる高分子量親水性ポリマー以外にも、あらゆる高分子量ポリマーが本発明において有用であるものと考えられるが、ただし、前記ポリマーが例示的なシリコーンヒドロゲル配合物に追加されるとき、親水性ポリマーは(a)反応性混合物から実質的に相分離されず、かつ(b)結果として生じる硬化したポリマーに湿潤性を付与する。
いくつかの実施例において、高分子量親水性ポリマーは、処理温度において希釈剤中に溶解可能であり得る。水、又はイソプロピルアルコール(IPA)などの水溶性希釈剤を使用する製造プロセスは、その単純性及び低いコストのために望ましい実施例であり得る。これらの実施例において、処理温度において水溶性である高分子量親水性ポリマーもまた、所望の実施例であり得る。
高分子量親水性ポリマーの例としては、ポリアミド、ポリラクトン、ポリイミド、ポリラクタム、及び官能化ポリアミド、ポリラクトン、ポリイミド、ポリラクタム(PVP、及びそのコポリマーなどの)、又は代替的に、DMAを、よりモル量の低い、HEMAなどのヒドロキシル基モノマーと共重合させ、その後、結果として生じたコポリマーのヒドロキシル基を、ラジカル重合可能基を含む物質と反応させることにより、官能化させたDMA、が挙げられ得るがこれらに限定されない。高分子量親水性ポリマーとしては、ポリ−N−ビニルピロリドン、ポリ−N−ビニル−2−ピペリドン、ポリ−N−ビニル−2−カプロラクタム、ポリ−N−ビニル−3−メチル−2−カプロラクタム、ポリ−N−ビニル−3−メチル−2−ピペリドン、ポリ−Nービニル−4−メチル−2−ピペリドン、ポリ−N−ビニル−4−メチル−2−カプロラクタム、ポリ−N−ビニル−3−エチル−2−ピロリドン、及びポリ−N−ビニル−4,5−ジメチル−2−ピロリドン、ポリビニルイミダゾール、ポリ−N−−N−ジメチルアクリルアミド、ポリビニルアルコール、ポリアクリル酸、ポリエチレンオキシド、ポリ2エチルオキサゾリン、ヘパリン多糖類、多糖類、これらの混合物及びコポリマー(ブロック又はランダム、分枝、多鎖、櫛状、又は星形を含む)、が挙げられるがこれらに限定されず、ポリ−N−ビニルピロリドン(PVP)は望ましい実施例であり得、PVPがヒドロゲル組成物に添加されて、低い表面摩擦、及び低い脱水速度を呈する相互貫入ネットワークを形成する。
当該技術分野において一般的に既知であり得る追加的な構成成分又は添加物も含まれてもよい。添加物としては、紫外線吸収化合物、CGI 819などの光開始剤、反応性インク、抗菌性化合物、顔料、フォトクロミック、剥離剤、これらの組み合わせなどが挙げられ得るが、これらに限定されない。
これらの種類のセパレータと関連する方法はまた、CGI 819を受け取ること、その後PVP、HEMA、EGDMA、及びIPAと混合すること、その後結果として生じた混合物を熱源、又は光子への暴露を用いて硬化すること、を含み得る。いくつかの実施例では、光子への暴露は、光子エネルギーが、電磁スペクトルの紫外線領域において生じる波長と一致するところで、行われる場合がある。重合反応において一般的に行われる、重合開始の他の方法は一般的に、本発明の範囲内である。
集電体及び電極
亜鉛炭素電池及びルクランシェ電池のいくつかの実施例では、カソード集電体は、焼結した炭素棒であってもよい。この種の材料は、本発明の薄型電気化学セルの技術的課題に直面する場合がある。いくつかの実施例では、印刷されたカーボンインクが、薄型電気化学セルにおいて、焼結した炭素棒の代わりにカソード集電体で使用される場合があり、こうした実施例では、結果として得られる電気化学セルに著しい損害を与えることなく、結果として得られる装置を形成することができる。典型的には、前記カーボンインクは、ポリマー膜、又は事例によっては金属ホイルを含む場合があるパッケージング材に、直接適用される場合がある。パッケージング膜が金属ホイルであり得る実施例では、カーボンインクは、下にある金属ホイルを、電解質による化学的な劣化及び/又は腐食から保護する必要があり得る。更に、こうした実施例では、カーボンインク集電体は、電気化学セルの内側から電気化学セルの外側まで電気伝導性を提供する必要があり得るので、カーボンインクの周り又はカーボンインクを通した封止を暗示する。カーボンインクは多孔質であるので、これは簡単に達成することはできず、非常に困難であり得る。カーボンインクはまた、厚さが有限の比較的薄い(例えば、10〜20マイクロメートルの)層で塗布されてもよい。パッケージ内部の総厚さがわずか約100〜150マイクロメートルであり得る薄型電気化学セル設計では、カーボンインク層の厚さは電気化学セルの総内容積のかなりの割合を占め、それによりセルの電気的性能に負の影響を与える場合がある。更に、電池全体、特に集電体が薄いということは、集電体の断面積が小さいことを意味し得る。トレースの抵抗はトレースの長さと共に増大し、断面積と共に低減するので、集電体の厚さと抵抗との間には直接的なトレードオフが存在し得る。カーボンインクのバルク抵抗率は、薄型電池の抵抗要件を満たすには不十分であり得る。銀又は他の導電性金属を充填したインクはまた、抵抗及び/又は厚さを低下させると考えられるが、新規な電解質との不適合性といった新たな課題をもたらし得る。こうした要因を考慮すると、いくつかの実施例では、薄い金属ホイルを集電体として使用することによって、又は薄い金属膜を下にあるポリマーパッケージング層に塗布して集電体として作用させることによって、本発明の高効率で高性能の薄型電気化学セルを実現するのが望ましい場合がある。そのような金属ホイルの固有抵抗は著しく低い場合があるので、印刷されたカーボンインクよりもはるかに薄い厚さで、電気的抵抗に関する要件を満たすのが可能となる。
いくつかの実施例では、上部及び/又は底部パッケージング層の1つ以上は、スパッタリングされた集電体用金属又は金属積層体のための基板としての役割を果たし得る。例えば、3M(登録商標)Scotchpak 1109裏材は、カソードの集電体として有用な1つ以上の金属層の物理気相蒸着(PVD)を用いて金属化されてもよい。カソード集電体として有用な例示的な金属積層体は、Ti−W(チタン−タングステン)接着層及びTi(チタン)導体層であり得る。アノード集電体として有用な例示的な金属積層体は、Ti−W接着層、Au(金)導体層、及びIn(インジウム)蒸着層であり得る。PVD層の厚さは、合計で500nm未満であってもよい。金属の多層を用いる場合、電気化学的特性及びバリア特性は電池と適合している必要があり得る。例えば、導電体の厚い層を成長させるために、シード層の上に銅を電気めっきしてもよい。銅の上に追加の層をめっきしてもよい。しかしながら、銅は、特に亜鉛の存在下において、特定の電解質と電気化学的に不適合であり得る。したがって、電池内の層として銅を使用する場合、電池電解質から銅を十分に隔離する必要があり得る。あるいは、銅を除外してもよく、又は他の金属で置き換えてもよい。
いくつかの他の実施例では、上部及び/又は底部パッケージングホイルはまた、集電体として機能し得る。例えば、25マイクロメートルの真鍮ホイルは、亜鉛アノードのアノード集電体として有用であり得る。真鍮ホイルは、所望により、亜鉛で電気めっきする前にインジウムで電気めっきしてもよい。一実施例では、カソード集電体パッケージングホイルは、チタンホイル、ハステロイC−276ホイル、クロムホイル、及び/又はタンタルホイルを含んでもよい。ある種の設計では、1つ以上のパッケージングホイルを精密打ち披き、エンボス加工、エッチング、テクスチャ加工、レーザー加工、又は別の方法で加工して、最終的なセルパッケージングにとって望ましい形態、表面粗さ、及び/又は形状を得てもよい。
カソード混合物
本発明の概念と一致し得る多数のカソード化学物質が存在し得る。いくつかの実施例において、カソード混合物とは、電池カソードを形成するために使用される化学配合物のための用語であり得、ペースト、ゲル、懸濁液、又はスラリーとして適用され得、酸化マグネシウムなどの金属遷移酸化物、例えば、カーボンブラック、又はグラファイトなどの導電性粉末の形態であり得る何らかの形態の導電性添加物、及びポリビニルピロリドン(PVP)又は他の何らかの結合剤添加物などの水溶性ポリマーを含み得る。いくつかの実施例では、結合剤、電解質塩、腐食防止剤、水又は他の溶媒、界面活性剤、レオロジー変性剤、及び導電性ポリマーなどの他の導電性添加剤のうちの1つ以上など、他の構成成分が含まれてもよい。カソード混合物は、配合されて適切に混合されると、セパレータ及び/又はカソード集電体の所望部分の上に分与することができるか、あるいは同様の方法でスキージによりスクリーン又はステンシルに通すことができる、望ましいレオロジーを有することができる。いくつかの実施例では、カソード混合物は、後のセル組み立て工程で使用する前に乾燥させてもよいが、他の実施例では、カソードは、電解質構成成分の一部又は全てを含んでいてもよく、選択した含水量まで部分的に乾燥させるだけであってもよい。
遷移酸化金属は例えば、酸化マグネシウムであり得る。カソード混合物で使用され得る二酸化マンガンは、例えば、電解二酸化マンガン(EMD)であり得、これは、天然二酸化マンガン(NMD)又は化学二酸化マンガン(CMD)などの他の形態と比べ、この種類の酸化マグネシウムがもたらす有益な追加的な特定のエネルギーによるものである。更に、本発明の電池で有用なEMDは、堆積可能又は印刷可能なカソード混合物ペースト/スラリーの形成を助ける場合がある粒径及び粒径分布を有する必要があり得る。具体的には、EMDを処理して、電池の内寸、セパレータ厚さ、分与チップの直径、ステンシル開口部寸法、又はスクリーンメッシュ寸法などの他の特徴に対して大きいと思われる、著しく大きな粒子構成成分を除去してもよい。粒径の最適化はまた、例えば、内部インピーダンス、及び放電容量などの、電池性能を改善するために使用されてもよい。
ミリングは、圧壊、粉砕、切断、振動、又は他のプロセスにより、ある平均粒径の個体材料をより小さい平均粒径にするものである。ミリングはまた、有用な物質を、これらが埋め込まれている場合があるマトリックス材料から解放し、鉱物を濃縮するために使用されてもよい。ミルは、粉砕、圧壊、又は切断により、個体材料をより小さい断片へと分割する装置である。ミリングのためのいくつかの手段が存在し、これにより多くの種類の材料を処理することができる。このようなミリング手段としては、他のミリングの代替手段の中でもとりわけ、ボールミル、ビードミル、乳鉢と乳棒、ローラープレス、及びジェットミルが挙げられる。ミリングの一例は、ジェットミリングであり得る。ミリングの後、個体の状態、すなわち、粒径、粒径配置(particle size disposition)、及び粒子の形状が変更される。汚染物質又は湿分を、凝集体から除去又は分離して、移送又は構造的充填の前に「乾燥充填物(dry fill)」を生成するために、アグリゲートミリング(Aggregate milling)プロセスも使用されてもよい。いくつかの装置は、個体材料を、その寸法に最小粒径、及び最大粒径の両方の境界が与えられた、粒子混合物へと分類するために、様々な技法を組み合わせ得る。このような処理は、「分級法」、又は「分級」と称される場合がある。
ミリングは、カソード混合物成分の均一な粒径分布のための、カソード混合物生産の一態様であり得る。カソード混合物における均一の粒径は、カソードの粘度、レオロジー、導電性、及び他の特性を補助し得る。ミリングは、カソード混合物成分の凝集、又は集団収集を制御することにより、これらの特性を補助し得る凝集(別個の要素の集塊化であり、カソード混合物の事例では炭素同素体、及び遷移金属酸化物)は、図11に図示され、かつ以降に記載されるように、所望のカソードキャビティにボイドを残すことにより、充填プロセスに負の影響を与え得る。
また、濾過は、集塊又は望ましくない粒子の除去のための別の重要な工程であり得る。望ましくない粒子は、大きすぎる粒子、汚染物質、調整プロセスにおいて明示的に説明されない、他の粒子を含み得る。濾過は、濾紙による濾過、真空濾過、クロマトグラフィー、精密濾過、及び他の濾過手段によって達成され得る。
いくつかの実施例では、EMDは、7マイクロメートルの平均粒径を有していてもよく、最大約70マイクロメートルまでの粒子を含み得る大径粒子を含有する。代替実施例では、大径粒子の含有量を一定の閾値未満(例えば、25マイクロメートル以下)に限定するために、EMDをふるいにかけ、更に粉砕し、又は別の方法で分離若しくは処理してもよい。
カソードは、二酸化銀又はオキシ水酸化ニッケルを更に含み得る。かかる材料は、二酸化マンガンと比べて、容量を増大させ、かつ放電時の負荷時電圧の低下を少なくすることができ、これらは共に電池において望ましい特性である。こうしたカソードに基づく電池は、業界及び文献に見られる現行例を有し得る。二酸化銀カソードを用いる新規な超小型電池は、生体適合性電解質(例えば、水酸化カリウムの代わりに亜鉛塩及び/又はアンモニウム塩を含むもの)を含んでいてもよい。亜鉛/アンモニウム塩は、酢酸塩、硫化物、臭化物、グルコン酸塩、硝酸塩、及びヨウ化物を含み得る。
カソード混合物のいくつかの例には、ポリマー結合剤が挙げられる。結合剤は、カソード混合物において多くの機能を果たすことができる。結合剤の主要機能は、EMD粒子と炭素粒子との間に、粒子間の十分な電気的ネットワークを作り出すことであり得る。結合剤の2つ目の機能は、カソード集電体に対する機械的接着、及び電気的接触を促進することであり得る。結合剤の3つ目の機能は、有利に分与及び/又はステンシリング/スクリーニングするために、カソード混合物のレオロジー特性に影響を与えることであり得る。更に、結合剤の4つ目の機能は、カソード内への電解質の吸い上げ及び分布を向上させることであり得る。
結合剤ポリマー並びに使用される量の選択は、本発明の電気化学セルにおけるカソードの機能にとって有益であり得る。使用する電解質に結合剤ポリマーが可溶性であり過ぎる場合には、結合剤の主要機能である電気的導通は、セルが機能しなくなる程度まで大幅な影響を受け得る。これとは反対に、使用する電解質に結合剤ポリマーが不溶性である場合には、EMDの一部は電解質からイオン的に絶縁され、その結果、容量低下、開回路電圧の低下、及び/又は内部抵抗の上昇など、セル性能が衰える。
結合剤は疎水性であってもよく、これは親水性であってもよい。本発明にとって有用な結合剤ポリマーの例としては、とりわけ、PVP、ポリイソブチレン(PIB)、Kraton Polymers製のもののようなスチレン末端ブロックを含むゴムトリブロックコポリマー、スチレン−ブタジエンラテックスブロックコポリマー、ポリアクリル酸、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリテトラフルオロエチレンなどのフルオロカーボン固体が挙げられる。
溶媒は、カソード混合物の1つの構成成分であり得る。溶媒はカソード混合物の湿潤において有用であり得、これは混合物内の粒子の分布を補助し得る。溶媒の一実施例はトルエンであり得る。また、界面活性剤は、カソード混合物の湿潤、したがって分布において有用であり得る。界面活性剤の一実施例は、トリトン(Triton)(商標)QS−44であり得る。トリトン(商標)QS−44は、カソード混合物内の凝集成分の溶解を補助し、カソード混合物の成分のより均一な分布を可能にする場合がある。
導電性炭素は典型的には、カソードの生成において使用され得る。炭素は、多くの同素体、又は異なる構造変形を形成することができる。異なる炭素同素体は、異なる物理的特性を有し、導電性の変化を可能にする。例えば、カーボンブラックの「弾力性」は、カソード混合物の集電体への接着を補助し得る。しかしながら、比較的少ない量のエネルギーを要求する通電素子において、電気伝導性のこれらの変化は、他の特性の中でもとりわけ、密度、粒径、熱伝導性、及び相対的均一性など、他の好ましい特性ほど重要ではないことがある。炭素同素体の例としては、ダイヤモンド、グラファイト、グラフェン、非晶質炭素(非正式にはカーボンブラックと称される)、バックミンスターフローレン、ガラス状炭素(ガラス質炭素とも称される)、カーボンエーロゲル、及び導電性の炭素の他の可能な形態が挙げられる。炭素同素体の一例はグラファイトであり得る。
完成したカソード混合配合物の一例は、以下の表1に掲載され得る。
Figure 2016045499
ここでPIBはポリイソブチレン、JMEMDはジェットミルをかけた二酸化マンガン、KS6はTimcalにより製造されるグラファイト、PIB B10はB10の分子量等級のポリイソブチレンである。
カソード混合物が配合及び加工されると、混合物はヒドロゲルセパレータ、又はカソード集電体などの表面上に、又は層状構造体内のキャビティなどの容積内へと、分与、適用、及び/又は保存される場合がある。表面上への充填により、結果としてある容積内が経時的に充填される。混合物を適用、分与、及び/又は保存するために、分与、適用、及び/又は保存プロセスを最適化するレオロジーが望ましい場合がある。例えば、より粘度の低いレオロジーにより、キャビティをより良好に充填することができる一方で、同時に場合によって粒子分布を犠牲にする可能性がある。より粘稠なレオロジーは、粒子の分布の最適化を可能にし得る一方で、場合によりキャビティを充填する能力を低減し、場合により導電性を失う可能性がある。
例えば、図10A〜図10Fは、最適及び非最適な、キャビティ内への分与又は適用を図示する。図10Aは、適用、分与、及び/又は保存の後に、カソード混合物により最適に充填されたキャビティを図示する。図10Bは、左下の四分区間1002で充填が不十分であるキャビティを例示し、これは望ましくないカソード混合物レオロジーの直接的な結果であり得る。図10Cは、左上の四分区間1004で充填が不十分であるキャビティを例示し、これは望ましくないカソード混合物レオロジーの直接的な結果であり得る。図10D及び図10Eは、キャビティの中部1006及び底部1008において充填が不十分であるキャビティを例示し、これは望ましくないカソード混合物レオロジーの直接的な結果により生じる気泡であり得る。図10Fは、キャビティの上方1010に向かって充填が不十分であるキャビティを図示し、これは望ましくないカソード混合物レオロジーの直接的な結果であり得る。図10B〜図10Fに例示される欠陥は、例えば、容量の低下、内部抵抗の増加、及び信頼性の低下など、いくつかの電池の問題を生じ得る。
更に、図11では、望ましくないカソード混合物レオロジーの結果として、凝集1102が生じ得る。凝集は、結果としてカソード混合物の性能の減少、例えば、放電容量の減少、及び内部抵抗の増加を生じ得る。
一実施例では、カソード混合物は、層状構造キャビティをスキージ充填する一方で、導電性を維持するために最適な、ピーナッツバター様の稠度と類似していてもよい。別の実施例では、混合物は、キャビティ内に印刷するのに十分な粘稠度であり得る。更に別の実施例では、カソード混合物はキャビティ内で乾燥、定置、及び貯蔵され得る。
アノード及びアノード腐食防止剤
本発明の層状電池のためのアノードは、例えば亜鉛を含む場合がある。従来の亜鉛炭素電池では、亜鉛アノードは物理的に缶の形状をとることができ、その中に電気化学セルの内容物を収容することができる。本発明の電池では、亜鉛缶は一実施例であり得るが、超小型電池設計を実現するために望ましい形状を提供することができる、他の物理的形状の亜鉛が存在する場合がある。
亜鉛の電気めっきは、例えば、金属部品の保護コーティング又は美観用コーティングなど、多くの産業用途におけるプロセスタイプである。いくつかの実施例では、電気めっき亜鉛は、本発明の電池に有用な薄型で応従するアノードを形成するために使用される場合がある。更に、電気めっきした亜鉛は、設計意図に応じて多くの異なる形状でパターン化される場合がある。電気めっき亜鉛をパターン化するための容易な手段は、フォトマスク又は物理的なマスクを用いた加工であり得る。フォトマスクの場合では、フォトレジストが導電性基板に塗布されてもよく、引き続いてこの基板上に亜鉛をめっきすることができる。次に、フォトマスクを用いてフォトレジストに所望のめっきパターンを投影し、それによってフォトレジストの選択領域を硬化させることができる。次に、適切な溶媒及び清浄化技法を用いて、硬化していないフォトレジストを除去することができる。こうして、導電材料のパターン化した領域が得られ、このパターン領域上に亜鉛電気めっき処理を施すことができる。この方法は、めっきされる亜鉛の形状又は設計に利益をもたらすことができるが、このアプローチは入手可能なフォトパターン化可能な材料を使用する必要があり得、この材料はセルパッケージ構造体全体の特性に対して拘束を有する場合がある。したがって、本発明の超小型薄型電池のいくつかの設計を実現するために、亜鉛をパターン化するための新しい新規な方法が必要とされ得る。
亜鉛アノードのパターン化の代替手段は、物理的なマスクの適用によるものであってもよい。物理的なマスクは、所望のバリア及び/又はパッケージング特性を有する膜に所望の開口を切り込むことによって作製され得る。加えて、膜の片面又は両面に感圧接着剤を塗布してもよい。最後に、膜の片面又は両面の接着剤に保護剥離ライナーを適用してもよい。剥離ライナーは、開口の切断中に接着剤を保護する目的と、電気化学セルの組み立ての特定の加工工程(具体的にはカソード充填工程)の間、接着剤を保護する目的の両方に役立ち得る。いくつかの実施例では、亜鉛用マスクは、厚さ約100マイクロメートルのPET膜を含んでいてもよく、この膜の両面に感圧接着剤を層厚約10〜20マイクロメートルで塗布してもよい。両方のPSA層は、PET剥離膜で覆われてもよく、このPET剥離膜は、低表面エネルギー表面処理が施されていてもよく、およその厚さが50マイクロメートルであってよい。こうした実施例では、多層亜鉛用マスクは、PSA及びPETフィルを含み得る。本明細書に記載するPET膜及びPET/PSA亜鉛用マスク構造体は、マスクに超精密な開口を形成して後のめっきを容易にするために、Oxford Lasers Eシリーズレーザー微細加工ワークステーションのような精密なナノ秒レーザー微細加工機器で処理されるのが望ましい場合がある。本質的に、亜鉛用マスクを製造した後、片面の剥離ライナーの片面を除去してもよく、開口を有するマスクを、アノード集電体及び/又はアノード側のパッケージ膜/ホイルに積層してもよい。このようにして、PSAは開口の内側縁部に封止部を形成し、電気めっきを施している間、清浄で精密な亜鉛のマスキングを容易にする。
亜鉛用マスクを定置した後に、1つ以上の金属材料の電気めっきを行ってもよい。いくつかの実施例では、亜鉛を、真鍮などの電気化学的に適合性のあるアノード集電体ホイル上に直接電気めっきしてもよい。アノード側のパッケージングがポリマー膜又は多層ポリマー膜を含み、その膜の上にシードメタライゼーション(seed metallization)が適用されている代替設計例では、亜鉛、及び/又は亜鉛を堆積させるために使用するめっき溶液は、下にあるシードメタライゼーションと化学的に適合性がない場合がある。適合性の欠落の顕在化は、膜の亀裂、腐食、及び/又はセル電解質と接触した際のH発生の悪化を含み得る。そのような場合、シード金属に追加の金属を塗布して、システムの全体的な化学的適合性を改善するように影響を与えてもよい。電気化学セル構造体において特に有用性を見出すことができる金属の1種は、インジウムであり得る。インジウムは、電池グレードの亜鉛において合金化剤として広く使用することができ、その主な役割は、電解質の存在下で亜鉛に防食性をもたらすことである。いくつかの実施例では、インジウムを、Ti−W及びAuなどの様々なシードメタライゼーション上に首尾良く堆積させることができる。上記シードメタライゼーション層上に得られる1〜3マイクロメートルのインジウム膜は、応力が低く、接着性であり得る。このようにして、アノード側のパッケージング膜、及びインジウム最上層を有する取り付けられた集電体は、応従性及び耐久性であってもよい。いくつかの実施例では、インジウム処理の施された表面上に亜鉛を堆積させることが可能であり得るが、得られる堆積物は非常に不均一で小塊を有する場合がある。この影響は、低電流密度設定(例えば、20アンペア毎平方フィート(ASF))で起こり得る。顕微鏡で見ると、下にある滑らかなインジウム堆積物上に亜鉛の小塊が形成されているのが観察される場合がある。ある種の電気化学セル設計において、亜鉛アノード層のための垂直空間許容度は、最大で約5〜10マイクロメートル厚さであり得るが、いくつかの実施例では、亜鉛めっきに低電流密度を用いる場合があり、その結果生じる小塊の成長は、所望の最大アノードの垂直厚さよりも大きくなる可能性がある。亜鉛小塊の成長は、インジウムの過電圧が高いことと、インジウムの酸化物層の存在が組み合わさることにより生じる可能性がある。
いくつかの実施例では、高電流密度での直流めっきにより、インジウム表面上の比較的大きな亜鉛小塊成長パターンを克服することが可能である。例えば、100ASFめっき条件は小塊亜鉛を生じさせ得るが、亜鉛小塊の寸法は、20ASFめっき条件と比べて劇的に縮小され得る。更に、小塊の数は、100ASFめっき条件下で非常に多くなり得る。結果として得られる亜鉛膜は、最終的には、約5〜10マイクロメートルの垂直空間許容度を満たしながらも、小塊成長の残存特徴を若干有する、いくらか均一な層へと融合することができる。
電気化学セルにおけるインジウムの追加的な利益は、亜鉛を含有する水性電気化学セルで起こるゆっくりとしたプロセスであり得る、水素形成の減少であり得る。インジウムは、アノード集電体の1つ以上に、共めっき合金化構成成分としてアノード自体に、又は電気めっき亜鉛上の表面コーティングとして、有利に塗布され得る。後者の事例では、インジウム表面コーティングは、三塩化インジウム又は酢酸インジウムなどの電解質添加剤を通じてその場で塗布されるのが望ましい場合がある。そのような添加剤が低濃度で電解質に添加され得る場合、インジウムは、露出している亜鉛表面、並びに露出しているアノード集電体の部分に、自然発生的にめっきされ得る。
市販の一次電池で一般に使用されている亜鉛及び類似のアノードは、典型的には、シート、ロッド、及びペーストの形態で入手できる。小形生体適合性電池のアノードは、同様な形態のもの(例えば薄いホイル)であってもよく、又は前述したようにめっきされていてもよい。このアノードの特性は、例えば、機械加工及びめっきプロセスに起因する汚染物質又は表面仕上げが異なるため、既存の電池のアノードの特性と著しく異なり得る。したがって、電極及び電解質は、容量、インピーダンス、及び貯蔵寿命要件を満たす特別な設計を必要とし得る。例えば、電極性能を最適化するために、特別なめっきプロセスパラメータ、めっき浴組成、表面処理、及び電解質組成が必要であり得る。
電池アーキテクチャ及び製造
電池アーキテクチャと製造技術は密接に関連し合っている場合がある。本明細書の前の項で論じたように、電池は、次の素子、すなわち、カソードと、アノードと、セパレータと、電解質と、カソード集電体と、アノード集電体と、パッケージングと、を有する。巧みな設計により、こうした素子を、製造が容易なサブアセンブリに組み付ける試みがなされてもよい。他の実施例では、最適化された設計は、例えば金属パッケージが集電体との二重の役割を果たす、といったように、二重用途の構成要素を有していてもよい。相対容積及び厚さの観点から、こうした素子は、カソードを除き、ほぼ全て同じ容積であってもよい。いくつかの実施例では、機械的密度、エネルギー密度、放電効率、材料純度、並びに、結合剤、充填剤、及び導電剤の存在が著しく異なることから、電気化学システムは、カソードの容積の約2〜10倍のアノードを必要とし得る。こうした実施例では、様々な構成要素の相対的な大きさは、次の素子厚さに近づく場合がある。アノード集電体=1μm、カソード集電体=1μm、電解質=間隙液(実質的に0μm)、セパレータ=所望通りの薄さ又は厚さであり、計画最大厚は約15μmであり得、アノード=5μm、及びカソード=50μm。素子のこうした実施例については、使用環境において電池化学物質を維持するために十分な保護を提供するのに必要なパッケージングは、最大約50μmの計画最大厚さを有し得る。
円筒形状又は矩形形状といった大型の角柱構造体とは本質的に異なっている場合があり、かつウェハベースのソリッドステート構造体と異なっている場合がある、いくつかの実施例では、かかる実施例は、電池素子がその内部に配置されている、様々な構成に作製されたウェブ又はシートを使用した「パウチ」状の構造体とすることができる。この収容体は、2枚の膜又は他面の上に折り曲げられた1枚の膜を有してもよく、これらの構造体のいずれもほぼ平面状の表面を2つ形成することができ、次にこれらの平面の外周を封止して容器を形成することができる。この薄いが幅広の形状因子により、電池素子自体を薄くかつ幅広とすることができる。更に、こうした実施例は、コーティング、グラビア印刷、スクリーン印刷、スパッタリング、又は他の同様の製造技術を通した用途に好適であり得る。
薄いが幅広の形状因子を有するこうした「パウチ状」電池の実施例では、アノード、セパレータ、及びカソードなどの内部構成要素の配置は数多く存在し得る。2枚の膜によって形成された密閉領域内において、こうした基本素子は、同一平面上に隣り合っている「共平面」であるか、又は対向面上で向かい合っていてもよい「共対面」のいずれかであり得る。共平面配置では、アノード、セパレータ、及びカソードは、同一表面上に堆積され得る。共対面配置では、アノードは表面−1に堆積されてもよく、カソードは表面−2に堆積されてもよく、セパレータは、これら2つの素子の間に定置するか、両面のうちの一方に堆積するか又はそれ自体個別の素子として挿入するかのいずれかで定置されてもよい。
別の種類の実施例は積層アセンブリとして分類することができ、このアセンブリは、ウェブ又はシートの形態の膜を使用して、電池層を一層ずつ構築することを含み得る。シートは、感圧接着剤、熱活性接着剤、又は化学反応型接着剤などの接着剤を使用して互いに接合されてもよい。いくつかの実施例では、シートは、熱溶着、超音波溶接等などの溶接技法によって接合されてもよい。シートは、ロール・ツー・ロール(R2R)、又はシート・ツー・シートアセンブリのような標準的な工業的手法に適していてもよい。先に指摘したように、カソード用の内部容積は、電池内の他の活性素子よりも実質的に大きい必要があり得る。電池構造体の多くは、このカソード材料のスペースを作り出し、電池が屈曲する際にカソードが移動しないように支持する必要があり得る。厚さのかなりの部分を消費する場合がある電池構造体の別の部分は、セパレータ材料であり得る。いくつかの実施例では、シート形状のセパレータは、積層加工の有利な解決法を生み出すことができる。他の実施例では、セパレータは、セパレータとして機能する層にヒドロゲル材料を分与することによって形成されてもよい。
こうした積層電池アセンブリの実施例では、成形品は、アノードシート(これはパッケージ層とアノード集電体の組み合わせであってもよい)並びにアノード層の基板を有し得る。成形品はまた、任意選択のセパレータスペーサシート、カソードスペーサシート、及びカソードシートを有し得る。カソードシートは、パッケージ層とカソード集電体層との組み合わせであってもよい。
電極と集電体との間が密接に接触していることが、インピーダンスを低減し、かつ放電容量を増大させるために非常に重要である。電極の一部が集電体と接触していない場合、電気の伝導が電極を通って生じることから(電極の導電性は典型的には、集電体よりも低い)、又は電極の一部が完全に切断された状態になることから、抵抗が増大し得る。コインセル及び円筒電池において、密着性は、缶をクリンプする機械的力、缶内へのペースト充填、又は同様の手段によって実現される。市販のセルでは、電池内の力を維持するために、波形座金又は同様のバネが使用されているが、これらは小型電池の全厚を増大させることがある。典型的なパッチ電池(patch batteries)では、セパレータは、電解質に浸漬され、電極を挟んで定置され、外部パッケージングによって押圧され得る。共対面層状電池では、電極密着性を増強させるための方法がいくつか存在する。アノードは、ペーストを使用するのではなく、集電体上に直接めっきされてもよい。この方法は本質的に、高レベルの密着性及び導電性をもたらす。しかしながら、カソードは、典型的にはペーストである。カソードペースト中に存在する結合剤材料は接着力と凝集性を提供することができるが、カソードペーストを確実にカソード集電体と接触した状態に保つためには、機械的圧縮が必要となり得る。パッケージが曲げられ、電池が経年劣化して放電することから、例えば、薄くて小さい封止部を通って水分がパッケージから放出するので、これは特に重要であり得る。共対面層状電池では、カソードの圧縮は、アノードとカソードとの間に柔軟なセパレータ及び/又は電解質を導入することによって達成し得る。例えば、ゲル電解質又はヒドロゲルセパレータは、アセンブリを圧縮することができ、液体電解質のように電池から簡単に流れ出ることはない。電池を封止し終わったら、電解質及び/又はセパレータはカソードを押し返すことができる。層状スタックの組み立て後にエンボス加工工程を行って、積層体を圧縮してもよい。
電池の生体適合性の態様
本発明による電池は、安全性及び生体適合性に関する重要な態様を有し得る。いくつかの例では、生物医学的装置用電池は、典型的な使用の状況で求められる要件以上の要件を満たす必要があり得る。いくつかの例では、設計的態様は、ストレスを与える事象に関連して考察され得る。例えば、電子コンタクトレンズの安全性は、レンズの挿入又は取り外しの際にユーザーがレンズを破壊した場合を考慮する必要があり得る。別の例では、設計的態様は、ユーザーの目に異物が当たる可能性を考慮する場合がある。設計のパラメータを作製する上で考慮され、かつ制約を生じさせ得るストレスの多い状況の更なる例は、非限定的な例として、水中環境又は高地環境のような厳しい環境においてユーザーがレンズを装着する可能性に関する場合がある。
かかる装置の安全性は、それにより、又はそれから装置を作製する材料、装置を製造する際に使用するこうした材料の量、及び周囲環境又は体内環境から装置を隔てるために適用されるパッケージの影響を受ける場合がある。一例において、ペースメーカーは、電池を含む場合があり、かつ長期間にわたってユーザーの体内に埋め込まれる可能性がある、典型的な種類の生物医学的装置であり得る。いくつかの例では、かかるペースメーカーは、典型的には、溶接されたチタン気密容器で、又は他の例では、複数の封入層でパッケージ化される場合がある。新興の電動式生物医学的装置は、パッケージング(特に電池パッケージング)に関する新たな課題を提供し得る。こうした新たな装置は、既存の生物医学的装置よりもかなり小さい場合があり、例えば、電子コンタクトレンズ又はピルカメラは、ペースメーカーよりも著しく小さい場合がある。かかる例では、パッケージングのために利用可能な体積及び面積は、大幅に減少する場合がある。限定された容積の利点は、材料及び化学物質の量を、本質的にユーザーへの暴露の可能性を安全限界値よりも低く制限するほど、大変少なくすることができることである。
キャビティに基づく積層体の手法は、生体適合性を向上させる手段をもたらし得る。各キャビティは、電池容積に対して比較的大きい封止表面の比率を提供する積層材料で取り囲まれる場合がある。更に、キャビティを取り囲む封止部、又は材料の何らかの不良が生じた場合、電池を残存する可能性がある電池材料の容積が、その単一のキャビティの部分に制限される。電池は更に、封止材料のポケット、封止材料の更なるコーティング、並びに、レーザー及び熱による封止などの様々な封止を形成するための異なる手段など、追加的な封入の態様により更に封止されてもよい。
図12A〜図12Cを参照すると、修正されたキャビティによる電池セルの実施例が、例示的な封止/拡散態様により示される。まず図12Aでは、封入部を備える例示的な生体適合性通電素子の平面図が図示される。封止することができるエンブロープ1201は、少なくとも、アノードを備えるアノード集電体1202、カソードを備えるカソード集電体1204、及び内部接着剤/封止剤1208を含有する通電素子を封入し得る。封止することができるエンブロープ1201は、ポリプロピレンなどの、封止することができるポリマー充填剤を含み得る。内部接着剤/封止剤1208は、ポリイソブチレンなどの感圧接着剤を含み得る。
要件の全てではなくとも、その多くを満たすPSA組成物に配合することができる市販材料は、ポリイソブチレン(PIB)であり得る。更に、PIBは、吸水性が非常に低く、かつ酸素透過性が低い、優れたバリア封止剤であり得る。本発明の実施例で有用なPIBの例は、BASF CorporationのOppanol(登録商標)B15であり得る。
次に、図12Bは、封入部を備える生体適合性通電素子の例示的な底面図を図示する。図12Bは、異なる例示的な封止部1206において封止される、プラスチックの、封止することができるエンベロープ1201の能力を図示する。いくつかの実施例では、封止は、熱加工、レーザー加工、溶媒加工、摩擦加工、超音波加工、又はアーク加工を含み得る溶接プロセスによって形成されてもよい。他の実施例では、封止は、接着剤、エポキシ樹脂、アクリル樹脂、天然ゴム、及び合成ゴムなどの接着封止剤を使用して形成されてもよい。他の実施例は、ガスケットタイプの材料を利用することにより得てもよく、その材料は、非限定的な例を挙げると、コルク、天然及び合成ゴム、ポリテトラフルオロエチレン(PTFE)、ポリプロピレン、及びシリコーンから形成され得る。
図12Cは、アノードを備えるアノード集電体1201と、カソードブレンド1212を備えるカソード集電体と、セパレータ1210と、接着剤/封止剤1208と、例示的な封止部1206と、を含有する、封入部を備える生体適合性通電素子の例示的な長縁図(long-edge view)を図示する。封止することができるエンベロープ1201を処理した後、エンベロープは、生体適合性通電素子の構成要素を上部から下部まで封入してもよいが、アノード集電体1202及びカソード集電体1204を含む端部は、依然として漏れを生じやすい。したがって、封止部1206の追加が必要となり得る。集電体封止部は、例えば、溶接、接着剤、ラッカー、エポキシ樹脂、アスファルト(aspalt)、又はPSAを熱処理することを含む、様々な封止方法により封止することができる。
適切に設計された封止構造体、及び関連する封止材料は、材料を生物学的な接触表面と接触しない領域に維持し得るので、通電装置の生体適合性を改善し得る。加えて、適切に形成された封止部は、様々な種類の力を受け取る能力を改善し、破裂して電池のキャビティ(複数可)の内容物を露出させることがない。
電解質の組成、及び濃度は、通電素子の生体適合性と関連し得る。いくつかの実施例では、所与のアノード及びカソード化学物質に対して典型的に使用される場合がある濃度よりも低い濃度は、結果として生体適合性が改善をもたらし、依然として良好な電池性能が維持され得る。例えば、約20%のZnClを含む電解質組成物が、亜鉛ベースの電池において一般的であり得、10%以下の濃度が、要件を満たす電池性能を生じ、一方で同時に、電池装置の本質的な生体適合性を改善する。
同様の実施例では、電解質組成物は、生体適合性を改善し得る他のイオン種に変更されてもよい。一実施例において、コンタクトレンズのためのパッケージング溶液は、電解質組成物として使用されてもよく、涙液と同様の特性を有してもよい。これは、結果として電池貯蔵に関する動作特性の改善、並びに生体適合性の改善を生じ得る。なお更なる実施例では、電解質組成が、生物医学的装置に近接し得る生体液の組成と似得るように、電解質組成に変化を生じさせてもよい。破損が生じたときには、かかる電解質組成物の滲出物が、他の組成物よりも好ましい生体適合性を有するものと考えられる。一実施例において、電解質の組成は、涙液と似ている場合がある。
別の実施例では、いくつかの動作条件下では、電池は、使用中にガス種を生成することがある。電池装置の構造体及び封入の形成に使用する材料の選択は、生成する典型的な気体を電池の外へと拡散させる(さもなければ電池装置内に化学物質を保持する)、電池の動作条件によって、生体適合性を改善し得る。
様々な種類の実施例が、電池装置内の流体化学物質の特性の変化に関連し得る。いくつかの実施例では、様々な増粘剤によって、又は電解質をゲル状の材料に導入することによって、電解質が増粘し得る。増粘した、又はゲル化した流体は、電池装置の外へとより拡散しにくく、これにより装置の生体適合性の態様が改善され得る。
本明細書における実施例の多くは、本発明において記載される様々な方法により形成された、電池装置の生体適合性について記載している。いくつかの実施例では、これらのより高い水準の電池装置が、図1Bを参照して記載される眼科用レンズなどの生物医学的装置内に組み込まれる場合がある。生物医学的装置の生体適合性は、電池装置の直接的な影響だけでなく、電池装置の生物医学装置の生体適合性に対する一貫性の両方の観点から見られる場合がある。
コンタクトレンズの実施例では、電池装置は、電池が電気活性素子を備えるインサート内、又はインサートの外側に位置する電気活性素子へと接続されてもよい。生物医学的装置の生体適合性を実現するために、インサート、電気活性素子、及び電池は全体的に、適切なヒドロゲル配合物で封入されてもよい。いくつかの実施例では、ヒドロゲルは、封入用ヒドロゲルの湿潤性の態様を維持する、配合物を収容していてもよい。したがって、構成要素を収容する外殻に関連する生体適合性の多くの態様は、全体的に生物医学的装置の生体適合性に関連する。これらの態様には、いくつかの非制限的な例として、酸素透過性、湿潤性、化学的適合性、及び溶質透過性が挙げられる。
電池及びインサートは、湿潤性と相互作用する場合があり、よって電池自体の生体適合性の方策が、生物医学的装置全体と大きく関連している。いくつかの実施例では、封止が、材料のインサート、及び電池装置への浸入、及びそこから滲出を防ぐことが想到され得る。これらの実施例では、例えば、インサート及び電池装置周辺の湿潤性及び透過性を実現するため、ヒドロゲル封入層の設計が変更される場合がある。他のいくつかの実施例では、気体の発生により、いくらかのガス種がヒドロゲル封入部を通して電池装置を透過し、生物医学的装置環境に入る。生物医学的装置の部分は(これが、眼科用装置のものでも、又はユーザーの体液及び細胞層に接触する他の装置であっても)、生物医学的装置から、生物医学的装置がその中又はその上にある生物学的環境への境界層に適合させるように設計され得る。
生物医学的装置の生体適合性を考察する別の方法は、形状因子の態様に関連し得る。本発明に記載される積層加工は、結果として生じる電池が非常に小型であるいくつかの実施例において使用され得る。生体適合性のための1つの方法は、結果として生じる電池装置の設計を非常に小さく、非常に薄く、高度に可撓性に維持することに関連し得る。したがって、薄く、小さい装置は、より快適で、したがって生物医学的装置に一体化されるときに、より生体適合性の高い製品を呈し得る。いくつかの実施例では、積層加工で形成され、アノード、カソード、セパレータ、電解質、集電体、及び積層層を含む、層状構造体の厚さは、少なくとも1つの寸法が、1ミリメートル未満であり得る。更なる実施例では、これらの全ての構成要素を備える層状構造体の厚さは、少なくとも1つの寸法が、500マイクロメートル未満であり得る。更なる実施例において、これらの全ての構成要素を備える層状構造体の厚さは、250マイクロメートル未満であり得る。これらの実施例は、層状構造の電池と協調して記載してきたが、記載されたように、改善された生体適合性の態様と適合する他の構造の電池が形成されてもよいことが明らかであり得る。
いくつかの実施例では、生物医学的装置内に封入層を形成し得る、好ましい封入材料は、シリコーン含有構成成分を含み得る。一実施例では、この封入層は、コンタクトレンズのレンズスカートを形成し得る。「シリコーン含有構成成分」は、モノマー、マクロマー又はプレポリマー中に少なくとも1個の[−Si−O−]単位を含有する成分である。好ましくは、総Si及び結合Oは、シリコーン含有構成成分中に、そのシリコーン含有構成成分の総分子量の約20重量%より大きい、更に好ましくは30重量%より大きい量で存在する。有用なシリコーン含有構成成分は、好ましくは、アクリレート、メタクリレート、アクリルアミド、メタクリルアミド、ビニル、N−ビニルラクタム、N−ビニルアミド、及びスチリル官能基などの重合性官能基が含まれる。
いくつかの実施例では、インサート封入層とも呼ばれる、インサートを取り囲む眼科用レンズスカートが、標準ヒドロゲル眼科用レンズ配合物から構成され得る。数々のインサート材料に対して許容可能な適合を提供することができる特徴を有した例示的な材料としては、Narafilconファミリー(Narafilcon A及びNarafilcon Bを含む)、及びEtafilconファミリー(Etafilcon Aを含む)が挙げられ得る。本明細書の技術と一致する材料の性質に関して、より技術的に包括的な説明が以下に続く。当業者は、記述された材料以外の他の材料もまた、封止及び封入されるインサートの許容可能なエンクロージャ又は部分的なエンクロージャを形成することができ、本請求項の範囲と一致しかつ本請求項の範囲内に含まれるとみなされるべきであることを認識する場合がある。
好適なシリコーン含有構成成分は、式Iの化合物を含み、
Figure 2016045499
式中、R1は、独立して、一価の反応基、一価のアルキル基、又は一価のアリール基、更に、ヒドロキシ、アミノ、オキサ、カルボキシ、アルキルカルボキシ、アルコキシ、アミド、カルバメート、カーボネート、ハロゲン、又はこれらの組み合わせから成る官能基を含み得る前述のもののいずれか;及び、更に、アルキル、ヒドロキシ、アミノ、オキサ、カルボキシ、アルキルカルボキシ、アルコキシ、アミド、カルバメート、ハロゲン又はそれらの組み合わせから選択される官能基を含み得る1〜100個のSi−O繰り返し単位を含む一価のシロキサン鎖、から選択され;
式中、b=0〜500であり、bが0以外のとき、bは、表示値と同等のモードを有する分布であると理解され、
少なくとも1つのR1は、一価の反応基を含み、いくつかの実施例では、1〜3個のR1が、一価の反応基を含む。
本明細書で使用するとき、「一価反応基」は、フリーラジカル及び/又はカチオン重合を受ける場合がある基である。フリーラジカル反応基の非限定的な例としては、(メタ)アクリレート、スチリル、ビニル、ビニルエーテル、C1〜6アルキル(メタ)アクリレート、(メタ)アクリルアミド、C1〜6アルキル(メタ)アクリルアミド、N−ビニルラクタム、N−ビニルアミド、C2〜12アルケニル、C2〜12アルケニルフェニル、C2〜12アルケニルナフチル、C2〜6アルケニルフェニルC1〜6アルキル、O−ビニルカルバメート、及びO−ビニルカーボネートが挙げられる。カチオン反応基の非限定例としては、ビニルエーテル又はエポキシド基、及びこれらの混合物が挙げられる。一実施形態では、フリーラジカル反応基は、(メタ)アクリレート、アクリルオキシ、(メタ)アクリルアミド、及びこれらの混合物を含む。
好適な一価アルキル基及びアリール基としては、置換及び非置換のメチル、エチル、プロピル、ブチル、2−ヒドロキシプロピル、プロポキシプロピル、ポリエチレンオキシプロピル、これらの組み合わせなどの非置換の一価C1〜C16アルキル基、C6〜C14アリール基が挙げられる。
1つの実施例では、bはゼロであり、1つのR1は一価の反応基であり、少なくとも3つのR1は、1〜16個の炭素原子を有する一価のアルキル基から選択され、他の実施例においては、1〜6個の炭素原子を有する一価のアルキル基から選択される。本実施形態のシリコーン構成成分の非限定的な例には、2−メチル−、2−ヒドロキシ−3−[3−[1,3,3,3−テトラメチル−1−[(トリメチルシリル)オキシ]ジシロキサニル]プロポキシ]プロピルエステル(「SiGMA」)、2−ヒドロキシ−3−メタクリルオキシプロピルオキシプロピル−トリ(トリメチルシロキシ)シラン、3−メタクリルオキシプロピルトリス(トリメチルシロキシ)シラン(「TRIS」)、3−メタクリルオキシプロピルビス(トリメチルシロキシ)メチルシラン、及び3−メタクリルオキシプロピルペンタメチルジシロキサンが挙げられる。
別の実施例では、bは2〜20、3〜15であるか又はいくつかの実施例では3〜10であり、少なくとも1つの末端R1は一価の反応基を含み、残りのR1は1〜16個の炭素原子を有する一価のアルキル基から選択され、別の実施形態においては1〜6個の炭素原子を有する一価のアルキル基から選択される。更に別の一実施形態では、bが3〜15であり、1つの末端R1が一価の反応性基を含み、もう一方の末端R1が1〜6の炭素原子を有する一価のアルキル基を含み、残余のR1が1〜3個の炭素原子を有する一価のアルキル基を含む。本実施形態のシリコーン構成成分の非限定的な例としては、(モノ−(2−ヒドロキシ−3−メタクリルオキシプロピル)−プロピルエーテル末端のポリジメチルシロキサン(400〜1000MW))(「OH−mPDMS」)、モノメタクリルオキシプロピル末端のモノ−n−ブチル末端のポリジメチルシロキサン(800〜1000MW)、(「mPDMS」)が挙げられる。
別の実施例では、bは5〜400又は10〜300であり、両方の末端R1は一価の反応基を含み、残りのR1は独立して、炭素原子間にエーテル結合を有し、更にハロゲンを含み得る、1〜18個の炭素を原子を有する一価のアルキル基から選択される。
シリコーンヒドロゲルレンズが望ましい、1つの実施例では、本発明のレンズは、ポリマーがそれから作成される反応性モノマー構成成分の総重量に基づいて、少なくとも約20、好ましくは約20〜70重量%のシリコーン含有構成成分を含む反応性混合物から作成されることになる。
別の実施形態では、1〜4個のR1はビニルカーボネート又は以下の式のカルバメートを含む。
Figure 2016045499
式中、YはO−、S−又はNH−を示し、
Rは、水素又はメチルを示し、dは1、2、3、又は4であり、そしてqは0又は1である。
シリコーン含有ビニルカーボネート又はビニルカルバメートモノマーとしては、具体的には、1,3−ビス[4−(ビニルオキシカルボニルオキシ)ブト−1−イル]テトラメチル−ジシロキサン、3−(ビニルオキシカルボニルチオ)プロピル−[トリス(トリメチルシロキシ)シラン]、3−[トリス(トリメチルシロキシ)シリル]プロピルアリルカルバメート、3−[トリス(トリメチルシロキシ)シリル]プロピルビニルカルバメート、トリメチルシリルエチルビニルカーボネート、トリメチルシリルメチルビニルカーボネート、及び次の式のものが挙げられる。
Figure 2016045499
約200未満の弾性率を有する生物医学的装置が所望される場合、1個のR1のみが一価反応性基を含むものとし、残りのR1基のうちの2個以下は、一価シロキサン基を含む。
別のクラスのシリコーン含有構成成分としては、次の式のポリウレタンマクロマーが挙げられる。
式IV〜VI
G)aE1、
E(A)aE1、又は
E(G)aE1、
式中、Dは6〜30個の炭素原子を有するアルキルジラジカル、アルキルシクロアルキルジラジカル、シクロアルキルジラジカル、アリールジラジカル、又はアルキルアリールジラジカルを示し、
Gは、1〜40個の炭素原子を有するアルキルジラジカル、シクロアルキルジラジカル、アルキルシクロアルキルジラジカル、アリールジラジカル又はアルキルアリールジラジカルを示し、これは、主鎖中にエーテル、チオ、又はアミン結合を含有する場合があり、
はウレタン又はウレイド結合を示し、
aは、少なくとも1であり、
Aは次の式の二価重合ラジカルを示す。
Figure 2016045499
R11は、1〜10個の炭素原子を有するアルキル又はフルオロ置換アルキル基を独立して示し、これは炭素原子間にエーテル結合を含む場合があり、yは少なくとも1であり、pは400〜10,000の部分重量を提供し、E及びE1はそれぞれ独立して以下の式に示される重合性不飽和有機ラジカルを示し、
Figure 2016045499
式中、R12は水素又はメチルであり、R13は水素、1〜6個の炭素原子を有するアルキルラジカル、又は−CO−Y−R15ラジカルであって、式中、Yは−O−、Y−S−、又は−NH−であり、R14は1〜12個の炭素原子を有する二価ラジカルであり、Xは−CO−又は−OCO−を示し、Zは−O−又は−NH−を示し、Arは6〜30個の炭素原子を有する芳香族ラジカルを示し、wは0〜6であり、xは0又は1であり、yは0又は1であり、zは0又は1である。
1つの好ましいシリコーン含有構成成分は、以下の式で表されるポリウレタンマクロマーであって、
Figure 2016045499
式中、R16は、イソホロンジイソシアネートのジラジカルなどイソシアネート基除去後のジイソシアネートのジラジカルである。別の好適なシリコーン含有マクロマーは、フルオロエーテル、ヒドロキシ末端ポリジメチルシロキサン、イソホロンジイソシアネート、及びイソシアネートエチルメタクリレートの反応によって形成される式X(式中、x+yは10〜30の範囲の数である)の化合物である。
Figure 2016045499
本発明の使用に好適な他のシリコーン含有構成成分としては、ポリシロキサン、ポリアルキレンエーテル、ジイソシアネート、ポリフッ素化炭化水素、ポリフッ素化エーテル、及び多糖類基を含有するマクロマー;末端のジフルオロで置換された炭素原子に結合する水素原子を有する、極性のフッ素化グラフト又は側基を有するポリシロキサン;エーテルを含有する親水性シロキサニルメタクリレート、並びにポリエーテル及びポリシロキサニル基を含有するシロキサニル結合及び架橋性モノマーが挙げられる。いくつかの実施例において、ポリマー主鎖は、双極性イオンが組み込まれている。これらの双極性イオンは、材料が溶媒中に存在するときに、ポリマー鎖に沿って両極の電荷を呈し得る。双極性イオンの存在は、重合した材料の湿潤性を改善し得る。いくつかの実施例では、上記のポリシロキサンのいずれかが、本発明の封入層として使用されてもよい。
生体適合性電池は、例えば、ペースメーカー及びマイクロエネルギーハーベスタなどの埋め込み型電子装置、生物学的機能のモニタリング及び/又は検査を行うための電子ピル、能動構成要素を備える外科用装置、眼科用装置、マイクロサイズのポンプ、除細動器、ステントなどの生体適合性装置内で使用されてもよい。
生体適合性電池で使用するためのカソード混合物のためのサンプル実施形態を例示するために、特定の実施例が記載されてきた。これらの実施例は、前記の例示のためであり、いかなる様式でも特許請求の範囲を限定することを意図するものではない。したがって、本明細書は、当業者には明らかであり得る全ての実施例を含むことを意図する。
〔実施の態様〕
(1) 生物医学的装置であって、
電気活性構成要素と、
生体適合性電池であって、前記生体適合性電池が、
第1の集電体及び第2の集電体と、
カソードと、
アノードと、
層状構造体であって、前記層状構造体の少なくとも1つの層が、キャビティを形成するように容積を除去されており、前記キャビティが電解質溶液、セパレータ、及び前記カソードを含む、層状構造体と、を含む、生体適合性電池と、を含み、
前記生物医学的装置の前記生体適合性が、前記電解質溶液の組成を、前記生物医学的装置と接触する生体液の組成に近づけるように配合することによって改善される、生物医学的装置。
(2) 前記電解質溶液の組成が、涙液の組成に近い、実施態様1に記載の生物医学的装置。
(3) 前記生体適合性電池の厚さが、前記生体適合性電池の範囲(extent)の少なくとも第1の寸法に沿って、1mm未満である、実施態様1に記載の生物医学的装置。
(4) 前記生体適合性電池の厚さが、前記生体適合性電池の範囲の少なくとも第1の寸法に沿って、500マイクロメートル未満である、実施態様1に記載の生物医学的装置。
(5) 前記生体適合性電池の厚さが、前記生体適合性電池の範囲の少なくとも第1の寸法に沿って、250マイクロメートル未満である、実施態様1に記載の生物医学的装置。
(6) 生物医学的装置であって、
電気活性構成要素と、
生体適合性電池であって、前記生体適合性電池が、
第1の集電体及び第2の集電体と、
カソードと、
アノードと、
層状構造体であって、前記層状構造体の少なくとも1つの層が、キャビティを形成するように容積を除去されており、前記キャビティが電解質溶液、セパレータ、及び前記カソードを含む、層状構造体と、を含む、生体適合性電池と、を含み、
前記生体適合性電池の前記生体適合性が、およそ10重量%以下の亜鉛塩を含むように、前記電解質溶液の組成を配合することによって改善される、生物医学的装置。
(7) 前記生体適合性電池が、
前記層状構造体の封止封入部を更に含み、前記封止封入部が、外部環境への前記電解質の滲出を低減することによって、前記生物医学的装置の前記生体適合性を改善する、実施態様6に記載の生物医学的装置。
(8) 前記生体適合性電池が、
前記層状構造体の封止封入部を更に含み、前記封止封入部が、前記生体適合性電池の内部環境への水の滲出を低減することによって、前記生体適合性電池の前記生体適合性を改善する、実施態様6に記載の生物医学的装置。
(9) ヒドロゲルの封入層を更に含む、実施態様6に記載の生物医学的装置。
(10) 前記封入層が、双性イオンを含む前記ヒドロゲルを含む、実施態様9に記載の生物医学的装置。
(11) 電池の生体適合性を改善する方法であって、
電解質溶液を調製することであって、前記電解質溶液が、およそ10重量%以下の濃度の亜鉛塩を含む、ことと、
層状構造体の層を得ることと、
前記層状構造体の前記層から、容積を切り取ることであって、前記層状構造体の前記層から前記容積を除去することにより、キャビティの少なくとも一部を形成する、ことと、
前記電解質溶液、セパレータ、アノード、アノード集電体、カソード、及びカソード集電体を追加して生体適合性電池を形成することと、を含む、方法。
(12) 前記層状構造体へのエンベロープ層の封止を形成することを更に含む、実施態様11に記載の方法。
(13) 第2のエンベロープ層への第1のエンベロープ層の封止を形成することを更に含む、実施態様11に記載の方法。
(14) 前記生体適合性電池の合計厚さが、500マイクロメートル未満である、実施態様13に記載の方法。
(15) コンタクトレンズの生体適合性を改善する方法であって、
電解質溶液を調製することであって、前記電解質溶液がコンタクトレンズパッケージング溶液を含む、ことと、
層状構造体の層を得ることと、
前記層状構造体の前記層から、容積を切り取ることであって、前記層状構造体の前記層から前記容積を除去することにより、キャビティの少なくとも第1の部分を形成する、ことと、
前記電解質溶液、セパレータ、アノード、アノード集電体、カソード、及びカソード集電体を追加して、前記層状構造体を形成することと、
第2のエンベロープ層への第1のエンベロープ層の封止を形成することであって、前記第1のエンベロープ層及び前記第2のエンベロープ層が、前記層状構造体の少なくとも第2の部分を包囲する、ことと、
前記アノード集電体を電気活性装置に接続することと、
前記カソード集電体を前記電気活性装置に接続することと、
前記層状構造体及び電気活性装置をヒドロゲル内に封入して、眼科用装置を形成することと、を含む、方法。
(16) 前記層状構造体の合計厚さは、500マイクロメートル未満である、実施態様15に記載の方法。
(17) 前記ヒドロゲルが双性イオンを組み込む、実施態様15に記載の方法。
(18) コンタクトレンズの生体適合性を改善する方法であって、
電解質溶液を調製することと、
層状構造体の層を得ることと、
前記層状構造体の前記層から、容積を切り取ることであって、前記層状構造体の前記層から前記容積を除去することにより、キャビティの少なくとも第1の部分を形成する、ことと、
前記電解質溶液、セパレータ、アノード、アノード集電体、カソード、及びカソード集電体を追加して前記層状構造体を形成することと、
第2のエンベロープ層への第1のエンベロープ層の封止を形成することであって、前記第1のエンベロープ層及び前記第2のエンベロープ層が、前記層状構造体の少なくとも第2の部分を包囲する、ことと、
前記アノード集電体を電気活性装置に接続することと、
前記カソード集電体を前記電気活性装置に接続することと、
前記層状構造体及び電気活性装置をヒドロゲル内に封入して、眼科用装置を形成することと、を含む、方法。
(19) 前記層状構造体の合計厚さが、500マイクロメートル未満である、実施態様18に記載の方法。
(20) 前記ヒドロゲルが双性イオンを組み込む、実施態様19に記載の方法。

Claims (20)

  1. 生物医学的装置であって、
    電気活性構成要素と、
    生体適合性電池であって、前記生体適合性電池が、
    第1の集電体及び第2の集電体と、
    カソードと、
    アノードと、
    層状構造体であって、前記層状構造体の少なくとも1つの層が、キャビティを形成するように容積を除去されており、前記キャビティが電解質溶液、セパレータ、及び前記カソードを含む、層状構造体と、を含む、生体適合性電池と、を含み、
    前記生物医学的装置の前記生体適合性が、前記電解質溶液の組成を、前記生物医学的装置と接触する生体液の組成に近づけるように配合することによって改善される、生物医学的装置。
  2. 前記電解質溶液の組成が、涙液の組成に近い、請求項1に記載の生物医学的装置。
  3. 前記生体適合性電池の厚さが、前記生体適合性電池の範囲の少なくとも第1の寸法に沿って、1mm未満である、請求項1に記載の生物医学的装置。
  4. 前記生体適合性電池の厚さが、前記生体適合性電池の範囲の少なくとも第1の寸法に沿って、500マイクロメートル未満である、請求項1に記載の生物医学的装置。
  5. 前記生体適合性電池の厚さが、前記生体適合性電池の範囲の少なくとも第1の寸法に沿って、250マイクロメートル未満である、請求項1に記載の生物医学的装置。
  6. 生物医学的装置であって、
    電気活性構成要素と、
    生体適合性電池であって、前記生体適合性電池が、
    第1の集電体及び第2の集電体と、
    カソードと、
    アノードと、
    層状構造体であって、前記層状構造体の少なくとも1つの層が、キャビティを形成するように容積を除去されており、前記キャビティが電解質溶液、セパレータ、及び前記カソードを含む、層状構造体と、を含む、生体適合性電池と、を含み、
    前記生体適合性電池の前記生体適合性が、およそ10重量%以下の亜鉛塩を含むように、前記電解質溶液の組成を配合することによって改善される、生物医学的装置。
  7. 前記生体適合性電池が、
    前記層状構造体の封止封入部を更に含み、前記封止封入部が、外部環境への前記電解質の滲出を低減することによって、前記生物医学的装置の前記生体適合性を改善する、請求項6に記載の生物医学的装置。
  8. 前記生体適合性電池が、
    前記層状構造体の封止封入部を更に含み、前記封止封入部が、前記生体適合性電池の内部環境への水の滲出を低減することによって、前記生体適合性電池の前記生体適合性を改善する、請求項6に記載の生物医学的装置。
  9. ヒドロゲルの封入層を更に含む、請求項6に記載の生物医学的装置。
  10. 前記封入層が、双性イオンを含む前記ヒドロゲルを含む、請求項9に記載の生物医学的装置。
  11. 電池の生体適合性を改善する方法であって、
    電解質溶液を調製することであって、前記電解質溶液が、およそ10重量%以下の濃度の亜鉛塩を含む、ことと、
    層状構造体の層を得ることと、
    前記層状構造体の前記層から、容積を切り取ることであって、前記層状構造体の前記層から前記容積を除去することにより、キャビティの少なくとも一部を形成する、ことと、
    前記電解質溶液、セパレータ、アノード、アノード集電体、カソード、及びカソード集電体を追加して生体適合性電池を形成することと、を含む、方法。
  12. 前記層状構造体へのエンベロープ層の封止を形成することを更に含む、請求項11に記載の方法。
  13. 第2のエンベロープ層への第1のエンベロープ層の封止を形成することを更に含む、請求項11に記載の方法。
  14. 前記生体適合性電池の合計厚さが、500マイクロメートル未満である、請求項13に記載の方法。
  15. コンタクトレンズの生体適合性を改善する方法であって、
    電解質溶液を調製することであって、前記電解質溶液がコンタクトレンズパッケージング溶液を含む、ことと、
    層状構造体の層を得ることと、
    前記層状構造体の前記層から、容積を切り取ることであって、前記層状構造体の前記層から前記容積を除去することにより、キャビティの少なくとも第1の部分を形成する、ことと、
    前記電解質溶液、セパレータ、アノード、アノード集電体、カソード、及びカソード集電体を追加して、前記層状構造体を形成することと、
    第2のエンベロープ層への第1のエンベロープ層の封止を形成することであって、前記第1のエンベロープ層及び前記第2のエンベロープ層が、前記層状構造体の少なくとも第2の部分を包囲する、ことと、
    前記アノード集電体を電気活性装置に接続することと、
    前記カソード集電体を前記電気活性装置に接続することと、
    前記層状構造体及び電気活性装置をヒドロゲル内に封入して、眼科用装置を形成することと、を含む、方法。
  16. 前記層状構造体の合計厚さは、500マイクロメートル未満である、請求項15に記載の方法。
  17. 前記ヒドロゲルが双性イオンを組み込む、請求項15に記載の方法。
  18. コンタクトレンズの生体適合性を改善する方法であって、
    電解質溶液を調製することと、
    層状構造体の層を得ることと、
    前記層状構造体の前記層から、容積を切り取ることであって、前記層状構造体の前記層から前記容積を除去することにより、キャビティの少なくとも第1の部分を形成する、ことと、
    前記電解質溶液、セパレータ、アノード、アノード集電体、カソード、及びカソード集電体を追加して前記層状構造体を形成することと、
    第2のエンベロープ層への第1のエンベロープ層の封止を形成することであって、前記第1のエンベロープ層及び前記第2のエンベロープ層が、前記層状構造体の少なくとも第2の部分を包囲する、ことと、
    前記アノード集電体を電気活性装置に接続することと、
    前記カソード集電体を前記電気活性装置に接続することと、
    前記層状構造体及び電気活性装置をヒドロゲル内に封入して、眼科用装置を形成することと、を含む、方法。
  19. 前記層状構造体の合計厚さが、500マイクロメートル未満である、請求項18に記載の方法。
  20. 前記ヒドロゲルが双性イオンを組み込む、請求項19に記載の方法。
JP2015162576A 2014-08-21 2015-08-20 生物医学的通電素子の生体適合性 Pending JP2016045499A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462040178P 2014-08-21 2014-08-21
US62/040,178 2014-08-21
US14/827,589 2015-08-17
US14/827,589 US9923177B2 (en) 2014-08-21 2015-08-17 Biocompatibility of biomedical energization elements

Publications (1)

Publication Number Publication Date
JP2016045499A true JP2016045499A (ja) 2016-04-04

Family

ID=53938207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015162576A Pending JP2016045499A (ja) 2014-08-21 2015-08-20 生物医学的通電素子の生体適合性

Country Status (12)

Country Link
US (2) US9923177B2 (ja)
EP (1) EP2996172A3 (ja)
JP (1) JP2016045499A (ja)
KR (1) KR101895560B1 (ja)
CN (1) CN105390708A (ja)
AU (1) AU2015215936A1 (ja)
BR (1) BR102015020087A2 (ja)
CA (1) CA2900872A1 (ja)
HK (1) HK1221558A1 (ja)
RU (1) RU2675591C2 (ja)
SG (1) SG10201506618SA (ja)
TW (1) TWI656679B (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3016199B1 (en) 2013-06-28 2019-01-09 Positec Power Tools (Suzhou) Co., Ltd Electrolytic solution and battery
US20200119316A9 (en) * 2014-07-21 2020-04-16 Johnson & Johnson Vision Care, Inc. Flexible micro-battery
US10879503B2 (en) * 2014-07-21 2020-12-29 Johnson & Johnson Vision Care, Inc. Methods for the manufacture of flexible microbatteries
US10593911B2 (en) 2014-07-21 2020-03-17 Johnson & Johnson Vision Care, Inc. Flexible micro-battery
US11069891B2 (en) * 2014-09-26 2021-07-20 Positec Power Tools (Suzhou) Co., Ltd. Battery, battery pack and continuous power supply
US9857608B2 (en) * 2015-03-20 2018-01-02 Quantum Medical Innovations Llc Point-of-use-activated microbattery and biocompatible electronic device incorporating the same
US11362382B2 (en) * 2016-05-09 2022-06-14 International Business Machines Corporation Simplified hermetic packaging of a micro-battery
RU2017131634A (ru) * 2016-09-12 2019-03-12 Джонсон Энд Джонсон Вижн Кэа, Инк. Батареи биомедицинских устройств трубчатой формы
US10734668B2 (en) 2016-09-12 2020-08-04 Johnson & Johnson Vision Care, Inc. Tubular form biomedical device batteries
US20180076465A1 (en) * 2016-09-12 2018-03-15 Johnson & Johnson Vision Care, Inc. Tubular form biomedical device batteries with electroless sealing
US20180104921A1 (en) * 2016-10-17 2018-04-19 Johnson & Johnson Vision Care, Inc. Biomedical device batteries with electrodeposited cathodes
AU2018202147A1 (en) * 2017-04-19 2018-11-29 Johnson & Johnson Vision Care, Inc. Flexible micro-battery
IL258365A (en) * 2017-04-19 2018-05-31 Johnson & Johnson Vision Care Flexible micro-battery
KR101891668B1 (ko) 2017-07-27 2018-08-24 한국과학기술연구원 전고상 박막 이차 전지가 장착된 스마트 웨어러블 렌즈 및 그 제조 방법
KR102036535B1 (ko) * 2017-11-28 2019-11-26 (주)뉴옵틱스 체내 이식형 의료기기
US20220004026A1 (en) * 2020-07-02 2022-01-06 Purdue Research Foundation Contact lens having sensors and methods for producing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08508826A (ja) * 1993-04-07 1996-09-17 ザ テクノロジィー パートナーシップ ピーエルシー 切換可能レンズ
US6379835B1 (en) * 1999-01-12 2002-04-30 Morgan Adhesives Company Method of making a thin film battery
WO2011137239A1 (en) * 2010-04-28 2011-11-03 Flexel, Llc A thin flexible electrochemical energy cell
JP2012502823A (ja) * 2008-09-22 2012-02-02 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 眼科用レンズ内のエネルギー印加された構成要素の結合剤
WO2013090780A1 (en) * 2011-12-14 2013-06-20 Semprus Biosciences Corp. Surface modified contact lenses
WO2013112748A1 (en) * 2012-01-26 2013-08-01 Johnson & Johnson Vision Care, Inc. Energized ophthalmic lens including stacked integrated components
WO2014004850A2 (en) * 2012-06-29 2014-01-03 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form printed batteries on ophthalmic devices

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2007518A1 (de) 1969-02-20 1971-02-04 Union Carbide Corp , New York,N Y (V St A) Elektrolyt fur Pnmarzellen
JPS485185B1 (ja) 1969-05-16 1973-02-14
US4125686A (en) 1977-06-30 1978-11-14 Polaroid Corporation Laminar cells and methods for making the same
US4977046A (en) 1982-04-26 1990-12-11 Polaroid Corporation Lithium batteries
US5300371A (en) * 1990-03-23 1994-04-05 Battery Technologies Inc. Manganese dioxide positive electrode for rechargeable cells, and cells containing the same
US5358539A (en) 1992-10-29 1994-10-25 Valence Technology, Inc. Method for making a battery assembly
US5418091A (en) 1993-03-05 1995-05-23 Bell Communications Research, Inc. Polymeric electrolytic cell separator membrane
US5540741A (en) 1993-03-05 1996-07-30 Bell Communications Research, Inc. Lithium secondary battery extraction method
AU3769095A (en) 1995-11-06 1997-05-29 Battery Technologies Inc. Rechargeable alkaline cells containing zinc anodes without added mercury
US6933331B2 (en) 1998-05-22 2005-08-23 Nanoproducts Corporation Nanotechnology for drug delivery, contrast agents and biomedical implants
BR9910345A (pt) * 1998-05-05 2001-01-09 Bausch & Lomb Método para tratar a superfìcie de uma lente de contato de hidrogel de silicone e lente de contato de hidrogel de silicone
DK1038329T3 (da) 1998-07-16 2002-05-27 Koninkl Philips Electronics Nv Lithium-sekundærbatteri
US6273904B1 (en) 1999-03-02 2001-08-14 Light Sciences Corporation Polymer battery for internal light device
US6277520B1 (en) 1999-03-19 2001-08-21 Ntk Powerdex, Inc. Thin lithium battery with slurry cathode
US6316142B1 (en) 1999-03-31 2001-11-13 Imra America, Inc. Electrode containing a polymeric binder material, method of formation thereof and electrochemical cell
US6391069B1 (en) 2000-03-29 2002-05-21 Valence Technology (Nevada), Inc. Method of making bonded-electrode rechargeable electrochemical cells
JP5103693B2 (ja) * 2000-09-19 2012-12-19 大日本印刷株式会社 電池用積層フィルムおよびそれを用いた電池用容器
US6781817B2 (en) 2000-10-02 2004-08-24 Biosource, Inc. Fringe-field capacitor electrode for electrochemical device
US6727022B2 (en) 2001-11-19 2004-04-27 Wilson Greatbatch Ltd. Powder process for double current collector screen cathode preparation
US6780347B2 (en) 2002-02-04 2004-08-24 Rayovac Corporation Manganese oxide based electrode for alkaline electrochemical system and method of its production
CN100367539C (zh) 2002-02-12 2008-02-06 永备电池有限公司 柔性薄型印刷电池和装置及其制造方法
CA2389907A1 (en) 2002-06-07 2003-12-07 Battery Technologies Inc. Small format, high current density flat plate rechargeable electrochemical cell
US20040062985A1 (en) 2002-09-30 2004-04-01 Aamodt Paul B. Contoured battery for implantable medical devices and method of manufacture
US7205072B2 (en) 2002-11-01 2007-04-17 The University Of Chicago Layered cathode materials for lithium ion rechargeable batteries
US8076031B1 (en) 2003-09-10 2011-12-13 West Robert C Electrochemical device having electrolyte including disiloxane
WO2004095606A2 (en) 2003-04-23 2004-11-04 Rechargeable Battery Corporation Battery employing an electrode pellet having an inner electrode embedded therein
JP4598001B2 (ja) 2003-12-30 2010-12-15 エルジー・ケム・リミテッド イオン性液体によって改質された正極及びこれを含む電気化学素子
US7531271B2 (en) 2004-03-18 2009-05-12 The Gillette Company Wafer alkaline cell
US20060099496A1 (en) 2004-10-29 2006-05-11 Aamodt Paul B Separator container
WO2007035432A2 (en) 2005-09-15 2007-03-29 Board Of Regents, The University Of Texas System Reduction of the loss of zinc by its reaction with oxygen in galvanized steel and batteries
CN101351907B (zh) 2005-10-11 2010-09-29 埃克塞勒特龙固体公司 制造锂电池的方法
US7985500B2 (en) 2005-12-15 2011-07-26 Cardiac Pacemakers, Inc. Method and apparatus for flexible battery for implantable device
US20070141463A1 (en) 2005-12-21 2007-06-21 Maya Stevanovic Cathode for battery
JP2008078119A (ja) 2006-08-25 2008-04-03 Ngk Insulators Ltd 全固体蓄電素子
US8441411B2 (en) 2007-07-18 2013-05-14 Blue Spark Technologies, Inc. Integrated electronic device and methods of making the same
US20120118741A1 (en) 2007-08-01 2012-05-17 Blue Spark Technologies, Inc. Integrated Electronic Device and Methods of Making the Same
US20090092903A1 (en) 2007-08-29 2009-04-09 Johnson Lonnie G Low Cost Solid State Rechargeable Battery and Method of Manufacturing Same
KR20100097217A (ko) 2007-12-19 2010-09-02 블루 스파크 테크놀러지스, 인크. 고전류의 박형 전기화학적 셀 및 이의 제조 방법
JP4484936B2 (ja) 2008-05-13 2010-06-16 シャープ株式会社 燃料電池および燃料電池スタック
RU78007U1 (ru) * 2008-07-04 2008-11-10 Открытое акционерное общество "Энергия" Марганцево-цинковый химический источник тока с солевым электролитом и батарея на его основе
US9675443B2 (en) 2009-09-10 2017-06-13 Johnson & Johnson Vision Care, Inc. Energized ophthalmic lens including stacked integrated components
US20100078837A1 (en) 2008-09-29 2010-04-01 Pugh Randall B Apparatus and method for formation of an energized ophthalmic device
US9375885B2 (en) * 2008-10-31 2016-06-28 Johnson & Johnson Vision Care, Inc. Processor controlled ophthalmic device
BR112012002280B1 (pt) * 2009-07-31 2020-04-07 Ascendis Pharma As hidrogel insolúvel em água baseado em polietileno glicol biodegradável, seu processo de preparação, conjugado, composto ligado a veículo e composição farmacêutica.
GB0913722D0 (en) 2009-08-06 2009-09-16 Bac2 Ltd Electrical device
US8697770B2 (en) * 2010-04-13 2014-04-15 Johnson & Johnson Vision Care, Inc. Pupil-only photochromic contact lenses displaying desirable optics and comfort
JP2012099470A (ja) 2010-10-08 2012-05-24 Sumitomo Chemical Co Ltd リチウム二次電池用正極材料前駆体の製造方法およびリチウム二次電池用正極材料の製造方法
US9698129B2 (en) 2011-03-18 2017-07-04 Johnson & Johnson Vision Care, Inc. Stacked integrated component devices with energization
US20120282519A1 (en) * 2011-05-06 2012-11-08 Greatbatch Ltd. Dissimilar Material Battery Enclosure for Improved Weld Structure
EP2631962B1 (en) * 2011-08-29 2017-04-26 Panasonic Intellectual Property Management Co., Ltd. Thin battery
JP2015507761A (ja) 2011-12-14 2015-03-12 センプラス・バイオサイエンシーズ・コーポレイションSemprus Biosciences Corp. コンタクトレンズ改質のためのレドックス法
US9059435B2 (en) 2012-01-27 2015-06-16 Medtronic, Inc. Medical device battery enclosure
GB201203713D0 (en) 2012-03-02 2012-04-18 Energy Diagnostic Ltd Energy storage battery
US9178200B2 (en) 2012-05-18 2015-11-03 24M Technologies, Inc. Electrochemical cells and methods of manufacturing the same
DE13852079T1 (de) 2012-11-01 2015-11-19 Blue Spark Technologies, Inc. Pflaster zur Protokollierung der Körpertemperatur
WO2014071571A1 (en) 2012-11-07 2014-05-15 Empire Technology Development Llc Liquid-activated hydrogel battery
US10033029B2 (en) 2012-11-27 2018-07-24 Apple Inc. Battery with increased energy density and method of manufacturing the same
US9406969B2 (en) 2013-03-15 2016-08-02 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form three-dimensional biocompatible energization elements
JP6578562B2 (ja) * 2013-04-12 2019-09-25 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ 無機及び有機の過渡電子デバイス
CN203300756U (zh) * 2013-06-07 2013-11-20 广东国光电子有限公司 一种软包装聚合物锂离子电池手工封装装置
US9455423B2 (en) 2014-01-24 2016-09-27 Verily Life Sciences Llc Battery
US10096802B2 (en) 2014-04-08 2018-10-09 International Business Machines Corporation Homogeneous solid metallic anode for thin film microbattery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08508826A (ja) * 1993-04-07 1996-09-17 ザ テクノロジィー パートナーシップ ピーエルシー 切換可能レンズ
US6379835B1 (en) * 1999-01-12 2002-04-30 Morgan Adhesives Company Method of making a thin film battery
JP2012502823A (ja) * 2008-09-22 2012-02-02 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 眼科用レンズ内のエネルギー印加された構成要素の結合剤
WO2011137239A1 (en) * 2010-04-28 2011-11-03 Flexel, Llc A thin flexible electrochemical energy cell
WO2013090780A1 (en) * 2011-12-14 2013-06-20 Semprus Biosciences Corp. Surface modified contact lenses
WO2013112748A1 (en) * 2012-01-26 2013-08-01 Johnson & Johnson Vision Care, Inc. Energized ophthalmic lens including stacked integrated components
WO2014004850A2 (en) * 2012-06-29 2014-01-03 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form printed batteries on ophthalmic devices

Also Published As

Publication number Publication date
CA2900872A1 (en) 2016-02-21
TWI656679B (zh) 2019-04-11
RU2015135169A3 (ja) 2018-06-19
EP2996172A2 (en) 2016-03-16
BR102015020087A2 (pt) 2016-02-23
SG10201506618SA (en) 2016-03-30
AU2015215936A1 (en) 2016-03-10
CN105390708A (zh) 2016-03-09
RU2015135169A (ru) 2017-02-27
EP2996172A3 (en) 2016-07-13
RU2675591C2 (ru) 2018-12-20
KR101895560B1 (ko) 2018-09-07
US9923177B2 (en) 2018-03-20
TW201620194A (zh) 2016-06-01
US20160056417A1 (en) 2016-02-25
HK1221558A1 (zh) 2017-06-02
KR20160023614A (ko) 2016-03-03
US20180159091A1 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
US9715130B2 (en) Methods and apparatus to form separators for biocompatible energization elements for biomedical devices
JP2016045499A (ja) 生物医学的通電素子の生体適合性
US20170229730A1 (en) Method for manufacturing a biocompatible cathode slurry for use in biocompatible batteries for a contact lens
TWI656683B (zh) 使用於生物可相容電池的陰極混合物
US20160056447A1 (en) Methods for manufacturing biocompatible cathode slurry for use in biocompatible batteries
JP2016046253A (ja) 生物医学的装置のための再充電可能な生体適合性通電素子を形成する方法
JP2016046258A (ja) 生体適合性通電素子を封止及び封入するための装置及び方法
DK2996182T3 (en) ELECTROLYTE FORMULAS FOR USE IN BIO-COMPATIBLE ENERGY ELECTRIC ELEMENTS
JP2016048679A (ja) 積層体と堆積したセパレータとを含む生物医学的装置のための生体適合性通電素子を形成するための方法
JP2018186086A (ja) コンタクトレンズ用の生体適合性電池において使用するための生体適合性カソードスラリーの製造方法
JP2018067546A (ja) ポリマー電解質を備える生物医学的通電素子
JP2016046255A (ja) 生体適合性電池において使用するためのペレット形態のカソード
JP2016046257A (ja) 生体適合性通電素子内で使用するためのアノード
JP2017098249A (ja) ポリマー電解質を含む生物医学的通電素子
JP2017103222A (ja) ポリマー電解質及びキャビティ構造体を備える生物医学的通電素子
JP2019009120A (ja) 無電解密閉層を有する生物医学的装置のための生体適合性通電一次素子を形成するための方法及び器具
JP2019009121A (ja) 無電解密閉層を有する生物医学的装置のための充電可能な生体適合性通電素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191203