WO2014087767A1 - 複合材料及びそれを用いた成形体 - Google Patents

複合材料及びそれを用いた成形体 Download PDF

Info

Publication number
WO2014087767A1
WO2014087767A1 PCT/JP2013/079404 JP2013079404W WO2014087767A1 WO 2014087767 A1 WO2014087767 A1 WO 2014087767A1 JP 2013079404 W JP2013079404 W JP 2013079404W WO 2014087767 A1 WO2014087767 A1 WO 2014087767A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
acid
cellulose fiber
modified
repeating unit
Prior art date
Application number
PCT/JP2013/079404
Other languages
English (en)
French (fr)
Inventor
丈史 中谷
木村 浩司
伸治 佐藤
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to JP2014550992A priority Critical patent/JP6275651B2/ja
Publication of WO2014087767A1 publication Critical patent/WO2014087767A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/286Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2439/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2439/02Homopolymers or copolymers of vinylamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/08Polymer mixtures characterised by other features containing additives to improve the compatibility between two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the present invention relates to a composite resin containing a carboxymethylated cellulose fiber and a polyolefin resin, and a molded product obtained by heat-treating the composite resin.
  • Composite materials composed of cellulosic fibers and polypropylene are well known, but polyolefin resins such as PP are highly hydrophobic, while cellulosic fibers are hydrophilic. Since it is high, it was difficult to mix uniformly. For this reason, it is known to use maleic acid-modified polypropylene (hereinafter sometimes abbreviated as “MAPP”) as a compatibilizing agent or an interfacial reinforcing agent (for example, Patent Document 1).
  • MAPP maleic acid-modified polypropylene
  • Patent Document 1 maleic acid-modified polypropylene
  • the Example of patent document 2 is disclosing the composite material which consists of cellulose fiber containing lignin, PP, and MAPP.
  • the Example of patent document 3 is disclosing the composite material which consists of a cellulosic fiber, PP, MAPP, and the compound which has a specific primary amino group.
  • An object of the present invention is to provide a composite material of a high strength and high elasticity cellulose fiber and a polyolefin resin by enhancing the uniform dispersibility and interfacial interaction between the cellulose fiber and the polyolefin resin.
  • the present inventors have carboxymethylated the cellulose fiber so that the amino group of the polymer compound having a primary amino group and the cellulose fiber It has been found that a molding material containing a cellulosic fiber and a polyolefin resin having an improved electrostatic interaction and greatly improved strength and elastic modulus can be obtained.
  • the present invention includes, but is not limited to: 1. (1) Carboxymethylated cellulose fiber, (2) a polymer compound having a primary amino group, (3) acid-modified polyolefin, and (4) a composite material containing a polyolefin resin. 2.
  • the compound in which the polymer compound having the primary amino group has a repeating unit represented by the following general formula (A):
  • the composite material according to any one of 1 to 4 above which is at least one selected from the group consisting of a compound having a repeating unit represented by the formula: and a salt thereof. 6).
  • Carboxymethylated cellulose fiber (2) a polymer compound having a primary amino group, (3) an acid-modified polyolefin, and (4) a step of kneading a polyolefin resin.
  • the carboxymethylation of the cellulosic fiber improves the electrostatic interaction between the cellulosic fiber and the primary amino group and the interfacial adhesion between the cellulosic fiber and the acid-modified polyolefin.
  • a molded product having high strength and high elastic modulus can be obtained.
  • the composite material of the present invention comprises (1) carboxymethylated cellulose fiber (hereinafter sometimes abbreviated as “CM cellulose fiber”), (2) a polymer compound having a primary amino group, (3 A) an acid-modified polyolefin; and (4) a polyolefin resin.
  • CM cellulose fiber carboxymethylated cellulose fiber
  • 3 A a polymer compound having a primary amino group
  • 3 A an acid-modified polyolefin
  • (4) a polyolefin resin a polyolefin resin
  • CMized cellulose fiber The cellulose fiber contained in the composite material of the present invention contains a carboxymethyl group. By introducing a carboxymethyl substituent into cellulose, electrostatic interaction between the cellulose fiber and (2) the amino group of the polymer compound having a primary amino group is increased. This reinforces (1) the network structure of the CMized cellulose fibers. Further, (3) the hydrophilic group portion of the acid-modified polyolefin reacts with (1) CM-modified cellulose fiber and the hydrophobic group portion reacts with (4) polyolefin resin, respectively, and (1) CM-modified cellulose fiber and (4) Interfacial interaction with polyolefin resin is reinforced.
  • the degree of carboxymethyl substitution per anhydroglucose unit of cellulose is preferably 0.01 to 0.40, and more preferably 0.05 to 0.20.
  • the degree of crystallinity of cellulose type I in the CMized cellulose fiber is preferably 60% or more, more preferably 70% or more, and further preferably 80% or more.
  • the carboxymethyl group substituent per anhydroglucose unit is smaller than 0.01, the effect may not be sufficiently exhibited.
  • the carboxymethyl substituent per anhydroglucose unit is larger than 0.40, the CM-ized cellulose fiber swells or dissolves, so that the fiber form cannot be maintained and may not be obtained as a fiber.
  • the crystallinity of cellulose I type is less than 60%, the strength of the cellulose fiber is lowered, and a sufficient reinforcing effect as a reinforcing material for the polyolefin resin may not be obtained.
  • CM cellulose fiber is not particularly limited, it can be obtained by carboxymethylating the cellulose raw material.
  • cellulose raw material examples include plants (for example, wood, bamboo, hemp, jute, kenaf, agricultural land residue, cloth, pulp (coniferous unbleached kraft pulp (NUKP), conifer bleached kraft pulp (NBKP), hardwood unbleached kraft pulp ( LUKP), hardwood bleached kraft pulp (LBKP), softwood unbleached sulfite pulp (NUSP), softwood bleached sulfite pulp (NBSP) thermomechanical pulp (TMP), recycled pulp, waste paper, etc.), animals (for example, ascidians), Those originating from algae, microorganisms (for example, acetic acid bacteria (Acetobacter)), microbial products, etc. are known, and any of them can be used in the present invention, preferably cellulose derived from plants or microorganisms, more preferably. Is plant-derived cellulose.
  • Carboxymethylation of a cellulose raw material can be performed using a well-known method, and is not specifically limited. Commercially available CMized cellulose fibers may also be used. In the present invention, the substitution degree of carboxymethyl group per anhydroglucose unit of cellulose is 0.01 to 0.40, and the crystallinity of cellulose type I is 60% or more, preferably 70% or more, more preferably 80%. It is preferable to adjust so that it may become above. As an example, the following manufacturing method can be mentioned. Cellulose is used as the bottoming material.
  • a solvent 3 to 20 times by weight of water and / or lower alcohol, specifically, methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butanol, isobutanol, tertiary butanol and the like alone or two kinds
  • the above mixed medium is used.
  • the mixing ratio of the lower alcohol in the solvent is 60 to 95% by weight.
  • the mercerizing agent 0.5 to 20 times moles of alkali metal hydroxide, specifically sodium hydroxide or potassium hydroxide is used per anhydroglucose residue of the bottoming material.
  • a bottoming raw material, a solvent, and a mercerizing agent are mixed and subjected to mercerization treatment at a reaction temperature of 0 to 70 ° C., preferably 10 to 60 ° C., and a reaction time of 15 minutes to 8 hours, preferably 30 minutes to 7 hours. .
  • a carboxymethylating agent for example, monochloroacetic acid, sodium monochloroacetate, etc.
  • the reaction temperature is 30 to 90 ° C., preferably 40 to 80 ° C.
  • the etherification reaction is carried out for 30 minutes to 10 hours, preferably 1 to 4 hours.
  • the average fiber diameter of the CM-converted cellulose fiber contained in the composite material of the present invention is preferably 4 nm to 50 ⁇ m, more preferably 200 nm to 50 ⁇ m, and even more preferably 500 nm to 20 ⁇ m. Further, the average fiber length of the CMized cellulose fiber is preferably 0.5 mm to 5.0 mm. When the average fiber diameter and average fiber length of the CM-converted cellulose fiber are adjusted within the above ranges, the reinforcing effect of the polyolefin resin by the CM-converted cellulose fiber is enhanced.
  • the fiber diameter and fiber length of the CMized cellulose fiber were measured with 100 representative fibers using a transmission electron microscope (TEM), scanning electron microscope (SEM), or digital CCD microscope, and the average value was calculated. did.
  • defibration is performed as necessary so that the fiber diameter and fiber length of the CMized cellulose fiber are in the above ranges.
  • the defibrating may be performed after carboxymethylation of the cellulose raw material, or carboxymethylation may be performed after the cellulose raw material is defibrated to be in the above range.
  • defibrating it is not limited to this, but it is preferable to use an aqueous dispersion of CM-modified cellulose fiber from the viewpoint of ease of handling.
  • the device for defibration is not particularly limited, and a high-speed rotation type, a colloid mill type, a high-pressure type, a roll mill type, an ultrasonic type, or a mass collider can be used as necessary.
  • defibration and mixing with other components may be performed simultaneously in a twin screw extruder (a twin screw kneader).
  • a twin screw extruder a twin screw kneader
  • a wet high pressure or ultra high pressure homogenizer that can apply a pressure of 50 MPa or more to the aqueous dispersion may be used.
  • the pressure is more preferably 100 MPa or more, and further preferably 140 MPa or more.
  • the CM-modified cellulose fiber is pretreated using a known mixing, stirring, emulsifying, and dispersing device such as a high-speed shear mixer. May be.
  • the blending amount of the CMized cellulose fiber is usually about 1 to 94% by mass, preferably about 2 to 92% by mass, based on the total amount of the composite material.
  • the composite material of the present invention includes a polymer compound having a primary amino group in the molecule.
  • the weight average molecular weight of the polymer compound having a primary amino group is usually about 1,000 to 1,000,000, preferably about 1200 to 700,000.
  • the weight average molecular weight is determined by gel permeation chromatography (GPC) method (PEG conversion), GPC method (pullulan conversion) or GPC-MALLS with a multi-angle light scattering detector connected to a GPC column. It is a value measured by any method.
  • GPC gel permeation chromatography
  • the amino group of the polymer compound having a primary amino group may form a salt with an organic acid or inorganic acid.
  • examples of the inorganic acid from which the amino group can form a salt include hydrochloric acid, sulfuric acid, phosphoric acid, boric acid, hydrobromic acid, hydroiodic acid, and the like
  • examples of the organic acid include formic acid, acetic acid, and the like.
  • the polymer compound having a primary amino group may be used alone or in combination of two or more.
  • the polymer compound having a primary amino group may be synthesized by a known method, or a commercially available product may be used.
  • polymer compound having a primary amino group examples include the following general formula (A):
  • the compound having a repeating unit represented by the general formula (A) may be a copolymer or graft polymer containing other repeating units in addition to the repeating unit represented by the general formula (A). .
  • Examples of other repeating units that form a copolymer or graft polymer by combining with the repeating unit represented by the general formula (A) include polyacrylate units, polymethacrylate units, polyacrylamide units, and polydiallylamine units. Examples thereof include a unit containing a secondary amine, a unit containing a tertiary amine such as a polymethyldiallylamine unit, and a unit containing a quaternary ammonium salt such as a polydiallyldimethylammonium salt unit.
  • the order of combining the repeating units is not limited, and may be random or block.
  • the compound containing the repeating unit represented by the general formula (A) is more preferably a homopolymer containing only the repeating unit represented by the general formula (A) or a salt thereof.
  • the weight average molecular weight of the compound having the repeating unit represented by the general formula (A) is usually about 1,000 to 1,000,000, preferably about 1200 to 700,000 as described above for the polymer compound having a primary amino group. It is.
  • Examples of the salt of the compound having a repeating unit represented by formula (A) include inorganic acid salts such as hydrochloride, sulfate, phosphoric acid and hydrobromide, formate, acetate, propionate, p Organic salts such as toluenesulfonate, methanesulfonate, citrate, tartrate, etc.
  • the compound having a repeating unit represented by formula (A) can be synthesized by a known polymerization method using allylamine or the like as a raw material. Commercial products are also available.
  • the compound having a repeating unit represented by the general formula (B) may be a copolymer or graft polymer containing other repeating units in addition to the repeating unit represented by the general formula (B). .
  • repeating units that form a copolymer or graft polymer by combining with the repeating unit represented by the general formula (B) include a polyacrylate unit, a polymethyl methacrylate unit, a polyacrylamide unit, a polyvinyl formamide unit, Examples include units containing secondary amines such as polyvinylacetamide units, polydiallylamine units, units containing tertiary amines such as polymethyldiallylamine units, units containing quaternary ammonium salts such as polydiallyldimethylammonium salt units, and the like. It is done.
  • the order of combining the repeating units is not limited, and may be random or block.
  • the compound containing the repeating unit represented by the general formula (B) is more preferably a homopolymer containing only the repeating unit represented by the general formula (B) or a salt thereof.
  • the weight average molecular weight of the compound having a repeating unit represented by formula (B) is usually about 1,000 to 1,000,000, preferably about 1200 to 700,000 as described above for the polymer compound having a primary amino group. It is.
  • Examples of the salt of the compound having the repeating unit represented by the general formula (B) include hydrochloride, sulfate, phosphate, hydrobromide, hydroiodide and other inorganic acid salts, formate salts, acetic acid And organic acid salts such as salts, propionates, p-toluenesulfonates, methanesulfonates, citrates and tartrates.
  • the compound having a repeating unit represented by the general formula (B) can be obtained by, for example, hydrolyzing a polymer of N-substituted amides such as N-vinylformamide and N-vinylacetamide, or modifying polyacrylamide with Hoffman. It can be synthesized by a known polymerization method. Commercial products are also available.
  • the repeating unit represented by the general formula (C) may extend on a straight chain or may have a branched structure.
  • a graft polymer containing another repeating unit may be used.
  • the compound containing the repeating unit represented by the general formula (C) is more preferably a homopolymer containing only the repeating unit represented by the general formula (C) or a salt thereof.
  • a preferred homopolymer or a salt thereof include polyethyleneimine or a salt thereof.
  • the weight average molecular weight of the compound having a repeating unit represented by the general formula (C) is usually about 1,000 to 1,000,000, preferably about 1200 to 700,000 as described above for the polymer compound having a primary amino group. It is.
  • Examples of the salt of the compound having a repeating unit represented by the general formula (C) include inorganic acid salts such as hydrochloride, sulfate, phosphate, hydrobromide, hydroiodide, formate, and acetic acid. And organic acid salts such as salts, propionates, p-toluenesulfonates, methanesulfonates, citrates and tartrates.
  • the compound having a repeating unit represented by the general formula (C) is known as a force thione polymer, and can be synthesized by a known polymerization method using aziridine as a raw material. Commercial products are also available.
  • the composite material of the present invention preferably contains at least one selected from the group consisting of compounds having repeating units represented by the general formulas (A), (B) and (C), and salts thereof.
  • the amount of the polymer compound having a primary amino group is usually about 1 to 30 parts by mass, preferably 5 to 30 parts by mass with respect to 100 parts by mass of (1) CMized cellulose fiber. Part by weight, particularly preferably about 10 to 20 parts by weight.
  • the composite material of the present invention includes an acid-modified polyolefin.
  • acid-modified polyolefins include ⁇ , ⁇ -unsaturated carboxylic acids or acid anhydrides thereof, such as maleic acid, fumaric acid, itaconic acid, citraconic acid, allyl succinic acid, mesaconic acid, annicotic acid, and acid anhydrides thereof.
  • acid-modified polyolefins include polyolefins modified with products.
  • maleic anhydride-modified polyolefin that can be produced at low cost is preferable from the viewpoint of reaction efficiency.
  • the acid-modified polyolefin has a weight average molecular weight of usually about 10,000 to 100,000, preferably about 20,000 to 80,000. Moreover, the polyolefin modified with an acid may be used individually by 1 type, and 2 or more types may be mixed and used for it. The acid-modified polyolefin may be synthesized by a known method, or a commercially available product may be used.
  • maleic anhydride-modified polyolefin examples include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified polybutadiene, maleic anhydride-modified polystyrene, and maleic anhydride-modified polymethacrylate.
  • linear olefins such as ethylene, propylene, 1-butene, 1-pentene and 1-hexene, and branches such as 3-methyl-1-butene, 3-methyl-1-pentene and 4-methyl-1-pentene
  • maleic anhydride-modified copolymers having a copolymer olefin, butadiene, styrene and the like.
  • the polyolefin modified with maleic anhydride preferably has the same skeleton as (4) polyolefin resin described later. That is, for example, when (4) a polypropylene resin is used as the polyolefin resin, it is particularly preferable to use an acid-modified polypropylene resin such as maleic anhydride-modified polypropylene as the (3) acid-modified polyolefin.
  • the acid modification rate of the acid-modified polyolefin is usually about 0.2 to 10% by mass, preferably about 3 to 7% by mass.
  • the compounding amount of the acid-modified polymer compound is (1) about 4 to 50 parts by mass, preferably about 10 to 30 parts by mass with respect to 100 parts by mass of the CMized cellulose fiber. is there.
  • the composite material of the present invention contains a polyolefin resin as a main component.
  • a known polyolefin resin may be used.
  • the polyolefin include linear ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 4-methyl- Examples thereof include branched olefins such as 1-pentene, homopolymers or copolymers such as styrene, butadiene, isoprene, chloroprene, isobutylene and isoprene, and cyclic polyolefins having a norbornene skeleton.
  • the weight average molecular weight of the polyolefin resin is usually about 100,000 to 400,000, preferably about 200,000 to 300,000.
  • the polyolefin resin may be used alone or in combination of two or more.
  • the polyolefin resin may be synthesized by a known method, or a commercially available product may be used.
  • the blending amount of polyolefin is usually about 1 to 98% by mass, preferably about 2 to 96% by mass in the total amount of the composite material.
  • CM-modified cellulose fiber (2) polymer compound having primary amino group, (3) acid-modified polyolefin, and (4) polyolefin resin
  • other components include water; alkalis such as sodium hydroxide, potassium hydride, magnesium hydroxide, and calcium hydroxide; inorganic fillers such as clay, talc, calcium carbonate, my strength, titanium dioxide, and zinc oxide; Organic fillers such as carbon black, graphite, glass flakes; dyes or pigments such as bengara, azo pigments, phthalocyanines; dispersants, lubricants, plasticizers, mold release agents, flame retardants, antioxidants (phenolic antioxidants, phosphorus Antioxidants, sulfur-based antioxidants), antistatic agents, light stabilizers, UV absorbers, metal deactivators, crystallization accelerators (nucleating agents), foaming agents, crosslinking agents, antibacterial agents, etc. Additives and the like.
  • CM cellulose fiber By using together (1) CM cellulose fiber, (2) amine polymer compound having primary amino group, and (3) acid-modified polyolefin, (1) CM cellulose fiber and (4)
  • the polyolefin resin can be uniformly dispersed in the composite material, and a composite material having high strength and high elastic modulus can be obtained. Moreover, by heat-treating the composite material thus obtained, a CM-containing cellulose fiber-containing molded body having high strength and high elastic modulus can be obtained as described later.
  • the production method of the composite material is not particularly limited.
  • (1) CM-modified cellulose fiber, (2) polymer compound having primary amino group, (3) acid-modified polyolefin, and (4 ) Polyolefin resin and other components may be mixed if necessary.
  • the order of kneading each component (1) to (4) and other components is not particularly limited.
  • the mixing method of the components (1) to (4) and other components is not particularly limited, and a known method may be used.
  • the components (1) to (4) and other components can be uniformly dispersed by kneading them with a twin screw extruder (a twin screw kneader) or the like.
  • a twin screw extruder a twin screw kneader
  • an acid-modified polyolefin are both mixed into the composite material.
  • Each component to be dispersed can be uniformly dispersed.
  • the temperature at the time of mixing each component is not particularly limited, and is usually about 0 to 300 ° C.
  • CM cellulose fiber is defibrated with a twin screw extruder or the like, and each of the components (2), (3), (4) and other components such as water used as necessary are added thereto.
  • the composite material of the present invention may be obtained by stirring.
  • each component of (2), (3), (4) and other components used as necessary may be mixed together, and the production of CM-modified cellulose fibers by defibration of the carboxymethylated cellulose raw material and the stirring of each component may be performed simultaneously.
  • the molded body of the present invention is obtained by heat-treating the composite material as described later.
  • the temperature at which the composite material is heat-treated is usually about 100 to 300 ° C., preferably about 110 to 250 ° C., particularly preferably about 110 to 220 ° C.
  • the temperature during the heat treatment is usually preferably a temperature equal to or higher than the melting point of (4) polyolefin resin contained in the composite material.
  • the molded body can be formed into a desired shape by a known resin molding method.
  • a known resin molding method for example, the same method as the manufacturing method of a normal thermoplastic resin composition can be applied.
  • the obtained pellet is subjected to injection molding, die molding, or the like, and can be molded into a desired shape.
  • extrusion molding, hollow molding, foam molding, and the like can also be employed.
  • the amount of each component contained in the composite material before the heat treatment and the molded product after the heat treatment is considered to be substantially the same. That is, it can be considered that the amount of each component in the molded body of the present invention is the same as the amount of each component in the composite material.
  • CM-modified cellulose As described above, in the present invention, by using together (1) CM-modified cellulose fiber, (2) a polymer compound having a primary amino group, and (3) acid-modified polyolefin, CM-modified cellulose is used.
  • the fiber and the polyolefin resin can be uniformly dispersed in the composite material.
  • the bond strength between CM-ized cellulose fibers can be improved, and the interfacial adhesion strength between CM-modified cellulose fibers having high hydrophilicity and polyolefin resins having high hydrophobicity can be improved.
  • a polyolefin-based molded body having high strength and high elastic modulus can be obtained.
  • carboxyl group and carboxymethyl group present on the surface of CM-modified cellulose fiber are: It is considered that a part or the whole reacts and is bonded by heating. These bonds are considered to contribute to the improvement of the strength and elastic modulus of the resin material.
  • the molded article of the present invention is a glass fiber reinforced material in which the glass fiber is replaced with a CM cellulose fiber, which is lighter than the glass fiber reinforced material and reduces incineration ash at the time of disposal. It is considered possible. In addition, since it has high strength, it can be used for the housing (housing) of home appliances such as personal computers and mobile phones, office equipment such as stationery, household goods such as furniture, sports equipment, automobiles, etc. It can also be used for interiors such as dashboards, luggage storage for airplanes, structural members for transportation equipment, and building materials such as sashes in houses. Furthermore, since it is excellent in insulation, application to electrical / electronic / communication equipment can be expected.
  • the crystallinity of cellulose type I was determined by measuring the X-ray diffraction of the sample. X-ray diffraction was measured by placing a sample on a glass cell and using an X-ray diffraction measurement apparatus (LabX XRD-6000, manufactured by Shimadzu Corporation).
  • Xc ( I002c- Ia ) / I002c * 100
  • Xc degree of crystallinity of cellulose type I (%)
  • CM-DS carboxymethyl substitution
  • carboxymethylated cellulose fiber 3 Production was conducted in the same manner as in Production 1 except that the amount of sodium monochloroacetate was changed to 468 g (in terms of active ingredient).
  • the obtained carboxymethylated cellulose fiber had a degree of carboxymethyl substitution per glucose unit of 0.20, a degree of crystallinity of 73%, an average fiber diameter of 18.6 ⁇ m, and an average fiber length of 1.1 mm.
  • the obtained mixture was melted and kneaded (rotation speed: 200 rpm, temperature: 180 ° C.) with a twin-screw extruder (MFU15TW-45HG, screw diameter: 15 mm, manufactured by Technobel Co., Ltd.), and pelletized. Further, the obtained pellets were put into an injection molding machine to obtain a dumbbell-shaped molded product. The molding temperature was 190 ° C. Table 1 shows the tensile strength and tensile modulus of the obtained molded product.
  • Example 2 The same procedure as in Example 1 was performed except that the CM-converted cellulose fiber obtained in Production 2 was used.
  • Example 3 The same procedure as in Example 1 was performed except that the CM-converted cellulose fiber obtained in Production 3 was used.
  • Example 4 The same procedure as in Example 1 was performed except that the CM-converted cellulose fiber obtained in Production 4 was used.
  • Example 5 The same procedure as in Example 1 was carried out except that the CMized cellulose fiber obtained in Production 5 was used.
  • Example 6 The same procedure as in Example 1 was performed except that the CM-converted cellulose fiber obtained in Production 6 was used.
  • Example 7 The same procedure as in Example 1 was performed except that the CM-converted cellulose fiber obtained in Production 7 was used.

Abstract

 (1)カルボキシメチル化セルロースファイバー、(2)第1級アミノ基を有する高分子化合物、(3)酸変性されたポリオレフィン、及び(4)ポリオレフィン樹脂を混合して複合材料とする。また、この複合材料を加熱処理して成形体とする。

Description

複合材料及びそれを用いた成形体
 本発明は、カルボキシメチル化セルロースファイバーとポリオレフィン樹脂とを含む複合樹脂及びこれを加熱処理して成る成形体に関する。
 セルロース系ファイバーとポリプロピレン(以下、「PP」と略記することがある)からなる複合材料は良く知られているが、PP等のポリオレフィン樹脂は疎水性が高く、一方、セルロース系ファイバーは親水性が高いため、均一に混合することが困難であった。このため、マレイン酸変性ポリプロピレン(以下、「MAPP」と略記することがある)を相溶化剤、又は界面補強剤として使用することが知られている(例えば、特許文献1等)。また、特許文献2の実施例には、リグニンを含有するセルロース系ファイバー、PP、及びMAPPからなる複合材料が開示されている。さらに、特許文献3の実施例には、セルロース系ファイバー、PP、MAPP及び特定の第1級アミノ基を有する化合物からなる複合材料が開示されている。
米国特許出願公開第2008/0146701号明細書 特開2009-19200号公報 国際公開第2011/049162号
 特許文献1~3に記載されるような方法により、セルロース系ファイバーとPPとの複合材料の強度及び弾性率は幾分か向上したものの、より一層の向上が望まれる。
 本発明は、セルロース系ファイバーとポリオレフィン樹脂との均一分散性や界面相互作用を高めることで、高強度、高弾性のセルロース系ファイバーとポリオレフィン樹脂との複合材料を提供することを課題とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、セルロース系ファイバーをカルボキシメチル化することで、第1級アミノ基を有する高分子化合物のアミノ基とセルロース系ファイバーとの静電相互作用が高まり、強度、弾性率が大幅に向上したセルロース系ファイバーとポリオレフィン樹脂とを含む成形材料が得られることを見出した。本発明は、これらに限定されないが、以下を含む。
1. (1)カルボキシメチル化セルロースファイバー、(2)第1級アミノ基を有する高分子化合物、(3)酸変性されたポリオレフィン、及び(4)ポリオレフィン樹脂を含有する複合材料。
2. 前記カルボキシメチル化セルロースファイバーは、セルロースの無水グルコース単位当たりのカルボキシメチル基置換度が0.01~0.40であり、且つセルロースI型の結晶化度が60%以上である、上記1に記載の複合材料。
3. 前記酸変性されたポリオレフィンが、無水マレイン酸変性ポリオレフィンである、上記1または2に記載の複合材料。
4. 前記無水マレイン酸変性ポリオレフィンが、無水マレイン酸変性ポリプロピレンであり、前記ポリオレフィン樹脂が、ポリプロピレンである、上記1~3のいずれか1つに記載の複合材料。
5. 前記第1級アミノ基を有する高分子化合物が、下記一般式(A)で表される繰り返し単位を有する化合物、
Figure JPOXMLDOC01-appb-C000004
で表される繰り返し単位を有する化合物、下記一般式(B):
Figure JPOXMLDOC01-appb-C000005
で表される繰り返し単位を有する化合物、下記一般式(C):
Figure JPOXMLDOC01-appb-C000006
で表される繰り返し単位を有する化合物、及びこれらの塩からなる群から選ばれる少なくとも1種である、上記1~4のいずれか1つに記載の複合材料。
6. (1)カルボキシメチル化セルロースファイバー、(2)第1級アミノ基を有する高分子化合物、(3)酸変性されたポリオレフィン、及び(4)ポリオレフィン樹脂を混練する工程を含む、上記1~5のいずれか1つに記載の複合材料の製造方法。
7. 上記1~5のいずれか1つに記載の複合材料を100~300℃で加熱処理してなる成形体。
 本発明によれば、セルロース系ファイバーのカルボキシメチル化により、セルロース系ファイバーと第1級アミノ基との静電相互作用、及び、セルロース系ファイバーと酸変性されたポリオレフィンとの界面接着性が改善され、高強度及び高弾性率の成形体を得ることができる。
 1.複合材料
 本発明の複合材料は、(1)カルボキシメチル化セルロースファイバー(以下、「CM化セルロースファイバー」と略記することがある)、(2)第1級アミノ基を有する高分子化合物、(3)酸変性されたポリオレフィン、及び(4)ポリオレフィン樹脂を含む。
 (1)CM化セルロースファイバー
 本発明の複合材料に含有されるセルロースファイバーは、カルボキシメチル基を含む。セルロースにカルボキシメチル置換基を導入することで、セルロースファイバーと、(2)第1級アミノ基を有する高分子化合物のアミノ基との静電相互作用が大きくなる。このことによって、(1)CM化セルロースファイバー同士のネットワーク構造が補強される。また、(3)酸変性されたポリオレフィンの親水基部分が(1)CM化セルロースファイバーと、疎水基部分が(4)ポリオレフィン樹脂とそれぞれ反応して、(1)CM化セルロースファイバーと(4)ポリオレフィン樹脂との界面相互作用が補強される。CM化セルロースファイバーは、セルロースの無水グルコース単位当たりのカルボキシメチル置換度が0.01~0.40であることが好ましく、0.05~0.20であることがより好ましい。また、CM化セルロースファイバーにおけるセルロースI型の結晶化度は60%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることがさらに好ましい。なお、無水グルコース単位当たりのカルボキシメチル基置換基が0.01より小さいと、十分に効果を発揮することができない場合がある。一方、無水グルコース単位当たりのカルボキシメチル置換基が0.40より大きいと、CM化セルロースファイバーが膨潤あるいは溶解するため、繊維形態を維持できなくなり、ファイバーとして得られなくなる場合がある。また、セルロースI型の結晶化度が60%未満であるとセルロースファイバーの強度が低下し、ポリオレフィン樹脂の補強材としての十分な補強効果が得られなくなる場合がある。
 CM化セルロースファイバーの製造方法は特に限定されるものではないが、セルロース原料をカルボキシメチル化することによって得ることができる。
 (セルロース原料)
 セルロース原料としては、植物(例えば、木材、竹、麻、ジュート、ケナフ、農地残廃物、布、パルプ(針葉樹未漂白クラフトパルプ(NUKP)、針葉樹漂白クラフトパルプ(NBKP)、広葉樹未漂白クラフトパルプ(LUKP)、広葉樹漂白クラフトパルプ(LBKP)、針葉樹未漂白サルファイトパルプ(NUSP)、針葉樹漂白サルファイトパルプ(NBSP)サーモメカニカルパルプ(TMP)、再生パルプ、古紙等)、動物(例えばホヤ類)、藻類、微生物(例えば酢酸菌(アセトバクター))、微生物産生物等を起源とするものが知られており、本発明ではそのいずれも使用できる。好ましくは植物又は微生物由来のセルロースであり、より好ましくは植物由来のセルロースである。
 (カルボキシメチル化)
 セルロース原料のカルボキシメチル化は公知の方法を用いて行うことができ、特に限定されない。また、市販のCM化セルロースファイバーを用いてもよい。本発明では、セルロースの無水グルコース単位当たりのカルボキシメチル基置換度が0.01~0.40であり、セルロースI型の結晶化度が60%以上、好ましくは70%以上、さらに好ましくは80%以上となるように調整することが好ましい。その一例として次のような製造方法を挙げることができる。発底原料としてセルロースを使用する。溶媒として、3~20重量倍の水及び/又は低級アルコール、具体的にはメタノール、エタノール、N-プロピルアルコール、イソプロピルアルコール、N-ブタノール、イソブタノール、第3級ブタノール等の単独、又は2種以上の混合媒体を使用する。なお、溶媒における低級アルコールの混合割合は、60~95重量%である。マーセル化剤として、発底原料の無水グルコース残基当たり0.5~20倍モルの水酸化アルカリ金属、具体的には水酸化ナトリウム、水酸化カリウムを使用する。発底原料、溶媒、及びマーセル化剤を混合し、反応温度0~70℃、好ましくは10~60℃、かつ反応時間15分~8時間、好ましくは30分~7時間、マーセル化処理を行う。その後、カルボキシメチル化剤(例えば、モノクロロ酢酸、モノクロロ酢酸ナトリウムなど)をグルコース残基当たり0.05~10.0倍モル添加し、反応温度30~90℃、好ましくは40~80℃、かつ反応時間30分~10時間、好ましくは1時間~4時間、エーテル化反応を行う。
 (解繊)
 本発明の複合材料に含有されるCM化セルロースファイバーの平均繊維径は4nm~50μmであることが好ましく、200nm~50μmであることがより好ましく、500nm~20μmであることがより一層好ましい。また、CM化セルロースファイバーの平均繊維長は、0.5mm~5.0mmであることが好ましい。CM化セルロースファイバーの平均繊維径及び平均繊維長を上記範囲内に調整すると、CM化セルロースファイバーによるポリオレフィン樹脂の補強効果が高まる。
 CM化セルロースファイバーの繊維径および繊維長は、透過型電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)、またはデジタルCCD顕微鏡を用いて、代表的な繊維100本を測定し、平均値を算出した。
 本発明では、CM化セルロースファイバーの繊維径及び繊維長が上記の範囲になるように、必要に応じて解繊を行う。解繊は、セルロース原料のカルボキシメチル化の後に行ってもよいし、セルロース原料を上記の範囲になるように解繊してからカルボキシメチル化を行ってもよい。解繊をする場合には、これに限定されないが、取扱い容易性から、CM化セルロースファイバーの水分散体を用いることが好ましい。
 解繊用の装置は特に限定されず、必要に応じて、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などの装置や、マスコロイダーを用いることができる。また、後述する他の成分との混合に際して、例えば二軸押出機(二軸混練機)中で解繊と他の成分との混合とを同時に行ってもよい。CM化セルロースファイバーを微細に解繊する場合には、前記水分散体に50MPa以上の圧力を印加できる湿式の高圧または超高圧ホモジナイザーを用いてもよい。前記圧力は、より好ましくは100MPa以上であり、さらに好ましくは140MPa以上である。また、高圧ホモジナイザーでの解繊・分散処理に先立って、必要に応じて、高速せん断ミキサーなどの公知の混合、攪拌、乳化、分散装置を用いて、上記のCM化セルロースファイバーに予備処理を施してもよい。
 本発明の複合材料において、CM化セルロースファイバーの配合量は、複合材料全体量中、通常1~94質量%程度、好ましくは2~92質量%程度である。
 (2)第1級アミノ基を有する高分子化合物
 本発明の複合材料は、分子内に第1級アミノ基を有する高分子化合物を含む。
 第1級アミノ基を有する高分子化合物の重量平均分子量は、通常1000~100万程度、好ましくは1200~70万程度である。
 なお、本発明において、重量平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法(PEG換算)、GPC法(プルラン換算)又はGPCカラムに多角度光散乱検出器を接続したGPC-MALLSのいずれかの方法で測定した値である。
 第1級アミノ基を有する高分子化合物のアミノ基は、有機酸又は無機酸と塩を形成していてもよい。該アミノ基が塩を形成し得る無機酸としては、例えば、塩酸、硫酸、リン酸、ホウ酸、臭化水素酸、ヨウ化水素酸等が挙げられ、有機酸としては、例えば、ギ酸、酢酸、プロピオン酸、p-トルエンスルホン酸、メタンスルホン酸、クエン酸、酒石酸等が挙げられる。
 第1級アミノ基を有する高分子化合物は、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。第1級アミノ基を有する高分子化合物は、公知の方法で合成してもよく、市販品を使用してもよい。
 第1級アミノ基を有する高分子化合物としては、例えば下記一般式(A):
Figure JPOXMLDOC01-appb-C000007
で表されるアリルアミン単位を繰り返し単位として有する化合物及びその塩が挙げられる。
 一般式(A)で表される繰り返し単位を有する化合物は、前記一般式(A)で表される繰り返し単位の他に、他の繰り返し単位を含む共重合体、グラフト重合体であってもよい。
 前記一般式(A)で表される繰り返し単位と結合して共重合体、グラフト重合体を形成する他の繰り返し単位としては、例えばポリアクリレート単位、ポリメタクリレート単位、ポリアクリルアミド単位、ポリジアリルアミン単位のような2級アミンを含む単位、ポリメチルジアリルアミン単位のような3級アミンを含む単位、ポリジアリルジメチルアンモニウム塩単位のような4級アンモニウム塩を含む単位等が挙げられる。各繰り返し単位の結合順は限定されず、ランダムでもブロックでもよい。
 ただし、一般式(A)で表される繰り返し単位以外の繰り返し単位量が多くなり過ぎると、単位重量当たりの第1級アミノ基の数が減るので好ましくない。一般式(A)で表される繰り返し単位を含む化合物は、一般式(A)で表される繰り返し単位のみを含むホモポリマー又はその塩であることがより好ましい。
 一般式(A)で表される繰り返し単位を有する化合物の重量平均分子量は、第1級アミノ基を有する高分子化合物として上記したように、通常1000~100万程度、好ましくは1200~70万程度である。
 一般式(A)で表される繰り返し単位を有する化合物の塩としては、塩酸塩、硫酸塩、リン酸、臭化水素酸塩等の無機酸塩、ギ酸塩、酢酸塩、プロピオン酸塩、p-トルエンスルホン酸塩、メタンスルホン酸塩、クエン酸塩、酒石酸塩等の有機酸塩が挙げられる。一般式(A)で表される繰り返し単位を有する化合物は、アリルアミン等を原料として公知の重合方法で合成することができる。市販品も入手可能である。
 また、第1級アミノ基を有する高分子化合物としては、例えば下記一般式(B):
Figure JPOXMLDOC01-appb-C000008
で表されるビニルアミン単位を繰り返し単位として有する化合物及びその塩も挙げられる。
 一般式(B)で表される繰り返し単位を有する化合物は、前記一般式(B)で表される繰り返し単位の他に、他の繰り返し単位を含む共重合体、グラフト重合体であってもよい。
 前記一般式(B)で表される繰り返し単位と結合して共重合体、グラフト重合体を形成する他の繰り返し単位としては、ポリアクリレート単位、ポリメチルメタクリレート単位、ポリアクリルアミド単位、ポリビニルホルムアミド単位、ポリビニルアセトアミド単位、ポリジアリルアミン単位のような2級アミンを含む単位、ポリメチルジアリルアミン単位のような3級アミンを含む単位、ポリジアリルジメチルアンモニウム塩単位のような4級アンモニウム塩を含む単位等が挙げられる。各繰り返し単位の結合順は限定されず、ランダムでもブロックでもよい。
 ただし、一般式(B)で表される繰り返し単位以外の繰り返し単位量が多くなり過ぎると、単位重量当たりの1級アミノ基の数が減るので好ましくない。一般式(B)で表される繰り返し単位を含む化合物は、一般式(B)で表される繰り返し単位のみを含むホモポリマー又はその塩であることがより好ましい。
 一般式(B)で表される繰り返し単位を有する化合物の重量平均分子量は、第1級アミノ基を有する高分子化合物について上記したように、通常1000~100万程度、好ましくは1200~70万程度である。
 一般式(B)で表される繰り返し単位を有する化合物の塩としては、塩酸塩、硫酸塩、リン酸塩、臭化水素酸塩、ヨウ化水素酸塩等の無機酸塩、ギ酸塩、酢酸塩、プロピオン酸塩、p-トルエンスルホン酸塩、メタンスルホン酸塩、クエン酸塩、酒石酸塩等の有機酸塩が挙げられる。
 一般式(B)で表される繰り返し単位を有する化合物は、例えばNービニルホルムアミドやN-ビニルアセトアミド等のN置換アミド類の重合体を加水分解するか、またはポリアクリルアミドをホフマン変性する等の公知の重合方法で合成することができる。市販品も入手可能である。
 さらに、第1級アミノ基を有する高分子化合物としては、例えば下記一般式(C):
Figure JPOXMLDOC01-appb-C000009
で表される繰り返し単位を有する化合物及びその塩も挙げられる。
 一般式(C)で表される繰り返し単位を有する化合物は、前記一般式(C)で表される繰り返し単位が直鎖上に伸びていても良いし、分岐構造を取っていても良い。また一般式(C)の他に、他の繰り返し単位を含むグラフト重合体であってもよい。
 ただし、一般式(C)で表される繰り返し単位以外の繰り返し単位量が多くなり過ぎると、単位重量当たりの1級アミノ基の数が減るので好ましくない。一般式(C) で表される繰り返し単位を含む化合物は、一般式(C)で表される繰り返し単位のみを含むホモポリマー又はその塩であることがより好ましい。このような好ましいホモポリマー又はその塩としては、ポリエチレンイミン又はその塩が挙げられる。
 一般式(C)で表される繰り返し単位を有する化合物の重量平均分子量は、第1級アミノ基を有する高分子化合物として上記したように、通常1000~100万程度、好ましくは1200~70万程度である。
 一般式(C)で表される繰り返し単位を有する化合物の塩としては、塩酸塩、硫酸塩、リン酸塩、臭化水素酸塩、ヨウ化水素酸塩等の無機酸塩、ギ酸塩、酢酸塩、プロピオン酸塩、p-トルエンスルホン酸塩、メタンスルホン酸塩、クエン酸塩、酒石酸塩等の有機酸塩が挙げられる。
 一般式(C)で表される繰り返し単位を有する化合物は、力チオンポリマーとして知られており、アジリジンを原料として公知の重合方法で合成することができる。市販品も入手可能である。
 本発明の複合材料は、上記一般式(A)、(B)及び(C)で表される繰り返し単位を有する化合物、並びにこれらの塩からなる群から選ばれる少なくとも1種を含むことが好ましい。
 本発明の複合材料において、第1級アミノ基を有する高分子化合物の配合量は、(1)CM化セルロースファイバー100質量部に対して、通常1~30質量部程度、好ましくは5~30質量部程度、特に好ましくは10~20質量部程度である。
 (3)酸変性されたポリオレフィン
 本発明の複合材料は、酸変性されたポリオレフィンを含む。
 酸変性されたポリオレフィンとしては、α、β-不飽和カルボン酸又はその酸無水物、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、アリルコハク酸、メサコン酸、アニコット酸、及びこれらの酸無水物等で変性されたポリオレフィンを例示することができる。特に、反応効率の点から安価に製造可能な無水マレイン酸変性ポリオレフィンが好ましい。
 酸変性されたポリオレフィンは、重量平均分子量で通常1万~10万程度、好ましくは2万~8万程度の分子量のものを使用すればよい。また、酸で変性されたポリオレフィンは1種を単独で使用してもよいし、2種以上を混合して使用してもよい。酸変性されたポリオレフィンは、公知の方法で合成してもよく、市販品を使用してもよい。
 無水マレイン酸変性ポリオレフィンとしては、例えば、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性ポリブタジエン、無水マレイン酸変性ポリスチレン、無水マレイン酸変性ポリメタクリレート等が挙げられる。また、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン等の直鎖状オレフィン、3-メチル-1-ブテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン等の分岐状オレフィン、ブタジエン、スチレンなどを有する共重合体の無水マレイン酸変性体も挙げられる。
 無水マレイン酸で変性されたポリオレフィンは、通常、後述の(4)ポリオレフィン樹脂と同様の骨格を有することが好ましい。すなわち、例えば、(4)ポリオレフィン樹脂としてポリプロピレン樹脂を用いる場合は、(3)酸で変性されたポリオレフィンとして、無水マレイン酸変性ポリプロピレンなどの酸変性ポリプロピレン樹脂を使用することが特に好ましい。
 酸変性されたポリオレフィンの酸変性率は、通常0.2~10質量%程度、好ましくは3~7質量%程度である。
 本発明の複合材料において、酸変性された高分子化合物の配合量は、(1)CM化セルロースファイバー100質量部に対して、通常4~50質量部程度、好ましくは10~30質量部程度である。
 (4)ポリオレフィン樹脂
 本発明の複合材料は、主成分としてポリオレフィン樹脂を含む。ポリオレフィン樹脂は、公知のものを使用すればよい。ポリオレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-へキセン等の直鎖状αオレフィン、3-メチル-1-ブテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン等の分岐状オレフィン、スチレン、ブタジエン、イソプレン、クロロプレン、イソブチレン、イソプレンなどの単独重合体又は共重合体、ノルボルネン骨格を有する環状ポリオレフィン等が挙げられる。
 ポリオレフィン樹脂の重量平均分子量は、通常10万~40万程度、好ましくは20万~30万程度である。また、ポリオレフィン樹脂は1種を単独で使用してもよいし、2種以上を混合して使用してもよい。ポリオレフィン樹脂は、公知の方法で合成してもよく、市販品を使用してもよい。
 本発明の複合材料において、ポリオレフィンの配合量は、複合材料全体量中、通常1~98質量%程度、好ましくは2~96質量%程度である。
 本発明の複合材料は、(1)CM化セルロースファイバー、(2)第1級アミノ基を有する高分子化合物、(3)酸変性されたポリオレフィン、及び(4)ポリオレフィン樹脂に加えて、必要に応じて他の成分を含んでいてもよい。他の成分としては、例えば、水;水酸化ナトリウム、水駿化カリウム、水酸化マグネシウム、水酸化カルシウム等のアルカリ;クレー、タルク、炭酸カルシウム、マイ力、二酸化チタン、酸化亜鉛等の無機填料;カーボンブラック、グラファイト、ガラスフレーク等の有機填料;ベンガラ、アゾ顔料、フタロシアニン等の染料又は顔料;分散剤、滑剤、可塑剤、離型剤、難燃剤、酸化防止剤(フェノール系酸化防止剤、リン酸化防止剤、イオウ系酸化防止剤)、帯電防止剤、光安定剤、紫外線吸収剤、金属不活性剤、結晶化促進剤(造核剤)、発泡剤、架橋剤、抗菌剤等の改質用添加剤等が挙げられる。
 (1)CM化セルロースファイバー、(2)第1級アミノ基を有するアミン系高分子化合物、及び(3)酸変性されたポリオレフィンを併用することにより、(1)CM化セルロースファイバーと(4)ポリオレフィン樹脂とを複合材料中でそれぞれ均一に分散させることができ、また、高強度及び高弾性率の複合材料を得ることができる。また、このようにして得られた複合材料を加熱処理することにより、後述の通り、高強度、高弾性率のCM化セルロースファイバー含有成形体を得ることができる。
 2.複合材料の製造方法
 複合材料の製造方法は特に限定されず、(1)CM化セルロースファイバー、(2)第1級アミノ基を有する高分子化合物、(3)酸変性されたポリオレフィン、及び(4)ポリオレフィン樹脂、及び必要に応じて他の成分を混合すればよい。(1)~(4)の各成分及び他の成分の混練順序は特に限定されない。
 また、前記(1)~(4)の各成分及び他の成分の混合方法は、特に限定されず、公知の方法を用いればよい。例えば、前記(1)~(4)の各成分及び他の成分を二軸押出機(二軸混練機)等で混練することによって、各成分を均一に分散させることができる。前記の通り、本発明においては、(2)第1級アミノ基を有するアミン系高分子化合物、及び(3)酸変性されたポリオレフィンの両者を複合材料中に混合することにより、複合材料に含まれる各成分を均一に分散させることができる。各成分の混合の際の温度は特に限定されず、通常0~300℃程度である。
 例えば、CM化セルロースファイバーを二軸押出機等で解繊して、これに前記(2)、(3)、(4)の各成分及び必要に応じて使用される水等の他の成分を加え、攪拌して本発明の複合材料を得てもよい。また、リファイナ一、二軸押出機等を用いて解繊したCM化セルロースファイバーを得る際に、(2)、(3)、(4)の各成分と、必要に応じて使用される他の成分とを一緒に混合し、カルボキシルメチル化したセルロース原料の解繊によるCM化セルロースファイバーの製造と各成分の攪拌とを同時に行ってもよい。
 3.成形体
 本発明の成形体は、後述の通り、前記複合材料を加熱処理することによって得られる。複合材料を加熱処理(加熱、溶融、混練等の処理)する際の温度は、通常100~300℃程度、好ましくは110~250℃程度、特に好ましくは110~220℃程度である。
 加熱処理する際の温度は、通常、複合材料に含まれる(4)ポリオレフィン樹脂の融点以上の温度とすることが好ましい。
 成形体は、公知の樹脂成形方法により目的とする形状にすることができる。例えば、通常の熱可塑性樹脂組成物の製造方法と同様の方法を適用することができる。例えば、複合材料を加熱、溶融、混練、ペレタイザ一等によりペレット化した後、得られたペレットを射出成形、金型成形等に供することにより、目的の形状に成形できる。その他、押出成形、中空成形、発泡成形等も採用することができる。
 複合材料に上記加熱処理によって蒸発する成分がほとんど含まれていなければ、加熱処理の前の複合材料と加熱処理後の成形体に含まれる各成分の量は実質的に同じであると考えられる。すなわち、本発明の成形体中の各成分の量は、前記複合材料における各成分の配合量と同じであると考えることができる。
 上記の通り、本発明においては、(1)CM化セルロースファイバー、(2)第1級アミノ基を有する高分子化合物、及び前記(3)酸変性されたポリオレフィンを併用することにより、CM化セルロースファイバーとポリオレフィン樹脂とを複合材料中に均一に分散させることができる。また、CM化セルロースファイバー間の結合強度を向上させ、また、親水性の高いCM化セルロースファイバーと疎水性の高いポリオレフィン樹脂との間の界面接着強度を向上させることができる。また、このようにして得られた複合材料を加熱処理することにより、高強度、高弾性率のポリオレフィン系成形体を得ることができる。
 本発明の成形体においては、(1)CM化セルロースファイバー表面に存在するカルボキシル基およびカルボキシメチル基、(2)成分中の第1級アミノ基、及び(3)成分中の酸変性部位は、加熱により一部又は全部が反応し、結合していると考えられる。これらの結合が、樹脂材料の強度、弾性率の向上に貢献していると考えられる。
 本発明の成形体は、既存のガラス繊維強化材料におけるガラス繊維をCM化セルロースファイバーに代替したようなものであり、ガラス繊維強化材料に比して軽く、また、廃棄時の焼却灰を低減させることができると考えられる。また、高い強度を有しているので、例えば、パソコン、携帯電話等の家電製品の筐体(ハウジング)に用いることができるし、文具等の事務機器、家具等の生活用品、スポーツ用品、自動車のダッシュボード等の内装、飛行機の荷物入れ、輸送用機器の構造部材、住宅におけるサッシ等の建材等にも使用することができる。更に、絶縁性に優れるので、電気・電子・通信機器への応用が期待できる。
 以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
 <カルボキシメチル化セルロースファイバーの製造1>
 パルプを混ぜることが出来る撹拌機に、パルプ(LBKP、日本製紙社製)を乾燥重量で200g、水酸化ナトリウムを乾燥重量で88g加え、パルプ固形濃度が15%になるように水を加えた。その後、30℃で30分攪拌した後に70℃まで昇温し、モノクロロ酢酸ナトリウムを117g(有効成分換算)添加した。1時間反応した後に、反応物を取り出して中和、洗浄して、グルコース単位当たりのカルボキシメチル置換度0.05、結晶化度84%、平均繊維径20.0μm、平均繊維長1.2mmのカルボキシルメチル化したセルロースを得た。
 (結晶化度の測定)
 セルロースI型の結晶化度は、試料のX線回折を測定することで求めた。X線回折は、試料をガラスセルに乗せ、X線回折測定装置(LabX XRD-6000、島津製作所製)を用いて測定した。結晶化度の算出はSegal等の手法を用いて行い、X線回折図の2θ=10°~30°の回折強度をベースラインとして、2θ=22.6°の002面の回折強度と2θ=18.5°のアモルファス部分の回折強度から次式により算出した。
=(I002c―I)/I002c×100
:セルロースのI型の結晶化度(%)
002c:2θ=22.6°の002面の回折強度
:2θ=18.5°のアモルファス部分の回折強度
 (カルボキシメチル置換度の測定方法)
 試料約2.0gを精秤して、300mL共栓付き三角フラスコに入れた。硝酸メタノール1000mLに特級濃硝酸100mLを加えた液100mLを加え、3時間振とうして、カルボキシメチルセルロース塩(CMC)をH-CMCにした。その絶乾H-CMCを1.5~2.0g精秤し、300mL共栓付き三角フラスコに入れた。80%メタノール15mLでH-CMCを湿潤し、0.1N-NaOHを100mL加え、室温で3時間振とうした。指示薬として、フェノールフタレインを用いて、0.1N-HSOで過剰のNaOHを逆滴定した。カルボキシメチル置換度(CM-DS)は、次式によって算出した。
A=[(100×F’-0.1N-HSO(mL)×F)×0.1]/(H-CMCの絶乾重量(g))
CM-DS=0.162×A/(1-0.058×A)
A:H-CMCの1gの中和に要する1N-NaOH量(mL)
F’:0.1N-HSOのファクター
F:0.1N-NaOHのファクター
 <カルボキシメチル化セルロースファイバーの製造2>
 モノクロロ酢酸ナトリウムの量を187g(有効成分換算)に変更した以外は製造1と同様に製造した。得られたカルボキシメチル化セルロースファイバーのグルコース単位当たりのカルボキシメチル置換度は0.08、結晶化度は83%、平均繊維径は19.1μm、平均繊維長は1.1mmであった。
 <カルボキシメチル化セルロースファイバーの製造3>
 モノクロロ酢酸ナトリウムの量を468g(有効成分換算)に変更した以外は製造1と同様に製造した。得られたカルボキシメチル化セルロースファイバーのグルコース単位当たりのカルボキシメチル置換度は0.20、結晶化度は73%、平均繊維径は18.6μm、平均繊維長は1.1mmであった。
 <カルボキシメチル化セルロースファイバーの製造4>
 モノクロロ酢酸ナトリウムの量を468g(有効成分換算)、水酸化ナトリウムを乾燥重量で104gに変更した以外は製造1と同様に製造した。得られたカルボキシメチル化セルロースファイバーのグルコース単位当たりのカルボキシメチル置換度は0.20、結晶化度は62%、平均繊維径は18.5μm、平均繊維長は1.1mmであった。
 <カルボキシメチル化セルロースファイバーの製造5>
 製造1におけるパルプ(LBKP、日本製紙社製)を、パルプ(NBKP、日本製紙社製)に変更した以外は、製造1と同様にした。得られたカルボキシメチル化セルロースファイバーのグルコース単位当たりのカルボキシメチル置換度は0.05、結晶化度は84%、平均繊維径は19.0μm、平均繊維長2.9はmmであった。
 <カルボキシメチル化セルロースファイバーの製造6>
 製造5で得たカルボキシメチル化したセルロースを、高圧ホモジナイザーで処理し、平均繊維径1.2μm、平均繊維長2.5mmに調整した。
 <カルボキシメチル化セルロースファイバーの製造7>
 製造5で得たカルボキシメチル化セルロースファイバーを、マスコロイダーで処理し、平均繊維径1.1μm、平均繊維長1.2mmに調整した。
 <実施例1>
 製造1で得られたCM化セルロースファイバー(成分(1))、アリルアミン重合体(日東紡株式会社製:商品名「PAA(登録商標)-15C」)(成分(2))、無水マレイン酸変性ポリプロピレン(三洋化成工業株式会社製:商品名「ユーメックス(登録商標)1010」)(成分(3))、及びポリプロピレン(株式会社プライムポリマー製:商品名「プライムポリプロ(登録商標)J105」)(成分(4))を添加してミキサーにて15分間攪拌した(各々の成分の固形分比(質量比)は次の通りである。CM化セルロースファイバー:アリルアミン重合体:無水マレイン酸変性ポリプロピレン:ポリプロピレン=30:6:8:56)。
 得られた混合物を二軸押出機(MFU15TW-45HG、スクリュー直径:15mm、株式会社テクノベル製)で溶融、混練(回転数200rpm、温度180℃)した後、ペレット化した。更に得られたペレットを射出成型機に投入しダンベル型の成型物を得た。成形温度は190℃とした。得られた成型物の引張強度及び引張弾性率を表1に示す。
 (引張強度の測定)
 JIS K7161(プラスチックの引張り試験方法)に基づき1BA形試験片(ダンベル型厚さ2mm)を用いて測定した。
 (引張弾性率の測定)
 株式会社エー・アンド・デイ製「テンシロン万能試験機RTG-1210」を用いて測定した
 <実施例2>
 製造2で得られたCM化セルロースファイバーを用いた以外は実施例1と同様に行った。
 <実施例3>
 製造3で得られたCM化セルロースファイバーを用いた以外は実施例1と同様に行った。
 <実施例4>
 製造4で得られたCM化セルロースファイバーを用いた以外は実施例1と同様に行った。
 <実施例5>
 製造5で得られたCM化セルロースファイバーを用いた以外は実施例1と同様に行った。
 <実施例6>
 製造6で得られたCM化セルロースファイバーを用いた以外は実施例1と同様に行った。
 <実施例7>
 製造7で得られたCM化セルロースファイバーを用いた以外は実施例1と同様に行った。
 <比較例1>
 カルボキシメチル化していないパルプ(LBKP、日本製紙社製)を用いた以外は実施例1と同様に行った。
 <比較例2>
 成分(4)のみで射出成型して得られた成型物の引張強度及び弾性率を測定した。
Figure JPOXMLDOC01-appb-T000010
 

Claims (7)

  1. (1)カルボキシメチル化セルロースファイバー、(2)第1級アミノ基を有する高分子化合物、(3)酸変性されたポリオレフィン、及び(4)ポリオレフィン樹脂を含有する複合材料。
  2. 前記カルボキシメチル化セルロースファイバーは、セルロースの無水グルコース単位当たりのカルボキシメチル基置換度が0.01~0.40であり、且つセルロースI型の結晶化度が60%以上である、請求項1に記載の複合材料。
  3. 前記酸変性されたポリオレフィンが、無水マレイン酸変性ポリオレフィンである、請求項1または2に記載の複合材料。
  4. 前記無水マレイン酸変性ポリオレフィンが、無水マレイン酸変性ポリプロピレンであり、前記ポリオレフィン樹脂が、ポリプロピレンである、請求項1~3のいずれか1項に記載の複合材料。
  5. 前記第1級アミノ基を有する高分子化合物が、下記一般式(A):
    Figure JPOXMLDOC01-appb-C000001
    で表される繰り返し単位を有する化合物、下記一般式(B):
    Figure JPOXMLDOC01-appb-C000002
    で表される繰り返し単位を有する化合物、下記一般式(C):
    Figure JPOXMLDOC01-appb-C000003
    で表される繰り返し単位を有する化合物、及びこれらの塩からなる群から選ばれる少なくとも1種である請求項1~4のいずれか1項に記載の複合材料。
  6. (1)カルボキシメチル化セルロースファイバー、(2)第1級アミノ基を有する高分子化合物、(3)酸変性されたポリオレフィン、及び(4)ポリオレフィン樹脂を混練する工程を含む請求項1~5のいずれか1項に記載の複合材料の製造方法。
  7. 請求項1~6のいずれか1項に記載の複合材料を100~300℃で加熱処理してなる成形体。
PCT/JP2013/079404 2012-12-05 2013-10-30 複合材料及びそれを用いた成形体 WO2014087767A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014550992A JP6275651B2 (ja) 2012-12-05 2013-10-30 複合材料及びそれを用いた成形体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012265917 2012-12-05
JP2012-265917 2012-12-05

Publications (1)

Publication Number Publication Date
WO2014087767A1 true WO2014087767A1 (ja) 2014-06-12

Family

ID=50883194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079404 WO2014087767A1 (ja) 2012-12-05 2013-10-30 複合材料及びそれを用いた成形体

Country Status (2)

Country Link
JP (1) JP6275651B2 (ja)
WO (1) WO2014087767A1 (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089077A (ja) * 2014-11-07 2016-05-23 星光Pmc株式会社 樹脂強化用セルロース繊維の製造方法、樹脂強化用セルロース繊維、樹脂組成物及び樹脂成形体
WO2017038528A1 (ja) * 2015-09-02 2017-03-09 Jsr株式会社 組成物及び成形体
JP2017048314A (ja) * 2015-09-02 2017-03-09 Jsr株式会社 組成物及び成形体
WO2018194049A1 (ja) * 2017-04-17 2018-10-25 日本製紙株式会社 カルボキシメチル化セルロースナノファイバーおよびその製造方法
WO2019111941A1 (ja) * 2017-12-07 2019-06-13 日本製紙株式会社 カルボキシメチル化セルロースナノファイバー
WO2019111934A1 (ja) * 2017-12-07 2019-06-13 日本製紙株式会社 カルボキシメチル化セルロース
WO2019156047A1 (ja) * 2018-02-06 2019-08-15 大王製紙株式会社 繊維状セルロース及びその製造方法、並びに樹脂組成物
JP2019199660A (ja) * 2018-05-16 2019-11-21 日本製紙株式会社 金属粒子担持セルロース繊維
WO2019221272A1 (ja) * 2018-05-18 2019-11-21 日本製紙株式会社 カルボキシメチル化パルプの粉砕物及び該粉砕物を含む添加剤
WO2019221273A1 (ja) * 2018-05-18 2019-11-21 日本製紙株式会社 カルボキシメチルセルロースを含有する分散組成物
WO2020090711A1 (ja) * 2018-10-31 2020-05-07 大王製紙株式会社 繊維状セルロース複合樹脂及びその製造方法
JP2020070379A (ja) * 2018-10-31 2020-05-07 大王製紙株式会社 繊維状セルロース複合樹脂
JP2020070378A (ja) * 2018-10-31 2020-05-07 大王製紙株式会社 繊維状セルロース複合樹脂及びその製造方法
WO2020195671A1 (ja) * 2019-03-28 2020-10-01 日本製紙株式会社 フィブリル化された化学変性セルロース繊維
CN111918999A (zh) * 2018-03-30 2020-11-10 日本制纸株式会社 羧甲基化微原纤化纤维素纤维和其组合物
WO2021112195A1 (ja) * 2019-12-03 2021-06-10 日本製紙株式会社 変性セルロースマイクロフィブリルの製造方法
WO2021117798A1 (ja) 2019-12-10 2021-06-17 日本製紙株式会社 成形用樹脂材料およびその製造方法
WO2021193898A1 (ja) 2020-03-26 2021-09-30 日本製紙株式会社 成形用樹脂材料およびその製造方法
JPWO2021040006A1 (ja) * 2019-08-30 2021-10-21 日本製紙株式会社 ゴム組成物及びその製造方法
WO2022024918A1 (ja) 2020-07-31 2022-02-03 日本製紙株式会社 成形用樹脂材料およびその製造方法
WO2022209157A1 (ja) * 2021-03-31 2022-10-06 大王製紙株式会社 繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法
US11466405B2 (en) 2018-03-30 2022-10-11 Nippon Paper Industries Co., Ltd. Carboxymethylated microfibrillated cellulose fibers and composition thereof
US11512037B2 (en) 2020-10-20 2022-11-29 Sds Biotech K.K. Process for producing dimethyl 2,3,5,6-tetrachloro-1,4-benzenedicarboxylate
US11518820B2 (en) 2017-12-07 2022-12-06 Nippon Paper Industries Co., Ltd. Method for producing carboxymethylated cellulose and carboxymethylated cellulose nanofibers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232137A (ja) * 1985-08-02 1987-02-12 Nobuo Shiraishi 複合樹脂組成物
JP2004002490A (ja) * 2002-03-25 2004-01-08 Rengo Co Ltd 高分子相溶溶液及びこれを用いて高分子複合体を製造する方法
JP2005187524A (ja) * 2003-12-24 2005-07-14 Idemitsu Kosan Co Ltd ポリオレフィン組成物及びその成形品
WO2011049162A1 (ja) * 2009-10-23 2011-04-28 国立大学法人京都大学 ミクロフィブリル化植物繊維を含む組成物
JP2012236906A (ja) * 2011-05-11 2012-12-06 Nissan Motor Co Ltd 樹脂組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232137A (ja) * 1985-08-02 1987-02-12 Nobuo Shiraishi 複合樹脂組成物
JP2004002490A (ja) * 2002-03-25 2004-01-08 Rengo Co Ltd 高分子相溶溶液及びこれを用いて高分子複合体を製造する方法
JP2005187524A (ja) * 2003-12-24 2005-07-14 Idemitsu Kosan Co Ltd ポリオレフィン組成物及びその成形品
WO2011049162A1 (ja) * 2009-10-23 2011-04-28 国立大学法人京都大学 ミクロフィブリル化植物繊維を含む組成物
JP2012236906A (ja) * 2011-05-11 2012-12-06 Nissan Motor Co Ltd 樹脂組成物

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089077A (ja) * 2014-11-07 2016-05-23 星光Pmc株式会社 樹脂強化用セルロース繊維の製造方法、樹脂強化用セルロース繊維、樹脂組成物及び樹脂成形体
WO2017038528A1 (ja) * 2015-09-02 2017-03-09 Jsr株式会社 組成物及び成形体
JP2017048314A (ja) * 2015-09-02 2017-03-09 Jsr株式会社 組成物及び成形体
JP2017110235A (ja) * 2015-09-02 2017-06-22 Jsr株式会社 組成物及び成形体
JPWO2017038528A1 (ja) * 2015-09-02 2017-09-07 Jsr株式会社 組成物及び成形体
CN107922744A (zh) * 2015-09-02 2018-04-17 Jsr株式会社 一种组合物和成型体
US20180258239A1 (en) * 2015-09-02 2018-09-13 Jsr Corporation Composition and formed article
US10570259B2 (en) * 2015-09-02 2020-02-25 Jsr Corporation Composition and formed article
WO2018194049A1 (ja) * 2017-04-17 2018-10-25 日本製紙株式会社 カルボキシメチル化セルロースナノファイバーおよびその製造方法
JP7245156B2 (ja) 2017-04-17 2023-03-23 日本製紙株式会社 カルボキシメチル化セルロースナノファイバーおよびその製造方法
JPWO2018194049A1 (ja) * 2017-04-17 2020-03-05 日本製紙株式会社 カルボキシメチル化セルロースナノファイバーおよびその製造方法
US11760811B2 (en) 2017-12-07 2023-09-19 Nippon Paper Industries Co., Ltd. Carboxymethylated cellulose
CN111448219A (zh) * 2017-12-07 2020-07-24 日本制纸株式会社 羧甲基化纤维素
US11518820B2 (en) 2017-12-07 2022-12-06 Nippon Paper Industries Co., Ltd. Method for producing carboxymethylated cellulose and carboxymethylated cellulose nanofibers
US11591412B2 (en) 2017-12-07 2023-02-28 Nippon Paper Industries Co., Ltd. Carboxymethylated cellulose nanofibers
CN111448218A (zh) * 2017-12-07 2020-07-24 日本制纸株式会社 羧甲基化纤维素纳米纤维
WO2019111934A1 (ja) * 2017-12-07 2019-06-13 日本製紙株式会社 カルボキシメチル化セルロース
US11732055B2 (en) 2017-12-07 2023-08-22 Nippon Paper Industries Co., Ltd. Method for manufacturing carboxymethylated cellulose nanofiber
WO2019111941A1 (ja) * 2017-12-07 2019-06-13 日本製紙株式会社 カルボキシメチル化セルロースナノファイバー
US11634509B2 (en) 2018-02-06 2023-04-25 Daio Paper Corporation Fibrous cellulose, method for manufacturing same, and resin composition
WO2019156047A1 (ja) * 2018-02-06 2019-08-15 大王製紙株式会社 繊維状セルロース及びその製造方法、並びに樹脂組成物
JP2019137711A (ja) * 2018-02-06 2019-08-22 大王製紙株式会社 繊維状セルロース及びその製造方法、並びに樹脂組成物
EP3779041A4 (en) * 2018-03-30 2022-03-09 Nippon Paper Industries Co., Ltd. CARBOXYMETHYLATED MICROFIBRILLARY CELLULOSE FIBERS AND ASSOCIATED COMPOSITION
CN111918999A (zh) * 2018-03-30 2020-11-10 日本制纸株式会社 羧甲基化微原纤化纤维素纤维和其组合物
US11525015B2 (en) 2018-03-30 2022-12-13 Nippon Paper Industries Co., Ltd. Oxidized microfibrillated cellulose fibers and composition thereof
US11512432B2 (en) 2018-03-30 2022-11-29 Nippon Paper Industries Co., Ltd. Oxidized microfibrillated cellulose fibers and composition thereof
US11466405B2 (en) 2018-03-30 2022-10-11 Nippon Paper Industries Co., Ltd. Carboxymethylated microfibrillated cellulose fibers and composition thereof
US11453728B2 (en) 2018-03-30 2022-09-27 Nippon Paper Industries Co., Ltd. Carboxymethylated microfibrillated cellulose fibers and composition thereof
JP2019199660A (ja) * 2018-05-16 2019-11-21 日本製紙株式会社 金属粒子担持セルロース繊維
WO2019221272A1 (ja) * 2018-05-18 2019-11-21 日本製紙株式会社 カルボキシメチル化パルプの粉砕物及び該粉砕物を含む添加剤
WO2019221273A1 (ja) * 2018-05-18 2019-11-21 日本製紙株式会社 カルボキシメチルセルロースを含有する分散組成物
JPWO2019221272A1 (ja) * 2018-05-18 2021-07-15 日本製紙株式会社 カルボキシメチル化パルプの粉砕物及び該粉砕物を含む添加剤
JP7245237B2 (ja) 2018-05-18 2023-03-23 日本製紙株式会社 カルボキシメチル化パルプの粉砕物及び該粉砕物を含む添加剤
CN112135529A (zh) * 2018-05-18 2020-12-25 日本制纸株式会社 羧甲基化纸浆的粉碎物和含有该粉碎物的添加剂
CN112673060A (zh) * 2018-10-31 2021-04-16 大王制纸株式会社 纤维状纤维素复合树脂及其制造方法
WO2020090711A1 (ja) * 2018-10-31 2020-05-07 大王製紙株式会社 繊維状セルロース複合樹脂及びその製造方法
JP7323277B2 (ja) 2018-10-31 2023-08-08 大王製紙株式会社 繊維状セルロース複合樹脂
US20220049071A1 (en) * 2018-10-31 2022-02-17 Daio Paper Corporation Fibrous cellulose composite resin and method for manufacturing the same
JP2020070379A (ja) * 2018-10-31 2020-05-07 大王製紙株式会社 繊維状セルロース複合樹脂
JP2020070378A (ja) * 2018-10-31 2020-05-07 大王製紙株式会社 繊維状セルロース複合樹脂及びその製造方法
JP7236841B2 (ja) 2018-10-31 2023-03-10 大王製紙株式会社 繊維状セルロース複合樹脂及びその製造方法
US20220153879A1 (en) * 2019-03-28 2022-05-19 Nippon Paper Industries Co., Ltd. Fibrillated chemically modified cellulose fiber
CN113544330A (zh) * 2019-03-28 2021-10-22 日本制纸株式会社 经原纤化的化学改性纤维素纤维
WO2020195671A1 (ja) * 2019-03-28 2020-10-01 日本製紙株式会社 フィブリル化された化学変性セルロース繊維
CN113544330B (zh) * 2019-03-28 2023-05-12 日本制纸株式会社 经原纤化的化学改性纤维素纤维
EP3951050A4 (en) * 2019-03-28 2023-06-14 Nippon Paper Industries Co., Ltd. FIBRILLATED CHEMICALLY MODIFIED CELLULOSE FIBER
JP7015970B2 (ja) 2019-08-30 2022-02-15 日本製紙株式会社 ゴム組成物及びその製造方法
JPWO2021040006A1 (ja) * 2019-08-30 2021-10-21 日本製紙株式会社 ゴム組成物及びその製造方法
WO2021112195A1 (ja) * 2019-12-03 2021-06-10 日本製紙株式会社 変性セルロースマイクロフィブリルの製造方法
WO2021117798A1 (ja) 2019-12-10 2021-06-17 日本製紙株式会社 成形用樹脂材料およびその製造方法
WO2021193898A1 (ja) 2020-03-26 2021-09-30 日本製紙株式会社 成形用樹脂材料およびその製造方法
WO2022024918A1 (ja) 2020-07-31 2022-02-03 日本製紙株式会社 成形用樹脂材料およびその製造方法
US11512037B2 (en) 2020-10-20 2022-11-29 Sds Biotech K.K. Process for producing dimethyl 2,3,5,6-tetrachloro-1,4-benzenedicarboxylate
JP7213296B2 (ja) 2021-03-31 2023-01-26 大王製紙株式会社 繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法
WO2022209157A1 (ja) * 2021-03-31 2022-10-06 大王製紙株式会社 繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法
JP2022156849A (ja) * 2021-03-31 2022-10-14 大王製紙株式会社 繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法

Also Published As

Publication number Publication date
JP6275651B2 (ja) 2018-02-07
JPWO2014087767A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6275651B2 (ja) 複合材料及びそれを用いた成形体
JP5717643B2 (ja) ミクロフィブリル化植物繊維を含む組成物
Ichazo et al. Polypropylene/wood flour composites: treatments and properties
JP6895948B2 (ja) 熱可塑性樹脂組成物、セルロース強化熱可塑性樹脂組成物、セルロース強化熱可塑性樹脂組成物の製造方法、セルロース強化樹脂成形品およびセルロース強化樹脂成形品の製造方法
JP6012206B2 (ja) 変性セルロースナノファイバー及び変性セルロースナノファイバーを含む樹脂組成物
JP5433949B2 (ja) セルロース繊維含有ポリオレフィン系樹脂組成物
JP6681157B2 (ja) 熱可塑性樹脂組成物及び熱可塑性樹脂組成物の製造方法
JP2012236906A (ja) 樹脂組成物
KR101889744B1 (ko) 리그닌-셀룰로오스-올레핀계 복합소재 조성물
Boujmal et al. Composite from polypropylene and henna fiber: structural, mechanical and thermal properties
Atifi et al. Surface modification of lignin for applications in polypropylene blends
CN112759833A (zh) 一种高刚高韧聚丙烯复合材料及其制备方法和应用
Essabir et al. Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan Luffa sponge/high density polyethylene
JP2013107987A (ja) セルロース複合熱可塑性樹脂及びその成形体
JP5469322B2 (ja) 環境配慮型熱可塑性樹脂組成物
JP2020033541A (ja) セルロース複合樹脂及びその製造方法
CN111662503A (zh) 亲水性纤维素复合树脂成形体
JP6871079B2 (ja) 解繊セルロース繊維の製造方法、及び樹脂組成物の製造方法
JP6727085B2 (ja) 樹脂組成物
EP3161042B1 (en) Reinforced thermoplastic polymer composition
CN112823180A (zh) 纤维素纤维增强聚丙烯树脂成型体及其制造方法
JP2005200614A (ja) ポリプロピレン系樹脂組成物及びその射出成形体
KR101437788B1 (ko) 무수 말레인산-그라프트-올레핀수지를 이용한 셀룰로오스 섬유의 개질방법, 이에 의해 개질된 셀룰로오스 섬유 및 이를 포함하는 셀룰로오스-올레핀수지 복합재료
CN112805327B (zh) 有机纤维增强树脂成型体及其制造方法
JP2020108969A (ja) 熱可塑性樹脂組成物及び熱可塑性樹脂組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859637

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014550992

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859637

Country of ref document: EP

Kind code of ref document: A1