JPWO2021040006A1 - ゴム組成物及びその製造方法 - Google Patents

ゴム組成物及びその製造方法 Download PDF

Info

Publication number
JPWO2021040006A1
JPWO2021040006A1 JP2021538236A JP2021538236A JPWO2021040006A1 JP WO2021040006 A1 JPWO2021040006 A1 JP WO2021040006A1 JP 2021538236 A JP2021538236 A JP 2021538236A JP 2021538236 A JP2021538236 A JP 2021538236A JP WO2021040006 A1 JPWO2021040006 A1 JP WO2021040006A1
Authority
JP
Japan
Prior art keywords
mass
cellulose
less
rubber composition
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021538236A
Other languages
English (en)
Other versions
JP7015970B2 (ja
Inventor
咲子 中田
雅人 高山
隼人 加藤
康太郎 伊藤
昌浩 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=74685953&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPWO2021040006(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Paper Industries Co Ltd filed Critical Nippon Paper Industries Co Ltd
Publication of JPWO2021040006A1 publication Critical patent/JPWO2021040006A1/ja
Application granted granted Critical
Publication of JP7015970B2 publication Critical patent/JP7015970B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、バランスよく良好な強度を示す、ゴム成分とセルロース系繊維とを含むゴム組成物、およびその製造方法を提供することを目的とする。本発明は、成分(A):アニオン化度が0.06meq/g以上2.50meq/g以下であり、平均繊維径が500nmよりも大きい、変性セルロースマイクロフィブリル、及び、成分(B);ゴム成分を含むゴム組成物、並びにその製造方法を提供する。成分(A)は、保水能が10以上、または固形分1質量%の水分散体とした際の粘度(25℃、60rpm)が4,000mPa・s以下である変性セルロースマイクロフィブリルを少なくとも含むことが好ましい。

Description

本発明は、変性セルロースマイクロフィブリルを含むゴム組成物、及びその製造方法に関する。
ゴム成分とセルロース系繊維とを含むゴム組成物は、優れた機械強度を有することが知られている。例えば、特許文献1には、平均繊維径が0.5μm未満の短繊維を水中でフィブリル化させて得られる分散液とゴムラテックスとを混合し乾燥させることにより、短繊維をゴム中に均一に分散させたゴム/短繊維のマスターバッチが得られること、および、このマスターバッチからゴム補強性と耐疲労性のバランスに優れるゴム組成物を製造できることが記載されている。
特開2006−206864号公報
しかしながら、ゴム成分とセルロース系繊維を含む従来のゴム組成物が様々な分野に応用されるには、更なる強度の向上が必要とされている。特に摩耗特性、圧縮疲労特性を含む各種の強度の向上が求められていた。
そこで本発明は、バランスよく良好な強度を示す、ゴム成分とセルロース繊維とを含むゴム組成物、およびその製造方法を提供することを目的とする。
本発明は、以下の[1]〜[7]を提供する。
[1]成分(A):アニオン化度が0.06meq/g以上2.50meq/g以下であり、平均繊維径が500nmよりも大きい、変性セルロースマイクロフィブリル、及び
成分(B);ゴム成分
を含むゴム組成物。
[2]成分(A)は、以下の式:
保水能=(B+C−0.003×A)/(0.003×A−C)
(式中、Aは、変性セルロースマイクロフィブリルの固形分濃度0.3質量%の水分散体の質量、Bは、質量Aの水分散体を30℃、25000G、30分間遠心分離した後に分離される沈降物の質量、Cは前記遠心分離後に分離される水相中の固形分の質量をそれぞれ表す)
で表される保水能が10以上の変性セルロースマイクロフィブリルを少なくとも含む、[1]に記載のゴム組成物。
[3]成分(A)は、固形分1質量%の水分散体とした際のB型粘度(25℃、60rpm)が、4,000mPa・s以下である、変性セルロースマイクロフィブリルを少なくとも1種含む、[1]または[2]に記載のゴム組成物。
[4]成分(A)は、酸化セルロースマイクロフィブリル、カルボキシアルキル化セルロースマイクロフィブリル及びリン酸化セルロースマイクロフィブリルからなる群より選ばれる少なくとも1つを含む、[1]〜[3]のいずれか1項に記載のゴム組成物。
[5]酸化セルロースマイクロフィブリルのカルボキシル基量が0.1〜2.5mmol/gである、[4]に記載のゴム組成物。
[6]酸化セルロースマイクロフィブリルのカルボキシ置換度が0.01〜0.50であり、及び/又は、カルボキシル化セルロースマイクロフィブリルのカルボキシアルキル置換度が0.01〜0.50である、[4]または[5]に記載のゴム組成物。
[7](A)成分と(B)成分を混合および混練し、ゴム組成物を得ることを含む、[1]〜[6]のいずれか1項に記載のゴム組成物の製造方法。
本発明のゴム組成物は、変性セルロースマイクロフィブリルとゴム成分を含み、摩耗特性、圧縮疲労特性を含む各種の強度を良好に発揮できる。また、本発明の製造方法によれば、このようなゴム組成物を効率的に製造することができる。
ゴム組成物は、(A)成分:変性セルロースマイクロフィブリル、(B)成分:ゴム成分を含む。
<(A)成分:変性セルロースマイクロフィブリル>
変性セルロースマイクロフィブリルは、通常、変性セルロースのフィブリル化繊維及びフィブリル化セルロース繊維の変性物である。フィブリル化を経ることにより、比表面積が大きくなり、保水性や強度付与効果の向上が期待される。また、変性(通常、化学変性)を経ることにより、フィブリル化の際に繊維同士がほぐれやすく、変性を経ない場合と比較して少ない電力で効率よくフィブリル化を進めることができる。また、水との親和性が向上し、繊維長が比較的長くとも良好な保水性を呈することができる。
(変性セルロースマイクロフィブリルの形状)
変性セルロースマイクロフィブリルの形状における特徴は以下のとおりである。フィブリル化を経ない変性セルロースと比較すると、通常、繊維表面にセルロースのミクロフィブリルの毛羽立ちがみられる。化学変性セルロースナノファイバーと比較すると、通常、繊維自体の微細化が抑制され、繊維表面の毛羽立ち(外部フィブリル化)が効率よくなされている。化学変性なされていないフィブリル化セルロースナノファイバーと比較すると、保水性が良好であり、チキソトロピー性が観察される。変性セルロースマイクロフィブリルは、好ましくは、化学変性セルロースのフィブリル化繊維である。これにより、フィブリル化の際に繊維同士がほぐれやすく、繊維の損傷を抑制できる。
(透明度)
変性セルロースマイクロフィブリルの水分散体(固形分濃度1質量%)の透明度(660nm光の透過率)は、60%未満が好ましく、50%以下がより好ましく、40%以下がさらに好ましく、30%以下がさらに好ましい。これにより、フィブリル化の程度が適度であり、本発明の効果を十分得ることができる。下限は0%以上でよく、特に限定されない。変性セルロースマイクロフィブリルは、水分散体(固形分濃度1%以上程度)で、通常、半透明から白色を示し、ゲル状、クリーム状、またはペースト状を示す。
なお、本明細書において、変性セルロースマイクロフィブリルの水分散体は、特段の説明がない場合、上記繊維を分散媒としての水に分散させてなる分散体を意味する。
(平均繊維径、平均繊維長及びアスペクト比)
変性セルロースマイクロフィブリルの平均繊維径は、通常500nm以上、1μm以上が好ましく、3μm以上がより好ましい。これにより、未解繊のセルロース繊維に比べて高い保水性を呈することができ、微細に解繊されたセルロースナノファイバーと比較して少量でも高い強度付与効果や歩留まり向上効果が得られる。平均繊維径の上限は60μm以下が好ましく、40μm以下がより好ましく、30μm以下がさらに好ましく、20μm以下がさらにより好ましいが、特に制限はない。
平均繊維長は、10μm以上が好ましく、20μm以上が好ましく、40μm以上がより好ましい。200μm以上、300μm以上又は400μm以上でもよい。平均繊維長の上限は、特に限定されないが、2,000μm以下が好ましく、1,500μm以下が好ましく、1,400μm以下がより好ましく、1,300μm以下がさらに好ましい。
平均繊維径及び平均繊維長は、バルメット株式会社製フラクショネーターにより求めることができる。フラクショネーターを用いた場合、それぞれ、length−weighted fiber width及びlength−weighted average fiber lengthとして求めることができる。
変性セルロースマイクロフィブリルのアスペクト比は、3以上が好ましく、5以上がより好ましく、7以上がさらに好ましい。10以上、20以上又は30以上でもよい。アスペクト比の上限は特に限定されないが、1000以下が好ましく、100以下がより好ましく、80以下がさらに好ましい。アスペクト比は、下記の式により算出できる:
アスペクト比=平均繊維長/平均繊維径。
(比表面積)
変性セルロースマイクロフィブリルのBET比表面積は、好ましくは25m2/g以上、より好ましくは50m2/g以上、さらに好ましくは100m2/g以上である。BET比表面積は、窒素ガス吸着法(JIS Z 8830)に従い、水分散体をt−BuOHで置換後、凍結乾燥したサンプルをBET比表面積計で測定できる。
(セルロースI型の結晶化度)
変性セルロースマイクロフィブリルにおけるセルロースI型の結晶化度は、通常は50%以上、好ましくは60%以上である。上限は特に限定されないが、現実的には90%程度と考えられる。セルロースの結晶性は、化学変性の程度により制御できる。セルロースI型の結晶化度は、X線回折測定をして、22.6°付近の(200)ピークと、(200)と(110)の谷(18.5°付近)の強度を測定し比較して算出できる。
(アニオン化度)
変性セルロースマイクロフィブリルのアニオン化度(アニオン電荷密度)は、通常は2.50meq/g以下であり、2.30meq/g以下が好ましく、2.0meq/g以下がより好ましく、1.50meq/g以下がさらに好ましい。これにより、アニオン化度がより高い化学変性セルロース繊維に比べ、化学変性がセルロース全体にわたり均一になされていると考えられ、保水性等の化学変性セルロース繊維に特有の効果をより安定に得ることができると考えられる。下限は、通常は0.06meq/g以上、好ましくは0.10meq/g以上、より好ましくは0.30meq/g以上であるが、特に限定されない。従って、0.06meq/g以上2.50meq/g以下が好ましく、0.08meq/g以上2.50meq/g以下、又は0.10meq/g以上2.30meq/g以下がより好ましく、0.10meq/g以上2.00meq/g以下がさらに好ましい。アニオン化度は、単位質量の変性セルロースマイクロフィブリルあたりのアニオンの当量であり、単位質量の変性セルロースマイクロフィブリルにおいてアニオン性基を中和するのに要するジアリルジメチルアンモニウムクロリド(DADMAC)の当量から算出できる。
(保水能)
変性セルロースマイクロフィブリルの保水能は、好ましくは10以上、より好ましくは15以上、さらに好ましくは20以上、さらにより好ましくは30以上である。上限は、現実的には200以下程度となると思われるが、特に限定されない。保水能は、沈降物中の繊維の固形分の質量に対する沈降物中の水の質量に相当し、繊維の0.3質量%水分散液を25,000Gで遠心分離して測定及び算出される、沈降ゲル中の水分量/固形分量の比である。すなわち、以下の式で算出される:
保水能=(B+C−0.003×A)/(0.003×A−C)
A:変性セルロースマイクロフィブリルの固形分濃度0.3質量%の水分散体の質量
B:質量Aの水分散体を30℃で25,000Gで30分間遠心分離した後に分離される沈降物の質量
C:前記遠心分離後に分離される水相中の固形分の質量
保水能の値が大きいほど、繊維が水を保持する力が高いことを意味する。保水能は、フィブリル化を経た繊維については測定又は算出できるが、フィブリル化又は解繊を経ていない繊維及びシングルミクロフィブリルにまで解繊されたセルロースナノファイバーについては通常測定できない。フィブリル化または解繊されていないセルロース繊維を上述の条件で遠心分離すると、密な沈降物が形成できず、沈降物と水相とを分離することが困難である。セルロースナノファイバーを上述の条件で遠心分離すると、通常はほとんど沈降しない。
(粘度)
変性セルロースマイクロフィブリルを水分散体とした時、水分散体の粘度が低いことが好ましい。これにより、フィブリル化されているにもかかわらず、ハンドリング性の良い素材となり得る。例えば、固形分1質量%の水分散体のB型粘度(25℃、60rpm)は、通常4,000mPa・s以下、好ましくは3,500mPa・s以下、より好ましくは3,000mPa・s以下、さらに好ましくは2,500mPa・s以下である。下限値は、好ましくは10mPa・s以上、より好ましくは20mPa・s以上、さらに好ましくは50mPa・s以上である。B型粘度の測定は、例えば、以下の方法で測定できる。フィブリル化(例、解繊)後1日以上静置した後、必要に応じて希釈し、ホモディスパーで撹拌(例、3000rpm、5min)撹拌後、粘度測定を行う(60rpm、3分回転後の粘度を測定)。
(フィブリル化率)
変性セルロースマイクロフィブリルのフィブリル化率(Fibrillation %)は、1.0%以上が好ましく、1.2%以上がより好ましく、1.5%以上がさらに好ましい。これによりフィブリル化が十分なされていることを確認できる。フィブリル化率は、用いるセルロース系原料の種類により調整できる。フィブリル化率は、バルメット株式会社製フラクショネーター等の、画像解析型繊維分析装置により求めることができる。
(電気伝導度)
変性セルロースマイクロフィブリルの水分散体(固形分濃度1.0質量%)の電気伝導度は、好ましくは500mS/m以下、より好ましくは300mS/m以下、さらに好ましくは200mS/m以下、さらにより好ましくは100mS/m以下、とりわけ好ましくは70mS/m以下である。下限は、好ましくは5mS/m以上、より好ましくは10mS/m以上である。電気伝導度は、変性セルロースマイクロフィブリルの固形分濃度1.0質量%の水分散体200gを調製し、電気伝導度計(HORIBA社製ES−71型)を用いて測定できる。
(セルロース系原料)
変性セルロースマイクロフィブリルの原料であるセルロース系原料は、セルロースを含む材料であればよく、特に限定されない。セルロース系原料としては、例えば、植物、動物(例えば、ホヤ類)、藻類、微生物(例えば、酢酸菌(アセトバクター))、微生物産生物に由来するものが挙げられる。植物由来のセルロース系原料としては、例えば、木材、竹、麻、ジュート、ケナフ、農地残廃物、布、パルプ(例えば、針葉樹未漂白クラフトパルプ(NUKP)、針葉樹漂白クラフトパルプ(NBKP)、広葉樹未漂白クラフトパルプ(LUKP)、広葉樹漂白クラフトパルプ(LBKP)、針葉樹未漂白サルファイトパルプ(NUSP)、針葉樹漂白サルファイトパルプ(NBSP)、サーモメカニカルパルプ(TMP)、針葉樹溶解パルプ、広葉樹溶解パルプ、再生パルプ、古紙)が挙げられる。セルロース系原料は、これらのいずれかでも、2種以上の組み合わせでもよい。好ましくは植物または微生物由来のセルロース系原料、より好ましくは植物由来のセルロース系原料、さらに好ましくはパルプ(例、木質系パルプ)である。
セルロース系原料は、セルロースI型結晶化度が高いことが好ましく、60%以上がより好ましく、70%以上がさらに好ましい。これにより、変性セルロースマイクロフィブリルのセルロースI型結晶化度を50%以上に維持できる。
セルロース系原料は通常、セルロース繊維を含む。本明細書においてセルロース繊維とは、特段の説明がない限り、化学変性前または後の繊維状のセルロースを意味する。セルロース系原料は、セルロース以外の繊維成分を含んでいてもよい。セルロース繊維の平均繊維径は、特に制限されないが、一例を挙げると以下のとおりである。針葉樹クラフトパルプに由来するセルロース系原料のセルロース繊維の平均繊維径は、通常30〜60μm程度であり、広葉樹クラフトパルプに由来するセルロース系原料のセルロース繊維の平均繊維径は、通常10〜30μm程度である。一般的な精製を経たパルプ(針葉樹クラフトパルプおよび広葉樹クラフトパルプ以外)に由来するセルロース系原料のセルロース繊維の平均繊維径は、通常50μm程度である。
(化学変性)
変性セルロースは、セルロース系原料またはセルロースマイクロフィブリルの変性(通常は化学変性)を経て得られる。本明細書において変性とは通常は化学変性であり、化学変性とは化学的に変性することを意味し、通常はセルロースのグルコース単位が有するヒドロキシル基を化学的に変性することを意味する。セルロースはグルコース単位により構成され、グルコース単位あたり3つのヒドロキシル基を有している。化学変性としては、例えば、酸化、エーテル化、リン酸エステル化等のエステル化、シランカップリング、フッ素化、カチオン化が挙げられる。中でも、酸化(カルボキシル化)、エーテル化(例えば、カルボキシアルキル化)、カチオン化、エステル化が好ましく、酸化(カルボキシル化)、カルボキシアルキル化がより好ましい。
(塩型及び酸型)
セルロースを酸化又はエーテル化すると、セルロースが有するヒドロキシル基がカルボキシル基又はカルボキシアルキル基に変性され、変性後のセルロース繊維は、通常、−COOHで表される基(酸型カルボキシル基)と、−COO-で表される基(塩型カルボキシル基)とを両方含む。塩型カルボキシル基のカウンターカチオンは特に限定されず、例えば、ナトリウムイオンやカリウムイオン等のアルカリ金属イオン、その他の金属イオンが挙げられる。
(酸化(カルボキシル化))
酸化セルロースは、その構造中、セルロースが本来有するヒドロキシル基の少なくとも1つがカルボキシル基に変性されていればよく、グルコピラノース環の6位の炭素原子に結合するヒドロキシル基の少なくとも1つがカルボキシル基に変性されていることが好ましい。
酸化セルロースのカルボキシル基量は、絶乾質量に対し、好ましくは0.1mmol/g以上、より好ましくは0.6mmol/g以上、さらに好ましくは1.0mmol/g以上である。上限は、好ましくは2.5mmol/g以下、より好ましくは2.0mmol/g以下である。従って、0.1〜2.5mmol/gが好ましく、0.6〜2.5mmol/gより好ましく、1.0〜2.0mmol/gがさらに好ましい。酸化セルロースマイクロフィブリルのカルボキシル基量は、フィブリル化前の酸化セルロースのそれと通常は同値である。カルボキシル基量は、電気伝導度の変動から計算することができる。
酸化セルロースの無水グルコース単位当たりのカルボキシ置換度は、0.01以上、0.02以上又は0.05以上が好ましく、0.10以上がより好ましく、0.15以上がさらに好ましく、0.20以上がさらにより好ましく、0.25以上がとりわけ好ましい。これにより、化学変性による効果を得るための置換度を確保できる。当該置換度の上限は、0.50以下が好ましく、0.40以下がより好ましく、0.35以下がさらに好ましい。これにより、セルロース繊維の水への溶解が起こりにくくなり、水中で繊維形態を維持できる。従って、カルボキシ置換度は、0.01〜0.50が好ましく、0.05〜0.40がより好ましく、0.10〜0.35がさらに好ましい。酸化セルロースマイクロフィブリルのカルボキシ置換度は、フィブリル化前の酸化セルロースのそれと通常は同値である。カルボキシ置換度は、反応条件により調整できる。無水グルコース単位あたりのカルボキシ置換度とは、セルロースを構成する個々の無水グルコース(グルコース残基)が本来有する水酸基のうちカルボキシ基に置換されている基の割合(1つのグルコース残基当たりのカルボキシ基の数)である。カルボキシ置換度は、カルボキシ基量から算出できる。
酸化方法は特に限定されないが、例えば、N−オキシル化合物と、臭化物、およびヨウ化物の少なくともいずれかとの存在下で、酸化剤を用いて水中でセルロース系原料を酸化する方法が挙げられる。この方法によれば、セルロース表面のグルコピラノース環の6位の炭素原子に結合する1級ヒドロキシル基を有する炭素原子が選択的に酸化され、アルデヒド基、カルボキシル基、およびカルボキシレート基からなる群より選ばれる基が生じる。反応時のセルロース系原料の濃度は5質量%以下が好ましいが、特に限定されない。
N−オキシル化合物とは、ニトロキシラジカルを発生し得る化合物をいう。N−オキシル化合物を用いることにより、目的の酸化反応を促進できる。N−オキシル化合物としては、例えば、2,2,6,6−テトラメチル−1−ピペリジン−N−オキシラジカル(以下、「TEMPO」ともいう)及びその誘導体(例、4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジン−N−オキシラジカル:以下、「4−ヒドロキシTEMPO」ともいう)が挙げられるが、特に限定されない。
N−オキシル化合物の使用量は、原料となるセルロースの酸化反応を触媒する量であればよい。例えば、絶乾1gのセルロースに対し、0.01mmol以上が好ましく、0.05mmol以上がより好ましい。上限は、10mmol以下が好ましく、1mmol以下がより好ましく、0.5mmol以下がさらに好ましい。従って、N−オキシル化合物の使用量は、絶乾1gのセルロースに対し、0.01〜10mmolが好ましく、0.01〜1mmolがより好ましく、0.05〜0.5mmolがさらに好ましい。反応系に対するN−オキシル化合物の使用量は、通常、0.1〜4mmol/L程度である。
臭化物とは臭素を含む化合物であり、例えば、水中で解離してイオン化可能な臭化アルカリ金属が挙げられる。ヨウ化物とはヨウ素を含む化合物であり、例えば、ヨウ化アルカリ金属が挙げられる。臭化物またはヨウ化物の使用量は、特に限定されず、酸化反応を促進できる範囲で選択できる。臭化物およびヨウ化物の合計量は絶乾1gのセルロースに対し0.1mmol以上が好ましく、0.5mmol以上がより好ましい。当該量の上限は、100mmol以下が好ましく、10mmol以下がより好ましく、5mmol以下がさらに好ましい。従って、臭化物およびヨウ化物の合計量は、絶乾1gのセルロースに対し0.1〜100mmolが好ましく、0.1〜10mmolがより好ましく、0.5〜5mmolがさらに好ましい。
酸化剤は、特に限定されないが、例えば、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸、これらの塩、ハロゲン酸化物、過酸化物が挙げられる。中でも、安価で環境負荷が少ないことから、次亜ハロゲン酸またはその塩が好ましく、次亜塩素酸またはその塩がより好ましく、次亜塩素酸ナトリウムがさらに好ましい。酸化剤の使用量は、絶乾1gのセルロースに対し0.5mmol以上が好ましく、1mmol以上がより好ましく、3mmol以上がさらに好ましい。当該量の上限は、500mmol以下が好ましく、50mmol以下がより好ましく、25mmol以下がさらに好ましく、10mmol以下がさらにより好ましい。従って、酸化剤の使用量は絶乾1gのセルロースに対し、0.5〜500mmolが好ましく、0.5〜50mmolがより好ましく、1〜25mmolがさらに好ましく、3〜10mmolがさらにより好ましい。N−オキシル化合物を用いる場合、酸化剤の使用量はN−オキシル化合物1molに対し1mol以上が好ましく、上限は40mol以下が好ましい。従って、N−オキシル化合物1molに対する酸化剤の使用量は、1〜40molが好ましい。
酸化反応時のpH、温度等の条件は、特に限定されない。一般に、酸化反応は、比較的温和な条件であっても効率よく進行する。反応温度は、4℃以上が好ましく、15℃以上がより好ましい。当該温度の上限は40℃以下が好ましく、30℃以下がより好ましい。従って、反応温度は4〜40℃が好ましく、15〜30℃程度、すなわち室温でもよい。反応液のpHは、8以上が好ましく、10以上がより好ましい。pHの上限は、12以下が好ましく、11以下がより好ましい。従って、反応液のpHは、好ましくは8〜12、より好ましくは10〜11程度である。通常、酸化反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHは低下する傾向にある。そのため、酸化反応を効率よく進行させるためには、水酸化ナトリウム水溶液等のアルカリ性溶液を添加して、反応液のpHを上記の範囲に維持することが好ましい。酸化の際の反応媒体は、取扱いの容易さや、副反応が生じにくいこと等の理由から、水が好ましい。酸化における反応時間は、酸化の進行程度に従って適宜設定でき、通常は0.5時間以上であり、その上限は通常は6時間以下、好ましくは4時間以下である。従って、酸化における反応時間は通常0.5〜6時間、好ましくは0.5〜4時間程度である。
酸化は、2段階以上の反応に分けて実施してもよい。例えば、1段目の反応終了後に濾別して得られた酸化セルロースを、再度、同一または異なる反応条件で酸化させることにより、1段目の反応で副生する食塩による反応阻害を受けることなく、効率よく酸化させることができる。
酸化の別の例として、オゾン酸化が挙げられる。この酸化反応により、セルロースを構成するグルコピラノース環の少なくとも2位および6位の水酸基が酸化されると共に、セルロース鎖の分解が起こる。
オゾン処理は、通常、オゾンを含む気体とセルロース系原料とを接触させることにより行われる。気体中のオゾン濃度は、50g/m3以上が好ましい。上限は、250g/m3以下が好ましく、220g/m3以下がより好ましい。従って、気体中のオゾン濃度は、50〜250g/m3が好ましく、50〜220g/m3がより好ましい。オゾン添加量は、セルロース系原料の固形分100質量部に対し、0.1質量部以上が好ましく、5質量部以上がより好ましい。オゾン添加量の上限は、通常30質量部以下である。従って、オゾン添加量は、セルロース系原料の固形分100質量部に対し、0.1〜30質量部が好ましく、5〜30質量部がより好ましい。オゾン処理温度は、通常0℃以上であり、好ましくは20℃以上であり、上限は通常50℃以下である。従って、オゾン処理温度は、0〜50℃が好ましく、20〜50℃がより好ましい。オゾン処理時間は、通常は1分以上であり、好ましくは30分以上であり、上限は通常360分以下である。従って、オゾン処理時間は、通常は1〜360分程度であり、30〜360分程度が好ましい。オゾン処理の条件が上述の範囲内であると、セルロースが過度に酸化および分解されることを防ぐことができ、酸化セルロースの収率が良好となり得る。
オゾン処理されたセルロースに対しさらに、酸化剤を用いた追酸化処理を行ってもよい。追酸化処理に用いる酸化剤は、特に限定されないが、例えば、二酸化塩素、亜塩素酸ナトリウム等の塩素系化合物、酸素、過酸化水素、過硫酸、過酢酸が挙げられる。追酸化処理の方法としては、例えば、酸化剤を水またはアルコール等の極性有機溶媒中に溶解して酸化剤溶液を調製し、酸化剤溶液中にセルロース系原料を浸漬させる方法が挙げられる。酸化セルロースに含まれるカルボキシル基、カルボキシレート基、アルデヒド基の量は、酸化剤の添加量、反応時間等の酸化条件をコントロールすることで調整できる。
(酸型酸化セルロース及び脱塩)
酸化セルロースは、酸化を経た結果カルボキシル基を含有するが、酸型カルボキシル基を塩型カルボキシル基より多く含有してもよいし、塩型カルボキシル基を酸型カルボキシル基よりも多く含有してもよい。酸化セルロースは、さらに脱塩処理を経ていてもよい。これにより、塩型カルボキシル基を酸型カルボキシル基に変換できる。本明細書において、「酸型」を付する場合脱塩を経ていることを示し、「塩型」を付する場合脱塩を経ていないことを示す。酸型セルロースが有するカルボキシル基に占める酸型カルボキシル基の割合は、40%以上が好ましく、60%以上がより好ましく、85%以上がさらに好ましい。酸型カルボキシル基の割合は以下の手順で算出できる。
1)先ず、脱塩処理前の酸型酸化セルロースの固形分濃度0.1質量%水分散体を250mL調製する。調製した水分散体に、0.1M塩酸水溶液を加えてpH2.5とした後、0.1Nの水酸化ナトリウム水溶液を添加してpHが11になるまで電気電導度を測定する。電気電導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて、酸型カルボキシル基量および塩型カルボキシル基量、つまりトータルのカルボキシル基量を算出する:
トータルのカルボキシル基量(mmol/g酸化セルロース(塩型))=a(ml)×0.1/酸化セルロース(塩型)の質量(g)
2)脱塩処理した酸型酸化セルロースの固形分濃度0.1質量%水分散体を250mL調製する。調製した水分散体に、0.1Nの水酸化ナトリウム水溶液を添加してpHが11になるまで電気電導度を測定する。電気電導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(b)から、下式を用いて、酸型カルボキシル基量を算出する:
酸型カルボキシル基量(mmol/g酸型酸化セルロース)=b(ml)×0.1/酸型酸化セルロースの質量(g)
3)算出したトータルのカルボキシル基量と酸型カルボキシル基量から、下式を用いて、酸型カルボキシル基の割合を算出する。
酸型カルボキシル基の割合(%)=(酸型カルボキシル基量/トータルのカルボキシル基量)×100
脱塩を行う時期は、通常は酸化後であり、好ましくは酸化後フィブリル化前である。脱塩は、通常、塩型酸化セルロースに含まれる塩(例、ナトリウム塩)をプロトンに置換することにより実施される。脱塩の方法としては例えば、系内を酸性に調整する方法、及び、酸化セルロースを陽イオン交換樹脂と接触させる方法が挙げられる。系内を酸性に調整する方法の場合、系内のpHは、好ましくは2〜6、より好ましくは2〜5、さらに好ましくは2.3〜5に調整される。酸性に調整するには、通常は酸(例えば、硫酸、塩酸、硝酸、亜硫酸、亜硝酸、リン酸等の無機酸;酢酸、乳酸、蓚酸、クエン酸、蟻酸等の有機酸)が用いられる。酸の添加後には、適宜洗浄処理を行ってもよい。前記の陽イオン交換樹脂は、対イオンがH+である限り、強酸性イオン交換樹脂および弱酸性イオン交換樹脂のいずれも用いることができる。酸化セルロースを陽イオン交換樹脂と接触させる際の両者の比率は、特に限定されず、当業者であれば、プロトン置換を効率的に行うとの観点から適宜設定し得る。接触後の陽イオン交換樹脂の回収は、吸引ろ過等の常法により行えばよい。
(エーテル化(例、カルボキシアルキル化))
エーテル化としては、例えば、カルボキシアルキル化、メチル化、エチル化、シアノエチル化、ヒドロキシエチル化、ヒドロキシプロピル化、エチルヒドロキシエチル化、及びヒドロキシプロピルメチル化から選ばれる反応によるエーテル化が挙げられ、カルボキシアルキル化が好ましく、カルボキシメチル化がより好ましい。
カルボキシアルキル化を経て得られる変性セルロース(カルボキシアルキル化セルロース)は、セルロースの水酸基の少なくとも1つがカルボキシアルキル化された構造を有することが好ましい。カルボキシアルキル化セルロースの無水グルコース単位当たりのカルボキシアルキル置換度(DS)は、0.01以上、0.02以上又は0.05以上が好ましく、0.10以上がより好ましく、0.15以上がさらに好ましく、0.20以上がさらにより好ましく、0.25以上がとりわけ好ましい。これにより、化学変性による効果を得るための置換度を確保できる。当該置換度の上限は、0.50以下が好ましく、0.40以下がより好ましく、0.35以下がさらに好ましい。これにより、セルロース繊維の水への溶解が起こりにくくなり、水中で繊維形態を維持できる。従って、カルボキシアルキル置換度は、0.01〜0.50が好ましく、0.05〜0.40がより好ましく、0.10〜0.35がさらに好ましい。カルボキシアルキル化セルロースマイクロフィブリルのカルボキシアルキル置換度は、フィブリル前のカルボキシアルキル化セルロースのそれと通常は同値である。カルボキシアルキル置換度は、反応させるカルボキシアルキル化剤の添加量、マーセル化剤の量、及び、水と有機溶媒の組成比率から選ばれるいずれかをコントロールすることにより調整できる。
無水グルコース単位あたりのカルボキシアルキル置換度(エーテル化度ともいう。)とは、セルロースを構成する個々の無水グルコース(グルコース残基)が本来有する水酸基のうちカルボキシアルキルエーテル基に置換されている基の割合(1つのグルコース残基当たりのカルボキシアルキルエーテル基の数)である。カルボキシアルキル置換度は、カルボキシアルキル基量から算出できる。
カルボキシアルキル化セルロースのカルボキシル基量は、絶乾質量に対し、好ましくは0.1mmol/g以上、より好ましくは0.6mmol/g以上、さらに好ましくは1.0mmol/g以上である。上限は、好ましくは2.5mmol/g以下、より好ましくは2.0mmol/g以下である。従って、0.1〜2.5mmol/gが好ましく、0.6〜2.5mmol/gより好ましく、1.0〜2.0mmol/gがさらに好ましい。カルボキシアルキル化セルロースマイクロフィブリルのカルボキシル基量は、フィブリル化前のカルボキシアルキル化セルロースのそれと通常は同値である。カルボキシル基量は、電気伝導度の変動から計算することができる。
カルボキシアルキル化の方法としては例えば、出発原料としてのセルロース系原料をマーセル化し、その後エーテル化する方法が挙げられる。カルボキシメチル化を例に取って以下説明する。
マーセル化は、通常、セルロース系原料、溶媒及びマーセル化剤を混合して行う。反応条件は、一例を挙げると以下のとおりである。反応温度は、通常0℃以上であり、好ましくは10℃以上であり、上限は通常70℃以下、好ましくは60℃以下である。従って、反応温度は通常0〜70℃、好ましくは10〜60℃である。反応時間は、通常15分以上、好ましくは30分以上である。当該時間の上限は、通常8時間以下、好ましくは7時間以下である。従って、反応時間は、通常は15分〜8時間、好ましくは30分〜7時間である。
溶媒としては、例えば、水、アルコール(例、低級アルコール)、ケトン、ジオキサン、ジエチルエーテル、ベンゼン、ジクロロメタンおよびこれらの混合溶媒が挙げられる。低級アルコールとしては例えば、メタノール、エタノール、N−プロピルアルコール、イソプロピルアルコール、N−ブチルアルコール、イソブチルアルコール、第3級ブチルアルコールが挙げられ、これらのうち、水との相溶性が良好であることから、炭素原子数1〜4の1価アルコールが好ましく、炭素原子数1〜3の1価アルコールがより好ましい。ケトンとしては、例えば、アセトン、ジエチルケトン、メチルエチルケトンが挙げられる。混合溶媒が低級アルコールの混合割合は、60〜95質量%が好ましい。溶媒の量は、セルロース系原料に対し通常は3質量倍以上である。当該量の上限は特に限定されないが通常は20質量倍以下である。従って、溶媒の量は3〜20質量倍が好ましい。
マーセル化剤としては、例えば、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ金属が挙げられる。マーセル化剤の使用量は、出発原料の無水グルコース残基当たり0.5倍モル以上が好ましく、1.0倍モル以上がより好ましく、1.5倍モル以上がさらに好ましい。当該量の上限は、通常20倍モル以下であり、10倍モル以下が好ましく、5倍モル以下がより好ましい。従って、マーセル化剤の使用量は、0.5〜20倍モルが好ましく、1.0〜10倍モルがより好ましく、1.5〜5倍モルがさらに好ましい。
エーテル化反応は、通常、エーテル化剤(例、カルボキシメチル化剤)をマーセル化後に反応系に追加して行う。以下、カルボキシメチル化を例にとり以下説明する。カルボキシメチル化剤としては、例えば、モノクロロ酢酸、モノクロロ酢酸ナトリウム、モノクロロ酢酸メチル、モノクロロ酢酸エチル、モノクロロ酢酸イソプロピルが挙げられ、モノクロロ酢酸及びモノクロロ酢酸ナトリウムが好ましい。カルボキシメチル化剤の使用量は、セルロース系原料に含まれるセルロースの無水グルコース残基当たり通常は0.05倍モル以上であり、0.5倍モル以上又は0.6倍モル以上が好ましく、0.7倍モル以上又は0.8倍モル以上がより好ましい。当該量の上限は、通常1.5倍モル以下であり、1.3倍モル以下が好ましく、1.1倍モル以下がより好ましい、従って、当該量は好ましくは0.05〜10.0倍モルであり、より好ましくは0.5〜5倍モルであり、さらに好ましくは0.8〜3倍モルである。カルボキシメチル化剤は、そのまま又は水溶液として反応系に添加できる。カルボキシメチル化剤水溶液の濃度は、通常は5〜80質量%、より好ましくは30〜60質量%である。
エーテル化の反応温度は通常30℃以上、好ましくは40℃以上であり、上限は通常90℃以下、好ましくは80℃以下である。従って、反応温度は通常30〜90℃、好ましくは40〜80℃である。反応時間は、通常30分以上であり、好ましくは1時間以上であり、その上限は、通常は10時間以下であり、好ましくは4時間以下である。従って、反応時間は、通常は30分〜10時間であり、好ましくは1時間〜4時間である。カルボキシメチル化反応の間必要に応じて、反応液を撹拌してもよい。
マーセル化剤とカルボキシメチル化剤のモル比(マーセル化剤/カルボキシメチル化剤)は、カルボキシメチル化剤としてモノクロロ酢酸又はモノクロロ酢酸ナトリウムを使用する場合、0.90以上が好ましい。これにより十分カルボキシメチル化反応が進行し、未反応のモノクロロ酢酸又はモノクロロ酢酸ナトリウムの残留を抑制できる。上限は、2.45が好ましい。これにより、マーセル化剤が過剰となることがなく、マーセル化剤とモノクロロ酢酸又はモノクロロ酢酸ナトリウムによる副反応の進行が抑制されグリコール酸アルカリ金属塩の生成を抑制でき、経済的に反応を進めることができる。従って、マーセル化剤とカルボキシメチル化剤のモル比は、一般には0.90〜2.45である。
カルボキシメチル化の方法としては、例えば、(方法1)水媒法(水を主とする溶媒下でマーセル化とカルボキシメチル化の両方を行う方法)、(方法2)溶媒法(水と有機溶媒との混合溶媒下でマーセル化とカルボキシメチル化の両方を行う方法)、及び、(方法3)マーセル化の際に水を主とする溶媒を、カルボキシメチル化の際には有機溶媒と水との混合溶媒を、それぞれ使用する方法が挙げられ、方法3が好ましい。これにより、セルロースの結晶化度が50%以上であり、かつ、カルボキシメチル化剤の有効利用率を維持しながら、カルボキシメチル基を局所的ではなく均一に導入でき、アニオン化度の絶対値が小さいカルボキシメチル化セルロースを経済的に得ることができる。
水を主とする溶媒における水の含有量は、通常は50質量%超、好ましくは55質量%以上、60質量%以上、70質量%以上、または80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上、さらにより好ましくは100質量%である。これにより、カルボキシメチル基をセルロースにより均一に導入できる。水を主とする溶媒は、水以外の溶媒(例、イソプロピルアルコール等の有機溶媒)を含んでもよい。水以外の溶媒の量は、通常は45質量%以下、好ましくは40質量%以下、30質量%以下、20質量%以下、または10質量%以下、より好ましくは5質量%以下、さらに好ましくは0質量%である。溶媒は、水と、必要に応じて水以外の溶媒とを所定量準備し、これらを混合して調製すればよい。
マーセル化反応とカルボキシメチル化反応に使用するそれぞれの溶媒の水の含有量は、後者のほうが少ないこと(有機溶媒の含有量が後者の方が多いこと)が好ましい(セルロースの水分量を含まない)。これにより、得られるカルボキシメチル化セルロースの結晶化度を維持しやすくなり、所望の変性セルロースマイクロフィブリルを効率的に得ることができる。そのため、マーセル化反応の終了後カルボキシメチル化剤添加直後までの間に、有機溶媒または有機溶媒の水溶液を反応系に添加するか、又はマーセル化処理時の水以外の溶媒を削減し(例、減圧処理)水と有機溶媒との混合溶媒を形成させることが好ましい。このうち前者がより好ましい。これにより、カルボキシメチル化反応を簡便な手段で効率的に進行させることができる。有機溶媒の添加または削減の時期は、カルボキシメチル化剤を添加する前後30分以内が好ましい。
カルボキシメチル化の混合溶媒中の有機溶媒の割合は、水と有機溶媒との総和に対し20質量%以上又は30質量%以上が好ましく、40質量%以上がより好ましく、45質量%以上がさらに好ましく、50質量%以上がさらにより好ましい。これにより、均一なカルボキシメチル基の置換が起こりやすくなり、品質の安定したカルボキシメチル化セルロースを得ることができる。上限は、通常99質量%以下であればよく、有機溶媒のコストを考慮すると、好ましくは90質量%以下、より好ましくは85質量%以下、更に好ましくは80質量%以下、さらにより好ましくは70質量%以下である。
カルボキシメチル化剤の有効利用率(AM)は、好ましくは15%以上、より好ましくは20%以上、さらに好ましくは25%以上、さらにより好ましくは30%以上である。上限は、実質的には80%以下であり、特に限定されない。カルボキシメチル化剤の有効利用率とは、カルボキシメチル化剤が有するカルボキシメチル基の量に対する、セルロースに導入されたカルボキシメチル基の量の割合を意味し、以下の式により算出できる:
AM=(DS×セルロースのモル数)/カルボキシメチル化剤のモル数
DS:カルボキシメチル置換度
セルロースのモル数=パルプ質量/162
パルプ質量は100℃で60分間乾燥した際の乾燥質量を意味し、162はセルロースのグルコース単位当たりの分子量を意味する。
(酸型カルボキシアルキル化セルロース)
カルボキシアルキル化セルロースは、酸型カルボキシル基より塩型カルボキシル基を多く含有してもよいし、塩型カルボキシル基より酸型カルボキシル基を多く含有してもよい。カルボキシアルキル化セルロースは、さらに脱塩処理を経ていてもよい。これにより、塩型カルボキシル基を酸型カルボキシル基に変換できる。酸型カルボキシアルキル化セルロースが有するカルボキシル基に占める酸型カルボキシル基の割合は、40%以上が好ましく、60%以上がより好ましく、85%以上がさらに好ましい。酸型カルボキシル基の割合の算出方法は前述のとおりである。
脱塩を行う時期は、通常はカルボキシアルキル化後であり、好ましくはエーテル化後フィブリル化前である。脱塩の方法としては例えば、カルボキシアルキル化セルロースを陽イオン交換樹脂と接触させる方法が挙げられる。陽イオン交換樹脂は、対イオンがH+である限り、強酸性イオン交換樹脂および弱酸性イオン交換樹脂のいずれも用いることができる。カルボキシアルキル化セルロースを陽イオン交換樹脂と接触させる際の両者の比率は、特に限定されず、当業者であれば、プロトン置換を効率的に行うとの観点から適宜設定し得る。一例を挙げると、カルボキシアルキル化セルロース水分散体に対し、陽イオン交換樹脂添加後の水分散体のpHが好ましくは2〜6、より好ましくは2〜5となるように、比率を調整できる。接触後の陽イオン交換樹脂の回収は、吸引ろ過等の常法により行えばよい。
(エステル化(例、リン酸エステル化))
エステル化としては、例えば、セルロース系原料に対しリン酸基を有する化合物を反応させる方法(リン酸エステル化)が挙げられる。リン酸エステル化方法としては、例えば、セルロース系原料にリン酸基を有する化合物の粉末または水溶液を混合する方法、セルロース系原料の水分散体にリン酸基を有する化合物の水溶液を添加する方法が挙げられ、後者が好ましい。これにより、反応の均一性を高め、且つエステル化効率を高めることができる。
リン酸基を有する化合物としては例えば、リン酸、ポリリン酸、亜リン酸、ホスホン酸、ポリホスホン酸、これらのエステル、これらの塩が挙げられ、より詳細には例えば、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、ピロリン酸ナトリウム、メタリン酸ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、ピロリン酸カリウム、メタリン酸カリウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ピロリン酸アンモニウム、メタリン酸アンモニウムが挙げられる。これらは低コストであり、扱い易く、セルロースにリン酸基を導入して、解繊効率の向上が図れる。リン酸基を有する化合物は、1種、または2種以上の組み合わせでもよい。これらのうち、リン酸基導入の効率が高く、フィブリル化が容易であり、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩が好ましく、リン酸のナトリウム塩がより好ましく、リン酸二水素ナトリウム、リン酸水素二ナトリウムがさらに好ましい。反応の均一性が高まり、且つリン酸基導入の効率が高くなることから、エステル化においてはリン酸基を有する化合物の水溶液を用いることが好ましい。リン酸基を有する化合物の水溶液のpHは、リン酸基導入の効率が高くなることから7以下が好ましく、さらに繊維の加水分解を抑えられることから3〜7がより好ましい。
リン酸エステル化方法を一例を挙げて以下に説明する。セルロース系原料の懸濁液(例えば、固形分濃度0.1〜10質量%)にリン酸基を有する化合物を撹拌しながら添加し、セルロースにリン酸基を導入する。セルロース系原料を100質量部とした際に、リン酸基を有する化合物の添加量はリン原子の量として、0.2質量部以上が好ましく、1質量部以上がより好ましい。これにより、エステル化セルロースの収率をより向上させることができる。上限は、500質量部以下が好ましく、400質量部以下がより好ましい。これにより、リン酸基を有する化合物の使用量に見合った収率を効率よく得ることができる。従って、0.2〜500質量部が好ましく、1〜400質量部がより好ましい。
セルロース系原料に対しリン酸基を有する化合物を反応させる際、さらに塩基性化合物を反応系に加えてもよい。塩基性化合物を反応系に加える方法としては例えば、セルロース系原料の水分散体、リン酸基を有する化合物の水溶液、またはセルロース系原料とリン酸基を有する化合物の水分散体に、塩基性化合物を添加する方法が挙げられる。
塩基性化合物は特に限定されないが、塩基性を示すことが好ましく、塩基性を示す窒素含有化合物がより好ましい。「塩基性を示す」とは通常、フェノールフタレイン指示薬の存在下で塩基性化合物の水溶液が桃〜赤色を呈すること、および/または、塩基性化合物の水溶液のpHが7より大きいことを意味する。塩基性化合物は、好ましくは、塩基性を示す窒素原子を有する化合物であり、より好ましくは、塩基性を示すアミノ基を有する化合物である。塩基性を示すアミノ基を有する化合物としては、例えば、尿素、メチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンが挙げられる。この中でも低コストで扱いやすい点で、尿素が好ましい。塩基性化合物の添加量は、2〜1000質量部が好ましく、100〜700質量部がより好ましい。反応温度は0〜95℃が好ましく、30〜90℃がより好ましい。反応時間は特に限定されないが、通常1〜600分程度であり、30〜480分が好ましい。エステル化反応の条件がこれらのいずれかの範囲内であると、セルロースが過度にエステル化されて溶解しやすくなることを抑制でき、リン酸エステル化セルロースの収率を向上できる。
セルロース系原料にリン酸基を有する化合物を反応させた後、リン酸エステル化セルロースの懸濁液が得られる。リン酸エステル化セルロースの懸濁液は、必要に応じて脱水されてもよい。脱水後に加熱処理を行うことが好ましい。これにより、セルロースの加水分解を抑制できる。加熱温度は、100〜170℃が好ましい。加熱処理の際に水が含まれている間は130℃以下(好ましくは110℃以下)で加熱し、水を除いた後100〜170℃で加熱処理することがより好ましい。
リン酸エステル化セルロースのグルコース単位当たりのリン酸基置換度は0.001以上が好ましい。これにより、十分なフィブリル化が実施できる。上限は、0.40未満が好ましい。これにより、リン酸エステル化セルロースの膨潤または溶解を抑制できる。従って、リン酸基置換度は、0.001以上0.40未満が好ましい。リン酸エステル化反応により、セルロースにリン酸基置換基が導入され、セルロース同士が電気的に反発する。そのため、リン酸エステル化セルロースを容易にフィブリル化することができる。リン酸エステル化後には、煮沸後冷水で洗浄する等の洗浄処理がなされることが好ましい。これによりフィブリル化を効率よく行うことができる。
<フィブリル化>
変性セルロースマイクロフィブリルは、通常、上記化学変性セルロースをフィブリル化することにより得られる。フィブリル化の条件を調整することにより、(A)成分の物性(例えば、繊維長、粘性)をコントロールでき、これを含むゴム組成物の物性を向上させることができる。フィブリル化は、解繊または叩解によればよい。解繊および叩解は、湿式で(すなわち、水分散体の形態で)行うことが好ましい。解繊および叩解は、精製装置(リファイナー;例、ディスク型、コニカル型、シリンダー型)、高速解繊機、せん断型撹拌機、コロイドミル、高圧噴射分散機、ビーター、PFIミル、ニーダー、ディスパーザー、高速離解機(トップファイナー)、高圧または超高圧ホモジナイザー、グラインダー(石臼型粉砕機)、ボールミル、振動ミル、ビーズミル、1軸、2軸又は多軸の混錬機・押出機高速回転下でのホモミキサー、精製装置(refiner)、デフィブレーター(defibrator)、摩擦グラインダー、高せん断デフィブレーター(high shear defibrator)、ディスパージャー(disperger)、ホモゲナイザー(例、微細流動化機(microfluidizer))、キャビテーション装置等の機械的な解繊力を付与できる装置を用いて行うことができ、湿式にて解繊力を付与できる装置が好ましいが、特に限定されない。装置は1つ用いてもよいし、2以上の装置を用いる解繊および叩解処理を組み合わせてもよい。
フィブリル化の条件は、処理後の平均繊維径が前述の範囲内となる条件を適宜選択できる。これにより、得られる変性セルロースマイクロフィブリルは、未解繊のセルロース繊維に比べて高い保水性を呈し得る。微細に解繊されたセルロースナノファイバーに比較して少量でも高い強度付与効果や歩留まり向上効果を発揮し得る。フィブリル化の条件は、フィブリル化率が前述の範囲となるような条件を適宜選択してもよい。
湿式で解繊または叩解を行う場合、水分散体における化学変性セルロースの固形分濃度は、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1.0質量%以上がさらに好ましい。濃度の上限としては、45質量%以下が好ましく、40質量%以下がより好ましい。分散液の濃度は、用いる装置の種類に応じて適宜設定できる。例えば、精製装置(リファイナー)を用いて高濃度処理を行う場合、分散液の濃度は20質量%以上が好ましく、25質量%以上がより好ましい(上限の目安は上記のとおりである)。また、精製装置(リファイナー)で低濃度処理を行う場合、分散液の濃度は20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下が更に好ましい(下限の目安は上記のとおりである)。さらに、高速離解機(トップファイナー)を用いる場合、分散液の濃度は20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下が更に好ましい(下限の目安は上記のとおりである)。複数の装置を用いる場合には、用いる装置に応じて濃度調整を行うことができる。水分散体の調製に先立ち、化学変性セルロースを乾式粉砕する(例、乾燥後に粉砕する)等の前処理を行ってもよい。乾式粉砕に用いる装置としては、例えば、ハンマーミル、ピンミル等の衝撃式ミル、ボールミル、タワーミル等の媒体ミル、ジェットミルが挙げられるが、特に限定されない。解繊および叩解に供する前または後に、分散液にNaOH、炭酸水素ナトリウム、過酸化水素を添加してもよい。これにより、pHを中性付近(例えば、pH6〜8)に調整でき、解繊の促進、分散状態の維持が期待できる。
(任意の後処理)
変性セルロースマイクロフィブリルは、製造後に得られる水分散体の状態であってもよく、必要に応じて後処理を経てもよい。後処理としては、例えば、乾燥(例、凍結乾燥法、噴霧乾燥法、棚段式乾燥法、ドラム乾燥法、ベルト乾燥法、ガラス板等に薄く伸展し乾燥する方法、流動床乾燥法、マイクロウェーブ乾燥法、起熱ファン式減圧乾燥法)、水への再分散(分散装置は限定されない)、粉砕(例えば、カッターミル、ハンマーミル、ピンミル、ジェットミル等の機器を使用した粉砕)が挙げられるが、特に限定されない。
(A)成分は、1種単独でもよいし、2種以上の組み合わせでもよい。
<(B)成分:ゴム成分>
ゴム成分とはゴムの原料であり、架橋してゴムとなるものをいう。ゴム成分としては、天然ゴム用のゴム成分と合成ゴム用のゴム成分が存在する。天然ゴム用のゴム成分としては、例えば、化学修飾を施さない狭義の天然ゴム(NR);塩素化天然ゴム、クロロスルホン化天然ゴム、エポキシ化天然ゴム等の化学修飾した天然ゴム;水素化天然ゴム;脱タンパク天然ゴムが挙げられる。合成ゴム用のゴム成分としては、例えば、ブタジエンゴム(BR)、スチレン−ブタジエン共重合体ゴム(SBR)、イソプレンゴム(IR)、アクリロニトリル−ブタジエンゴム(NBR)、クロロプレンゴム、スチレン−イソプレン共重合体ゴム、スチレン−イソプレン−ブタジエン共重合体ゴム、イソプレン−ブタジエン共重合体ゴム等のジエン系ゴム;ブチルゴム(IIR)、エチレン−プロピレンゴム(EPM、EPDM)、アクリルゴム(ACM)、エピクロロヒドリンゴム(CO、ECO)、フッ素ゴム(FKM)、シリコーンゴム(Q)、ウレタンゴム(U)、クロロスルホン化ポリエチレン(CSM)等の非ジエン系ゴムが挙げられる。これらの中で、天然ゴムおよびジエン系のゴムが好ましく、ジエン系の天然ゴム(化学修飾を施さない狭義の天然ゴム(NR))がより好ましい。
(B)成分は、1種単独でもよいし、2種以上の組み合わせでもよい。
(組成)
ゴム組成物における(A)及び(B)成分の各含有量は特に限定されないが、好ましい使用量は以下のとおりである。
(A)成分の含有量は、(B)成分100質量部に対し1質量部以上が好ましく、2質量部以上がより好ましく、3質量部以上がさらに好ましい。これにより引張強度の向上効果が十分に発現し得る。上限は、50質量部以下が好ましく、40質量部以下がより好ましく、30質量部以下がさらに好ましい。これにより、製造工程における加工性を保持できる。従って、1〜50質量部が好ましく、2〜40質量部がより好ましく、3〜30質量部がさらに好ましい。
<任意成分>
ゴム組成物は、ゴム組成物の用途等の要望に応じて1種または2種以上の任意成分をさらに含んでもよい。任意成分としては、例えば、補強剤(例えば、カーボンブラック、シリカ)、シランカップリング剤、架橋剤、加硫促進剤、加硫促進助剤(例えば、酸化亜鉛、ステアリン酸)、オイル、硬化レジン、ワックス、老化防止剤、着色剤等、ゴム工業で使用され得る配合剤が挙げられる。このうち加硫促進剤、加硫促進助剤が好ましい。任意成分の含有量は、任意成分の種類等の条件に応じて適宜決定すればよく、特に限定されない。
ゴム組成物が未加硫ゴム組成物または最終製品である場合、任意成分として少なくとも架橋剤を含むことが好ましい。架橋剤としては、例えば、硫黄、ハロゲン化硫黄、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂が挙げられる。これらの中でも硫黄が好ましい。架橋剤の含有量は、(B)成分100質量部に対し1.0質量部以上が好ましく、1.5質量部以上がより好ましく、1.7質量部以上がさらに好ましい。上限は、10質量部以下が好ましく、7質量部以下がより好ましく、5質量部以下がさらに好ましい。
加硫促進剤としては、例えば、N−t−ブチル−2−ベンゾチアゾールスルフェンアミド、N−オキシジエチレン−2−ベンゾチアゾリルスルフェンアミドが挙げられる。加硫促進剤の含有量は、(B)成分100質量部に対し0.1質量部以上が好ましく、0.3質量部以上がより好ましく、0.4質量部以上がさらに好ましい。上限は、5質量部以下が好ましく、3質量部以下がより好ましく、2質量部以下がさらに好ましい。
<用途>
本発明のゴム組成物の用途は、特に制限されず、最終製品としてゴムを得るための組成物であればよい。すなわち、ゴム製造用の中間体(マスターバッチ)でもよいし、加硫剤を含む未加硫のゴム組成物でもよいし、最終製品としてのゴムでもよい。最終製品の用途は特に限定されず、例えば、自動車、電車、船舶、飛行機等の輸送機器;パソコン、テレビ、電話、時計等の電化製品;携帯電話等の移動通信機器;携帯音楽再生機器、映像再生機器、印刷機器、複写機器、スポーツ用品;建築材;文具等の事務機器;容器;コンテナーが挙げられる。これら以外であっても、ゴムや柔軟なプラスチックが用いられている部材への適用が可能であり、タイヤへの適用が好適である。タイヤとしては例えば、乗用車用、トラック用、バス用、重車両用等の空気入りタイヤが挙げられる。
<製造方法>
本発明のゴム組成物は、(A)成分と(B)成分を混合及び混練し、ゴム組成物を得る方法であればよい。(A)〜(B)成分を混練する際、同時、途中又は混練後に必要に応じて任意成分を添加してもよい。(A)、(B)および任意成分の具体例、使用量は、既述のとおりである。
混合に供される(B)成分の形態は特に限定されない。例えば、ゴム成分の固形物、ゴム成分を分散媒に分散させた分散体(ラテックス)および溶媒に溶解した溶液が挙げられる。分散媒および溶媒(以下、まとめて「液体」ともいう)としては、例えば、水、有機溶媒が挙げられる。液体の量は、ゴム成分(2以上のゴム成分を使用する場合、その合計量)100質量部に対し、10〜1000質量部が好ましい。
混合は、ホモミキサー、ホモジナイザー、プロペラ攪拌機等の公知の装置を用いて実施できる。混合する温度は限定されないが、室温(20〜30℃)が好ましい。混合時間も適宜調整してよい。
混合に供される(A)成分の形態は、特に限定されない。例えば、変性セルロースマイクロフィブリルの水分散体、当該水分散体の乾燥固形物、当該水分散体の湿潤固形物が挙げられる。水分散体における変性セルロースマイクロフィブリルの濃度は、分散媒が水である場合、0.1〜5%(w/v)であってもよく、分散媒が水とアルコール等の有機溶媒とを含む場合、0.1〜20%(w/v)であってもよい。本明細書において、湿潤固形物とは、前記水分散体と乾燥固形物との中間の態様の固形物である。前記水分散体を通常の方法で脱水して得た湿潤固形物中の分散媒の量は変性セルロースマイクロフィブリルに対し5〜15質量%が好ましい。液体の追加またはさらなる乾燥により、湿潤固形物中の分散媒の量は適宜調整し得る。
(A)成分に関し既述のとおり、(A)成分は、2以上の変性セルロースマイクロフィブリルの組み合わせでもよい。
(A)及び(B)成分の混合物は、混練に供される前に、必要に応じて乾燥されてもよい。乾燥の方法は特に限定されず、加熱法、凝固法、それらの併用のいずれでもよいが、加熱処理が好ましい。加熱処理の条件は、特に限定されないが、一例を挙げると以下のとおりである。加熱温度は、40℃以上100℃未満が好ましい。処理時間は、1時間〜24時間が好ましい。加熱温度または加熱時間を上記条件とすることにより、ゴム成分に対するダメージが抑えられ得る。乾燥後の混合物は絶乾状態でも、溶媒が残存していてもよい。また、乾燥の方法は上記の方法には限定されず、溶媒を除去する従来公知の方法を適宜選択すればよい。
混合物の混練は、公知の方法に従い混練機を用いて行えばよい。混練機としては、例えば、2本ロール、3本ロール等の開放式混練機、噛合式バンバリーミキサー、接線式バンバリーミキサー、加圧ニーダー等の密閉式混練機が挙げられる。混練は、多段階処理でもよい。例えば、第一段階で密閉式混練機による混練およびその後の開放式混練機で再混練の組み合わせが挙げられる。
混練の際には、充填剤、加硫剤、界面活性剤等の任意の添加剤(配合剤)を添加してもよい。添加の時点は特に限定されず、例えば、混練開始時、混練中のいずれか、および両方が挙げられ、混合物を先に混練機に投入した後に添加剤を投入して混練してもよく、反対に、添加剤を先に投入した後、混合物を投入して混練してもよい。界面活性剤とは、通常、分子の中に少なくとも1つの親水性基と少なくとも1つの疎水性基とを有し得る物質、およびその前駆体(例えば、金属塩の存在下で上記両基を有し得る物質)である。例えば、陽イオン性界面活性剤、陰イオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤が挙げられる。界面活性剤の添加方法は、特に限定されず、例えば、所定量の一括添加、および逐次添加が挙げられる。混合物に対し界面活性剤が均一に混練されるのであれば、いずれの方法でもよく特に限定されない。加硫剤を添加する場合は、加硫剤の添加は混練の最終段に行うことが好ましい。
混練時間は、通常3〜20分程度であり、均一に混練される時間を適宜選択できる。混練温度は、常温程度(例えば、15〜30℃程度)でよいが、ある程度高温に加熱してもよい。例えば、温度の上限は、通常150℃以下であり、好ましくは140℃以下であり、より好ましくは130℃以下である。温度の下限は15℃以上であり、好ましくは20℃以上であり、より好ましくは30℃以上である。混練温度は、15〜150℃が好ましく、20〜140℃がより好ましく、30〜130℃がさらに好ましい。
得られた混練物は、そのままマスターバッチとして利用されることが好ましい。一方、得られた混練物が最終製品として利用されてもよい。最終製品として利用される場合、混練物に対し、ゴム成分、加硫剤等の任意の添加剤が追加添加され、再度混練されることが好ましい。
混練終了後に、必要に応じて成形を行ってもよい。成形としては、例えば、金型成形、射出成形、押出成形、中空成形、発泡成形が挙げられ、最終製品の形状、用途、成形方法に応じて装置を適宜選択すればよい。
混練終了後、好ましくは成形後、さらに加熱することが好ましい。ゴム組成物が架橋剤を(好ましくは架橋剤と加硫促進剤を)含む場合、加熱により架橋(加硫)処理がなされる。また、ゴム組成物が架橋剤および加硫促進剤を含まない場合も、加熱前に添加しておけば同様の効果が得られる。加熱温度は、150℃以上が好ましく、上限は200℃以下が好ましく、180℃以下がより好ましい。従って、150〜200℃程度が好ましく、150〜180℃程度がより好ましい。加熱装置としては例えば、型加硫、缶加硫、連続加硫等の加硫装置が挙げられる。
混練物を最終製品とする前に、必要に応じ仕上げ処理を行ってもよい。仕上げ処理としては例えば、研磨、表面処理、リップ仕上げ、リップ裁断、塩素処理が挙げられ、これらの処理のうち1つのみを行ってもよいし2つ以上の組み合わせであってもよい。
以下、本発明を実施例及び比較例をあげてより具体的に説明するが、本発明はこれらに限定されるものではない。なお、特に断らない限り、部および%は質量部および質量%を示す。
<MFC(セルロースマイクロフィブリル)の物性の測定手順>
(光学特性)
・透明度:水分散体(固形分濃度1%(w/v)、分散媒:水)を調製し、UV−VIS分光光度計 UV−1800(島津製作所社製)を用い、光路長10mmの角型セルを用いて波長660nmの光の透過率を測定した(ブランク:イオン交換水)
(化学特性)
・カルボキシル(COOH)基量:サンプルの0.5質量%水分散体60mlを調製し、0.1M塩酸水溶液を加えてpH2.5とした。その後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定した。電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出した:
カルボキシル基量〔mmol/gカルボキシル化セルロース〕=a〔ml〕×0.05/カルボキシル化セルロース質量〔g〕。
・置換度:試料約2.0gを精秤して、300mL共栓付き三角フラスコに入れた。硝酸メタノール(メタノール1000mLに特級濃硝酸100mLを加えた液)100mLを加え、3時間振盪して、塩型カルボキシル基を酸型に変換した。得られた酸型サンプル(絶乾)を1.5〜2.0g精秤し、300mL共栓付き三角フラスコに入れた。80%メタノール15mLでサンプルを湿潤し、0.1N−NaOHを100mL加え、室温で3時間振盪した。指示薬として、フェノールフタレインを用いて、0.1N−H2SO4で過剰のNaOHを逆滴定し、次式により置換度(DS値)を算出した。
A=[(100×F’−0.1N−H2SO4(mL)×F)×0.1]/(酸型サンプルの絶乾質量(g))
置換度=0.162×A/(1−0.058×A)
F’:0.1N−H2SO4のファクター
F:0.1N−NaOHのファクター。
・セルロースI型の結晶化度:試料をガラスセルに乗せ、X線回折測定装置(例えば、LabX XRD−6000、島津製作所製)を用いて測定する。結晶化度の算出はSegal等の手法を用いて行う。例えば、X線回折図の2θ=10°〜30°の回折強度をベースラインとして、2θ=22.6°の002面の回折強度と2θ=18.5°のアモルファス部分の回折強度から次式により算出する。
Xc=(I002C−Ia)/I002C×100
Xc:セルロースのI型の結晶化度(%)
002C:2θ=22.6°、002面の回折強度
Ia:2θ=18.5°、アモルファス部分の回折強度
結晶化度測定用試料は、後段の比表面積の測定における項目(1)〜(9)と同様の手順で調製した凍結乾燥サンプルを、タブレット状に成型して使用した。
・アニオン化度の測定方法:変性セルロースマイクロフィブリルを水に分散し、固形分10g/Lの水分散体を調製し、マグネチックスターラーを用い10分以上1000rpmにて撹拌した。得られた水分散体を0.1g/Lに希釈後、10ml採取し、流動電流検出器(Mutek Particle Charge Detector 03)用い、1/1000規定度のジアリルジメチルアンモニウムクロリド(DADMAC)で滴定して、流動電流がゼロになるまでのDADMACの添加量を用い、以下の式によりアニオン化度を算出した:
q=(V×c)/m
q:アニオン化度(meq/g)
V:流動電流がゼロになるまでのDADMACの添加量(L)
c:DADMACの濃度(meq/L)
m:測定試料中の変性セルロースマイクロフィブリルの質量(g)。
・電気伝導度:試料の固形分濃度1.0質量%の水分散体200gを調製し、十分に撹拌した。その後、電気伝導度計(HORIBA社製ES−71型)を用いて電気伝導度を測定した。
(繊維特性)
・平均繊維幅及び平均繊維長:固形分濃度0.25質量%に希釈した水分散体を、フラクショネーターにかけ、length−weighted fiber width及びlength−weighted average fiber lengthとして求めた(n=2)。
・アスペクト比:繊維幅及び繊維長の測定値より下記の式から算出した。
アスペクト比=平均繊維長/平均繊維径
・比表面積:
(1)変性セルロースマイクロフィブリルの約2%水分散体を、固形分が約0.1gとなるように取り分け遠心分離の容器に入れ、100mlのエタノールを加えた。
(2)攪拌子を入れ、500rpmで30分以上攪拌した。
(3)撹拌子を取り出し、遠心分離機で、7000G、30分、30℃の条件で変性セルロースマイクロフィブリルを沈降させた。
(4)変性セルロースマイクロフィブリルをできるだけ除去しないようにしながら、上澄みを除去した。
(5)100mlエタノールを加え、撹拌子を加え、(2)の条件で攪拌、(3)の条件で遠心分離、(4)の条件で上澄み除去をし、これを3回繰り返した。
(6)(5)の溶媒をエタノールからt−ブタノールに変え、t−ブタノールの融点以上の室温下で、(5)と同様にして撹拌、遠心分離、上澄み除去を3回繰り返した。
(7)最後の溶媒除去後、t−ブタノールを30ml加え、軽く混ぜた後ナスフラスコに移し、氷浴を用いて凍結させた。
(8)冷凍庫で30分以上冷却した。
(9)凍結乾燥機に取り付け、3日間凍結乾燥した。
(10)BET測定を行った(前処理条件:窒素気流下、105℃、2時間、相対圧0.01〜0.30、サンプル量30mg程度)。
・保水能:変性セルロースマイクロフィブリルの固形分濃度0.3質量%の水分散体を40mL調製した。このときの水分散体の質量をAとした。次いで、水分散体の全量を高速冷却遠心機で30℃、25,000Gで30分間遠心分離し、水相と沈降物とを分離した。このときの沈降物の質量をBとした。また、水相をアルミカップに入れ、105℃で一昼夜乾燥させて水を除去し、水相中の固形分の質量を測定した。この水相中の固形分の質量をCとした。以下の式を用いて、保水能を計算した:
保水能=(B+C−0.003×A)/(0.003×A−C)。
・フィブリル化率:バルメット株式会社製フラクショネーターを用いて測定した。
(粘性)
・B型粘度(25℃、60rpm):解繊後1日以上静置した後、以下の方法で測定した:固形分1%となるよう希釈した後、ホモディスパーで3000rpm・5min撹拌後、粘度測定開始(60rpm)し、3min後の粘度の値を記録した。
<ゴム組成物の物性の測定条件>
表のデータは比較例1のデータを100とした時の指数として示した。
・硬度:JIS K6253−3:2012に従いデュロメータ硬さを測定した。
・引張特性:JIS K6251:2017に従ってM50、破断強度及び破断伸びを測定した。
・引裂強度:JIS K6252−1:2015に従い引裂強度を測定した。
・摩耗特性:FPS摩耗試験機(株式会社上島製作所製)を用い、荷重20N、スリップ率20%で摩耗体積(mm3)を測定した。この特性については、得られた摩耗体積の逆数をとり、比較例1の逆数値を100とした時の指数として示した。指数値が大きいほど摩耗体積が小さく摩耗特性に優れることを示す。
・圧縮疲労特性:フレクソメータ(株式会社上島製作所製)を用い、疲労特性の一つである、物体が一定応力下で時間の経過とともに増大するひずみ(クリープ)を測定した。試験開始温度は50℃とした。得られた数値の逆数をとり、比較例1の逆数値を100とした時の指数として示した。指数値が大きいほどクリープが生じにくく、疲労特性に優れることを示す。
実施例1(TEMPO酸化MFC(高粘度)を含むゴム組成物)
<パルプのTEMPO酸化>
針葉樹由来の漂白済み未叩解クラフトパルプ(NBKP、日本製紙(株)製、白色度85%)5.00g(絶乾)をTEMPO(Sigma Aldrich社)39mg(絶乾1gのセルロースに対し0.05mmol)と臭化ナトリウム514mg(絶乾1gのセルロースに対し1.0mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を次亜塩素酸ナトリウムが5.5mmol/gになるように添加し、室温にて酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物に塩酸を添加しpH2に調整した後、ガラスフィルターで濾過してパルプ分離し、分離されたパルプを十分に水洗して、TEMPO酸化パルプを得た。この時のパルプ収率は90%であり、酸化反応に要した時間は90分、カルボキシル基量は1.37mmol/g、pHは4.5であった。
<マイクロフィブリル化>
得られたTEMPO酸化パルプの固形分濃度2.0質量%の水分散体を調製し、5%NaOH水溶液及び炭酸水素ナトリウムを添加してpH8.0に調整した後、トップファイナー(相川鉄工株式会社製)を用いて10分間処理し、酸化セルロースマイクロフィブリル(TEMPO酸化MFC)を調製した。得られた酸化セルロースマイクロフィブリルの物性値を表1に示す。
<ゴム組成物の調製>
TEMPO酸化MFCの水分散体(1質量%)500gと天然ゴムラテックス(商品名HA−LATEX、株式会社レヂテックス製、固形分濃度61.4%)162.9gを混合してゴム成分とマイクロフィブリルとの質量比が100:5となるようにし、TKホモミキサー(8000rpm)で10分間、23℃で撹拌した。この水性懸濁液を、70℃の加熱オーブン中で19時間乾燥して混合物(マスターバッチ)を得た。
得られた混合物105gに対し、硫黄3.5g、加硫促進剤(N−オキシジエチレン−2−ベンゾチアゾリルスルフェンアミド)0.7g、酸化亜鉛6.0g、ステアリン酸0.5gを加え、オープンロール(関西ロール社製)を用い、40℃で15分間混練して、未加硫ゴム組成物のシートを得た。このシートを金型にはさみ、150℃で10分間プレス架橋することにより、厚さ約2mmのゴム組成物のシートを得た。ゴム組成物の物性を表2に示す。
実施例2(TEMPO酸化MFC(低粘度)を含むゴム組成物)
マイクロフィブリル化において、水分散体におけるTEMPO酸化パルプの固形分濃度を30質量%に変更し、ラボリファイナー(相川鉄工株式会社製)を用いた処理を2回行った後、水で希釈し、5%NaOH水溶液及びH22溶液を加えて固形分濃度を4質量%に調整した後にてトップファイナー処理を20分行ったことのほかは、実施例1と同様に行った(表1及び2)。
実施例3(TEMPO酸化MFC(H型・長)を含むゴム組成物)
マイクロフィブリル化において、水分散体におけるTEMPO酸化パルプの固形分濃度を4質量%に変更したこと、トップファイナー処理前に5%NaOH及び炭酸水素ナトリウムの添加を行わなかったこと、マイクロフィブリル化終了後に5%NaOH水溶液を添加しpHを7.4に調整した上で物性評価及びゴムの調整に供したことのほかは、実施例1と同様に行った(表1及び2)。
実施例4(TEMPO酸化MFC(H型・高濃度)を含むゴム組成物)
マイクロフィブリル化において、水分散体におけるTEMPO酸化パルプの固形分濃度を30質量%に変更したこと、及びトップファイナー処理の代わりに実施例2で行ったのと同様のラボリファイナー(相川鉄工株式会社製)を用いた処理を2回行ったこと、のほかは、実施例3と同様に行った(表1及び2)。
実施例5(CM化MFC(高粘度)を含むゴム組成物)
以下の処理により得られるカルボキシメチル化パルプをマイクロフィブリル化に供したことのほかは、実施例1と同様に行った(表1及び2)。
<パルプのカルボキシメチル化>
回転数を100rpmに調節した二軸ニーダーに、水130部と、水酸化ナトリウム20部を水100部に溶解したものとを加え、広葉樹由来の漂白済み未叩解クラフトパルプ(LBKP、日本製紙(株)製)を100部(100℃で60分間乾燥した際の乾燥質量)仕込んだ。これらを30℃で90分間撹拌、混合しマーセル化されたセルロース系原料を調製した。更に撹拌しつつイソプロピルアルコール(IPA)100部と、モノクロロ酢酸ナトリウム60部を添加し、30分間撹拌した後、70℃に昇温して90分間カルボキシメチル化反応をさせた。カルボキシメチル化反応時の反応媒中のIPAの濃度は、30%であった。反応終了後、酢酸でpH7程度になるよう中和し、カルボキシメチル化パルプ(ナトリウム塩)を得た。
比較例1(天然ゴム組成物)
天然ゴムラテックスのみを用いてゴムを調製したことのほかは、実施例1と同様に行った(表1及び2)。
比較例2(天然ゴム組成物)
TEMPO酸化MFCの水分散体の代わりにカーボンブラック20phrを用いたほかは、実施例1と同様に行った(表1及び2)。
Figure 2021040006
Figure 2021040006
表2より、変性セルロースマイクロフィブリルを配合した実施例のゴム組成物は、良好な強度を示し、比較例のゴム組成物と比較すると特に摩耗特性、圧縮疲労特性に優れていた。また、実施例1〜5では、引張特性、引裂強度の各種測定結果も良好であった。これらの結果は、本発明のゴム組成物が摩耗特性、圧縮疲労特性に優れる等、良好な強度を発揮しうること、そのため各種用途において有用であることを示している。

Claims (7)

  1. 成分(A):アニオン化度が0.06meq/g以上2.50meq/g以下であり、平均繊維径が500nmよりも大きい、変性セルロースマイクロフィブリル、及び
    成分(B);ゴム成分
    を含むゴム組成物。
  2. 成分(A)は、以下の式:
    保水能=(B+C−0.003×A)/(0.003×A−C)
    (式中、Aは、変性セルロースマイクロフィブリルの固形分濃度0.3質量%の水分散体の質量、Bは、質量Aの水分散体を30℃、25000G、30分間遠心分離した後に分離される沈降物の質量、Cは前記遠心分離後に分離される水相中の固形分の質量をそれぞれ表す)
    で表される保水能が10以上の変性セルロースマイクロフィブリルを少なくとも含む、請求項1に記載のゴム組成物。
  3. 成分(A)は、固形分1質量%の水分散体とした際のB型粘度(25℃、60rpm)が、4,000mPa・s以下である、変性セルロースマイクロフィブリルを少なくとも1種含む、請求項1または2に記載のゴム組成物。
  4. 成分(A)は、酸化セルロースマイクロフィブリル、カルボキシアルキル化セルロースマイクロフィブリル及びリン酸化セルロースマイクロフィブリルからなる群より選ばれる少なくとも1つを含む、請求項1〜3のいずれか1項に記載のゴム組成物。
  5. 酸化セルロースマイクロフィブリルのカルボキシル基量が0.1〜2.5mmol/gである、請求項4に記載のゴム組成物。
  6. 酸化セルロースマイクロフィブリルのカルボキシ置換度が0.01〜0.50であり、及び/又は、カルボキシル化セルロースマイクロフィブリルのカルボキシアルキル置換度が0.01〜0.50である、請求項4または5に記載のゴム組成物。
  7. (A)成分と(B)成分を混合および混練し、ゴム組成物を得ることを含む、請求項1〜6のいずれか1項に記載のゴム組成物の製造方法。
JP2021538236A 2019-08-30 2020-08-28 ゴム組成物及びその製造方法 Active JP7015970B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019158936 2019-08-30
JP2019158936 2019-08-30
PCT/JP2020/032715 WO2021040006A1 (ja) 2019-08-30 2020-08-28 ゴム組成物及びその製造方法

Publications (2)

Publication Number Publication Date
JPWO2021040006A1 true JPWO2021040006A1 (ja) 2021-10-21
JP7015970B2 JP7015970B2 (ja) 2022-02-15

Family

ID=74685953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021538236A Active JP7015970B2 (ja) 2019-08-30 2020-08-28 ゴム組成物及びその製造方法

Country Status (3)

Country Link
JP (1) JP7015970B2 (ja)
CN (1) CN114269825A (ja)
WO (1) WO2021040006A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060495A (ja) * 2003-08-11 2005-03-10 Bridgestone Corp ゴムチェーファー用ゴム組成物及びそれを用いたタイヤ
WO2014087767A1 (ja) * 2012-12-05 2014-06-12 日本製紙株式会社 複合材料及びそれを用いた成形体
JP2015098576A (ja) * 2013-10-17 2015-05-28 日信工業株式会社 ゴム組成物の製造方法及びゴム組成物
JP2017052942A (ja) * 2015-09-11 2017-03-16 花王株式会社 ゴム組成物
JP2019073681A (ja) * 2017-10-17 2019-05-16 松本油脂製薬株式会社 樹脂組成物及びその利用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581116B2 (ja) * 2007-09-10 2010-11-17 住友ゴム工業株式会社 加硫ゴム組成物、空気入りタイヤおよびこれらの製造方法
EP3296458B1 (en) * 2015-05-15 2021-04-14 Nippon Paper Industries Co., Ltd. Anion-modified cellulose nanofiber dispersion liquid and composition
DK3369748T3 (da) * 2015-10-27 2020-08-24 Futamura Kagaku Kk Modificerede fine cellulosefibre og fremgangsmåde til fremstilling deraf
US11118020B2 (en) * 2015-12-25 2021-09-14 Nippon Paper Industries Co., Ltd. Masterbatch, rubber composition, and methods for producing the same
CN109641972A (zh) * 2016-07-07 2019-04-16 日本制纸株式会社 改性纤维素纳米纤维及含有它的橡胶组合物
KR20210010577A (ko) * 2018-05-18 2021-01-27 니뽄 세이시 가부시끼가이샤 카르복시메틸화 펄프의 분쇄물 및 당해 분쇄물을 포함하는 첨가제

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060495A (ja) * 2003-08-11 2005-03-10 Bridgestone Corp ゴムチェーファー用ゴム組成物及びそれを用いたタイヤ
WO2014087767A1 (ja) * 2012-12-05 2014-06-12 日本製紙株式会社 複合材料及びそれを用いた成形体
JP2015098576A (ja) * 2013-10-17 2015-05-28 日信工業株式会社 ゴム組成物の製造方法及びゴム組成物
JP2017052942A (ja) * 2015-09-11 2017-03-16 花王株式会社 ゴム組成物
JP2019073681A (ja) * 2017-10-17 2019-05-16 松本油脂製薬株式会社 樹脂組成物及びその利用

Also Published As

Publication number Publication date
JP7015970B2 (ja) 2022-02-15
CN114269825A (zh) 2022-04-01
WO2021040006A1 (ja) 2021-03-04

Similar Documents

Publication Publication Date Title
JP6155415B1 (ja) マスターバッチ、ゴム組成物、及びそれらの製造方法
JP6990190B2 (ja) ゴム組成物の製造方法
WO2018147342A1 (ja) ゴム組成物およびその製造方法
JP7061998B2 (ja) ゴム組成物およびその製造方法
JP6473550B1 (ja) マスターバッチ、ゴム組成物及びそれらの製造方法
WO2018008700A1 (ja) 変性セルロースナノファイバーおよびこれを含むゴム組成物
JP2017128663A (ja) オイルシール用ゴム組成物
JP2017095611A (ja) ゴム組成物
JP2018199755A (ja) 変性セルロース繊維
JP6877158B2 (ja) マスターバッチ、ゴム組成物、及びそれらの製造方法
JP6944451B2 (ja) マスターバッチの製造方法
WO2021112195A1 (ja) 変性セルロースマイクロフィブリルの製造方法
JP7015970B2 (ja) ゴム組成物及びその製造方法
JP6994345B2 (ja) ゴム組成物及び成形品
JPWO2020100979A1 (ja) アニオン変性セルロースナノファイバーを含有するマスターバッチおよびゴム組成物の製造方法
WO2019230719A1 (ja) カルボキシメチル化セルロースナノファイバー含有マスターバッチおよびその製造方法
JP2018193465A (ja) マスターバッチ及びゴム組成物の製造方法
JP6951844B2 (ja) マスターバッチの製造方法
JP6915170B2 (ja) ゴム組成物の製造方法
WO2023136130A1 (ja) ゴム組成物及びその製造方法
JP2024044892A (ja) ゴム組成物及びその製造方法
JP2020019907A (ja) 変性セルロース繊維
WO2024009850A1 (ja) ゴム組成物の製造方法
JP2021191841A (ja) ゴム組成物及び成形体
JP2021121656A (ja) ゴム組成物及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210629

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220124

R150 Certificate of patent or registration of utility model

Ref document number: 7015970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150