WO2022209157A1 - 繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法 - Google Patents

繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法 Download PDF

Info

Publication number
WO2022209157A1
WO2022209157A1 PCT/JP2022/001498 JP2022001498W WO2022209157A1 WO 2022209157 A1 WO2022209157 A1 WO 2022209157A1 JP 2022001498 W JP2022001498 W JP 2022001498W WO 2022209157 A1 WO2022209157 A1 WO 2022209157A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibrous cellulose
cellulose
resin
powder
interacting
Prior art date
Application number
PCT/JP2022/001498
Other languages
English (en)
French (fr)
Inventor
隆之介 青木
一紘 松末
貴章 今井
Original Assignee
大王製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大王製紙株式会社 filed Critical 大王製紙株式会社
Priority to EP22779389.0A priority Critical patent/EP4317295A1/en
Priority to US18/548,403 priority patent/US20240150557A1/en
Priority to CN202280015103.8A priority patent/CN116888207A/zh
Priority to KR1020237027698A priority patent/KR20230165750A/ko
Publication of WO2022209157A1 publication Critical patent/WO2022209157A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/05Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur
    • C08B15/06Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur containing nitrogen, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/001Modification of pulp properties
    • D21C9/007Modification of pulp properties by mechanical or physical means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the present invention relates to a fibrous cellulose-containing material, a fibrous cellulose composite resin, and a method for producing a fibrous cellulose-containing material.
  • the main problem to be solved by the present invention is to provide a fibrous cellulose-containing material that is excellent in dispersibility even when dried, a method for producing the same, and a fibrous cellulose composite resin that is excellent in strength.
  • the focus is placed on the dispersibility of fine fibers when they are held in a dispersion state, and esterification, etherification, amidation, sulfidation, etc. , found that the introduction of carbamate (carbamation) is superior among many modification methods.
  • the present invention focuses on the dispersibility of fine fibers when the fine fibers are once dried and then mixed with a resin.
  • the inventors have found that the above-mentioned problems can be solved by pursuing other substances and physical properties to be used together with them, and have arrived at the idea.
  • the means conceived in this way are as follows.
  • a fibrous cellulose inclusion added to the resin has an average fiber width of 0.1 to 19 ⁇ m, and some or all of the hydroxyl groups are substituted with carbamate groups, comprising a powder that interacts with the fibrous cellulose;
  • a fibrous cellulose-containing material characterized by:
  • the interacting powder has a 90% particle size/10% particle size of 2 to 1000.
  • the volume average particle diameter of the interacting powder is 0.01 to 10000 ⁇ m, and the volume average particle diameter ( ⁇ m) of the interacting powder/average fiber length ( ⁇ m) of the fibrous cellulose is 0.005 to 5000.
  • the fibrous cellulose has a fiber length of less than 0.2 mm in a proportion of 5% or more and a fiber length of 0.2 to 0.6 mm in a proportion of 10% or more.
  • the fibrous cellulose-containing material according to any one of claims 1-3.
  • the fibrous cellulose has an average fiber length of 1.0 mm or less, an average fiber width of 10 ⁇ m or less, and a fibrillation rate of 2.5% or more.
  • the fibrous cellulose-containing material according to any one of claims 1-4.
  • the interacting powder is an acid-modified resin having an acid value of 2.0% or more,
  • the fibrous cellulose-containing material according to any one of claims 1-5.
  • a fibrous cellulose composite resin in which fibrous cellulose and resin are mixed The fibrous cellulose-containing material according to any one of claims 1 to 7 is used as the fibrous cellulose, A fibrous cellulose composite resin characterized by:
  • Fibrous cellulose in which some or all of the hydroxyl groups have been substituted with carbamate groups is defibrated so that the average fiber width is 0.1 to 19 ⁇ m, and mixed with the powder that interacts with the fibrous cellulose to obtain a mixed solution. get drying the mixture,
  • a method for producing a fibrous cellulose-containing material characterized by:
  • a fibrous cellulose-containing material that is excellent in dispersibility even when dried, a method for producing the same, and a fibrous cellulose composite resin that is excellent in strength.
  • the fibrous cellulose-containing material of the present embodiment is added to a resin, and the fibrous cellulose (hereinafter also referred to as "cellulose fiber") has an average fiber width of 0.1 to 19 ⁇ m and a hydroxyl group (—OH groups) are partially or entirely substituted with carbamate groups.
  • the fibrous cellulose-containing material contains powder that interacts with fibrous cellulose (hereinafter also simply referred to as "interacting powder").
  • the powder is preferably an acid-modified resin whose acid groups ionically bond with some or all of the carbamate groups.
  • a fibrous cellulose composite resin is obtained by adding this fibrous cellulose-containing material to a resin.
  • fibrous cellulose in which some or all of the hydroxyl groups have been substituted with carbamate groups is defibrated so that the average fiber width is 0.1 to 19 ⁇ m, and the fibers are A powder that interacts with the cellulose is added to obtain a mixed liquid, and the mixed liquid is dried.
  • the fibrous cellulose which is fine fibers in this embodiment, is microfiber cellulose (microfibrillated cellulose) having an average fiber diameter of 0.1 to 19 ⁇ m.
  • Microfiber cellulose significantly improves the reinforcing effect of the resin.
  • Microfiber cellulose is also easier to modify with carbamate groups (carbamate) than cellulose nanofibers, which are also fine fibers.
  • carbamate groups carbamate groups
  • microfiber cellulose means fibers with a larger average fiber width than cellulose nanofibers.
  • the average fiber diameter (width) is, for example, 0.1 to 19 ⁇ m, preferably 0.2 to 10 ⁇ m, more preferably over 0.5 to 10 ⁇ m. If the average fiber diameter of the fibrous cellulose is less than 0.1 ⁇ m (below), it is no different from cellulose nanofibers, and there is a risk that the effect of improving the strength (especially bending elastic modulus) of the resin cannot be sufficiently obtained. . In addition, defibration takes a long time, and a large amount of energy is required. Furthermore, the dewaterability of the cellulose fiber slurry deteriorates.
  • the fibrous cellulose When the dehydration property deteriorates, a large amount of energy is required for drying, and if a large amount of energy is applied to drying, the fibrous cellulose may be thermally degraded, resulting in a decrease in strength.
  • the variation in the fiber length of the fibrous cellulose becomes small, making it difficult to exhibit the effects of the present embodiment that define the particle size distribution of the interacting powder. .
  • the average fiber diameter of the fibrous cellulose exceeds (exceeds) 19 ⁇ m, it is no different from pulp, and the reinforcing effect may not be sufficient.
  • the average fiber diameter exceeds 19 ⁇ m, the variation in fiber length of the fibrous cellulose is small, and the effect of the present embodiment that defines the particle size distribution of the interacting powder is difficult to exhibit.
  • the average fiber diameter is 10 ⁇ m or less, the average fiber length is 1.0 mm or less and the fibrillation ratio is 2.5% or more.
  • the mode diameter (width) of fibrous cellulose is preferably 0.1 to 19 ⁇ m, more preferably 0.5 to 10 ⁇ m, and particularly preferably 1 to 6 ⁇ m.
  • the fibrous cellulose is specified by the average fiber diameter. It is preferable to specify the mode diameter with the largest number. From this point of view, if the mode diameter is less than 0.1 ⁇ m, the proportion of cellulose nanofibers tends to increase, and the cellulose nanofibers aggregate with each other, possibly resulting in an insufficient reinforcing effect. On the other hand, if the mode diameter exceeds 19 ⁇ m, the ratio of pulp tends to increase, and it can be said that the reinforcing effect may not be sufficient.
  • the method for measuring the average fiber diameter of fine fibers is as follows. First, 100 ml of an aqueous dispersion of fine fibers having a solid concentration of 0.01 to 0.1% by mass is filtered through a Teflon (registered trademark) membrane filter, and the solvent is replaced once with 100 ml of ethanol and 3 times with 20 ml of t-butanol. do. It is then freeze-dried and coated with osmium to form a sample. This sample is observed with an electron microscope SEM image at a magnification of 3,000 times to 30,000 times depending on the width of the constituent fibers.
  • Teflon registered trademark
  • the mode diameter of fine fibers is measured by a fiber analyzer "FS5" manufactured by Valmet.
  • the fibrous cellulose is microfibrous cellulose
  • it has a characteristic that the variation in fiber length and the like increases. This is for the following reasons.
  • pulp is produced, for example, by boiling chips with alkali under pressure and then loosening them when the pressure returns to normal, without mechanical fibrillation. Therefore, wood cells are isolated as they are to form a pulp, and the fiber length and the like are relatively uniform.
  • the cellulose nanofibers consist of fibers with independent fluffing portions, and the fluffing portions of the cellulose microfibers are separated independently. Therefore, the fiber length and the like are relatively uniform.
  • the microfiber cellulose is in a stage where the fibers are fluffing due to the application of a mechanical defibration force to the pulp, and therefore the distribution of the fiber length and the like is widened.
  • Microfiber cellulose usually has a fiber length of less than 0.2 mm in a proportion of 5% or more and a fiber length of 0.2 to 0.6 mm in a proportion of 10% or more, preferably a fiber length of less than 0.2 mm. 8% or more, a fiber length of 0.2 to 0.6 mm is 13% or more, more preferably a fiber length of less than 0.2 mm is 20% or more, and a fiber length is 0.2 to 0.2 mm. A ratio of 6 mm is 16% or more.
  • the proportion of fibrous cellulose having a fiber length of 0.2 to 0.6 mm is preferably 10 to 90%, more preferably 14 to 70%, and particularly preferably 16 to 50%. If the proportion of fibers having a length of 0.2 to 0.6 mm is less than 14%, the entanglement with the interacting powder will be insufficient, and as a result, there is a possibility that the reinforcing effect will not be exhibited sufficiently.
  • Microfiber cellulose can be obtained by defibrating (refining) cellulose raw material (hereinafter also referred to as "raw material pulp”).
  • Raw material pulp includes, for example, wood pulp made from broad-leaved trees, coniferous trees, etc., non-wood pulp made from straw, bagasse, cotton, hemp, pistil fibers, etc., and waste paper pulp made from recovered waste paper, waste paper, etc. (DIP) or the like can be selected and used.
  • DIP waste paper pulp made from recovered waste paper, waste paper, etc.
  • the various raw materials described above may be, for example, in the form of pulverized (powdered) material such as cellulose powder.
  • wood pulp as raw material pulp.
  • wood pulp for example, one or more of chemical pulps such as hardwood kraft pulp (LKP) and softwood kraft pulp (NKP), mechanical pulp (TMP), etc. can be selected and used.
  • the hardwood kraft pulp may be bleached hardwood kraft pulp, unbleached hardwood kraft pulp, or semi-bleached hardwood kraft pulp.
  • the softwood kraft pulp may be softwood bleached kraft pulp, softwood unbleached kraft pulp, or softwood semi-bleached kraft pulp.
  • mechanical pulp examples include stone ground pulp (SGP), pressure stone ground pulp (PGW), refiner ground pulp (RGP), chemi ground pulp (CGP), thermo ground pulp (TGP), ground pulp (GP), One or more of thermomechanical pulp (TMP), chemithermomechanical pulp (CTMP), refiner mechanical pulp (RMP), bleached thermomechanical pulp (BTMP) and the like can be selected and used.
  • the raw material pulp can be pretreated by chemical methods prior to defibration.
  • chemical pretreatments include hydrolysis of polysaccharides with acid (acid treatment), hydrolysis of polysaccharides with enzymes (enzyme treatment), swelling of polysaccharides with alkali (alkali treatment), and oxidation of polysaccharides with an oxidizing agent (oxidation treatment), reduction of polysaccharides with a reducing agent (reduction treatment), and the like.
  • the chemical pretreatment it is preferable to perform enzyme treatment, and in addition, it is more preferable to perform one or more treatments selected from acid treatment, alkali treatment, and oxidation treatment.
  • the enzymatic treatment will be described in detail below.
  • the enzyme used for enzymatic treatment it is preferable to use at least one of a cellulase enzyme and a hemicellulase enzyme, and more preferably to use both together.
  • the use of these enzymes makes the fibrillation of cellulosic raw materials easier.
  • Cellulase enzymes cause decomposition of cellulose in the presence of water.
  • hemicellulase enzymes cause decomposition of hemicellulose in the presence of water.
  • Cellulase enzymes include, for example, Trichoderma genus, Acremonium genus, Aspergillus genus, Phanerochaete genus, Trametes genus genus Humicola, genus Bacillus, genus Schizophyllum, genus Streptomyces, genus Pseudomonas, etc. Enzymes can be used. These cellulase enzymes can be purchased as reagents or commercial products.
  • EG encodedoglucanase
  • CBH cellobiohydrolase
  • hemicellulase enzymes examples include xylanase, an enzyme that degrades xylan, mannase, an enzyme that degrades mannan, and arabanase, an enzyme that degrades araban.
  • xylanase an enzyme that degrades xylan
  • mannase an enzyme that degrades mannan
  • arabanase an enzyme that degrades araban.
  • Pectinase which is an enzyme that degrades pectin, can also be used.
  • Hemicellulose is a polysaccharide excluding pectins between cellulose microfibrils in plant cell walls. Hemicelluloses are very diverse and differ between wood types and cell wall layers. Glucomannan is the main component in the secondary walls of coniferous trees, and 4-O-methylglucuronoxylan is the main component in the secondary walls of hardwoods. Therefore, when obtaining fine fibers from softwood bleached kraft pulp (NBKP), it is preferable to use mannase. In addition, when obtaining fine fibers from hardwood bleached kraft pulp (LBKP), it is preferable to use xylanase.
  • the amount of enzyme added to the cellulose raw material is determined, for example, by the type of enzyme, the type of wood used as the raw material (coniferous or hardwood), the type of mechanical pulp, etc.
  • the amount of enzyme added to the cellulose raw material is preferably 0.1 to 3% by mass, more preferably 0.3 to 2.5% by mass, and particularly preferably 0.5 to 2% by mass. If the added amount of the enzyme is less than 0.1% by mass, there is a possibility that the effect of the addition of the enzyme cannot be sufficiently obtained. On the other hand, if the added amount of the enzyme exceeds 3% by mass, cellulose may be saccharified and the yield of fine fibers may decrease. Moreover, there is also a problem that an improvement in the effect commensurate with an increase in the amount added cannot be recognized.
  • the temperature during enzyme treatment is preferably 30 to 70°C, more preferably 35 to 65°C, and particularly preferably 40 to 60°C, regardless of whether a cellulase enzyme or a hemicellulase enzyme is used as the enzyme. . If the temperature during the enzyme treatment is 30° C. or higher, the enzyme activity is less likely to decrease and the treatment time can be prevented from becoming longer. On the other hand, if the temperature during the enzyme treatment is 70° C. or lower, deactivation of the enzyme can be prevented.
  • the time for enzymatic treatment is determined, for example, by the type of enzyme, temperature of enzymatic treatment, pH during enzymatic treatment, etc. However, the general enzymatic treatment time is 0.5 to 24 hours.
  • Methods for inactivating the enzyme include, for example, a method of adding an alkaline aqueous solution (preferably pH 10 or higher, more preferably pH 11 or higher), a method of adding hot water at 80 to 100°C, and the like.
  • Alkaline treatment prior to fibrillation dissociates some of the hydroxyl groups of hemicellulose and cellulose in the pulp, anionizing the molecules, weakening intramolecular and intermolecular hydrogen bonds, and promoting the dispersion of cellulose raw materials during fibrillation. be.
  • Alkali used for alkali treatment include, for example, sodium hydroxide, lithium hydroxide, potassium hydroxide, aqueous ammonia solution, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, and the like.
  • An organic alkali or the like can be used. However, from the viewpoint of production cost, it is preferable to use sodium hydroxide.
  • the microfiber cellulose can have a low water retention rate, a high crystallinity degree, and a high homogeneity. In this regard, when the water retention of the microfiber cellulose is low, it becomes easy to dewater, and the dewaterability of the cellulose fiber slurry is improved.
  • the raw pulp is subjected to enzyme treatment, acid treatment, or oxidation treatment, the hemicellulose and cellulose amorphous regions of the pulp are decomposed. As a result, the defibration energy can be reduced, and the uniformity and dispersibility of the cellulose fibers can be improved.
  • pretreatment reduces the aspect ratio of the microfiber cellulose, it is preferable to avoid excessive pretreatment when used as a reinforcing material for resins.
  • beaters high-pressure homogenizers, homogenizers such as high-pressure homogenizers, grinders, stone mills such as grinders, single-screw kneaders, multi-screw kneaders, kneader refiners, jet mills, etc.
  • homogenizers such as high-pressure homogenizers
  • grinders stone mills such as grinders, single-screw kneaders, multi-screw kneaders, kneader refiners, jet mills, etc.
  • the average fiber length (average length of single fibers) of the microfiber cellulose is preferably 0.10 to 2.00 mm, more preferably 0.12 to 1.50 mm, and particularly preferably 0.15 to 1.00 mm. be. If the average fiber length is less than 0.10 mm, a three-dimensional network cannot be formed between the fibers, and there is a risk that the reinforcing effect (especially the flexural modulus) of the composite resin will decrease. It may also not entangle well with interacting powders. On the other hand, if the average fiber length exceeds 2.00 mm, there is a risk that the reinforcing effect will be insufficient because the fiber length is the same as that of raw material pulp. Also, the fibers can clump together and not be sufficiently entangled with the interacting powder.
  • the average fiber length of the cellulose raw material which is the raw material of the microfiber cellulose, is preferably 0.50 to 5.00 mm, more preferably 1.00 to 3.00 mm, and particularly preferably 1.50 to 2.50 mm. If the average fiber length of the cellulose raw material is less than 0.50 mm, the reinforcing effect of the resin may not be sufficiently obtained during defibration treatment. On the other hand, if the average fiber length exceeds 5.00 mm, it may be disadvantageous in terms of production cost during fibrillation.
  • the average fiber length of microfiber cellulose can be arbitrarily adjusted, for example, by selecting raw material pulp, pretreatment, defibration, etc.
  • the aspect ratio of the microfiber cellulose is preferably 2-15,000, more preferably 10-10,000. If the aspect ratio is less than 2, a three-dimensional network cannot be constructed, so even if the average fiber length exceeds 0.10 mm, the reinforcing effect may be insufficient. In addition, if the aspect ratio is less than 2, the number of points that can interact with the interacting powder having a sphere-like shape is too small. can not be sufficiently exhibited, and the reinforcing effect may be insufficient. On the other hand, if the aspect ratio exceeds 15,000, there is a risk that the cellulose microfibers will be entangled with each other, resulting in insufficient dispersion in the resin. In addition, there is a possibility that the fibers interact with each other and the interaction with the interacting powder does not occur sufficiently, resulting in an insufficient reinforcing effect.
  • the aspect ratio is the value obtained by dividing the average fiber length by the average fiber width. As the aspect ratio increases, the number of locations where catching occurs increases, so that the reinforcing effect increases.
  • the fibrillation rate of the microfiber cellulose is preferably 1.0-30.0%, more preferably 1.5-20.0%, and particularly preferably 2.5-15.0%. If the fibrillation rate exceeds 30.0%, the contact area with water becomes too large, so even if defibration is performed in a range in which the average fiber width remains at 0.1 ⁇ m or more, dehydration may become difficult. be. On the other hand, if the fibrillation rate exceeds 30.0%, the surface area becomes too large and the fibers tend to retain water, which may make it difficult to interact with the interacting powder. On the other hand, if the fibrillation rate is less than 1.0%, hydrogen bonding between fibrils is reduced, and a strong three-dimensional network may not be formed. Also, if the fibrillation rate is less than 2.5%, there is a tendency for poor clinging to interacting powders.
  • the fiber length and fibrillation rate of the fiber are measured by Valmet's fiber analyzer "FS5".
  • the crystallinity of microfiber cellulose is preferably 50% or higher, more preferably 55% or higher, and particularly preferably 60% or higher.
  • the degree of crystallinity is less than 50%, although the miscibility with other cellulose fibers such as pulp and cellulose nanofibers is improved, the strength of the fibers themselves is lowered, so the strength of the resin cannot be improved. There is a risk.
  • the crystallinity of the microfibrous cellulose is preferably 95% or less, more preferably 90% or less, particularly preferably 85% or less. If the degree of crystallinity exceeds 95%, the ratio of strong hydrogen bonds in the molecule increases, the fiber itself becomes rigid, and the dispersibility deteriorates.
  • the crystallinity of microfiber cellulose can be arbitrarily adjusted, for example, by selecting raw material pulp, pretreatment, and refining treatment.
  • the crystallinity is a value measured according to JIS K 0131 (1996).
  • the pulp viscosity of the microfiber cellulose is preferably 2 cps or more, more preferably 4 cps or more. If the pulp viscosity of the microfiber cellulose is less than 2 cps, it may be difficult to suppress the aggregation of the microfiber cellulose. Further, if the pulp viscosity is less than 2 cps, the reinforcing properties of the resin may be insufficient even if the interaction with the interacting powder is exhibited.
  • the pulp viscosity is a value measured according to TAPPI T230.
  • the freeness of the microfiber cellulose is preferably 500 ml or less, more preferably 300 ml or less, and particularly preferably 100 ml or less. If the freeness of the microfiber cellulose exceeds 500 ml, the effect of improving the strength of the resin may not be obtained sufficiently. In addition, the entanglement with the interacting powder becomes poor, and there is a possibility that the agglomeration of the fibers cannot be sufficiently suppressed.
  • Freeness is a value measured according to JIS P8121-2 (2012).
  • the zeta potential of the microfiber cellulose is preferably -150 to 20 mV, more preferably -100 to 0 mV, and particularly preferably -80 to -10 mV. If the zeta potential is less than -150 mV, the compatibility with the resin may be significantly reduced and the reinforcing effect may be insufficient. On the other hand, when the zeta potential exceeds 20 mV, the dispersion stability may deteriorate.
  • the water retention of microfiber cellulose is preferably 80-400%, more preferably 90-350%, and particularly preferably 100-300%. If the water retention is less than 80%, the reinforcing effect may be insufficient because it is the same as the raw material pulp. On the other hand, if the water retention exceeds 400%, the dewatering property tends to be poor and aggregation tends to occur. In this regard, the water retention of the microfiber cellulose can be lowered by substituting the hydroxy group of the fiber with a carbamate group, and the dehydration and drying properties can be enhanced.
  • microfiber cellulose The water retention of microfiber cellulose can be arbitrarily adjusted, for example, by selecting raw material pulp, pretreatment, defibration, etc.
  • the degree of water retention is JAPAN TAPPI No. 26 (2000).
  • the microfiber cellulose of this form has carbamate groups. There is no particular limitation on how it is determined to have a carbamate group.
  • the cellulose raw material may be carbamate to have carbamate groups, or the microfiber cellulose (micronized cellulose raw material) may be carbamate to have carbamate groups. .
  • having a carbamate group means a state in which carbamate (ester of carbamic acid) is introduced into fibrous cellulose.
  • a carbamate group is a group represented by --O--CO--NH--, for example, a group represented by --O--CO--NH 2 , --O--CONHR, --O--CO--NR 2 and the like. That is, the carbamate group can be represented by the following structural formula (1).
  • each R is independently a saturated straight-chain hydrocarbon group, a saturated branched-chain hydrocarbon group, a saturated cyclic hydrocarbon group, an unsaturated straight-chain hydrocarbon group, an unsaturated branched-chain hydrocarbon group, It is at least one of an aromatic group and a derivative group thereof.
  • saturated straight-chain hydrocarbon groups include straight-chain alkyl groups having 1 to 10 carbon atoms such as methyl group, ethyl group, and propyl group.
  • saturated branched hydrocarbon groups include branched chain alkyl groups having 3 to 10 carbon atoms such as isopropyl group, sec-butyl group, isobutyl group and tert-butyl group.
  • saturated cyclic hydrocarbon groups include cycloalkyl groups such as cyclopentyl, cyclohexyl, and norbornyl groups.
  • unsaturated linear hydrocarbon groups include linear alkenyl groups having 2 to 10 carbon atoms such as ethenyl, propen-1-yl, propen-3-yl, ethynyl, and propyne-1. -yl group, propyn-3-yl group and other linear alkynyl groups having 2 to 10 carbon atoms.
  • unsaturated branched hydrocarbon groups include branched chain alkenyl groups having 3 to 10 carbon atoms such as propen-2-yl group, buten-2-yl group and buten-3-yl group, butyne-3 A branched alkynyl group having 4 to 10 carbon atoms such as -yl group can be mentioned.
  • aromatic groups include phenyl group, tolyl group, xylyl group, naphthyl group and the like.
  • the above saturated straight-chain hydrocarbon group, saturated branched-chain hydrocarbon group, saturated cyclic hydrocarbon group, unsaturated straight-chain hydrocarbon group, unsaturated branched-chain hydrocarbon group and aromatic group Groups in which one or more hydrogen atoms possessed are substituted with a substituent (eg, a hydroxy group, a carboxy group, a halogen atom, etc.) can be mentioned.
  • a substituent eg, a hydroxy group, a carboxy group, a halogen atom, etc.
  • microfiber cellulose having carbamate groups In microfiber cellulose having carbamate groups (carbamate groups introduced), some or all of the highly polar hydroxy groups are substituted with relatively less polar carbamate groups. Therefore, microfibrous cellulose with carbamate groups has low hydrophilicity and high affinity with low polar resins and the like. As a result, the microfiber cellulose having carbamate groups has excellent uniform dispersibility with the resin. Also, slurries of microfibrous cellulose with carbamate groups are less viscous and easier to handle.
  • the substitution ratio of carbamate groups to hydroxy groups of the microfiber cellulose is preferably 1.0 to 5.0 mmol/g, more preferably 1.2 to 3.0 mmol/g, particularly preferably 1.5 to 2.0 mmol/g. is g.
  • the substitution rate is 1.0 mmol/g or more, the effect of introducing carbamate, particularly the effect of improving the bending elongation of the resin, can be reliably exhibited.
  • the substitution rate exceeds 5.0 mmol/g, the cellulose fibers will not be able to maintain the shape of the fibers, and there is a risk that the reinforcing effect of the resin will not be obtained sufficiently.
  • the carbamate group substitution rate refers to the amount of carbamate groups contained per 1 g of cellulose raw material having carbamate groups.
  • Cellulose is a polymer having anhydroglucose as a structural unit, and has three hydroxy groups per structural unit.
  • carbamate formation first and then defibrate. This is because the cellulose raw material before defibration has a high dehydration efficiency, and the cellulose raw material is easily defibrated by the heating accompanying carbamate formation.
  • the process of carbamate-izing microfiber cellulose can be mainly divided into, for example, mixing treatment, removal treatment, and heat treatment.
  • the mixing treatment and the removal treatment can be collectively referred to as an adjustment treatment for preparing a mixture to be subjected to heat treatment.
  • microfiber cellulose or the like (as described above, it may be a cellulose raw material, hereinafter the same) and urea and / or a derivative of urea (hereinafter also simply referred to as "urea etc.”) are mixed as a dispersion medium. Mix inside.
  • urea and urea derivatives examples include urea, thiourea, biuret, phenylurea, benzylurea, dimethylurea, diethylurea, tetramethylurea, and compounds in which hydrogen atoms of urea are substituted with alkyl groups. can. These urea and urea derivatives can be used singly or in combination. However, it is preferred to use urea.
  • the lower limit of the mixing mass ratio of urea etc. to microfiber cellulose etc. is preferably 10/100, more preferably 20/100.
  • the upper limit is preferably 300/100, more preferably 200/100.
  • the dispersion medium is usually water. However, other dispersion media such as alcohols and ethers, and mixtures of water and other dispersion media may also be used.
  • microfiber cellulose or the like and urea or the like are added to water, microfiber cellulose or the like is added to an aqueous solution of urea or the like, or urea or the like is added to a slurry containing microfiber cellulose or the like. may Moreover, in order to mix uniformly, you may stir after addition. Further, the dispersion containing microfiber cellulose or the like and urea or the like may contain other ingredients.
  • the dispersion medium is removed from the dispersion containing microfiber cellulose, etc. and urea, etc. obtained in the mixing process.
  • urea and the like can be efficiently reacted in the subsequent heat treatment.
  • the removal of the dispersion medium is preferably carried out by volatilizing the dispersion medium by heating. According to this method, only the dispersion medium can be efficiently removed while leaving components such as urea.
  • the lower limit of the heating temperature in the removal treatment is preferably 50°C, more preferably 70°C, and particularly preferably 90°C when the dispersion medium is water.
  • the upper limit of the heating temperature is preferably 120°C, more preferably 100°C. If the heating temperature exceeds 120° C., the dispersion medium and urea may react with each other and urea may decompose alone.
  • the heating time in the removal process can be adjusted as appropriate according to the solid content concentration of the dispersion. Specifically, it is, for example, 6 to 24 hours.
  • a mixture of microfiber cellulose or the like and urea or the like is heat treated.
  • some or all of the hydroxy groups of the microfiber cellulose or the like react with urea or the like and are substituted with carbamate groups.
  • urea or the like when urea or the like is heated, it decomposes into isocyanic acid and ammonia as shown in the following reaction formula (1).
  • Isocyanic acid is highly reactive and, for example, forms a carbamate group on the hydroxyl group of cellulose as shown in the following reaction formula (2).
  • the lower limit of the heating temperature in the heat treatment is preferably 120°C, more preferably 130°C, particularly preferably the melting point of urea (about 134°C) or higher, still more preferably 140°C, most preferably 150°C. By setting the heating temperature to 120° C. or higher, carbamate formation is efficiently performed.
  • the upper limit of the heating temperature is preferably 200°C, more preferably 180°C, and particularly preferably 170°C. If the heating temperature exceeds 200° C., the microfiber cellulose or the like may be decomposed and the reinforcing effect may be insufficient.
  • the lower limit of the heating time in the heat treatment is preferably 1 minute, more preferably 5 minutes, particularly preferably 30 minutes, even more preferably 1 hour, most preferably 2 hours. By setting the heating time to 1 minute or longer, the carbamate reaction can be reliably carried out.
  • the upper limit of the heating time is preferably 15 hours, more preferably 10 hours. If the heating time exceeds 15 hours, it is not economical, and 15 hours is sufficient for carbamate formation.
  • the pH is preferably pH 9 or higher, more preferably pH 9-13, and particularly preferably pH 10-12 under alkaline conditions.
  • pH 7 or less preferably pH 3 to 7, particularly preferably pH 4 to 7, acidic or neutral conditions.
  • neutral conditions of pH 7 to 8 the average fiber length of the cellulose fibers may be shortened, and the reinforcing effect of the resin may be inferior.
  • alkaline conditions of pH 9 or higher the reactivity of the cellulose fibers increases, the reaction with urea and the like is promoted, and the carbamate reaction proceeds efficiently. can be done.
  • the pH can be adjusted by adding an acidic compound (eg, acetic acid, citric acid, etc.) or an alkaline compound (eg, sodium hydroxide, calcium hydroxide, etc.) to the mixture.
  • an acidic compound eg, acetic acid, citric acid, etc.
  • an alkaline compound eg, sodium hydroxide, calcium hydroxide, etc.
  • a hot air dryer, a paper machine, a dry pulp machine, etc. can be used as a device for heating in the heat treatment.
  • the mixture after heat treatment may be washed. This washing may be performed with water or the like. By this washing, unreacted and remaining urea and the like can be removed.
  • the microfiber cellulose is optionally dispersed in an aqueous medium to form a dispersion (slurry). It is particularly preferred that the entire amount of the aqueous medium is water, but it is also possible to use an aqueous medium that is partly another liquid that is compatible with water. Other liquids that can be used include lower alcohols having 3 or less carbon atoms.
  • the solid content concentration of the slurry is preferably 0.1-10.0% by mass, more preferably 0.5-5.0% by mass. If the solid content concentration is less than 0.1% by mass, excessive energy may be required during dehydration and drying. On the other hand, when the solid content concentration exceeds 10.0% by mass, the fluidity of the slurry itself is lowered, and when a dispersant is used, there is a possibility that uniform mixing may not be possible.
  • the fibrous cellulose inclusion of this form comprises a powder that interacts with fibrous cellulose.
  • the fibrous cellulose can be brought into a form capable of exhibiting the reinforcing properties of the resin. That is, when fibrous cellulose is used as a slurry, it is preferable to remove the aqueous medium contained in the slurry before compounding with the resin. However, when the aqueous medium is removed, the cellulose may irreversibly aggregate due to hydrogen bonding, making it impossible to sufficiently exhibit the reinforcing effect of the fiber. Therefore, by including powder that interacts with the fibrous cellulose slurry, hydrogen bonding between celluloses is physically inhibited.
  • the interacting powder is preferably an acid-modified resin, more preferably a maleic anhydride-modified resin, and particularly preferably a maleic anhydride-modified polypropylene (MAPP). Details of the acid-modified resin will be described later.
  • to interact means to form a strong bond with cellulose by covalent bond, ionic bond, or metallic bond (that is, bonds by hydrogen bond and Van der Waals force are not included in the concept of interacting .).
  • a strong bond is a bond with a bond energy of 100 kJ/mol or more.
  • the volume average particle size of the interacting powder is preferably 0.01 to 10000 ⁇ m, more preferably 50 to 750 ⁇ m, and particularly preferably 150 to 450 ⁇ m. If the volume average particle size exceeds 10,000 ⁇ m, the interacting powder may enter the gaps between the cellulose fibers and the effect of inhibiting aggregation may not be exhibited. On the other hand, when the volume average particle size is less than 0.01 ⁇ m, there is a possibility that hydrogen bonding between microfiber celluloses cannot be inhibited due to fineness.
  • the interacting powder preferably has a 90% particle size/10% particle size of 2 to 1000, more preferably 10 to 200.
  • the interacting powder preferably has a 90% particle size/10% particle size of 2 to 1000, more preferably 10 to 200.
  • the 90% particle size means the particle size measured in order from the smallest particle size, and the particle size when the measured ratio is 90%.
  • the 10% particle size means the particle size when the measured ratio is 10% when the particle size is measured in ascending order.
  • the arithmetic standard deviation of interacting powders is preferably 0.01 to 10000 ⁇ m, more preferably 1 to 5000 ⁇ m, particularly preferably 10 to 1000 ⁇ m. Even though the particle size of the powder varies as described above, there is a range of fibrous cellulose in the sense that the fibrous cellulose is microfibrous cellulose, thus specifying the arithmetic standard deviation of the powder. . In this regard, when the arithmetic standard deviation is less than 0.01 ⁇ m, the particle diameter becomes uniform, and it may be difficult to exhibit the effect of interaction only with fibers having a specific fiber length. On the other hand, if the arithmetic standard deviation exceeds 10,000 ⁇ m, the particle size becomes excessively non-uniform, the range of fiber lengths that can interact with each other widens, and it may be difficult to exhibit the effect of interaction.
  • the arithmetic standard deviation is a value measured with a particle size distribution analyzer (for example, a laser diffraction/scattering particle size distribution analyzer from Horiba, Ltd.).
  • a particle size distribution analyzer for example, a laser diffraction/scattering particle size distribution analyzer from Horiba, Ltd.
  • the volume average particle diameter ( ⁇ m) of the interacting powder/average fiber length ( ⁇ m) of the fibrous cellulose is preferably 0.005 to 5000, more preferably 0.01 to 1000. Within this range, the powder and the fibers are more entangled, and aggregation of the fibers is suppressed. More specifically, when the volume average particle diameter of the interacting powder/average fiber length of the fibrous cellulose is less than 0.005, the fibers interact with each other and the interaction with the interacting powder is sufficient. However, the reinforcing effect may be insufficient.
  • the volume average particle diameter of the interacting powder/average fiber length of the fibrous cellulose exceeds 5000, the number of points that can interact with the interacting powder having a spherical shape becomes too small. There is a possibility that the reinforcing effect will be insufficient due to lack of interaction.
  • the volume average particle size of the interacting powder is measured as it is or in the form of an aqueous dispersion using a particle size distribution analyzer (for example, a laser diffraction/scattering particle size distribution analyzer manufactured by Horiba, Ltd.). It is the volume average particle diameter calculated from the volume-based particle size distribution.
  • a particle size distribution analyzer for example, a laser diffraction/scattering particle size distribution analyzer manufactured by Horiba, Ltd.
  • the interacting powder in this embodiment is preferably resin powder. If the interacting powder is a resin powder, it melts during kneading and ceases to be grains, so the mixture of particles with different particle diameters has no effect at all.
  • the resin powder for example, the same resin as used for obtaining the composite resin can be used. Of course, they may be of different types.
  • the content of the interacting powder is preferably 1 to 9,900% by mass, more preferably 5 to 1,900% by mass, particularly preferably 10 to 900% by mass, based on fibrous cellulose. If the blending amount is less than 1% by mass, it may enter the interstices of the cellulose fibers and the effect of suppressing aggregation may not be sufficiently exhibited. On the other hand, if the blending amount exceeds 9,900% by mass, there is a possibility that the function as cellulose fibers cannot be exhibited.
  • Inorganic powders can be used in addition to the interacting powders.
  • the interacting powder and the inorganic powder are used together, even when the inorganic powders and the interacting powders are mixed under the condition of agglomeration, the inorganic powder and the interacting powder are effectively prevented from cohesion.
  • powder with a small particle size has a large surface area and is more susceptible to intermolecular forces than to gravity, and as a result, it tends to agglomerate. may not be loosened well in the slurry, or the powders may aggregate when the aqueous medium is removed, resulting in an insufficient effect of preventing the aggregation of the microfiber cellulose.
  • it is believed that a combination of inorganic powders and interacting powders can mitigate self-agglomeration.
  • inorganic powders include simple substances and oxides of metal elements in Groups I to VIII of the periodic table, such as Fe, Na, K, Cu, Mg, Ca, Zn, Ba, Al, Ti, and silicon elements. , hydroxides, carbonates, sulfates, silicates, sulfites, and various clay minerals composed of these compounds.
  • a plurality of these inorganic powders may be contained. Further, it may be contained in waste paper pulp, or may be a so-called recycled filler obtained by recycling inorganic substances in papermaking sludge.
  • At least one inorganic powder selected from calcium carbonate, talc, white carbon, clay, calcined clay, titanium dioxide, aluminum hydroxide, recycled fillers, etc., which are suitably used as fillers and pigments for papermaking. is preferably used, more preferably at least one selected from calcium carbonate, talc and clay, and at least one of light calcium carbonate and heavy calcium carbonate is used Especially preferred.
  • the use of calcium carbonate, talc, and clay facilitates formation of a composite with a matrix such as a resin.
  • it is a general-purpose inorganic material there is an advantage that there are few restrictions on its use.
  • calcium carbonate is particularly preferred for the following reasons.
  • the size and shape of the powder can be adjusted so that the effect of entering the gaps and suppressing the aggregation of the cellulose fibers can be easily generated, and the effect can be easily exerted with pinpoint accuracy.
  • the heavy calcium carbonate even if fibers of various sizes are present in the slurry, it will enter the gaps during the process of flocculating the fibers when the aqueous medium is removed, because the heavy calcium carbonate is amorphous. There is an advantage that it is possible to suppress aggregation of cellulose fibers with each other.
  • the ratio of the average particle size of the inorganic powder to the average particle size of the interacting powder is preferably 1:0.1 to 1:10000, and 1:1 to 1:1000. is more preferred.
  • problems arising from the strength of its own cohesive force for example, when mixing the powder and the microfiber cellulose slurry, the powder does not loosen well in the slurry, and when the aqueous medium is removed, the powder It is considered that the effect of preventing the aggregation of the microfiber cellulose can be fully exhibited without the problem of aggregation of the microfibers.
  • the ratio of mass% of inorganic powder: mass% of interacting powder is preferably 1:0.01 to 1:100, and 1:0.1 to 1:10. is more preferred. It is considered that within this range, different types of powder can inhibit their own aggregation. Within this range, problems arising from the strength of its own cohesive force (for example, when mixing the powder and the microfiber cellulose slurry, the powder does not loosen well in the slurry, and when the aqueous medium is removed, the powder It is considered that the effect of preventing the aggregation of the microfiber cellulose can be fully exhibited without the problem of aggregation of the microfibers.
  • the interacting powder is preferably a resin powder.
  • the resin is preferably an acid-modified resin. Acid-modified resins can ionically bond acid groups to some or all of the carbamate groups. Due to this ionic bond, the function of suppressing aggregation of the resin powder is effectively exhibited.
  • acid-modified resins for example, acid-modified polyolefin resins, acid-modified epoxy resins, acid-modified styrene-based elastomer resins, etc. can be used. However, it is preferable to use an acid-modified polyolefin resin.
  • An acid-modified polyolefin resin is a copolymer of an unsaturated carboxylic acid component and a polyolefin component.
  • polystyrene resin which is a polymer of propylene.
  • the unsaturated carboxylic acid component for example, one or more of maleic anhydrides, phthalic anhydrides, itaconic anhydrides, citraconic anhydrides, citric anhydrides, etc. can be selected and used.
  • maleic anhydrides are used.
  • the amount of the acid-modified resin to be mixed is preferably 0.1 to 1,000 parts by mass, more preferably 1 to 500 parts by mass, and particularly preferably 10 to 200 parts by mass with respect to 100 parts by mass of the microfiber cellulose. Particularly when the acid-modified resin is a maleic anhydride-modified polypropylene resin, the amount is preferably 1 to 200 parts by mass, more preferably 10 to 100 parts by mass. If the mixed amount of the acid-modified resin is less than 0.1 parts by mass, the anti-agglomeration effect is not sufficient. On the other hand, if the mixing amount exceeds 1,000 parts by mass, the anti-agglomeration effect tends to decrease.
  • the weight average molecular weight of maleic anhydride-modified polypropylene is, for example, 1,000 to 100,000, preferably 3,000 to 50,000.
  • the acid value of the maleic anhydride-modified polypropylene is preferably 0.5 mgKOH/g or more and 100 mgKOH/g or less, more preferably 1 mgKOH/g or more and 50 mgKOH/g or less.
  • the acid value of maleic anhydride-modified polypropylene is a value determined by titration with potassium hydroxide in accordance with JIS-K2501.
  • Microfibrous cellulose is more desirable when mixed with a dispersant.
  • a dispersing agent a compound having an aromatic compound having an amine group and/or a hydroxyl group and an aliphatic compound having an amine group and/or a hydroxyl group are preferable.
  • Examples of compounds having an amine group and/or hydroxyl group in aromatics include anilines, toluidines, trimethylanilines, anisidines, tyramines, histamines, tryptamines, phenols, dibutylhydroxytoluenes, bisphenol A cresols, eugenols, gallic acids, guaiacols, picric acids, phenolphthaleins, serotonins, dopamines, adrenaline, noradrenaline, thymols, tyrosines, salicylic acids, methyl salicylates, anise alcohols , salicyl alcohols, sinapyl alcohols, diphenidols, diphenylmethanols, cinnamyl alcohols, scopolamines, tryptophors, vanillyl alcohols, 3-phenyl-1-propanols, phenethyl alcohols, phenoxyethanols , veratryl alcohols, benzyl
  • Examples of compounds having an amine group and/or a hydroxyl group in an aliphatic group include capryl alcohols, 2-ethylhexanols, pelargon alcohols, capric alcohols, undecyl alcohols, lauryl alcohols, and tridecyl alcohols.
  • myristyl alcohols pentadecyl alcohols, cetanols, stearyl alcohols, elaidyl alcohols, oleyl alcohols, linoleyl alcohols, methylamines, dimethylamines, trimethylamines, ethylamines, diethylamines, ethylenediamine triethanolamines, N,N-diisopropylethylamines, tetramethylethylenediamines, hexamethylenediamines, spermidines, spermines, amantadine, formic acids, acetic acids, propionic acids, butyric acids, valeric acids, Caproic acids, enanthic acids, caprylic acids, pelargonic acids, capric acids, lauric acids, myristic acids, palmitic acids, margaric acids, stearic acids, oleic acids, linoleic acids, linolenic acids, arachidonic
  • the above dispersants inhibit hydrogen bonding between cellulose fibers. Therefore, the microfiber cellulose is reliably dispersed in the resin when the microfiber cellulose and the resin are kneaded.
  • the above dispersants also play a role in improving the compatibility of the microfiber cellulose and the resin. In this respect, the dispersibility of the microfiber cellulose in the resin is improved.
  • polypropylene has a melting point of 160°C, so fibrous cellulose and resin are kneaded at about 180°C.
  • the dispersing agent liquid
  • it dries up in an instant. Therefore, there is a method of using a resin with a low melting point to prepare a masterbatch (composite resin with a high concentration of microfiber cellulose), and then lowering the concentration with a normal resin.
  • a resin with a low melting point to prepare a masterbatch (composite resin with a high concentration of microfiber cellulose), and then lowering the concentration with a normal resin.
  • resins with low melting points generally have low strength. Therefore, according to this method, the strength of the composite resin may decrease.
  • the amount of the dispersant mixed is preferably 0.1 to 1,000 parts by mass, more preferably 1 to 500 parts by mass, and particularly preferably 10 to 200 parts by mass with respect to 100 parts by mass of the microfiber cellulose. If the amount of the dispersant mixed is less than 0.1 part by mass, there is a possibility that the improvement in resin strength will be insufficient. On the other hand, if the mixing amount exceeds 1,000 parts by mass, it becomes excessive and the resin strength tends to decrease.
  • the above-mentioned acid-modified resin is intended to improve compatibility by forming an ionic bond between the acid group and the carbamate group of the microfiber cellulose, thereby enhancing the reinforcing effect. (Improved adhesion) and strength.
  • the above-mentioned dispersant intervenes between the hydroxyl groups of the microfiber cellulose to prevent aggregation, thereby improving the dispersibility in the resin. , it can enter the narrow spaces between microfiber cellulose where the acid-modified resin cannot enter, and plays a role of improving dispersibility and strength.
  • the molecular weight of the acid-modified resin is preferably 2 to 2,000 times, preferably 5 to 1,000 times the molecular weight of the dispersant.
  • the interacting powder physically intervenes between the microfiber celluloses to inhibit hydrogen bonding, thereby improving the dispersibility of the microfiber cellulose.
  • the acid-modified resin ionically bonds the acid groups with the carbamate groups of the microfiber cellulose. Therefore, it comes to be present around the fibers preferentially over other substances, and the effect of suppressing aggregation of the fibers is exhibited.
  • the composite resin plays a role of adhering the microfiber cellulose to the composite resin, thereby improving the mechanical strength of the composite resin.
  • the dispersing agent inhibits hydrogen bonding between microfiber celluloses, but since the interacting powder is micro-order, it physically intervenes to suppress hydrogen bonding. Therefore, although the dispersibility is lower than that of a dispersant, especially in the case of a resin powder, it melts itself and becomes a matrix, so it does not contribute to deterioration of physical properties. On the other hand, since the dispersant is at the molecular level and is extremely small, it is highly effective in preventing hydrogen bonding by covering the cellulose microfibers and improving the dispersibility of the cellulose microfibers. However, it may remain in the resin and work to reduce physical properties.
  • the mixture is dehydrated into a dehydrated product prior to drying.
  • dehydration devices such as belt presses, screw presses, filter presses, twin rolls, twin wire formers, valveless filters, center disk filters, membrane processing, and centrifugal separators. can be done using
  • Drying of the mixture includes, for example, rotary kiln drying, disk drying, air stream drying, medium fluidized drying, spray drying, drum drying, screw conveyor drying, paddle drying, uniaxial kneading drying, multi-screw kneading drying, vacuum drying, and stirring drying. It can be carried out by selecting and using one or more of these.
  • the dried mixture (dried matter) is pulverized into powder. Pulverization of the dried product can be carried out by selecting and using one or more of, for example, bead mills, kneaders, dispersers, twist mills, cut mills, hammer mills, and the like.
  • the average particle size of the powder is preferably 1-10,000 ⁇ m, more preferably 10-5,000 ⁇ m, and particularly preferably 100-1,000 ⁇ m. If the average particle size of the powder exceeds 10,000 ⁇ m, the kneadability with the resin may be poor. On the other hand, it is not economical because a large amount of energy is required to reduce the average particle size of the powder to less than 1 ⁇ m.
  • the average particle size of the powder can be controlled by classification using a classification device such as a filter or cyclone.
  • the bulk specific gravity of the mixture (powder) is preferably 0.03-1.0, more preferably 0.04-0.9, and particularly preferably 0.05-0.8.
  • a bulk specific gravity of more than 1.0 means that the hydrogen bonding between fibrous celluloses is stronger and it is not easy to disperse the fibrous cellulose in the resin.
  • setting the bulk specific gravity below 0.03 is disadvantageous in terms of transportation costs.
  • the bulk specific gravity is a value measured according to JIS K7365.
  • the moisture content of the mixture (powder) is preferably 50% or less, more preferably 30% or less, and particularly preferably 10% or less. If the moisture content exceeds 50%, the energy required for kneading with the resin is enormous, which is not economical.
  • the moisture content is a value calculated by the following formula, using a constant temperature drier, holding the sample at 105° C. for 6 hours or more, and using the mass after drying as the mass when no change in mass is observed.
  • Fiber moisture content (%) [(mass before drying - mass after drying) / mass before drying] x 100
  • the powdery material (fibrous cellulose-containing material) obtained as described above is kneaded with a resin, if necessary, to obtain a fibrous cellulose composite resin.
  • This kneading can be carried out, for example, by mixing a pellet-shaped resin and a powdery material, or by first melting the resin and then adding the powdery material to the melt.
  • resin powder such as acid-modified resin is used as the interacting powder, it can be kneaded immediately without being mixed with the resin to form a composite resin.
  • the mixture preferably contains more than 55 parts by mass of fibrous cellulose, particularly 60 parts by mass or more, when the total amount is 100 parts by mass.
  • the mixture of the present invention contains fibrous cellulose in which some or all of the hydroxyl groups are substituted with carbamate groups, and powder that interacts with the fibrous cellulose, so that the fibrous cellulose is 55 Even if it exceeds parts by mass, high dispersibility can be maintained when the mixture is kneaded with the resin.
  • Increasing the concentration of fibrous cellulose in the mixture is also preferable from the viewpoint that the amount of the mixture used to contain a desired proportion of fibrous cellulose in the composite resin can be reduced.
  • kneading treatment for example, one or more selected from single-screw or multi-screw kneaders with two or more screws, mixing rolls, kneaders, roll mills, Banbury mixers, screw presses, dispersers, etc. are used. be able to. Among them, it is preferable to use a multi-screw kneader with two or more screws. Two or more multi-screw kneaders with two or more screws may be used in parallel or in series.
  • the temperature of the kneading treatment is higher than the glass transition point of the resin, and varies depending on the type of resin, but is preferably 80 to 280°C, more preferably 90 to 260°C, and more preferably 100 to 240°C. is particularly preferred.
  • thermoplastic resin and thermosetting resin can be used as the resin.
  • thermoplastic resins examples include polyolefins such as polypropylene (PP) and polyethylene (PE), polyester resins such as aliphatic polyester resins and aromatic polyester resins, polyacrylic resins such as polystyrene, methacrylates and acrylates, polyamide resins, One or more of polycarbonate resins, polyacetal resins and the like can be selected and used.
  • polyolefins such as polypropylene (PP) and polyethylene (PE)
  • polyester resins such as aliphatic polyester resins and aromatic polyester resins
  • polyacrylic resins such as polystyrene, methacrylates and acrylates
  • polyamide resins One or more of polycarbonate resins, polyacetal resins and the like can be selected and used.
  • polystyrene resin polypropylene
  • polyester resins aliphatic polyester resins such as polylactic acid and polycaprolactone can be exemplified, and aromatic polyester resins such as polyethylene terephthalate can be exemplified. It is preferable to use a polyester resin having
  • biodegradable resin for example, one or more of hydroxycarboxylic acid-based aliphatic polyesters, caprolactone-based aliphatic polyesters, dibasic acid polyesters, etc. can be selected and used.
  • Hydroxycarboxylic acid-based aliphatic polyesters include, for example, homopolymers of hydroxycarboxylic acids such as lactic acid, malic acid, glucose acid, and 3-hydroxybutyric acid, and copolymers using at least one of these hydroxycarboxylic acids.
  • hydroxycarboxylic acids such as lactic acid, malic acid, glucose acid, and 3-hydroxybutyric acid
  • copolymers using at least one of these hydroxycarboxylic acids One or two or more may be selected and used from among polymers and the like.
  • polylactic acid, a copolymer of lactic acid and the above hydroxycarboxylic acids other than lactic acid, polycaprolactone, and a copolymer of at least one of the above hydroxycarboxylic acids and caprolactone It is particularly preferred to use
  • lactic acid for example, L-lactic acid, D-lactic acid, or the like can be used, and these lactic acids may be used alone, or two or more of them may be selected and used.
  • caprolactone-based aliphatic polyester for example, one or more of polycaprolactone homopolymers and copolymers of polycaprolactone and the above hydroxycarboxylic acids can be selected and used. .
  • dibasic acid polyester for example, one or more of polybutylene succinate, polyethylene succinate, polybutylene adipate and the like can be selected and used.
  • the biodegradable resin may be used singly or in combination of two or more.
  • thermosetting resins examples include phenol resins, urea resins, melamine resins, furan resins, unsaturated polyesters, diallyl phthalate resins, vinyl ester resins, epoxy resins, urethane resins, silicone resins, thermosetting polyimide resins, and the like. can be used. These resins can be used alone or in combination of two or more.
  • the blending ratio of fibrous cellulose and resin is preferably 1 part by mass or more of fibrous cellulose and 99 parts by mass or less of resin, more preferably 2 parts by mass or more of fibrous cellulose and 98 parts by mass or less of resin, and particularly preferably
  • the fibrous cellulose is 3 parts by mass or more, and the resin is 97 parts by mass or less.
  • resin is 70 parts by mass or more.
  • the strength of the resin composition particularly the bending strength and tensile modulus strength, can be remarkably improved.
  • the content ratio of the fibrous cellulose and the resin contained in the finally obtained resin composition is usually the same as the above mixing ratio of the fibrous cellulose and the resin.
  • the difference in the solubility parameter (cal/cm 3 ) 1/2 (SP value) of microfiber cellulose and resin that is, the SP MFC value of microfiber cellulose and the SP POL value of resin
  • the SP value difference is preferably 10 to 0.1, more preferably 8 to 0.5, and particularly preferably 5 to 1. If the SP value difference exceeds 10, the microfiber cellulose will not be dispersed in the resin, and the reinforcing effect cannot be obtained. On the other hand, if the difference in SP value is less than 0.1, the microfiber cellulose will dissolve in the resin and will not function as a filler, failing to obtain a reinforcing effect. In this regard, the smaller the difference between the SP POL value of the resin (solvent) and the SP MFC value of the microfiber cellulose (solute), the greater the reinforcing effect.
  • the solubility parameter (cal/cm 3 ) 1/2 (SP value) is a measure of the intermolecular force acting between a solvent and a solute. Solvents and solutes with closer SP values have higher solubility. .
  • the kneaded product of fibrous cellulose-containing material and resin can be molded into a desired shape after kneading again if necessary.
  • the size, thickness, shape, and the like of this molding are not particularly limited, and may be, for example, sheet-like, pellet-like, powder-like, fibrous-like, or the like.
  • the temperature during the molding process is above the glass transition point of the resin, and varies depending on the type of resin, but is for example 90 to 260°C, preferably 100 to 240°C.
  • the kneaded product can be molded by, for example, mold molding, injection molding, extrusion molding, blow molding, foam molding, and the like.
  • the kneaded product may be spun into a fibrous form and mixed with the above-described plant material or the like to form a mat or board. Mixing can be carried out by, for example, a method of simultaneous deposition by air laying.
  • a device for molding the kneaded material for example, one or two of injection molding machines, blow molding machines, blow molding machines, blow molding machines, compression molding machines, extrusion molding machines, vacuum molding machines, air pressure molding machines, etc. More than one species can be selected and used.
  • the above molding may be carried out after kneading, or the kneaded product may be cooled once, chipped using a crusher or the like, and then the chips may be put into a molding machine such as an extruder or an injection molding machine. can also be done.
  • a molding machine such as an extruder or an injection molding machine.
  • molding is not an essential requirement of the invention.
  • the fibrous cellulose inclusions may include cellulose nanofibers along with microfibrous cellulose.
  • Cellulose nanofibers are fine fibers like microfiber cellulose, and have a role to complement microfiber cellulose for improving the strength of resin.
  • the average fiber diameter (average fiber width, average diameter of single fibers) of cellulose nanofibers is preferably 4 to 100 nm, more preferably 10 to 80 nm.
  • the fibrous cellulose-containing material may contain pulp. Pulp has the role of greatly improving the dewaterability of the cellulose fiber slurry. However, as in the case of cellulose nanofibers, it is most preferable not to mix pulp, that is, the content is 0% by mass.
  • resin compositions include kenaf, jute hemp, manila hemp, sisal hemp, ganpi, mitsumata, kozo, bananas, pineapples, coconut palms, corn, sugar cane, bagasse, coconut palms, papyrus, Fibers derived from plant materials obtained from various plants such as reeds, esparto, surviving grass, wheat, rice, bamboo, various conifers (such as cedar and cypress), broad-leaved trees, and cotton can be included, and are included. good too.
  • the resin composition for example, one or more selected from among antistatic agents, flame retardants, antibacterial agents, colorants, radical scavengers, foaming agents, etc., within a range that does not impede the effects of the present invention. can be added at These raw materials may be added to the fibrous cellulose dispersion, added during kneading of the fibrous cellulose and resin, added to the kneaded product, or added by other methods. good. However, from the viewpoint of production efficiency, it is preferable to add the fibrous cellulose and the resin during kneading.
  • the resin composition may contain an ethylene- ⁇ -olefin copolymer elastomer or a styrene-butadiene block copolymer as a rubber component.
  • ⁇ -olefins include, for example, butene, isobutene, pentene, hexene, methyl-pentene, octene, decene, dodecene, and the like.
  • maleic anhydride-modified polypropylene (MAPP) with a uniform particle size or maleic anhydride-modified polypropylene (MAPP) with a mixture of different particle sizes was added to 1,570 g of microfiber cellulose with a solid content concentration of 2.8% by mass. 22.0 g was added and heated using a contact dryer heated to 140° C. to obtain a carbamate-modified microfiber cellulose inclusion. The moisture content of the carbamate-modified microfibrous cellulose inclusions was 5-22%.
  • the washed carbamate-modified pulp is beaten using a beater until the ratio of less than 0.2 mm and the ratio of 0.2 to 0.6 mm reach a predetermined ratio, and carbamate-modified microfiber cellulose (carbamate MFC (fine fiber)) was obtained.
  • the carbamate-modified microfiber cellulose composite resin obtained as described above was cut into cylinders with a diameter of 2 mm and a length of 2 mm with a pelleter, and a rectangular parallelepiped test piece (length 59 mm, width 9.6 mm, thickness 3.8 mm) was obtained at 180 ° C. ).
  • the flexural modulus was examined for each specimen. The results are shown in Table 1 together with the particle size (particle diameter) of MAPP and the fiber size (fiber length) of fibrous cellulose according to the following criteria.
  • the flexural modulus was measured according to JIS K7171:2008. In the table, the evaluation results are shown according to the following criteria. When the bending elastic modulus of the resin itself is 1 and the bending elastic modulus (magnification) of the composite resin is 1.45 times or more: ⁇ When the bending elastic modulus of the resin itself is 1 and the bending elastic modulus (magnification) of the composite resin is 1.40 times or more and less than 1.45 times: ⁇
  • the present invention can be used as a method for producing a fibrous cellulose-containing material, a fibrous cellulose composite resin, and a fibrous cellulose-containing material.
  • fibrous cellulose composite resins are used for interior materials, exterior materials, structural materials, etc. of transportation equipment such as automobiles, trains, ships, and airplanes; Parts, etc.; Housings, structural materials, internal parts, etc. of mobile communication devices such as mobile phones; Structural materials, internal parts, etc.; interior materials, exterior materials, structural materials, etc. for buildings and furniture; office equipment, etc. such as stationery; Available.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】乾燥した場合においても分散性に優れる繊維状セルロース含有物及びその製造方法、並びに強度に優れる繊維状セルロース複合樹脂を提供する。 【解決手段】樹脂に添加される繊維状セルロース含有物であり、繊維状セルロースは平均繊維幅が0.1~19μmで、かつヒドロキシル基がカルバメート基で置換されており、繊維状セルロースと相互作用する粉末を含む。また、繊維状セルロース複合樹脂は、繊維状セルロースとして前記繊維状セルロース含有物が使用されている。さらに、繊維状セルロース含有物の製造方法においては、ヒドロキシル基がカルバメート基で置換された繊維状セルロースを平均繊維幅が0.1~19μmとなるように解繊し、繊維状セルロースと相互作用する粉末と混合して混合液を得、この混合液を乾燥する。

Description

繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法
 本発明は、繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法に関するものである。
 近年、セルロースナノファイバー、マイクロ繊維セルロース(ミクロフィブリル化セルロース)等の微細繊維は、樹脂の補強材としての使用が脚光を浴びている。もっとも、微細繊維が親水性であるのに対し、樹脂は疎水性であるため、微細繊維を樹脂の補強材として使用するには、当該微細繊維の分散性に問題があった。そこで、本発明者等は、微細繊維のヒドロキシ基をカルバメート基で置換することを提案した(特許文献1参照)。この提案によると、微細繊維の分散性が向上し、もって樹脂の補強効果が向上する。もっとも、微細繊維は乾燥時に凝集するが、この凝集は強固であるため、乾燥した微細繊維を樹脂の補強材とするには分散性の点で問題があった。
特開2019-1876号公報
 本発明が解決しようとする主たる課題は、乾燥した場合においても分散性に優れる繊維状セルロース含有物及びその製造方法、並びに強度に優れる繊維状セルロース複合樹脂を提供することにある。
 従来の開発、例えば、上記特許文献の開発においては、微細繊維が分散液の状態で保持される場合における微細繊維の分散性に主眼が置かれ、エステル化、エーテル化、アミド化、スルフィド化等、数々存在する変性方法の中で、カルバメートの導入(カルバメート化)が優れることを見出したものであった。これに対し、本発明は、微細繊維をいったん乾燥等した後、樹脂と混合する場合における微細繊維の分散性に主眼が置かれ、カルバメートの導入を前提に数々の試験を行うなかで、微細繊維と共に使用する他の物質、物性の追求で上記課題を解決することができることを知見し、想到するに至ったものである。このようにして想到するに至った手段は、次のとおりである。
(請求項1に記載の手段)
 樹脂に添加される繊維状セルロース含有物であり、
 前記繊維状セルロースは、平均繊維幅が0.1~19μmで、かつヒドロキシル基の一部又は全部がカルバメート基で置換されており、
 前記繊維状セルロースと相互作用する粉末を含む、
 ことを特徴とする繊維状セルロース含有物。
(請求項2に記載の手段)
 前記相互作用する粉末は、90%粒子径/10%粒子径が2~1000である、
 請求項1に記載の繊維状セルロース含有物。
(請求項3に記載の手段)
 前記相互作用する粉末の体積平均粒子径が0.01~10000μmで、かつ前記相互作用する粉末の体積平均粒子径(μm)/前記繊維状セルロースの平均繊維長(μm)が0.005~5000である、
 請求項1又は請求項2に記載の繊維状セルロース含有物。
(請求項4に記載の手段)
 前記繊維状セルロースは、繊維長0.2mm未満の割合が5%以上で、かつ繊維長0.2~0.6mmの割合が10%以上である、
 請求項1~3のいずれか1項に記載の繊維状セルロース含有物。
(請求項5に記載の手段)
 前記繊維状セルロースは、平均繊維長が1.0mm以下、平均繊維幅が10μm以下で、かつフィブリル化率が2.5%以上である、
 請求項1~4のいずれか1項に記載の繊維状セルロース含有物。
(請求項6に記載の手段)
 前記相互作用する粉末は、酸価2.0%以上の酸変性樹脂である、
 請求項1~5のいずれか1項に記載の繊維状セルロース含有物。
(請求項7に記載の手段)
 前記相互作用する粉末は、無水マレイン酸変性ポリプロピレンである、
 請求項1~6のいずれか1項に記載の繊維状セルロース含有物。
(請求項8に記載の手段)
 繊維状セルロース及び樹脂が混合された繊維状セルロース複合樹脂であり、
 前記繊維状セルロースとして請求項1~7のいずれか1項に記載の繊維状セルロース含有物が使用されている、
 ことを特徴とする繊維状セルロース複合樹脂。
(請求項9に記載の手段)
 ヒドロキシル基の一部又は全部がカルバメート基で置換された繊維状セルロースを平均繊維幅が0.1~19μmとなるように解繊し、前記繊維状セルロースと相互作用する粉末と混合して混合液を得、
 この混合液を乾燥する、
 ことを特徴とする繊維状セルロース含有物の製造方法。
 本発明によると、乾燥した場合においても分散性に優れる繊維状セルロース含有物及びその製造方法、並びに強度に優れる繊維状セルロース複合樹脂になる。
 次に、発明を実施するための形態を説明する。なお、本実施の形態は本発明の一例である。本発明の範囲は、本実施の形態の範囲に限定されない。
 本形態の繊維状セルロース含有物は樹脂に添加されるものであり、繊維状セルロース(以下、「セルロース繊維」ともいう。)は平均繊維幅が0.1~19μmで、かつヒドロキシ基(-OH基)の一部又は全部がカルバメート基で置換されたカルバメート変性マイクロ繊維セルロースである。加えて、繊維状セルロース含有物には、繊維状セルロースと相互作用する粉末(以下、単に「相互作用する粉末」ともいう。)が含まれている。この粉末は好ましくは酸変性樹脂であり、この酸変性樹脂の酸基はカルバメート基の一部又は全部とイオン結合する。また、この繊維状セルロース含有物が樹脂に添加されることで繊維状セルロース複合樹脂が得られる。さらに、繊維状セルロース含有物を製造する方法においては、ヒドロキシ基の一部又は全部がカルバメート基で置換された繊維状セルロースを平均繊維幅が0.1~19μmとなるように解繊し、繊維状セルロースと相互作用する粉末を添加して混合液を得、この混合液を乾燥する。以下、詳細に説明する。
(繊維状セルロース)
 本形態において微細繊維である繊維状セルロースは、平均繊維径が0.1~19μmのマイクロ繊維セルロース(ミクロフィブリル化セルロース)である。マイクロ繊維セルロースであると、樹脂の補強効果が著しく向上する。また、マイクロ繊維セルロースは、同じく微細繊維であるセルロースナノファイバーよりもカルバメート基で変性する(カルバメート化)のが容易である。ただし、微細化する前のセルロース原料をカルバメート化するのがより好ましく、この場合においては、マイクロ繊維セルロース及びセルロースナノファイバーは同等である。
 本形態において、マイクロ繊維セルロースは、セルロースナノファイバーよりも平均繊維幅の太い繊維を意味する。具体的には、平均繊維径(幅)が、例えば0.1~19μm、好ましくは0.2~10μm、より好ましくは0.5超~10μmである。繊維状セルロースの平均繊維径が0.1μmを下回ると(未満になると)、セルロースナノファイバーであるのと変わらなくなり、樹脂の強度(特に曲げ弾性率)向上効果が十分に得られないおそれがある。また、解繊時間が長くなり、大きなエネルギーが必要になる。さらに、セルロース繊維スラリーの脱水性が悪化する。脱水性が悪化すると、乾燥に大きなエネルギーが必要になり、乾燥に大きなエネルギーをかけると繊維状セルロースが熱劣化して、強度が低下するおそれがある。加えて、平均繊維径が0.1μmを下回るまで解繊すると、繊維状セルロースの繊維長のバラツキが小さくなり、相互作用する粉末の粒子径分布を規定する本形態の作用効果が発揮され難くなる。
 他方、繊維状セルロースの平均繊維径が19μmを上回ると(超えると)、パルプであるのと変わらなくなり、補強効果が十分でなくなるおそれがある。加えて、平均繊維径が19μmを上回る程度の解繊では、繊維状セルロースの繊維長のバラツキが小さく、相互作用する粉末の粒子径分布を規定する本形態の作用効果が発揮され難くなる。また、特に平均繊維径が10μm以下であれば、平均繊維長を1.0mm以下、フィブリル化率を2.5%以上とすることと相まって相互作用する粉末との絡み合いが良好になる。
 また、繊維状セルロースの最頻径(幅)は、好ましくは0.1~19μm、より好ましくは0.5~10μm、特に好ましくは1~6μmである。この点、後述するように繊維状セルロースの繊維長がばらつく本形態においては、解繊途中で繊維幅の大きい繊維が一定割合混在した状態であるため、繊維状セルロースを繊維径の平均で特定するよりも、最も数の多い最頻径で特定する方が好適である。このような観点から、最頻径が0.1μm未満であると、セルロースナノファイバーの割合が高くなる傾向となり、セルロースナノファイバー同士が凝集し、補強効果が十分でなくなる可能性があると言える。他方、最頻径が19μmを超えると、パルプの割合が高くなる傾向となり、補強効果が十分でなくなる可能性があると言える。
 微細繊維(マイクロ繊維セルロース及びセルロースナノファイバー)の平均繊維径の測定方法は、次のとおりである。
 まず、固形分濃度0.01~0.1質量%の微細繊維の水分散液100mlをテフロン(登録商標)製メンブレンフィルターでろ過し、エタノール100mlで1回、t-ブタノール20mlで3回溶媒置換する。次に、凍結乾燥し、オスミウムコーティングして試料とする。この試料について、構成する繊維の幅に応じて3,000倍~30,000倍のいずれかの倍率で電子顕微鏡SEM画像による観察を行う。具体的には、観察画像に二本の対角線を引き、対角線の交点を通過する直線を任意に三本引く。さらに、この三本の直線と交錯する合計100本の繊維の幅を目視で計測する。そして、計測値の中位径を平均繊維径とする。
 また、微細繊維の最頻径の測定方法は、バルメット社製の繊維分析計「FS5」によって測定する。
 ところで、繊維状セルロースがマイクロ繊維セルロースである場合においては、繊維長等のバラツキが多くなるとの特性を有する。これは、以下の理由による。
 まず、パルプは、例えば、チップを加圧状態のもとアルカリで煮た後、常圧に戻る際にほぐれることで製造されるものであり、機械的な解繊は加わっていない。したがって、木材の細胞がそのまま単離してパルプになっているのみであり、繊維長等が比較的揃っている。また、セルロースナノファイバーは、マイクロ繊維セルロースの毛羽立ち箇所が独立して離れていき、大部分は毛羽立ち箇所が独立した繊維のみからなる。したがって、繊維長等が比較的揃っている。これに対し、マイクロ繊維セルロースは、パルプに機械的な解繊力が加わって繊維が毛羽立っていく途中の段階にあり、したがって繊維長等の分布が広くなる。
 マイクロ繊維セルロースは、通常繊維長0.2mm未満の割合が5%以上で、かつ繊維長0.2~0.6mmの割合が10%以上であり、好ましくは繊維長0.2mm未満の割合が8%以上で、かつ繊維長0.2~0.6mmの割合が13%以上であり、より好ましくは繊維長0.2mm未満の割合が20%以上で、かつ繊維長0.2~0.6mmの割合が16%以上である。マイクロ繊維セルロースの繊維長が以上のようにばらついていると、相互作用する粉末の粒子径分布を規定する本形態の作用効果がいかんなく発揮される。
 また、以上においては、特に繊維長0.2mm未満の割合が多くなり過ぎると大きい粒子径の相互作用する粉末との絡み合いが不十分になり、分散性の低下につながる可能性がある。他方、繊維長0.6mm超の割合が多くなり過ぎると、小さい粒子径の相互作用する粉末との絡み合いが不十分になり、分散性の低下につながる可能性がある。
 以上のようにマイクロ繊維セルロースの繊維長等のバラツキは相対的に大きなものであるが、繊維長0.2mm未満の割合が多くなり過ぎたり、繊維長0.6mm超の割合が多くなり過ぎたりすると、繊維自体としての樹脂の補強効果が劣るものになる可能性がある。そこで、好ましくは繊維状セルロースの繊維長0.2~0.6mmの割合が10~90%、より好ましくは14~70%、特に好ましくは16~50%である。繊維長0.2~0.6mmの割合が14%未満であると、相互作用する粉末との絡み合いが不十分になり、結果として補強効果が十分に発揮されない可能性がある。
 マイクロ繊維セルロースは、セルロース原料(以下、「原料パルプ」ともいう。)を解繊(微細化)することで得ることができる。原料パルプとしては、例えば、広葉樹、針葉樹等を原料とする木材パルプ、ワラ・バガス・綿・麻・じん皮繊維等を原料とする非木材パルプ、回収古紙、損紙等を原料とする古紙パルプ(DIP)等の中から1種又は2種以上を選択して使用することができる。なお、以上の各種原料は、例えば、セルロース系パウダーなどと言われる粉砕物(粉状物)の状態等であってもよい。
 ただし、不純物の混入を可及的に避けるために、原料パルプとしては、木材パルプを使用するのが好ましい。木材パルプとしては、例えば、広葉樹クラフトパルプ(LKP)、針葉樹クラフトパルプ(NKP)等の化学パルプ、機械パルプ(TMP)等の中から1種又は2種以上を選択して使用することができる。
 広葉樹クラフトパルプは、広葉樹晒クラフトパルプであっても、広葉樹未晒クラフトパルプであっても、広葉樹半晒クラフトパルプであってもよい。同様に、針葉樹クラフトパルプは、針葉樹晒クラフトパルプであっても、針葉樹未晒クラフトパルプであっても、針葉樹半晒クラフトパルプであってもよい。
 機械パルプとしては、例えば、ストーングランドパルプ(SGP)、加圧ストーングランドパルプ(PGW)、リファイナーグランドパルプ(RGP)、ケミグランドパルプ(CGP)、サーモグランドパルプ(TGP)、グランドパルプ(GP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)、リファイナーメカニカルパルプ(RMP)、漂白サーモメカニカルパルプ(BTMP)等の中から1種又は2種以上を選択して使用することができる。
 原料パルプは、解繊するに先立って化学的手法によって前処理することができる。化学的手法による前処理としては、例えば、酸による多糖の加水分解(酸処理)、酵素による多糖の加水分解(酵素処理)、アルカリによる多糖の膨潤(アルカリ処理)、酸化剤による多糖の酸化(酸化処理)、還元剤による多糖の還元(還元処理)等を例示することができる。ただし、化学的手法による前処理としては、酵素処理を施すのが好ましく、加えて酸処理、アルカリ処理、及び酸化処理の中から選択された1又は2以上の処理を施すのがより好ましい。以下、酵素処理について詳細に説明する。
 酵素処理に使用する酵素としては、セルラーゼ系酵素及びヘミセルラーゼ系酵素の少なくともいずれか一方を使用するのが好ましく、両方を併用するのがより好ましい。これらの酵素を使用すると、セルロース原料の解繊がより容易になる。なお、セルラーゼ系酵素は、水共存下でセルロースの分解を惹き起こす。また、ヘミセルラーゼ系酵素は、水共存下でヘミセルロースの分解を惹き起こす。
 セルラーゼ系酵素としては、例えば、トリコデルマ(Trichoderma、糸状菌)属、アクレモニウム(Acremonium、糸状菌)属、アスペルギルス(Aspergillus、糸状菌)属、ファネロケエテ(Phanerochaete、担子菌)属、トラメテス(Trametes、担子菌)属、フーミコラ(Humicola、糸状菌)属、バチルス(Bacillus、細菌)属、スエヒロタケ(Schizophyllum、担子菌)属、ストレプトミセス(Streptomyces、細菌)属、シュードモナス(Pseudomonas、細菌)属などが産生する酵素を使用することができる。これらのセルラーゼ系酵素は、試薬や市販品として購入可能である。市販品としては、例えば、セルロイシンT2(エイチピィアイ社製)、メイセラ-ゼ(明治製菓社製)、ノボザイム188(ノボザイム社製)、マルティフェクトCX10L(ジェネンコア社製)、セルラーゼ系酵素GC220(ジェネンコア社製)等を例示することができる。
 また、セルラーゼ系酵素としては、EG(エンドグルカナーゼ)及びCBH(セロビオハイドロラーゼ)のいずれをも使用することもできる。EG及びCBHは、それぞれを単体で使用しても、混合して使用してもよい。また、ヘミセルラーゼ系酵素と混合して使用してもよい。
 ヘミセルラーゼ系酵素としては、例えば、キシランを分解する酵素であるキシラナーゼ(xylanase)、マンナンを分解する酵素であるマンナーゼ(mannase)、アラバンを分解する酵素であるアラバナーゼ(arabanase)等を使用することができる。また、ペクチンを分解する酵素であるペクチナーゼも使用することができる。
 ヘミセルロースは、植物細胞壁のセルロースミクロフィブリル間にあるペクチン類を除いた多糖類である。ヘミセルロースは多種多様で木材の種類や細胞壁の壁層間でも異なる。針葉樹の2次壁では、グルコマンナンが主成分であり、広葉樹の2次壁では4-O-メチルグルクロノキシランが主成分である。そこで、針葉樹晒クラフトパルプ(NBKP)から微細繊維を得る場合は、マンナーゼを使用するのが好ましい。また、広葉樹晒クラフトパルプ(LBKP)から微細繊維を得る場合は、キシラナーゼを使用するのが好ましい。
 セルロース原料に対する酵素の添加量は、例えば、酵素の種類、原料となる木材の種類(針葉樹か広葉樹か)、機械パルプの種類等によって決まる。ただし、セルロース原料に対する酵素の添加量は、好ましくは0.1~3質量%、より好ましくは0.3~2.5質量%、特に好ましくは0.5~2質量%である。酵素の添加量が0.1質量%を下回ると、酵素の添加による効果が十分に得られないおそれがある。他方、酵素の添加量が3質量%を上回ると、セルロースが糖化され、微細繊維の収率が低下するおそれがある。また、添加量の増量に見合う効果の向上を認めることができないとの問題もある。
 酵素としてセルラーゼ系酵素を使用する場合、酵素処理時のpHは、酵素反応の反応性の観点から、弱酸性領域(pH=3.0~6.9)であるのが好ましい。他方、酵素としてヘミセルラーゼ系酵素を使用する場合、酵素処理時のpHは、弱アルカリ性領域(pH=7.1~10.0)であるのが好ましい。
 酵素処理時の温度は、酵素としてセルラーゼ系酵素及びヘミセルラーゼ系酵素のいずれを使用する場合においても、好ましくは30~70℃、より好ましくは35~65℃、特に好ましくは40~60℃である。酵素処理時の温度が30℃以上であれば、酵素活性が低下し難くなり、処理時間の長期化を防止することができる。他方、酵素処理時の温度が70℃以下であれば、酵素の失活を防止することができる。
 酵素処理の時間は、例えば、酵素の種類、酵素処理の温度、酵素処理時のpH等によって決まる。ただし、一般的な酵素処理の時間は、0.5~24時間である。
 酵素処理した後には、酵素を失活させるのが好ましい。酵素を失活させる方法としては、例えば、アルカリ水溶液(好ましくはpH10以上、より好ましくはpH11以上)を添加する方法、80~100℃の熱水を添加する方法等が存在する。
 次に、アルカリ処理の方法について説明する。
 解繊に先立ってアルカリ処理すると、パルプが持つヘミセルロースやセルロースの水酸基が一部解離し、分子がアニオン化することで分子内及び分子間水素結合が弱まり、解繊におけるセルロース原料の分散が促進される。
 アルカリ処理に使用するアルカリとしては、例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウム、アンモニア水溶液、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム、水酸化ベンジルトリメチルアンモニウム等の有機アルカリ等を使用することができる。ただし、製造コストの観点からは、水酸化ナトリウムを使用するのが好ましい。
 解繊に先立って酵素処理や酸処理、酸化処理を施すと、マイクロ繊維セルロースの保水度を低く、結晶化度を高くすることができ、かつ均質性を高くすることができる。この点、マイクロ繊維セルロースの保水度が低いと脱水し易くなり、セルロース繊維スラリーの脱水性が向上する。
 原料パルプを酵素処理や酸処理、酸化処理すると、パルプが持つヘミセルロースやセルロースの非晶領域が分解される。結果、解繊のエネルギーを低減することができ、セルロース繊維の均一性や分散性を向上することができる。ただし、前処理は、マイクロ繊維セルロースのアスペクト比を低下させるため、樹脂の補強材として使用する場合には、過度の前処理を避けるのが好ましい。
 原料パルプの解繊は、例えば、ビーター、高圧ホモジナイザー、高圧均質化装置等のホモジナイザー、グラインダー、摩砕機等の石臼式摩擦機、単軸混練機、多軸混練機、ニーダーリファイナー、ジェットミル等を使用して原料パルプを叩解することによって行うことができる。ただし、リファイナーやジェットミルを使用して行うのが好ましい。
 マイクロ繊維セルロースの平均繊維長(単繊維の長さの平均)は、好ましくは0.10~2.00mm、より好ましくは0.12~1.50mm、特に好ましくは0.15~1.00mmである。平均繊維長が0.10mm未満であると、繊維同士の三次元ネットワークを形成できず、複合樹脂の補強効果(特に曲げ弾性率)が低下するおそれがある。また、相互作用する粉末と十分に絡み合わない可能性がある。他方、平均繊維長が2.00mmを上回ると、原料パルプと変わらない長さのため補強効果が不十分となるおそれがある。また、繊維が凝集してしまい、相互作用する粉末と十分に絡み合わなくなる可能性がある。
 マイクロ繊維セルロースの原料となるセルロース原料の平均繊維長は、好ましくは0.50~5.00mm、より好ましくは1.00~3.00mm、特に好ましくは1.50~2.50mmである。セルロース原料の平均繊維長が0.50mmを下回ると、解繊処理した際の、樹脂の補強効果が十分得られない可能性がある。他方、平均繊維長が5.00mmを上回ると、解繊時の製造コストの面で不利となるおそれがある。
 マイクロ繊維セルロースの平均繊維長は、例えば、原料パルプの選定、前処理、解繊等で任意に調整可能である。
 マイクロ繊維セルロースのアスペクト比は、好ましくは2~15,000、より好ましくは10~10,000である。アスペクト比が2を下回ると、三次元ネットワークを構築できないため、たとえ平均繊維長が0.10mmを超えたとしても、補強効果が不十分となるおそれがある。また、アスペクト比が2を下回ると、球体様の形状である相互作用する粉末に対して相互作用できる点が少なくなり過ぎるため、十分な相互作用が得られずに、相互作用する粉末と繊維とを相溶する作用が十分に発揮できず、補強効果が不十分となる可能性がある。他方、アスペクト比が15,000を上回ると、マイクロ繊維セルロース同士の絡み合いが多くなり、樹脂中での分散が不十分となるおそれがある。また、繊維同士で相互作用し、相互作用する粉末との相互作用が十分に発生せず、補強効果が不十分となる可能性がある。
 アスペクト比とは、平均繊維長を平均繊維幅で除した値である。アスペクト比が大きいほど引っかかりが生じる箇所が多くなるため補強効果が上がるが、他方で引っかかりが多くなる分、樹脂の延性が低下するものと考えられる。
 マイクロ繊維セルロースのフィブリル化率は、好ましくは1.0~30.0%、より好ましくは1.5~20.0%、特に好ましくは2.5~15.0%である。フィブリル化率が30.0%を上回ると、水との接触面積が広くなり過ぎるため、たとえ平均繊維幅が0.1μm以上に留まる範囲で解繊したとしても、脱水が困難になる可能性がある。また、フィブリル化率が30.0%を上回ると、表面積が広くなり過ぎ、繊維が水を保持し易くなるため、相互作用する粉末と相互作用し難くなる可能性がある。他方、フィブリル化率が1.0%下回ると、フィブリル同士の水素結合が少なく、強固な三次元ネットワークを形成することができなくなるおそれがある。また、フィブリル化率が2.5%を下回ると、相互作用する粉末に対するまとわりつきが劣る傾向にある。
 繊維の繊維長やフィブリル化率は、バルメット社製の繊維分析計「FS5」によって測定する。
 マイクロ繊維セルロースの結晶化度は、好ましくは50%以上、より好ましくは55%以上、特に好ましくは60%以上である。結晶化度が50%を下回ると、他のセルロース繊維、例えば、パルプやセルロースナノファイバーとの混合性は向上するものの、繊維自体の強度が低下するため、樹脂の強度を向上することができなくなるおそれがある。他方、マイクロ繊維セルロースの結晶化度は、好ましくは95%以下、より好ましくは90%以下、特に好ましくは85%以下である。結晶化度が95%を上回ると、分子内の強固な水素結合割合が多くなり、繊維自体が剛直となり、分散性が劣るようになる。
 マイクロ繊維セルロースの結晶化度は、例えば、原料パルプの選定、前処理、微細化処理で任意に調整可能である。
 結晶化度は、JIS K 0131(1996)に準拠して測定した値である。
 マイクロ繊維セルロースのパルプ粘度は、好ましくは2cps以上、より好ましくは4cps以上である。マイクロ繊維セルロースのパルプ粘度が2cpsを下回ると、マイクロ繊維セルロースの凝集を抑制するのが困難になるおそれがある。また、パルプ粘度が2cpsを下回ると、相互作用する粉末との相互作用を発揮したとしても樹脂の補強性が不十分になるおそれがある。
 パルプ粘度は、TAPPI T 230に準拠して測定した値である。
 マイクロ繊維セルロースのフリーネスは、好ましくは500ml以下、より好ましくは300ml以下、特に好ましくは100ml以下である。マイクロ繊維セルロースのフリーネスが500mlを上回ると、樹脂の強度向上効果が十分に得られなくなるおそれがある。また、相互作用する粉末との絡み合いが悪くなり、繊維の凝集を十分に抑制できなくなる可能性がある。
 フリーネスは、JIS P8121-2(2012)に準拠して測定した値である。
 マイクロ繊維セルロースのゼータ電位は、好ましくは-150~20mV、より好ましくは-100~0mV、特に好ましくは-80~-10mVである。ゼータ電位が-150mVを下回ると、樹脂との相溶性が著しく低下し補強効果が不十分となるおそれがある。他方、ゼータ電位が20mVを上回ると、分散安定性が低下するおそれがある。
 マイクロ繊維セルロースの保水度は、好ましくは80~400%、より好ましくは90~350%、特に好ましくは100~300%である。保水度が80%を下回ると、原料パルプと変わらないため補強効果が不十分となるおそれがある。他方、保水度が400%を上回ると、脱水性が劣る傾向にあり、また、凝集し易くなる。この点、マイクロ繊維セルロースの保水度は、当該繊維のヒドロキシ基がカルバメート基に置換されていることで、より低くすることができ、脱水性や乾燥性を高めることができる。
 マイクロ繊維セルロースの保水度は、例えば、原料パルプの選定、前処理、解繊等で任意に調整可能である。
 保水度は、JAPAN TAPPI No.26(2000)に準拠して測定した値である。
 本形態のマイクロ繊維セルロースは、カルバメート基を有する。どのようにしてカルバメート基を有するものとされているかは特に限定されない。例えば、セルロース原料がカルバメート化されていることでカルバメート基を有するものであっても、マイクロ繊維セルロース(微細化されたセルロース原料)がカルバメート化されることでカルバメート基を有するものであってもよい。
 なお、カルバメート基を有するとは、繊維状セルロースにカルバメート(カルバミン酸のエステル)が導入された状態を意味する。カルバメート基は、-O-CO-NH-で表される基であり、例えば、-O-CO-NH2、-O-CONHR、-O-CO-NR2等で表わされる基である。つまり、カルバメート基は、下記の構造式(1)で示すことができる。
Figure JPOXMLDOC01-appb-C000001
 ここでRは、それぞれ独立して、飽和直鎖状炭化水素基、飽和分岐鎖状炭化水素基、飽和環状炭化水素基、不飽和直鎖状炭化水素基、不飽和分岐鎖状炭化水素基、芳香族基、及びこれらの誘導基の少なくともいずれかである。
 飽和直鎖状炭化水素基としては、例えば、メチル基、エチル基、プロピル基等の炭素数1~10の直鎖状のアルキル基を挙げることができる。
 飽和分岐鎖状炭化水素基としては、例えば、イソプロピル基、sec-ブチル基、イソブチル基、tert-ブチル基等の炭素数3~10の分岐鎖状アルキル基を挙げることができる。
 飽和環状炭化水素基としては、例えば、シクロペンチル基、シクロヘキシル基、ノルボルニル基等のシクロアルキル基を挙げることができる。
 不飽和直鎖状炭化水素基としては、例えば、エテニル基、プロペン-1-イル基、プロペン-3-イル基等の炭素数2~10の直鎖状のアルケニル基、エチニル基、プロピン-1-イル基、プロピン-3-イル基等の炭素数2~10の直鎖状のアルキニル基等を挙げることができる。
 不飽和分岐鎖状炭化水素基としては、例えば、プロペン-2-イル基、ブテン-2-イル基、ブテン-3-イル基等の炭素数3~10の分岐鎖状アルケニル基、ブチン-3-イル基等の炭素数4~10の分岐鎖状アルキニル基等を挙げることができる。
 芳香族基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基等を挙げることができる。
 誘導基としては、上記飽和直鎖状炭化水素基、飽和分岐鎖状炭化水素基、飽和環状炭化水素基、不飽和直鎖状炭化水素基、不飽和分岐鎖状炭化水素基及び芳香族基が有する1又は複数の水素原子が、置換基(例えば、ヒドロキシ基、カルボキシ基、ハロゲン原子等。)で置換された基を挙げることができる。
 カルバメート基を有する(カルバメート基が導入された)マイクロ繊維セルロースにおいては、極性の高いヒドロキシ基の一部又は全部が、相対的に極性の低いカルバメート基に置換されている。したがって、カルバメート基を有するマイクロ繊維セルロースは、親水性が低く、極性の低い樹脂等との親和性が高い。結果、カルバメート基を有するマイクロ繊維セルロースは、樹脂との均一分散性に優れる。また、カルバメート基を有するマイクロ繊維セルロースのスラリーは、粘性が低く、ハンドリング性が良い。
 マイクロ繊維セルロースのヒドロキシ基に対するカルバメート基の置換率は、好ましくは1.0~5.0mmol/g、より好ましくは1.2~3.0mmol/g、特に好ましくは1.5~2.0mmol/gである。置換率を1.0mmol/g以上にすると、カルバメートを導入した効果、特に樹脂の曲げ伸び向上効果が確実に奏せられる。他方、置換率が5.0mmol/gを超えると、セルロース繊維が繊維の形状を保てなくなり、樹脂の補強効果が十分得られないおそれがある。
 なお、カルバメート基の置換率(mmol/g)とは、カルバメート基を有するセルロース原料1gあたりに含まれるカルバメート基の物質量をいう。また、セルロースは、無水グルコースを構造単位とする重合体であり、一構造単位当たり3つのヒドロキシ基を有する。
<カルバメート化>
 マイクロ繊維セルロース(解繊前にカルバメート化する場合は、セルロース原料。以下、同様であり、「マイクロ繊維セルロース等」ともいう。)にカルバメートを導入する(カルバメート化)点については、前述したようにセルロース原料をカルバメート化してから微細化する方法と、セルロース原料を微細化してからカルバメート化する方法とがある。この点、本明細書においては、先にセルロース原料の解繊について説明し、その後にカルバメート化(変性)について説明している。しかしながら、解繊及びカルバメート化は、どちらを先に行うこともできる。ただし、先にカルバメート化を行い、その後に、解繊をする方が好ましい。解繊する前のセルロース原料は脱水効率が高く、また、カルバメート化に伴う加熱によってセルロース原料が解繊され易い状態になるためである。
 マイクロ繊維セルロース等をカルバメート化する工程は、例えば、混合処理、除去処理、及び加熱処理に、主に区分することができる。なお、混合処理及び除去処理は合わせて、加熱処理に供される混合物を調製する調整処理ということもできる。
 混合処理においては、マイクロ繊維セルロース等(前述したようにセルロース原料の場合もある。以下、同様。)と尿素及び/又は尿素の誘導体(以下、単に「尿素等」ともいう。)とを分散媒中で混合する。
 尿素や尿素の誘導体としては、例えば、尿素、チオ尿素、ビウレット、フェニル尿素、ベンジル尿素、ジメチル尿素、ジエチル尿素、テトラメチル尿素、尿素の水素原子をアルキル基で置換した化合物等を使用することができる。これらの尿素や尿素の誘導体は、それぞれを単独で又は複数を組み合わせて使用することができる。ただし、尿素を使用するのが好ましい。
 マイクロ繊維セルロース等に対する尿素等の混合質量比(尿素等/マイクロ繊維セルロース等)の下限は、好ましくは10/100、より好ましくは20/100である。他方、上限は、好ましくは300/100、より好ましくは200/100である。混合質量比を10/100以上にすることで、カルバメート化の効率が向上する。他方、混合質量比が300/100を上回っても、カルバメート化は頭打ちになる。
 分散媒は、通常、水である。ただし、アルコール、エーテル等の他の分散媒や、水と他の分散媒との混合物を用いてもよい。
 混合処理においては、例えば、水にマイクロ繊維セルロース等及び尿素等を添加しても、尿素等の水溶液にマイクロ繊維セルロース等を添加しても、マイクロ繊維セルロース等を含むスラリーに尿素等を添加してもよい。また、均一に混合するために、添加後、攪拌してもよい。さらに、マイクロ繊維セルロース等と尿素等とを含む分散液には、その他の成分が含まれていてもよい。
 除去処理においては、混合処理において得られたマイクロ繊維セルロース等及び尿素等を含む分散液から分散媒を除去する。分散媒を除去することで、これに続く加熱処理において効率的に尿素等を反応させることができる。
 分散媒の除去は、加熱によって分散媒を揮発させることで行うのが好ましい。この方法によると、尿素等の成分を残したまま分散媒のみを効率的に除去することができる。
 除去処理における加熱温度の下限は、分散媒が水である場合は、好ましくは50℃、より好ましくは70℃、特に好ましくは90℃である。加熱温度を50℃以上にすることで効率的に分散媒を揮発させる(除去する)ことができる。他方、加熱温度の上限は、好ましくは120℃、より好ましくは100℃である。加熱温度が120℃を上回ると、分散媒と尿素が反応し、尿素が単独分解するおそれがある。
 除去処理における加熱時間は、分散液の固形分濃度等に応じて適宜調節することができる。具体的には、例えば、6~24時間である。
 除去処理に続く加熱処理においては、マイクロ繊維セルロース等と尿素等との混合物を加熱処理する。この加熱処理において、マイクロ繊維セルロース等のヒドロキシ基の一部又は全部が尿素等と反応してカルバメート基に置換される。より詳細には、尿素等が加熱されると下記の反応式(1)に示すようにイソシアン酸及びアンモニアに分解される。そして、イソシアン酸はとても反応性が高く、例えば、下記の反応式(2)に示すようにセルロースの水酸基にカルバメート基を形成する。
 NH2-CO-NH2 → H-N=C=O + NH3 …(1)
 Cell-OH + H-N=C=O → Cell-O-CO-NH2 …(2)
 加熱処理における加熱温度の下限は、好ましくは120℃、より好ましくは130℃、特に好ましくは尿素の融点(約134℃)以上、さらに好ましくは140℃、最も好ましくは150℃である。加熱温度を120℃以上にすることで、カルバメート化が効率的に行われる。加熱温度の上限は、好ましくは200℃、より好ましくは180℃、特に好ましくは170℃である。加熱温度が200℃を上回ると、マイクロ繊維セルロース等が分解し、補強効果が不十分となるおそれがある。
 加熱処理における加熱時間の下限は、好ましくは1分、より好ましくは5分、特に好ましくは30分、更に好ましくは1時間、最も好ましくは2時間である。加熱時間を1分以上にすることで、カルバメート化の反応を確実に行うことができる。他方、加熱時間の上限は、好ましくは15時間、より好ましくは10時間である。加熱時間が15時間を上回ると、経済的ではなく、15時間で十分カルバメート化を行うことができる。
 もっとも、加熱時間の長期化は、セルロース繊維の劣化を招く。そこで、加熱処理におけるpH条件が重要となる。pHは、好ましくはpH9以上、より好ましくはpH9~13、特に好ましくはpH10~12のアルカリ性条件である。また、次善の策として、pH7以下、好ましくはpH3~7、特に好ましくはpH4~7の酸性条件又は中性条件である。pH7~8の中性条件であると、セルロース繊維の平均繊維長が短くなり、樹脂の補強効果に劣る可能性がある。これに対し、pH9以上のアルカリ性条件であると、セルロース繊維の反応性が高まり、尿素等への反応が促進され、効率良くカルバメート化反応するため、セルロース繊維の平均繊維長を十分に確保することができる。他方、pH7以下の酸性条件であると、尿素等からイソシアン酸及びアンモニアに分解する反応が進み、セルロース繊維への反応が促進され、効率良くカルバメート化反応するため、セルロース繊維の平均繊維長を十分に確保することができる。ただし、可能であれば、アルカリ性条件で加熱処理する方が好ましい。酸性条件であるとセルロースの酸加水分解が進行するおそれがあるためである。
 pHの調整は、混合物に酸性化合物(例えば、酢酸、クエン酸等。)やアルカリ性化合物(例えば、水酸化ナトリウム、水酸化カルシウム等。)を添加すること等によって行うことができる。
 加熱処理において加熱する装置としては、例えば、熱風乾燥機、抄紙機、ドライパルプマシン等を使用することができる。
 加熱処理後の混合物は、洗浄してもよい。この洗浄は、水等で行えばよい。この洗浄によって未反応で残留している尿素等を除去することができる。
(スラリー)
 マイクロ繊維セルロースは、必要により、水系媒体中に分散して分散液(スラリー)にする。水系媒体は、全量が水であるのが特に好ましいが、一部が水と相溶性を有する他の液体である水系媒体も使用することができる。他の液体としては、炭素数3以下の低級アルコール類等を使用することができる。
 スラリーの固形分濃度は、好ましくは0.1~10.0質量%、より好ましくは0.5~5.0質量%である。固形分濃度が0.1質量%を下回ると、脱水や乾燥する際に過大なエネルギーが必要となるおそれがある。他方、固形分濃度が10.0質量%を上回ると、スラリー自体の流動性が低下してしまい分散剤を使用する場合において均一に混合できなくなるおそれがある。
(相互作用する粉末)
 本形態の繊維状セルロース含有物は、繊維状セルロースと相互作用する粉末を含む。繊維状セルロース含有物が当該相互作用する粉末を含むことで、繊維状セルロースを樹脂の補強性を発揮できる形態とすることができる。すなわち、繊維状セルロースをスラリーとして用いる場合は、樹脂と複合化する前にスラリーに含まれる水系媒体を除去するのが好ましい。しかしながら、水系媒体を除去する際にセルロース同士が水素結合により不可逆的に凝集し、繊維としての補強効果を十分に発揮できなくなる可能性がある。そこで、繊維状セルローススラリーに相互作用する粉末を含むことで、セルロース同士の水素結合を物理的に阻害するものである。また、相互作用しない粉末の場合は乾燥時に相互作用しない粉末同士が凝集してしまう可能性があるが、相互作用する粉末の場合は当該可能性が低い。このような点から、相互作用する粉末は、酸変性樹脂であるのが好ましく、無水マレイン酸変性樹脂であるのがより好ましく、無水マレイン酸変性ポリプロピレン(MAPP)であるのが特に好ましい。酸変性樹脂の詳細は、後述する。
 ここで、相互作用するとは、セルロースと共有結合、イオン結合、金属結合による強固な結合をすることを意味する(つまり、水素結合、ファンデルワールス力による結合は相互作用するという概念に含まれない。)。好ましくは、強固な結合は、結合エネルギーが100kJ/mol以上の結合である。
 相互作用する粉末の体積平均粒子径は、0.01~10000μmが好ましく、50~750μmがより好ましく、150~450μmが特に好ましい。体積平均粒子径が10000μmを超えると、相互作用する粉末がセルロース繊維同士の間隙に入って凝集を阻害する効果が発揮できないおそれがある。他方、体積平均粒子径が0.01μm未満であると、微細なためにマイクロ繊維セルロース同士の水素結合を阻害することができないおそれがある。
 相互作用する粉末は、90%粒子径/10%粒子径が2~1000であるのが好ましく、10~200であるのがより好ましい。粒子径比を当該範囲内とすることで、繊維状セルロースがマイクロ繊維セルロースであり、繊維長にバラツキが存在する場合においても、相互作用する粉末の凝集阻害効果がいかんなく発揮される。具体的には、90%粒子径/10%粒子径が2未満であると、粒子径が揃いすぎており、特定繊維長の繊維としか相互作用の効果を発揮し難い可能性がある。他方、90%粒子径/10%粒子径が1000超であると、粒子径のバラツキが極端にとなり、相互作用する繊維長が限定される可能性がある。
 以上において90%粒子径とは、粒子径が小さいものから順に測定し、測定された割合が90%となったときの粒子径を意味する。また、10%粒子径とは、粒子径が小さいものから順に測定し、測定された割合が10%となったときの粒子径を意味する。
 相互作用する粉末の算術標準偏差は、好ましくは0.01~10000μm、より好ましくは1~5000μm、特に好ましくは10~1000μmである。上記したように粉末の粒子径をばらつかせるとは言っても、繊維状セルロースがマイクロ繊維セルロースであるという意味において繊維状セルロースに範囲があり、従って粉末の算術標準偏差を特定するものである。この点、算術標準偏差が0.01μm未満であると、粒子径が均一なものとなり、特定繊維長の繊維としか相互作用の効果を発揮し難い可能性がある。他方、算術標準偏差が10000μmを超えると、粒子径が過大に不均一となり、相互作用できる繊維長の範囲が広くなり、相互作用の効果を発揮し難い可能性がある。
 算術標準偏差は、粒度分布測定装置(例えば株式会社堀場製作所のレーザー回折・散乱式粒度分布測定器)で測定した値である。
 また、相互作用する粉末の体積平均粒子径(μm)/繊維状セルロースの平均繊維長(μm)は、0.005~5000であるのが好ましく、0.01~1000であるのがより好ましい。当該範囲内であると、粉末及び繊維がより絡み合うようになり、繊維の凝集が抑制される。より具体的には、相互作用する粉末の体積平均粒子径/繊維状セルロースの平均繊維長が0.005未満であると、繊維同士で相互作用してしまい相互作用する粉末との相互作用が十分に発生せず、補強効果が不十分となる可能性がある。他方、相互作用する粉末の体積平均粒子径/繊維状セルロースの平均繊維長が5000を超えると、球体様の形状である相互作用する粉末に対して相互作用できる点が少なくなりすぎるため、十分な相互作用が得られずに、補強効果が不十分となる可能性がある。
 本明細書において、相互作用する粉末の体積平均粒子径は、そのまま又は水分散体の状態で粒度分布測定装置(例えば株式会社堀場製作所のレーザー回折・散乱式粒度分布測定器)を用いて測定される体積基準粒度分布から算出される体積平均粒子径である。
 本形態において相互作用する粉末は、樹脂粉末であるのが好ましい。相互作用する粉末が樹脂粉末であると、混練時に溶融し粒でなくなるため、粒子径の異なる粒子の混在が全く影響を与えなくなる。樹脂粉末としては、例えば、複合樹脂を得る際に使用する樹脂と同様のものを使用することができる。もちろん、異種であってもよい。
 相互作用する粉末の配合量は、繊維状セルロースに対して、好ましくは1~9,900質量%、より好ましくは5~1,900質量%、特に好ましくは10~900質量%である。配合量が1質量%を下回ると、セルロース繊維の間隙に入って凝集抑制する作用が十分に発揮されない可能性がある。他方、配合量が9,900質量%を上回ると、セルロース繊維としての機能を発揮できなくなるおそれがある。
 相互作用する粉末には、これに加えて無機粉末を併用することができる。相互作用する粉末及び無機粉末を併用すると、無機粉体同士や相互作用する粉末同士が凝集する条件で混合した場合でも無機粉末及び相互作用する粉末がお互いに凝集を防ぐような効果を発揮する。また、粒径が小さい粉体は表面積が大きく重力の影響よりも分子間力の影響を受けやすく、その結果として凝集しやすくなるため、粉体とマイクロ繊維セルローススラリーとを混合する際に粉体がスラリー中でうまくほぐれなかったり、水系媒体の除去時に粉体同士が凝集することで、マイクロ繊維セルロースの凝集を防ぐ効果が十分に発揮されなくなったりするおそれがある。しかしながら、無機粉末及び相互作用する粉末を併用すると、自身の凝集を緩和することができると考えられる。
 無機粉末としては、例えば、Fe、Na、K、Cu、Mg、Ca、Zn、Ba、Al、Ti、ケイ素元素等の周期律表第I族~第VIII族中の金属元素の単体、酸化物、水酸化物、炭素塩、硫酸塩、ケイ酸塩、亜硫酸塩、これらの化合物よりなる各種粘土鉱物等を例示することができる。具体的には、例えば、硫酸バリウム、硫酸カルシウム、硫酸マグネシウム、硫酸ナトリウム、亜硫酸カルシウム、酸化亜鉛、重質炭酸カルシウム、軽質炭酸カルシウム、ほう酸アルミニウム、アルミナ、酸化鉄、チタン酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化ナトリウム、炭酸マグネシウム、ケイ酸カルシウム、クレー、ワラストナイト、ガラスビーズ、ガラスパウダー、シリカゲル、乾式シリカ、コロイダルシリカ、珪砂、硅石、石英粉、珪藻土、ホワイトカーボン、ガラスファイバー等を例示することができる。これらの無機粉末は、複数が含有されていてもよい。また、古紙パルプに含まれるものであってもよいし、製紙スラッジ中の無機物を再生したいわゆる再生填料等であってもよい。
 ただし、製紙用の填料や顔料として好適に使用される炭酸カルシウム、タルク、ホワイトカーボン、クレー、焼成クレー、二酸化チタン、水酸化アルミニウム及び再生填料等の中から選択される少なくとも1種以上の無機粉末を使用するのが好ましく、炭酸カルシウム、タルク、クレーの中からから選択される少なくとも1種以上を使用するのがより好ましく、軽質炭酸カルシウム及び重質炭酸カルシウムの少なくともいずれか一方を使用するのが特に好ましい。炭酸カルシウム、タルク、クレーを使用すると、樹脂等のマトリックスとの複合化が容易である。また、汎用的な無機材料であるため、用途の制限が生じることが少ないとのメリットがある。さらに、炭酸カルシウムは下記の理由から特に好ましい。軽質炭酸カルシウムを使用する場合は、粉末のサイズや形状を一定に制御しやすくなる。このため、セルロース繊維のサイズや形状に合わせて、間隙に入り込んでセルロース繊維同士の凝集を抑制する効果を生じやすくするようにサイズや形状を調整して、ピンポイントで効果を発揮しやすくできるメリットがある。また、重質炭酸カルシウムを使用すると、重質炭酸カルシウムが不定形であることから、スラリー中に様々なサイズの繊維が存在する場合でも、水系媒体除去時に繊維が凝集する過程において、間隙に入り込んでセルロース繊維同士の凝集を抑制することができるとのメリットがある。
 無機粉末及び相互作用する粉末を併用する場合、無機粉末の平均粒径:相互作用する粉末の平均粒子径の比は、1:0.1~1:10000が好ましく、1:1~1:1000がより好ましい。この範囲にあると、自身の凝集力の強さから生じる問題(例えば、粉体とマイクロ繊維セルローススラリーとを混合する際に粉体がスラリー中でうまくほぐれなかったり、水系媒体の除去時に粉体同士が凝集したりする問題。)が発生せずに、マイクロ繊維セルロースの凝集を防ぐ効果を十分に発揮できるようになると考えられる。
 無機粉末及び相互作用する粉末を併用する場合、無機粉末の質量%:相互作用する粉末の質量%の比は、1:0.01~1:100が好ましく、1:0.1~1:10がより好ましい。この範囲にあると、異種粉体同士が自身の凝集を阻害することが可能になると考えられる。この範囲にあると、自身の凝集力の強さから生じる問題(例えば、粉体とマイクロ繊維セルローススラリーとを混合する際に粉体がスラリー中でうまくほぐれなかったり、水系媒体の除去時に粉体同士が凝集したりする問題。)が発生せずに、マイクロ繊維セルロースの凝集を防ぐ効果を十分に発揮できるようになると考えられる。
(酸変性樹脂)
 前述したように、相互作用する粉末は樹脂粉末であるのが好ましい。また、樹脂は、酸変性樹脂であるのが好ましい。酸変性樹脂は、酸基がカルバメート基の一部又は全部とイオン結合し得る。このイオン結合により、当該樹脂粉末の凝集抑制機能が効果的に発揮される。
 酸変性樹脂としては、例えば、酸変性ポリオレフィン樹脂、酸変性エポキシ樹脂、酸変性スチレン系エラストマー樹脂等を使用することができる。ただし、酸変性ポリオレフィン樹脂を使用するのが好ましい。酸変性ポリオレフィン樹脂は、不飽和カルボン酸成分とポリオレフィン成分との共重合体である。
 ポリオレフィン成分としては、例えば、エチレン、プロピレン、ブタジエン、イソプレン等のアルケンの重合体の中から1種又は2種以上を選択して使用することができる。ただし、好適には、プロピレンの重合体であるポリプロピレン樹脂を用いることが好ましい。
 不飽和カルボン酸成分としては、例えば、無水マレイン酸類、無水フタル酸類、無水イタコン酸類、無水シトラコン酸類、無水クエン酸類等の中から1種又は2種以上を選択して使用することができる。ただし、好適には、無水マレイン酸類を使用するのが好ましい。つまり、無水マレイン酸変性ポリプロピレン樹脂を使用するのが特に好ましい。
 酸変性樹脂の混合量は、マイクロ繊維セルロース100質量部に対して、好ましくは0.1~1,000質量部、より好ましくは1~500質量部、特に好ましくは10~200質量部である。特に酸変性樹脂が無水マレイン酸変性ポリプロピレン樹脂である場合は、好ましくは1~200質量部、より好ましくは10~100質量部である。酸性変性樹脂の混合量が0.1質量部を下回ると凝集抑制効果が十分ではない。他方、混合量が1,000質量部を上回ると、凝集抑制効果が逆に低下する傾向となる。
 無水マレイン酸変性ポリプロピレンの重量平均分子量は、例えば1,000~100,000、好ましくは3,000~50,000である。
 また、無水マレイン酸変性ポリプロピレンの酸価は、0.5mgKOH/g以上、100mgKOH/g以下が好ましく、1mgKOH/g以上、50mgKOH/g以下がより好ましい。
 無水マレイン酸変性ポリプロピレンの酸価は、JIS-K2501に準拠し、水酸化カリウムで滴定することで求めた値である。
(分散剤)
 マイクロ繊維セルロースは、分散剤と混合するとより好ましいものになる。分散剤としては、芳香族類にアミン基及び/又は水酸基を有する化合物、脂肪族類にアミン基及び/又は水酸基を有する化合物が好ましい。
 芳香族類にアミン基及び/又は水酸基を有する化合物としては、例えば、アニリン類、トルイジン類、トリメチルアニリン類、アニシジン類、チラミン類、ヒスタミン類、トリプタミン類、フェノール類、ジブチルヒドロキシトルエン類、ビスフェノールA類、クレゾール類、オイゲノール類、没食子酸類、グアイアコール類、ピクリン酸類、フェノールフタレイン類、セロトニン類、ドーパミン類、アドレナリン類、ノルアドレナリン類、チモール類、チロシン類、サリチル酸類、サリチル酸メチル類、アニスアルコール類、サリチルアルコール類、シナピルアルコール類、ジフェニドール類、ジフェニルメタノール類、シンナミルアルコール類、スコポラミン類、トリプトフォール類、バニリルアルコール類、3-フェニル‐1-プロパノール類、フェネチルアルコール類、フェノキシエタノール類、ベラトリルアルコール類、ベンジルアルコール類、ベンゾイン類、マンデル酸類、マンデロニトリル類、安息香酸類、フタル酸類、イソフタル酸類、テレフタル酸類、メリト酸類、ケイ皮酸類などが挙げられる。
 また、脂肪族類にアミン基及び/又は水酸基を有する化合物としては、例えば、カプリルアルコール類、2-エチルヘキサノール類、ペラルゴンアルコール類、カプリンアルコール類、ウンデシルアルコール類、ラウリルアルコール類、トリデシルアルコール類、ミリスチルアルコール類、ペンタデシルアルコール類、セタノール類、ステアリルアルコール類、エライジルアルコール類、オレイルアルコール類、リノレイルアルコール類、メチルアミン類、ジメチルアミン類、トリメチルアミン類、エチルアミン類、ジエチルアミン類、エチレンジアミン類、トリエタノールアミン類、N,N-ジイソプロピルエチルアミン類、テトラメチルエチレンジアミン類、ヘキサメチレンジアミン類、スペルミジン類、スペルミン類、アマンタジン類、ギ酸類、酢酸類、プロピオン酸類、酪酸類、吉草酸類、カプロン酸類、エナント酸類、カプリル酸類、ペラルゴン酸類、カプリン酸類、ラウリン酸類、ミリスチン酸類、パルミチン酸類、マルガリン酸類、ステアリン酸類、オレイン酸類、リノール酸類、リノレン酸類、アラキドン酸類、エイコサペンタエン酸類、ドコサヘキサエン酸類、ソルビン酸類などが挙げられる。
 以上の分散剤は、セルロース繊維同士の水素結合を阻害する。したがって、マイクロ繊維セルロース及び樹脂の混練に際してマイクロ繊維セルロースが樹脂中において確実に分散するようになる。また、以上の分散剤は、マイクロ繊維セルロース及び樹脂の相溶性を向上させる役割も有する。この点でマイクロ繊維セルロースの樹脂中における分散性が向上する。
 なお、繊維状セルロース及び樹脂の混練に際して、別途、相溶剤(薬剤)を添加することも考えられるが、この段階で薬剤を添加するよりも、予め繊維状セルロース及び分散剤(薬剤)を混合する方が、繊維状セルロースに対する薬剤の纏わりつきが均一になり、樹脂との相溶性向上効果が高くなる。
 また、例えば、ポリプロピレンは融点が160℃であり、したがって繊維状セルロース及び樹脂の混練は、180℃程度で行う。しかるに、この状態で分散剤(液)を添加すると、一瞬で乾燥してしまう。そこで、融点の低い樹脂を使用してマスターバッチ(マイクロ繊維セルロースの濃度の濃い複合樹脂)を作製し、その後に通常の樹脂で濃度を下げる方法が存在する。しかしながら、融点の低い樹脂は一般的に強度が低い。したがって、当該方法によると、複合樹脂の強度が下がるおそれがある。
 分散剤の混合量は、マイクロ繊維セルロース100質量部に対して、好ましくは0.1~1,000質量部、より好ましくは1~500質量部、特に好ましくは10~200質量部である。分散剤の混合量が0.1質量部を下回ると、樹脂強度の向上が十分ではないとされるおそれがある。他方、混合量が1,000質量部を上回ると、過剰となり樹脂強度が低下する傾向となる。
 この点、前述した酸変性樹脂は酸基とマイクロ繊維セルロースのカルバメート基とがイオン結合することで相溶性を向上し、もって補強効果を上げるためのものであり、分子量が大きいため樹脂とも馴染み易く(密着性向上)、強度向上に寄与していると考えられる。一方、上記の分散剤は、マイクロ繊維セルロース同士の水酸基同士の間に介在して凝集を防ぎ、もって樹脂中での分散性を向上するものであり、また、分子量が酸変性樹脂に比べ小さいため、酸変性樹脂が入り込めないようなマイクロ繊維セルロース間の狭いスペースに入ることができ、分散性を向上して強度向上する役割を果たす。以上のような観点から、上記酸変性樹脂の分子量は、分散剤の分子量の2~2,000倍、好ましくは5~1,000倍であると好適である。
 以上をより詳細に説明すると、相互作用する粉末は物理的にマイクロ繊維セルロース同士の間に介在することで水素結合を阻害し、もってマイクロ繊維セルロースの分散性を向上する。特に、酸変性樹脂は、酸基とマイクロ繊維セルロースのカルバメート基とイオン結合する。したがって、他の物質に優先して繊維周りに存在するようになり、繊維の凝集抑制効果が発揮される。しかも、繊維状セルロース含有物と樹脂とを混合して複合樹脂とする場合においては、当該複合樹脂とマイクロ繊維セルロースとを密着させる役割を果たし、複合樹脂の機械的強度を向上させる。この点、分散剤がマイクロ繊維セルロース同士の水素結合を阻害する点は同じであるが、相互作用する粉末はマイクロオーダーであるため、物理的に介在して水素結合を抑制する。したがって、分散性が分散剤にくらべ低いものの、特に樹脂粉末の場合は自身が溶融してマトリックスになるため物性低下に寄与しない。他方、分散剤は分子レベルであり、極めて小さいためマイクロ繊維セルロースを覆うようにして水素結合を阻害し、マイクロ繊維セルロースの分散性を向上する効果は高い。しかしながら、樹脂中に残り、物性低下に働く可能性がある。
(複合樹脂の製造方法)
 繊維状セルロース含有物や分散剤等の混合物は、樹脂と混練するに先立って乾燥及び粉砕して粉状物にすることができる。この形態によると、樹脂との混練に際して繊維状セルロースを乾燥させる必要がなく、熱効率が良い。また、混合物に相互作用する粉末や分散剤が混合されている場合、当該混合物を乾燥したとしても、繊維状セルロース(マイクロ繊維セルロース)が再分散しなくなるおそれが低い。
 混合物は、必要により、乾燥するに先立って脱水して脱水物にする。この脱水は、例えば、ベルトプレス、スクリュープレス、フィルタープレス、ツインロール、ツインワイヤーフォーマ、バルブレスフィルタ、センターディスクフィルタ、膜処理、遠心分離機等の脱水装置の中から1種又は2種以上を選択使用して行うことができる。
 混合物の乾燥は、例えば、ロータリーキルン乾燥、円板式乾燥、気流式乾燥、媒体流動乾燥、スプレー乾燥、ドラム乾燥、スクリューコンベア乾燥、パドル式乾燥、一軸混練乾燥、多軸混練乾燥、真空乾燥、攪拌乾燥等の中から1種又は2種以上を選択使用して行うことができる。
 乾燥した混合物(乾燥物)は、粉砕して粉状物にする。乾燥物の粉砕は、例えば、ビーズミル、ニーダー、ディスパー、ツイストミル、カットミル、ハンマーミル等の中から1種又は2種以上を選択使用して行うことができる。
 粉状物の平均粒子径は、好ましくは1~10,000μm、より好ましくは10~5,000μm、特に好ましくは100~1,000μmである。粉状物の平均粒子径が10,000μmを上回ると、樹脂との混練性に劣るものになるおそれがある。他方、粉状物の平均粒子径が1μmを下回るものにするには大きなエネルギーが必要になるため、経済的でない。
 粉状物の平均粒子径の制御は、粉砕の程度を制御することのほか、フィルター、サイクロン等の分級装置を使用した分級によることができる。
 混合物(粉状物)の嵩比重は、好ましくは0.03~1.0、より好ましくは0.04~0.9、特に好ましくは0.05~0.8である。嵩比重が1.0を超えるということは繊維状セルロース同士の水素結合がより強固であり、樹脂中で分散させることは容易ではなくなることを意味する。他方、嵩比重が0.03を下回るものにするのは、移送コストの面から不利である。
 嵩比重は、JIS K7365に準じて測定した値である。
 混合物(粉状物)の水分率は、好ましくは50%以下、より好ましくは30%以下、特に好ましくは10%以下である。水分率が50%を上回ると、樹脂と混練する際のエネルギーが膨大になり、経済的でない。 水分率は、定温乾燥機を用いて、試料を105℃で6時間以上保持し質量の変動が認められなくなった時点の質量を乾燥後質量とし、下記式にて算出した値である。
 繊維水分率(%)=[(乾燥前質量-乾燥後質量)÷乾燥前質量]×100
 以上のようにして得た粉状物(繊維状セルロース含有物)は、必要により樹脂と混練し、繊維状セルロース複合樹脂を得る。この混練は、例えば、ペレット状の樹脂と粉状物とを混ぜ合わす方法によることのほか、樹脂をまず溶融し、この溶融物の中に粉状物を添加するという方法によることもできる。なお、相互作用する粉末として酸変性樹脂等の樹脂粉末を使用する場合においては、樹脂と混合することなくただちに混練して複合樹脂とすることもできる。
 混合物(粉状物、繊維状セルロース含有物)は、全量を100質量部とした場合において繊維状セルロースが55質量部を超える割合で、特に60質量部以上の割合で含有することが好ましい。通常、繊維状セルロース濃度が55質量部を超えるような混合物を樹脂と混錬すると、樹脂中での混合物の分散性が悪くなってしまい、混合性に劣る。一方で、本願発明の混合物は、ヒドロキシル基の一部又は全部がカルバメート基で置換されている繊維状セルロースと、前記繊維状セルロースと相互作用する粉末とを含んでいるため、繊維状セルロースが55質量部を超えても、混合物を樹脂と混錬した際の高い分散性を維持できる。混合物の繊維状セルロース濃度を上げることは、複合樹脂に任意の割合の繊維状セルロースを含有させるために使用する混合物の量を減らすことが出来るという観点からも好ましい。
 混練処理には、例えば、単軸又は二軸以上の多軸混練機、ミキシングロール、ニーダー、ロールミル、バンバリーミキサー、スクリュープレス、ディスパーザー等の中から1種又は2種以上を選択して使用することができる。それらのなかで、二軸以上の多軸混練機を使用することが好ましい。二軸以上の多軸混練機を2機以上、並列又は直列にして、使用しても良い。
 混練処理の温度は、樹脂のガラス転移点以上であり、樹脂の種類によって異なるが、80~280℃とするのが好ましく、90~260℃とするのがより好ましく、100~240℃とするのが特に好ましい。
 樹脂としては、熱可塑性樹脂又は熱硬化性樹脂の少なくともいずれか一方を使用することができる。
 熱可塑性樹脂としては、例えば、ポリプロピレン(PP)、ポリエチレン(PE)等のポリオレフィン、脂肪族ポリエステル樹脂や芳香族ポリエステル樹脂等のポリエステル樹脂、ポリスチレン、メタアクリレート、アクリレート等のポリアクリル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂等の中から1種又は2種以上を選択して使用することができる。
 ただし、ポリオレフィン及びポリエステル樹脂の少なくともいずれか一方を使用するのが好ましい。また、ポリオレフィンとしては、ポリプロピレンを使用するのが好ましい。さらに、ポリエステル樹脂としては、脂肪族ポリエステル樹脂として、例えば、ポリ乳酸、ポリカプロラクトン等を例示することができ、芳香族ポリエステル樹脂として、例えば、ポリエチレンテレフタレート等を例示することができるが、生分解性を有するポリエステル樹脂(単に「生分解性樹脂」ともいう。)を使用するのが好ましい。
 生分解性樹脂としては、例えば、ヒドロキシカルボン酸系脂肪族ポリエステル、カプロラクトン系脂肪族ポリエステル、二塩基酸ポリエステル等の中から1種又は2種以上を選択して使用することができる。
 ヒドロキシカルボン酸系脂肪族ポリエステルとしては、例えば、乳酸、リンゴ酸、グルコース酸、3-ヒドロキシ酪酸等のヒドロキシカルボン酸の単独重合体や、これらのヒドロキシカルボン酸のうちの少なくとも1種を用いた共重合体等の中から1種又は2種以上を選択して使用することができる。ただし、ポリ乳酸、乳酸と乳酸を除く上記ヒドロキシカルボン酸との共重合体、ポリカプロラクトン、上記ヒドロキシカルボン酸のうちの少なくとも1種とカプロラクトンとの共重合体を使用するのが好ましく、ポリ乳酸を使用するのが特に好ましい。
 この乳酸としては、例えば、L-乳酸やD-乳酸等を使用することができ、これらの乳酸を単独で使用しても、2種以上を選択して使用してもよい。
 カプロラクトン系脂肪族ポリエステルとしては、例えば、ポリカプロラクトンの単独重合体や、ポリカプロラクトン等と上記ヒドロキシカルボン酸との共重合体等の中から1種又は2種以上を選択して使用することができる。
 二塩基酸ポリエステルとしては、例えば、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリブチレンアジペート等の中から1種又は2種以上を選択して使用することができる。
 生分解性樹脂は、1種を単独で使用しても、2種以上を併用してもよい。
 熱硬化性樹脂としては、例えば、フェノール樹脂、尿素樹脂、メラミン樹脂、フラン樹脂、不飽和ポリエステル、ジアリルフタレート樹脂、ビニルエステル樹脂、エポキシ樹脂、ウレタン系樹脂、シリコーン樹脂、熱硬化性ポリイミド系樹脂等を使用することができる。これらの樹脂は、単独で又は二種以上組み合わせて使用することができる。
 繊維状セルロース及び樹脂の配合割合は、好ましくは繊維状セルロースが1質量部以上、樹脂が99質量部以下、より好ましくは繊維状セルロースが2質量部以上、樹脂が98質量部以下、特に好ましくは繊維状セルロースが3質量部以上、樹脂が97質量部以下である。また、好ましくは繊維状セルロースが50質量部以下、樹脂が50質量部以上、より好ましくは繊維状セルロースが40質量部以下、樹脂が60質量部以上、特に好ましくは繊維状セルロースが30質量部以下、樹脂が70質量部以上である。特に繊維状セルロースが10~50質量部であると、樹脂組成物の強度、特に曲げ強度及び引張り弾性率の強度を著しく向上させることができる。
 なお、最終的に得られ樹脂組成物に含まれる繊維状セルロース及び樹脂の含有割合は、通常、繊維状セルロース及び樹脂の上記配合割合と同じとなる。
 マイクロ繊維セルロース及び樹脂の溶解パラメータ(cal/cm31/2(SP値)の差、つまり、マイクロ繊維セルロースのSPMFC値、樹脂のSPPOL値とすると、SP値の差=SPMFC値-SPPOL値とすることができる。SP値の差は10~0.1が好ましく、8~0.5がより好ましく、5~1が特に好ましい。SP値の差が10を超えると、樹脂中でマイクロ繊維セルロースが分散せず、補強効果を得ることはできない。他方、SP値の差が0.1未満であるとマイクロ繊維セルロースが樹脂に溶解してしまい、フィラーとして機能せず、補強効果が得られない。この点、樹脂(溶媒)のSPPOL値とマイクロ繊維セルロース(溶質)のSPMFC値の差が小さい程、補強効果が大きい。
 なお、溶解パラメータ(cal/cm31/2(SP値)とは、溶媒-溶質間に作用する分子間力を表す尺度であり、SP値が近い溶媒と溶質であるほど、溶解度が増す。
(成形処理)
 繊維状セルロース含有物及び樹脂の混練物は、必要により再度混練する等した後、所望の形状に成形することができる。この成形の大きさや厚さ、形状等は、特に限定されず、例えば、シート状、ペレット状、粉末状、繊維状等とすることができる。
 成形処理の際の温度は、樹脂のガラス転移点以上であり、樹脂の種類によって異なるが、例えば90~260℃、好ましくは100~240℃である。
 混練物の成形は、例えば、金型成形、射出成形、押出成形、中空成形、発泡成形等によることができる。また、混練物を紡糸して繊維状にし、前述した植物材料等と混繊してマット形状、ボード形状とすることもできる。混繊は、例えば、エアーレイにより同時堆積させる方法等によることができる。
 混練物を成形する装置としては、例えば、射出成形機、吹込成形機、中空成形機、ブロー成形機、圧縮成形機、押出成形機、真空成形機、圧空成形機等の中から1種又は2種以上を選択して使用することができる。
 以上の成形は、混練に続いて行うことも、混練物をいったん冷却し、破砕機等を使用してチップ化した後、このチップを押出成形機や射出成形機等の成形機に投入して行うこともできる。もちろん、成形は、本発明の必須の要件ではない。
(その他の組成物)
 繊維状セルロース含有物には、マイクロ繊維セルロースと共にセルロースナノファイバーが含まれていてもよい。セルロースナノファイバーは、マイクロ繊維セルロースと同様に微細繊維であり、樹脂の強度向上にとってマイクロ繊維セルロースを補完する役割を有する。ただし、可能であれば、微細繊維としてセルロースナノファイバーを含むことなくマイクロ繊維セルロースのみによる方が好ましい。なお、セルロースナノファイバーの平均繊維径(平均繊維幅。単繊維の直径平均。)は、好ましくは4~100nm、より好ましくは10~80nmである。
 また、繊維状セルロース含有物には、パルプが含まれていてもよい。パルプは、セルロース繊維スラリーの脱水性を大幅に向上する役割を有する。ただし、パルプについてもセルロースナノファイバーの場合と同様に、配合しないのが、つまり含有率0質量%であるのが最も好ましい。
 樹脂組成物(複合樹脂)には、微細繊維やパルプ等のほか、ケナフ、ジュート麻、マニラ麻、サイザル麻、雁皮、三椏、楮、バナナ、パイナップル、ココヤシ、トウモロコシ、サトウキビ、バガス、ヤシ、パピルス、葦、エスパルト、サバイグラス、麦、稲、竹、各種針葉樹(スギ及びヒノキ等)、広葉樹及び綿花などの各種植物体から得られた植物材料に由来する繊維を含ませることもでき、含まれていてもよい。
 樹脂組成物には、例えば、帯電防止剤、難燃剤、抗菌剤、着色剤、ラジカル捕捉剤、発泡剤等の中から1種又は2種以上を選択して、本発明の効果を阻害しない範囲で添加することができる。これらの原料は、繊維状セルロースの分散液に添加しても、繊維状セルロース及び樹脂の混練の際に添加しても、これらの混練物に添加しても、その他の方法で添加してもよい。ただし、製造効率の面からは、繊維状セルロース及び樹脂の混練の際に添加するのが好ましい。
 樹脂組成物には、ゴム成分として、エチレン-αオレフィン共重合エラストマー又はスチレン-ブタジエンブロック共重合体が含有されていてもよい。α-オレフィンの例としては、例えば、ブテン、イソブテン、ペンテン、ヘキセン、メチル-ペンテン、オクテン、デセン、ドデセン等が挙げられる。
 次に、本発明の実施例を説明する。
 固形分濃度2.8質量%のマイクロ繊維セルロース1,570gに、粒子径の揃っている無水マレイン酸変性ポリプロピレン(MAPP)、又は異なる粒子径が混在している無水マレイン酸変性ポリプロピレン(MAPP)を22.0g添加し、140℃に加熱した接触式乾燥機を用いて加熱し、カルバメート変性マイクロ繊維セルロース含有物を得た。このカルバメート変性マイクロ繊維セルロース含有物の含水率は、5~22%であった。
 繊維のカルバメート変性の方法は、次のとおりとした。
 すなわち、水分率10%以下の針葉樹クラフトパルプと固形分濃度10%の尿素水溶液と20%クエン酸水溶液とを用いて、固形分換算の質量比でパルプ:尿素:クエン酸=100:50:0.1となるように混合した後、105℃で乾燥させた。次に、所定の反応温度、反応時間で加熱処理してカルバメート変性パルプ(カルバメート化パルプ)を得た。得られたカルバメート変性パルプは、蒸留水で希釈撹拌して脱水工程を2回繰り返した。洗浄したカルバメート変性パルプは叩解機を用いて0.2mm未満の割合及び、0.2~0.6mmの割合が所定の割合になるまで叩解して、カルバメート変性マイクロ繊維セルロース(カルバメート化MFC(微細繊維))を得た。
 また、無水マレイン酸変性ポリプロピレンに代えて、ポリプロピレン粉末22.0gを用いて、比較例としてのカルバメート変性マイクロ繊維セルロース含有物を得た。このカルバメート変性マイクロ繊維セルロース含有物の含水率は、5~22%であった。
 以上のようにして得たカルバメート変性マイクロ繊維セルロース含有物に、カルバメート変性マイクロ繊維:その他成分=10:90となるようにポリプロピレンペレットを添加、混合し、180℃、200rpmの条件で二軸混練機にて混練し、繊維配合率10%のカルバメート変性マイクロ繊維セルロース複合樹脂を得た。
 以上のようにして得たカルバメート変性マイクロ繊維セルロース複合樹脂をペレッターで2mm径、2mm長の円柱状にカットし、180℃で直方体試験片(長さ59mm、幅9.6mm、厚さ3.8mm)に射出成形した。各試験片について、曲げ弾性率を調べた。結果は、以下の基準で、MAPPの粒子サイズ(粒子径)及び繊維状セルロースの繊維サイズ(繊維長)と共に表1に示した。
(曲げ弾性率)
 曲げ弾性率は、JIS K7171:2008に準拠して測定した。表中には、評価結果を以下の基準で示した。
 樹脂自体の曲げ弾性率を1として複合樹脂の曲げ弾性率(倍率)が1.45倍以上の場合  :○
 樹脂自体の曲げ弾性率を1として複合樹脂の曲げ弾性率(倍率)が1.40倍以上1.45倍未満の場合:△
 樹脂自体の曲げ弾性率を1として複合樹脂の曲げ弾性率(倍率)が1.40倍未満の場合:×
Figure JPOXMLDOC01-appb-T000002
 本発明は、繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法として利用可能である。例えば、繊維状セルロース複合樹脂は、自動車、電車、船舶、飛行機等の輸送機器の内装材、外装材、構造材等;パソコン、テレビ、電話、時計等の電化製品等の筺体、構造材、内部部品等;携帯電話等の移動通信機器等の筺体、構造材、内部部品等;携帯音楽再生機器、映像再生機器、印刷機器、複写機器、スポーツ用品、オフィス機器、玩具、スポーツ用品等の筺体、構造材、内部部品等;建築物、家具等の内装材、外装材、構造材等;文具等の事務機器等;その他、包装体、トレイ等の収容体、保護用部材、パーティション部材等;に利用可能である。

Claims (9)

  1.  樹脂に添加される繊維状セルロース含有物であり、
     前記繊維状セルロースは、平均繊維幅が0.1~19μmで、かつヒドロキシル基の一部又は全部がカルバメート基で置換されており、
     前記繊維状セルロースと相互作用する粉末を含む、
     ことを特徴とする繊維状セルロース含有物。
  2.  前記相互作用する粉末は、90%粒子径/10%粒子径が2~1000である、
     請求項1に記載の繊維状セルロース含有物。
  3.  前記相互作用する粉末の体積平均粒子径が0.01~10000μmで、かつ前記相互作用する粉末の体積平均粒子径(μm)/前記繊維状セルロースの平均繊維長(μm)が0.005~5000である、
     請求項1又は請求項2に記載の繊維状セルロース含有物。
  4.  前記繊維状セルロースは、繊維長0.2mm未満の割合が5%以上で、かつ繊維長0.2~0.6mmの割合が10%以上である、
     請求項1~3のいずれか1項に記載の繊維状セルロース含有物。
  5.  前記繊維状セルロースは、平均繊維長が1.0mm以下、平均繊維幅が10μm以下で、かつフィブリル化率が2.5%以上である、
     請求項1~4のいずれか1項に記載の繊維状セルロース含有物。
  6.  前記相互作用する粉末は、酸価2.0%以上の酸変性樹脂である、
     請求項1~5のいずれか1項に記載の繊維状セルロース含有物。
  7.  前記相互作用する粉末は、無水マレイン酸変性ポリプロピレンである、
     請求項1~6のいずれか1項に記載の繊維状セルロース含有物。
  8.  繊維状セルロース及び樹脂が混合された繊維状セルロース複合樹脂であり、
     前記繊維状セルロースとして請求項1~7のいずれか1項に記載の繊維状セルロース含有物が使用されている、
     ことを特徴とする繊維状セルロース複合樹脂。
  9.  ヒドロキシル基の一部又は全部がカルバメート基で置換された繊維状セルロースを平均繊維幅が0.1~19μmとなるように解繊し、前記繊維状セルロースと相互作用する粉末と混合して混合液を得、
     この混合液を乾燥する、
     ことを特徴とする繊維状セルロース含有物の製造方法。
PCT/JP2022/001498 2021-03-31 2022-01-18 繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法 WO2022209157A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22779389.0A EP4317295A1 (en) 2021-03-31 2022-01-18 Fibrous cellulose-containing product, fibrous cellulose composite resin, and production method for fibrous cellulose-containing product
US18/548,403 US20240150557A1 (en) 2021-03-31 2022-01-18 Fibrous cellulose-containing material, fibrous cellulose composite resin, and method for preparing fibrous cellulose-containing material
CN202280015103.8A CN116888207A (zh) 2021-03-31 2022-01-18 纤维状纤维素含有物、纤维状纤维素复合树脂和纤维状纤维素含有物的制造方法
KR1020237027698A KR20230165750A (ko) 2021-03-31 2022-01-18 섬유상 셀룰로오스 함유물, 섬유상 셀룰로오스 복합수지, 및 섬유상 셀룰로오스 함유물의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021060743A JP7213296B2 (ja) 2021-03-31 2021-03-31 繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法
JP2021-060743 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209157A1 true WO2022209157A1 (ja) 2022-10-06

Family

ID=83458599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001498 WO2022209157A1 (ja) 2021-03-31 2022-01-18 繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法

Country Status (6)

Country Link
US (1) US20240150557A1 (ja)
EP (1) EP4317295A1 (ja)
JP (1) JP7213296B2 (ja)
KR (1) KR20230165750A (ja)
CN (1) CN116888207A (ja)
WO (1) WO2022209157A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000505135A (ja) * 1996-07-12 2000-04-25 ローディア アセトウ アクチェンゲゼルシャフト セルロースカーバメイトの製造方法
JP2010106251A (ja) * 2008-09-30 2010-05-13 Daicel Chem Ind Ltd 疎水化されたセルロース系繊維を含む樹脂組成物及びその製造方法
WO2014087767A1 (ja) * 2012-12-05 2014-06-12 日本製紙株式会社 複合材料及びそれを用いた成形体
WO2015198218A1 (en) * 2014-06-27 2015-12-30 Stora Enso Oyj Method for making cellulose carbamate
JP2016222786A (ja) * 2015-05-29 2016-12-28 コニカミノルタ株式会社 カルバメート変性高分子化合物の製造方法、カルバメート変性高分子化合物、光学フィルム、円偏光板及び表示装置
WO2017094812A1 (ja) * 2015-12-03 2017-06-08 国立大学法人京都大学 樹脂組成物及びその製造方法
JP2019001876A (ja) 2017-06-14 2019-01-10 国立大学法人京都大学 微細セルロース繊維、その製造方法、スラリー及び複合体
WO2019221256A1 (ja) * 2018-05-18 2019-11-21 大王製紙株式会社 セルロース微細繊維及びその製造方法
WO2020090711A1 (ja) * 2018-10-31 2020-05-07 大王製紙株式会社 繊維状セルロース複合樹脂及びその製造方法
WO2020203147A1 (ja) * 2019-03-29 2020-10-08 大王製紙株式会社 繊維状セルロース複合樹脂及びその製造方法、並びに樹脂の補強材
WO2021039706A1 (ja) * 2019-08-29 2021-03-04 大王製紙株式会社 繊維状セルロース複合樹脂及びその製造方法
JP2021037769A (ja) * 2020-11-13 2021-03-11 大王製紙株式会社 繊維状セルロース含有物及びその製造方法、繊維状セルロース乾燥体及びその製造方法、並びに繊維状セルロース複合樹脂及びその製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000505135A (ja) * 1996-07-12 2000-04-25 ローディア アセトウ アクチェンゲゼルシャフト セルロースカーバメイトの製造方法
JP2010106251A (ja) * 2008-09-30 2010-05-13 Daicel Chem Ind Ltd 疎水化されたセルロース系繊維を含む樹脂組成物及びその製造方法
WO2014087767A1 (ja) * 2012-12-05 2014-06-12 日本製紙株式会社 複合材料及びそれを用いた成形体
WO2015198218A1 (en) * 2014-06-27 2015-12-30 Stora Enso Oyj Method for making cellulose carbamate
JP2016222786A (ja) * 2015-05-29 2016-12-28 コニカミノルタ株式会社 カルバメート変性高分子化合物の製造方法、カルバメート変性高分子化合物、光学フィルム、円偏光板及び表示装置
WO2017094812A1 (ja) * 2015-12-03 2017-06-08 国立大学法人京都大学 樹脂組成物及びその製造方法
JP2019001876A (ja) 2017-06-14 2019-01-10 国立大学法人京都大学 微細セルロース繊維、その製造方法、スラリー及び複合体
WO2019221256A1 (ja) * 2018-05-18 2019-11-21 大王製紙株式会社 セルロース微細繊維及びその製造方法
WO2020090711A1 (ja) * 2018-10-31 2020-05-07 大王製紙株式会社 繊維状セルロース複合樹脂及びその製造方法
WO2020203147A1 (ja) * 2019-03-29 2020-10-08 大王製紙株式会社 繊維状セルロース複合樹脂及びその製造方法、並びに樹脂の補強材
WO2021039706A1 (ja) * 2019-08-29 2021-03-04 大王製紙株式会社 繊維状セルロース複合樹脂及びその製造方法
JP2021037769A (ja) * 2020-11-13 2021-03-11 大王製紙株式会社 繊維状セルロース含有物及びその製造方法、繊維状セルロース乾燥体及びその製造方法、並びに繊維状セルロース複合樹脂及びその製造方法

Also Published As

Publication number Publication date
CN116888207A (zh) 2023-10-13
US20240150557A1 (en) 2024-05-09
JP2022156849A (ja) 2022-10-14
EP4317295A1 (en) 2024-02-07
KR20230165750A (ko) 2023-12-05
JP7213296B2 (ja) 2023-01-26

Similar Documents

Publication Publication Date Title
JP7460329B2 (ja) 繊維状セルロース複合樹脂及びその製造方法、並びに樹脂の補強材
JP7483418B2 (ja) 繊維状セルロースの製造方法、及び繊維状セルロース複合樹脂の製造方法
JP2022089848A5 (ja)
JP7048671B2 (ja) 繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法
WO2021182180A1 (ja) 繊維状セルロース、繊維状セルロース複合樹脂及び繊維状セルロースの製造方法
WO2021193119A1 (ja) 繊維状セルロース、繊維状セルロース複合樹脂及び繊維状セルロースの製造方法
JP7227186B2 (ja) 繊維状セルロース及び繊維状セルロース複合樹脂
JP7097928B2 (ja) 繊維状セルロースの製造方法及び繊維状セルロース複合樹脂の製造方法
JP2021195483A5 (ja)
WO2023047728A1 (ja) マイクロ繊維セルロース固形物、マイクロ繊維セルロース固形物の製造方法
JP7150783B2 (ja) カルバメート化セルロース繊維の製造方法及びカルバメート化微細繊維の製造方法
WO2021177289A1 (ja) 繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法
JP7213296B2 (ja) 繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法
JP7265514B2 (ja) セルロース繊維含有物の製造方法、及びセルロース繊維複合樹脂の製造方法
JP7449323B2 (ja) 繊維状セルロース複合樹脂
WO2023162433A1 (ja) 繊維状セルロース、繊維状セルロース複合樹脂及び繊維状セルロースの製造方法
JP2023064943A (ja) 繊維状セルロース複合樹脂
WO2024009668A1 (ja) 繊維状セルロース複合樹脂
JPWO2023162433A5 (ja)
JP2023142300A5 (ja)
JP2024071477A (ja) 繊維状セルロース複合樹脂及びその製造方法、並びに樹脂の補強材
JP2024008128A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779389

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280015103.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18548403

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022779389

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022779389

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE