WO2019221256A1 - セルロース微細繊維及びその製造方法 - Google Patents

セルロース微細繊維及びその製造方法 Download PDF

Info

Publication number
WO2019221256A1
WO2019221256A1 PCT/JP2019/019606 JP2019019606W WO2019221256A1 WO 2019221256 A1 WO2019221256 A1 WO 2019221256A1 JP 2019019606 W JP2019019606 W JP 2019019606W WO 2019221256 A1 WO2019221256 A1 WO 2019221256A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
fiber
hydrocarbon group
structural formula
saturated
Prior art date
Application number
PCT/JP2019/019606
Other languages
English (en)
French (fr)
Inventor
一紘 松末
Original Assignee
大王製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大王製紙株式会社 filed Critical 大王製紙株式会社
Priority to KR1020207031585A priority Critical patent/KR20210010855A/ko
Priority to CN201980029467.XA priority patent/CN112074542B/zh
Priority to US17/049,825 priority patent/US11584803B2/en
Priority to CA3099395A priority patent/CA3099395A1/en
Priority to EP19803356.5A priority patent/EP3795596A4/en
Publication of WO2019221256A1 publication Critical patent/WO2019221256A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/005Crosslinking of cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B5/00Preparation of cellulose esters of inorganic acids, e.g. phosphates
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B5/00Thomas phosphate; Other slag phosphates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/05Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur
    • C08B15/06Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur containing nitrogen, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/10Crosslinking of cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/16Esters of inorganic acids
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/24Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/20Chemically or biochemically modified fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres

Definitions

  • the present invention relates to a cellulose fine fiber and a method for producing the same.
  • pulp which is a cellulosic raw material
  • pulp is made into fine cellulose fibers (cellulose nanofibers) by chemical treatment, pulverization treatment, and the like.
  • Cellulose fine fibers are excellent in strength, elasticity, thermal stability, etc., for example, filter media, filter aids, ion exchanger base materials, fillers for chromatographic analyzers, fillers for compounding resins and rubbers, etc. And is expected to be used in industrial applications such as lipsticks, powder cosmetics, and emulsified cosmetics.
  • Cellulose microfibers are excellent in water-based dispersibility, so they have viscosity retention agents for foods, cosmetics, paints, etc., food material dough strengtheners, moisture retention agents, food stabilizers, low calorie additives, emulsification It is expected to be used in many applications such as stabilizing aids.
  • Patent Document 1 proposes a method for producing a fine cellulose fiber with little damage to the cellulose fiber, and it is said that a commercially available blender, mixer or the like can be used for defibrating (stirring) the fiber.
  • a commercially available blender, mixer or the like can be used for defibrating (stirring) the fiber.
  • a high light transmittance of the dispersion is also an essential condition, and in expanding the use of cellulose fine fibers, avoid the problem of increasing the light transmittance. I can't pass.
  • polybasic acid half-esterified cellulose is obtained by introducing a carboxyl group by semi-esterifying a polybasic acid anhydride into a part of the hydroxyl group of cellulose.
  • a “preparation” method has been proposed (see Patent Document 2).
  • the problem to be solved by the present invention is to provide a cellulose fine fiber having a very high light transmittance and viscosity of the dispersion when the cellulose fine fiber is used as a dispersion, and a method for producing the same.
  • the present inventors variously examined why the light transmittance and viscosity are insufficient for the method of Patent Document 3 described above. As a result, the inventors have found that there is a point in the amount (molar amount) of phosphorus oxoacid introduced per 1 g of cellulose fiber.
  • the same document states that “the introduction amount of the phosphorus oxo acid group in the hydroxy group (—OH group) of cellulose of the fiber raw material is preferably 0.1 to 2.0 mmol per 1 g (mass) of fine fibrous cellulose, and 2 to 1.5 mmol is more preferable ”.
  • the amount of the phosphorus oxo acid introduced is not sufficient to simply define the amount of the phosphorus oxo acid to be added.
  • the amount of the phosphorus oxo acid group actually introduced also depends on the production conditions. In the case of the method of Patent Document 3, it is considered that the amount of the phosphorus oxo acid group that can be introduced in one reaction is at most 2.0 mmol / g, and at this introduction amount, the light transmission of the dispersion liquid is considered. The degree and viscosity are not sufficient. If the amount of phosphooxo acid introduced in the method of Patent Document 3 exceeds 2.0 mmol, it is necessary to repeat the reaction. Therefore, in the document, the amount of phosphooxo acid introduced exceeds 2.0 mmol in the first place. It is thought that it was not supposed to do so.
  • the fiber width is 1 to 200 nm
  • a part of the hydroxy group of the cellulose fiber is substituted with a functional group represented by the following structural formula (1) to introduce an ester of a phosphoroxo acid
  • the introduction amount of the functional group represented by the structural formula (1) exceeds 2.0 mmol per 1 g of cellulose fiber.
  • Cellulose fine fiber characterized by the above.
  • At least one of A1, A2,..., An, and A ′ is O ⁇ , and the rest is any one of R, OR, NHR, and none.
  • R represents a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, an unsaturated-branched hydrocarbon group.
  • is a cation composed of an organic substance or an inorganic substance.
  • is none, R, or NHR.
  • R represents a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, an unsaturated-branched hydrocarbon group.
  • is a cation composed of an organic substance or an inorganic substance.
  • a solution having a pH of less than 3.0 comprising an additive (A) containing at least one of phosphorus oxoacids and metal salts of phosphorus oxoacid and an additive (B) containing at least one of urea and a urea derivative is added to cellulose fibers. Heated, defibrated, The manufacturing method of the cellulose fine fiber characterized by the above-mentioned.
  • Hydroxyl salts are also added to the cellulose fiber, and the cellulose fiber is washed after the heating.
  • Phosphonic acids are used as a part or all of the phosphorus oxo acids.
  • the fine cellulose fiber when a fine cellulose fiber is used as a dispersion, the fine cellulose fiber becomes very high in light transmittance and viscosity, and a method for producing the same.
  • This embodiment is an example of the present invention.
  • the cellulose fine fiber of this embodiment has a fiber width of 1 to 200 nm, and a part of the hydroxy group (—OH group) of the cellulose fiber is substituted with a functional group represented by the following structural formula (1), thereby An ester is introduced (modified, modified) (esterification), and the amount of the functional group represented by the following structural formula (1) exceeds 2.0 mmol (preferably 2.1 mmol or more) per 1 g of cellulose fiber.
  • a part of the hydroxy group of the cellulose fiber is substituted with a carbamate group, and a carbamate (an ester of carbamic acid) is also introduced.
  • a, b, m, and n are natural numbers.
  • At least one of A1, A2,..., An, and A ′ is O ⁇ , and the rest is any one of R, OR, NHR, and none.
  • R represents a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, an unsaturated-branched hydrocarbon group.
  • is a cation composed of an organic substance or an inorganic substance.
  • An ester of a phosphorus oxo acid is a compound in which a hydroxyl group (hydroxy group) (—OH) and an oxo group ( ⁇ O) are bonded to a phosphorus atom, and the hydroxyl group gives an acidic proton.
  • Phosphooxoesters have a high negative charge. Therefore, when the ester of phosphoroxoacids is introduced, repulsion between cellulose molecules becomes strong and cellulose fibers can be easily defibrated.
  • a carbamate is also introduced together with an ester of a phosphorus oxo acid, the light transmittance and viscosity of the dispersion are remarkably improved. In this respect, the carbamate has an amino group.
  • carbamate when carbamate is introduced, it interacts with the ester of phosphoroxo acid.
  • it is considered that the shearing force of the dispersion is increased and the viscosity is improved.
  • an ester of phosphonic acid is more preferable.
  • yellowing is reduced, so that the light transmittance of the dispersion in which cellulose fine fibers are dispersed becomes higher.
  • the viscosity of the dispersion increases.
  • an ester of phosphonic acid is introduced, a part of the hydroxy group (—OH group) of the cellulose fiber is substituted with a functional group represented by the following structural formula (2).
  • is none, R, or NHR.
  • R represents a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, an unsaturated-branched hydrocarbon group.
  • is a cation composed of an organic substance or an inorganic substance.
  • the introduction amount of the ester of phosphorus oxo acid or the ester of phosphonic acid is more than 2.0 mmol, preferably 2.1 mmol or more, more preferably 2.2 mmol or more per 1 g of cellulose fine fiber. Moreover, it is 3.4 mmol or less, Preferably it is 3.2 mmol or less, More preferably, it is 3.0 mmol or less. If the introduction amount is 2.0 mmol or less, the light transmittance and viscosity of the dispersion may not be sufficiently increased. On the other hand, if the amount introduced exceeds 3.4 mmol, the cellulose fibers may be dissolved in water.
  • the introduction amount of the ester of phosphorus oxo acid is a value evaluated based on elemental analysis.
  • elemental analysis X-Max 50-5001 manufactured by Horiba Seisakusho is used.
  • the amount of carbamate introduced is preferably 0.06 to 2.34 mmol, more preferably 0.15 to 1.28 mmol, and particularly preferably 0.39 to 1.02 mmol per 1 g of cellulose fine fiber. If the introduction amount is less than 0.06 mmol, the light transmittance and viscosity of the dispersion may not be sufficiently increased. On the other hand, if the amount introduced exceeds 2.34 mmol, the cellulose fibers may be dissolved in water. The amount of carbamate introduced was calculated by the Kjeldahl method.
  • the fiber width (average diameter of single fibers) of the fine cellulose fibers is preferably 1 to 200 nm, more preferably 2 to 100 nm, and particularly preferably 3 to 50 nm. If the fiber width is less than 1 nm, the cellulose dissolves in water and may not have physical properties such as strength, rigidity, and dimensional stability as cellulose fine fibers. On the other hand, when the fiber width exceeds 200 nm, it becomes about 1/10 of the wavelength of visible light. Therefore, when cellulose fine fibers are dispersed in water (when used as an aqueous dispersion), visible light is refracted or scattered. May occur and the light transmittance may be considered insufficient.
  • the fiber width of the cellulose fine fiber is measured as follows using an electron microscope. First, 100 ml of an aqueous dispersion of cellulose fine fibers having a solid content concentration of 0.01 to 0.1% by mass was filtered with a membrane filter made of Teflon (registered trademark), and once with 100 ml of ethanol and 3 times with 20 ml of t-butanol. Replace. Next, the sample is freeze-dried and coated with osmium. This sample is observed with an electron microscope SEM image at a magnification of 5,000, 10,000, or 30,000 depending on the width of the constituent fibers. In this observation, two diagonal lines are drawn on the observation image, and three straight lines passing through the intersections of the diagonal lines are arbitrarily drawn. Then, the width of a total of 100 fibers intersecting with the three straight lines is visually measured. The median diameter of this measured value is defined as the fiber width.
  • the axial ratio (fiber length / fiber width) of the cellulose fine fibers is preferably 3 to 1,000,000, more preferably 6 to 340,000, and particularly preferably 10 to 340,000. If the axial ratio is less than 3, it can no longer be said to be fibrous. On the other hand, if the axial ratio exceeds 1,000,000, the viscosity of the dispersion (slurry) may be too high.
  • the crystallinity of the cellulose fine fiber is preferably 50 to 100%, more preferably 60 to 90%, and particularly preferably 65 to 85%. If the crystallinity is less than 50%, the strength and heat resistance may be insufficient.
  • the degree of crystallinity can be adjusted by, for example, selection of pulp fibers, pretreatment, defibration, and the like.
  • the crystallinity is a value measured by an X-ray diffraction method in accordance with “General Rules for X-ray Diffraction Analysis” of JIS-K0131 (1996).
  • the cellulose fine fiber has an amorphous part and a crystalline part, and a crystallinity degree means the ratio of the crystalline part in the whole cellulose fine fiber.
  • the light transmittance of the cellulose fine fiber dispersion is preferably 50.0% or more, more preferably 60.0% or more, and particularly preferably 70.0% or more. If the light transmittance is less than 50.0%, the light transmittance may be insufficient.
  • the light transmittance of the cellulose fine fiber can be adjusted by, for example, selection of pulp fiber, pretreatment, defibration, and the like.
  • the light transmittance is a value obtained by measuring the light transmittance (transmittance of 350 to 880 nm light) of a cellulose fine fiber dispersion of 0.2% (w / v) using a Spectrophotometer U-2910 (Hitachi). .
  • the B-type viscosity of the dispersion when the concentration of the fine cellulose fibers is 1% by mass (w / w) is preferably 10 to 300,000 cps, more preferably 1,000 to 200,000 cps, particularly preferably 16, 000-100,000 cps.
  • the B-type viscosity is a value measured with respect to an aqueous dispersion of cellulose fine fibers having a solid content concentration of 1% in accordance with “Method for measuring viscosity of liquid” of JIS-Z8803 (2011).
  • the B type viscosity is a resistance torque when the slurry is stirred, and the higher the viscosity, the more energy required for stirring.
  • an additive (A) containing at least one of a phosphorus oxoacid and a metal salt of a phosphorus oxoacid in a cellulose fiber preferably an additive (B) further containing at least one of urea and a urea derivative.
  • a solution having a pH of less than 3 is added and heated to introduce an ester of phosphorus oxoacid, preferably an ester of carbamate and a carbamate, into the cellulose fiber. Then, the cellulose fibers into which the ester of phosphoroic acid is introduced are defibrated to obtain cellulose fine fibers.
  • a hydroxide salt is also added to the cellulose fiber, and after heating, the cellulose fiber is washed prior to defibration.
  • cellulose fiber As the cellulose fiber, for example, a plant-derived fiber (plant fiber), an animal-derived fiber, a microorganism-derived fiber, or the like can be used. These fibers can be used alone or in combination, if necessary. However, as the cellulose fiber, it is preferable to use a vegetable fiber, and it is more preferable to use a pulp fiber which is a kind of plant fiber. When the cellulose fiber is a pulp fiber, the physical properties of the cellulose fine fiber can be easily adjusted.
  • wood pulp made from hardwood, conifers, etc. wood pulp made from hardwood, conifers, etc., non-wood pulp made from straw, bagasse, etc., recovered paper, waste paper pulp made from waste paper, etc. (DIP), etc. should be used. Can do. These fibers can be used alone or in combination.
  • wood pulp for example, chemical pulp such as hardwood kraft pulp (LKP) and softwood kraft pulp (NKP), mechanical pulp (TMP), waste paper pulp (DIP) and the like can be used. These pulps can be used alone or in combination.
  • LRP hardwood kraft pulp
  • NBP softwood kraft pulp
  • TMP mechanical pulp
  • DIP waste paper pulp
  • the hardwood kraft pulp may be hardwood bleached kraft pulp, hardwood unbleached kraft pulp, or hardwood semi-bleached kraft pulp.
  • the softwood kraft pulp may be softwood bleached kraft pulp, softwood unbleached kraft pulp, or softwood semi-bleached kraft pulp.
  • the waste paper pulp may be magazine waste paper pulp (MDIP), newspaper waste paper pulp (NDIP), corrugated waste paper pulp (WP), or other waste paper pulp.
  • the additive (A) contains at least one of a phosphorus oxoacid and a metal salt of a phosphorus oxoacid.
  • the additive (A) include phosphoric acid, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium pyrophosphate, ammonium polyphosphate, lithium dihydrogen phosphate, trilithium phosphate, phosphorus Dilithium oxyhydrogen, lithium pyrophosphate, lithium polyphosphate, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium pyrophosphate, sodium polyphosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, Tripotassium phosphate, potassium pyrophosphate, potassium polyphosphate, phosphorous acid, sodium hydrogen phosphite, ammonium hydrogen phosphite, potassium hydrogen phosphite, sodium dihydrogen phos
  • phosphonic acids are preferably used as part or all of the phosphorus oxo acids. When phosphonic acids are used, yellowing of the cellulose fibers is prevented, so that the light transmittance of the dispersion is further improved.
  • the cellulose fiber may be in a dry state, a wet state, or a slurry state.
  • the additive (A) may be in a powder state or an aqueous solution.
  • the amount of additive (A) added is preferably 1 to 10,000 g, more preferably 100 to 5,000 g, and particularly preferably 300 to 1,500 g per 1 kg of cellulose fiber. If the amount added is less than 1 g, the effect of adding the additive (A) may not be obtained. On the other hand, even if the addition amount exceeds 10,000 g, the effect due to the addition of the additive (A) may reach its peak.
  • the additive (B) contains at least one of urea and a urea derivative.
  • urea for example, urea, thiourea, biuret, phenylurea, benzylurea, dimethylurea, diethylurea, tetramethylurea and the like can be used.
  • urea or urea derivatives can be used alone or in combination. However, it is preferable to use urea.
  • Cell refers to a cellulose molecule.
  • the amount of additive (B) added is preferably 0.01 to 100 mol, more preferably 0.2 to 20 mol, and particularly preferably 0.5 to 10 mol with respect to 1 mol of additive (A). If the amount added is less than 0.01 mol, the introduction of carbamate may not proceed. On the other hand, even if the addition amount exceeds 100 mol, the effect due to the addition of urea may reach its peak.
  • a hydroxide salt particularly sodium hydroxide
  • the hydroxide salts facilitate the fibrillation of cellulose fibers due to the osmotic pressure effect.
  • the heating temperature when heating the cellulose fiber to which the additive (A) or the additive (B) is added is preferably 100 to 210 ° C, more preferably 100 to 200 ° C, and particularly preferably 100 to 160 ° C. . If the heating temperature is 100 ° C. or higher, an ester of phosphorus oxoacid can be introduced. However, when the heating temperature exceeds 210 ° C., the deterioration of the cellulose proceeds rapidly, which may cause coloring and viscosity reduction. Moreover, when heating temperature exceeds 160 degreeC, there exists a possibility that the B-type viscosity of a cellulose fine fiber may fall, or there exists a possibility that a light transmittance may fall.
  • the pH when heating the cellulose fiber to which the additive (A) or additive (B) is added is preferably less than 3.0, more preferably 2.8 or less, and particularly preferably 2.5 or less.
  • the lower the pH the easier the introduction of esters and carbamates of phosphorus oxoacids.
  • the pH is preferably 2.0 or more, more preferably 2.1 or more.
  • the cellulose fiber it is preferable to heat the cellulose fiber to which the additive (A) or the additive (B) is added until the cellulose fiber is dried. Specifically, drying is performed until the moisture content of the cellulose fiber is preferably 10% or less, more preferably 0.1% or less, and particularly preferably 0.001% or less. Of course, the cellulose fiber may be in an absolutely dry state without moisture.
  • the heating time of the cellulose fiber to which the additive (A) or the additive (B) is added is, for example, 1 to 1,440 minutes, preferably 10 to 180 minutes, more preferably 30 to 120 minutes. If the heating time is too long, introduction of an ester of phosphorus oxoacid or carbamate may proceed excessively. Moreover, when heating time is too long, there exists a possibility that a cellulose fiber may yellow change.
  • a hot air dryer for example, a hot air dryer, a kiln, a heating kneader, a paper machine, a dry pulp machine, or the like can be used. .
  • the cellulose fiber Prior to the introduction of the ester or carbamate of the phosphorus oxo acid into the cellulose fiber, or after the introduction of the ester or carbamate of the phosphorus oxo acid, the cellulose fiber can be subjected to a pretreatment such as beating if necessary.
  • a pretreatment such as beating if necessary.
  • the pretreatment of cellulose fibers can be performed by a physical method or a chemical method, preferably a physical method or a chemical method.
  • the pretreatment by the physical method and the pretreatment by the chemical method can be performed simultaneously or separately.
  • beating is preferably performed until the freeness of the cellulose fiber is 700 ml or less, more preferably 500 ml or less, and particularly preferably 300 ml or less.
  • the freeness of the cellulose fiber is a value measured in accordance with JIS P8121-2 (2012).
  • beating can be performed using a refiner, a beater, etc., for example.
  • Examples of the pretreatment using a chemical method include hydrolysis of a polysaccharide with an acid (acid treatment), hydrolysis of a polysaccharide with an enzyme (enzyme treatment), swelling of the polysaccharide with an alkali (alkali treatment), and oxidation of the polysaccharide with an oxidizing agent ( Oxidation treatment), reduction of polysaccharides with a reducing agent (reduction treatment), and the like.
  • a pretreatment by a chemical method it is preferable to perform an enzyme treatment, and it is more preferable to perform one or more treatments selected from acid treatment, alkali treatment, and oxidation treatment.
  • the alkali treatment will be described in detail.
  • a method of alkali treatment for example, there is a method of immersing cellulose fibers into which an ester of phosphoroxo acid or the like is introduced in an alkaline solution.
  • the alkali compound contained in the alkali solution may be an inorganic alkali compound or an organic alkali compound.
  • inorganic alkali compounds include alkali metal or alkaline earth metal hydroxides, alkali metal or alkaline earth metal carbonates, alkali metal or alkaline earth metal phosphorus oxoacid salts, and the like.
  • examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, and potassium hydroxide.
  • Examples of the alkaline earth metal hydroxide include calcium hydroxide.
  • Examples of the alkali metal carbonate include lithium carbonate, lithium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, sodium carbonate, sodium hydrogen carbonate and the like.
  • alkaline earth metal carbonate include calcium carbonate.
  • alkali metal phosphate salt examples include lithium phosphate, potassium phosphate, trisodium phosphate, disodium hydrogen phosphate, and the like.
  • alkaline earth metal phosphates examples include calcium phosphate and calcium hydrogen phosphate.
  • organic alkali compounds include ammonia, aliphatic amines, aromatic amines, aliphatic ammoniums, aromatic ammoniums, heterocyclic compounds and their hydroxides, carbonates, phosphates, and the like.
  • the solvent of the alkaline solution may be either water or an organic solvent, but is preferably a polar solvent (polar organic solvent such as water or alcohol), more preferably an aqueous solvent containing at least water.
  • polar solvent polar organic solvent such as water or alcohol
  • the pH of the alkaline solution at 25 ° C. is preferably 9 or more, more preferably 10 or more, and particularly preferably 11 to 14.
  • the pH is 9 or more, the yield of cellulose fine fibers increases.
  • pH exceeds 14 the handleability of an alkaline solution will fall.
  • the cellulose fibers can be washed using, for example, water or an organic solvent.
  • the solid content concentration of the slurry is preferably 0.1 to 20% by mass, more preferably 0.5 to 10% by mass, and particularly preferably 1.0 to 5.0% by mass. If the solid content concentration is within the above range, the fiber can be efficiently defibrated.
  • Cellulose fibers can be defibrated by, for example, one or two of a high-pressure homogenizer, a homogenizer such as a high-pressure homogenizer, a stone mill type friction machine such as a grinder or an attritor, a refiner such as a conical refiner or a disc refiner, or various bacteria. More than one means can be selected and used.
  • the cellulose fibers are preferably defibrated using an apparatus / method for refining with a water stream, particularly a high-pressure water stream. According to this apparatus and method, the dimensional uniformity and dispersion uniformity of the obtained cellulose fine fiber are very high.
  • a grinder that grinds between rotating grindstones is used, it is difficult to uniformly refine the cellulose fiber, and in some cases, a fiber lump that cannot be partially broken may remain.
  • the inventors of the present invention used a method of grinding between rotating grindstones and a method of refining with a high-pressure water stream, respectively, when cellulose fibers were defibrated and each obtained fiber was observed with a microscope. It has been found that the fibers obtained by the finer method have a more uniform fiber width.
  • the cellulose fiber dispersion is pressurized to, for example, 30 MPa or more, preferably 100 MPa or more, more preferably 150 MPa or more, particularly preferably 220 MPa or more (high pressure condition) with a pressure intensifier, and the pore diameter is 50 ⁇ m or more. It is preferable to carry out by a method of reducing pressure (pressure reduction condition) so that the pressure difference is, for example, 30 MPa or more, preferably 80 MPa or more, more preferably 90 MPa or more.
  • the pulp fiber is defibrated by the cleavage phenomenon caused by this pressure difference.
  • the high-pressure homogenizer refers to a homogenizer having an ability to eject a slurry of cellulose fibers at a pressure of, for example, 10 MPa or more, preferably 100 MPa or more.
  • a high-pressure homogenizer When cellulose fibers are treated with a high-pressure homogenizer, the cellulose fibers collide with each other, pressure difference, microcavitation, etc., and cellulose fibers are effectively defibrated. Therefore, the number of fibrillation treatments can be reduced, and the production efficiency of cellulose fine fibers can be increased.
  • the high-pressure homogenizer it is preferable to use one that causes the cellulose fiber slurry to collide in a straight line.
  • a counter collision type high-pressure homogenizer Mocrofluidizer / MICROFLUIDIZER (registered trademark), wet jet mill.
  • two upstream flow paths are formed so that the pressurized cellulose fiber slurry collides oppositely at the junction.
  • the cellulose fiber slurry collides at the junction, and the collided cellulose fiber slurry flows out of the downstream channel.
  • the downstream flow path is provided perpendicular to the upstream flow path, and a T-shaped flow path is formed by the upstream flow path and the downstream flow path.
  • the fibrillation of the cellulose fibers is preferably carried out so that the average fiber width, average fiber length, crystallinity, etc. of the obtained cellulose fine fibers have desired values or evaluations.
  • a test was conducted in which phosphorous acid (phosphonic acid), hydroxide salts (sodium hydroxide) and urea were added to cellulose fibers, heated and washed, and then fibrillated to produce cellulose fine fibers.
  • phosphorous acid phosphonic acid
  • hydroxide salts sodium hydroxide
  • urea urea
  • cellulose fibers softwood bleached kraft pulp was used.
  • defibration was performed using a high-pressure homogenizer.
  • Table 1 shows the addition amounts of phosphorus oxoacid, sodium hydroxide, and urea, the pH of these solutions (reagent A), the heating temperature and time, and the number of fibrillation passes.
  • the physical properties of the obtained cellulose fine fibers are shown in Table 2.
  • the evaluation methods for the B-type viscosity and the light transmittance were as described above.
  • the urea addition amount of 0 mmol / g is “no addition”
  • the carbamate group introduction amount of 0 mmol / g in Table 2 is “no introduction”
  • “ ⁇ ” in Comparative Example 3 is “ ⁇ ”. It means “not measured”.
  • the present invention can be used as a cellulose fine fiber and a production method thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Paper (AREA)
  • Artificial Filaments (AREA)

Abstract

【課題】セルロース微細繊維を分散液とした場合において、当該分散液の光透過度及び粘度が極めて高いものとなるセルロース微細繊維及びその製造方法を提供する。 【解決手段】セルロース微細繊維は、繊維幅が1~200nmであり、セルロース繊維のヒドロキシ基の一部が所定の官能基で置換されてリンオキソ酸のエステルが導入されており、前記官能基の導入量がセルロース繊維1gあたり2.0mmol超とされている。また、このセルロース微細繊維を製造するにあたっては、セルロース繊維に、リンオキソ酸類及びリンオキソ酸金属塩類の少なくともいずれか一方を含む添加物(A)並びに尿素及び尿素誘導体の少なくともいずれか一方を含む添加物(B)からなるpH3.0未満の溶液を添加し、加熱し、解繊する。

Description

セルロース微細繊維及びその製造方法
 本発明は、セルロース微細繊維及びその製造方法に関するものである。
 近年、物質をナノメートルレベルまで微細化し、物質が持つ従来の性状とは異なる新たな物性を得ることを目的としたナノテクノロジーが注目されている。例えば、セルロース系原料であるパルプは、化学処理、粉砕処理等することでセルロース微細繊維(セルロースナノファイバー)としている。セルロース微細繊維は、強度、弾性、熱安定性等に優れるため、例えば、ろ過材、ろ過助剤、イオン交換体の基材、クロマトグラフィー分析機器の充填材、樹脂及びゴムの配合用充填剤等としての工業上の用途や、口紅、粉末化粧料、乳化化粧料等の化粧品の配合剤の用途における利用が期待されている。また、セルロース微細繊維は、水系分散性に優れているため、食品、化粧品、塗料等の粘度の保持剤、食品原料生地の強化剤、水分保持剤、食品安定化剤、低カロリー添加物、乳化安定化助剤などの多くの用途における利用が期待されている。
 このようなセルロース微細繊維を得るためには、セルロース系原料を高圧式ホモジナイザー、高速回転式ホモジナイザー、超音波ホモジナイザーなどで機械的に解繊する方法が存在する。しかしながら、この方法では、解繊を進めるのに大きなエネルギーが必要であり、また、セルロース繊維が損傷してしまう。
 そこで、特許文献1は、セルロース繊維の損傷が少ないセルロース微細繊維の製造方法を提案しており、繊維を解繊(攪拌)するにあたって、市販のブレンダー、ミキサー等を使用することもできるとしている。しかしながら、同文献の方法による場合、セルロース微細繊維を分散することで得られる分散液について光透過度や粘度を高めるには解繊時間を長くする必要があり、解繊時間を長くするとセルロース繊維の損傷が大きくなってしまう。特に、食品や化粧品等の用途においては、分散液の光透過度が高いことは必須の条件ともされており、セルロース微細繊維の用途を広げるうえで、光透過度を高めるとの課題を避けて通ることはできない。
 また、セルロース微細繊維の製造方法としては、解繊に先立って「セルロースの水酸基の一部に多塩基酸無水物を半エステル化してカルボキシル基を導入することにより、多塩基酸半エステル化セルロースを調製する」方法が提案されている(特許文献2参照)。
 さらに、同文献による方法では微細化が不十分であるとして、解繊に先立って「リンオキソ酸或いはそれらの塩から選ばれる少なくとも1種の化合物により、セルロースを含む繊維原料を処理する」方法が提案されている(特許文献3参照)。同文献は、同文献による方法によると1~1000nmの繊維幅を有し、かつ繊維を構成するセルロースのヒドロキシ基の一部が所定の官能基で置換されて、リンオキソ酸基が導入された微細繊維状セルロースが得られるとしている。しかしながら、本発明者等が知見するところによると、同文献の方法によって得られたセルロース微細繊維の分散液は、光透過度や粘度の点で改善の余地がある。
特開2010-216021号公報 特開2009-293167号公報 特開2013-127141号公報
 本発明が解決しようとする課題は、セルロース微細繊維を分散液とした場合において、当該分散液の光透過度及び粘度が極めて高いものとなるセルロース微細繊維及びその製造方法を提供することにある。
 本発明者等は、前述した特許文献3の方法について、何故、光透過度や粘度が不十分になるのかを種々検討した。結果、セルロース繊維1gあたりに対するリンオキソ酸の導入量(モル量)にポイントがあることを知見するに至った。この点、同文献は、「繊維原料のセルロースのヒドロキシ基(-OH基)におけるリンオキソ酸基の導入量は、微細繊維状セルロース1g(質量)あたり0.1~2.0mmolが好ましく、0.2~1.5mmolがより好ましい」としている。しかしながら、後述する実施例に示すように、リンオキソ酸基の導入量は2.0mmolを超える方が好ましい。また、同検討の過程で、本発明者等は、リンオキソ酸の導入量は、単に添加するリンオキソ酸の量を規定すれば足りるというものではないことも知見した。実際に導入されるリンオキソ酸基の量は、製造条件にも依存する。なお、特許文献3の方法による場合、一度の反応で導入することができるリンオキソ酸基の量は多く見積もっても2.0mmol/gまでであると考えられ、この導入量では分散液の光透過度や粘度が十分なものにはならない。特許文献3の方法でリンオキソ酸の導入量が2.0mmolを超えるようにするのであれば、繰り返し反応を行う必要があり、したがって、同文献は、そもそもリンオキソ酸の導入量が2.0mmolを超えるようにすることを想定していなかったと考えられる。
 以上のような種々の検討、知見に基づいて想到するに至ったのが、上記課題を解決するための以下に示す手段である。
(請求項1に記載の手段)
 繊維幅が1~200nmであり、
 セルロース繊維のヒドロキシ基の一部が、下記構造式(1)に示す官能基で置換されてリンオキソ酸のエステルが導入されており、
 前記構造式(1)に示す官能基の導入量が、セルロース繊維1gあたり2.0mmolを超える、
 ことを特徴とするセルロース微細繊維。
[構造式(1)]
Figure JPOXMLDOC01-appb-C000003
 構造式(1)において、a,b,m,nは自然数である。
 A1,A2,・・・,AnおよびA’のうちの少なくとも1つはO-であり、残りはR、OR、NHR、及びなしのいずれかである。Rは、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、芳香族基、及びこれらの誘導基のいずれかである。αは有機物又は無機物からなる陽イオンである。
(請求項2に記載の手段)
 前記セルロース繊維のヒドロキシ基の一部が、カルバメート基で置換されて、カルバメートが導入されている、
 請求項1に記載のセルロース微細繊維。
(請求項3に記載の手段)
 前記セルロース繊維のヒドロキシ基の一部が、下記構造式(2)に示す官能基で置換されて前記リンオキソ酸のエステルとしてホスホン酸のエステルが導入されている、
 請求項1又は請求項2に記載のセルロース微細繊維。
[構造式(2)]
Figure JPOXMLDOC01-appb-C000004
 構造式(2)において、αは、なし、R、及びNHRのいずれかである。Rは、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、芳香族基、及びこれらの誘導基のいずれかである。βは有機物又は無機物からなる陽イオンである。
(請求項4に記載の手段)
 請求項1~3のいずれか1項に記載のセルロース微細繊維を製造するにあたり、
 セルロース繊維に、リンオキソ酸類及びリンオキソ酸金属塩類の少なくともいずれか一方を含む添加物(A)並びに尿素及び尿素誘導体の少なくともいずれか一方を含む添加物(B)からなるpH3.0未満の溶液を添加し、加熱し、解繊する、
 ことを特徴とするセルロース微細繊維の製造方法。
(請求項5に記載の手段)
 前記セルロース繊維に水酸化塩類も添加するものとし、かつ、前記加熱後に前記セルロース繊維を洗浄する、
 請求項4に記載のセルロース微細繊維の製造方法。
(請求項6に記載の手段)
 前記リンオキソ酸類の一部又は全部として、ホスホン酸類を使用する、
 請求項4又は請求項5に記載のセルロース微細繊維の製造方法。
 本発明によると、セルロース微細繊維を分散液とした場合において、当該分散液の光透過度及び粘度が極めて高いものとなるセルロース微細繊維及びその製造方法となる。
 次に、本発明を実施するための形態を説明する。なお、本実施の形態は、本発明の一例である。
(セルロース微細繊維)
 本形態のセルロース微細繊維は、繊維幅が1~200nmであり、かつセルロース繊維のヒドロキシ基(-OH基)の一部が、下記構造式(1)に示す官能基で置換されてリンオキソ酸のエステルが導入(修飾、変性)されており(エステル化)、しかも下記構造式(1)に示す官能基の導入量が、セルロース繊維1gあたり2.0mmol超える(好ましくは2.1mmol以上)ものとされている。より好適には、セルロース繊維のヒドロキシ基の一部がカルバメート基で置換されて、カルバメート(カルバミン酸のエステル)も導入されている。
[構造式(1)]
Figure JPOXMLDOC01-appb-C000005
 構造式(1)において、a,b,m,nは自然数である。
 A1,A2,・・・,AnおよびA’のうちの少なくとも1つはO-であり、残りはR、OR、NHR、及びなしのいずれかである。Rは、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、芳香族基、及びこれらの誘導基のいずれかである。αは有機物又は無機物からなる陽イオンである。
 リンオキソ酸のエステルは、リン原子にヒドロキシル基(ヒドロキシ基)(-OH)及びオキソ基(=O)が結合しており、かつそのヒドロキシル基が酸性プロトンを与える化合物である。リンオキソ酸のエステルはマイナス電荷が高く、したがって、リンオキソ酸のエステルを導入すると、セルロース分子間の反発が強くなり、セルロース繊維の解繊が容易になる。また、リンオキソ酸のエステルと共にカルバメートをも導入すると、分散液の光透過度や粘度が極めて向上する。この点、カルバメートは、アミノ基を有する。したがって、カルバメートを導入すると、リンオキソ酸のエステルと相互作用することになる。結果、カルバメートをも導入すると、分散液の剪断力が高まり、粘度が向上するものと考えられる。
 導入するリンオキソ酸のエステルとしては、ホスホン酸のエステルがより好ましい。ホスホン酸のエステルを導入した場合は、黄変化が少なくなるため、セルロース微細繊維が分散された分散液の光透過度がより高くなる。また、分散液の粘度も高くなる。ホスホン酸のエステルを導入した場合は、セルロース繊維のヒドロキシ基(-OH基)の一部が下記構造式(2)に示す官能基で置換される。
[構造式(2)]
Figure JPOXMLDOC01-appb-C000006
 構造式(2)において、αは、なし、R、及びNHRのいずれかである。Rは、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、芳香族基、及びこれらの誘導基のいずれかである。βは有機物又は無機物からなる陽イオンである。
 リンオキソ酸のエステル、あるいはホスホン酸のエステルの導入量は、セルロース微細繊維1g当たり、2.0mmol超、好ましくは2.1mmol以上、より好ましくは2.2mmol以上である。また、3.4mmol以下、好ましくは3.2mmol以下、より好ましくは3.0mmol以下である。導入量が2.0mmol以下であると、分散液の光透過度や粘度が十分に高まらないおそれがある。他方、導入量が3.4mmolを超えると、セルロース繊維が水に溶解するおそれがある。
 リンオキソ酸のエステルの導入量は、元素分析に基づいて評価した値である。この元素分析には、堀場製作所製X-Max 50 001を使用する。
 カルバメートの導入量は、セルロース微細繊維1g当たり、好ましくは0.06~2.34mmol、より好ましくは0.15~1.28mmol、特に好ましくは0.39~1.02mmolである。導入量が0.06mmol未満であると、分散液の光透過度及び粘度が十分に高まらないおそれがある。他方、導入量が2.34mmolを超えると、セルロース繊維が水に溶解するおそれがある。なお、カルバメートの導入量の算出方法は、ケルダール法により行った。
 セルロース微細繊維の繊維幅(単繊維の平均直径)は、好ましくは1~200nm、より好ましくは2~100nm、特に好ましくは3~50nmである。繊維幅が1nm未満であると、セルロースが水に溶解し、セルロース微細繊維としての物性、例えば、強度や剛性、寸法安定性等を有さなくなるおそれがある。他方、繊維幅が200nmを超えると、可視光の波長の約1/10になるため、セルロース微細繊維を水に分散した場合に(水分散液とした場合に)、可視光の屈折や散乱が生じ、光透過度が不十分であるとされるおそれがある。
 セルロース微細繊維の繊維幅は、電子顕微鏡を使用して次のように測定する。
 まず、固形分濃度0.01~0.1質量%のセルロース微細繊維の水分散液100mlをテフロン(登録商標)製メンブレンフィルターでろ過し、エタノール100mlで1回、t-ブタノール20mlで3回溶媒置換する。次に、凍結乾燥し、オスミウムコーティングして試料とする。この試料について、構成する繊維の幅に応じて5,000倍、10,000倍又は30,000倍のいずれかの倍率で電子顕微鏡SEM画像による観察を行う。この観察においては、観察画像に2本の対角線を引き、更に対角線の交点を通過する直線を任意に3本引く。そして、この3本の直線と交錯する合計100本の繊維の幅を目視で計測する。この計測値の中位径を繊維幅とする。
 セルロース微細繊維の軸比(繊維長/繊維幅)は、好ましくは3~1,000,000、より好ましくは6~340,000、特に好ましくは10~340,000である。軸比が3未満であると、もはや繊維状とは言えなくなる。他方、軸比が1,000,000を超えると、分散液(スラリー)の粘度が高くなり過ぎるおそれがある。
 セルロース微細繊維の結晶化度は、好ましくは50~100%、より好ましくは60~90%、特に好ましくは65~85%である。結晶化度が50%未満であると、強度、耐熱性が不十分であるとされるおそれがある。結晶化度は、例えば、パルプ繊維の選定、前処理、解繊等によって調整することができる。
 結晶化度は、JIS-K0131(1996)の「X線回折分析通則」に準拠して、X線回折法により測定した値である。なお、セルロース微細繊維は、非晶質部分と結晶質部分とを有しており、結晶化度はセルロース微細繊維全体における結晶質部分の割合を意味する。
 セルロース微細繊維の分散液の光透過度率(固形分0.2%溶液)は、好ましくは50.0%以上、より好ましくは60.0%以上、特に好ましくは70.0%以上である。光透過度が50.0%未満であると、光透過度が不十分であるとされるおそれがある。セルロース微細繊維の光透過度は、例えば、パルプ繊維の選定、前処理、解繊等によって調整することができる。
 光透過度は、0.2%(w/v)のセルロース微細繊維分散液の光透過度(350~880nm光の透過率)をSpectrophotometer U-2910(日立製作所)を用いて測定した値である。
 セルロース微細繊維の濃度を1質量%(w/w)とした場合における分散液のB型粘度は、好ましくは10~300,000cps、より好ましくは1,000~200,000cps、特に好ましくは16,000~100,000cpsである。
 B型粘度は、固形分濃度1%のセルロース微細繊維の水分散液について、JIS-Z8803(2011)の「液体の粘度測定方法」に準拠して測定した値である。B型粘度はスラリーを攪拌させたときの抵抗トルクであり、高いほど攪拌に必要なエネルギーが多くなることを意味する。
(セルロース微細繊維の製造方法)
 本形態の製造方法においては、セルロース繊維に、リンオキソ酸類及びリンオキソ酸金属塩類の少なくともいずれか一方を含む添加物(A)、好ましくは更に尿素及び尿素誘導体の少なくともいずれか一方を含む添加物(B)からなるpH3未満の溶液を添加し、加熱してセルロース繊維にリンオキソ酸のエステル、好ましくはリンオキソ酸のエステル及びカルバメートを導入する。そして、このリンオキソ酸のエステル等を導入したセルロース繊維を解繊してセルロース微細繊維を得る。
 また、好ましくは、セルロース繊維に水酸化塩類も添加するものとし、かつ、加熱後、解繊するに先立ってセルロース繊維を洗浄する。
(セルロース繊維)
 セルロース繊維としては、例えば、植物由来の繊維(植物繊維)、動物由来の繊維、微生物由来の繊維等を使用することができる。これらの繊維は、必要により、単独で又は複数を組み合わせて使用することができる。ただし、セルロース繊維としては、植物繊維を使用するのが好ましく、植物繊維の一種であるパルプ繊維を使用するのがより好ましい。セルロース繊維がパルプ繊維であると、セルロース微細繊維の物性調整が容易である。
 植物繊維としては、例えば、広葉樹、針葉樹等を原料とする木材パルプ、ワラ、バガス等を原料とする非木材パルプ、回収古紙、損紙等を原料とする古紙パルプ(DIP)等を使用することができる。これらの繊維は、単独で又は複数を組み合わせて使用することができる。
 木材パルプとしては、例えば、広葉樹クラフトパルプ(LKP)、針葉樹クラフトパルプ(NKP)等の化学パルプ、機械パルプ(TMP)、古紙パルプ(DIP)等を使用することができる。これらのパルプは、単独で又は複数を組み合わせて使用することができる。
 広葉樹クラフトパルプ(LKP)は、広葉樹晒クラフトパルプであっても、広葉樹未晒クラフトパルプであっても、広葉樹半晒クラフトパルプであってもよい。針葉樹クラフトパルプ(NKP)は、針葉樹晒クラフトパルプであっても、針葉樹未晒クラフトパルプであっても、針葉樹半晒クラフトパルプであってもよい。古紙パルプ(DIP)は、雑誌古紙パルプ(MDIP)であっても、新聞古紙パルプ(NDIP)であっても、段古紙パルプ(WP)であっても、その他の古紙パルプであってもよい。
(添加物(A))
 添加物(A)は、リンオキソ酸類及びリンオキソ酸金属塩類の少なくともいずれか一方を含む。添加物(A)としては、例えば、リン酸、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ピロリン酸アンモニウム、ポリリン酸アンモニウム、リン酸二水素リチウム、リン酸三リチウム、リン酸水素二リチウム、ピロリン酸リチウム、ポリリン酸リチウム、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、ピロリン酸ナトリウム、ポリリン酸ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、ピロリン酸カリウム、ポリリン酸カリウム、亜リン酸、亜リン酸水素ナトリウム、亜リン酸水素アンモニウム、亜リン酸水素カリウム、亜リン酸二水素ナトリウム、亜リン酸ナトリウム、亜リン酸リチウム、亜リン酸カリウム、亜リン酸マグネシウム、亜リン酸カルシウム、亜リン酸トリエチル、亜リン酸トリフェニル、ピロ亜リン酸等の亜リン酸化合物等を使用することができる。これらの添加物は、それぞれを単独で又は複数を組み合わせて使用することができる。ただし、リンオキソ酸類の一部又は全部としては、ホスホン酸類を使用するのが好ましい。ホスホン酸類を使用すると、セルロース繊維の黄変化が防止されるので、分散液の光透過度がより向上する。
 添加物(A)を添加するにあたって、セルロース繊維は、乾燥状態であっても、湿潤状態であっても、スラリーの状態であってもよい。また、添加物(A)は、粉末の状態であっても、水溶液の状態であってもよい。ただし、反応の均一性が高いことから、乾燥状態のセルロース繊維に水溶液の状態の添加物(A)を添加するのが好ましい。
 添加物(A)の添加量は、セルロース繊維1kgに対して、好ましくは1~10,000g、より好ましくは100~5,000g、特に好ましくは300~1,500gである。添加量が1g未満であると、添加物(A)の添加による効果が得られないおそれがある。他方、添加量が10,000gを超えても、添加物(A)の添加による効果が頭打ちとなるおそれがある。
(添加物(B))
 添加物(B)は、尿素及び尿素誘導体の少なくともいずれか一方を含む。添加物(B)としては、例えば、尿素、チオ尿素、ビウレット、フェニル尿素、ベンジル尿素、ジメチル尿素、ジエチル尿素、テトラメチル尿素等を使用することができる。これらの尿素又は尿素誘導体は、それぞれを単独で又は複数を組み合わせて使用することができる。ただし、尿素を使用するのが好ましい。
 添加物(B)は、加熱されると、下記の反応式(1)に示すようにイソシアン酸及びアンモニアに分解される。そして、イソシアン酸は反応性が高く、下記の反応式(2)に示すようにセルロースの水酸基及びカルバメートを形成する。したがって、セルロース繊維に添加物(B)を添加するとカルバメートの導入が進む。
 NH2-CO-NH2 → HN=C=O+NH3 …(1)
 Cell-OH+H-N=C=O → Cell-O-C-NH2 …(2)
 なお、Cellは、セルロース分子を指す。
 添加物(B)の添加量は、添加物(A)1molに対して、好ましくは0.01~100mol、より好ましくは0.2~20mol、特に好ましくは0.5 ~10molである。添加量が0.01mol未満であると、カルバメートの導入が進まないおそれがある。他方、添加量が100molを超えても、尿素の添加による効果が頭打ちとなるおそれがある。
(その他の添加物)
 セルロース繊維には、添加物(A)及び添加物(B)のほか、水酸化塩類、特に水酸化ナトリウムを添加するのが好ましい。水酸化塩類は、pH調整剤としての機能を有するほか、浸透圧効果のためにセルロース繊維の解繊がより容易になる。
(加熱)
 添加物(A)や添加物(B)等を添加したセルロース繊維を加熱する際の加熱温度は、好ましくは100~210℃、より好ましくは100~200℃、特に好ましくは100~160℃である。加熱温度が100℃以上であれば、リンオキソ酸のエステルを導入することができる。ただし、加熱温度が210℃を超えると、セルロースの劣化が急速に進み、着色や粘度低下の要因となるおそれがある。また、加熱温度が160℃を超えると、セルロース微細繊維のB型粘度が低下するおそれや、光透過度が低下するおそれがある。
 添加物(A)や添加物(B)を添加したセルロース繊維を加熱する際のpHは、好ましくは3.0未満、より好ましくは2.8以下、特に好ましくは2.5以下である。pHが低い方がリンオキソ酸のエステルやカルバメートが導入され易くなる。ただし、pHが2.1未満であると光透過度や粘度が低下する傾向にあり、特にpHが2.0未満であるとセルロース繊維の劣化が急速に進行してしまうおそれがある。したがって、pHは、好ましくは、2.0以上、より好ましくは2.1以上である。
 添加物(A)や添加物(B)等を添加したセルロース繊維の加熱は、当該セルロース繊維が乾燥するまで行うのが好ましい。具体的には、セルロース繊維の水分率が、好ましくは10%以下となるまで、より好ましくは0.1%以下となるまで、特に好ましくは0.001%以下となるまで乾燥する。もちろん、セルロース繊維は、水分の無い絶乾状態になっても良い。
 添加物(A)や添加物(B)等を添加したセルロース繊維の加熱時間は、例えば1~1,440分、好ましくは10~180分、より好ましくは30~120分である。加熱時間が長過ぎると、リンオキソ酸のエステルやカルバメートの導入が進み過ぎるおそれがある。また、加熱時間が長過ぎると、セルロース繊維が黄変化するおそれがある。
 添加物(A)や添加物(B)等を添加したセルロース繊維を加熱する装置としては、例えば、熱風乾燥機、キルン、加熱式混練機、抄紙機、ドライパルプマシン等を使用することができる。
(前処理)
 セルロース繊維にリンオキソ酸のエステルやカルバメートを導入するに先立って、又はリンオキソ酸のエステルやカルバメートを導入した後において、セルロース繊維には、必要により、叩解等の前処理を施すことができる。セルロース繊維の解繊に先立って当該パルプ繊維に前処理を施しておくことで、解繊の回数を大幅に減らすことができ、解繊のエネルギーを削減することができる。
 セルロース繊維の前処理は、物理的手法又は化学的手法、好ましくは物理的手法及び化学的手法によることができる。物理的手法による前処理及び化学的手法による前処理は、同時に行うことも、別々に行うこともできる。
 物理的手法による前処理としては、叩解を採用するのが好ましい。セルロース繊維を叩解すると、セルロース繊維が切り揃えられる。したがって、セルロース繊維同士の絡み合いが防止される(凝集防止)。この観点から、叩解は、セルロース繊維のフリーネスが700ml以下となるまで行うのが好ましく、500ml以下となるまで行うのがより好ましく、300ml以下となるまで行うのが特に好ましい。
 セルロース繊維のフリーネスは、JIS P8121-2(2012)に準拠して測定した値である。また、叩解は、例えば、リファイナーやビーター等を使用して行うことができる。
 化学的手法による前処理としては、例えば、酸による多糖の加水分解(酸処理)、酵素による多糖の加水分解(酵素処理)、アルカリによる多糖の膨潤(アルカリ処理)、酸化剤による多糖の酸化(酸化処理)、還元剤による多糖の還元(還元処理)等を例示することができる。ただし、化学的手法による前処理としては、酵素処理を施すのが好ましく、加えて酸処理、アルカリ処理、及び酸化処理の中から選択された1又は2以上の処理を施すのがより好ましい。以下、アルカリ処理について、詳しく説明する。
 アルカリ処理の方法としては、例えば、アルカリ溶液中に、リンオキソ酸のエステル等を導入したセルロース繊維を浸漬する方法が存在する。
 アルカリ溶液に含まれるアルカリ化合物は、無機アルカリ化合物であっても、有機アルカリ化合物であってもよい。無機アルカリ化合物としては、例えば、アルカリ金属又はアルカリ土類金属の水酸化物、アルカリ金属又はアルカリ土類金属の炭酸塩、アルカリ金属又はアルカリ土類金属のリンオキソ酸塩等を例示することができる。また、アルカリ金属の水酸化物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等を例示することができる。アルカリ土類金属の水酸化物としては、例えば、水酸化カルシウム等を例示することができる。アルカリ金属の炭酸塩としては、例えば、炭酸リチウム、炭酸水素リチウム、炭酸カリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸水素ナトリウム等を例示することができる。アルカリ土類金属の炭酸塩としては、例えば、炭酸カルシウム等を例示することができる。アルカリ金属のリンオキソ酸塩としては、例えば、リン酸リチウム、リン酸カリウム、リン酸三ナトリウム、リン酸水素二ナトリウム等を例示することができる。アルカリ土類金属のリン酸塩としては、例えば、リン酸カルシウム、リン酸水素カルシウム等を例示することができる。
 有機アルカリ化合物としては、例えば、アンモニア、脂肪族アミン、芳香族アミン、脂肪族アンモニウム、芳香族アンモニウム、複素環式化合物及びその水酸化物、炭酸塩、リン酸塩等を例示することができる。具体的には、例えば、例えば、アンモニア、ヒドラジン、メチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、ジプロピルアミン、ブチルアミン、ジアミノエタン、ジアミノプロパン、ジアミノブタン、ジアミノペンタン、ジアミノヘキサン、シクロヘキシルアミン、アニリン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ピリジン、N,N-ジメチル-4-アミノピリジン、炭酸アンモニウム、炭酸水素アンモニウム、リン酸水素2アンモニウム等を例示することができる。
 アルカリ溶液の溶媒は、水及び有機溶媒のいずれであってもよいが、極性溶媒(水、アルコール等の極性有機溶媒)であるのが好ましく、少なくとも水を含む水系溶媒であるのがより好ましい。
 アルカリ溶液の25℃におけるpHは、好ましくは9以上、より好ましくは10以上、特に好ましくは11~14である。pHが9以上であると、セルロース微細繊維の収率が高くなる。ただし、pHが14を超えると、アルカリ溶液の取り扱い性が低下する。
(洗浄)
 リンオキソ酸のエステル等を導入したセルロース繊維は、解繊するに先立って、洗浄するのが好ましい。セルロース繊維を清浄することで、副生成物や未反応物を洗い流すことができる。また、この洗浄が前処理におけるアルカリ処理に先立つものであれば、当該アルカリ処理におけるアルカリ溶液の使用量を減らすことができる。
 セルロース繊維の洗浄は、例えば、水や有機溶媒等を使用して行うことができる。
(解繊)
 リンオキソ酸のエステル等を導入したセルロース繊維は、洗浄後に解繊(微細化処理)する。この解繊によって、パルプ繊維はミクロフィブリル化し、セルロース微細繊維(セルロースナノファイバー(CNF))となる。
 セルロース繊維を解繊するにあたっては、当該セルロース繊維をスラリー状にしておくのが好ましい。このスラリーの固形分濃度は、好ましくは0.1~20質量%、より好ましくは0.5~10質量%、特に好ましくは1.0~5.0質量%である。固形分濃度が上記範囲内であれば、効率的に解繊することができる。
 セルロース繊維の解繊は、例えば、高圧ホモジナイザー、高圧均質化装置等のホモジナイザー、グラインダー、摩砕機等の石臼式摩擦機、コニカルリファイナー、ディスクリファイナー等のリファイナー、各種バクテリア等の中から1種又は2種以上の手段を選択使用して行うことができる。ただし、セルロース繊維の解繊は、水流、特に高圧水流で微細化する装置・方法を使用して行うのが好ましい。この装置・方法によると、得られるセルロース微細繊維の寸法均一性、分散均一性が非常に高いものとなる。これに対し、例えば、回転する砥石間で磨砕するグラインダーを使用すると、セルロース繊維を均一に微細化するのが難しく、場合によっては、一部に解れない繊維塊が残ってしまうおそれがある。
 セルロース繊維の解繊に使用するグラインダーとしては、例えば、増幸産業株式会社のマスコロイダー等が存在する。また、高圧水流で微細化する装置としては、例えば、株式会社スギノマシンのスターバースト(登録商標)や、吉田機械興業株式会社のナノヴェイタ\Nanovater(登録商標)等が存在する。また、セルロース繊維の解繊に使用する高速回転式ホモジナイザーとしては、エムテクニック社製のクレアミックス-11S等が存在する。
 本発明者等は、回転する砥石間で磨砕する方法と、高圧水流で微細化する方法とで、それぞれセルロース繊維を解繊し、得られた各繊維を顕微鏡観察した場合に、高圧水流で微細化する方法で得られた繊維の方が、繊維幅が均一であることを知見している。
 高圧水流による解繊は、セルロース繊維の分散液を増圧機で、例えば30MPa以上、好ましくは100MPa以上、より好ましくは150MPa以上、特に好ましくは220MPa以上に加圧し(高圧条件)、細孔直径50μm以上のノズルから噴出させ、圧力差が、例えば30MPa以上、好ましくは80MPa以上、より好ましくは90MPa以上となるように減圧する(減圧条件)方式で行うと好適である。この圧力差で生じるへき開現象によって、パルプ繊維が解繊される。高圧条件の圧力が低い場合や、高圧条件から減圧条件への圧力差が小さい場合には、解繊効率が下がり、所望の繊維幅とするために繰り返し解繊(ノズルから噴出)する必要が生じる。
 高圧水流によって解繊する装置としては、高圧ホモジナイザーを使用するのが好ましい。高圧ホモジナイザーとは、例えば10MPa以上、好ましくは100MPa以上の圧力でセルロース繊維のスラリーを噴出する能力を有するホモジナイザーをいう。セルロース繊維を高圧ホモジナイザーで処理すると、セルロース繊維同士の衝突、圧力差、マイクロキャビテーションなどが作用し、セルロース繊維の解繊が効果的に生じる。したがって、解繊の処理回数を減らすことができ、セルロース微細繊維の製造効率を高めることができる。
 高圧ホモジナイザーとしては、セルロース繊維のスラリーを一直線上で対向衝突させるものを使用するのが好ましい。具体的には、例えば、対向衝突型高圧ホモジナイザー(マイクロフルイダイザー/MICROFLUIDIZER(登録商標)、湿式ジェットミル)である。この装置においては、加圧されたセルロース繊維のスラリーが合流部で対向衝突するように2本の上流側流路が形成されている。また、セルロース繊維のスラリーは合流部で衝突し、衝突したセルロース繊維のスラリーは下流側流路から流出する。上流側流路に対して下流側流路は垂直に設けられており、上流側流路と下流側流路とでT字型の流路が形成されている。このような対向衝突型の高圧ホモジナイザーを用いると高圧ホモジナイザーから与えられるエネルギーが衝突エネルギーに最大限に変換されるため、より効率的にセルロース繊維を解繊することができる。
 セルロース繊維の解繊は、得られるセルロース微細繊維の平均繊維幅、平均繊維長、結晶化度、等が、所望の値又は評価となるように行うのが好ましい。
 次に、本発明の実施例について、説明する。
 セルロース繊維に、リンオキソ酸(ホスホン酸)、水酸化塩類(水酸化ナトリウム)及び尿素を添加し、加熱及び洗浄した後に、解繊してセルロース微細繊維を製造する試験を行った。セルロース繊維としては、針葉樹晒クラフトパルプを使用した。また、解繊は、高圧ホモジナイザーを使用して行った。
 リンオキソ酸、水酸化ナトリウム及び尿素の添加量、これらの溶液(試薬A)のpH、加熱の温度及び時間、解繊パス回数は、表1に示すとおりとした。得られたセルロース微細繊維の物性については、表2に示した。B型粘度及び光透過度の評価方法は、前述したとおりとした。なお、表1中の尿素の添加量0mmol/gは「添加なし」を、表2中のカルバメート基の導入量0mmol/gは「導入されていないこと」を、比較例3の「-」は「未測定」を意味する。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
(考察)
 表2から、リンオキソ酸基の導入量がセルロース繊維1gあたり2.0mmolを超えると、B型粘度及び光透過度のいずれも向上することが分かる。
 本発明は、セルロース微細繊維及びその製造方法として利用可能である。

Claims (6)

  1.  繊維幅が1~200nmであり、
     セルロース繊維のヒドロキシ基の一部が、下記構造式(1)に示す官能基で置換されてリンオキソ酸のエステルが導入されており、
     前記構造式(1)に示す官能基の導入量が、セルロース繊維1gあたり2.0mmolを超える、
     ことを特徴とするセルロース微細繊維。
    [構造式(1)]
    Figure JPOXMLDOC01-appb-C000001
     構造式(1)において、a,b,m,nは自然数である。
     A1,A2,・・・,AnおよびA’のうちの少なくとも1つはO-であり、残りはR、OR、NHR、及び、なしのいずれかである。Rは、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、芳香族基、及びこれらの誘導基のいずれかである。αは有機物又は無機物からなる陽イオンである。
  2.  前記セルロース繊維のヒドロキシ基の一部が、カルバメート基で置換されて、カルバメートが導入されている、
     請求項1に記載のセルロース微細繊維。
  3.  前記セルロース繊維のヒドロキシ基の一部が、下記構造式(2)に示す官能基で置換されて前記リンオキソ酸のエステルとしてホスホン酸のエステルが導入されている、
     請求項1又は請求項2に記載のセルロース微細繊維。
    [構造式(2)]
    Figure JPOXMLDOC01-appb-C000002
     構造式(2)において、αは、なし、R、及びNHRのいずれかである。Rは、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、芳香族基、及びこれらの誘導基のいずれかである。βは有機物又は無機物からなる陽イオンである。
  4.  請求項1~3のいずれか1項に記載のセルロース微細繊維を製造するにあたり、
     セルロース繊維に、リンオキソ酸類及びリンオキソ酸金属塩類の少なくともいずれか一方を含む添加物(A)並びに尿素及び尿素誘導体の少なくともいずれか一方を含む添加物(B)からなるpH3.0未満の溶液を添加し、加熱し、解繊する、
     ことを特徴とするセルロース微細繊維の製造方法。
  5.  前記セルロース繊維に水酸化塩類も添加するものとし、かつ、前記加熱後に前記セルロース繊維を洗浄する、
     請求項4に記載のセルロース微細繊維の製造方法。
  6.  前記リンオキソ酸類の一部又は全部として、ホスホン酸類を使用する、
     請求項4又は請求項5に記載のセルロース微細繊維の製造方法。
PCT/JP2019/019606 2018-05-18 2019-05-17 セルロース微細繊維及びその製造方法 WO2019221256A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207031585A KR20210010855A (ko) 2018-05-18 2019-05-17 셀룰로오스 미세섬유 및 그 제조 방법
CN201980029467.XA CN112074542B (zh) 2018-05-18 2019-05-17 纤维素微细纤维及其制造方法
US17/049,825 US11584803B2 (en) 2018-05-18 2019-05-17 Fine cellulose fiber and method for producing same
CA3099395A CA3099395A1 (en) 2018-05-18 2019-05-17 Fine cellulose fiber and method for producing same
EP19803356.5A EP3795596A4 (en) 2018-05-18 2019-05-17 CELLULOSE MICROFIBERS AND PROCESS FOR THEIR MANUFACTURE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018096106A JP7273463B2 (ja) 2018-05-18 2018-05-18 セルロース微細繊維及びその製造方法
JP2018-096106 2018-05-18

Publications (1)

Publication Number Publication Date
WO2019221256A1 true WO2019221256A1 (ja) 2019-11-21

Family

ID=68540154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019606 WO2019221256A1 (ja) 2018-05-18 2019-05-17 セルロース微細繊維及びその製造方法

Country Status (7)

Country Link
US (1) US11584803B2 (ja)
EP (1) EP3795596A4 (ja)
JP (2) JP7273463B2 (ja)
KR (1) KR20210010855A (ja)
CN (1) CN112074542B (ja)
CA (1) CA3099395A1 (ja)
WO (1) WO2019221256A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021256247A1 (ja) * 2020-06-17 2021-12-23 大王製紙株式会社 繊維状セルロース及び繊維状セルロース複合樹脂
WO2022030391A1 (ja) * 2020-08-04 2022-02-10 大王製紙株式会社 繊維状セルロースの製造方法及び繊維状セルロース複合樹脂の製造方法
US20220074141A1 (en) * 2018-12-18 2022-03-10 Marusumi Paper Co., Ltd. Production method for dry solid containing fine cellulose fibers, dry solid containing fine cellulose fibers, redispersion of fine cellulose fibers
WO2022209157A1 (ja) * 2021-03-31 2022-10-06 大王製紙株式会社 繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105247136B (zh) * 2013-06-03 2019-06-14 王子控股株式会社 含微细纤维的片材的制造方法
JP7327236B2 (ja) * 2018-12-28 2023-08-16 王子ホールディングス株式会社 繊維状セルロース、繊維状セルロース含有物、成形体及び繊維状セルロースの製造方法
JP7483462B2 (ja) 2019-12-05 2024-05-15 日本製紙株式会社 樹脂組成物の製造方法
JP7483461B2 (ja) 2019-12-05 2024-05-15 日本製紙株式会社 樹脂組成物の製造方法
WO2021112182A1 (ja) * 2019-12-05 2021-06-10 日本製紙株式会社 樹脂組成物の製造方法
JP7483418B2 (ja) * 2020-03-11 2024-05-15 大王製紙株式会社 繊維状セルロースの製造方法、及び繊維状セルロース複合樹脂の製造方法
JP2021143239A (ja) * 2020-03-11 2021-09-24 大王製紙株式会社 繊維状セルロース、繊維状セルロース複合樹脂及び繊維状セルロースの製造方法
JP2021147533A (ja) * 2020-03-19 2021-09-27 愛媛県 水性塗料組成物
JP2021147532A (ja) * 2020-03-19 2021-09-27 愛媛県 水性塗料組成物
JP2021155545A (ja) * 2020-03-26 2021-10-07 大王製紙株式会社 繊維状セルロース、繊維状セルロース複合樹脂及び繊維状セルロースの製造方法
JP2021155544A (ja) * 2020-03-26 2021-10-07 大王製紙株式会社 繊維状セルロース、繊維状セルロース複合樹脂及び繊維状セルロースの製造方法
WO2021235501A1 (ja) * 2020-05-19 2021-11-25 王子ホールディングス株式会社 微細繊維状セルロース、分散液、シート、積層シート、積層体及び微細繊維状セルロースの製造方法
JP7265514B2 (ja) * 2020-10-30 2023-04-26 大王製紙株式会社 セルロース繊維含有物の製造方法、及びセルロース繊維複合樹脂の製造方法
JP2022088181A (ja) 2020-12-02 2022-06-14 ビューテック株式会社 セルロース繊維の湿潤シート及び成形体の製造方法
JP7449328B2 (ja) * 2022-03-29 2024-03-13 大王製紙株式会社 セルロースナノファイバーの製造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4610551B1 (ja) * 1968-05-30 1971-03-17
JP2009293167A (ja) 2008-06-09 2009-12-17 Nobuo Shiraishi ナノ繊維の製造方法、ナノ繊維、混合ナノ繊維、複合化方法、複合材料および成形品
JP2010216021A (ja) 2009-03-13 2010-09-30 Kyoto Univ セルロースナノファイバーの製造方法
US20110196139A1 (en) * 2010-02-05 2011-08-11 Korea Institute Of Science And Technology Preparation method for cellulose phosphite compounds
JP2013127141A (ja) 2011-11-18 2013-06-27 Oji Holdings Corp 微細繊維状セルロースの製造方法、不織布の製造方法、微細繊維状セルロース、微細繊維状セルロース含有スラリー、不織布、および複合体
WO2016002689A1 (ja) * 2014-06-30 2016-01-07 王子ホールディングス株式会社 微細セルロース繊維を含有する組成物
WO2017170908A1 (ja) * 2016-03-31 2017-10-05 王子ホールディングス株式会社 繊維状セルロースの製造方法及び繊維状セルロース
JP2018141249A (ja) * 2017-02-28 2018-09-13 大王製紙株式会社 セルロース微細繊維及びその製造方法
JP6404415B1 (ja) * 2017-07-24 2018-10-10 大王製紙株式会社 セルロース微細繊維含有物及びその製造方法、並びにセルロース微細繊維分散液
JP2018193440A (ja) * 2017-05-15 2018-12-06 大王製紙株式会社 セルロース微細繊維及びその製造方法
JP2018193465A (ja) * 2017-05-17 2018-12-06 日本製紙株式会社 マスターバッチ及びゴム組成物の製造方法
JP6540925B1 (ja) * 2019-02-08 2019-07-10 王子ホールディングス株式会社 繊維状セルロース含有組成物及び塗料

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976122A (ja) 1982-10-21 1984-05-01 中部電力株式会社 太陽光発電装置
CN105209686B (zh) * 2013-05-16 2017-10-03 王子控股株式会社 磷酸酯化微细纤维素纤维及其制造方法
JP6613771B2 (ja) 2015-09-30 2019-12-04 王子ホールディングス株式会社 微細繊維状セルロース含有物
JP6613772B2 (ja) 2015-09-30 2019-12-04 王子ホールディングス株式会社 微細繊維状セルロース含有物
CA3027242C (en) * 2016-06-13 2021-09-14 3R Valo, S.E.C. Phosphorylated lignocellulosic fibers, uses and processes of preparation thereof
US11447915B2 (en) 2016-09-30 2022-09-20 Oji Holdings Corporation Pulp, slurry, sheet, laminate, and method for producing pulp
JP7351305B2 (ja) * 2018-08-30 2023-09-27 王子ホールディングス株式会社 繊維状セルロース含有組成物、液状組成物及び成形体
JP6683242B1 (ja) * 2018-12-28 2020-04-15 王子ホールディングス株式会社 繊維状セルロース、繊維状セルロース含有物、成形体及び繊維状セルロースの製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4610551B1 (ja) * 1968-05-30 1971-03-17
JP2009293167A (ja) 2008-06-09 2009-12-17 Nobuo Shiraishi ナノ繊維の製造方法、ナノ繊維、混合ナノ繊維、複合化方法、複合材料および成形品
JP2010216021A (ja) 2009-03-13 2010-09-30 Kyoto Univ セルロースナノファイバーの製造方法
US20110196139A1 (en) * 2010-02-05 2011-08-11 Korea Institute Of Science And Technology Preparation method for cellulose phosphite compounds
JP2013127141A (ja) 2011-11-18 2013-06-27 Oji Holdings Corp 微細繊維状セルロースの製造方法、不織布の製造方法、微細繊維状セルロース、微細繊維状セルロース含有スラリー、不織布、および複合体
WO2016002689A1 (ja) * 2014-06-30 2016-01-07 王子ホールディングス株式会社 微細セルロース繊維を含有する組成物
WO2017170908A1 (ja) * 2016-03-31 2017-10-05 王子ホールディングス株式会社 繊維状セルロースの製造方法及び繊維状セルロース
JP2018141249A (ja) * 2017-02-28 2018-09-13 大王製紙株式会社 セルロース微細繊維及びその製造方法
JP2018193440A (ja) * 2017-05-15 2018-12-06 大王製紙株式会社 セルロース微細繊維及びその製造方法
JP2018193465A (ja) * 2017-05-17 2018-12-06 日本製紙株式会社 マスターバッチ及びゴム組成物の製造方法
JP6404415B1 (ja) * 2017-07-24 2018-10-10 大王製紙株式会社 セルロース微細繊維含有物及びその製造方法、並びにセルロース微細繊維分散液
JP6540925B1 (ja) * 2019-02-08 2019-07-10 王子ホールディングス株式会社 繊維状セルロース含有組成物及び塗料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3795596A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220074141A1 (en) * 2018-12-18 2022-03-10 Marusumi Paper Co., Ltd. Production method for dry solid containing fine cellulose fibers, dry solid containing fine cellulose fibers, redispersion of fine cellulose fibers
WO2021256247A1 (ja) * 2020-06-17 2021-12-23 大王製紙株式会社 繊維状セルロース及び繊維状セルロース複合樹脂
JP2021195483A (ja) * 2020-06-17 2021-12-27 大王製紙株式会社 繊維状セルロース及び繊維状セルロース複合樹脂
CN115551897A (zh) * 2020-06-17 2022-12-30 大王制纸株式会社 纤维状纤维素和纤维状纤维素复合树脂
JP7227186B2 (ja) 2020-06-17 2023-02-21 大王製紙株式会社 繊維状セルロース及び繊維状セルロース複合樹脂
CN115551897B (zh) * 2020-06-17 2024-04-16 大王制纸株式会社 纤维状纤维素和纤维状纤维素复合树脂
WO2022030391A1 (ja) * 2020-08-04 2022-02-10 大王製紙株式会社 繊維状セルロースの製造方法及び繊維状セルロース複合樹脂の製造方法
JP2022029364A (ja) * 2020-08-04 2022-02-17 大王製紙株式会社 繊維状セルロースの製造方法及び繊維状セルロース複合樹脂の製造方法
JP7097928B2 (ja) 2020-08-04 2022-07-08 大王製紙株式会社 繊維状セルロースの製造方法及び繊維状セルロース複合樹脂の製造方法
WO2022209157A1 (ja) * 2021-03-31 2022-10-06 大王製紙株式会社 繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法
JP2022156849A (ja) * 2021-03-31 2022-10-14 大王製紙株式会社 繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法
JP7213296B2 (ja) 2021-03-31 2023-01-26 大王製紙株式会社 繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法

Also Published As

Publication number Publication date
US20210380724A1 (en) 2021-12-09
CN112074542B (zh) 2022-06-24
JP2023095921A (ja) 2023-07-06
EP3795596A1 (en) 2021-03-24
CN112074542A (zh) 2020-12-11
CA3099395A1 (en) 2019-11-21
EP3795596A4 (en) 2022-03-23
JP7273463B2 (ja) 2023-05-15
KR20210010855A (ko) 2021-01-28
US11584803B2 (en) 2023-02-21
JP2019199671A (ja) 2019-11-21

Similar Documents

Publication Publication Date Title
JP7273463B2 (ja) セルロース微細繊維及びその製造方法
JP6404415B1 (ja) セルロース微細繊維含有物及びその製造方法、並びにセルロース微細繊維分散液
JP6404382B2 (ja) セルロース微細繊維及びその製造方法
US11441243B2 (en) Fine cellulose fiber and method for producing same
JP2018193440A5 (ja)
JP6963539B2 (ja) セルロース微細繊維及びその製造方法
JP2018199891A5 (ja)
JP6920260B2 (ja) セルロース微細繊維含有物及びその製造方法
JP2019023296A5 (ja)
JP2021161565A (ja) セルロース繊維の成形体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803356

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3099395

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019803356

Country of ref document: EP