JP2022156849A - 繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法 - Google Patents

繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法 Download PDF

Info

Publication number
JP2022156849A
JP2022156849A JP2021060743A JP2021060743A JP2022156849A JP 2022156849 A JP2022156849 A JP 2022156849A JP 2021060743 A JP2021060743 A JP 2021060743A JP 2021060743 A JP2021060743 A JP 2021060743A JP 2022156849 A JP2022156849 A JP 2022156849A
Authority
JP
Japan
Prior art keywords
cellulose
fibrous cellulose
resin
powder
interacting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021060743A
Other languages
English (en)
Other versions
JP7213296B2 (ja
Inventor
隆之介 青木
Ryunosuke Aoki
一紘 松末
Kazuhiro Matsusue
貴章 今井
Takaaki Imai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daio Paper Corp
Original Assignee
Daio Paper Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daio Paper Corp filed Critical Daio Paper Corp
Priority to JP2021060743A priority Critical patent/JP7213296B2/ja
Priority to EP22779389.0A priority patent/EP4317295A1/en
Priority to US18/548,403 priority patent/US20240150557A1/en
Priority to CN202280015103.8A priority patent/CN116888207A/zh
Priority to KR1020237027698A priority patent/KR20230165750A/ko
Priority to PCT/JP2022/001498 priority patent/WO2022209157A1/ja
Publication of JP2022156849A publication Critical patent/JP2022156849A/ja
Application granted granted Critical
Publication of JP7213296B2 publication Critical patent/JP7213296B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/05Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur
    • C08B15/06Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur containing nitrogen, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/001Modification of pulp properties
    • D21C9/007Modification of pulp properties by mechanical or physical means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】乾燥した場合においても分散性に優れる繊維状セルロース含有物及びその製造方法、並びに強度に優れる繊維状セルロース複合樹脂を提供する。【解決手段】樹脂に添加される繊維状セルロース含有物であり、繊維状セルロースは平均繊維幅が0.1~19μmで、かつヒドロキシル基がカルバメート基で置換されており、繊維状セルロースと相互作用する粉末を含む。また、繊維状セルロース複合樹脂は、繊維状セルロースとして前記繊維状セルロース含有物が使用されている。さらに、繊維状セルロース含有物の製造方法においては、ヒドロキシル基がカルバメート基で置換された繊維状セルロースを平均繊維幅が0.1~19μmとなるように解繊し、繊維状セルロースと相互作用する粉末と混合して混合液を得、この混合液を乾燥する。【選択図】なし

Description

本発明は、繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法に関するものである。
近年、セルロースナノファイバー、マイクロ繊維セルロース(ミクロフィブリル化セルロース)等の微細繊維は、樹脂の補強材としての使用が脚光を浴びている。もっとも、微細繊維が親水性であるのに対し、樹脂は疎水性であるため、微細繊維を樹脂の補強材として使用するには、当該微細繊維の分散性に問題があった。そこで、本発明者等は、微細繊維のヒドロキシ基をカルバメート基で置換することを提案した(特許文献1参照)。この提案によると、微細繊維の分散性が向上し、もって樹脂の補強効果が向上する。もっとも、微細繊維は乾燥時に凝集するが、この凝集は強固であるため、乾燥した微細繊維を樹脂の補強材とするには分散性の点で問題があった。
特開2019-1876号公報
本発明が解決しようとする主たる課題は、乾燥した場合においても分散性に優れる繊維状セルロース含有物及びその製造方法、並びに強度に優れる繊維状セルロース複合樹脂を提供することにある。
従来の開発、例えば、上記特許文献の開発においては、微細繊維が分散液の状態で保持される場合における微細繊維の分散性に主眼が置かれ、エステル化、エーテル化、アミド化、スルフィド化等、数々存在する変性方法の中で、カルバメートの導入(カルバメート化)が優れることを見出したものであった。これに対し、本発明は、微細繊維をいったん乾燥等した後、樹脂と混合する場合における微細繊維の分散性に主眼が置かれ、カルバメートの導入を前提に数々の試験を行うなかで、微細繊維と共に使用する他の物質、物性の追求で上記課題を解決することができることを知見し、想到するに至ったものである。このようにして想到するに至った手段は、次のとおりである。
(請求項1に記載の手段)
樹脂に添加される繊維状セルロース含有物であり、
前記繊維状セルロースは、平均繊維幅が0.1~19μmで、かつヒドロキシル基の一部又は全部がカルバメート基で置換されており、
前記繊維状セルロースと相互作用する粉末を含む、
ことを特徴とする繊維状セルロース含有物。
(請求項2に記載の手段)
前記相互作用する粉末は、90%粒子径/10%粒子径が2~1000である、
請求項1に記載の繊維状セルロース含有物。
(請求項3に記載の手段)
前記相互作用する粉末の体積平均粒子径が0.01~10000μmで、かつ前記相互作用する粉末の体積平均粒子径(μm)/前記繊維状セルロースの平均繊維長(μm)が0.005~5000である、
請求項1又は請求項2に記載の繊維状セルロース含有物。
(請求項4に記載の手段)
前記繊維状セルロースは、繊維長0.2mm未満の割合が5%以上で、かつ繊維長0.2~0.6mmの割合が10%以上である、
請求項1~3のいずれか1項に記載の繊維状セルロース含有物。
(請求項5に記載の手段)
前記繊維状セルロースは、平均繊維長が1.0mm以下、平均繊維幅が10μm以下で、かつフィブリル化率が2.5%以上である、
請求項1~4のいずれか1項に記載の繊維状セルロース含有物。
(請求項6に記載の手段)
前記相互作用する粉末は、酸価2.0%以上の酸変性樹脂である、
請求項1~5のいずれか1項に記載の繊維状セルロース含有物。
(請求項7に記載の手段)
前記相互作用する粉末は、無水マレイン酸変性ポリプロピレンである、
請求項1~6のいずれか1項に記載の繊維状セルロース含有物。
(請求項8に記載の手段)
繊維状セルロース及び樹脂が混合された繊維状セルロース複合樹脂であり、
前記繊維状セルロースとして請求項1~7のいずれか1項に記載の繊維状セルロース含有物が使用されている、
ことを特徴とする繊維状セルロース複合樹脂。
(請求項9に記載の手段)
ヒドロキシル基の一部又は全部がカルバメート基で置換された繊維状セルロースを平均繊維幅が0.1~19μmとなるように解繊し、前記繊維状セルロースと相互作用する粉末と混合して混合液を得、
この混合液を乾燥する、
ことを特徴とする繊維状セルロース含有物の製造方法。
本発明によると、乾燥した場合においても分散性に優れる繊維状セルロース含有物及びその製造方法、並びに強度に優れる繊維状セルロース複合樹脂になる。
次に、発明を実施するための形態を説明する。なお、本実施の形態は本発明の一例である。本発明の範囲は、本実施の形態の範囲に限定されない。
本形態の繊維状セルロース含有物は樹脂に添加されるものであり、繊維状セルロース(以下、「セルロース繊維」ともいう。)は平均繊維幅が0.1~19μmで、かつヒドロキシ基(-OH基)の一部又は全部がカルバメート基で置換されたカルバメート変性マイクロ繊維セルロースである。加えて、繊維状セルロース含有物には、繊維状セルロースと相互作用する粉末(以下、単に「相互作用する粉末」ともいう。)が含まれている。この粉末は好ましくは酸変性樹脂であり、この酸変性樹脂の酸基はカルバメート基の一部又は全部とイオン結合する。また、この繊維状セルロース含有物が樹脂に添加されることで繊維状セルロース複合樹脂が得られる。さらに、繊維状セルロース含有物を製造する方法においては、ヒドロキシ基の一部又は全部がカルバメート基で置換された繊維状セルロースを平均繊維幅が0.1~19μmとなるように解繊し、繊維状セルロースと相互作用する粉末を添加して混合液を得、この混合液を乾燥する。以下、詳細に説明する。
(繊維状セルロース)
本形態において微細繊維である繊維状セルロースは、平均繊維径が0.1~19μmのマイクロ繊維セルロース(ミクロフィブリル化セルロース)である。マイクロ繊維セルロースであると、樹脂の補強効果が著しく向上する。また、マイクロ繊維セルロースは、同じく微細繊維であるセルロースナノファイバーよりもカルバメート基で変性する(カルバメート化)のが容易である。ただし、微細化する前のセルロース原料をカルバメート化するのがより好ましく、この場合においては、マイクロ繊維セルロース及びセルロースナノファイバーは同等である。
本形態において、マイクロ繊維セルロースは、セルロースナノファイバーよりも平均繊維幅の太い繊維を意味する。具体的には、平均繊維径(幅)が、例えば0.1~19μm、好ましくは0.2~10μm、より好ましくは0.5超~10μmである。繊維状セルロースの平均繊維径が0.1μmを下回ると(未満になると)、セルロースナノファイバーであるのと変わらなくなり、樹脂の強度(特に曲げ弾性率)向上効果が十分に得られないおそれがある。また、解繊時間が長くなり、大きなエネルギーが必要になる。さらに、セルロース繊維スラリーの脱水性が悪化する。脱水性が悪化すると、乾燥に大きなエネルギーが必要になり、乾燥に大きなエネルギーをかけると繊維状セルロースが熱劣化して、強度が低下するおそれがある。加えて、平均繊維径が0.1μmを下回るまで解繊すると、繊維状セルロースの繊維長のバラツキが小さくなり、相互作用する粉末の粒子径分布を規定する本形態の作用効果が発揮され難くなる。
他方、繊維状セルロースの平均繊維径が19μmを上回ると(超えると)、パルプであるのと変わらなくなり、補強効果が十分でなくなるおそれがある。加えて、平均繊維径が19μmを上回る程度の解繊では、繊維状セルロースの繊維長のバラツキが小さく、相互作用する粉末の粒子径分布を規定する本形態の作用効果が発揮され難くなる。また、特に平均繊維径が10μm以下であれば、平均繊維長を1.0mm以下、フィブリル化率を2.5%以上とすることと相まって相互作用する粉末との絡み合いが良好になる。
また、繊維状セルロースの最頻径(幅)は、好ましくは0.1~19μm、より好ましくは0.5~10μm、特に好ましくは1~6μmである。この点、後述するように繊維状セルロースの繊維長がばらつく本形態においては、解繊途中で繊維幅の大きい繊維が一定割合混在した状態であるため、繊維状セルロースを繊維径の平均で特定するよりも、最も数の多い最頻径で特定する方が好適である。このような観点から、最頻径が0.1μm未満であると、セルロースナノファイバーの割合が高くなる傾向となり、セルロースナノファイバー同士が凝集し、補強効果が十分でなくなる可能性があると言える。他方、最頻径が19μmを超えると、パルプの割合が高くなる傾向となり、補強効果が十分でなくなる可能性があると言える。
微細繊維(マイクロ繊維セルロース及びセルロースナノファイバー)の平均繊維径の測定方法は、次のとおりである。
まず、固形分濃度0.01~0.1質量%の微細繊維の水分散液100mlをテフロン(登録商標)製メンブレンフィルターでろ過し、エタノール100mlで1回、t-ブタノール20mlで3回溶媒置換する。次に、凍結乾燥し、オスミウムコーティングして試料とする。この試料について、構成する繊維の幅に応じて3,000倍~30,000倍のいずれかの倍率で電子顕微鏡SEM画像による観察を行う。具体的には、観察画像に二本の対角線を引き、対角線の交点を通過する直線を任意に三本引く。さらに、この三本の直線と交錯する合計100本の繊維の幅を目視で計測する。そして、計測値の中位径を平均繊維径とする。
また、微細繊維の最頻径の測定方法は、バルメット社製の繊維分析計「FS5」によって測定する。
ところで、繊維状セルロースがマイクロ繊維セルロースである場合においては、繊維長等のバラツキが多くなるとの特性を有する。これは、以下の理由による。
まず、パルプは、例えば、チップを加圧状態のもとアルカリで煮た後、常圧に戻る際にほぐれることで製造されるものであり、機械的な解繊は加わっていない。したがって、木材の細胞がそのまま単離してパルプになっているのみであり、繊維長等が比較的揃っている。また、セルロースナノファイバーは、マイクロ繊維セルロースの毛羽立ち箇所が独立して離れていき、大部分は毛羽立ち箇所が独立した繊維のみからなる。したがって、繊維長等が比較的揃っている。これに対し、マイクロ繊維セルロースは、パルプに機械的な解繊力が加わって繊維が毛羽立っていく途中の段階にあり、したがって繊維長等の分布が広くなる。
マイクロ繊維セルロースは、通常繊維長0.2mm未満の割合が5%以上で、かつ繊維長0.2~0.6mmの割合が10%以上であり、好ましくは繊維長0.2mm未満の割合が8%以上で、かつ繊維長0.2~0.6mmの割合が13%以上であり、より好ましくは繊維長0.2mm未満の割合が20%以上で、かつ繊維長0.2~0.6mmの割合が16%以上である。マイクロ繊維セルロースの繊維長が以上のようにばらついていると、相互作用する粉末の粒子径分布を規定する本形態の作用効果がいかんなく発揮される。
また、以上においては、特に繊維長0.2mm未満の割合が多くなり過ぎると大きい粒子径の相互作用する粉末との絡み合いが不十分になり、分散性の低下につながる可能性がある。他方、繊維長0.6mm超の割合が多くなり過ぎると、小さい粒子径の相互作用する粉末との絡み合いが不十分になり、分散性の低下につながる可能性がある。
以上のようにマイクロ繊維セルロースの繊維長等のバラツキは相対的に大きなものであるが、繊維長0.2mm未満の割合が多くなり過ぎたり、繊維長0.6mm超の割合が多くなり過ぎたりすると、繊維自体としての樹脂の補強効果が劣るものになる可能性がある。そこで、好ましくは繊維状セルロースの繊維長0.2~0.6mmの割合が10~90%、より好ましくは14~70%、特に好ましくは16~50%である。繊維長0.2~0.6mmの割合が14%未満であると、相互作用する粉末との絡み合いが不十分になり、結果として補強効果が十分に発揮されない可能性がある。
マイクロ繊維セルロースは、セルロース原料(以下、「原料パルプ」ともいう。)を解繊(微細化)することで得ることができる。原料パルプとしては、例えば、広葉樹、針葉樹等を原料とする木材パルプ、ワラ・バガス・綿・麻・じん皮繊維等を原料とする非木材パルプ、回収古紙、損紙等を原料とする古紙パルプ(DIP)等の中から1種又は2種以上を選択して使用することができる。なお、以上の各種原料は、例えば、セルロース系パウダーなどと言われる粉砕物(粉状物)の状態等であってもよい。
ただし、不純物の混入を可及的に避けるために、原料パルプとしては、木材パルプを使用するのが好ましい。木材パルプとしては、例えば、広葉樹クラフトパルプ(LKP)、針葉樹クラフトパルプ(NKP)等の化学パルプ、機械パルプ(TMP)等の中から1種又は2種以上を選択して使用することができる。
広葉樹クラフトパルプは、広葉樹晒クラフトパルプであっても、広葉樹未晒クラフトパルプであっても、広葉樹半晒クラフトパルプであってもよい。同様に、針葉樹クラフトパルプは、針葉樹晒クラフトパルプであっても、針葉樹未晒クラフトパルプであっても、針葉樹半晒クラフトパルプであってもよい。
機械パルプとしては、例えば、ストーングランドパルプ(SGP)、加圧ストーングランドパルプ(PGW)、リファイナーグランドパルプ(RGP)、ケミグランドパルプ(CGP)、サーモグランドパルプ(TGP)、グランドパルプ(GP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)、リファイナーメカニカルパルプ(RMP)、漂白サーモメカニカルパルプ(BTMP)等の中から1種又は2種以上を選択して使用することができる。
原料パルプは、解繊するに先立って化学的手法によって前処理することができる。化学的手法による前処理としては、例えば、酸による多糖の加水分解(酸処理)、酵素による多糖の加水分解(酵素処理)、アルカリによる多糖の膨潤(アルカリ処理)、酸化剤による多糖の酸化(酸化処理)、還元剤による多糖の還元(還元処理)等を例示することができる。ただし、化学的手法による前処理としては、酵素処理を施すのが好ましく、加えて酸処理、アルカリ処理、及び酸化処理の中から選択された1又は2以上の処理を施すのがより好ましい。以下、酵素処理について詳細に説明する。
酵素処理に使用する酵素としては、セルラーゼ系酵素及びヘミセルラーゼ系酵素の少なくともいずれか一方を使用するのが好ましく、両方を併用するのがより好ましい。これらの酵素を使用すると、セルロース原料の解繊がより容易になる。なお、セルラーゼ系酵素は、水共存下でセルロースの分解を惹き起こす。また、ヘミセルラーゼ系酵素は、水共存下でヘミセルロースの分解を惹き起こす。
セルラーゼ系酵素としては、例えば、トリコデルマ(Trichoderma、糸状菌)属、アクレモニウム(Acremonium、糸状菌)属、アスペルギルス(Aspergillus、糸状菌)属、ファネロケエテ(Phanerochaete、担子菌)属、トラメテス(Trametes、担子菌)属、フーミコラ(Humicola、糸状菌)属、バチルス(Bacillus、細菌)属、スエヒロタケ(Schizophyllum、担子菌)属、ストレプトミセス(Streptomyces、細菌)属、シュードモナス(Pseudomonas、細菌)属などが産生する酵素を使用することができる。これらのセルラーゼ系酵素は、試薬や市販品として購入可能である。市販品としては、例えば、セルロイシンT2(エイチピィアイ社製)、メイセラ-ゼ(明治製菓社製)、ノボザイム188(ノボザイム社製)、マルティフェクトCX10L(ジェネンコア社製)、セルラーゼ系酵素GC220(ジェネンコア社製)等を例示することができる。
また、セルラーゼ系酵素としては、EG(エンドグルカナーゼ)及びCBH(セロビオハイドロラーゼ)のいずれをも使用することもできる。EG及びCBHは、それぞれを単体で使用しても、混合して使用してもよい。また、ヘミセルラーゼ系酵素と混合して使用してもよい。
ヘミセルラーゼ系酵素としては、例えば、キシランを分解する酵素であるキシラナーゼ(xylanase)、マンナンを分解する酵素であるマンナーゼ(mannase)、アラバンを分解する酵素であるアラバナーゼ(arabanase)等を使用することができる。また、ペクチンを分解する酵素であるペクチナーゼも使用することができる。
ヘミセルロースは、植物細胞壁のセルロースミクロフィブリル間にあるペクチン類を除いた多糖類である。ヘミセルロースは多種多様で木材の種類や細胞壁の壁層間でも異なる。針葉樹の2次壁では、グルコマンナンが主成分であり、広葉樹の2次壁では4-O-メチルグルクロノキシランが主成分である。そこで、針葉樹晒クラフトパルプ(NBKP)から微細繊維を得る場合は、マンナーゼを使用するのが好ましい。また、広葉樹晒クラフトパルプ(LBKP)から微細繊維を得る場合は、キシラナーゼを使用するのが好ましい。
セルロース原料に対する酵素の添加量は、例えば、酵素の種類、原料となる木材の種類(針葉樹か広葉樹か)、機械パルプの種類等によって決まる。ただし、セルロース原料に対する酵素の添加量は、好ましくは0.1~3質量%、より好ましくは0.3~2.5質量%、特に好ましくは0.5~2質量%である。酵素の添加量が0.1質量%を下回ると、酵素の添加による効果が十分に得られないおそれがある。他方、酵素の添加量が3質量%を上回ると、セルロースが糖化され、微細繊維の収率が低下するおそれがある。また、添加量の増量に見合う効果の向上を認めることができないとの問題もある。
酵素としてセルラーゼ系酵素を使用する場合、酵素処理時のpHは、酵素反応の反応性の観点から、弱酸性領域(pH=3.0~6.9)であるのが好ましい。他方、酵素としてヘミセルラーゼ系酵素を使用する場合、酵素処理時のpHは、弱アルカリ性領域(pH=7.1~10.0)であるのが好ましい。
酵素処理時の温度は、酵素としてセルラーゼ系酵素及びヘミセルラーゼ系酵素のいずれを使用する場合においても、好ましくは30~70℃、より好ましくは35~65℃、特に好ましくは40~60℃である。酵素処理時の温度が30℃以上であれば、酵素活性が低下し難くなり、処理時間の長期化を防止することができる。他方、酵素処理時の温度が70℃以下であれば、酵素の失活を防止することができる。
酵素処理の時間は、例えば、酵素の種類、酵素処理の温度、酵素処理時のpH等によって決まる。ただし、一般的な酵素処理の時間は、0.5~24時間である。
酵素処理した後には、酵素を失活させるのが好ましい。酵素を失活させる方法としては、例えば、アルカリ水溶液(好ましくはpH10以上、より好ましくはpH11以上)を添加する方法、80~100℃の熱水を添加する方法等が存在する。
次に、アルカリ処理の方法について説明する。
解繊に先立ってアルカリ処理すると、パルプが持つヘミセルロースやセルロースの水酸基が一部解離し、分子がアニオン化することで分子内及び分子間水素結合が弱まり、解繊におけるセルロース原料の分散が促進される。
アルカリ処理に使用するアルカリとしては、例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウム、アンモニア水溶液、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム、水酸化ベンジルトリメチルアンモニウム等の有機アルカリ等を使用することができる。ただし、製造コストの観点からは、水酸化ナトリウムを使用するのが好ましい。
解繊に先立って酵素処理や酸処理、酸化処理を施すと、マイクロ繊維セルロースの保水度を低く、結晶化度を高くすることができ、かつ均質性を高くすることができる。この点、マイクロ繊維セルロースの保水度が低いと脱水し易くなり、セルロース繊維スラリーの脱水性が向上する。
原料パルプを酵素処理や酸処理、酸化処理すると、パルプが持つヘミセルロースやセルロースの非晶領域が分解される。結果、解繊のエネルギーを低減することができ、セルロース繊維の均一性や分散性を向上することができる。ただし、前処理は、マイクロ繊維セルロースのアスペクト比を低下させるため、樹脂の補強材として使用する場合には、過度の前処理を避けるのが好ましい。
原料パルプの解繊は、例えば、ビーター、高圧ホモジナイザー、高圧均質化装置等のホモジナイザー、グラインダー、摩砕機等の石臼式摩擦機、単軸混練機、多軸混練機、ニーダーリファイナー、ジェットミル等を使用して原料パルプを叩解することによって行うことができる。ただし、リファイナーやジェットミルを使用して行うのが好ましい。
マイクロ繊維セルロースの平均繊維長(単繊維の長さの平均)は、好ましくは0.10~2.00mm、より好ましくは0.12~1.50mm、特に好ましくは0.15~1.00mmである。平均繊維長が0.10mm未満であると、繊維同士の三次元ネットワークを形成できず、複合樹脂の補強効果(特に曲げ弾性率)が低下するおそれがある。また、相互作用する粉末と十分に絡み合わない可能性がある。他方、平均繊維長が2.00mmを上回ると、原料パルプと変わらない長さのため補強効果が不十分となるおそれがある。また、繊維が凝集してしまい、相互作用する粉末と十分に絡み合わなくなる可能性がある。
マイクロ繊維セルロースの原料となるセルロース原料の平均繊維長は、好ましくは0.50~5.00mm、より好ましくは1.00~3.00mm、特に好ましくは1.50~2.50mmである。セルロース原料の平均繊維長が0.50mmを下回ると、解繊処理した際の、樹脂の補強効果が十分得られない可能性がある。他方、平均繊維長が5.00mmを上回ると、解繊時の製造コストの面で不利となるおそれがある。
マイクロ繊維セルロースの平均繊維長は、例えば、原料パルプの選定、前処理、解繊等で任意に調整可能である。
マイクロ繊維セルロースのアスペクト比は、好ましくは2~15,000、より好ましくは10~10,000である。アスペクト比が2を下回ると、三次元ネットワークを構築できないため、たとえ平均繊維長が0.10mmを超えたとしても、補強効果が不十分となるおそれがある。また、アスペクト比が2を下回ると、球体様の形状である相互作用する粉末に対して相互作用できる点が少なくなり過ぎるため、十分な相互作用が得られずに、相互作用する粉末と繊維とを相溶する作用が十分に発揮できず、補強効果が不十分となる可能性がある。他方、アスペクト比が15,000を上回ると、マイクロ繊維セルロース同士の絡み合いが多くなり、樹脂中での分散が不十分となるおそれがある。また、繊維同士で相互作用し、相互作用する粉末との相互作用が十分に発生せず、補強効果が不十分となる可能性がある。
アスペクト比とは、平均繊維長を平均繊維幅で除した値である。アスペクト比が大きいほど引っかかりが生じる箇所が多くなるため補強効果が上がるが、他方で引っかかりが多くなる分、樹脂の延性が低下するものと考えられる。
マイクロ繊維セルロースのフィブリル化率は、好ましくは1.0~30.0%、より好ましくは1.5~20.0%、特に好ましくは2.5~15.0%である。フィブリル化率が30.0%を上回ると、水との接触面積が広くなり過ぎるため、たとえ平均繊維幅が0.1μm以上に留まる範囲で解繊したとしても、脱水が困難になる可能性がある。また、フィブリル化率が30.0%を上回ると、表面積が広くなり過ぎ、繊維が水を保持し易くなるため、相互作用する粉末と相互作用し難くなる可能性がある。他方、フィブリル化率が1.0%下回ると、フィブリル同士の水素結合が少なく、強固な三次元ネットワークを形成することができなくなるおそれがある。また、フィブリル化率が2.5%を下回ると、相互作用する粉末に対するまとわりつきが劣る傾向にある。
繊維の繊維長やフィブリル化率は、バルメット社製の繊維分析計「FS5」によって測定する。
マイクロ繊維セルロースの結晶化度は、好ましくは50%以上、より好ましくは55%以上、特に好ましくは60%以上である。結晶化度が50%を下回ると、他のセルロース繊維、例えば、パルプやセルロースナノファイバーとの混合性は向上するものの、繊維自体の強度が低下するため、樹脂の強度を向上することができなくなるおそれがある。他方、マイクロ繊維セルロースの結晶化度は、好ましくは95%以下、より好ましくは90%以下、特に好ましくは85%以下である。結晶化度が95%を上回ると、分子内の強固な水素結合割合が多くなり、繊維自体が剛直となり、分散性が劣るようになる。
マイクロ繊維セルロースの結晶化度は、例えば、原料パルプの選定、前処理、微細化処理で任意に調整可能である。
結晶化度は、JIS K 0131(1996)に準拠して測定した値である。
マイクロ繊維セルロースのパルプ粘度は、好ましくは2cps以上、より好ましくは4cps以上である。マイクロ繊維セルロースのパルプ粘度が2cpsを下回ると、マイクロ繊維セルロースの凝集を抑制するのが困難になるおそれがある。また、パルプ粘度が2cpsを下回ると、相互作用する粉末との相互作用を発揮したとしても樹脂の補強性が不十分になるおそれがある。
パルプ粘度は、TAPPI T 230に準拠して測定した値である。
マイクロ繊維セルロースのフリーネスは、好ましくは500ml以下、より好ましくは300ml以下、特に好ましくは100ml以下である。マイクロ繊維セルロースのフリーネスが500mlを上回ると、樹脂の強度向上効果が十分に得られなくなるおそれがある。また、相互作用する粉末との絡み合いが悪くなり、繊維の凝集を十分に抑制できなくなる可能性がある。
フリーネスは、JIS P8121-2(2012)に準拠して測定した値である。
マイクロ繊維セルロースのゼータ電位は、好ましくは-150~20mV、より好ましくは-100~0mV、特に好ましくは-80~-10mVである。ゼータ電位が-150mVを下回ると、樹脂との相溶性が著しく低下し補強効果が不十分となるおそれがある。他方、ゼータ電位が20mVを上回ると、分散安定性が低下するおそれがある。
マイクロ繊維セルロースの保水度は、好ましくは80~400%、より好ましくは90~350%、特に好ましくは100~300%である。保水度が80%を下回ると、原料パルプと変わらないため補強効果が不十分となるおそれがある。他方、保水度が400%を上回ると、脱水性が劣る傾向にあり、また、凝集し易くなる。この点、マイクロ繊維セルロースの保水度は、当該繊維のヒドロキシ基がカルバメート基に置換されていることで、より低くすることができ、脱水性や乾燥性を高めることができる。
マイクロ繊維セルロースの保水度は、例えば、原料パルプの選定、前処理、解繊等で任意に調整可能である。
保水度は、JAPAN TAPPI No.26(2000)に準拠して測定した値である。
本形態のマイクロ繊維セルロースは、カルバメート基を有する。どのようにしてカルバメート基を有するものとされているかは特に限定されない。例えば、セルロース原料がカルバメート化されていることでカルバメート基を有するものであっても、マイクロ繊維セルロース(微細化されたセルロース原料)がカルバメート化されることでカルバメート基を有するものであってもよい。
なお、カルバメート基を有するとは、繊維状セルロースにカルバメート(カルバミン酸のエステル)が導入された状態を意味する。カルバメート基は、-O-CO-NH-で表される基であり、例えば、-O-CO-NH2、-O-CONHR、-O-CO-NR2等で表わされる基である。つまり、カルバメート基は、下記の構造式(1)で示すことができる。
Figure 2022156849000001
ここでRは、それぞれ独立して、飽和直鎖状炭化水素基、飽和分岐鎖状炭化水素基、飽和環状炭化水素基、不飽和直鎖状炭化水素基、不飽和分岐鎖状炭化水素基、芳香族基、及びこれらの誘導基の少なくともいずれかである。
飽和直鎖状炭化水素基としては、例えば、メチル基、エチル基、プロピル基等の炭素数1~10の直鎖状のアルキル基を挙げることができる。
飽和分岐鎖状炭化水素基としては、例えば、イソプロピル基、sec-ブチル基、イソブチル基、tert-ブチル基等の炭素数3~10の分岐鎖状アルキル基を挙げることができる。
飽和環状炭化水素基としては、例えば、シクロペンチル基、シクロヘキシル基、ノルボルニル基等のシクロアルキル基を挙げることができる。
不飽和直鎖状炭化水素基としては、例えば、エテニル基、プロペン-1-イル基、プロペン-3-イル基等の炭素数2~10の直鎖状のアルケニル基、エチニル基、プロピン-1-イル基、プロピン-3-イル基等の炭素数2~10の直鎖状のアルキニル基等を挙げることができる。
不飽和分岐鎖状炭化水素基としては、例えば、プロペン-2-イル基、ブテン-2-イル基、ブテン-3-イル基等の炭素数3~10の分岐鎖状アルケニル基、ブチン-3-イル基等の炭素数4~10の分岐鎖状アルキニル基等を挙げることができる。
芳香族基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基等を挙げることができる。
誘導基としては、上記飽和直鎖状炭化水素基、飽和分岐鎖状炭化水素基、飽和環状炭化水素基、不飽和直鎖状炭化水素基、不飽和分岐鎖状炭化水素基及び芳香族基が有する1又は複数の水素原子が、置換基(例えば、ヒドロキシ基、カルボキシ基、ハロゲン原子等。)で置換された基を挙げることができる。
カルバメート基を有する(カルバメート基が導入された)マイクロ繊維セルロースにおいては、極性の高いヒドロキシ基の一部又は全部が、相対的に極性の低いカルバメート基に置換されている。したがって、カルバメート基を有するマイクロ繊維セルロースは、親水性が低く、極性の低い樹脂等との親和性が高い。結果、カルバメート基を有するマイクロ繊維セルロースは、樹脂との均一分散性に優れる。また、カルバメート基を有するマイクロ繊維セルロースのスラリーは、粘性が低く、ハンドリング性が良い。
マイクロ繊維セルロースのヒドロキシ基に対するカルバメート基の置換率は、好ましくは1.0~5.0mmol/g、より好ましくは1.2~3.0mmol/g、特に好ましくは1.5~2.0mmol/gである。置換率を1.0mmol/g以上にすると、カルバメートを導入した効果、特に樹脂の曲げ伸び向上効果が確実に奏せられる。他方、置換率が5.0mmol/gを超えると、セルロース繊維が繊維の形状を保てなくなり、樹脂の補強効果が十分得られないおそれがある。
なお、カルバメート基の置換率(mmol/g)とは、カルバメート基を有するセルロース原料1gあたりに含まれるカルバメート基の物質量をいう。また、セルロースは、無水グルコースを構造単位とする重合体であり、一構造単位当たり3つのヒドロキシ基を有する。
<カルバメート化>
マイクロ繊維セルロース(解繊前にカルバメート化する場合は、セルロース原料。以下、同様であり、「マイクロ繊維セルロース等」ともいう。)にカルバメートを導入する(カルバメート化)点については、前述したようにセルロース原料をカルバメート化してから微細化する方法と、セルロース原料を微細化してからカルバメート化する方法とがある。この点、本明細書においては、先にセルロース原料の解繊について説明し、その後にカルバメート化(変性)について説明している。しかしながら、解繊及びカルバメート化は、どちらを先に行うこともできる。ただし、先にカルバメート化を行い、その後に、解繊をする方が好ましい。解繊する前のセルロース原料は脱水効率が高く、また、カルバメート化に伴う加熱によってセルロース原料が解繊され易い状態になるためである。
マイクロ繊維セルロース等をカルバメート化する工程は、例えば、混合処理、除去処理、及び加熱処理に、主に区分することができる。なお、混合処理及び除去処理は合わせて、加熱処理に供される混合物を調製する調整処理ということもできる。
混合処理においては、マイクロ繊維セルロース等(前述したようにセルロース原料の場合もある。以下、同様。)と尿素及び/又は尿素の誘導体(以下、単に「尿素等」ともいう。)とを分散媒中で混合する。
尿素や尿素の誘導体としては、例えば、尿素、チオ尿素、ビウレット、フェニル尿素、ベンジル尿素、ジメチル尿素、ジエチル尿素、テトラメチル尿素、尿素の水素原子をアルキル基で置換した化合物等を使用することができる。これらの尿素や尿素の誘導体は、それぞれを単独で又は複数を組み合わせて使用することができる。ただし、尿素を使用するのが好ましい。
マイクロ繊維セルロース等に対する尿素等の混合質量比(尿素等/マイクロ繊維セルロース等)の下限は、好ましくは10/100、より好ましくは20/100である。他方、上限は、好ましくは300/100、より好ましくは200/100である。混合質量比を10/100以上にすることで、カルバメート化の効率が向上する。他方、混合質量比が300/100を上回っても、カルバメート化は頭打ちになる。
分散媒は、通常、水である。ただし、アルコール、エーテル等の他の分散媒や、水と他の分散媒との混合物を用いてもよい。
混合処理においては、例えば、水にマイクロ繊維セルロース等及び尿素等を添加しても、尿素等の水溶液にマイクロ繊維セルロース等を添加しても、マイクロ繊維セルロース等を含むスラリーに尿素等を添加してもよい。また、均一に混合するために、添加後、攪拌してもよい。さらに、マイクロ繊維セルロース等と尿素等とを含む分散液には、その他の成分が含まれていてもよい。
除去処理においては、混合処理において得られたマイクロ繊維セルロース等及び尿素等を含む分散液から分散媒を除去する。分散媒を除去することで、これに続く加熱処理において効率的に尿素等を反応させることができる。
分散媒の除去は、加熱によって分散媒を揮発させることで行うのが好ましい。この方法によると、尿素等の成分を残したまま分散媒のみを効率的に除去することができる。
除去処理における加熱温度の下限は、分散媒が水である場合は、好ましくは50℃、より好ましくは70℃、特に好ましくは90℃である。加熱温度を50℃以上にすることで効率的に分散媒を揮発させる(除去する)ことができる。他方、加熱温度の上限は、好ましくは120℃、より好ましくは100℃である。加熱温度が120℃を上回ると、分散媒と尿素が反応し、尿素が単独分解するおそれがある。
除去処理における加熱時間は、分散液の固形分濃度等に応じて適宜調節することができる。具体的には、例えば、6~24時間である。
除去処理に続く加熱処理においては、マイクロ繊維セルロース等と尿素等との混合物を加熱処理する。この加熱処理において、マイクロ繊維セルロース等のヒドロキシ基の一部又は全部が尿素等と反応してカルバメート基に置換される。より詳細には、尿素等が加熱されると下記の反応式(1)に示すようにイソシアン酸及びアンモニアに分解される。そして、イソシアン酸はとても反応性が高く、例えば、下記の反応式(2)に示すようにセルロースの水酸基にカルバメート基を形成する。
NH2-CO-NH2 → H-N=C=O + NH3 …(1)
Cell-OH + H-N=C=O → Cell-O-CO-NH2 …(2)
加熱処理における加熱温度の下限は、好ましくは120℃、より好ましくは130℃、特に好ましくは尿素の融点(約134℃)以上、さらに好ましくは140℃、最も好ましくは150℃である。加熱温度を120℃以上にすることで、カルバメート化が効率的に行われる。加熱温度の上限は、好ましくは200℃、より好ましくは180℃、特に好ましくは170℃である。加熱温度が200℃を上回ると、マイクロ繊維セルロース等が分解し、補強効果が不十分となるおそれがある。
加熱処理における加熱時間の下限は、好ましくは1分、より好ましくは5分、特に好ましくは30分、更に好ましくは1時間、最も好ましくは2時間である。加熱時間を1分以上にすることで、カルバメート化の反応を確実に行うことができる。他方、加熱時間の上限は、好ましくは15時間、より好ましくは10時間である。加熱時間が15時間を上回ると、経済的ではなく、15時間で十分カルバメート化を行うことができる。
もっとも、加熱時間の長期化は、セルロース繊維の劣化を招く。そこで、加熱処理におけるpH条件が重要となる。pHは、好ましくはpH9以上、より好ましくはpH9~13、特に好ましくはpH10~12のアルカリ性条件である。また、次善の策として、pH7以下、好ましくはpH3~7、特に好ましくはpH4~7の酸性条件又は中性条件である。pH7~8の中性条件であると、セルロース繊維の平均繊維長が短くなり、樹脂の補強効果に劣る可能性がある。これに対し、pH9以上のアルカリ性条件であると、セルロース繊維の反応性が高まり、尿素等への反応が促進され、効率良くカルバメート化反応するため、セルロース繊維の平均繊維長を十分に確保することができる。他方、pH7以下の酸性条件であると、尿素等からイソシアン酸及びアンモニアに分解する反応が進み、セルロース繊維への反応が促進され、効率良くカルバメート化反応するため、セルロース繊維の平均繊維長を十分に確保することができる。ただし、可能であれば、アルカリ性条件で加熱処理する方が好ましい。酸性条件であるとセルロースの酸加水分解が進行するおそれがあるためである。
pHの調整は、混合物に酸性化合物(例えば、酢酸、クエン酸等。)やアルカリ性化合物(例えば、水酸化ナトリウム、水酸化カルシウム等。)を添加すること等によって行うことができる。
加熱処理において加熱する装置としては、例えば、熱風乾燥機、抄紙機、ドライパルプマシン等を使用することができる。
加熱処理後の混合物は、洗浄してもよい。この洗浄は、水等で行えばよい。この洗浄によって未反応で残留している尿素等を除去することができる。
(スラリー)
マイクロ繊維セルロースは、必要により、水系媒体中に分散して分散液(スラリー)にする。水系媒体は、全量が水であるのが特に好ましいが、一部が水と相溶性を有する他の液体である水系媒体も使用することができる。他の液体としては、炭素数3以下の低級アルコール類等を使用することができる。
スラリーの固形分濃度は、好ましくは0.1~10.0質量%、より好ましくは0.5~5.0質量%である。固形分濃度が0.1質量%を下回ると、脱水や乾燥する際に過大なエネルギーが必要となるおそれがある。他方、固形分濃度が10.0質量%を上回ると、スラリー自体の流動性が低下してしまい分散剤を使用する場合において均一に混合できなくなるおそれがある。
(相互作用する粉末)
本形態の繊維状セルロース含有物は、繊維状セルロースと相互作用する粉末を含む。繊維状セルロース含有物が当該相互作用する粉末を含むことで、繊維状セルロースを樹脂の補強性を発揮できる形態とすることができる。すなわち、繊維状セルロースをスラリーとして用いる場合は、樹脂と複合化する前にスラリーに含まれる水系媒体を除去するのが好ましい。しかしながら、水系媒体を除去する際にセルロース同士が水素結合により不可逆的に凝集し、繊維としての補強効果を十分に発揮できなくなる可能性がある。そこで、繊維状セルローススラリーに相互作用する粉末を含むことで、セルロース同士の水素結合を物理的に阻害するものである。また、相互作用しない粉末の場合は乾燥時に相互作用しない粉末同士が凝集してしまう可能性があるが、相互作用する粉末の場合は当該可能性が低い。このような点から、相互作用する粉末は、酸変性樹脂であるのが好ましく、無水マレイン酸変性樹脂であるのがより好ましく、無水マレイン酸変性ポリプロピレン(MAPP)であるのが特に好ましい。酸変性樹脂の詳細は、後述する。
ここで、相互作用するとは、セルロースと共有結合、イオン結合、金属結合による強固な結合をすることを意味する(つまり、水素結合、ファンデルワールス力による結合は相互作用するという概念に含まれない。)。好ましくは、強固な結合は、結合エネルギーが100kJ/mol以上の結合である。
相互作用する粉末の体積平均粒子径は、0.01~10000μmが好ましく、50~750μmがより好ましく、150~450μmが特に好ましい。体積平均粒子径が10000μmを超えると、相互作用する粉末がセルロース繊維同士の間隙に入って凝集を阻害する効果が発揮できないおそれがある。他方、体積平均粒子径が0.01μm未満であると、微細なためにマイクロ繊維セルロース同士の水素結合を阻害することができないおそれがある。
相互作用する粉末は、90%粒子径/10%粒子径が2~1000であるのが好ましく、10~200であるのがより好ましい。粒子径比を当該範囲内とすることで、繊維状セルロースがマイクロ繊維セルロースであり、繊維長にバラツキが存在する場合においても、相互作用する粉末の凝集阻害効果がいかんなく発揮される。具体的には、90%粒子径/10%粒子径が2未満であると、粒子径が揃いすぎており、特定繊維長の繊維としか相互作用の効果を発揮し難い可能性がある。他方、90%粒子径/10%粒子径が1000超であると、粒子径のバラツキが極端にとなり、相互作用する繊維長が限定される可能性がある。
以上において90%粒子径とは、粒子径が小さいものから順に測定し、測定された割合が90%となったときの粒子径を意味する。また、10%粒子径とは、粒子径が小さいものから順に測定し、測定された割合が10%となったときの粒子径を意味する。
相互作用する粉末の算術標準偏差は、好ましくは0.01~10000μm、より好ましくは1~5000μm、特に好ましくは10~1000μmである。上記したように粉末の粒子径をばらつかせるとは言っても、繊維状セルロースがマイクロ繊維セルロースであるという意味において繊維状セルロースに範囲があり、従って粉末の算術標準偏差を特定するものである。この点、算術標準偏差が0.01μm未満であると、粒子径が均一なものとなり、特定繊維長の繊維としか相互作用の効果を発揮し難い可能性がある。他方、算術標準偏差が10000μmを超えると、粒子径が過大に不均一となり、相互作用できる繊維長の範囲が広くなり、相互作用の効果を発揮し難い可能性がある。
算術標準偏差は、粒度分布測定装置(例えば株式会社堀場製作所のレーザー回折・散乱式粒度分布測定器)で測定した値である。
また、相互作用する粉末の体積平均粒子径(μm)/繊維状セルロースの平均繊維長(μm)は、0.005~5000であるのが好ましく、0.01~1000であるのがより好ましい。当該範囲内であると、粉末及び繊維がより絡み合うようになり、繊維の凝集が抑制される。より具体的には、相互作用する粉末の体積平均粒子径/繊維状セルロースの平均繊維長が0.005未満であると、繊維同士で相互作用してしまい相互作用する粉末との相互作用が十分に発生せず、補強効果が不十分となる可能性がある。他方、相互作用する粉末の体積平均粒子径/繊維状セルロースの平均繊維長が5000を超えると、球体様の形状である相互作用する粉末に対して相互作用できる点が少なくなりすぎるため、十分な相互作用が得られずに、補強効果が不十分となる可能性がある。
本明細書において、相互作用する粉末の体積平均粒子径は、そのまま又は水分散体の状態で粒度分布測定装置(例えば株式会社堀場製作所のレーザー回折・散乱式粒度分布測定器)を用いて測定される体積基準粒度分布から算出される体積平均粒子径である。
本形態において相互作用する粉末は、樹脂粉末であるのが好ましい。相互作用する粉末が樹脂粉末であると、混練時に溶融し粒でなくなるため、粒子径の異なる粒子の混在が全く影響を与えなくなる。樹脂粉末としては、例えば、複合樹脂を得る際に使用する樹脂と同様のものを使用することができる。もちろん、異種であってもよい。
相互作用する粉末の配合量は、繊維状セルロースに対して、好ましくは1~9,900質量%、より好ましくは5~1,900質量%、特に好ましくは10~900質量%である。配合量が1質量%を下回ると、セルロース繊維の間隙に入って凝集抑制する作用が十分に発揮されない可能性がある。他方、配合量が9,900質量%を上回ると、セルロース繊維としての機能を発揮できなくなるおそれがある。
相互作用する粉末には、これに加えて無機粉末を併用することができる。相互作用する粉末及び無機粉末を併用すると、無機粉体同士や相互作用する粉末同士が凝集する条件で混合した場合でも無機粉末及び相互作用する粉末がお互いに凝集を防ぐような効果を発揮する。また、粒径が小さい粉体は表面積が大きく重力の影響よりも分子間力の影響を受けやすく、その結果として凝集しやすくなるため、粉体とマイクロ繊維セルローススラリーとを混合する際に粉体がスラリー中でうまくほぐれなかったり、水系媒体の除去時に粉体同士が凝集することで、マイクロ繊維セルロースの凝集を防ぐ効果が十分に発揮されなくなったりするおそれがある。しかしながら、無機粉末及び相互作用する粉末を併用すると、自身の凝集を緩和することができると考えられる。
無機粉末としては、例えば、Fe、Na、K、Cu、Mg、Ca、Zn、Ba、Al、Ti、ケイ素元素等の周期律表第I族~第VIII族中の金属元素の単体、酸化物、水酸化物、炭素塩、硫酸塩、ケイ酸塩、亜硫酸塩、これらの化合物よりなる各種粘土鉱物等を例示することができる。具体的には、例えば、硫酸バリウム、硫酸カルシウム、硫酸マグネシウム、硫酸ナトリウム、亜硫酸カルシウム、酸化亜鉛、重質炭酸カルシウム、軽質炭酸カルシウム、ほう酸アルミニウム、アルミナ、酸化鉄、チタン酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化ナトリウム、炭酸マグネシウム、ケイ酸カルシウム、クレー、ワラストナイト、ガラスビーズ、ガラスパウダー、シリカゲル、乾式シリカ、コロイダルシリカ、珪砂、硅石、石英粉、珪藻土、ホワイトカーボン、ガラスファイバー等を例示することができる。これらの無機粉末は、複数が含有されていてもよい。また、古紙パルプに含まれるものであってもよいし、製紙スラッジ中の無機物を再生したいわゆる再生填料等であってもよい。
ただし、製紙用の填料や顔料として好適に使用される炭酸カルシウム、タルク、ホワイトカーボン、クレー、焼成クレー、二酸化チタン、水酸化アルミニウム及び再生填料等の中から選択される少なくとも1種以上の無機粉末を使用するのが好ましく、炭酸カルシウム、タルク、クレーの中からから選択される少なくとも1種以上を使用するのがより好ましく、軽質炭酸カルシウム及び重質炭酸カルシウムの少なくともいずれか一方を使用するのが特に好ましい。炭酸カルシウム、タルク、クレーを使用すると、樹脂等のマトリックスとの複合化が容易である。また、汎用的な無機材料であるため、用途の制限が生じることが少ないとのメリットがある。さらに、炭酸カルシウムは下記の理由から特に好ましい。軽質炭酸カルシウムを使用する場合は、粉末のサイズや形状を一定に制御しやすくなる。このため、セルロース繊維のサイズや形状に合わせて、間隙に入り込んでセルロース繊維同士の凝集を抑制する効果を生じやすくするようにサイズや形状を調整して、ピンポイントで効果を発揮しやすくできるメリットがある。また、重質炭酸カルシウムを使用すると、重質炭酸カルシウムが不定形であることから、スラリー中に様々なサイズの繊維が存在する場合でも、水系媒体除去時に繊維が凝集する過程において、間隙に入り込んでセルロース繊維同士の凝集を抑制することができるとのメリットがある。
無機粉末及び相互作用する粉末を併用する場合、無機粉末の平均粒径:相互作用する粉末の平均粒子径の比は、1:0.1~1:10000が好ましく、1:1~1:1000がより好ましい。この範囲にあると、自身の凝集力の強さから生じる問題(例えば、粉体とマイクロ繊維セルローススラリーとを混合する際に粉体がスラリー中でうまくほぐれなかったり、水系媒体の除去時に粉体同士が凝集したりする問題。)が発生せずに、マイクロ繊維セルロースの凝集を防ぐ効果を十分に発揮できるようになると考えられる。
無機粉末及び相互作用する粉末を併用する場合、無機粉末の質量%:相互作用する粉末の質量%の比は、1:0.01~1:100が好ましく、1:0.1~1:10がより好ましい。この範囲にあると、異種粉体同士が自身の凝集を阻害することが可能になると考えられる。この範囲にあると、自身の凝集力の強さから生じる問題(例えば、粉体とマイクロ繊維セルローススラリーとを混合する際に粉体がスラリー中でうまくほぐれなかったり、水系媒体の除去時に粉体同士が凝集したりする問題。)が発生せずに、マイクロ繊維セルロースの凝集を防ぐ効果を十分に発揮できるようになると考えられる。
(酸変性樹脂)
前述したように、相互作用する粉末は樹脂粉末であるのが好ましい。また、樹脂は、酸変性樹脂であるのが好ましい。酸変性樹脂は、酸基がカルバメート基の一部又は全部とイオン結合し得る。このイオン結合により、当該樹脂粉末の凝集抑制機能が効果的に発揮される。
酸変性樹脂としては、例えば、酸変性ポリオレフィン樹脂、酸変性エポキシ樹脂、酸変性スチレン系エラストマー樹脂等を使用することができる。ただし、酸変性ポリオレフィン樹脂を使用するのが好ましい。酸変性ポリオレフィン樹脂は、不飽和カルボン酸成分とポリオレフィン成分との共重合体である。
ポリオレフィン成分としては、例えば、エチレン、プロピレン、ブタジエン、イソプレン等のアルケンの重合体の中から1種又は2種以上を選択して使用することができる。ただし、好適には、プロピレンの重合体であるポリプロピレン樹脂を用いることが好ましい。
不飽和カルボン酸成分としては、例えば、無水マレイン酸類、無水フタル酸類、無水イタコン酸類、無水シトラコン酸類、無水クエン酸類等の中から1種又は2種以上を選択して使用することができる。ただし、好適には、無水マレイン酸類を使用するのが好ましい。つまり、無水マレイン酸変性ポリプロピレン樹脂を使用するのが特に好ましい。
酸変性樹脂の混合量は、マイクロ繊維セルロース100質量部に対して、好ましくは0.1~1,000質量部、より好ましくは1~500質量部、特に好ましくは10~200質量部である。特に酸変性樹脂が無水マレイン酸変性ポリプロピレン樹脂である場合は、好ましくは1~200質量部、より好ましくは10~100質量部である。酸性変性樹脂の混合量が0.1質量部を下回ると凝集抑制効果が十分ではない。他方、混合量が1,000質量部を上回ると、凝集抑制効果が逆に低下する傾向となる。
無水マレイン酸変性ポリプロピレンの重量平均分子量は、例えば1,000~100,000、好ましくは3,000~50,000である。
また、無水マレイン酸変性ポリプロピレンの酸価は、0.5mgKOH/g以上、100mgKOH/g以下が好ましく、1mgKOH/g以上、50mgKOH/g以下がより好ましい。
無水マレイン酸変性ポリプロピレンの酸価は、JIS-K2501に準拠し、水酸化カリウムで滴定することで求めた値である。
(分散剤)
マイクロ繊維セルロースは、分散剤と混合するとより好ましいものになる。分散剤としては、芳香族類にアミン基及び/又は水酸基を有する化合物、脂肪族類にアミン基及び/又は水酸基を有する化合物が好ましい。
芳香族類にアミン基及び/又は水酸基を有する化合物としては、例えば、アニリン類、トルイジン類、トリメチルアニリン類、アニシジン類、チラミン類、ヒスタミン類、トリプタミン類、フェノール類、ジブチルヒドロキシトルエン類、ビスフェノールA類、クレゾール類、オイゲノール類、没食子酸類、グアイアコール類、ピクリン酸類、フェノールフタレイン類、セロトニン類、ドーパミン類、アドレナリン類、ノルアドレナリン類、チモール類、チロシン類、サリチル酸類、サリチル酸メチル類、アニスアルコール類、サリチルアルコール類、シナピルアルコール類、ジフェニドール類、ジフェニルメタノール類、シンナミルアルコール類、スコポラミン類、トリプトフォール類、バニリルアルコール類、3-フェニル‐1-プロパノール類、フェネチルアルコール類、フェノキシエタノール類、ベラトリルアルコール類、ベンジルアルコール類、ベンゾイン類、マンデル酸類、マンデロニトリル類、安息香酸類、フタル酸類、イソフタル酸類、テレフタル酸類、メリト酸類、ケイ皮酸類などが挙げられる。
また、脂肪族類にアミン基及び/又は水酸基を有する化合物としては、例えば、カプリルアルコール類、2-エチルヘキサノール類、ペラルゴンアルコール類、カプリンアルコール類、ウンデシルアルコール類、ラウリルアルコール類、トリデシルアルコール類、ミリスチルアルコール類、ペンタデシルアルコール類、セタノール類、ステアリルアルコール類、エライジルアルコール類、オレイルアルコール類、リノレイルアルコール類、メチルアミン類、ジメチルアミン類、トリメチルアミン類、エチルアミン類、ジエチルアミン類、エチレンジアミン類、トリエタノールアミン類、N,N-ジイソプロピルエチルアミン類、テトラメチルエチレンジアミン類、ヘキサメチレンジアミン類、スペルミジン類、スペルミン類、アマンタジン類、ギ酸類、酢酸類、プロピオン酸類、酪酸類、吉草酸類、カプロン酸類、エナント酸類、カプリル酸類、ペラルゴン酸類、カプリン酸類、ラウリン酸類、ミリスチン酸類、パルミチン酸類、マルガリン酸類、ステアリン酸類、オレイン酸類、リノール酸類、リノレン酸類、アラキドン酸類、エイコサペンタエン酸類、ドコサヘキサエン酸類、ソルビン酸類などが挙げられる。
以上の分散剤は、セルロース繊維同士の水素結合を阻害する。したがって、マイクロ繊維セルロース及び樹脂の混練に際してマイクロ繊維セルロースが樹脂中において確実に分散するようになる。また、以上の分散剤は、マイクロ繊維セルロース及び樹脂の相溶性を向上させる役割も有する。この点でマイクロ繊維セルロースの樹脂中における分散性が向上する。
なお、繊維状セルロース及び樹脂の混練に際して、別途、相溶剤(薬剤)を添加することも考えられるが、この段階で薬剤を添加するよりも、予め繊維状セルロース及び分散剤(薬剤)を混合する方が、繊維状セルロースに対する薬剤の纏わりつきが均一になり、樹脂との相溶性向上効果が高くなる。
また、例えば、ポリプロピレンは融点が160℃であり、したがって繊維状セルロース及び樹脂の混練は、180℃程度で行う。しかるに、この状態で分散剤(液)を添加すると、一瞬で乾燥してしまう。そこで、融点の低い樹脂を使用してマスターバッチ(マイクロ繊維セルロースの濃度の濃い複合樹脂)を作製し、その後に通常の樹脂で濃度を下げる方法が存在する。しかしながら、融点の低い樹脂は一般的に強度が低い。したがって、当該方法によると、複合樹脂の強度が下がるおそれがある。
分散剤の混合量は、マイクロ繊維セルロース100質量部に対して、好ましくは0.1~1,000質量部、より好ましくは1~500質量部、特に好ましくは10~200質量部である。分散剤の混合量が0.1質量部を下回ると、樹脂強度の向上が十分ではないとされるおそれがある。他方、混合量が1,000質量部を上回ると、過剰となり樹脂強度が低下する傾向となる。
この点、前述した酸変性樹脂は酸基とマイクロ繊維セルロースのカルバメート基とがイオン結合することで相溶性を向上し、もって補強効果を上げるためのものであり、分子量が大きいため樹脂とも馴染み易く(密着性向上)、強度向上に寄与していると考えられる。一方、上記の分散剤は、マイクロ繊維セルロース同士の水酸基同士の間に介在して凝集を防ぎ、もって樹脂中での分散性を向上するものであり、また、分子量が酸変性樹脂に比べ小さいため、酸変性樹脂が入り込めないようなマイクロ繊維セルロース間の狭いスペースに入ることができ、分散性を向上して強度向上する役割を果たす。以上のような観点から、上記酸変性樹脂の分子量は、分散剤の分子量の2~2,000倍、好ましくは5~1,000倍であると好適である。
以上をより詳細に説明すると、相互作用する粉末は物理的にマイクロ繊維セルロース同士の間に介在することで水素結合を阻害し、もってマイクロ繊維セルロースの分散性を向上する。特に、酸変性樹脂は、酸基とマイクロ繊維セルロースのカルバメート基とイオン結合する。したがって、他の物質に優先して繊維周りに存在するようになり、繊維の凝集抑制効果が発揮される。しかも、繊維状セルロース含有物と樹脂とを混合して複合樹脂とする場合においては、当該複合樹脂とマイクロ繊維セルロースとを密着させる役割を果たし、複合樹脂の機械的強度を向上させる。この点、分散剤がマイクロ繊維セルロース同士の水素結合を阻害する点は同じであるが、相互作用する粉末はマイクロオーダーであるため、物理的に介在して水素結合を抑制する。したがって、分散性が分散剤にくらべ低いものの、特に樹脂粉末の場合は自身が溶融してマトリックスになるため物性低下に寄与しない。他方、分散剤は分子レベルであり、極めて小さいためマイクロ繊維セルロースを覆うようにして水素結合を阻害し、マイクロ繊維セルロースの分散性を向上する効果は高い。しかしながら、樹脂中に残り、物性低下に働く可能性がある。
(複合樹脂の製造方法)
繊維状セルロース含有物や分散剤等の混合物は、樹脂と混練するに先立って乾燥及び粉砕して粉状物にすることができる。この形態によると、樹脂との混練に際して繊維状セルロースを乾燥させる必要がなく、熱効率が良い。また、混合物に相互作用する粉末や分散剤が混合されている場合、当該混合物を乾燥したとしても、繊維状セルロース(マイクロ繊維セルロース)が再分散しなくなるおそれが低い。
混合物は、必要により、乾燥するに先立って脱水して脱水物にする。この脱水は、例えば、ベルトプレス、スクリュープレス、フィルタープレス、ツインロール、ツインワイヤーフォーマ、バルブレスフィルタ、センターディスクフィルタ、膜処理、遠心分離機等の脱水装置の中から1種又は2種以上を選択使用して行うことができる。
混合物の乾燥は、例えば、ロータリーキルン乾燥、円板式乾燥、気流式乾燥、媒体流動乾燥、スプレー乾燥、ドラム乾燥、スクリューコンベア乾燥、パドル式乾燥、一軸混練乾燥、多軸混練乾燥、真空乾燥、攪拌乾燥等の中から1種又は2種以上を選択使用して行うことができる。
乾燥した混合物(乾燥物)は、粉砕して粉状物にする。乾燥物の粉砕は、例えば、ビーズミル、ニーダー、ディスパー、ツイストミル、カットミル、ハンマーミル等の中から1種又は2種以上を選択使用して行うことができる。
粉状物の平均粒子径は、好ましくは1~10,000μm、より好ましくは10~5,000μm、特に好ましくは100~1,000μmである。粉状物の平均粒子径が10,000μmを上回ると、樹脂との混練性に劣るものになるおそれがある。他方、粉状物の平均粒子径が1μmを下回るものにするには大きなエネルギーが必要になるため、経済的でない。
粉状物の平均粒子径の制御は、粉砕の程度を制御することのほか、フィルター、サイクロン等の分級装置を使用した分級によることができる。
混合物(粉状物)の嵩比重は、好ましくは0.03~1.0、より好ましくは0.04~0.9、特に好ましくは0.05~0.8である。嵩比重が1.0を超えるということは繊維状セルロース同士の水素結合がより強固であり、樹脂中で分散させることは容易ではなくなることを意味する。他方、嵩比重が0.03を下回るものにするのは、移送コストの面から不利である。
嵩比重は、JIS K7365に準じて測定した値である。
混合物(粉状物)の水分率は、好ましくは50%以下、より好ましくは30%以下、特に好ましくは10%以下である。水分率が50%を上回ると、樹脂と混練する際のエネルギーが膨大になり、経済的でない。 水分率は、定温乾燥機を用いて、試料を105℃で6時間以上保持し質量の変動が認められなくなった時点の質量を乾燥後質量とし、下記式にて算出した値である。
繊維水分率(%)=[(乾燥前質量-乾燥後質量)÷乾燥前質量]×100
以上のようにして得た粉状物(繊維状セルロース含有物)は、必要により樹脂と混練し、繊維状セルロース複合樹脂を得る。この混練は、例えば、ペレット状の樹脂と粉状物とを混ぜ合わす方法によることのほか、樹脂をまず溶融し、この溶融物の中に粉状物を添加するという方法によることもできる。なお、相互作用する粉末として酸変性樹脂等の樹脂粉末を使用する場合においては、樹脂と混合することなくただちに混練して複合樹脂とすることもできる。
混合物(粉状物、繊維状セルロース含有物)は、全量を100質量部とした場合において繊維状セルロースが55質量部を超える割合で、特に60質量部以上の割合で含有することが好ましい。通常、繊維状セルロース濃度が55質量部を超えるような混合物を樹脂と混錬すると、樹脂中での混合物の分散性が悪くなってしまい、混合性に劣る。一方で、本願発明の混合物は、ヒドロキシル基の一部又は全部がカルバメート基で置換されている繊維状セルロースと、前記繊維状セルロースと相互作用する粉末とを含んでいるため、繊維状セルロースが55質量部を超えても、混合物を樹脂と混錬した際の高い分散性を維持できる。混合物の繊維状セルロース濃度を上げることは、複合樹脂に任意の割合の繊維状セルロースを含有させるために使用する混合物の量を減らすことが出来るという観点からも好ましい。
混練処理には、例えば、単軸又は二軸以上の多軸混練機、ミキシングロール、ニーダー、ロールミル、バンバリーミキサー、スクリュープレス、ディスパーザー等の中から1種又は2種以上を選択して使用することができる。それらのなかで、二軸以上の多軸混練機を使用することが好ましい。二軸以上の多軸混練機を2機以上、並列又は直列にして、使用しても良い。
混練処理の温度は、樹脂のガラス転移点以上であり、樹脂の種類によって異なるが、80~280℃とするのが好ましく、90~260℃とするのがより好ましく、100~240℃とするのが特に好ましい。
樹脂としては、熱可塑性樹脂又は熱硬化性樹脂の少なくともいずれか一方を使用することができる。
熱可塑性樹脂としては、例えば、ポリプロピレン(PP)、ポリエチレン(PE)等のポリオレフィン、脂肪族ポリエステル樹脂や芳香族ポリエステル樹脂等のポリエステル樹脂、ポリスチレン、メタアクリレート、アクリレート等のポリアクリル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂等の中から1種又は2種以上を選択して使用することができる。
ただし、ポリオレフィン及びポリエステル樹脂の少なくともいずれか一方を使用するのが好ましい。また、ポリオレフィンとしては、ポリプロピレンを使用するのが好ましい。さらに、ポリエステル樹脂としては、脂肪族ポリエステル樹脂として、例えば、ポリ乳酸、ポリカプロラクトン等を例示することができ、芳香族ポリエステル樹脂として、例えば、ポリエチレンテレフタレート等を例示することができるが、生分解性を有するポリエステル樹脂(単に「生分解性樹脂」ともいう。)を使用するのが好ましい。
生分解性樹脂としては、例えば、ヒドロキシカルボン酸系脂肪族ポリエステル、カプロラクトン系脂肪族ポリエステル、二塩基酸ポリエステル等の中から1種又は2種以上を選択して使用することができる。
ヒドロキシカルボン酸系脂肪族ポリエステルとしては、例えば、乳酸、リンゴ酸、グルコース酸、3-ヒドロキシ酪酸等のヒドロキシカルボン酸の単独重合体や、これらのヒドロキシカルボン酸のうちの少なくとも1種を用いた共重合体等の中から1種又は2種以上を選択して使用することができる。ただし、ポリ乳酸、乳酸と乳酸を除く上記ヒドロキシカルボン酸との共重合体、ポリカプロラクトン、上記ヒドロキシカルボン酸のうちの少なくとも1種とカプロラクトンとの共重合体を使用するのが好ましく、ポリ乳酸を使用するのが特に好ましい。
この乳酸としては、例えば、L-乳酸やD-乳酸等を使用することができ、これらの乳酸を単独で使用しても、2種以上を選択して使用してもよい。
カプロラクトン系脂肪族ポリエステルとしては、例えば、ポリカプロラクトンの単独重合体や、ポリカプロラクトン等と上記ヒドロキシカルボン酸との共重合体等の中から1種又は2種以上を選択して使用することができる。
二塩基酸ポリエステルとしては、例えば、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリブチレンアジペート等の中から1種又は2種以上を選択して使用することができる。
生分解性樹脂は、1種を単独で使用しても、2種以上を併用してもよい。
熱硬化性樹脂としては、例えば、フェノール樹脂、尿素樹脂、メラミン樹脂、フラン樹脂、不飽和ポリエステル、ジアリルフタレート樹脂、ビニルエステル樹脂、エポキシ樹脂、ウレタン系樹脂、シリコーン樹脂、熱硬化性ポリイミド系樹脂等を使用することができる。これらの樹脂は、単独で又は二種以上組み合わせて使用することができる。
繊維状セルロース及び樹脂の配合割合は、好ましくは繊維状セルロースが1質量部以上、樹脂が99質量部以下、より好ましくは繊維状セルロースが2質量部以上、樹脂が98質量部以下、特に好ましくは繊維状セルロースが3質量部以上、樹脂が97質量部以下である。また、好ましくは繊維状セルロースが50質量部以下、樹脂が50質量部以上、より好ましくは繊維状セルロースが40質量部以下、樹脂が60質量部以上、特に好ましくは繊維状セルロースが30質量部以下、樹脂が70質量部以上である。特に繊維状セルロースが10~50質量部であると、樹脂組成物の強度、特に曲げ強度及び引張り弾性率の強度を著しく向上させることができる。
なお、最終的に得られ樹脂組成物に含まれる繊維状セルロース及び樹脂の含有割合は、通常、繊維状セルロース及び樹脂の上記配合割合と同じとなる。
マイクロ繊維セルロース及び樹脂の溶解パラメータ(cal/cm31/2(SP値)の差、つまり、マイクロ繊維セルロースのSPMFC値、樹脂のSPPOL値とすると、SP値の差=SPMFC値-SPPOL値とすることができる。SP値の差は10~0.1が好ましく、8~0.5がより好ましく、5~1が特に好ましい。SP値の差が10を超えると、樹脂中でマイクロ繊維セルロースが分散せず、補強効果を得ることはできない。他方、SP値の差が0.1未満であるとマイクロ繊維セルロースが樹脂に溶解してしまい、フィラーとして機能せず、補強効果が得られない。この点、樹脂(溶媒)のSPPOL値とマイクロ繊維セルロース(溶質)のSPMFC値の差が小さい程、補強効果が大きい。
なお、溶解パラメータ(cal/cm31/2(SP値)とは、溶媒-溶質間に作用する分子間力を表す尺度であり、SP値が近い溶媒と溶質であるほど、溶解度が増す。
(成形処理)
繊維状セルロース含有物及び樹脂の混練物は、必要により再度混練する等した後、所望の形状に成形することができる。この成形の大きさや厚さ、形状等は、特に限定されず、例えば、シート状、ペレット状、粉末状、繊維状等とすることができる。
成形処理の際の温度は、樹脂のガラス転移点以上であり、樹脂の種類によって異なるが、例えば90~260℃、好ましくは100~240℃である。
混練物の成形は、例えば、金型成形、射出成形、押出成形、中空成形、発泡成形等によることができる。また、混練物を紡糸して繊維状にし、前述した植物材料等と混繊してマット形状、ボード形状とすることもできる。混繊は、例えば、エアーレイにより同時堆積させる方法等によることができる。
混練物を成形する装置としては、例えば、射出成形機、吹込成形機、中空成形機、ブロー成形機、圧縮成形機、押出成形機、真空成形機、圧空成形機等の中から1種又は2種以上を選択して使用することができる。
以上の成形は、混練に続いて行うことも、混練物をいったん冷却し、破砕機等を使用してチップ化した後、このチップを押出成形機や射出成形機等の成形機に投入して行うこともできる。もちろん、成形は、本発明の必須の要件ではない。
(その他の組成物)
繊維状セルロース含有物には、マイクロ繊維セルロースと共にセルロースナノファイバーが含まれていてもよい。セルロースナノファイバーは、マイクロ繊維セルロースと同様に微細繊維であり、樹脂の強度向上にとってマイクロ繊維セルロースを補完する役割を有する。ただし、可能であれば、微細繊維としてセルロースナノファイバーを含むことなくマイクロ繊維セルロースのみによる方が好ましい。なお、セルロースナノファイバーの平均繊維径(平均繊維幅。単繊維の直径平均。)は、好ましくは4~100nm、より好ましくは10~80nmである。
また、繊維状セルロース含有物には、パルプが含まれていてもよい。パルプは、セルロース繊維スラリーの脱水性を大幅に向上する役割を有する。ただし、パルプについてもセルロースナノファイバーの場合と同様に、配合しないのが、つまり含有率0質量%であるのが最も好ましい。
樹脂組成物(複合樹脂)には、微細繊維やパルプ等のほか、ケナフ、ジュート麻、マニラ麻、サイザル麻、雁皮、三椏、楮、バナナ、パイナップル、ココヤシ、トウモロコシ、サトウキビ、バガス、ヤシ、パピルス、葦、エスパルト、サバイグラス、麦、稲、竹、各種針葉樹(スギ及びヒノキ等)、広葉樹及び綿花などの各種植物体から得られた植物材料に由来する繊維を含ませることもでき、含まれていてもよい。
樹脂組成物には、例えば、帯電防止剤、難燃剤、抗菌剤、着色剤、ラジカル捕捉剤、発泡剤等の中から1種又は2種以上を選択して、本発明の効果を阻害しない範囲で添加することができる。これらの原料は、繊維状セルロースの分散液に添加しても、繊維状セルロース及び樹脂の混練の際に添加しても、これらの混練物に添加しても、その他の方法で添加してもよい。ただし、製造効率の面からは、繊維状セルロース及び樹脂の混練の際に添加するのが好ましい。
樹脂組成物には、ゴム成分として、エチレン-αオレフィン共重合エラストマー又はスチレン-ブタジエンブロック共重合体が含有されていてもよい。α-オレフィンの例としては、例えば、ブテン、イソブテン、ペンテン、ヘキセン、メチル-ペンテン、オクテン、デセン、ドデセン等が挙げられる。
次に、本発明の実施例を説明する。
固形分濃度2.8質量%のマイクロ繊維セルロース1,570gに、粒子径の揃っている無水マレイン酸変性ポリプロピレン(MAPP)、又は異なる粒子径が混在している無水マレイン酸変性ポリプロピレン(MAPP)を22.0g添加し、140℃に加熱した接触式乾燥機を用いて加熱し、カルバメート変性マイクロ繊維セルロース含有物を得た。このカルバメート変性マイクロ繊維セルロース含有物の含水率は、5~22%であった。
繊維のカルバメート変性の方法は、次のとおりとした。
すなわち、水分率10%以下の針葉樹クラフトパルプと固形分濃度10%の尿素水溶液と20%クエン酸水溶液とを用いて、固形分換算の質量比でパルプ:尿素:クエン酸=100:50:0.1となるように混合した後、105℃で乾燥させた。次に、所定の反応温度、反応時間で加熱処理してカルバメート変性パルプ(カルバメート化パルプ)を得た。得られたカルバメート変性パルプは、蒸留水で希釈撹拌して脱水工程を2回繰り返した。洗浄したカルバメート変性パルプは叩解機を用いて0.2mm未満の割合及び、0.2~0.6mmの割合が所定の割合になるまで叩解して、カルバメート変性マイクロ繊維セルロース(カルバメート化MFC(微細繊維))を得た。
また、無水マレイン酸変性ポリプロピレンに代えて、ポリプロピレン粉末22.0gを用いて、比較例としてのカルバメート変性マイクロ繊維セルロース含有物を得た。このカルバメート変性マイクロ繊維セルロース含有物の含水率は、5~22%であった。
以上のようにして得たカルバメート変性マイクロ繊維セルロース含有物に、カルバメート変性マイクロ繊維:その他成分=10:90となるようにポリプロピレンペレットを添加、混合し、180℃、200rpmの条件で二軸混練機にて混練し、繊維配合率10%のカルバメート変性マイクロ繊維セルロース複合樹脂を得た。
以上のようにして得たカルバメート変性マイクロ繊維セルロース複合樹脂をペレッターで2mm径、2mm長の円柱状にカットし、180℃で直方体試験片(長さ59mm、幅9.6mm、厚さ3.8mm)に射出成形した。各試験片について、曲げ弾性率を調べた。結果は、以下の基準で、MAPPの粒子サイズ(粒子径)及び繊維状セルロースの繊維サイズ(繊維長)と共に表1に示した。
(曲げ弾性率)
曲げ弾性率は、JIS K7171:2008に準拠して測定した。表中には、評価結果を以下の基準で示した。
樹脂自体の曲げ弾性率を1として複合樹脂の曲げ弾性率(倍率)が1.45倍以上の場合 :○
樹脂自体の曲げ弾性率を1として複合樹脂の曲げ弾性率(倍率)が1.40倍以上1.45倍未満の場合:△
樹脂自体の曲げ弾性率を1として複合樹脂の曲げ弾性率(倍率)が1.40倍未満の場合:×
Figure 2022156849000002
本発明は、繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法として利用可能である。例えば、繊維状セルロース複合樹脂は、自動車、電車、船舶、飛行機等の輸送機器の内装材、外装材、構造材等;パソコン、テレビ、電話、時計等の電化製品等の筺体、構造材、内部部品等;携帯電話等の移動通信機器等の筺体、構造材、内部部品等;携帯音楽再生機器、映像再生機器、印刷機器、複写機器、スポーツ用品、オフィス機器、玩具、スポーツ用品等の筺体、構造材、内部部品等;建築物、家具等の内装材、外装材、構造材等;文具等の事務機器等;その他、包装体、トレイ等の収容体、保護用部材、パーティション部材等;に利用可能である。
本発明は、繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法に関するものである。
近年、セルロースナノファイバー、マイクロ繊維セルロース(ミクロフィブリル化セルロース)等の微細繊維は、樹脂の補強材としての使用が脚光を浴びている。もっとも、微細繊維が親水性であるのに対し、樹脂は疎水性であるため、微細繊維を樹脂の補強材として使用するには、当該微細繊維の分散性に問題があった。そこで、本発明者等は、微細繊維のヒドロキシ基をカルバメート基で置換することを提案した(特許文献1参照)。この提案によると、微細繊維の分散性が向上し、もって樹脂の補強効果が向上する。もっとも、微細繊維は乾燥時に凝集するが、この凝集は強固であるため、乾燥した微細繊維を樹脂の補強材とするには分散性の点で問題があった。
特開2019-1876号公報
本発明が解決しようとする主たる課題は、乾燥した場合においても分散性に優れる繊維状セルロース含有物及びその製造方法、並びに強度に優れる繊維状セルロース複合樹脂を提供することにある。
従来の開発、例えば、上記特許文献の開発においては、微細繊維が分散液の状態で保持される場合における微細繊維の分散性に主眼が置かれ、エステル化、エーテル化、アミド化、スルフィド化等、数々存在する変性方法の中で、カルバメートの導入(カルバメート化)が優れることを見出したものであった。これに対し、本発明は、微細繊維をいったん乾燥等した後、樹脂と混合する場合における微細繊維の分散性に主眼が置かれ、カルバメートの導入を前提に数々の試験を行うなかで、微細繊維と共に使用する他の物質、物性の追求で上記課題を解決することができることを知見し、想到するに至ったものである。このようにして想到するに至った手段は、次のとおりである。
(請求項1に記載の手段)
樹脂に添加される繊維状セルロース含有物であり、
前記繊維状セルロースは、平均繊維幅が0.1~19μmで、かつヒドロキシル基の一部又は全部がカルバメート基で置換されており、
前記繊維状セルロースと相互作用する粉末を含
この相互作用する粉末は、90%粒子径/10%粒子径が2~200である、
ことを特徴とする繊維状セルロース含有物。
(請求項2に記載の手段)
前記相互作用する粉末は、算術標準偏差が10~1000μmである、
請求項1に記載の繊維状セルロース含有物。
(請求項3に記載の手段)
前記相互作用する粉末の体積平均粒子径が50750μmで、かつ前記相互作用する粉末の体積平均粒子径(μm)/前記繊維状セルロースの平均繊維長(μm)が0.005~5000である、
請求項1又は請求項2に記載の繊維状セルロース含有物。
(請求項4に記載の手段)
前記繊維状セルロースは、繊維長0.2mm未満の割合が5%以上で、かつ繊維長0.2~0.6mmの割合が10%以上である、
請求項1~3のいずれか1項に記載の繊維状セルロース含有物。
(請求項5に記載の手段)
前記繊維状セルロースは、平均繊維長が1.0mm以下、平均繊維幅が10μm以下で、かつフィブリル化率が2.5%以上である、
請求項1~4のいずれか1項に記載の繊維状セルロース含有物。
(請求項6に記載の手段)
前記相互作用する粉末は、酸価2.0%以上の酸変性樹脂である、
請求項1~5のいずれか1項に記載の繊維状セルロース含有物。
(請求項7に記載の手段)
前記相互作用する粉末は、無水マレイン酸変性ポリプロピレンである、
請求項1~6のいずれか1項に記載の繊維状セルロース含有物。
(請求項8に記載の手段)
繊維状セルロース及び樹脂が混合された繊維状セルロース複合樹脂であり、
前記繊維状セルロースとして請求項1~7のいずれか1項に記載の繊維状セルロース含有物が使用されている、
ことを特徴とする繊維状セルロース複合樹脂。
(請求項9に記載の手段)
ヒドロキシル基の一部又は全部がカルバメート基で置換された繊維状セルロースを平均繊維幅が0.1~19μmとなるように解繊し、前記繊維状セルロースと90%粒子径/10%粒子径が2~200の相互作用する粉末と混合して混合液を得、
この混合液を乾燥する、
ことを特徴とする繊維状セルロース含有物の製造方法。
本発明によると、乾燥した場合においても分散性に優れる繊維状セルロース含有物及びその製造方法、並びに強度に優れる繊維状セルロース複合樹脂になる。
次に、発明を実施するための形態を説明する。なお、本実施の形態は本発明の一例である。本発明の範囲は、本実施の形態の範囲に限定されない。
本形態の繊維状セルロース含有物は樹脂に添加されるものであり、繊維状セルロース(以下、「セルロース繊維」ともいう。)は平均繊維幅が0.1~19μmで、かつヒドロキシ基(-OH基)の一部又は全部がカルバメート基で置換されたカルバメート変性マイクロ繊維セルロースである。加えて、繊維状セルロース含有物には、繊維状セルロースと相互作用する粉末(以下、単に「相互作用する粉末」ともいう。)が含まれている。この粉末は好ましくは酸変性樹脂であり、この酸変性樹脂の酸基はカルバメート基の一部又は全部とイオン結合する。また、この繊維状セルロース含有物が樹脂に添加されることで繊維状セルロース複合樹脂が得られる。さらに、繊維状セルロース含有物を製造する方法においては、ヒドロキシ基の一部又は全部がカルバメート基で置換された繊維状セルロースを平均繊維幅が0.1~19μmとなるように解繊し、繊維状セルロースと相互作用する粉末を添加して混合液を得、この混合液を乾燥する。以下、詳細に説明する。
(繊維状セルロース)
本形態において微細繊維である繊維状セルロースは、平均繊維径が0.1~19μmのマイクロ繊維セルロース(ミクロフィブリル化セルロース)である。マイクロ繊維セルロースであると、樹脂の補強効果が著しく向上する。また、マイクロ繊維セルロースは、同じく微細繊維であるセルロースナノファイバーよりもカルバメート基で変性する(カルバメート化)のが容易である。ただし、微細化する前のセルロース原料をカルバメート化するのがより好ましく、この場合においては、マイクロ繊維セルロース及びセルロースナノファイバーは同等である。
本形態において、マイクロ繊維セルロースは、セルロースナノファイバーよりも平均繊維幅の太い繊維を意味する。具体的には、平均繊維径(幅)が、例えば0.1~19μm、好ましくは0.2~10μm、より好ましくは0.5超~10μmである。繊維状セルロースの平均繊維径が0.1μmを下回ると(未満になると)、セルロースナノファイバーであるのと変わらなくなり、樹脂の強度(特に曲げ弾性率)向上効果が十分に得られないおそれがある。また、解繊時間が長くなり、大きなエネルギーが必要になる。さらに、セルロース繊維スラリーの脱水性が悪化する。脱水性が悪化すると、乾燥に大きなエネルギーが必要になり、乾燥に大きなエネルギーをかけると繊維状セルロースが熱劣化して、強度が低下するおそれがある。加えて、平均繊維径が0.1μmを下回るまで解繊すると、繊維状セルロースの繊維長のバラツキが小さくなり、相互作用する粉末の粒子径分布を規定する本形態の作用効果が発揮され難くなる。
他方、繊維状セルロースの平均繊維径が19μmを上回ると(超えると)、パルプであるのと変わらなくなり、補強効果が十分でなくなるおそれがある。加えて、平均繊維径が19μmを上回る程度の解繊では、繊維状セルロースの繊維長のバラツキが小さく、相互作用する粉末の粒子径分布を規定する本形態の作用効果が発揮され難くなる。また、特に平均繊維径が10μm以下であれば、平均繊維長を1.0mm以下、フィブリル化率を2.5%以上とすることと相まって相互作用する粉末との絡み合いが良好になる。
また、繊維状セルロースの最頻径(幅)は、好ましくは0.1~19μm、より好ましくは0.5~10μm、特に好ましくは1~6μmである。この点、後述するように繊維状セルロースの繊維長がばらつく本形態においては、解繊途中で繊維幅の大きい繊維が一定割合混在した状態であるため、繊維状セルロースを繊維径の平均で特定するよりも、最も数の多い最頻径で特定する方が好適である。このような観点から、最頻径が0.1μm未満であると、セルロースナノファイバーの割合が高くなる傾向となり、セルロースナノファイバー同士が凝集し、補強効果が十分でなくなる可能性があると言える。他方、最頻径が19μmを超えると、パルプの割合が高くなる傾向となり、補強効果が十分でなくなる可能性があると言える。
微細繊維(マイクロ繊維セルロース及びセルロースナノファイバー)の平均繊維径の測定方法は、次のとおりである。
まず、固形分濃度0.01~0.1質量%の微細繊維の水分散液100mlをテフロン(登録商標)製メンブレンフィルターでろ過し、エタノール100mlで1回、t-ブタノール20mlで3回溶媒置換する。次に、凍結乾燥し、オスミウムコーティングして試料とする。この試料について、構成する繊維の幅に応じて3,000倍~30,000倍のいずれかの倍率で電子顕微鏡SEM画像による観察を行う。具体的には、観察画像に二本の対角線を引き、対角線の交点を通過する直線を任意に三本引く。さらに、この三本の直線と交錯する合計100本の繊維の幅を目視で計測する。そして、計測値の中位径を平均繊維径とする。
また、微細繊維の最頻径の測定方法は、バルメット社製の繊維分析計「FS5」によって測定する。
ところで、繊維状セルロースがマイクロ繊維セルロースである場合においては、繊維長等のバラツキが多くなるとの特性を有する。これは、以下の理由による。
まず、パルプは、例えば、チップを加圧状態のもとアルカリで煮た後、常圧に戻る際にほぐれることで製造されるものであり、機械的な解繊は加わっていない。したがって、木材の細胞がそのまま単離してパルプになっているのみであり、繊維長等が比較的揃っている。また、セルロースナノファイバーは、マイクロ繊維セルロースの毛羽立ち箇所が独立して離れていき、大部分は毛羽立ち箇所が独立した繊維のみからなる。したがって、繊維長等が比較的揃っている。これに対し、マイクロ繊維セルロースは、パルプに機械的な解繊力が加わって繊維が毛羽立っていく途中の段階にあり、したがって繊維長等の分布が広くなる。
マイクロ繊維セルロースは、通常繊維長0.2mm未満の割合が5%以上で、かつ繊維長0.2~0.6mmの割合が10%以上であり、好ましくは繊維長0.2mm未満の割合が8%以上で、かつ繊維長0.2~0.6mmの割合が13%以上であり、より好ましくは繊維長0.2mm未満の割合が20%以上で、かつ繊維長0.2~0.6mmの割合が16%以上である。マイクロ繊維セルロースの繊維長が以上のようにばらついていると、相互作用する粉末の粒子径分布を規定する本形態の作用効果がいかんなく発揮される。
また、以上においては、特に繊維長0.2mm未満の割合が多くなり過ぎると大きい粒子径の相互作用する粉末との絡み合いが不十分になり、分散性の低下につながる可能性がある。他方、繊維長0.6mm超の割合が多くなり過ぎると、小さい粒子径の相互作用する粉末との絡み合いが不十分になり、分散性の低下につながる可能性がある。
以上のようにマイクロ繊維セルロースの繊維長等のバラツキは相対的に大きなものであるが、繊維長0.2mm未満の割合が多くなり過ぎたり、繊維長0.6mm超の割合が多くなり過ぎたりすると、繊維自体としての樹脂の補強効果が劣るものになる可能性がある。そこで、好ましくは繊維状セルロースの繊維長0.2~0.6mmの割合が10~90%、より好ましくは14~70%、特に好ましくは16~50%である。繊維長0.2~0.6mmの割合が14%未満であると、相互作用する粉末との絡み合いが不十分になり、結果として補強効果が十分に発揮されない可能性がある。
マイクロ繊維セルロースは、セルロース原料(以下、「原料パルプ」ともいう。)を解繊(微細化)することで得ることができる。原料パルプとしては、例えば、広葉樹、針葉樹等を原料とする木材パルプ、ワラ・バガス・綿・麻・じん皮繊維等を原料とする非木材パルプ、回収古紙、損紙等を原料とする古紙パルプ(DIP)等の中から1種又は2種以上を選択して使用することができる。なお、以上の各種原料は、例えば、セルロース系パウダーなどと言われる粉砕物(粉状物)の状態等であってもよい。
ただし、不純物の混入を可及的に避けるために、原料パルプとしては、木材パルプを使用するのが好ましい。木材パルプとしては、例えば、広葉樹クラフトパルプ(LKP)、針葉樹クラフトパルプ(NKP)等の化学パルプ、機械パルプ(TMP)等の中から1種又は2種以上を選択して使用することができる。
広葉樹クラフトパルプは、広葉樹晒クラフトパルプであっても、広葉樹未晒クラフトパルプであっても、広葉樹半晒クラフトパルプであってもよい。同様に、針葉樹クラフトパルプは、針葉樹晒クラフトパルプであっても、針葉樹未晒クラフトパルプであっても、針葉樹半晒クラフトパルプであってもよい。
機械パルプとしては、例えば、ストーングランドパルプ(SGP)、加圧ストーングランドパルプ(PGW)、リファイナーグランドパルプ(RGP)、ケミグランドパルプ(CGP)、サーモグランドパルプ(TGP)、グランドパルプ(GP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)、リファイナーメカニカルパルプ(RMP)、漂白サーモメカニカルパルプ(BTMP)等の中から1種又は2種以上を選択して使用することができる。
原料パルプは、解繊するに先立って化学的手法によって前処理することができる。化学的手法による前処理としては、例えば、酸による多糖の加水分解(酸処理)、酵素による多糖の加水分解(酵素処理)、アルカリによる多糖の膨潤(アルカリ処理)、酸化剤による多糖の酸化(酸化処理)、還元剤による多糖の還元(還元処理)等を例示することができる。ただし、化学的手法による前処理としては、酵素処理を施すのが好ましく、加えて酸処理、アルカリ処理、及び酸化処理の中から選択された1又は2以上の処理を施すのがより好ましい。以下、酵素処理について詳細に説明する。
酵素処理に使用する酵素としては、セルラーゼ系酵素及びヘミセルラーゼ系酵素の少なくともいずれか一方を使用するのが好ましく、両方を併用するのがより好ましい。これらの酵素を使用すると、セルロース原料の解繊がより容易になる。なお、セルラーゼ系酵素は、水共存下でセルロースの分解を惹き起こす。また、ヘミセルラーゼ系酵素は、水共存下でヘミセルロースの分解を惹き起こす。
セルラーゼ系酵素としては、例えば、トリコデルマ(Trichoderma、糸状菌)属、アクレモニウム(Acremonium、糸状菌)属、アスペルギルス(Aspergillus、糸状菌)属、ファネロケエテ(Phanerochaete、担子菌)属、トラメテス(Trametes、担子菌)属、フーミコラ(Humicola、糸状菌)属、バチルス(Bacillus、細菌)属、スエヒロタケ(Schizophyllum、担子菌)属、ストレプトミセス(Streptomyces、細菌)属、シュードモナス(Pseudomonas、細菌)属などが産生する酵素を使用することができる。これらのセルラーゼ系酵素は、試薬や市販品として購入可能である。市販品としては、例えば、セルロイシンT2(エイチピィアイ社製)、メイセラ-ゼ(明治製菓社製)、ノボザイム188(ノボザイム社製)、マルティフェクトCX10L(ジェネンコア社製)、セルラーゼ系酵素GC220(ジェネンコア社製)等を例示することができる。
また、セルラーゼ系酵素としては、EG(エンドグルカナーゼ)及びCBH(セロビオハイドロラーゼ)のいずれをも使用することもできる。EG及びCBHは、それぞれを単体で使用しても、混合して使用してもよい。また、ヘミセルラーゼ系酵素と混合して使用してもよい。
ヘミセルラーゼ系酵素としては、例えば、キシランを分解する酵素であるキシラナーゼ(xylanase)、マンナンを分解する酵素であるマンナーゼ(mannase)、アラバンを分解する酵素であるアラバナーゼ(arabanase)等を使用することができる。また、ペクチンを分解する酵素であるペクチナーゼも使用することができる。
ヘミセルロースは、植物細胞壁のセルロースミクロフィブリル間にあるペクチン類を除いた多糖類である。ヘミセルロースは多種多様で木材の種類や細胞壁の壁層間でも異なる。針葉樹の2次壁では、グルコマンナンが主成分であり、広葉樹の2次壁では4-O-メチルグルクロノキシランが主成分である。そこで、針葉樹晒クラフトパルプ(NBKP)から微細繊維を得る場合は、マンナーゼを使用するのが好ましい。また、広葉樹晒クラフトパルプ(LBKP)から微細繊維を得る場合は、キシラナーゼを使用するのが好ましい。
セルロース原料に対する酵素の添加量は、例えば、酵素の種類、原料となる木材の種類(針葉樹か広葉樹か)、機械パルプの種類等によって決まる。ただし、セルロース原料に対する酵素の添加量は、好ましくは0.1~3質量%、より好ましくは0.3~2.5質量%、特に好ましくは0.5~2質量%である。酵素の添加量が0.1質量%を下回ると、酵素の添加による効果が十分に得られないおそれがある。他方、酵素の添加量が3質量%を上回ると、セルロースが糖化され、微細繊維の収率が低下するおそれがある。また、添加量の増量に見合う効果の向上を認めることができないとの問題もある。
酵素としてセルラーゼ系酵素を使用する場合、酵素処理時のpHは、酵素反応の反応性の観点から、弱酸性領域(pH=3.0~6.9)であるのが好ましい。他方、酵素としてヘミセルラーゼ系酵素を使用する場合、酵素処理時のpHは、弱アルカリ性領域(pH=7.1~10.0)であるのが好ましい。
酵素処理時の温度は、酵素としてセルラーゼ系酵素及びヘミセルラーゼ系酵素のいずれを使用する場合においても、好ましくは30~70℃、より好ましくは35~65℃、特に好ましくは40~60℃である。酵素処理時の温度が30℃以上であれば、酵素活性が低下し難くなり、処理時間の長期化を防止することができる。他方、酵素処理時の温度が70℃以下であれば、酵素の失活を防止することができる。
酵素処理の時間は、例えば、酵素の種類、酵素処理の温度、酵素処理時のpH等によって決まる。ただし、一般的な酵素処理の時間は、0.5~24時間である。
酵素処理した後には、酵素を失活させるのが好ましい。酵素を失活させる方法としては、例えば、アルカリ水溶液(好ましくはpH10以上、より好ましくはpH11以上)を添加する方法、80~100℃の熱水を添加する方法等が存在する。
次に、アルカリ処理の方法について説明する。
解繊に先立ってアルカリ処理すると、パルプが持つヘミセルロースやセルロースの水酸基が一部解離し、分子がアニオン化することで分子内及び分子間水素結合が弱まり、解繊におけるセルロース原料の分散が促進される。
アルカリ処理に使用するアルカリとしては、例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウム、アンモニア水溶液、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム、水酸化ベンジルトリメチルアンモニウム等の有機アルカリ等を使用することができる。ただし、製造コストの観点からは、水酸化ナトリウムを使用するのが好ましい。
解繊に先立って酵素処理や酸処理、酸化処理を施すと、マイクロ繊維セルロースの保水度を低く、結晶化度を高くすることができ、かつ均質性を高くすることができる。この点、マイクロ繊維セルロースの保水度が低いと脱水し易くなり、セルロース繊維スラリーの脱水性が向上する。
原料パルプを酵素処理や酸処理、酸化処理すると、パルプが持つヘミセルロースやセルロースの非晶領域が分解される。結果、解繊のエネルギーを低減することができ、セルロース繊維の均一性や分散性を向上することができる。ただし、前処理は、マイクロ繊維セルロースのアスペクト比を低下させるため、樹脂の補強材として使用する場合には、過度の前処理を避けるのが好ましい。
原料パルプの解繊は、例えば、ビーター、高圧ホモジナイザー、高圧均質化装置等のホモジナイザー、グラインダー、摩砕機等の石臼式摩擦機、単軸混練機、多軸混練機、ニーダーリファイナー、ジェットミル等を使用して原料パルプを叩解することによって行うことができる。ただし、リファイナーやジェットミルを使用して行うのが好ましい。
マイクロ繊維セルロースの平均繊維長(単繊維の長さの平均)は、好ましくは0.10~2.00mm、より好ましくは0.12~1.50mm、特に好ましくは0.15~1.00mmである。平均繊維長が0.10mm未満であると、繊維同士の三次元ネットワークを形成できず、複合樹脂の補強効果(特に曲げ弾性率)が低下するおそれがある。また、相互作用する粉末と十分に絡み合わない可能性がある。他方、平均繊維長が2.00mmを上回ると、原料パルプと変わらない長さのため補強効果が不十分となるおそれがある。また、繊維が凝集してしまい、相互作用する粉末と十分に絡み合わなくなる可能性がある。
マイクロ繊維セルロースの原料となるセルロース原料の平均繊維長は、好ましくは0.50~5.00mm、より好ましくは1.00~3.00mm、特に好ましくは1.50~2.50mmである。セルロース原料の平均繊維長が0.50mmを下回ると、解繊処理した際の、樹脂の補強効果が十分得られない可能性がある。他方、平均繊維長が5.00mmを上回ると、解繊時の製造コストの面で不利となるおそれがある。
マイクロ繊維セルロースの平均繊維長は、例えば、原料パルプの選定、前処理、解繊等で任意に調整可能である。
マイクロ繊維セルロースのアスペクト比は、好ましくは2~15,000、より好ましくは10~10,000である。アスペクト比が2を下回ると、三次元ネットワークを構築できないため、たとえ平均繊維長が0.10mmを超えたとしても、補強効果が不十分となるおそれがある。また、アスペクト比が2を下回ると、球体様の形状である相互作用する粉末に対して相互作用できる点が少なくなり過ぎるため、十分な相互作用が得られずに、相互作用する粉末と繊維とを相溶する作用が十分に発揮できず、補強効果が不十分となる可能性がある。他方、アスペクト比が15,000を上回ると、マイクロ繊維セルロース同士の絡み合いが多くなり、樹脂中での分散が不十分となるおそれがある。また、繊維同士で相互作用し、相互作用する粉末との相互作用が十分に発生せず、補強効果が不十分となる可能性がある。
アスペクト比とは、平均繊維長を平均繊維幅で除した値である。アスペクト比が大きいほど引っかかりが生じる箇所が多くなるため補強効果が上がるが、他方で引っかかりが多くなる分、樹脂の延性が低下するものと考えられる。
マイクロ繊維セルロースのフィブリル化率は、好ましくは1.0~30.0%、より好ましくは1.5~20.0%、特に好ましくは2.5~15.0%である。フィブリル化率が30.0%を上回ると、水との接触面積が広くなり過ぎるため、たとえ平均繊維幅が0.1μm以上に留まる範囲で解繊したとしても、脱水が困難になる可能性がある。また、フィブリル化率が30.0%を上回ると、表面積が広くなり過ぎ、繊維が水を保持し易くなるため、相互作用する粉末と相互作用し難くなる可能性がある。他方、フィブリル化率が1.0%下回ると、フィブリル同士の水素結合が少なく、強固な三次元ネットワークを形成することができなくなるおそれがある。また、フィブリル化率が2.5%を下回ると、相互作用する粉末に対するまとわりつきが劣る傾向にある。
繊維の繊維長やフィブリル化率は、バルメット社製の繊維分析計「FS5」によって測定する。
マイクロ繊維セルロースの結晶化度は、好ましくは50%以上、より好ましくは55%以上、特に好ましくは60%以上である。結晶化度が50%を下回ると、他のセルロース繊維、例えば、パルプやセルロースナノファイバーとの混合性は向上するものの、繊維自体の強度が低下するため、樹脂の強度を向上することができなくなるおそれがある。他方、マイクロ繊維セルロースの結晶化度は、好ましくは95%以下、より好ましくは90%以下、特に好ましくは85%以下である。結晶化度が95%を上回ると、分子内の強固な水素結合割合が多くなり、繊維自体が剛直となり、分散性が劣るようになる。
マイクロ繊維セルロースの結晶化度は、例えば、原料パルプの選定、前処理、微細化処理で任意に調整可能である。
結晶化度は、JIS K 0131(1996)に準拠して測定した値である。
マイクロ繊維セルロースのパルプ粘度は、好ましくは2cps以上、より好ましくは4cps以上である。マイクロ繊維セルロースのパルプ粘度が2cpsを下回ると、マイクロ繊維セルロースの凝集を抑制するのが困難になるおそれがある。また、パルプ粘度が2cpsを下回ると、相互作用する粉末との相互作用を発揮したとしても樹脂の補強性が不十分になるおそれがある。
パルプ粘度は、TAPPI T 230に準拠して測定した値である。
マイクロ繊維セルロースのフリーネスは、好ましくは500ml以下、より好ましくは300ml以下、特に好ましくは100ml以下である。マイクロ繊維セルロースのフリーネスが500mlを上回ると、樹脂の強度向上効果が十分に得られなくなるおそれがある。また、相互作用する粉末との絡み合いが悪くなり、繊維の凝集を十分に抑制できなくなる可能性がある。
フリーネスは、JIS P8121-2(2012)に準拠して測定した値である。
マイクロ繊維セルロースのゼータ電位は、好ましくは-150~20mV、より好ましくは-100~0mV、特に好ましくは-80~-10mVである。ゼータ電位が-150mVを下回ると、樹脂との相溶性が著しく低下し補強効果が不十分となるおそれがある。他方、ゼータ電位が20mVを上回ると、分散安定性が低下するおそれがある。
マイクロ繊維セルロースの保水度は、好ましくは80~400%、より好ましくは90~350%、特に好ましくは100~300%である。保水度が80%を下回ると、原料パルプと変わらないため補強効果が不十分となるおそれがある。他方、保水度が400%を上回ると、脱水性が劣る傾向にあり、また、凝集し易くなる。この点、マイクロ繊維セルロースの保水度は、当該繊維のヒドロキシ基がカルバメート基に置換されていることで、より低くすることができ、脱水性や乾燥性を高めることができる。
マイクロ繊維セルロースの保水度は、例えば、原料パルプの選定、前処理、解繊等で任意に調整可能である。
保水度は、JAPAN TAPPI No.26(2000)に準拠して測定した値である。
本形態のマイクロ繊維セルロースは、カルバメート基を有する。どのようにしてカルバメート基を有するものとされているかは特に限定されない。例えば、セルロース原料がカルバメート化されていることでカルバメート基を有するものであっても、マイクロ繊維セルロース(微細化されたセルロース原料)がカルバメート化されることでカルバメート基を有するものであってもよい。
なお、カルバメート基を有するとは、繊維状セルロースにカルバメート(カルバミン酸のエステル)が導入された状態を意味する。カルバメート基は、-O-CO-NH-で表される基であり、例えば、-O-CO-NH2、-O-CONHR、-O-CO-NR2等で表わされる基である。つまり、カルバメート基は、下記の構造式(1)で示すことができる。
Figure 2022156849000003
ここでRは、それぞれ独立して、飽和直鎖状炭化水素基、飽和分岐鎖状炭化水素基、飽和環状炭化水素基、不飽和直鎖状炭化水素基、不飽和分岐鎖状炭化水素基、芳香族基、及びこれらの誘導基の少なくともいずれかである。
飽和直鎖状炭化水素基としては、例えば、メチル基、エチル基、プロピル基等の炭素数1~10の直鎖状のアルキル基を挙げることができる。
飽和分岐鎖状炭化水素基としては、例えば、イソプロピル基、sec-ブチル基、イソブチル基、tert-ブチル基等の炭素数3~10の分岐鎖状アルキル基を挙げることができる。
飽和環状炭化水素基としては、例えば、シクロペンチル基、シクロヘキシル基、ノルボルニル基等のシクロアルキル基を挙げることができる。
不飽和直鎖状炭化水素基としては、例えば、エテニル基、プロペン-1-イル基、プロペン-3-イル基等の炭素数2~10の直鎖状のアルケニル基、エチニル基、プロピン-1-イル基、プロピン-3-イル基等の炭素数2~10の直鎖状のアルキニル基等を挙げることができる。
不飽和分岐鎖状炭化水素基としては、例えば、プロペン-2-イル基、ブテン-2-イル基、ブテン-3-イル基等の炭素数3~10の分岐鎖状アルケニル基、ブチン-3-イル基等の炭素数4~10の分岐鎖状アルキニル基等を挙げることができる。
芳香族基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基等を挙げることができる。
誘導基としては、上記飽和直鎖状炭化水素基、飽和分岐鎖状炭化水素基、飽和環状炭化水素基、不飽和直鎖状炭化水素基、不飽和分岐鎖状炭化水素基及び芳香族基が有する1又は複数の水素原子が、置換基(例えば、ヒドロキシ基、カルボキシ基、ハロゲン原子等。)で置換された基を挙げることができる。
カルバメート基を有する(カルバメート基が導入された)マイクロ繊維セルロースにおいては、極性の高いヒドロキシ基の一部又は全部が、相対的に極性の低いカルバメート基に置換されている。したがって、カルバメート基を有するマイクロ繊維セルロースは、親水性が低く、極性の低い樹脂等との親和性が高い。結果、カルバメート基を有するマイクロ繊維セルロースは、樹脂との均一分散性に優れる。また、カルバメート基を有するマイクロ繊維セルロースのスラリーは、粘性が低く、ハンドリング性が良い。
マイクロ繊維セルロースのヒドロキシ基に対するカルバメート基の置換率は、好ましくは1.0~5.0mmol/g、より好ましくは1.2~3.0mmol/g、特に好ましくは1.5~2.0mmol/gである。置換率を1.0mmol/g以上にすると、カルバメートを導入した効果、特に樹脂の曲げ伸び向上効果が確実に奏せられる。他方、置換率が5.0mmol/gを超えると、セルロース繊維が繊維の形状を保てなくなり、樹脂の補強効果が十分得られないおそれがある。
なお、カルバメート基の置換率(mmol/g)とは、カルバメート基を有するセルロース原料1gあたりに含まれるカルバメート基の物質量をいう。また、セルロースは、無水グルコースを構造単位とする重合体であり、一構造単位当たり3つのヒドロキシ基を有する。
<カルバメート化>
マイクロ繊維セルロース(解繊前にカルバメート化する場合は、セルロース原料。以下、同様であり、「マイクロ繊維セルロース等」ともいう。)にカルバメートを導入する(カルバメート化)点については、前述したようにセルロース原料をカルバメート化してから微細化する方法と、セルロース原料を微細化してからカルバメート化する方法とがある。この点、本明細書においては、先にセルロース原料の解繊について説明し、その後にカルバメート化(変性)について説明している。しかしながら、解繊及びカルバメート化は、どちらを先に行うこともできる。ただし、先にカルバメート化を行い、その後に、解繊をする方が好ましい。解繊する前のセルロース原料は脱水効率が高く、また、カルバメート化に伴う加熱によってセルロース原料が解繊され易い状態になるためである。
マイクロ繊維セルロース等をカルバメート化する工程は、例えば、混合処理、除去処理、及び加熱処理に、主に区分することができる。なお、混合処理及び除去処理は合わせて、加熱処理に供される混合物を調製する調整処理ということもできる。
混合処理においては、マイクロ繊維セルロース等(前述したようにセルロース原料の場合もある。以下、同様。)と尿素及び/又は尿素の誘導体(以下、単に「尿素等」ともいう。)とを分散媒中で混合する。
尿素や尿素の誘導体としては、例えば、尿素、チオ尿素、ビウレット、フェニル尿素、ベンジル尿素、ジメチル尿素、ジエチル尿素、テトラメチル尿素、尿素の水素原子をアルキル基で置換した化合物等を使用することができる。これらの尿素や尿素の誘導体は、それぞれを単独で又は複数を組み合わせて使用することができる。ただし、尿素を使用するのが好ましい。
マイクロ繊維セルロース等に対する尿素等の混合質量比(尿素等/マイクロ繊維セルロース等)の下限は、好ましくは10/100、より好ましくは20/100である。他方、上限は、好ましくは300/100、より好ましくは200/100である。混合質量比を10/100以上にすることで、カルバメート化の効率が向上する。他方、混合質量比が300/100を上回っても、カルバメート化は頭打ちになる。
分散媒は、通常、水である。ただし、アルコール、エーテル等の他の分散媒や、水と他の分散媒との混合物を用いてもよい。
混合処理においては、例えば、水にマイクロ繊維セルロース等及び尿素等を添加しても、尿素等の水溶液にマイクロ繊維セルロース等を添加しても、マイクロ繊維セルロース等を含むスラリーに尿素等を添加してもよい。また、均一に混合するために、添加後、攪拌してもよい。さらに、マイクロ繊維セルロース等と尿素等とを含む分散液には、その他の成分が含まれていてもよい。
除去処理においては、混合処理において得られたマイクロ繊維セルロース等及び尿素等を含む分散液から分散媒を除去する。分散媒を除去することで、これに続く加熱処理において効率的に尿素等を反応させることができる。
分散媒の除去は、加熱によって分散媒を揮発させることで行うのが好ましい。この方法によると、尿素等の成分を残したまま分散媒のみを効率的に除去することができる。
除去処理における加熱温度の下限は、分散媒が水である場合は、好ましくは50℃、より好ましくは70℃、特に好ましくは90℃である。加熱温度を50℃以上にすることで効率的に分散媒を揮発させる(除去する)ことができる。他方、加熱温度の上限は、好ましくは120℃、より好ましくは100℃である。加熱温度が120℃を上回ると、分散媒と尿素が反応し、尿素が単独分解するおそれがある。
除去処理における加熱時間は、分散液の固形分濃度等に応じて適宜調節することができる。具体的には、例えば、6~24時間である。
除去処理に続く加熱処理においては、マイクロ繊維セルロース等と尿素等との混合物を加熱処理する。この加熱処理において、マイクロ繊維セルロース等のヒドロキシ基の一部又は全部が尿素等と反応してカルバメート基に置換される。より詳細には、尿素等が加熱されると下記の反応式(1)に示すようにイソシアン酸及びアンモニアに分解される。そして、イソシアン酸はとても反応性が高く、例えば、下記の反応式(2)に示すようにセルロースの水酸基にカルバメート基を形成する。
NH2-CO-NH2 → H-N=C=O + NH3 …(1)
Cell-OH + H-N=C=O → Cell-O-CO-NH2 …(2)
加熱処理における加熱温度の下限は、好ましくは120℃、より好ましくは130℃、特に好ましくは尿素の融点(約134℃)以上、さらに好ましくは140℃、最も好ましくは150℃である。加熱温度を120℃以上にすることで、カルバメート化が効率的に行われる。加熱温度の上限は、好ましくは200℃、より好ましくは180℃、特に好ましくは170℃である。加熱温度が200℃を上回ると、マイクロ繊維セルロース等が分解し、補強効果が不十分となるおそれがある。
加熱処理における加熱時間の下限は、好ましくは1分、より好ましくは5分、特に好ましくは30分、更に好ましくは1時間、最も好ましくは2時間である。加熱時間を1分以上にすることで、カルバメート化の反応を確実に行うことができる。他方、加熱時間の上限は、好ましくは15時間、より好ましくは10時間である。加熱時間が15時間を上回ると、経済的ではなく、15時間で十分カルバメート化を行うことができる。
もっとも、加熱時間の長期化は、セルロース繊維の劣化を招く。そこで、加熱処理におけるpH条件が重要となる。pHは、好ましくはpH9以上、より好ましくはpH9~13、特に好ましくはpH10~12のアルカリ性条件である。また、次善の策として、pH7以下、好ましくはpH3~7、特に好ましくはpH4~7の酸性条件又は中性条件である。pH7~8の中性条件であると、セルロース繊維の平均繊維長が短くなり、樹脂の補強効果に劣る可能性がある。これに対し、pH9以上のアルカリ性条件であると、セルロース繊維の反応性が高まり、尿素等への反応が促進され、効率良くカルバメート化反応するため、セルロース繊維の平均繊維長を十分に確保することができる。他方、pH7以下の酸性条件であると、尿素等からイソシアン酸及びアンモニアに分解する反応が進み、セルロース繊維への反応が促進され、効率良くカルバメート化反応するため、セルロース繊維の平均繊維長を十分に確保することができる。ただし、可能であれば、アルカリ性条件で加熱処理する方が好ましい。酸性条件であるとセルロースの酸加水分解が進行するおそれがあるためである。
pHの調整は、混合物に酸性化合物(例えば、酢酸、クエン酸等。)やアルカリ性化合物(例えば、水酸化ナトリウム、水酸化カルシウム等。)を添加すること等によって行うことができる。
加熱処理において加熱する装置としては、例えば、熱風乾燥機、抄紙機、ドライパルプマシン等を使用することができる。
加熱処理後の混合物は、洗浄してもよい。この洗浄は、水等で行えばよい。この洗浄によって未反応で残留している尿素等を除去することができる。
(スラリー)
マイクロ繊維セルロースは、必要により、水系媒体中に分散して分散液(スラリー)にする。水系媒体は、全量が水であるのが特に好ましいが、一部が水と相溶性を有する他の液体である水系媒体も使用することができる。他の液体としては、炭素数3以下の低級アルコール類等を使用することができる。
スラリーの固形分濃度は、好ましくは0.1~10.0質量%、より好ましくは0.5~5.0質量%である。固形分濃度が0.1質量%を下回ると、脱水や乾燥する際に過大なエネルギーが必要となるおそれがある。他方、固形分濃度が10.0質量%を上回ると、スラリー自体の流動性が低下してしまい分散剤を使用する場合において均一に混合できなくなるおそれがある。
(相互作用する粉末)
本形態の繊維状セルロース含有物は、繊維状セルロースと相互作用する粉末を含む。繊維状セルロース含有物が当該相互作用する粉末を含むことで、繊維状セルロースを樹脂の補強性を発揮できる形態とすることができる。すなわち、繊維状セルロースをスラリーとして用いる場合は、樹脂と複合化する前にスラリーに含まれる水系媒体を除去するのが好ましい。しかしながら、水系媒体を除去する際にセルロース同士が水素結合により不可逆的に凝集し、繊維としての補強効果を十分に発揮できなくなる可能性がある。そこで、繊維状セルローススラリーに相互作用する粉末を含むことで、セルロース同士の水素結合を物理的に阻害するものである。また、相互作用しない粉末の場合は乾燥時に相互作用しない粉末同士が凝集してしまう可能性があるが、相互作用する粉末の場合は当該可能性が低い。このような点から、相互作用する粉末は、酸変性樹脂であるのが好ましく、無水マレイン酸変性樹脂であるのがより好ましく、無水マレイン酸変性ポリプロピレン(MAPP)であるのが特に好ましい。酸変性樹脂の詳細は、後述する。
ここで、相互作用するとは、セルロースと共有結合、イオン結合、金属結合による強固な結合をすることを意味する(つまり、水素結合、ファンデルワールス力による結合は相互作用するという概念に含まれない。)。好ましくは、強固な結合は、結合エネルギーが100kJ/mol以上の結合である。
相互作用する粉末の体積平均粒子径は、0.01~10000μmが好ましく、50~750μmがより好ましく、150~450μmが特に好ましい。体積平均粒子径が10000μmを超えると、相互作用する粉末がセルロース繊維同士の間隙に入って凝集を阻害する効果が発揮できないおそれがある。他方、体積平均粒子径が0.01μm未満であると、微細なためにマイクロ繊維セルロース同士の水素結合を阻害することができないおそれがある。
相互作用する粉末は、90%粒子径/10%粒子径が2~1000であるのが好ましく、10~200であるのがより好ましい。粒子径比を当該範囲内とすることで、繊維状セルロースがマイクロ繊維セルロースであり、繊維長にバラツキが存在する場合においても、相互作用する粉末の凝集阻害効果がいかんなく発揮される。具体的には、90%粒子径/10%粒子径が2未満であると、粒子径が揃いすぎており、特定繊維長の繊維としか相互作用の効果を発揮し難い可能性がある。他方、90%粒子径/10%粒子径が1000超であると、粒子径のバラツキが極端にとなり、相互作用する繊維長が限定される可能性がある。
以上において90%粒子径とは、粒子径が小さいものから順に測定し、測定された割合が90%となったときの粒子径を意味する。また、10%粒子径とは、粒子径が小さいものから順に測定し、測定された割合が10%となったときの粒子径を意味する。
相互作用する粉末の算術標準偏差は、好ましくは0.01~10000μm、より好ましくは1~5000μm、特に好ましくは10~1000μmである。上記したように粉末の粒子径をばらつかせるとは言っても、繊維状セルロースがマイクロ繊維セルロースであるという意味において繊維状セルロースに範囲があり、従って粉末の算術標準偏差を特定するものである。この点、算術標準偏差が0.01μm未満であると、粒子径が均一なものとなり、特定繊維長の繊維としか相互作用の効果を発揮し難い可能性がある。他方、算術標準偏差が10000μmを超えると、粒子径が過大に不均一となり、相互作用できる繊維長の範囲が広くなり、相互作用の効果を発揮し難い可能性がある。
算術標準偏差は、粒度分布測定装置(例えば株式会社堀場製作所のレーザー回折・散乱式粒度分布測定器)で測定した値である。
また、相互作用する粉末の体積平均粒子径(μm)/繊維状セルロースの平均繊維長(μm)は、0.005~5000であるのが好ましく、0.01~1000であるのがより好ましい。当該範囲内であると、粉末及び繊維がより絡み合うようになり、繊維の凝集が抑制される。より具体的には、相互作用する粉末の体積平均粒子径/繊維状セルロースの平均繊維長が0.005未満であると、繊維同士で相互作用してしまい相互作用する粉末との相互作用が十分に発生せず、補強効果が不十分となる可能性がある。他方、相互作用する粉末の体積平均粒子径/繊維状セルロースの平均繊維長が5000を超えると、球体様の形状である相互作用する粉末に対して相互作用できる点が少なくなりすぎるため、十分な相互作用が得られずに、補強効果が不十分となる可能性がある。
本明細書において、相互作用する粉末の体積平均粒子径は、そのまま又は水分散体の状態で粒度分布測定装置(例えば株式会社堀場製作所のレーザー回折・散乱式粒度分布測定器)を用いて測定される体積基準粒度分布から算出される体積平均粒子径である。
本形態において相互作用する粉末は、樹脂粉末であるのが好ましい。相互作用する粉末が樹脂粉末であると、混練時に溶融し粒でなくなるため、粒子径の異なる粒子の混在が全く影響を与えなくなる。樹脂粉末としては、例えば、複合樹脂を得る際に使用する樹脂と同様のものを使用することができる。もちろん、異種であってもよい。
相互作用する粉末の配合量は、繊維状セルロースに対して、好ましくは1~9,900質量%、より好ましくは5~1,900質量%、特に好ましくは10~900質量%である。配合量が1質量%を下回ると、セルロース繊維の間隙に入って凝集抑制する作用が十分に発揮されない可能性がある。他方、配合量が9,900質量%を上回ると、セルロース繊維としての機能を発揮できなくなるおそれがある。
相互作用する粉末には、これに加えて無機粉末を併用することができる。相互作用する粉末及び無機粉末を併用すると、無機粉体同士や相互作用する粉末同士が凝集する条件で混合した場合でも無機粉末及び相互作用する粉末がお互いに凝集を防ぐような効果を発揮する。また、粒径が小さい粉体は表面積が大きく重力の影響よりも分子間力の影響を受けやすく、その結果として凝集しやすくなるため、粉体とマイクロ繊維セルローススラリーとを混合する際に粉体がスラリー中でうまくほぐれなかったり、水系媒体の除去時に粉体同士が凝集することで、マイクロ繊維セルロースの凝集を防ぐ効果が十分に発揮されなくなったりするおそれがある。しかしながら、無機粉末及び相互作用する粉末を併用すると、自身の凝集を緩和することができると考えられる。
無機粉末としては、例えば、Fe、Na、K、Cu、Mg、Ca、Zn、Ba、Al、Ti、ケイ素元素等の周期律表第I族~第VIII族中の金属元素の単体、酸化物、水酸化物、炭素塩、硫酸塩、ケイ酸塩、亜硫酸塩、これらの化合物よりなる各種粘土鉱物等を例示することができる。具体的には、例えば、硫酸バリウム、硫酸カルシウム、硫酸マグネシウム、硫酸ナトリウム、亜硫酸カルシウム、酸化亜鉛、重質炭酸カルシウム、軽質炭酸カルシウム、ほう酸アルミニウム、アルミナ、酸化鉄、チタン酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化ナトリウム、炭酸マグネシウム、ケイ酸カルシウム、クレー、ワラストナイト、ガラスビーズ、ガラスパウダー、シリカゲル、乾式シリカ、コロイダルシリカ、珪砂、硅石、石英粉、珪藻土、ホワイトカーボン、ガラスファイバー等を例示することができる。これらの無機粉末は、複数が含有されていてもよい。また、古紙パルプに含まれるものであってもよいし、製紙スラッジ中の無機物を再生したいわゆる再生填料等であってもよい。
ただし、製紙用の填料や顔料として好適に使用される炭酸カルシウム、タルク、ホワイトカーボン、クレー、焼成クレー、二酸化チタン、水酸化アルミニウム及び再生填料等の中から選択される少なくとも1種以上の無機粉末を使用するのが好ましく、炭酸カルシウム、タルク、クレーの中からから選択される少なくとも1種以上を使用するのがより好ましく、軽質炭酸カルシウム及び重質炭酸カルシウムの少なくともいずれか一方を使用するのが特に好ましい。炭酸カルシウム、タルク、クレーを使用すると、樹脂等のマトリックスとの複合化が容易である。また、汎用的な無機材料であるため、用途の制限が生じることが少ないとのメリットがある。さらに、炭酸カルシウムは下記の理由から特に好ましい。軽質炭酸カルシウムを使用する場合は、粉末のサイズや形状を一定に制御しやすくなる。このため、セルロース繊維のサイズや形状に合わせて、間隙に入り込んでセルロース繊維同士の凝集を抑制する効果を生じやすくするようにサイズや形状を調整して、ピンポイントで効果を発揮しやすくできるメリットがある。また、重質炭酸カルシウムを使用すると、重質炭酸カルシウムが不定形であることから、スラリー中に様々なサイズの繊維が存在する場合でも、水系媒体除去時に繊維が凝集する過程において、間隙に入り込んでセルロース繊維同士の凝集を抑制することができるとのメリットがある。
無機粉末及び相互作用する粉末を併用する場合、無機粉末の平均粒径:相互作用する粉末の平均粒子径の比は、1:0.1~1:10000が好ましく、1:1~1:1000がより好ましい。この範囲にあると、自身の凝集力の強さから生じる問題(例えば、粉体とマイクロ繊維セルローススラリーとを混合する際に粉体がスラリー中でうまくほぐれなかったり、水系媒体の除去時に粉体同士が凝集したりする問題。)が発生せずに、マイクロ繊維セルロースの凝集を防ぐ効果を十分に発揮できるようになると考えられる。
無機粉末及び相互作用する粉末を併用する場合、無機粉末の質量%:相互作用する粉末の質量%の比は、1:0.01~1:100が好ましく、1:0.1~1:10がより好ましい。この範囲にあると、異種粉体同士が自身の凝集を阻害することが可能になると考えられる。この範囲にあると、自身の凝集力の強さから生じる問題(例えば、粉体とマイクロ繊維セルローススラリーとを混合する際に粉体がスラリー中でうまくほぐれなかったり、水系媒体の除去時に粉体同士が凝集したりする問題。)が発生せずに、マイクロ繊維セルロースの凝集を防ぐ効果を十分に発揮できるようになると考えられる。
(酸変性樹脂)
前述したように、相互作用する粉末は樹脂粉末であるのが好ましい。また、樹脂は、酸変性樹脂であるのが好ましい。酸変性樹脂は、酸基がカルバメート基の一部又は全部とイオン結合し得る。このイオン結合により、当該樹脂粉末の凝集抑制機能が効果的に発揮される。
酸変性樹脂としては、例えば、酸変性ポリオレフィン樹脂、酸変性エポキシ樹脂、酸変性スチレン系エラストマー樹脂等を使用することができる。ただし、酸変性ポリオレフィン樹脂を使用するのが好ましい。酸変性ポリオレフィン樹脂は、不飽和カルボン酸成分とポリオレフィン成分との共重合体である。
ポリオレフィン成分としては、例えば、エチレン、プロピレン、ブタジエン、イソプレン等のアルケンの重合体の中から1種又は2種以上を選択して使用することができる。ただし、好適には、プロピレンの重合体であるポリプロピレン樹脂を用いることが好ましい。
不飽和カルボン酸成分としては、例えば、無水マレイン酸類、無水フタル酸類、無水イタコン酸類、無水シトラコン酸類、無水クエン酸類等の中から1種又は2種以上を選択して使用することができる。ただし、好適には、無水マレイン酸類を使用するのが好ましい。つまり、無水マレイン酸変性ポリプロピレン樹脂を使用するのが特に好ましい。
酸変性樹脂の混合量は、マイクロ繊維セルロース100質量部に対して、好ましくは0.1~1,000質量部、より好ましくは1~500質量部、特に好ましくは10~200質量部である。特に酸変性樹脂が無水マレイン酸変性ポリプロピレン樹脂である場合は、好ましくは1~200質量部、より好ましくは10~100質量部である。酸性変性樹脂の混合量が0.1質量部を下回ると凝集抑制効果が十分ではない。他方、混合量が1,000質量部を上回ると、凝集抑制効果が逆に低下する傾向となる。
無水マレイン酸変性ポリプロピレンの重量平均分子量は、例えば1,000~100,000、好ましくは3,000~50,000である。
また、無水マレイン酸変性ポリプロピレンの酸価は、0.5mgKOH/g以上、100mgKOH/g以下が好ましく、1mgKOH/g以上、50mgKOH/g以下がより好ましい。
無水マレイン酸変性ポリプロピレンの酸価は、JIS-K2501に準拠し、水酸化カリウムで滴定することで求めた値である。
(分散剤)
マイクロ繊維セルロースは、分散剤と混合するとより好ましいものになる。分散剤としては、芳香族類にアミン基及び/又は水酸基を有する化合物、脂肪族類にアミン基及び/又は水酸基を有する化合物が好ましい。
芳香族類にアミン基及び/又は水酸基を有する化合物としては、例えば、アニリン類、トルイジン類、トリメチルアニリン類、アニシジン類、チラミン類、ヒスタミン類、トリプタミン類、フェノール類、ジブチルヒドロキシトルエン類、ビスフェノールA類、クレゾール類、オイゲノール類、没食子酸類、グアイアコール類、ピクリン酸類、フェノールフタレイン類、セロトニン類、ドーパミン類、アドレナリン類、ノルアドレナリン類、チモール類、チロシン類、サリチル酸類、サリチル酸メチル類、アニスアルコール類、サリチルアルコール類、シナピルアルコール類、ジフェニドール類、ジフェニルメタノール類、シンナミルアルコール類、スコポラミン類、トリプトフォール類、バニリルアルコール類、3-フェニル‐1-プロパノール類、フェネチルアルコール類、フェノキシエタノール類、ベラトリルアルコール類、ベンジルアルコール類、ベンゾイン類、マンデル酸類、マンデロニトリル類、安息香酸類、フタル酸類、イソフタル酸類、テレフタル酸類、メリト酸類、ケイ皮酸類などが挙げられる。
また、脂肪族類にアミン基及び/又は水酸基を有する化合物としては、例えば、カプリルアルコール類、2-エチルヘキサノール類、ペラルゴンアルコール類、カプリンアルコール類、ウンデシルアルコール類、ラウリルアルコール類、トリデシルアルコール類、ミリスチルアルコール類、ペンタデシルアルコール類、セタノール類、ステアリルアルコール類、エライジルアルコール類、オレイルアルコール類、リノレイルアルコール類、メチルアミン類、ジメチルアミン類、トリメチルアミン類、エチルアミン類、ジエチルアミン類、エチレンジアミン類、トリエタノールアミン類、N,N-ジイソプロピルエチルアミン類、テトラメチルエチレンジアミン類、ヘキサメチレンジアミン類、スペルミジン類、スペルミン類、アマンタジン類、ギ酸類、酢酸類、プロピオン酸類、酪酸類、吉草酸類、カプロン酸類、エナント酸類、カプリル酸類、ペラルゴン酸類、カプリン酸類、ラウリン酸類、ミリスチン酸類、パルミチン酸類、マルガリン酸類、ステアリン酸類、オレイン酸類、リノール酸類、リノレン酸類、アラキドン酸類、エイコサペンタエン酸類、ドコサヘキサエン酸類、ソルビン酸類などが挙げられる。
以上の分散剤は、セルロース繊維同士の水素結合を阻害する。したがって、マイクロ繊維セルロース及び樹脂の混練に際してマイクロ繊維セルロースが樹脂中において確実に分散するようになる。また、以上の分散剤は、マイクロ繊維セルロース及び樹脂の相溶性を向上させる役割も有する。この点でマイクロ繊維セルロースの樹脂中における分散性が向上する。
なお、繊維状セルロース及び樹脂の混練に際して、別途、相溶剤(薬剤)を添加することも考えられるが、この段階で薬剤を添加するよりも、予め繊維状セルロース及び分散剤(薬剤)を混合する方が、繊維状セルロースに対する薬剤の纏わりつきが均一になり、樹脂との相溶性向上効果が高くなる。
また、例えば、ポリプロピレンは融点が160℃であり、したがって繊維状セルロース及び樹脂の混練は、180℃程度で行う。しかるに、この状態で分散剤(液)を添加すると、一瞬で乾燥してしまう。そこで、融点の低い樹脂を使用してマスターバッチ(マイクロ繊維セルロースの濃度の濃い複合樹脂)を作製し、その後に通常の樹脂で濃度を下げる方法が存在する。しかしながら、融点の低い樹脂は一般的に強度が低い。したがって、当該方法によると、複合樹脂の強度が下がるおそれがある。
分散剤の混合量は、マイクロ繊維セルロース100質量部に対して、好ましくは0.1~1,000質量部、より好ましくは1~500質量部、特に好ましくは10~200質量部である。分散剤の混合量が0.1質量部を下回ると、樹脂強度の向上が十分ではないとされるおそれがある。他方、混合量が1,000質量部を上回ると、過剰となり樹脂強度が低下する傾向となる。
この点、前述した酸変性樹脂は酸基とマイクロ繊維セルロースのカルバメート基とがイオン結合することで相溶性を向上し、もって補強効果を上げるためのものであり、分子量が大きいため樹脂とも馴染み易く(密着性向上)、強度向上に寄与していると考えられる。一方、上記の分散剤は、マイクロ繊維セルロース同士の水酸基同士の間に介在して凝集を防ぎ、もって樹脂中での分散性を向上するものであり、また、分子量が酸変性樹脂に比べ小さいため、酸変性樹脂が入り込めないようなマイクロ繊維セルロース間の狭いスペースに入ることができ、分散性を向上して強度向上する役割を果たす。以上のような観点から、上記酸変性樹脂の分子量は、分散剤の分子量の2~2,000倍、好ましくは5~1,000倍であると好適である。
以上をより詳細に説明すると、相互作用する粉末は物理的にマイクロ繊維セルロース同士の間に介在することで水素結合を阻害し、もってマイクロ繊維セルロースの分散性を向上する。特に、酸変性樹脂は、酸基とマイクロ繊維セルロースのカルバメート基とイオン結合する。したがって、他の物質に優先して繊維周りに存在するようになり、繊維の凝集抑制効果が発揮される。しかも、繊維状セルロース含有物と樹脂とを混合して複合樹脂とする場合においては、当該複合樹脂とマイクロ繊維セルロースとを密着させる役割を果たし、複合樹脂の機械的強度を向上させる。この点、分散剤がマイクロ繊維セルロース同士の水素結合を阻害する点は同じであるが、相互作用する粉末はマイクロオーダーであるため、物理的に介在して水素結合を抑制する。したがって、分散性が分散剤にくらべ低いものの、特に樹脂粉末の場合は自身が溶融してマトリックスになるため物性低下に寄与しない。他方、分散剤は分子レベルであり、極めて小さいためマイクロ繊維セルロースを覆うようにして水素結合を阻害し、マイクロ繊維セルロースの分散性を向上する効果は高い。しかしながら、樹脂中に残り、物性低下に働く可能性がある。
(複合樹脂の製造方法)
繊維状セルロース含有物や分散剤等の混合物は、樹脂と混練するに先立って乾燥及び粉砕して粉状物にすることができる。この形態によると、樹脂との混練に際して繊維状セルロースを乾燥させる必要がなく、熱効率が良い。また、混合物に相互作用する粉末や分散剤が混合されている場合、当該混合物を乾燥したとしても、繊維状セルロース(マイクロ繊維セルロース)が再分散しなくなるおそれが低い。
混合物は、必要により、乾燥するに先立って脱水して脱水物にする。この脱水は、例えば、ベルトプレス、スクリュープレス、フィルタープレス、ツインロール、ツインワイヤーフォーマ、バルブレスフィルタ、センターディスクフィルタ、膜処理、遠心分離機等の脱水装置の中から1種又は2種以上を選択使用して行うことができる。
混合物の乾燥は、例えば、ロータリーキルン乾燥、円板式乾燥、気流式乾燥、媒体流動乾燥、スプレー乾燥、ドラム乾燥、スクリューコンベア乾燥、パドル式乾燥、一軸混練乾燥、多軸混練乾燥、真空乾燥、攪拌乾燥等の中から1種又は2種以上を選択使用して行うことができる。
乾燥した混合物(乾燥物)は、粉砕して粉状物にする。乾燥物の粉砕は、例えば、ビーズミル、ニーダー、ディスパー、ツイストミル、カットミル、ハンマーミル等の中から1種又は2種以上を選択使用して行うことができる。
粉状物の平均粒子径は、好ましくは1~10,000μm、より好ましくは10~5,000μm、特に好ましくは100~1,000μmである。粉状物の平均粒子径が10,000μmを上回ると、樹脂との混練性に劣るものになるおそれがある。他方、粉状物の平均粒子径が1μmを下回るものにするには大きなエネルギーが必要になるため、経済的でない。
粉状物の平均粒子径の制御は、粉砕の程度を制御することのほか、フィルター、サイクロン等の分級装置を使用した分級によることができる。
混合物(粉状物)の嵩比重は、好ましくは0.03~1.0、より好ましくは0.04~0.9、特に好ましくは0.05~0.8である。嵩比重が1.0を超えるということは繊維状セルロース同士の水素結合がより強固であり、樹脂中で分散させることは容易ではなくなることを意味する。他方、嵩比重が0.03を下回るものにするのは、移送コストの面から不利である。
嵩比重は、JIS K7365に準じて測定した値である。
混合物(粉状物)の水分率は、好ましくは50%以下、より好ましくは30%以下、特に好ましくは10%以下である。水分率が50%を上回ると、樹脂と混練する際のエネルギーが膨大になり、経済的でない。 水分率は、定温乾燥機を用いて、試料を105℃で6時間以上保持し質量の変動が認められなくなった時点の質量を乾燥後質量とし、下記式にて算出した値である。
繊維水分率(%)=[(乾燥前質量-乾燥後質量)÷乾燥前質量]×100
以上のようにして得た粉状物(繊維状セルロース含有物)は、必要により樹脂と混練し、繊維状セルロース複合樹脂を得る。この混練は、例えば、ペレット状の樹脂と粉状物とを混ぜ合わす方法によることのほか、樹脂をまず溶融し、この溶融物の中に粉状物を添加するという方法によることもできる。なお、相互作用する粉末として酸変性樹脂等の樹脂粉末を使用する場合においては、樹脂と混合することなくただちに混練して複合樹脂とすることもできる。
混合物(粉状物、繊維状セルロース含有物)は、全量を100質量部とした場合において繊維状セルロースが55質量部を超える割合で、特に60質量部以上の割合で含有することが好ましい。通常、繊維状セルロース濃度が55質量部を超えるような混合物を樹脂と混錬すると、樹脂中での混合物の分散性が悪くなってしまい、混合性に劣る。一方で、本願発明の混合物は、ヒドロキシル基の一部又は全部がカルバメート基で置換されている繊維状セルロースと、前記繊維状セルロースと相互作用する粉末とを含んでいるため、繊維状セルロースが55質量部を超えても、混合物を樹脂と混錬した際の高い分散性を維持できる。混合物の繊維状セルロース濃度を上げることは、複合樹脂に任意の割合の繊維状セルロースを含有させるために使用する混合物の量を減らすことが出来るという観点からも好ましい。
混練処理には、例えば、単軸又は二軸以上の多軸混練機、ミキシングロール、ニーダー、ロールミル、バンバリーミキサー、スクリュープレス、ディスパーザー等の中から1種又は2種以上を選択して使用することができる。それらのなかで、二軸以上の多軸混練機を使用することが好ましい。二軸以上の多軸混練機を2機以上、並列又は直列にして、使用しても良い。
混練処理の温度は、樹脂のガラス転移点以上であり、樹脂の種類によって異なるが、80~280℃とするのが好ましく、90~260℃とするのがより好ましく、100~240℃とするのが特に好ましい。
樹脂としては、熱可塑性樹脂又は熱硬化性樹脂の少なくともいずれか一方を使用することができる。
熱可塑性樹脂としては、例えば、ポリプロピレン(PP)、ポリエチレン(PE)等のポリオレフィン、脂肪族ポリエステル樹脂や芳香族ポリエステル樹脂等のポリエステル樹脂、ポリスチレン、メタアクリレート、アクリレート等のポリアクリル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂等の中から1種又は2種以上を選択して使用することができる。
ただし、ポリオレフィン及びポリエステル樹脂の少なくともいずれか一方を使用するのが好ましい。また、ポリオレフィンとしては、ポリプロピレンを使用するのが好ましい。さらに、ポリエステル樹脂としては、脂肪族ポリエステル樹脂として、例えば、ポリ乳酸、ポリカプロラクトン等を例示することができ、芳香族ポリエステル樹脂として、例えば、ポリエチレンテレフタレート等を例示することができるが、生分解性を有するポリエステル樹脂(単に「生分解性樹脂」ともいう。)を使用するのが好ましい。
生分解性樹脂としては、例えば、ヒドロキシカルボン酸系脂肪族ポリエステル、カプロラクトン系脂肪族ポリエステル、二塩基酸ポリエステル等の中から1種又は2種以上を選択して使用することができる。
ヒドロキシカルボン酸系脂肪族ポリエステルとしては、例えば、乳酸、リンゴ酸、グルコース酸、3-ヒドロキシ酪酸等のヒドロキシカルボン酸の単独重合体や、これらのヒドロキシカルボン酸のうちの少なくとも1種を用いた共重合体等の中から1種又は2種以上を選択して使用することができる。ただし、ポリ乳酸、乳酸と乳酸を除く上記ヒドロキシカルボン酸との共重合体、ポリカプロラクトン、上記ヒドロキシカルボン酸のうちの少なくとも1種とカプロラクトンとの共重合体を使用するのが好ましく、ポリ乳酸を使用するのが特に好ましい。
この乳酸としては、例えば、L-乳酸やD-乳酸等を使用することができ、これらの乳酸を単独で使用しても、2種以上を選択して使用してもよい。
カプロラクトン系脂肪族ポリエステルとしては、例えば、ポリカプロラクトンの単独重合体や、ポリカプロラクトン等と上記ヒドロキシカルボン酸との共重合体等の中から1種又は2種以上を選択して使用することができる。
二塩基酸ポリエステルとしては、例えば、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリブチレンアジペート等の中から1種又は2種以上を選択して使用することができる。
生分解性樹脂は、1種を単独で使用しても、2種以上を併用してもよい。
熱硬化性樹脂としては、例えば、フェノール樹脂、尿素樹脂、メラミン樹脂、フラン樹脂、不飽和ポリエステル、ジアリルフタレート樹脂、ビニルエステル樹脂、エポキシ樹脂、ウレタン系樹脂、シリコーン樹脂、熱硬化性ポリイミド系樹脂等を使用することができる。これらの樹脂は、単独で又は二種以上組み合わせて使用することができる。
繊維状セルロース及び樹脂の配合割合は、好ましくは繊維状セルロースが1質量部以上、樹脂が99質量部以下、より好ましくは繊維状セルロースが2質量部以上、樹脂が98質量部以下、特に好ましくは繊維状セルロースが3質量部以上、樹脂が97質量部以下である。また、好ましくは繊維状セルロースが50質量部以下、樹脂が50質量部以上、より好ましくは繊維状セルロースが40質量部以下、樹脂が60質量部以上、特に好ましくは繊維状セルロースが30質量部以下、樹脂が70質量部以上である。特に繊維状セルロースが10~50質量部であると、樹脂組成物の強度、特に曲げ強度及び引張り弾性率の強度を著しく向上させることができる。
なお、最終的に得られ樹脂組成物に含まれる繊維状セルロース及び樹脂の含有割合は、通常、繊維状セルロース及び樹脂の上記配合割合と同じとなる。
マイクロ繊維セルロース及び樹脂の溶解パラメータ(cal/cm31/2(SP値)の差、つまり、マイクロ繊維セルロースのSPMFC値、樹脂のSPPOL値とすると、SP値の差=SPMFC値-SPPOL値とすることができる。SP値の差は10~0.1が好ましく、8~0.5がより好ましく、5~1が特に好ましい。SP値の差が10を超えると、樹脂中でマイクロ繊維セルロースが分散せず、補強効果を得ることはできない。他方、SP値の差が0.1未満であるとマイクロ繊維セルロースが樹脂に溶解してしまい、フィラーとして機能せず、補強効果が得られない。この点、樹脂(溶媒)のSPPOL値とマイクロ繊維セルロース(溶質)のSPMFC値の差が小さい程、補強効果が大きい。
なお、溶解パラメータ(cal/cm31/2(SP値)とは、溶媒-溶質間に作用する分子間力を表す尺度であり、SP値が近い溶媒と溶質であるほど、溶解度が増す。
(成形処理)
繊維状セルロース含有物及び樹脂の混練物は、必要により再度混練する等した後、所望の形状に成形することができる。この成形の大きさや厚さ、形状等は、特に限定されず、例えば、シート状、ペレット状、粉末状、繊維状等とすることができる。
成形処理の際の温度は、樹脂のガラス転移点以上であり、樹脂の種類によって異なるが、例えば90~260℃、好ましくは100~240℃である。
混練物の成形は、例えば、金型成形、射出成形、押出成形、中空成形、発泡成形等によることができる。また、混練物を紡糸して繊維状にし、前述した植物材料等と混繊してマット形状、ボード形状とすることもできる。混繊は、例えば、エアーレイにより同時堆積させる方法等によることができる。
混練物を成形する装置としては、例えば、射出成形機、吹込成形機、中空成形機、ブロー成形機、圧縮成形機、押出成形機、真空成形機、圧空成形機等の中から1種又は2種以上を選択して使用することができる。
以上の成形は、混練に続いて行うことも、混練物をいったん冷却し、破砕機等を使用してチップ化した後、このチップを押出成形機や射出成形機等の成形機に投入して行うこともできる。もちろん、成形は、本発明の必須の要件ではない。
(その他の組成物)
繊維状セルロース含有物には、マイクロ繊維セルロースと共にセルロースナノファイバーが含まれていてもよい。セルロースナノファイバーは、マイクロ繊維セルロースと同様に微細繊維であり、樹脂の強度向上にとってマイクロ繊維セルロースを補完する役割を有する。ただし、可能であれば、微細繊維としてセルロースナノファイバーを含むことなくマイクロ繊維セルロースのみによる方が好ましい。なお、セルロースナノファイバーの平均繊維径(平均繊維幅。単繊維の直径平均。)は、好ましくは4~100nm、より好ましくは10~80nmである。
また、繊維状セルロース含有物には、パルプが含まれていてもよい。パルプは、セルロース繊維スラリーの脱水性を大幅に向上する役割を有する。ただし、パルプについてもセルロースナノファイバーの場合と同様に、配合しないのが、つまり含有率0質量%であるのが最も好ましい。
樹脂組成物(複合樹脂)には、微細繊維やパルプ等のほか、ケナフ、ジュート麻、マニラ麻、サイザル麻、雁皮、三椏、楮、バナナ、パイナップル、ココヤシ、トウモロコシ、サトウキビ、バガス、ヤシ、パピルス、葦、エスパルト、サバイグラス、麦、稲、竹、各種針葉樹(スギ及びヒノキ等)、広葉樹及び綿花などの各種植物体から得られた植物材料に由来する繊維を含ませることもでき、含まれていてもよい。
樹脂組成物には、例えば、帯電防止剤、難燃剤、抗菌剤、着色剤、ラジカル捕捉剤、発泡剤等の中から1種又は2種以上を選択して、本発明の効果を阻害しない範囲で添加することができる。これらの原料は、繊維状セルロースの分散液に添加しても、繊維状セルロース及び樹脂の混練の際に添加しても、これらの混練物に添加しても、その他の方法で添加してもよい。ただし、製造効率の面からは、繊維状セルロース及び樹脂の混練の際に添加するのが好ましい。
樹脂組成物には、ゴム成分として、エチレン-αオレフィン共重合エラストマー又はスチレン-ブタジエンブロック共重合体が含有されていてもよい。α-オレフィンの例としては、例えば、ブテン、イソブテン、ペンテン、ヘキセン、メチル-ペンテン、オクテン、デセン、ドデセン等が挙げられる。
次に、本発明の実施例を説明する。
固形分濃度2.8質量%のマイクロ繊維セルロース1,570gに、粒子径の揃っている無水マレイン酸変性ポリプロピレン(MAPP)、又は異なる粒子径が混在している無水マレイン酸変性ポリプロピレン(MAPP)を22.0g添加し、140℃に加熱した接触式乾燥機を用いて加熱し、カルバメート変性マイクロ繊維セルロース含有物を得た。このカルバメート変性マイクロ繊維セルロース含有物の含水率は、5~22%であった。
繊維のカルバメート変性の方法は、次のとおりとした。
すなわち、水分率10%以下の針葉樹クラフトパルプと固形分濃度10%の尿素水溶液と20%クエン酸水溶液とを用いて、固形分換算の質量比でパルプ:尿素:クエン酸=100:50:0.1となるように混合した後、105℃で乾燥させた。次に、所定の反応温度、反応時間で加熱処理してカルバメート変性パルプ(カルバメート化パルプ)を得た。得られたカルバメート変性パルプは、蒸留水で希釈撹拌して脱水工程を2回繰り返した。洗浄したカルバメート変性パルプは叩解機を用いて0.2mm未満の割合及び、0.2~0.6mmの割合が所定の割合になるまで叩解して、カルバメート変性マイクロ繊維セルロース(カルバメート化MFC(微細繊維))を得た。
また、無水マレイン酸変性ポリプロピレンに代えて、ポリプロピレン粉末22.0gを用いて、比較例としてのカルバメート変性マイクロ繊維セルロース含有物を得た。このカルバメート変性マイクロ繊維セルロース含有物の含水率は、5~22%であった。
以上のようにして得たカルバメート変性マイクロ繊維セルロース含有物に、カルバメート変性マイクロ繊維:その他成分=10:90となるようにポリプロピレンペレットを添加、混合し、180℃、200rpmの条件で二軸混練機にて混練し、繊維配合率10%のカルバメート変性マイクロ繊維セルロース複合樹脂を得た。
以上のようにして得たカルバメート変性マイクロ繊維セルロース複合樹脂をペレッターで2mm径、2mm長の円柱状にカットし、180℃で直方体試験片(長さ59mm、幅9.6mm、厚さ3.8mm)に射出成形した。各試験片について、曲げ弾性率を調べた。結果は、以下の基準で、MAPPの粒子サイズ(粒子径)及び繊維状セルロースの繊維サイズ(繊維長)と共に表1に示した。
(曲げ弾性率)
曲げ弾性率は、JIS K7171:2008に準拠して測定した。表中には、評価結果を以下の基準で示した。
樹脂自体の曲げ弾性率を1として複合樹脂の曲げ弾性率(倍率)が1.45倍以上の場合 :○
樹脂自体の曲げ弾性率を1として複合樹脂の曲げ弾性率(倍率)が1.40倍以上1.45倍未満の場合:△
樹脂自体の曲げ弾性率を1として複合樹脂の曲げ弾性率(倍率)が1.40倍未満の場合:×
Figure 2022156849000004
本発明は、繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法として利用可能である。例えば、繊維状セルロース複合樹脂は、自動車、電車、船舶、飛行機等の輸送機器の内装材、外装材、構造材等;パソコン、テレビ、電話、時計等の電化製品等の筺体、構造材、内部部品等;携帯電話等の移動通信機器等の筺体、構造材、内部部品等;携帯音楽再生機器、映像再生機器、印刷機器、複写機器、スポーツ用品、オフィス機器、玩具、スポーツ用品等の筺体、構造材、内部部品等;建築物、家具等の内装材、外装材、構造材等;文具等の事務機器等;その他、包装体、トレイ等の収容体、保護用部材、パーティション部材等;に利用可能である。

Claims (9)

  1. 樹脂に添加される繊維状セルロース含有物であり、
    前記繊維状セルロースは、平均繊維幅が0.1~19μmで、かつヒドロキシル基の一部又は全部がカルバメート基で置換されており、
    前記繊維状セルロースと相互作用する粉末を含む、
    ことを特徴とする繊維状セルロース含有物。
  2. 前記相互作用する粉末は、90%粒子径/10%粒子径が2~1000である、
    請求項1に記載の繊維状セルロース含有物。
  3. 前記相互作用する粉末の体積平均粒子径が0.01~10000μmで、かつ前記相互作用する粉末の体積平均粒子径(μm)/前記繊維状セルロースの平均繊維長(μm)が0.005~5000である、
    請求項1又は請求項2に記載の繊維状セルロース含有物。
  4. 前記繊維状セルロースは、繊維長0.2mm未満の割合が5%以上で、かつ繊維長0.2~0.6mmの割合が10%以上である、
    請求項1~3のいずれか1項に記載の繊維状セルロース含有物。
  5. 前記繊維状セルロースは、平均繊維長が1.0mm以下、平均繊維幅が10μm以下で、かつフィブリル化率が2.5%以上である、
    請求項1~4のいずれか1項に記載の繊維状セルロース含有物。
  6. 前記相互作用する粉末は、酸価2.0%以上の酸変性樹脂である、
    請求項1~5のいずれか1項に記載の繊維状セルロース含有物。
  7. 前記相互作用する粉末は、無水マレイン酸変性ポリプロピレンである、
    請求項1~6のいずれか1項に記載の繊維状セルロース含有物。
  8. 繊維状セルロース及び樹脂が混合された繊維状セルロース複合樹脂であり、
    前記繊維状セルロースとして請求項1~7のいずれか1項に記載の繊維状セルロース含有物が使用されている、
    ことを特徴とする繊維状セルロース複合樹脂。
  9. ヒドロキシル基の一部又は全部がカルバメート基で置換された繊維状セルロースを平均繊維幅が0.1~19μmとなるように解繊し、前記繊維状セルロースと相互作用する粉末と混合して混合液を得、
    この混合液を乾燥する、
    ことを特徴とする繊維状セルロース含有物の製造方法。
JP2021060743A 2021-03-31 2021-03-31 繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法 Active JP7213296B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021060743A JP7213296B2 (ja) 2021-03-31 2021-03-31 繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法
EP22779389.0A EP4317295A1 (en) 2021-03-31 2022-01-18 Fibrous cellulose-containing product, fibrous cellulose composite resin, and production method for fibrous cellulose-containing product
US18/548,403 US20240150557A1 (en) 2021-03-31 2022-01-18 Fibrous cellulose-containing material, fibrous cellulose composite resin, and method for preparing fibrous cellulose-containing material
CN202280015103.8A CN116888207A (zh) 2021-03-31 2022-01-18 纤维状纤维素含有物、纤维状纤维素复合树脂和纤维状纤维素含有物的制造方法
KR1020237027698A KR20230165750A (ko) 2021-03-31 2022-01-18 섬유상 셀룰로오스 함유물, 섬유상 셀룰로오스 복합수지, 및 섬유상 셀룰로오스 함유물의 제조 방법
PCT/JP2022/001498 WO2022209157A1 (ja) 2021-03-31 2022-01-18 繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021060743A JP7213296B2 (ja) 2021-03-31 2021-03-31 繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法

Publications (2)

Publication Number Publication Date
JP2022156849A true JP2022156849A (ja) 2022-10-14
JP7213296B2 JP7213296B2 (ja) 2023-01-26

Family

ID=83458599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021060743A Active JP7213296B2 (ja) 2021-03-31 2021-03-31 繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法

Country Status (6)

Country Link
US (1) US20240150557A1 (ja)
EP (1) EP4317295A1 (ja)
JP (1) JP7213296B2 (ja)
KR (1) KR20230165750A (ja)
CN (1) CN116888207A (ja)
WO (1) WO2022209157A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000505135A (ja) * 1996-07-12 2000-04-25 ローディア アセトウ アクチェンゲゼルシャフト セルロースカーバメイトの製造方法
JP2010106251A (ja) * 2008-09-30 2010-05-13 Daicel Chem Ind Ltd 疎水化されたセルロース系繊維を含む樹脂組成物及びその製造方法
WO2014087767A1 (ja) * 2012-12-05 2014-06-12 日本製紙株式会社 複合材料及びそれを用いた成形体
WO2015198218A1 (en) * 2014-06-27 2015-12-30 Stora Enso Oyj Method for making cellulose carbamate
JP2016222786A (ja) * 2015-05-29 2016-12-28 コニカミノルタ株式会社 カルバメート変性高分子化合物の製造方法、カルバメート変性高分子化合物、光学フィルム、円偏光板及び表示装置
WO2017094812A1 (ja) * 2015-12-03 2017-06-08 国立大学法人京都大学 樹脂組成物及びその製造方法
JP2019001876A (ja) * 2017-06-14 2019-01-10 国立大学法人京都大学 微細セルロース繊維、その製造方法、スラリー及び複合体
WO2019221256A1 (ja) * 2018-05-18 2019-11-21 大王製紙株式会社 セルロース微細繊維及びその製造方法
WO2020090711A1 (ja) * 2018-10-31 2020-05-07 大王製紙株式会社 繊維状セルロース複合樹脂及びその製造方法
WO2020203147A1 (ja) * 2019-03-29 2020-10-08 大王製紙株式会社 繊維状セルロース複合樹脂及びその製造方法、並びに樹脂の補強材
WO2021039706A1 (ja) * 2019-08-29 2021-03-04 大王製紙株式会社 繊維状セルロース複合樹脂及びその製造方法
JP2021037769A (ja) * 2020-11-13 2021-03-11 大王製紙株式会社 繊維状セルロース含有物及びその製造方法、繊維状セルロース乾燥体及びその製造方法、並びに繊維状セルロース複合樹脂及びその製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000505135A (ja) * 1996-07-12 2000-04-25 ローディア アセトウ アクチェンゲゼルシャフト セルロースカーバメイトの製造方法
JP2010106251A (ja) * 2008-09-30 2010-05-13 Daicel Chem Ind Ltd 疎水化されたセルロース系繊維を含む樹脂組成物及びその製造方法
WO2014087767A1 (ja) * 2012-12-05 2014-06-12 日本製紙株式会社 複合材料及びそれを用いた成形体
WO2015198218A1 (en) * 2014-06-27 2015-12-30 Stora Enso Oyj Method for making cellulose carbamate
JP2016222786A (ja) * 2015-05-29 2016-12-28 コニカミノルタ株式会社 カルバメート変性高分子化合物の製造方法、カルバメート変性高分子化合物、光学フィルム、円偏光板及び表示装置
WO2017094812A1 (ja) * 2015-12-03 2017-06-08 国立大学法人京都大学 樹脂組成物及びその製造方法
JP2019001876A (ja) * 2017-06-14 2019-01-10 国立大学法人京都大学 微細セルロース繊維、その製造方法、スラリー及び複合体
WO2019221256A1 (ja) * 2018-05-18 2019-11-21 大王製紙株式会社 セルロース微細繊維及びその製造方法
WO2020090711A1 (ja) * 2018-10-31 2020-05-07 大王製紙株式会社 繊維状セルロース複合樹脂及びその製造方法
WO2020203147A1 (ja) * 2019-03-29 2020-10-08 大王製紙株式会社 繊維状セルロース複合樹脂及びその製造方法、並びに樹脂の補強材
WO2021039706A1 (ja) * 2019-08-29 2021-03-04 大王製紙株式会社 繊維状セルロース複合樹脂及びその製造方法
JP2021037769A (ja) * 2020-11-13 2021-03-11 大王製紙株式会社 繊維状セルロース含有物及びその製造方法、繊維状セルロース乾燥体及びその製造方法、並びに繊維状セルロース複合樹脂及びその製造方法

Also Published As

Publication number Publication date
CN116888207A (zh) 2023-10-13
US20240150557A1 (en) 2024-05-09
EP4317295A1 (en) 2024-02-07
WO2022209157A1 (ja) 2022-10-06
KR20230165750A (ko) 2023-12-05
JP7213296B2 (ja) 2023-01-26

Similar Documents

Publication Publication Date Title
JP7460329B2 (ja) 繊維状セルロース複合樹脂及びその製造方法、並びに樹脂の補強材
JP2020163651A5 (ja)
WO2021039706A1 (ja) 繊維状セルロース複合樹脂及びその製造方法
JP7483418B2 (ja) 繊維状セルロースの製造方法、及び繊維状セルロース複合樹脂の製造方法
JP2022089848A5 (ja)
JP7048671B2 (ja) 繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法
WO2021182180A1 (ja) 繊維状セルロース、繊維状セルロース複合樹脂及び繊維状セルロースの製造方法
WO2021193119A1 (ja) 繊維状セルロース、繊維状セルロース複合樹脂及び繊維状セルロースの製造方法
JP7227186B2 (ja) 繊維状セルロース及び繊維状セルロース複合樹脂
JP7097928B2 (ja) 繊維状セルロースの製造方法及び繊維状セルロース複合樹脂の製造方法
JP2021195483A5 (ja)
JP7150783B2 (ja) カルバメート化セルロース繊維の製造方法及びカルバメート化微細繊維の製造方法
JP2023047589A (ja) マイクロ繊維セルロース固形物、マイクロ繊維セルロース固形物の製造方法
WO2021177289A1 (ja) 繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法
WO2021193120A1 (ja) 繊維状セルロース、繊維状セルロース複合樹脂及び繊維状セルロースの製造方法
JP7213296B2 (ja) 繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法
JP7265514B2 (ja) セルロース繊維含有物の製造方法、及びセルロース繊維複合樹脂の製造方法
JP7449323B2 (ja) 繊維状セルロース複合樹脂
WO2023162433A1 (ja) 繊維状セルロース、繊維状セルロース複合樹脂及び繊維状セルロースの製造方法
JP2023064943A (ja) 繊維状セルロース複合樹脂
WO2024009668A1 (ja) 繊維状セルロース複合樹脂
JPWO2023162433A5 (ja)
JP2023142300A5 (ja)
JP2024008128A5 (ja)
JP2024071477A (ja) 繊維状セルロース複合樹脂及びその製造方法、並びに樹脂の補強材

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220826

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220826

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230116

R150 Certificate of patent or registration of utility model

Ref document number: 7213296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150