WO2024009668A1 - 繊維状セルロース複合樹脂 - Google Patents

繊維状セルロース複合樹脂 Download PDF

Info

Publication number
WO2024009668A1
WO2024009668A1 PCT/JP2023/020994 JP2023020994W WO2024009668A1 WO 2024009668 A1 WO2024009668 A1 WO 2024009668A1 JP 2023020994 W JP2023020994 W JP 2023020994W WO 2024009668 A1 WO2024009668 A1 WO 2024009668A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
carbamate
pulp
resin
microfiber
Prior art date
Application number
PCT/JP2023/020994
Other languages
English (en)
French (fr)
Inventor
貴章 今井
Original Assignee
大王製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大王製紙株式会社 filed Critical 大王製紙株式会社
Publication of WO2024009668A1 publication Critical patent/WO2024009668A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a fibrous cellulose composite resin.
  • fine fibers such as cellulose nanofibers and microfiber cellulose (microfibrillated cellulose) as reinforcing materials for resins
  • fine fibers are hydrophilic
  • resins are hydrophobic, and therefore, when fine fibers are used as reinforcing materials for resins, there is a problem with the dispersibility of the fine fibers. Therefore, the present inventors have proposed replacing the hydroxyl groups of the fine fibers with carbamate groups (see Patent Document 1). According to this proposal, the dispersibility of fine fibers is improved, thereby improving the strength of the composite resin.
  • the problem to be solved by the present invention is to provide a fibrous cellulose composite resin with improved strength.
  • Patent Document 1 the present inventors did not focus on the introduction of carbamate, but instead pursued the physical properties of the fine fibers and other substances to be mixed. Although it was added that pulp can be blended with the microfiber cellulose, it is most preferable that pulp is not blended, that is, the content is 0% by mass. This is because the strength of the composite resin decreases when pulp is added. However, through further testing, it was discovered that carbamateing the pulp actually improved the strength of the composite resin. Based on this knowledge, we came up with the following method.
  • fibrous cellulose contains fibrous cellulose and resin
  • fibrous cellulose Carbamate microfiber cellulose having an average fiber length of 0.15 to 0.90 mm and in which some or all of the hydroxy groups are substituted with carbamate groups; Carbamate pulp with an average fiber length of 1.0 to 5.0 mm and in which some or all of the hydroxy groups are substituted with carbamate groups,
  • the fine ratio of the carbamate microfiber cellulose is 70% or less, This is a fibrous cellulose composite resin characterized by the following.
  • the fibrous cellulose composite resin of this embodiment contains fibrous cellulose and a resin, and the fibrous cellulose has an average fiber length of 0.15 to 0.90 mm, and a part or all of the hydroxyl groups are substituted with carbamate groups.
  • the fibrous cellulose is microfiber cellulose (microfibrillated cellulose) with an average fiber diameter of 0.1 to 20 ⁇ m.
  • microfiber cellulose significantly improves the reinforcing effect of the resin.
  • microfiber cellulose is easier to modify with carbamate groups (carbamate formation) than cellulose nanofibers, which are also fine fibers.
  • carbamate groups carbamate formation
  • cellulose nanofibers which are also fine fibers.
  • Microfiber cellulose can be obtained by defibrating (refining) cellulose raw material (hereinafter also referred to as "raw material pulp”).
  • Raw material pulp includes, for example, wood pulp made from hardwoods, coniferous trees, etc., non-wood pulp made from straw, bagasse, cotton, linen, bark fiber, etc., and waste paper pulp made from recycled waste paper, waste paper, etc. (DIP) and the like, one or more types can be selected and used.
  • DIP waste paper pulp made from recycled waste paper, waste paper, etc.
  • the various raw materials mentioned above may be in the form of a pulverized material (powdered material) called, for example, cellulose powder.
  • wood pulp As the raw material pulp, one or more types can be selected and used from, for example, chemical pulps such as hardwood kraft pulp (LKP) and softwood kraft pulp (NKP), mechanical pulp (TMP), and the like.
  • the hardwood kraft pulp may be a bleached hardwood kraft pulp, an unbleached hardwood kraft pulp, or a semi-bleached hardwood kraft pulp.
  • the softwood kraft pulp may be a bleached softwood kraft pulp, an unbleached softwood kraft pulp, or a semi-bleached softwood kraft pulp.
  • Mechanical pulps include, for example, stone ground pulp (SGP), pressurized stone ground pulp (PGW), refiner ground pulp (RGP), chemical ground pulp (CGP), thermoground pulp (TGP), ground pulp (GP),
  • SGP stone ground pulp
  • PGW pressurized stone ground pulp
  • RGP refiner ground pulp
  • CGP chemical ground pulp
  • TGP thermoground pulp
  • GGP ground pulp
  • TMP ground pulp
  • TMP thermomechanical pulp
  • CMP chemi-thermomechanical pulp
  • RMP refiner mechanical pulp
  • BTMP bleached thermomechanical pulp
  • the raw material pulp can be pretreated by chemical methods prior to defibration.
  • pretreatments using chemical methods include hydrolysis of polysaccharides with acids (acid treatment), hydrolysis of polysaccharides with enzymes (enzyme treatment), swelling of polysaccharides with alkalis (alkali treatment), and oxidation of polysaccharides with oxidizing agents ( Examples include oxidation treatment), reduction of polysaccharide with a reducing agent (reduction treatment), and the like.
  • it is preferable to perform enzyme treatment it is preferable to perform enzyme treatment, and in addition, it is more preferable to perform one or more treatments selected from acid treatment, alkali treatment, and oxidation treatment.
  • the enzyme treatment will be explained in detail below.
  • the enzyme used for the enzyme treatment it is preferable to use at least one of a cellulase enzyme and a hemicellulase enzyme, and it is more preferable to use both in combination.
  • the use of these enzymes makes it easier to defibrate cellulosic raw materials.
  • cellulase enzymes cause the decomposition of cellulose in the presence of water.
  • hemicellulase enzymes cause the decomposition of hemicellulose in the presence of water.
  • cellulase enzymes include Trichoderma, Acremonium, Aspergillus, Phanerochaete, and Trametes. It is produced by the genus Humicola, the genus Bacillus, the genus Schizophyllum, the genus Streptomyces, and the genus Pseudomonas. Enzymes can be used. These cellulase enzymes can be purchased as reagents or commercial products.
  • EG encodedoglucanase
  • CBH cellobiohydrolase
  • hemicellulase enzymes examples include xylanase, an enzyme that decomposes xylan, mannase, an enzyme that decomposes mannan, and arabanase, an enzyme that decomposes alaban. can.
  • Pectinase which is an enzyme that degrades pectin, can also be used.
  • Hemicellulose is a polysaccharide excluding pectin, which is present between cellulose microfibrils in plant cell walls. Hemicellulose is diverse and varies depending on the type of wood and the wall layers of the cell wall. In the secondary wall of softwood, glucomannan is the main component, and in the secondary wall of hardwood, 4-O-methylglucuronoxylan is the main component. Therefore, when obtaining fine fibers from softwood bleached kraft pulp (NBKP), it is preferable to use mannase. Moreover, when obtaining microfiber cellulose from hardwood bleached kraft pulp (LBKP), it is preferable to use xylanase.
  • the amount of enzyme added to the cellulose raw material is determined by, for example, the type of enzyme, the type of wood used as the raw material (softwood or hardwood), the type of mechanical pulp, etc.
  • the amount of enzyme added to the cellulose raw material is preferably 0.1 to 3% by mass, more preferably 0.3 to 2.5% by mass, particularly preferably 0.5 to 2% by mass. If the amount of the enzyme added is less than 0.1% by mass, there is a risk that the effect of the addition of the enzyme may not be sufficiently obtained. On the other hand, if the amount of enzyme added exceeds 3% by mass, cellulose may be saccharified and the yield of microfiber cellulose may decrease. Another problem is that it is not possible to recognize an improvement in the effect commensurate with the increase in the amount added.
  • the temperature during the enzyme treatment is preferably 30 to 70°C, more preferably 35 to 65°C, particularly preferably 40 to 60°C, regardless of whether a cellulase enzyme or a hemicellulase enzyme is used as the enzyme. . If the temperature during the enzyme treatment is 30° C. or higher, the enzyme activity will be less likely to decrease, and the treatment time can be prevented from becoming longer. On the other hand, if the temperature during enzyme treatment is 70° C. or lower, deactivation of the enzyme can be prevented.
  • the time for enzyme treatment is determined by, for example, the type of enzyme, the temperature of enzyme treatment, the pH at the time of enzyme treatment, etc.
  • the general enzyme treatment time is 0.5 to 24 hours.
  • Examples of methods for inactivating enzymes include adding an alkaline aqueous solution (preferably pH 10 or higher, more preferably pH 11 or higher), adding hot water at 80 to 100°C, and the like.
  • alkali used in the alkali treatment examples include sodium hydroxide, lithium hydroxide, potassium hydroxide, ammonia aqueous solution, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, etc.
  • Organic alkalis and the like can be used. However, from the viewpoint of manufacturing cost, it is preferable to use sodium hydroxide.
  • the degree of water retention of microfiber cellulose can be lowered, the degree of crystallinity can be increased, and the homogeneity can be increased.
  • the water retention degree of microfiber cellulose is low, it becomes easy to dehydrate, and the dehydration property of the cellulose fiber slurry improves.
  • a beater For defibration of raw material pulp, for example, a beater, a high-pressure homogenizer, a homogenizer such as a high-pressure homogenizer, a grinder, a stone mill friction machine such as a mill, a single-shaft kneader, a multi-shaft kneader, a kneader refiner, a jet mill, etc.
  • a homogenizer such as a high-pressure homogenizer
  • a grinder a stone mill friction machine such as a mill
  • a single-shaft kneader a multi-shaft kneader
  • a kneader refiner a jet mill
  • microfiber cellulose means fibers with an average fiber width thicker than cellulose nanofibers.
  • the average fiber diameter is, for example, 0.1 to 20 ⁇ m, preferably 1 to 19 ⁇ m, and more preferably 10 to 18 ⁇ m. If the average fiber diameter of microfiber cellulose is less than (below) 0.1 ⁇ m, it will not be different from cellulose nanofibers, and there is a possibility that the effect of improving the strength (especially flexural modulus) of the resin will not be sufficiently obtained. . Furthermore, the defibration time becomes longer and a large amount of energy is required. Furthermore, the dehydration properties of the cellulose fiber slurry deteriorate.
  • the microfiber cellulose may be thermally degraded and its strength may be reduced.
  • the average fiber diameter of the microfiber cellulose exceeds (exceeds) 20 ⁇ m, it becomes no different from pulp, and the reinforcing effect may not be sufficient.
  • the method for measuring the average fiber diameter of microfiber cellulose is as follows. First, 100 ml of an aqueous dispersion of fine fibers with a solid content concentration of 0.01 to 0.1% by mass was filtered through a Teflon (registered trademark) membrane filter, and the solvent was replaced once with 100 ml of ethanol and three times with 20 ml of t-butanol. do. Next, it is freeze-dried, coated with osmium, and used as a sample. This sample is observed using an electron microscope SEM image at a magnification of 3,000 times to 30,000 times depending on the width of the constituent fibers.
  • the average fiber length (average length of single fibers) of microfiber cellulose is preferably 0.15 to 0.90 mm, more preferably 0.20 to 0.70 mm, particularly preferably 0.3 to 0.50 mm. be. If the average fiber length is less than 0.15 mm, a three-dimensional network of fibers cannot be formed, and the reinforcing effect (especially flexural modulus) of the composite resin may be reduced. On the other hand, if the average fiber length exceeds 0.90 mm, the reinforcing effect may be insufficient because the length is the same as that of the raw material pulp.
  • the average fiber length of microfiber cellulose can be arbitrarily adjusted, for example, by selecting the raw material pulp, pretreatment, fibrillation, etc.
  • the average fiber length of the cellulose raw material used as the raw material for microfiber cellulose is preferably 1.0 to 5.0 mm, more preferably 1.2 to 3.0 mm, particularly preferably 1.5 to 2.5 mm. If the average fiber length of the cellulose raw material is less than 1.0 mm, there is a possibility that the reinforcing effect of the resin will not be sufficiently obtained during defibration treatment. On the other hand, if the average fiber length exceeds 5.0 mm, it may be disadvantageous in terms of manufacturing cost during defibration.
  • the fiber length of microfiber cellulose and the fibrillation rate described below are measured using a fiber analyzer "FS5" manufactured by Valmet.
  • the microfiber cellulose has a fine ratio (Fine ratio: ratio of fiber length of 0.2 mm or less) of preferably 35 to 70%, more preferably 36 to 55%, particularly preferably 37 to 50%. If the fine ratio is less than 35%, the fiber size may be too large and the bending properties may be insufficient. On the other hand, if the fine ratio exceeds 70%, the fiber size is too small and will strongly aggregate during drying, and even if carbamate pulp is present, it may not be completely disintegrated by the kneading shear, resulting in insufficient dispersibility. be.
  • the aspect ratio of the microfiber cellulose is preferably 2 to 15,000, more preferably 10 to 10,000. If the aspect ratio is less than 2, a three-dimensional network cannot be constructed, so even if the average fiber length exceeds 0.15 mm, the reinforcing effect may be insufficient. On the other hand, when the aspect ratio exceeds 15,000, the microfiber cellulose becomes highly entangled with each other, and there is a possibility that the dispersion in the resin becomes insufficient.
  • Aspect ratio is the value obtained by dividing the average fiber length by the average fiber width. As the aspect ratio increases, the number of places where snags occur increases, so the reinforcing effect increases, but on the other hand, it is thought that the more snags occur, the more the ductility of the resin decreases.
  • the fibrillation rate of microfiber cellulose is preferably 1.0 to 30.0%, more preferably 1.5 to 20.0%, particularly preferably 2.0 to 15.0%. If the fibrillation rate exceeds 30.0%, the contact area with water becomes too large, so even if the fibers are defibrated within a range where the average fiber width remains at 0.1 ⁇ m or more, dehydration may become difficult. be. On the other hand, if the fibrillation rate is less than 1.0%, there are few hydrogen bonds between fibrils, and a strong three-dimensional network may not be formed.
  • the crystallinity of the microfiber cellulose is preferably 50% or more, more preferably 55% or more, particularly preferably 60% or more.
  • the degree of crystallinity is less than 50%, although the miscibility with pulp is improved, the strength of the fiber itself decreases, so there is a possibility that the strength of the resin cannot be improved.
  • the crystallinity of the microfiber cellulose is preferably 95% or less, more preferably 90% or less, particularly preferably 85% or less.
  • the degree of crystallinity exceeds 95%, the proportion of strong intramolecular hydrogen bonds increases, the fiber itself becomes rigid, and its dispersibility becomes poor.
  • the degree of crystallinity of microfiber cellulose can be arbitrarily adjusted, for example, by selecting the raw material pulp, pretreatment, and refining treatment.
  • the crystallinity is a value measured in accordance with JIS K 0131 (1996).
  • the pulp viscosity of the microfiber cellulose is preferably 2 cps or more, more preferably 4 cps or more. When the pulp viscosity of the microfiber cellulose is less than 2 cps, it may be difficult to suppress aggregation of the microfiber cellulose.
  • the pulp viscosity is a value measured according to TAPPI T230.
  • the freeness of the microfiber cellulose is preferably 500 ml or less, more preferably 300 ml or less, particularly preferably 100 ml or less. If the freeness of the microfiber cellulose exceeds 500 ml, there is a possibility that the effect of improving the strength of the resin will not be sufficiently obtained.
  • microfiber cellulose The freeness of microfiber cellulose is a value measured in accordance with JIS P8121-2 (2012).
  • the zeta potential of microfiber cellulose is preferably -150 to 20 mV, more preferably -100 to 0 mV, particularly preferably -80 to -10 mV. If the zeta potential is less than -150 mV, the compatibility with the resin may decrease significantly and the reinforcing effect may become insufficient. On the other hand, if the zeta potential exceeds 20 mV, there is a risk that the dispersion stability will decrease.
  • the water retention degree of microfiber cellulose is preferably 80 to 400%, more preferably 90 to 350%, particularly preferably 100 to 300%. If the water retention is less than 80%, the reinforcing effect may be insufficient because it is no different from the raw material pulp. On the other hand, when the degree of water retention exceeds 400%, dehydration properties tend to be poor and agglomeration tends to occur. In this regard, the water retention of microfiber cellulose can be lowered by substituting the hydroxy groups of the fibers with carbamate groups, and the dehydration and drying properties can be improved.
  • the water retention degree of microfiber cellulose can be arbitrarily adjusted, for example, by selecting the raw material pulp, pretreatment, fibrillation, etc.
  • the microfiber cellulose of this form has a carbamate group.
  • the microfiber cellulose is made to have carbamate groups.
  • a cellulose raw material may have a carbamate group due to carbamate treatment, or a microfiber cellulose (finely divided cellulose raw material) may have a carbamate group due to carbamate conversion. .
  • having a carbamate group means that a carbamate (carbamic acid ester) is introduced into the fibrous cellulose.
  • the carbamate group is a group represented by -O-CO-NH-, for example, a group represented by -O-CO-NH 2 , -O-CONHR, -O-CO-NR 2 and the like. That is, the carbamate group can be represented by the following structural formula (1).
  • R is each independently a saturated linear hydrocarbon group, a saturated branched hydrocarbon group, a saturated cyclic hydrocarbon group, an unsaturated linear hydrocarbon group, an unsaturated branched hydrocarbon group, an aromatic and/or derivative groups thereof.
  • saturated linear hydrocarbon group examples include linear alkyl groups having 1 to 10 carbon atoms such as methyl group, ethyl group, and propyl group.
  • saturated branched hydrocarbon group examples include branched alkyl groups having 3 to 10 carbon atoms such as isopropyl group, sec-butyl group, isobutyl group, and tert-butyl group.
  • saturated cyclic hydrocarbon group examples include cycloalkyl groups such as a cyclopentyl group, a cyclohexyl group, and a norbornyl group.
  • Examples of the unsaturated linear hydrocarbon group include linear alkenyl groups having 2 to 10 carbon atoms such as ethenyl group, propen-1-yl group, propen-3-yl group, ethynyl group, propyn-1
  • Examples include straight-chain alkynyl groups having 2 to 10 carbon atoms such as -yl group and propyn-3-yl group.
  • Examples of the unsaturated branched hydrocarbon group include branched alkenyl groups having 3 to 10 carbon atoms such as propen-2-yl group, buten-2-yl group, buten-3-yl group, butyn-3 Examples include branched alkynyl groups having 4 to 10 carbon atoms such as -yl group.
  • aromatic group examples include phenyl group, tolyl group, xylyl group, and naphthyl group.
  • Examples of the derivative group include the above-mentioned saturated linear hydrocarbon group, saturated branched hydrocarbon group, saturated cyclic hydrocarbon group, unsaturated linear hydrocarbon group, unsaturated branched hydrocarbon group, and aromatic group.
  • Examples include groups in which one or more hydrogen atoms are substituted with a substituent (for example, a hydroxy group, a carboxy group, a halogen atom, etc.).
  • microfiber cellulose having carbamate groups In microfibrous cellulose having carbamate groups (introduced with carbamate groups), some or all of the highly polar hydroxy groups are substituted with relatively less polar carbamate groups. Therefore, microfiber cellulose having carbamate groups has low hydrophilicity and high affinity with resins and the like with low polarity. As a result, microfiber cellulose having carbamate groups has excellent uniform dispersibility with resin. Further, the microfiber cellulose slurry having carbamate groups has low viscosity and good handling properties.
  • the substitution ratio of carbamate groups to hydroxyl groups in microfiber cellulose is preferably 0.5 to 2 mmol/g, more preferably 0.6 to 1.8 mmol/g, particularly preferably 0.7 to 1.6 mmol/g. be. If the substitution rate is less than 0.5 mmol/g, the microfiber cellulose will irreversibly aggregate with each other due to hydrogen bonds derived from hydroxyl groups during drying, and even if used together with pulp, it will not be dispersed when melt-kneaded, and the desired dispersion will not be achieved. There is a risk that it will not become sexual.
  • the substitution rate is 0.5 mmol/g or more, the effect of introducing carbamate, especially the effect of improving the bending strength of the resin, can be reliably achieved.
  • the substitution rate exceeds 2 mmol/g, the cellulose fibers will not be able to maintain their fiber shape, and even when used in combination with pulp, there is a risk that the reinforcing effect of the resin will not be sufficiently obtained.
  • the substitution rate of carbamate groups refers to the amount of carbamate groups contained per 1 g of cellulose raw material having carbamate groups. Further, cellulose is a polymer having anhydroglucose as a structural unit, and has three hydroxy groups per structural unit.
  • carbamate formation it is preferable to carry out carbamate formation first and then defibrate. This is because the cellulose raw material before being defibrated has a high dehydration efficiency, and the cellulose raw material is in a state where it is easily defibrated by the heating associated with carbamate formation.
  • the process of carbamateing microfiber cellulose etc. can be mainly divided into, for example, mixing treatment, removal treatment, and heat treatment.
  • the mixing treatment and the removal treatment can also be collectively referred to as a preparation treatment for preparing a mixture to be subjected to heat treatment.
  • microfiber cellulose, etc. (as mentioned above, it may be a cellulose raw material. The same applies hereinafter) and urea and/or a derivative of urea (hereinafter also simply referred to as "urea etc.”) are mixed in a dispersion medium. Mix inside.
  • urea and urea derivatives examples include urea, thiourea, biuret, phenylurea, benzylurea, dimethylurea, diethylurea, tetramethylurea, and compounds in which the hydrogen atom of urea is replaced with an alkyl group. can. These urea and urea derivatives can be used alone or in combination. However, it is preferred to use urea.
  • the lower limit of the mixing mass ratio of urea, etc. to microfiber cellulose, etc. is preferably 10/100, more preferably 20/100.
  • the upper limit is preferably 300/100, more preferably 200/100.
  • the dispersion medium is usually water. However, other dispersion media such as alcohol and ether, or a mixture of water and other dispersion media may also be used.
  • microfiber cellulose, etc. and urea, etc. may be added to water, microfiber cellulose, etc. may be added to an aqueous solution of urea, etc., or urea, etc. may be added to a slurry containing microfiber cellulose, etc. You can. Further, in order to mix uniformly, it may be stirred after addition. Furthermore, the dispersion containing microfiber cellulose and the like and urea and the like may contain other components.
  • the dispersion medium is removed from the dispersion containing microfiber cellulose, etc., urea, etc. obtained in the mixing treatment.
  • urea and the like can be efficiently reacted in the subsequent heat treatment.
  • the removal of the dispersion medium is preferably performed by volatilizing the dispersion medium by heating. According to this method, only the dispersion medium can be efficiently removed while leaving components such as urea.
  • the lower limit of the heating temperature in the removal treatment is preferably 50°C, more preferably 70°C, particularly preferably 90°C when the dispersion medium is water.
  • the upper limit of the heating temperature is preferably 120°C, more preferably 100°C. If the heating temperature exceeds 120° C., the dispersion medium and urea may react, and urea may decompose alone.
  • the heating time in the removal treatment can be adjusted as appropriate depending on the solid content concentration of the dispersion. Specifically, it is, for example, 6 to 24 hours.
  • a mixture of microfiber cellulose and the like and urea and the like is heat treated.
  • part or all of the hydroxyl groups of microfiber cellulose etc. react with urea etc. and are substituted with carbamate groups.
  • isocyanic acid has very high reactivity, and forms carbamate groups on the hydroxyl groups of cellulose, for example, as shown in reaction formula (2) below.
  • the lower limit of the heating temperature in the heat treatment is preferably 120°C, more preferably 130°C, particularly preferably at least the melting point of urea (about 134°C), even more preferably 140°C, and most preferably 150°C.
  • the upper limit of the heating temperature is preferably 200°C, more preferably 180°C, particularly preferably 170°C. If the heating temperature exceeds 200° C., the microfiber cellulose etc. may be decomposed and the reinforcing effect may become insufficient.
  • the lower limit of the heating time in the heat treatment is preferably 1 minute, more preferably 5 minutes, particularly preferably 30 minutes, still more preferably 1 hour, and most preferably 2 hours. By setting the heating time to 1 minute or more, the carbamate reaction can be carried out reliably.
  • the upper limit of the heating time is preferably 15 hours, more preferably 10 hours. If the heating time exceeds 15 hours, it is not economical, and 15 hours is enough to carry out carbamate formation.
  • the pH is preferably pH 9 or higher, more preferably pH 9 to 13, particularly preferably pH 10 to 12, which is an alkaline condition.
  • acidic conditions or neutral conditions with a pH of 7 or less, preferably a pH of 3 to 7, particularly preferably a pH of 4 to 7 are preferred. Under neutral pH conditions of 7 to 8, the average fiber length of cellulose fibers becomes short, and the reinforcing effect of the resin may be poor.
  • the pH can be adjusted by adding an acidic compound (for example, acetic acid, citric acid, etc.) or an alkaline compound (for example, sodium hydroxide, calcium hydroxide, etc.) to the mixture.
  • an acidic compound for example, acetic acid, citric acid, etc.
  • an alkaline compound for example, sodium hydroxide, calcium hydroxide, etc.
  • a hot air dryer for example, a paper machine, a dry pulp machine, etc. can be used.
  • the mixture after heat treatment may be dehydrated and washed. This dehydration and washing may be performed using water or the like. This dehydration and washing can remove unreacted urea and the like.
  • the microfiber cellulose is dispersed in an aqueous medium to form a dispersion (slurry).
  • aqueous medium consists entirely of water, but an aqueous medium that is partially composed of other liquids that are compatible with water can also be used.
  • other liquids lower alcohols having 3 or less carbon atoms can be used.
  • the solid content concentration of the slurry is preferably 0.1 to 10.0% by mass, more preferably 0.5 to 5.0% by mass.
  • the solid content concentration is less than 0.1% by mass, excessive energy may be required during dehydration and drying.
  • the solid content concentration exceeds 10.0% by mass, the fluidity of the slurry itself will decrease, and there is a possibility that uniform mixing will not be possible.
  • the fibrous cellulose composite resin of this embodiment includes carbamate pulp.
  • the pulp also has the role of greatly improving the dewatering properties of the fibrous cellulose slurry.
  • Carbamate pulp can be obtained by carbamate raw material pulp.
  • the same pulp as the raw material pulp for carbamate microfiber cellulose can be used, and it is preferable to use the same pulp. Using the same improves the affinity of cellulose fibers and, as a result, improves the homogeneity of the cellulose fiber slurry.
  • the method for carbamateing the pulp can be the same as that for microfiber cellulose.
  • the substitution rate substitution rate of carbamate groups to hydroxyl groups in the pulp
  • the substitution rate is preferably 0.5 to 2 mmol/g, more preferably 0.6 to 1.8 mmol/g, particularly preferably 0.7 to 1. It is 6 mmol/g. If the substitution rate is less than 0.5 mmol/g, the pulps will irreversibly aggregate during drying due to hydrogen bonds derived from hydroxyl groups, and will not be dispersed during melt-kneading, resulting in the possibility that the desired dispersibility may not be achieved. On the other hand, if the substitution rate exceeds 2 mmol/g, the reinforcing properties of the pulp itself as fibers will be lost, so there is a risk that the desired mechanical properties will not be achieved.
  • the average fiber diameter of the carbamate pulp is preferably more than 10 to 50 ⁇ m, more preferably 12 to 45 ⁇ m, particularly preferably 14 to 40 ⁇ m.
  • the average fiber diameter is less than 10 ⁇ m, the area for adsorbing microfiber cellulose decreases, so that the microfiber cellulose itself tends to aggregate, and there is a risk that it will not be unraveled by shear during kneading.
  • the average fiber diameter exceeds (exceeds) 50 ⁇ m, the size of the fibers themselves is large, so the fibers themselves may act as a defect in the composite resin, and the desired mechanical properties may not be achieved.
  • the average fiber diameter of the carbamate pulp is a value measured in accordance with JIS P 8226.
  • the average fiber length (average length of single fibers) of the carbamate pulp is preferably 1.0 to 5.0 mm, more preferably 1.2 to 4.5 mm, particularly preferably 1.4 to 4.0 mm. be. If the average fiber length is less than 1.0 mm, there is a risk that the pulp itself will agglomerate during drying and will not be undone by shear during kneading. On the other hand, if the average fiber length exceeds 5.0 mm, the size of the fibers themselves is large, so the fibers themselves may act as a defect in the composite resin, and the desired mechanical properties may not be achieved.
  • the average fiber length of the carbamate pulp can be arbitrarily adjusted, for example, by selecting the raw material pulp.
  • the fiber length of the carbamate pulp is measured using a fiber analyzer "FS5" manufactured by Valmet.
  • the fine ratio (proportion of fiber length of 0.2 mm or less) of the carbamate pulp is preferably 1 to 20%, more preferably 2 to 17%, particularly preferably 3 to 15%. If the fine ratio exceeds 15%, the pulp itself may agglomerate during drying and may not be undone by shear during kneading. On the other hand, when the fine ratio is less than 1%, the surface of the pulp is too smooth, and when the microfiber cellulose adheres, it separates without being caught, and as a result, the microfiber cellulose alone tends to aggregate, and it unravels due to shear during kneading. There is a risk that it will disappear.
  • the aspect ratio of the carbamate pulp is preferably 10 to 500, more preferably 15 to 400, particularly preferably 20 to 300. If the aspect ratio is less than 10, the pulp fibers will not be effective as fiber reinforcement and will simply exist in the composite resin, and even if microfiber cellulose is present, the pulp will become a defect in the composite resin. Otherwise, the mechanical properties may not improve. On the other hand, if the aspect ratio exceeds 500, the fibers become entangled and aggregate, making it impossible to demonstrate the effect of reinforcing the fibers, and even if microfiber cellulose is present, the pulp becomes a defect in the composite resin and improves mechanical properties. There is a possibility that it will not.
  • Aspect ratio is the value obtained by dividing the average fiber length by the average fiber width.
  • the crystallinity of the carbamate pulp is preferably 50% or more, more preferably 55% or more, particularly preferably 60% or more.
  • the degree of crystallinity is less than 50%, the strength of the pulp fibers as fibers is insufficient, so even if microfiber cellulose is present, the pulp may become a defect in the composite resin and the mechanical properties may not improve.
  • the crystallinity of the microfiber cellulose is preferably 95% or less, more preferably 90% or less, particularly preferably 85% or less.
  • the degree of crystallinity exceeds 95%, the pulp fibers become too rigid, and although the flexural modulus improves, the flexibility as a composite resin is impaired, so even in the presence of microfiber cellulose, the flexural strength decreases. or elongation may decrease.
  • the degree of crystallinity of the microfiber cellulose can be arbitrarily adjusted, for example, by selecting the raw material pulp.
  • the crystallinity is a value measured in accordance with JIS K 0131 (1996).
  • the viscosity of the carbamate pulp is preferably 2 cps or more, more preferably 4 cps or more.
  • the viscosity is less than 2 cps, the degree of polymerization is too low, so the strength of the fiber itself is insufficient, and even if microfiber cellulose is present, the pulp becomes a defect in the composite resin and there is a risk that the mechanical properties will not improve.
  • the pulp viscosity is a value measured according to TAPPI T230.
  • the ratio of the amount (substitution rate) of carbamate groups introduced into the carbamate microfiber cellulose and the carbamate pulp is preferably 0. 3 to 4.0, more preferably 0.4 to 3.0, particularly preferably 0.5 to 2.0. If the ratio of introduced amounts is less than 0.3 or more than 4.0, the surface properties of the carbamated microfiber cellulose and the carbamate pulp will be significantly different. Even if they stick together, they easily peel off, and there is a risk that the carbamate microfiber cellulose will aggregate with each other and not be redispersed during kneading.
  • the absolute value of the difference in the amount of carbamate groups introduced (substitution rate) between the carbamate microfiber cellulose and the carbamate pulp is preferably 0.01 to 2.00 mmol/g, more preferably 0.01 to 1.00 mmol/g. , particularly preferably 0.01 to 0.50 mmol/g. If it is outside the above range, the carbamate microfiber cellulose and the carbamate pulp will not interact with each other during drying, and the microfiber cellulose may aggregate with each other.
  • the ratio of the average fiber diameters of the carbamate microfiber cellulose and the carbamate pulp is preferably 1.1 to 50.0, more preferably 1.1. -30.0, particularly preferably 1.1-10.0. If the ratio of average fiber diameters is less than 1, the carbamate pulp will not function as a scaffold, and the microfiber cellulose may aggregate and not be redispersed during kneading.
  • the microfiber cellulose is likely to peel off even if it sticks together due to the unevenness of the surface of the carbamate pulp, and as a result, the microfiber cellulose may aggregate and not be redispersed during kneading. There is.
  • the ratio of the average fiber lengths of the carbamate microfiber cellulose and the carbamate pulp is preferably 1.1 to 20.0, more preferably 1.5. -15.0, particularly preferably 2.0-10.0. If the average fiber length ratio is less than 1.1, the carbamate-modified microfiber cellulose will be strongly adsorbed to the carbamate-modified pulp, so that the microfiber cellulose will not be redispersed during kneading, and the physical properties may not improve.
  • the average fiber length ratio exceeds 20.0, the unevenness of the surface of the carbamate pulp makes it easy for the microfiber cellulose to peel off even if it sticks together, and as a result, the microfiber cellulose aggregates with each other and may not be redispersed during kneading. There is.
  • the ratio of the dry mass of the carbamate microfiber cellulose and the carbamate pulp is preferably 0.01 to 100, more preferably 0.10 to 10, particularly preferably is between 0.30 and 3, most preferably between 0.30 and 1. If the blending ratio of carbamate microfiber cellulose is relatively small, there will be a shortage of cellulose fibers that contribute to resin reinforcement, which may result in insufficient reinforcing properties.
  • the carbamate microfiber cellulose and carbamate pulp are preferably of the same type (hardwood bleached kraft pulps, softwood bleached kraft pulps, etc.). Since the pulp types are the same type, the hemicelluloses are the same type, which makes it easier for the microfiber cellulose and the pulp to interact and adhere during drying, and it is considered that the microfiber cellulose can be prevented from aggregating with each other.
  • the fibrous cellulose composite resin of this embodiment is more suitable if it contains a maleic anhydride-modified resin, particularly maleic anhydride-modified polypropylene (MAPP).
  • MAPP reacts with maleic anhydride and PP, and the hydrophilic side chain derived from maleic anhydride (succinic anhydride structure in which the double bond of maleic anhydride is removed) is added to the hydrophobic PP main chain. It is a polymer with side chains). Then, the hydrophilic side chains of MAPP interact (hydrogen bond) with the carbamate groups and hydroxyl groups of the carbamate-formed cellulose fibers.
  • the carbamate group is more hydrophilic than the hydroxyl group, it is more likely to interact with the hydrophilic side chain of MAPP. Furthermore, since MAPP has both hydrophilic and hydrophobic properties within its molecules, it becomes difficult to align and crystallize. Furthermore, the carbamate group also contributes to suppressing aggregation of fibers. From the above, MAPP and the carbamate cellulose fibers that interact with this MAPP have very excellent dispersibility in the resin.
  • the mixing amount of the maleic anhydride-modified resin is preferably 1 to 200 parts by weight, more preferably 10 to 100 parts by weight, particularly preferably 40 to 60 parts by weight, based on 100 parts by weight of microfiber cellulose. If the amount of the maleic anhydride-modified resin mixed is less than 1 part by mass, the strength will not be improved sufficiently. On the other hand, if the mixing amount exceeds 200 parts by mass, it becomes excessive and the strength tends to decrease.
  • the weight average molecular weight of the maleic anhydride-modified resin is, for example, 1,000 to 100,000, preferably 3,000 to 90,000, particularly preferably 5,000 to 80,000. If the weight average molecular weight is less than 1000, although it adheres to microfiber cellulose or pulp, it may not be compatible with the base resin, resulting in poor homogeneity. Furthermore, since the strength of the maleic anhydride-modified polypropylene itself is too low, the physical properties as a whole may be insufficient even though it is reinforced with fibers.
  • the weight average molecular weight exceeds 100,000, the viscosity will increase when melted, and there will be areas where the fibers do not fully adhere to the microfiber cellulose or pulp, and the fibers will not participate in reinforcing the entire resin, resulting in poor physical properties as a composite resin. may be insufficient.
  • the acid value of the maleic anhydride-modified resin is preferably 10 to 90 mgKOH/g, more preferably 20 to 80 mgKOH/g, particularly preferably 30 to 70 mgKOH/g. If the acid value is less than 10 mgKOH/g, the adhesion to microfiber cellulose or pulp may be insufficient, resulting in poor dispersibility. On the other hand, when the acid value exceeds 90 mgKOH/g, although the adhesion with microfiber cellulose and pulp is sufficient, the compatibility with the base resin becomes poor, and conversely, the dispersibility in the composite resin becomes poor. There is a possibility that it will happen.
  • the fibrous cellulose composite resin of this embodiment preferably contains polyethylene, particularly polyethylene having a molecular weight of 1,000,000 g/mol or more.
  • the molecular weight of polyethylene is more preferably 1 million to 10 million g/mol, particularly preferably 2 million to 800 g/mol.
  • the molecular weight is 1,000,000 g/mol or more, it becomes possible for the resins to interact with each other while interacting with the fibers during melting, making it easier for the composite resin to move as a unit within the kneader.
  • PE with a molecular weight of 1 million g/mol or more is called UHMW-PE (ultra high molecular weight polyethylene).
  • the viscosity at the time of melting will be too low, making it difficult to be compatible with the base resin, creating uneven areas, and making it difficult for the strand to draw stably. There is a possibility that it will disappear.
  • the melting point of polyethylene is preferably 125°C or higher, more preferably 130 to 160°C, particularly preferably 135 to 155°C. If the melting point is less than 125° C., it will melt immediately at the entrance of the kneader or the like and adhere to the wall surface, and there is a possibility that the polyethylene will not be uniformly dispersed in the kneaded product. On the other hand, if the melting point exceeds 160°C, it is necessary to raise the kneading temperature more than necessary, and the microfiber cellulose may become colored due to thermal decomposition or the like.
  • Polyethylene can be in the form of powder, pellets, sheets, blocks, etc., for example. However, it is preferable that the polyethylene is in powder form.
  • polyethylene when polyethylene is in powder form, when it is added to an aqueous dispersion of microfiber cellulose or pulp, mixed, and dried, it partially enters the gaps where the microfiber cellulose aggregates, compared to when nothing is added. This can be suppressed by agglomeration to the extent that it can be redispersed by shearing with a kneader.
  • the average particle diameter of the polyethylene is preferably 10 to 1000 ⁇ m, more preferably 15 to 100 ⁇ m, particularly preferably 20 to 80 ⁇ m. If the average particle size is less than 10 ⁇ m, the polyethylene powder will aggregate and float together in the aqueous dispersion of microfiber cellulose or pulp, and will not be able to enter the gaps between microfiber cellulose or pulp, resulting in aggregation. There is a possibility that the suppressing effect will not be fully exerted.
  • polyethylene tends to get into the spaces between the cellulose fibers when mixed with the slurry (MFC aqueous dispersion), and the polyethylene is evenly spread throughout the powder when drying.
  • the average particle diameter is a value measured in accordance with ISO13320.
  • Maleic anhydride-modified polypropylene and polyethylene are contained in a dry mass ratio of preferably 10:90 to 90:10, more preferably 15:85 to 85:15, particularly preferably 50:50 to 80:20. It is preferable that the If the content ratio of maleic anhydride-modified polypropylene is small, polyethylene will enter between the adhesion of the microfiber cellulose or pulp and the maleic anhydride-modified polypropylene, which will inhibit the adhesion between the maleic anhydride-modified polypropylene and the microfiber cellulose or pulp. there is a possibility.
  • the fibrous cellulose composite resin of this embodiment preferably contains an inorganic powder that does not interact with fibrous cellulose.
  • the purpose is to physically inhibit hydrogen bonding between cellulose fibers by including inorganic powder that does not interact with each other.
  • not interacting means not forming strong bonds with cellulose through covalent bonds, ionic bonds, or metal bonds (in other words, bonds due to hydrogen bonds and van der Waals forces are included in the concept of not interacting). ).
  • a strong bond is one with a binding energy greater than 100 kJ/mol.
  • the non-interacting inorganic powder is preferably an inorganic powder that has little effect of dissociating the hydroxyl groups of cellulose fibers into hydroxide ions when they coexist in the slurry.
  • inorganic powder is advantageous in terms of operation.
  • methods for drying composite resins include, for example, drying by applying the water dispersion directly to a metal drum that is a heat source (for example, drying with a Yankee dryer or cylinder dryer, etc.), and drying by applying water dispersion to a metal drum that is a heat source There is a method of heating the dispersion without directly touching it, that is, a method of drying it in air (for example, drying with a constant temperature dryer).
  • the average particle diameter of the non-interacting inorganic powder is preferably 1 to 10,000 ⁇ m, more preferably 10 to 5,000 ⁇ m, and particularly preferably 100 to 1,000 ⁇ m. If the average particle diameter exceeds 10,000 ⁇ m, the particles may enter the gaps between cellulose fibers during removal of the aqueous medium and may not be effective in inhibiting agglomeration. On the other hand, if the average particle diameter is less than 1 ⁇ m, the particles may be too fine to inhibit hydrogen bonding between microfiber celluloses.
  • the average particle diameter of non-interacting inorganic powder is measured using a particle size distribution measuring device (for example, a laser diffraction/scattering particle size distribution measuring device manufactured by Horiba, Ltd.) using the powder as it is or in the state of an aqueous dispersion.
  • a particle size distribution measuring device for example, a laser diffraction/scattering particle size distribution measuring device manufactured by Horiba, Ltd.
  • inorganic powders include simple substances and oxides of metal elements in Groups I to VIII of the periodic table, such as Fe, Na, K, Cu, Mg, Ca, Zn, Ba, Al, Ti, and silicon elements. , hydroxides, carbon salts, sulfates, silicates, sulfites, and various clay minerals made of these compounds.
  • a plurality of these inorganic fillers may be contained. Moreover, it may be contained in waste paper pulp, or it may be a so-called recycled filler obtained by recycling inorganic substances in papermaking sludge.
  • At least one inorganic powder selected from calcium carbonate, talc, white carbon, clay, calcined clay, titanium dioxide, aluminum hydroxide, recycled filler, etc. which are suitably used as fillers and pigments for paper manufacturing. It is preferable to use at least one selected from calcium carbonate, talc, and clay, and it is more preferable to use at least one of light calcium carbonate and heavy calcium carbonate. Particularly preferred.
  • calcium carbonate, talc, or clay it is easy to form a composite with a matrix such as a resin.
  • it is a general-purpose inorganic material it has the advantage that there are few restrictions on its usage.
  • calcium carbonate is particularly preferred for the following reasons.
  • the size and shape of the powder When using light calcium carbonate, it becomes easier to control the size and shape of the powder to a constant level. For this reason, the size and shape can be adjusted according to the size and shape of the cellulose fibers so that the effect of inhibiting agglomeration between cellulose fibers can be easily produced by entering the gaps, making it easier to exert the effect in a pinpoint manner. There is.
  • ground calcium carbonate since it has an amorphous shape, even if fibers of various sizes are present in the slurry, they will enter the gaps in the process of agglomeration during the removal of the aqueous medium. This has the advantage of being able to suppress aggregation of cellulose fibers.
  • the blending amount of the non-interacting inorganic powder is preferably 1 to 9900% by mass, more preferably 5 to 1900% by mass, particularly preferably 10 to 900% by mass, based on the fibrous cellulose. If the blending amount is less than 1% by mass, the effect of entering the gaps between cellulose fibers and inhibiting agglomeration may be insufficient. On the other hand, if the blending amount exceeds 9900% by mass, there is a risk that the cellulose fibers will not be able to function as cellulose fibers.
  • the maleic anhydride-modified resin and the non-interacting inorganic powder have the effect of preventing each other from agglomerating even if they are mixed under conditions that cause each to coagulate. .
  • powder with a small particle size has a large surface area and is more susceptible to intermolecular forces than gravity, and as a result, it is more likely to aggregate, so when mixing the powder and microfiber cellulose slurry, If the particles are not loosened properly in the slurry, or if the powders aggregate together when the aqueous medium is removed, the effect of preventing the microfiber cellulose from agglomerating may not be sufficiently exerted.
  • a maleic anhydride-modified resin and non-interacting inorganic powder are used in combination, it is thought that the agglomeration of the resin itself can be alleviated.
  • the ratio of the average particle diameter of the maleic anhydride-modified resin to the non-interacting inorganic powder is preferably 1:0.1 to 1:10,000, and 1:1. ⁇ 1:1000 is more preferable.
  • problems caused by the strength of its own cohesive force for example, the powder does not loosen properly in the slurry, or the powders aggregate when removing the aqueous medium) will not occur. It is thought that the effect of preventing agglomeration of microfiber cellulose can be fully exhibited.
  • the ratio of the mass % of the inorganic powder to the mass % of the maleic anhydride-modified resin is preferably 1:0.01 to 1:100, and 1:0. More preferably 1 to 1:10. It is considered that within this range, different types of powders can inhibit their own aggregation. In other words, if it is within this range, problems will occur due to the strength of its own cohesive force (for example, the powder will not loosen properly in the slurry, or the powder will coagulate with each other when the aqueous medium is removed). It is thought that the effect of preventing agglomeration of microfiber cellulose can be fully exhibited without the need for agglomeration.
  • the fibrous cellulose composite resin of this embodiment becomes more preferable when mixed with a dispersant.
  • a dispersant a compound having an amine group and/or a hydroxyl group in an aromatic group, and a compound having an amine group and/or a hydroxyl group in an aliphatic group are preferable.
  • Examples of compounds having an amine group and/or hydroxyl group in the aromatic group include anilines, toluidines, trimethylanilines, anisidines, tyramines, histamines, tryptamines, phenols, dibutylhydroxytoluenes, and bisphenol A.
  • cresols cresols, eugenols, gallic acids, guaiacols, picric acids, phenolphthaleins, serotonins, dopamines, adrenaline, noradrenaline, thymol, tyrosine, salicylic acids, methyl salicylate, anis alcohols , salicyl alcohols, sinapyl alcohols, diphenidols, diphenylmethanols, cinnamyl alcohols, scopolamines, tryptofols, vanillyl alcohols, 3-phenyl-1-propanols, phenethyl alcohols, phenoxyethanols , veratryl alcohols, benzyl alcohols, benzoins, mandelic acids, mandelonitriles, benzoic acids, phthalic acids, isophthalic acids, terephthalic acids, mellitic acids, cinnamic acids, and the like.
  • examples of compounds having an amine group and/or hydroxyl group in the aliphatic group include caprylic alcohols, 2-ethylhexanols, pelargon alcohols, capric alcohols, undecyl alcohols, lauryl alcohols, and tridecyl alcohols.
  • myristyl alcohols pentadecyl alcohols, cetanols, stearyl alcohols, elaidyl alcohols, oleyl alcohols, linoleyl alcohols, methylamines, dimethylamines, trimethylamines, ethylamines, diethylamines, ethylenediamine triethanolamines, N,N-diisopropylethylamines, tetramethylethylenediamines, hexamethylenediamines, spermidines, spermines, amantadines, formic acids, acetic acids, propionic acids, butyric acids, valeric acids, Caproic acids, enanthic acids, caprylic acids, pelargonic acids, capric acids, lauric acids, myristic acids, palmitic acids, margaric acids, stearic acids, oleic acids, linoleic acids, linolenic acids, arachidonic acids,
  • the above dispersants inhibit hydrogen bonding between cellulose fibers. Therefore, the microfiber cellulose is reliably dispersed in the resin during kneading. Moreover, the above-mentioned dispersant also has the role of improving the compatibility between microfiber cellulose and resin. In this respect, the dispersibility of microfiber cellulose in the resin is improved.
  • the amount of the dispersant mixed is preferably 0.1 to 1000 parts by weight, more preferably 1 to 500 parts by weight, particularly preferably 10 to 200 parts by weight, based on 100 parts by weight of microfiber cellulose. If the amount of the dispersant mixed is less than 0.1 part by mass, there is a possibility that the resin strength will not be improved sufficiently. On the other hand, if the mixing amount exceeds 1000 parts by mass, it becomes excessive and the resin strength tends to decrease.
  • the aforementioned maleic anhydride-modified resin improves compatibility by bonding acid groups with the carbamate groups of microfiber cellulose, thereby increasing the reinforcing effect. It is thought that it is easy to get used to it and contributes to the improvement of strength.
  • the above-mentioned dispersant intervenes between the hydroxyl groups of microfiber cellulose to prevent agglomeration, thereby improving dispersibility in the resin, and also has a molecular weight that is lower than that of maleic anhydride-modified resin. Because of its small size, it can enter the narrow spaces between microfiber cellulose that maleic anhydride-modified resin cannot penetrate, and plays the role of improving dispersibility and strength. From the above viewpoint, the molecular weight of the maleic anhydride-modified resin is preferably 2 to 2000 times, preferably 5 to 1000 times, the molecular weight of the dispersant.
  • the non-interacting inorganic powder physically intervenes between the microfiber cellulose and inhibits hydrogen bonding, thereby improving the dispersibility of the microfiber cellulose.
  • maleic anhydride-modified resin improves compatibility by bonding acid groups and carbamate groups of microfiber cellulose, thereby increasing the reinforcing effect.
  • the dispersant inhibits hydrogen bonding between microfiber celluloses, but since the inorganic powder that does not interact is on the micro-order, it physically intervenes and suppresses hydrogen bonding.
  • the inorganic powder itself is rigid, when it is combined with a resin or the like, it contributes to improving the physical properties of the resin or the like.
  • the dispersant since the dispersant is at the molecular level and is extremely small, it covers the microfiber cellulose to inhibit hydrogen bonding and is highly effective in improving the dispersibility of the microfiber cellulose. However, it may remain in the resin and deteriorate its physical properties.
  • the carbamate microfiber cellulose and carbamate pulp are mixed with a maleic anhydride-modified resin and polyethylene, if necessary.
  • This mixture liquid is preferably dried into a dry product before being kneaded to form a composite resin. If it is dried, there is no need to dry the fibrous cellulose during kneading, resulting in good thermal efficiency.
  • the mixture can be dried by, for example, rotary kiln drying, disc drying, air flow drying, medium fluidized drying, spray drying, drum drying, screw conveyor drying, paddle drying, uniaxial kneading drying, multi-screw kneading drying, vacuum drying, stirring drying. This can be carried out by selectively using one or more of these.
  • one or more types of dehydration equipment is selected from among the following dehydration equipment: belt press, screw press, filter press, twin roll, twin wire former, valveless filter, center disk filter, membrane treatment, centrifugal separator, etc. It can be done using:
  • the dry material can be pulverized by selecting one or more of a bead mill, a kneader, a disperser, a twist mill, a cut mill, a hammer mill, etc., for example.
  • the average particle diameter of the powder is preferably 1 to 10,000 ⁇ m, more preferably 10 to 5,000 ⁇ m, particularly preferably 100 to 1,000 ⁇ m. If the average particle diameter of the powder exceeds 10,000 ⁇ m, the kneading properties may be poor. On the other hand, it is not economical to make the powder material have an average particle size of less than 1 ⁇ m since it requires a large amount of energy.
  • the average particle diameter of the powdered material can be controlled not only by controlling the degree of pulverization but also by classification using a classification device such as a filter or cyclone.
  • the bulk specific gravity of the mixture (powder) is preferably 0.03 to 1.0, more preferably 0.04 to 0.9, particularly preferably 0.05 to 0.8.
  • a bulk specific gravity of more than 1.0 means that the hydrogen bonds between fibrous cellulose are stronger and it is not easy to disperse the cellulose in the resin.
  • having a bulk specific gravity of less than 0.03 is disadvantageous in terms of transportation costs.
  • the bulk specific gravity is a value measured according to JIS K7365.
  • the moisture content of the mixture (powder) is preferably 50% or less, more preferably 30% or less, particularly preferably 10% or less. If the moisture content exceeds 50%, the energy required for kneading with the resin will be enormous, making it uneconomical.
  • the moisture content is a value calculated using the following formula, using a constant temperature dryer to maintain the sample at 105° C. for 6 hours or more, and using the mass at which no change in mass is observed as the mass after drying.
  • Fiber moisture content (%) [(mass before drying - mass after drying) ⁇ mass before drying] x 100
  • This dry and pulverized product is kneaded to form a fibrous cellulose composite resin.
  • a composite resin in which maleic anhydride-modified polypropylene and polyethylene are combined has excellent processing suitability and can be drawn into strands even when the blending ratio of fibrous cellulose is as high as, for example, 50% by mass or more.
  • the blending ratio of fibrous cellulose to the total amount of the composite resin is, for example, 50% by mass or more, preferably 50 to 70% by mass, and more preferably 55 to 68% by mass. If the blending ratio exceeds 70% by mass, the processing suitability of the composite resin may be insufficient even in this embodiment.
  • the dry powder can be kneaded, for example, in the same manner as in the case of adding and kneading a further resin as described below. Therefore, the explanation is omitted here.
  • the fibrous cellulose composite resin of this embodiment can be used after being kneaded with a further resin and diluted until the blending ratio of fibrous cellulose becomes, for example, 10%.
  • This kneading can be carried out, for example, by mixing the composite resin of the present form in the form of a powder with the additional resin in the form of pellets, or by first melting the additional resin and adding the powder into the melt. It is also possible to add the composite resin of this embodiment.
  • one or more types are selected and used from, for example, a single-screw or multi-screw kneader with two or more shafts, a mixing roll, a kneader, a roll mill, a Banbury mixer, a screw press, a disperser, etc. be able to.
  • a multi-screw kneader having two or more shafts it is preferable to use.
  • Two or more multi-shaft kneaders having two or more shafts may be used in parallel or in series.
  • the temperature of the kneading treatment is higher than the glass transition point of the resin, and varies depending on the type of resin, but is preferably 80 to 280°C, more preferably 90 to 260°C, and more preferably 100 to 240°C. is particularly preferred.
  • thermoplastic resin As the further resin, at least one of a thermoplastic resin and a thermosetting resin can be used.
  • thermoplastic resins include polyolefins such as polypropylene (PP) and polyethylene (PE), polyester resins such as aliphatic polyester resins and aromatic polyester resins, polyacrylic resins such as polystyrene, methacrylate, and acrylate, polyamide resins, One or more types can be selected and used from polycarbonate resins, polyacetal resins, etc.
  • PP polypropylene
  • PE polyethylene
  • polyester resins such as aliphatic polyester resins and aromatic polyester resins
  • polyacrylic resins such as polystyrene, methacrylate, and acrylate
  • polyamide resins polyamide resins
  • One or more types can be selected and used from polycarbonate resins, polyacetal resins, etc.
  • polyester resin examples include aliphatic polyester resins such as polylactic acid and polycaprolactone, and examples of aromatic polyester resins such as polyethylene terephthalate. It is preferable to use a polyester resin (also simply referred to as "biodegradable resin") having the following.
  • biodegradable resin one or more types can be selected and used from, for example, hydroxycarboxylic acid-based aliphatic polyesters, caprolactone-based aliphatic polyesters, dibasic acid polyesters, and the like.
  • hydroxycarboxylic acid-based aliphatic polyesters include homopolymers of hydroxycarboxylic acids such as lactic acid, malic acid, glucose acid, and 3-hydroxybutyric acid, and copolymers using at least one of these hydroxycarboxylic acids.
  • hydroxycarboxylic acids such as lactic acid, malic acid, glucose acid, and 3-hydroxybutyric acid
  • copolymers using at least one of these hydroxycarboxylic acids One type or two or more types can be selected and used from polymers and the like.
  • polylactic acid, a copolymer of lactic acid and the above-mentioned hydroxycarboxylic acids other than lactic acid, polycaprolactone, and a copolymer of at least one of the above-mentioned hydroxycarboxylic acids and caprolactone Particularly preferred is the use of
  • lactic acid for example, L-lactic acid, D-lactic acid, etc. can be used, and these lactic acids may be used alone or two or more types may be selected and used.
  • caprolactone-based aliphatic polyester one or more types can be selected and used from, for example, a homopolymer of polycaprolactone, a copolymer of polycaprolactone, etc., and the above-mentioned hydroxycarboxylic acid, etc. .
  • one or more types can be selected and used from, for example, polybutylene succinate, polyethylene succinate, polybutylene adipate, and the like.
  • the biodegradable resins may be used alone or in combination of two or more.
  • thermosetting resins examples include phenol resin, urea resin, melamine resin, furan resin, unsaturated polyester, diallyl phthalate resin, vinyl ester resin, epoxy resin, urethane resin, silicone resin, thermosetting polyimide resin, etc. can be used. These resins can be used alone or in combination of two or more.
  • the blending ratio of the total amount of fibrous cellulose and resin is preferably 1 part by mass or more for fibrous cellulose and 99 parts by mass or less for resin, more preferably 2 parts by mass or more for fibrous cellulose and 98 parts by mass or less for resin, particularly preferably.
  • the content of fibrous cellulose is 3 parts by mass or more, and the content of resin is 97 parts by mass or less.
  • the fibrous cellulose is 50 parts by mass or less
  • the resin is 50 parts by mass or more, more preferably the fibrous cellulose is 40 parts by mass or less
  • the resin is 60 parts by mass or more, and particularly preferably the fibrous cellulose is 30 parts by mass or less.
  • the resin is 70 parts by mass or more.
  • the strength of the resin composition particularly the flexural strength and tensile modulus, can be significantly improved.
  • the content ratio of fibrous cellulose and resin contained in the finally obtained resin composition is usually the same as the above-mentioned blending ratio of fibrous cellulose and resin.
  • the fibrous cellulose composite resin or a composite resin obtained by diluting this composite resin can be kneaded again if necessary, and then molded into a desired shape.
  • the size, thickness, shape, etc. of this molding are not particularly limited, and may be, for example, sheet-like, pellet-like, powder-like, fibrous-like, or the like.
  • the temperature during the molding process is above the glass transition point of the resin, and varies depending on the type of resin, but is, for example, 90 to 260°C, preferably 100 to 240°C.
  • the kneaded product can be shaped by, for example, die molding, injection molding, extrusion molding, blow molding, foam molding, or the like. Further, the kneaded material can be spun into fibers and mixed with the above-mentioned plant materials, etc., to form a mat shape or a board shape.
  • the mixed fibers can be mixed, for example, by a method of simultaneous deposition using air lay.
  • the device for molding the kneaded product for example, one or two types from injection molding machines, blow molding machines, blow molding machines, blow molding machines, compression molding machines, extrusion molding machines, vacuum molding machines, pressure molding machines, etc. can be used. More than one species can be selected and used.
  • the above molding can be performed after kneading, or by cooling the kneaded material and turning it into chips using a crusher, etc., and then feeding the chips into a molding machine such as an extrusion molding machine or an injection molding machine. You can also do this. Of course, shaping is not an essential requirement of the invention.
  • the obtained carbamate-modified pulp was diluted with distilled water and stirred, and dehydration and washing were repeated twice to obtain a carbamate-modified pulp after washing to adjust the solid content concentration to 3.0% by mass.
  • the carbamate-modified pulp is beaten using a beating machine until the fine ratio (proportion of fibers of 0.2 mm or less as measured by fiber length distribution by FS5) is 40% or more to produce carbamate-modified microfiber cellulose (CAMFC). I got it.
  • the fibrous cellulose-containing material was kneaded in a twin-screw kneader at 170°C and 75 rpm, and cut into cylindrical shapes with a diameter of 2 mm and a length of 2 mm, thereby producing a fibrous cellulose composite resin with a fiber content ratio of 66.7%. I got it.
  • Fibrous cellulose composite resin with a fiber content ratio of 66.7% and PP pellets were dry blended at a dry mass ratio of 9:51, kneaded with a twin screw kneader at 170°C and 75 rpm, and mixed with a pelleter.
  • a fibrous cellulose composite resin with a fiber blending ratio of 10% was obtained by cutting into a cylindrical shape with a diameter of 2 mm and a length of 2 mm. This fibrous cellulose composite resin with a fiber content of 10% was injection molded at 180° C. into a rectangular parallelepiped specimen (length 59 mm, width 9.6 mm, thickness 3.8 mm).
  • the contamination area ratio (mm 2 /m 2 ), dispersibility ( ⁇ indicates the presence of less than 2 agglomerates that can be visually confirmed, ⁇ indicates the presence of 2 or more agglomerates that can be visually confirmed) ⁇ if there are two or more agglomerates with a major axis of 1 mm or more.
  • Table 1 shows the relative value when the bending strength of 100) and MFR (200° C. 10 kgf) are shown. Note that the contaminated area ratio was measured in accordance with JIS P 8145:2011. In addition, the bending test was conducted in accordance with JIS K7171:2008. In addition, the adjusted fine ratio means the fine ratio of the fiber obtained by mixing the carbamate microfiber cellulose and the carbamate pulp.
  • carbamated microfiber cellulose (carbamated microfiber cellulose) is improved by mixing it with carbamated pulp. It can also be seen that the degree of improvement differs depending on the fine ratio of the carbamate microfiber cellulose. Furthermore, it can be seen that the bending properties are insufficient with pulp alone, and that carbamate microfiber cellulose is required. This is thought to be because microfiber cellulose undergoes beating and becomes fibrillated, which increases the number of contact points with the resin and improves the bending properties when added to a composite resin.
  • the present invention can be used as a fibrous cellulose composite resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Paper (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

【課題】強度の向上した繊維状セルロース複合樹脂を提供する。 【解決手段】繊維状セルロース及び樹脂を含み、前記繊維状セルロースとして、平均繊維長が0.15~0.90mmで、かつヒドロキシ基の一部又は全部がカルバメート基で置換されているカルバメート化マイクロ繊維セルロースと、平均繊維長が1.0~5.0mmで、かつヒドロキシ基の一部又は全部がカルバメート基で置換されているカルバメート化パルプとを含み、前記カルバメート化マイクロ繊維セルロースのファイン率が70%以下であることを特徴とする繊維状セルロース複合樹脂である。

Description

繊維状セルロース複合樹脂
 本発明は、繊維状セルロース複合樹脂に関するものである。
 近年、セルロースナノファイバー、マイクロ繊維セルロース(ミクロフィブリル化セルロース)等の微細繊維は、樹脂の補強材としての使用が脚光を浴びている。もっとも、微細繊維が親水性であるのに対し、樹脂は疎水性であるため、微細繊維を樹脂の補強材として使用するには、当該微細繊維の分散性に問題があった。そこで、本発明者等は、微細繊維のヒドロキシル基をカルバメート基で置換することを提案している(特許文献1参照)。この提案によると、微細繊維の分散性が向上し、もって複合樹脂の強度が向上する。
 もっとも、現在でも、更なる強度の向上が望まれており、種々の研究が続けられている。
特開2020-163651号公報
 本発明が解決しようとする課題は、強度の向上した繊維状セルロース複合樹脂を提供することにある。
 本発明者等は、上記提案(特許文献1)においてはカルバメートの導入を主眼とせず、微細繊維の物性や混入する他の物質の追求を行ったとした。そして、その中で、マイクロ繊維セルロースと共にパルプを配合することができることを付言したが、パルプは配合しないのが、つまり含有率0質量%であるのが最も好ましいとした。これは、パルプを配合すると複合樹脂の強度が低下するためである。しかるに、更に試験を重ねるなかで、パルプをカルバメート化しておくと、逆に複合樹脂の強度が向上することを知見した。この知見から想到するに至ったのが、次に示す手段である。
 すなわち、繊維状セルロース及び樹脂を含み、
 前記繊維状セルロースとして、
 平均繊維長が0.15~0.90mmで、かつヒドロキシ基の一部又は全部がカルバメート基で置換されているカルバメート化マイクロ繊維セルロースと、
 平均繊維長が1.0~5.0mmで、かつヒドロキシ基の一部又は全部がカルバメート基で置換されているカルバメート化パルプとを含み、
 前記カルバメート化マイクロ繊維セルロースのファイン率が70%以下である、
 ことを特徴とする繊維状セルロース複合樹脂である。
 本発明によると、強度の向上した繊維状セルロース複合樹脂となる。
 次に、発明を実施するための形態を説明する。なお、本実施の形態は本発明の一例である。本発明の範囲は、本実施の形態の範囲に限定されない。
 本形態の繊維状セルロース複合樹脂は、繊維状セルロース及び樹脂を含み、繊維状セルロースとして、平均繊維長が0.15~0.90mmで、かつヒドロキシ基の一部又は全部がカルバメート基で置換されているカルバメート化マイクロ繊維セルロースと、平均繊維長が1.0~5.0mmで、かつヒドロキシ基の一部又は全部がカルバメート基で置換されているカルバメート化パルプとを含み、カルバメート化マイクロ繊維セルロースのファイン率が70%以下であることを特徴とする。以下、詳細に説明する。
(マイクロ繊維セルロース)
 本形態において繊維状セルロースは、平均繊維径が0.1~20μmのマイクロ繊維セルロース(ミクロフィブリル化セルロース)である。マイクロ繊維セルロースであると、樹脂の補強効果が著しく向上する。また、マイクロ繊維セルロースは、同じく微細繊維であるセルロースナノファイバーよりもカルバメート基で変性する(カルバメート化)のが容易である。ただし、微細化する前のセルロース原料をカルバメート化するのがより好ましく、この場合においては、マイクロ繊維セルロース及びセルロースナノファイバーは同等である。
 マイクロ繊維セルロースは、セルロース原料(以下、「原料パルプ」ともいう。)を解繊(微細化)することで得ることができる。原料パルプとしては、例えば、広葉樹、針葉樹等を原料とする木材パルプ、ワラ・バガス・綿・麻・じん皮繊維等を原料とする非木材パルプ、回収古紙、損紙等を原料とする古紙パルプ(DIP)等の中から1種又は2種以上を選択して使用することができる。なお、以上の各種原料は、例えば、セルロース系パウダーなどと言われる粉砕物(粉状物)の状態等であってもよい。
 ただし、不純物の混入を可及的に避けるために、原料パルプとしては、木材パルプを使用するのが好ましい。木材パルプとしては、例えば、広葉樹クラフトパルプ(LKP)、針葉樹クラフトパルプ(NKP)等の化学パルプ、機械パルプ(TMP)等の中から1種又は2種以上を選択して使用することができる。
 広葉樹クラフトパルプは、広葉樹晒クラフトパルプであっても、広葉樹未晒クラフトパルプであっても、広葉樹半晒クラフトパルプであってもよい。同様に、針葉樹クラフトパルプは、針葉樹晒クラフトパルプであっても、針葉樹未晒クラフトパルプであっても、針葉樹半晒クラフトパルプであってもよい。
 機械パルプとしては、例えば、ストーングランドパルプ(SGP)、加圧ストーングランドパルプ(PGW)、リファイナーグランドパルプ(RGP)、ケミグランドパルプ(CGP)、サーモグランドパルプ(TGP)、グランドパルプ(GP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)、リファイナーメカニカルパルプ(RMP)、漂白サーモメカニカルパルプ(BTMP)等の中から1種又は2種以上を選択して使用することができる。
 原料パルプは、解繊するに先立って化学的手法によって前処理することができる。化学的手法による前処理としては、例えば、酸による多糖の加水分解(酸処理)、酵素による多糖の加水分解(酵素処理)、アルカリによる多糖の膨潤(アルカリ処理)、酸化剤による多糖の酸化(酸化処理)、還元剤による多糖の還元(還元処理)等を例示することができる。ただし、化学的手法による前処理としては、酵素処理を施すのが好ましく、加えて酸処理、アルカリ処理、及び酸化処理の中から選択された1又は2以上の処理を施すのがより好ましい。以下、酵素処理について詳細に説明する。
 酵素処理に使用する酵素としては、セルラーゼ系酵素及びヘミセルラーゼ系酵素の少なくともいずれか一方を使用するのが好ましく、両方を併用するのがより好ましい。これらの酵素を使用すると、セルロース原料の解繊がより容易になる。なお、セルラーゼ系酵素は、水共存下でセルロースの分解を惹き起こす。また、ヘミセルラーゼ系酵素は、水共存下でヘミセルロースの分解を引き起こす。
 セルラーゼ系酵素としては、例えば、トリコデルマ(Trichoderma、糸状菌)属、アクレモニウム(Acremonium、糸状菌)属、アスペルギルス(Aspergillus、糸状菌)属、ファネロケエテ(Phanerochaete、担子菌)属、トラメテス(Trametes、担子菌)属、フーミコラ(Humicola、糸状菌)属、バチルス(Bacillus、細菌)属、スエヒロタケ(Schizophyllum、担子菌)属、ストレプトミセス(Streptomyces、細菌)属、シュードモナス(Pseudomonas、細菌)属などが産生する酵素を使用することができる。これらのセルラーゼ系酵素は、試薬や市販品として購入可能である。市販品としては、例えば、セルロイシンT2(エイチピィアイ社製)、メイセラ-ゼ(明治製菓社製)、ノボザイム188(ノボザイム社製)、マルティフェクトCX10L(ジェネンコア社製)、セルラーゼ系酵素GC220(ジェネンコア社製)等を例示することができる。
 また、セルラーゼ系酵素としては、EG(エンドグルカナーゼ)及びCBH(セロビオハイドロラーゼ)のいずれかもを使用することもできる。EG及びCBHは、それぞれを単体で使用しても、混合して使用してもよい。また、ヘミセルラーゼ系酵素と混合して使用してもよい。
 ヘミセルラーゼ系酵素としては、例えば、キシランを分解する酵素であるキシラナーゼ(xylanase)、マンナンを分解する酵素であるマンナーゼ(mannase)、アラバンを分解する酵素であるアラバナーゼ(arabanase)等を使用することができる。また、ペクチンを分解する酵素であるペクチナーゼも使用することができる。
 ヘミセルロースは、植物細胞壁のセルロースミクロフィブリル間にあるペクチン類を除いた多糖類である。ヘミセルロースは多種多様で木材の種類や細胞壁の壁層間でも異なる。針葉樹の2次壁では、グルコマンナンが主成分であり、広葉樹の2次壁では4-O-メチルグルクロノキシランが主成分である。そこで、針葉樹晒クラフトパルプ(NBKP)から微細繊維を得る場合は、マンナーゼを使用するのが好ましい。また、広葉樹晒クラフトパルプ(LBKP)からマイクロ繊維セルロースを得る場合は、キシラナーゼを使用するのが好ましい。
 セルロース原料に対する酵素の添加量は、例えば、酵素の種類、原料となる木材の種類(針葉樹か広葉樹か)、機械パルプの種類等によって決まる。ただし、セルロース原料に対する酵素の添加量は、好ましくは0.1~3質量%、より好ましくは0.3~2.5質量%、特に好ましくは0.5~2質量%である。酵素の添加量が0.1質量%を下回ると、酵素の添加による効果が十分に得られないおそれがある。他方、酵素の添加量が3質量%を上回ると、セルロースが糖化され、マイクロ繊維セルロースの収率が低下するおそれがある。また、添加量の増量に見合う効果の向上を認めることができないとの問題もある。
 酵素としてセルラーゼ系酵素を使用する場合、酵素処理時のpHは、酵素反応の反応性の観点から、弱酸性領域(pH=3.0~6.9)であるのが好ましい。他方、酵素としてヘミセルラーゼ系酵素を使用する場合、酵素処理時のpHは、弱アルカリ性領域(pH=7.1~10.0)であるのが好ましい。
 酵素処理時の温度は、酵素としてセルラーゼ系酵素及びヘミセルラーゼ系酵素のいずれを使用する場合においても、好ましくは30~70℃、より好ましくは35~65℃、特に好ましくは40~60℃である。酵素処理時の温度が30℃以上であれば、酵素活性が低下し難くなり、処理時間の長期化を防止することができる。他方、酵素処理時の温度が70℃以下であれば、酵素の失活を防止することができる。
 酵素処理の時間は、例えば、酵素の種類、酵素処理の温度、酵素処理時のpH等によって決まる。ただし、一般的な酵素処理の時間は、0.5~24時間である。
 酵素処理した後には、酵素を失活させるのが好ましい。酵素を失活させる方法としては、例えば、アルカリ水溶液(好ましくはpH10以上、より好ましくはpH11以上)を添加する方法、80~100℃の熱水を添加する方法等が存在する。
 次に、アルカリ処理の方法について説明する。
 解繊に先立ってアルカリ処理すると、パルプが持つヘミセルロースやセルロースの水酸基が一部解離し、分子がアニオン化することで分子内及び分子間水素結合が弱まり、解繊におけるセルロース原料の分散が促進される。
 アルカリ処理に使用するアルカリとしては、例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウム、アンモニア水溶液、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム、水酸化ベンジルトリメチルアンモニウム等の有機アルカリ等を使用することができる。ただし、製造コストの観点からは、水酸化ナトリウムを使用するのが好ましい。
 解繊に先立って酵素処理や酸処理、酸化処理を施すと、マイクロ繊維セルロースの保水度を低く、結晶化度を高くすることができ、かつ均質性を高くすることができる。この点、マイクロ繊維セルロースの保水度が低いと脱水し易くなり、セルロース繊維スラリーの脱水性が向上する。
 原料パルプを酵素処理や酸処理、酸化処理すると、パルプが持つヘミセルロースやセルロースの非晶領域が分解される。結果、解繊のエネルギーを低減することができ、セルロース繊維の均一性や分散性を向上することができる。ただし、前処理は、マイクロ繊維セルロースのアスペクト比を低下させるため、樹脂の補強材(フィラー)として使用する場合には、過度の前処理を避けるのが好ましい。
 原料パルプの解繊は、例えば、ビーター、高圧ホモジナイザー、高圧均質化装置等のホモジナイザー、グラインダー、摩砕機等の石臼式摩擦機、単軸混練機、多軸混練機、ニーダーリファイナー、ジェットミル等を使用して原料パルプを叩解することによって行うことができる。ただし、リファイナーやジェットミルを使用して行うのが好ましい。
 本形態において、マイクロ繊維セルロースは、セルロースナノファイバーよりも平均繊維幅の太い繊維を意味する。具体的には、平均繊維径が、例えば0.1~20μm、好ましくは1~19μm、より好ましくは10~18μmである。マイクロ繊維セルロースの平均繊維径が0.1μmを下回ると(未満になると)、セルロースナノファイバーであるのと変わらなくなり、樹脂の強度(特に曲げ弾性率)向上効果が十分に得られないおそれがある。また、解繊時間が長くなり、大きなエネルギーが必要になる。さらに、セルロース繊維スラリーの脱水性が悪化する。脱水性が悪化すると、乾燥に大きなエネルギーが必要になり、乾燥に大きなエネルギーをかけるとマイクロ繊維セルロースが熱劣化して、強度が低下するおそれがある。他方、マイクロ繊維セルロースの平均繊維径が20μmを上回ると(超えると)、パルプであるのと変わらなくなり、補強効果が十分でなくなるおそれがある。
 マイクロ繊維セルロース(微細繊維)の平均繊維径の測定方法は、次のとおりである。
 まず、固形分濃度0.01~0.1質量%の微細繊維の水分散液100mlをテフロン(登録商標)製メンブレンフィルターでろ過し、エタノール100mlで1回、t-ブタノール20mlで3回溶媒置換する。次に、凍結乾燥し、オスミウムコーティングして試料とする。この試料について、構成する繊維の幅に応じて3,000倍~30,000倍のいずれかの倍率で電子顕微鏡SEM画像による観察を行う。具体的には、観察画像に二本の対角線を引き、対角線の交点を通過する直線を任意に三本引く。さらに、この三本の直線と交錯する合計100本の繊維の幅を目視で計測する。そして、計測値の中位径を平均繊維径とする。
 マイクロ繊維セルロースの平均繊維長(単繊維の長さの平均)は、好ましくは0.15~0.90mm、より好ましくは0.20~0.70mm、特に好ましくは0.3~0.50mmである。平均繊維長が0.15mm未満であると、繊維同士の三次元ネットワークを形成できず、複合樹脂の補強効果(特に曲げ弾性率)が低下するおそれがある。他方、平均繊維長が0.90mmを上回ると、原料パルプと変わらない長さのため補強効果が不十分となるおそれがある。
 マイクロ繊維セルロースの平均繊維長は、例えば、原料パルプの選定、前処理、解繊等で任意に調整可能である。
 マイクロ繊維セルロースの原料となるセルロース原料の平均繊維長は、好ましくは1.0~5.0mm、より好ましくは1.2~3.0mm、特に好ましくは1.5~2.5mmである。セルロース原料の平均繊維長が1.0mmを下回ると、解繊処理した際の、樹脂の補強効果が十分得られない可能性がある。他方、平均繊維長が5.0mmを上回ると、解繊時の製造コストの面で不利となるおそれがある。
 マイクロ繊維セルロースの繊維長及び下記で説明するフィブリル化率は、バルメット社製の繊維分析計「FS5」によって測定する。
 マイクロ繊維セルロースは、ファイン率(Fine率。繊維長0.2mm以下の割合)が、好ましくは35~70%、より好ましくは36~55%、特に好ましくは37~50%である。ファイン率が35%を下回ると、繊維サイズが大きすぎて曲げ物性が不足するおそれがある。他方、ファイン率が70%を超えると、繊維サイズが小さすぎて乾燥時に強く凝集し、たとえカルバメート化パルプが存在していたとしても混練シェアで解しきれずに分散性が不十分となるおそれがある。
 マイクロ繊維セルロースのアスペクト比は、好ましくは2~15,000、より好ましくは10~10,000である。アスペクト比が2を下回ると、三次元ネットワークを構築できないため、たとえ平均繊維長が0.15mmを超えたとしても、補強効果が不十分となるおそれがある。他方、アスペクト比が15,000を上回ると、マイクロ繊維セルロース同士の絡み合いが高くなり、樹脂中での分散が不十分となるおそれがある。
 アスペクト比とは、平均繊維長を平均繊維幅で除した値である。アスペクト比が大きいほど引っかかりが生じる箇所が多くなるため補強効果が上がるが、他方で引っかかりが多くなる分、樹脂の延性が低下するものと考えられる。
 マイクロ繊維セルロースのフィブリル化率は、好ましくは1.0~30.0%、より好ましくは1.5~20.0%、特に好ましくは2.0~15.0%である。フィブリル化率が30.0%を上回ると、水との接触面積が広くなり過ぎるため、たとえ平均繊維幅が0.1μm以上に留まる範囲で解繊したとしても、脱水が困難になる可能性がある。他方、フィブリル化率が1.0%下回ると、フィブリル同士の水素結合が少なく、強固な三次元ネットワークを形成することができなくなるおそれがある。
 マイクロ繊維セルロースの結晶化度は、好ましくは50%以上、より好ましくは55%以上、特に好ましくは60%以上である。結晶化度が50%を下回ると、パルプとの混合性は向上するものの、繊維自体の強度が低下するため、樹脂の強度を向上することができなくなるおそれがある。他方、マイクロ繊維セルロースの結晶化度は、好ましくは95%以下、より好ましくは90%以下、特に好ましくは85%以下である。結晶化度が95%を上回ると、分子内の強固な水素結合割合が多くなり、繊維自体が剛直となり、分散性が劣るようになる。
 マイクロ繊維セルロースの結晶化度は、例えば、原料パルプの選定、前処理、微細化処理で任意に調整可能である。
 結晶化度は、JIS K 0131(1996)に準拠して測定した値である。
 マイクロ繊維セルロースのパルプ粘度は、好ましくは2cps以上、より好ましくは4cps以上である。マイクロ繊維セルロースのパルプ粘度が2cpsを下回ると、マイクロ繊維セルロースの凝集を抑制するのが困難になるおそれがある。
 パルプ粘度は、TAPPI T 230に準拠して測定した値である。
 マイクロ繊維セルロースのフリーネスは、好ましくは500ml以下、より好ましくは300ml以下、特に好ましくは100ml以下である。マイクロ繊維セルロースのフリーネスが500mlを上回ると、樹脂の強度向上効果が十分に得られなくなるおそれがある。
 マイクロ繊維セルロースのフリーネスは、JIS P8121-2(2012)に準拠して測定した値である。
 マイクロ繊維セルロースのゼータ電位は、好ましくは-150~20mV、より好ましくは-100~0mV、特に好ましくは-80~-10mVである。ゼータ電位が-150mVを下回ると、樹脂との相溶性が著しく低下し補強効果が不十分となるおそれがある。他方、ゼータ電位が20mVを上回ると、分散安定性が低下するおそれがある。
 マイクロ繊維セルロースの保水度は、好ましくは80~400%、より好ましくは90~350%、特に好ましくは100~300%である。保水度が80%を下回ると、原料パルプと変わらないため補強効果が不十分となるおそれがある。他方、保水度が400%を上回ると、脱水性が劣る傾向にあり、また、凝集し易くなる。この点、マイクロ繊維セルロースの保水度は、当該繊維のヒドロキシ基がカルバメート基に置換されていることで、より低くすることができ、脱水性や乾燥性を高めることができる。
 マイクロ繊維セルロースの保水度は、例えば、原料パルプの選定、前処理、解繊等で任意に調整可能である。
 保水度は、JAPAN TAPPI No.26(2000)に準拠して測定した値である。
 本形態のマイクロ繊維セルロースは、カルバメート基を有する。どのようにしてマイクロ繊維セルロースがカルバメート基を有するものとされているかは特に限定されない。例えば、セルロース原料がカルバメート化されていることでカルバメート基を有するものであっても、マイクロ繊維セルロース(微細化されたセルロース原料)がカルバメート化されることでカルバメート基を有するものであってもよい。
 なお、カルバメート基を有するとは、繊維状セルロースにカルバメート(カルバミン酸のエステル)が導入された状態を意味する。カルバメート基は、-O-CO-NH-で表される基であり、例えば、-O-CO-NH、-O-CONHR、-O-CO-NR等で表わされる基である。つまり、カルバメート基は、下記の構造式(1)で示すことができる。
Figure JPOXMLDOC01-appb-C000001
 ここでnは、1以上の整数を表す。Rは、それぞれ独立して、飽和直鎖状炭化水素基、飽和分岐鎖状炭化水素基、飽和環状炭化水素基、不飽和直鎖状炭化水素基、不飽和分岐鎖状炭化水素基、芳香族基、及びこれらの誘導基の少なくともいずれかである。
 飽和直鎖状炭化水素基としては、例えば、メチル基、エチル基、プロピル基等の炭素数1~10の直鎖状のアルキル基を挙げることができる。
 飽和分岐鎖状炭化水素基としては、例えば、イソプロピル基、sec-ブチル基、イソブチル基、tert-ブチル基等の炭素数3~10の分岐鎖状アルキル基を挙げることができる。
 飽和環状炭化水素基としては、例えば、シクロペンチル基、シクロヘキシル基、ノルボルニル基等のシクロアルキル基を挙げることができる。
 不飽和直鎖状炭化水素基としては、例えば、エテニル基、プロペン-1-イル基、プロペン-3-イル基等の炭素数2~10の直鎖状のアルケニル基、エチニル基、プロピン-1-イル基、プロピン-3-イル基等の炭素数2~10の直鎖状のアルキニル基等を挙げることができる。
 不飽和分岐鎖状炭化水素基としては、例えば、プロペン-2-イル基、ブテン-2-イル基、ブテン-3-イル基等の炭素数3~10の分岐鎖状アルケニル基、ブチン-3-イル基等の炭素数4~10の分岐鎖状アルキニル基等を挙げることができる。
 芳香族基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基等を挙げることができる。
 誘導基としては、上記飽和直鎖状炭化水素基、飽和分岐鎖状炭化水素基、飽和環状炭化水素基、不飽和直鎖状炭化水素基、不飽和分岐鎖状炭化水素基及び芳香族基が有する1又は複数の水素原子が、置換基(例えば、ヒドロキシ基、カルボキシ基、ハロゲン原子等。)で置換された基を挙げることができる。
 カルバメート基を有する(カルバメート基が導入された)マイクロ繊維セルロースにおいては、極性の高いヒドロキシ基の一部又は全部が、相対的に極性の低いカルバメート基に置換されている。したがって、カルバメート基を有するマイクロ繊維セルロースは、親水性が低く、極性の低い樹脂等との親和性が高い。結果、カルバメート基を有するマイクロ繊維セルロースは、樹脂との均一分散性に優れる。また、カルバメート基を有するマイクロ繊維セルロースのスラリーは、粘性が低く、ハンドリング性が良い。
 マイクロ繊維セルロースのヒドロキシ基に対するカルバメート基の置換率は、好ましくは0.5~2mmol/g、より好ましくは0.6~1.8mmol/g、特に好ましくは0.7~1.6mmol/gである。置換率が0.5mmol/g未満であると、乾燥時にマイクロ繊維セルロース同士が水酸基由来の水素結合により不可逆的に凝集し、パルプと併用したとしても溶融混練した際に分散せず、所望の分散性とならない恐れがある。また、置換率を0.5mmol/g以上にすると、カルバメートを導入した効果、特に樹脂の曲げ強度の向上効果が確実に奏せられる。他方、置換率が2mmol/gを超えると、セルロース繊維が繊維の形状を保てなくなり、パルプと併用したとしても樹脂の補強効果が十分得られないおそれがある。
 カルバメート基の置換率(mmol/g)とは、カルバメート基を有するセルロース原料1gあたりに含まれるカルバメート基の物質量をいう。また、セルロースは、無水グルコースを構造単位とする重合体であり、一構造単位当たり3つのヒドロキシ基を有する。
<カルバメート化>
 ここで繊維状セルロースをカルバメート化する方法について、詳細に説明する。
 マイクロ繊維セルロース(解繊前にカルバメート化する場合は、セルロース原料。以下、同様であり、「マイクロ繊維セルロース等」ともいう。)にカルバメート基を導入する(カルバメート化)点については、前述したようにセルロース原料をカルバメート化してから微細化する方法と、セルロース原料を微細化してからカルバメート化する方法とがある。この点、本明細書においては、先にセルロース原料の解繊について説明し、その後にカルバメート化(変性)について説明している。しかしながら、解繊及びカルバメート化は、どちらを先に行うこともできる。ただし、先にカルバメート化を行い、その後に、解繊をする方が好ましい。解繊する前のセルロース原料は脱水効率が高く、また、カルバメート化に伴う加熱によってセルロース原料が解繊され易い状態になるためである。
 マイクロ繊維セルロース等をカルバメート化する工程は、例えば、混合処理、除去処理、及び加熱処理に、主に区分することができる。なお、混合処理及び除去処理は合わせて、加熱処理に供される混合物を調製する調製処理ということもできる。
 混合処理においては、マイクロ繊維セルロース等(前述したようにセルロース原料の場合もある。以下、同様。)と尿素及び/又は尿素の誘導体(以下、単に「尿素等」ともいう。)とを分散媒中で混合する。
 尿素や尿素の誘導体としては、例えば、尿素、チオ尿素、ビウレット、フェニル尿素、ベンジル尿素、ジメチル尿素、ジエチル尿素、テトラメチル尿素、尿素の水素原子をアルキル基で置換した化合物等を使用することができる。これらの尿素や尿素の誘導体は、それぞれを単独で又は複数を組み合わせて使用することができる。ただし、尿素を使用するのが好ましい。
 マイクロ繊維セルロース等に対する尿素等の混合質量比(尿素等/マイクロ繊維セルロース等)の下限は、好ましくは10/100、より好ましくは20/100である。他方、上限は、好ましくは300/100、より好ましくは200/100である。混合質量比を10/100以上にすることで、カルバメート化の効率が向上する。他方、混合質量比が300/100を上回っても、カルバメート化は頭打ちになる。
 分散媒は、通常、水である。ただし、アルコール、エーテル等の他の分散媒や、水と他の分散媒との混合物を用いてもよい。
 混合処理においては、例えば、水にマイクロ繊維セルロース等及び尿素等を添加しても、尿素等の水溶液にマイクロ繊維セルロース等を添加しても、マイクロ繊維セルロース等を含むスラリーに尿素等を添加してもよい。また、均一に混合するために、添加後、攪拌してもよい。さらに、マイクロ繊維セルロース等と尿素等とを含む分散液には、その他の成分が含まれていてもよい。
 除去処理においては、混合処理において得られたマイクロ繊維セルロース等及び尿素等を含む分散液から分散媒を除去する。分散媒を除去することで、これに続く加熱処理において効率的に尿素等を反応させることができる。
 分散媒の除去は、加熱によって分散媒を揮発させることで行うのが好ましい。この方法によると、尿素等の成分を残したまま分散媒のみを効率的に除去することができる。
 除去処理における加熱温度の下限は、分散媒が水である場合は、好ましくは50℃、より好ましくは70℃、特に好ましくは90℃である。加熱温度を50℃以上にすることで効率的に分散媒を揮発させる(除去する)ことができる。他方、加熱温度の上限は、好ましくは120℃、より好ましくは100℃である。加熱温度が120℃を上回ると、分散媒と尿素が反応し、尿素が単独分解するおそれがある。
 除去処理における加熱時間は、分散液の固形分濃度等に応じて適宜調節することができる。具体的には、例えば、6~24時間である。
 除去処理に続く加熱処理においては、マイクロ繊維セルロース等と尿素等との混合物を加熱処理する。この加熱処理において、マイクロ繊維セルロース等のヒドロキシ基の一部又は全部が尿素等と反応してカルバメート基に置換される。より詳細には、尿素等が加熱されると下記の反応式(1)に示すようにイソシアン酸及びアンモニアに分解される。そして、イソシアン酸はとても反応性が高く、例えば、下記の反応式(2)に示すようにセルロースの水酸基にカルバメート基を形成する。
 NH-CO-NH → H-N=C=O + NH …(1)
 Cell-OH + H-N=C=O → Cell-O-CO-NH …(2)
 加熱処理における加熱温度の下限は、好ましくは120℃、より好ましくは130℃、特に好ましくは尿素の融点(約134℃)以上、さらに好ましくは140℃、最も好ましくは150℃である。加熱温度を120℃以上にすることで、カルバメート化が効率的に行われる。加熱温度の上限は、好ましくは200℃、より好ましくは180℃、特に好ましくは170℃である。加熱温度が200℃を上回ると、マイクロ繊維セルロース等が分解し、補強効果が不十分となるおそれがある。
 加熱処理における加熱時間の下限は、好ましくは1分、より好ましくは5分、特に好ましくは30分、更に好ましくは1時間、最も好ましくは2時間である。加熱時間を1分以上にすることで、カルバメート化の反応を確実に行うことができる。他方、加熱時間の上限は、好ましくは15時間、より好ましくは10時間である。加熱時間が15時間を上回ると、経済的ではなく、15時間で十分カルバメート化を行うことができる。
 もっとも、加熱時間の長期化は、セルロース繊維の劣化を招く。そこで、加熱処理におけるpH条件が重要となる。pHは、好ましくはpH9以上、より好ましくはpH9~13、特に好ましくはpH10~12のアルカリ性条件である。また、次善の策として、pH7以下、好ましくはpH3~7、特に好ましくはpH4~7の酸性条件又は中性条件である。pH7~8の中性条件であると、セルロース繊維の平均繊維長が短くなり、樹脂の補強効果に劣る可能性がある。これに対し、pH9以上のアルカリ性条件であると、セルロース繊維の反応性が高まり、尿素等への反応が促進され、効率良くカルバメート化反応するため、セルロース繊維の平均繊維長を十分に確保することができる。他方、pH7以下の酸性条件であると、尿素等からイソシアン酸及びアンモニアに分解する反応が進み、セルロース繊維への反応が促進され、効率良くカルバメート化反応するため、セルロース繊維の平均繊維長を十分に確保することができる。ただし、可能であれば、アルカリ性条件で加熱処理する方が好ましい。酸性条件であるとセルロースの酸加水分解が進行するおそれがあるためである。
 pHの調整は、混合物に酸性化合物(例えば、酢酸、クエン酸等。)やアルカリ性化合物(例えば、水酸化ナトリウム、水酸化カルシウム等。)を添加すること等によって行うことができる。
 加熱処理において加熱する装置としては、例えば、熱風乾燥機、抄紙機、ドライパルプマシン等を使用することができる。
 加熱処理後の混合物は、脱水・洗浄してもよい。この脱水・洗浄は、水等で行えばよい。この脱水・洗浄によって未反応で残留している尿素等を除去することができる。
 マイクロ繊維セルロースは、必要により、水系媒体中に分散して分散液(スラリー)にする。水系媒体は、全量が水であるのが特に好ましいが、一部が水と相溶性を有する他の液体である水系媒体も使用することができる。他の液体としては、炭素数3以下の低級アルコール類等を使用することができる。
 スラリーの固形分濃度は、好ましくは0.1~10.0質量%、より好ましくは0.5~5.0質量%である。固形分濃度が0.1質量%を下回ると、脱水や乾燥する際に過大なエネルギーが必要となるおそれがある。他方、固形分濃度が10.0質量%を上回ると、スラリー自体の流動性が低下してしまい、均一に混合できなくなるおそれがある。
(パルプ)
 次に、カルバメート化パルプについて説明する。
 本形態の繊維状セルロース複合樹脂は、カルバメート化パルプを含む。パルプは、繊維状セルローススラリーの脱水性を大幅に向上する役割も有する。
 カルバメート化パルプは、原料パルプをカルバメート化することで得ることができる。原料パルプとしては、カルバメート化マイクロ繊維セルロースの原料パルプと同じものを使用することができ、同じものを使用するのが好ましい。同じものを使用すると、セルロース繊維の親和性が向上し、結果、セルロース繊維スラリーの均質性が向上する。
 また、パルプをカルバメート化する方法もマイクロ繊維セルロースの場合と同様とすることができる。ただし、置換率(パルプのヒドロキシ基に対するカルバメート基の置換率)は、好ましくは0.5~2mmol/g、より好ましくは0.6~1.8mmol/g、特に好ましくは0.7~1.6mmol/gである。置換率を0.5mmol/g未満にすると、乾燥時にパルプ同士が水酸基由来の水素結合により不可逆的に凝集し、溶融混練した際に分散せず、所望の分散性とならないおそれがある。他方、置換率が2mmol/gを超えると、パルプ自体の繊維としての補強性が失われることから、所望の機械的物性とならないおそれがある。
 カルバメート化パルプの平均繊維径は、好ましくは10超~50μm、より好ましくは12~45μm、特に好ましくは14~40μmである。平均繊維径が10μm以下になると、マイクロ繊維セルロースを吸着するエリアが少なくなることからマイクロ繊維セルロース単体での凝集が進み、混練時のシェアで解れなくなるおそれがある。他方、平均繊維径が50μmを上回ると(超えると)、繊維自体のサイズが大きいため、複合樹脂中で繊維自体が欠点として作用し、所望の機械的物性とならないおそれがある。
 カルバメート化パルプの平均繊維径は、JIS P 8226に準拠して測定した値である。
 カルバメート化パルプの平均繊維長(単繊維の長さの平均)は、好ましくは1.0~5.0mm、より好ましくは1.2~4.5mm、特に好ましくは1.4~4.0mmである。平均繊維長が1.0mm未満であると、乾燥時にパルプ自体の凝集が進み、混練時のシェアで解れなくなるおそれがある。他方、平均繊維長が5.0mmを上回ると、繊維自体のサイズが大きいため、複合樹脂中で繊維自体が欠点として作用し、所望の機械的物性とならないおそれがある。
 カルバメート化パルプの平均繊維長は、例えば、原料パルプの選定等で任意に調整可能である。
 カルバメート化パルプの繊維長は、バルメット社製の繊維分析計「FS5」によって測定する。
 カルバメート化パルプは、ファイン率(繊維長0.2mm以下の割合)が、好ましくは1~20%、より好ましくは2~17%、特に好ましくは3~15%である。ファイン率が15%を上回ると、乾燥時にパルプ自体の凝集が進み、混練時のシェアで解れなくなるおそれがある。他方、ファイン率が1%を下回ると、パルプ表面が平滑すぎて、マイクロ繊維セルロースが付着した際にひっかからずに離脱し、結果としてマイクロ繊維セルロース単体での凝集が進み、混練時のシェアで解れなくなるおそれがある。
 カルバメート化パルプのアスペクト比は、好ましくは10~500、より好ましくは 15~400、特に好ましくは20~300である。アスペクト比が10を下回ると、パルプ繊維が繊維補強としての効果を発揮できず、単に複合樹脂中に存在しており、マイクロ繊維セルロースが存在していても、パルプが複合樹脂中で欠点となって機械的物性が向上しないおそれがある。他方、アスペクト比が500を上回ると、繊維が絡まって凝集し、繊維補強としての効果を発揮できず、マイクロ繊維セルロースが存在していても、パルプが複合樹脂中で欠点となり機械的物性が向上しないおそれがある。
 アスペクト比とは、平均繊維長を平均繊維幅で除した値である。
 カルバメート化パルプの結晶化度は、好ましくは50%以上、より好ましくは55%以上、特に好ましくは60%以上である。結晶化度が50%を下回ると、パルプ繊維の繊維としての強度が不足するため、マイクロ繊維セルロースが存在していても、パルプが複合樹脂中で欠点となり機械的物性が向上しないおそれがある。他方、マイクロ繊維セルロースの結晶化度は、好ましくは95%以下、より好ましくは90%以下、特に好ましくは85%以下である。結晶化度が95%を上回ると、パルプ繊維が剛直になりすぎて、曲げ弾性率は向上するものの、複合樹脂としてのしなやかさが損なわれるため、マイクロ繊維セルロースが存在していても、曲げ強度や伸びが低下するおそれがある。
 マイクロ繊維セルロースの結晶化度は、例えば、原料パルプの選定等で任意に調整可能である。
 結晶化度は、JIS K 0131(1996)に準拠して測定した値である。
 カルバメート化パルプの粘度は、好ましくは2cps以上、より好ましくは4cps以上である。粘度が2cpsを下回ると、重合度が低すぎるため、繊維自体の強度が不足し、マイクロ繊維セルロースが存在していても、パルプが複合樹脂中で欠点となり機械的物性が向上しないおそれがある。
 パルプ粘度は、TAPPI T 230に準拠して測定した値である。
(マイクロ繊維セルロース及びパルプの関係)
 まず、カルバメート化マイクロ繊維セルロース及びカルバメート化パルプの関係について、説明する。
 本発明者等は、マイクロ繊維セルロースは乾燥時に凝集し、この凝集は外部シェアでは解しきれないことについて、系内にマイクロ繊維セルロースが凝集する足場があれば、乾燥時に当該足場へマイクロ繊維セルロースが接着した状態で乾燥し、混練時に外部からシェアを受けた際に足場を通してマイクロ繊維セルロースに効率よくシェアが伝わり、マイクロ繊維セルロースを分散させることができると考えた。この想定をもとに、鋭意検討を重ねた結果、足場としてカルバメート化パルプを用いること。すなわち、カルバメート化マイクロ繊維セルロースとカルバメート化パルプとの混合スラリーを用いて複合樹脂とすることで、樹脂中への繊維分散性が良好となり、かつ曲げ物性が良好な繊維状セルロース複合樹脂を得ることができると知るに至った。
 このような背景のもと、カルバメート化マイクロ繊維セルロース及びカルバメート化パルプのカルバメート基の導入量(置換率)の比(カルバメート化パルプの置換率÷マイクロ繊維セルロースの置換率)は、好ましくは0.3~4.0、より好ましくは0.4~3.0、特に好ましくは0.5~2.0である。導入量の比が0.3未満、又は4.0を超えると、カルバメート化マイクロ繊維セルロース及びカルバメート化パルプの表面の性質が大きく異なることを原因として、カルバメート化マイクロ繊維セルロース及びカルバメート化パルプが一旦くっついても剥がれやすく、カルバメート化マイクロ繊維セルロース同士が凝集し、混練時に再分散しないおそれがある。
 カルバメート化マイクロ繊維セルロース及びカルバメート化パルプのカルバメート基の導入量(置換率)の差の絶対値は、好ましくは0.01~2.00mmol/g、より好ましくは0.01~1.00mmol/g、特に好ましくは0.01~0.50mmol/gである。以上の範囲を外れると、乾燥時にカルバメート化マイクロ繊維セルロース及びカルバメート化パルプが相互作用せず、マイクロ繊維セルロース同士で凝集するおそれがある。
 カルバメート化マイクロ繊維セルロース及びカルバメート化パルプの平均繊維径の比(カルバメート化パルプの平均繊維幅÷マイクロ繊維セルロースの平均繊維幅)は、好ましくは1.1~50.0、より好ましくは1.1~30.0、特に好ましくは1.1~10.0である。平均繊維径の比が1以下であると、カルバメート化パルプが足場として機能せず、マイクロ繊維セルロース同士が凝集することで混練時に再分散しないおそれがある。他方、平均繊維径の比が50.0を超えると、カルバメート化パルプ表面の凹凸によりマイクロ繊維セルロースが一旦くっついても剥がれやすく、結果としてマイクロ繊維セルロース同士が凝集することで混練時に再分散しないおそれがある。
 カルバメート化マイクロ繊維セルロース及びカルバメート化パルプの平均繊維長の比(カルバメート化パルプの平均繊維長÷マイクロ繊維セルロースの平均繊維長)は、好ましくは1.1~20.0、より好ましくは1.5~15.0、特に好ましくは2.0~10.0である。平均繊維長の比が1.1未満であると、カルバメート化パルプにカルバメート化マイクロ繊維セルロースが強固に吸着することで、混練時にマイクロ繊維セルロースが再分散せず、物性が向上しないおそれがある。他方、平均繊維長の比が20.0を超えると、カルバメート化パルプ表面の凹凸によりマイクロ繊維セルロースが一旦くっついても剥がれやすく、結果としてマイクロ繊維セルロース同士が凝集することで混練時に再分散しないおそれがある。
 カルバメート化マイクロ繊維セルロース及びカルバメート化パルプの乾燥質量の比(カルバメート化パルプの乾燥質量÷マイクロ繊維セルロースの乾燥質量)は、好ましくは0.01~100、より好ましくは0.10~10、特に好ましくは0.30~3、最も好ましくは0.30~1である。カルバメート化マイクロ繊維セルロースの配合比が相対的に少なくなると、樹脂補強に寄与するセルロース繊維が不足し、補強性が不十分となるおそれがある。他方、カルバメート化マイクロ繊維セルロースの配合比が相対的に多くなると、足場となるサイズの大きい繊維、つまりパルプが不足するため、乾燥時にマイクロ繊維セルロース同士が凝集し、混練シェアでマイクロ繊維セルロースが解れなくなるおそれがある。
 カルバメート化マイクロ繊維セルロース及びカルバメート化パルプのパルプ種は、同種類(広葉樹晒クラフトパルプ同士、針葉樹晒クラフトパルプ同士等。)が好ましい。パルプ種が同種類であることにより、ヘミセルロースが同種類となるため、乾燥時にマイクロ繊維セルロース及びパルプが相互作用して接着し易くなり、マイクロ繊維セルロース同士が凝集するのを防げるものと考えられる。
(無水マレイン酸変性樹脂)
 本形態の繊維状セルロース複合樹脂は、無水マレイン酸変性樹脂、特に無水マレイン酸変性ポリプロピレン(MAPP)を含むとより好適なものとなる。この点、MAPPは、無水マレイン酸がPPと反応して、疎水性のPP主鎖に、無水マレイン酸由来の親水性の側鎖(無水マレイン酸の二重結合がなくなった無水コハク酸構造の側鎖)を持ったポリマーである。そして、MAPPの親水性の側鎖はカルバメート化したセルロース繊維のカルバメート基や水酸基と相互作用(水素結合)する。しかも、カルバメート基の方が水酸基よりも親水性が高いため、MAPPの親水性の側鎖と、より相互作用し易い。また、MAPPは、分子内で親水性及び疎水性の両方の性質を持つため、整列しづらくなり、結晶化しづらくなる。さらに、カルバメート基は、繊維同士の凝集の抑制にも寄与する。以上のようなことから、MAPP、このMAPPと相互作用するカルバメート化セルロース繊維は樹脂中で非常に優れた分散性を有する。
 無水マレイン酸変性樹脂の混合量は、マイクロ繊維セルロース100質量部に対して、好ましくは1~200質量部、より好ましくは10~100質量部、特に好ましくは40~60質量部である。無水マレイン酸変性樹脂の混合量が1質量部を下回ると強度の向上が十分ではない。他方、混合量が200質量部を上回ると、過剰となり強度が低下する傾向となる。
 無水マレイン酸変性樹脂の重量平均分子量は、例えば1000~100000、好ましくは3000~90000、特に好ましくは5000~80000である。重量平均分子量が1000未満であると、マイクロ繊維セルロースやパルプと接着するものの、母材となる樹脂へ相溶せずに、均質性に劣る恐れがある。また、無水マレイン酸変性ポリプロピレン自体の強度が低すぎるため、繊維補強されているものの全体として物性が不十分となるとなる可能性がある。他方、重量平均分子量が100000を超えると、溶融時に粘度が高くなり、マイクロ繊維セルロースやパルプと十分に接着していない箇所が生じ、繊維が樹脂全体の補強に関与せず、複合樹脂としての物性が不十分となる可能性がある。
 無水マレイン酸変性樹脂の酸価は、好ましくは10~90mgKOH/g、より好ましくは20~80mgKOH/g、特に好ましくは30~70mgKOH/gである。酸価が10mgKOH/g未満であると、マイクロ繊維セルロースやパルプとの接着性が不十分となり、分散性が悪くとなる可能性がある。他方、酸価が90mgKOH/gを超えると、マイクロ繊維セルロースやパルプとの接着性は十分であるものの、母材となる樹脂との相溶性が悪くなり、逆に複合樹脂中で分散性が悪くなる可能性がある。
(ポリエチレン)
 本形態の繊維状セルロース複合樹脂は、ポリエチレンを含むと、特に分子量が100万g/mol以上のポリエチレンを含むと、より好適である。
 ポリエチレンの分子量は、より好ましくは100万~1000万g/mol、特に好ましくは200万~800g/molである。分子量が100万g/mol以上であると、溶融時に繊維と相互作用しつつ樹脂同士の相互作用も可能となり、混練機内で複合樹脂が一体として動き易くなる。なお、分子量100万g/mol以上のPEは、UHMW-PE(超高分子量ポリエチレン)と呼ばれる。他方、分子量が1000万g/molを超えると、溶融時の粘度が低くなりすぎるため、母材となる樹脂と相溶しづらくなり、不均一な部分が生じることで、ストランドが安定して引けなくなるとなる可能性がある。
 ポリエチレンの融点は、好ましくは125℃以上、より好ましくは130~160℃、特に好ましくは135~155℃である。融点が125℃未満であると、混練機等の入口ですぐに溶融して壁面に付着してしまい、ポリエチレンが混練物中において均一に分散しない可能性がある。他方、融点が160℃を超えると、必要以上に混練温度を上げる必要があり、マイクロ繊維セルロースが熱分解等により着色する可能性がある。
 ポリエチレンは、例えば、粉末状、ペレット状、シート状、ブロック状等とすることができる。ただし、ポリエチレンは、粉末状であるのが好ましい。ポリエチレンが粉末状であると、マイクロ繊維セルロースやパルプの水分散液に添加、混合、乾燥することで、マイクロ繊維セルロース同士が凝集する間隙に一部入り込むことで、何も加えない場合と比べて、混練機によるシェアで再分散可能な程度の凝集により抑えることができる。
 ポリエチレンが粉末状である場合、ポリエチレンの平均粒子径は、好ましくは10~1000μm、より好ましくは15~100μm、特に好ましくは20~80μmである。平均粒子径が10μm未満であると、マイクロ繊維セルロースやパルプの水分散液中でポリエチレン粉末同士が凝集して浮いてしまい、マイクロ繊維セルロース同士やパルプ同士の間隙に入り込むことができずに凝集を抑制する効果が十分に発揮できなくなる可能性がある。他方、ポリプロピレン粉末の平均粒子径が100μm以下であると、スラリー(MFC水分散液)との混合時においてポリエチレンがセルロース繊維間に入り込み易く、乾燥時に全体に均一にポリエチレンがいきわたる。
 平均粒子径は、ISO13320に準拠して測定した値である。
 無水マレイン酸変性ポリプロピレンとポリエチレンとは、乾燥質量比で、好ましくは10:90~90:10、より好ましくは15:85~85:15、特に好ましくは50:50~80:20の割合で含まれていると好適である。無水マレイン酸変性ポリプロピレンの含有比が小さいと、マイクロ繊維セルロースやパルプと無水マレイン酸変性ポリプロピレンが付着する間にポリエチレンが入り込み、無水マレイン酸変性ポリプロピレンとマイクロ繊維セルロースやパルプとの接着を阻害するとなる可能性がある。他方、無水マレイン酸変性ポリプロピレンの含有比が大きいと、無水マレイン酸変性ポリプロピレンとマイクロ繊維セルロースやパルプとの接着性は良好となるものの、混練吐出時のストランド加工時にストランド自体の強度が不足し、ストランドが引けなくなる可能性がある。
(相互作用しない無機粉末)
 本形態の繊維状セルロース複合樹脂は、繊維状セルロースと相互作用しない無機粉末を含むとより好適である。相互作用しない無機粉末を含むことで、セルロース繊維同士の水素結合を物理的に阻害する趣旨である。
 ここで、相互作用しないとは、セルロースと共有結合、イオン結合、金属結合による強固な結合をしないことを意味する(つまり、水素結合、ファンデルワールス力による結合は相互作用しないという概念に含まれる。)。好ましくは、強固な結合は、結合エネルギーが100kJ/molを超える結合である。
 相互作用しない無機粉末は、好ましくは、スラリー中で共存した際に、セルロース繊維の持つ水酸基を水酸化物イオンへ解離させる作用の少ない無機粉末である。この点、無機粉末であると、操業上も有利である。具体的には、複合樹脂の乾燥方法としては、例えば、熱源である金属ドラムに水分散体を直接あてる方法で乾燥(例えば、ヤンキードライヤーやシリンダードライヤーによる乾燥等。)する方法と、熱源に水分散体を直接触れさせずに加温する方法、つまり空気中で乾燥(例えば、恒温乾燥機による乾燥等。)する方法とが存在する。しかるに、樹脂粉末は、加温した金属板(例えば、ヤンキードライヤー、シリンダードライヤー等。)に接触させて乾燥した際に、金属板表面に皮膜ができ熱伝導が悪化し、乾燥効率が著しく低下する。このような問題が生じ難い点で、無機粉末は有利である。
 相互作用しない無機粉末の平均粒子径は、1~10000μmが好ましく、10~5000μmがより好ましく、100~1000μmが特に好ましい。平均粒子径が10000μmを超えると、水系媒体を除去する際にセルロース繊維同士の間隙に入って凝集を阻害する効果が発揮できないおそれがある。他方、平均粒子径が1μm未満であると、微細なためにマイクロ繊維セルロース同士の水素結合を阻害することができないおそれがある。
 本明細書において、相互作用しない無機粉末の平均粒子径は、粉体をそのまま又は水分散体の状態で粒度分布測定装置(例えば株式会社堀場製作所のレーザー回折・散乱式粒度分布測定器)を用いて測定される体積基準粒度分布から算出される中位径である。
 無機粉末としては、例えば、Fe、Na、K、Cu、Mg、Ca、Zn、Ba、Al、Ti、ケイ素元素等の周期律表第I族~第VIII族中の金属元素の単体、酸化物、水酸化物、炭素塩、硫酸塩、ケイ酸塩、亜硫酸塩、これらの化合物よりなる各種粘土鉱物等を例示することができる。具体的には、例えば、硫酸バリウム、硫酸カルシウム、硫酸マグネシウム、硫酸ナトリウム、亜硫酸カルシウム、酸化亜鉛、重質炭酸カルシウム、軽質炭酸カルシウム、ほう酸アルミニウム、アルミナ、酸化鉄、チタン酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化ナトリウム、炭酸マグネシウム、ケイ酸カルシウム、クレー、ワラストナイト、ガラスビーズ、ガラスパウダー、シリカゲル、乾式シリカ、コロイダルシリカ、珪砂、硅石、石英粉、珪藻土、ホワイトカーボン、ガラスファイバー等を例示することができる。これらの無機充填剤は、複数が含有されていてもよい。また、古紙パルプに含まれるものであってもよいし、製紙スラッジ中の無機物を再生した所謂再生填料等であってもよい。
 ただし、製紙用の填料や顔料として好適に使用される炭酸カルシウム、タルク、ホワイトカーボン、クレー、焼成クレー、二酸化チタン、水酸化アルミニウム及び再生填料等の中から選択される少なくとも1種以上の無機粉末を使用するのが好ましく、炭酸カルシウム、タルク、クレーの中からから選択される少なくとも1種以上を使用するのがより好ましく、軽質炭酸カルシウム及び重質炭酸カルシウムの少なくともいずれか一方を使用するのが特に好ましい。炭酸カルシウム、タルク、クレーを使用すると、樹脂等のマトリックスとの複合化が容易である。また、汎用的な無機材料であるため、用途の制限が生じることが少ないとのメリットがある。さらに、炭酸カルシウムは下記の理由から特に好ましい。軽質炭酸カルシウムを使用する場合は、粉末のサイズや形状を一定に制御しやすくなる。このため、セルロース繊維のサイズや形状に合わせて、間隙に入り込んでセルロース繊維同士の凝集を抑制する効果を生じやすくするようにサイズや形状を調整して、ピンポイントで効果を発揮しやすくできるメリットがある。また、重質炭酸カルシウムを使用すると、重質炭酸カルシウムが不定形であることから、スラリー中に様々なサイズの繊維が存在する場合でも、水系媒体除去時に繊維が凝集する過程において、間隙に入り込んでセルロース繊維同士の凝集を抑制することができるとのメリットがある。
 相互作用しない無機粉末の配合量は、繊維状セルロースに対して、好ましくは1~9900質量%、より好ましくは5~1900質量%、特に好ましくは10~900質量%である。配合量が1質量%を下回ると、セルロース繊維の間隙に入って凝集抑制する作用が不足となるおそれがある。他方、配合量が9900質量%を上回ると、セルロース繊維としての機能を発揮できなくなるおそれがある。
 ところで、無水マレイン酸変性樹脂及び相互作用しない無機粉末を併用すると、それぞれが凝集する条件で混合した場合でも無水マレイン酸変性樹脂及び相互作用しない無機粉末がお互いに凝集を防ぐような効果を発揮する。また、粒径が小さい粉体は表面積が大きく重力の影響よりも分子間力の影響を受けやすく、その結果として凝集しやすくなるため、粉体とマイクロ繊維セルローススラリーとを混合する際に粉体がスラリー中でうまくほぐれなかったり、水系媒体の除去時に粉体同士が凝集することで、マイクロ繊維セルロースの凝集を防ぐ効果が十分に発揮されなくなったりするおそれがある。しかしながら、無水マレイン酸変性樹脂及び相互作用しない無機粉末を併用すると、自身の凝集を緩和することができると考えられる。
 無水マレイン酸変性樹脂及び相互作用しない無機粉末を併用する場合、無水マレイン酸変性樹脂:相互作用しない無機粉末の平均粒径の比は、1:0.1~1:10000が好ましく、1:1~1:1000がより好ましい。この範囲にあると、自身の凝集力の強さから生じる問題(例えば、粉体がスラリー中でうまくほぐれなかったり、水系媒体の除去時に粉体同士が凝集したりする問題。)が発生せずに、マイクロ繊維セルロースの凝集を防ぐ効果を十分に発揮できるようになると考えられる。
 無水マレイン酸変性樹脂及び相互作用しない無機粉末を併用する場合、無機粉末の質量%:無水マレイン酸変性樹脂の質量%の比は、1:0.01~1:100が好ましく、1:0.1~1:10がより好ましい。この範囲にあると、異種粉体同士が自身の凝集を阻害することが可能になると考えられる。つまり、この範囲にあると、自身の凝集力の強さから生じる問題(例えば、粉体がスラリー中でうまくほぐれなかったり、水系媒体の除去時に粉体同士が凝集したりする問題。)が発生せずに、マイクロ繊維セルロースの凝集を防ぐ効果を十分に発揮できるようになると考えられる。
(分散剤)
 本形態の繊維状セルロース複合樹脂は、分散剤と混合するとより好ましいものになる。分散剤としては、芳香族類にアミン基及び/又は水酸基を有する化合物、脂肪族類にアミン基及び/又は水酸基を有する化合物が好ましい。
 芳香族類にアミン基及び/又は水酸基を有する化合物としては、例えば、アニリン類、トルイジン類、トリメチルアニリン類、アニシジン類、チラミン類、ヒスタミン類、トリプタミン類、フェノール類、ジブチルヒドロキシトルエン類、ビスフェノールA類、クレゾール類、オイゲノール類、没食子酸類、グアイアコール類、ピクリン酸類、フェノールフタレイン類、セロトニン類、ドーパミン類、アドレナリン類、ノルアドレナリン類、チモール類、チロシン類、サリチル酸類、サリチル酸メチル類、アニスアルコール類、サリチルアルコール類、シナピルアルコール類、ジフェニドール類、ジフェニルメタノール類、シンナミルアルコール類、スコポラミン類、トリプトフォール類、バニリルアルコール類、3-フェニル‐1-プロパノール類、フェネチルアルコール類、フェノキシエタノール類、ベラトリルアルコール類、ベンジルアルコール類、ベンゾイン類、マンデル酸類、マンデロニトリル類、安息香酸類、フタル酸類、イソフタル酸類、テレフタル酸類、メリト酸類、ケイ皮酸類などが挙げられる。
 また、脂肪族類にアミン基及び/又は水酸基を有する化合物としては、例えば、カプリルアルコール類、2-エチルヘキサノール類、ペラルゴンアルコール類、カプリンアルコール類、ウンデシルアルコール類、ラウリルアルコール類、トリデシルアルコール類、ミリスチルアルコール類、ペンタデシルアルコール類、セタノール類、ステアリルアルコール類、エライジルアルコール類、オレイルアルコール類、リノレイルアルコール類、メチルアミン類、ジメチルアミン類、トリメチルアミン類、エチルアミン類、ジエチルアミン類、エチレンジアミン類、トリエタノールアミン類、N,N-ジイソプロピルエチルアミン類、テトラメチルエチレンジアミン類、ヘキサメチレンジアミン類、スペルミジン類、スペルミン類、アマンタジン類、ギ酸類、酢酸類、プロピオン酸類、酪酸類、吉草酸類、カプロン酸類、エナント酸類、カプリル酸類、ペラルゴン酸類、カプリン酸類、ラウリン酸類、ミリスチン酸類、パルミチン酸類、マルガリン酸類、ステアリン酸類、オレイン酸類、リノール酸類、リノレン酸類、アラキドン酸類、エイコサペンタエン酸類、ドコサヘキサエン酸類、ソルビン酸類などが挙げられる。
 以上の分散剤は、セルロース繊維同士の水素結合を阻害する。したがって、混練に際してマイクロ繊維セルロースが樹脂中において確実に分散するようになる。また、以上の分散剤は、マイクロ繊維セルロース及び樹脂の相溶性を向上させる役割も有する。この点でマイクロ繊維セルロースの樹脂中における分散性が向上する。
 分散剤の混合量は、マイクロ繊維セルロース100質量部に対して、好ましくは0.1~1000質量部、より好ましくは1~500質量部、特に好ましくは10~200質量部である。分散剤の混合量が0.1質量部を下回ると、樹脂強度の向上が十分ではないとされるおそれがある。他方、混合量が1000質量部を上回ると、過剰となり樹脂強度が低下する傾向となる。
 この点、前述した無水マレイン酸変性樹脂は酸基とマイクロ繊維セルロースのカルバメート基とが結合することで相溶性を向上し、もって補強効果を上げるためのものであり、分子量が大きいため更なる樹脂とも馴染み易く、強度向上に寄与していると考えられる。一方、上記の分散剤は、マイクロ繊維セルロース同士の水酸基同士の間に介在して凝集を防ぎ、もって樹脂中での分散性を向上するものであり、また、分子量が無水マレイン酸変性樹脂に比べて小さいため、無水マレイン酸変性樹脂が入り込めないようなマイクロ繊維セルロース間の狭いスペースに入ることができ、分散性を向上して強度向上する役割を果たす。以上のような観点からは、無水マレイン酸変性樹脂の分子量は、分散剤の分子量の2~2000倍、好ましくは5~1000倍であると好適である。
 この点をより詳細に説明すると、相互作用しない無機粉末は物理的にマイクロ繊維セルロース同士の間に介在することで水素結合を阻害し、もってマイクロ繊維セルロースの分散性を向上する。これに対し、無水マレイン酸変性樹脂は、酸基とマイクロ繊維セルロースのカルバメート基とを結合することで相溶性を向上し、もって補強効果を上げる。この点、分散剤がマイクロ繊維セルロース同士の水素結合を阻害する点は同じであるが、相互作用しない無機粉末はマイクロオーダーであるため、物理的に介在して水素結合を抑制する。また、無機粉末は、無機粉末自体が剛直であるため、樹脂等と複合化した場合に樹脂等の物性向上に寄与する。一方、分散剤は分子レベルであり、極めて小さいためマイクロ繊維セルロースを覆うようにして水素結合を阻害し、マイクロ繊維セルロースの分散性を向上する効果は高い。しかしながら、樹脂中に残り、物性低下に働く可能性がある。
(複合樹脂の製造方法)
 カルバメート化マイクロ繊維セルロース及びカルバメート化パルプ(あるいはこれら繊維状セルロースの水分散液)は、必要により無水マレイン酸変性樹脂及びポリエチレンと混合する。この混合物(液)は、混練して複合樹脂とするに先立って、乾燥して乾燥物にすると好適である。乾燥しておくと、混練に際して繊維状セルロースを乾燥させる必要がなく、熱効率が良い。
 混合物の乾燥は、例えば、ロータリーキルン乾燥、円板式乾燥、気流式乾燥、媒体流動乾燥、スプレー乾燥、ドラム乾燥、スクリューコンベア乾燥、パドル式乾燥、一軸混練乾燥、多軸混練乾燥、真空乾燥、攪拌乾燥等の中から1種又は2種以上を選択使用して行うことができる。
 混合物は、乾燥するに先立って脱水して脱水物にするとより好適である。この脱水は、例えば、ベルトプレス、スクリュープレス、フィルタープレス、ツインロール、ツインワイヤーフォーマ、バルブレスフィルタ、センターディスクフィルタ、膜処理、遠心分離機等の脱水装置の中から1種又は2種以上を選択使用して行うことができる。
 さらに、乾燥した混合物(乾燥物)は、粉砕して粉状物にしておくと好適である。乾燥物の粉砕は、例えば、ビーズミル、ニーダー、ディスパー、ツイストミル、カットミル、ハンマーミル等の中から1種又は2種以上を選択使用して行うことができる。
 粉状物の平均粒子径は、好ましくは1~10000μm、より好ましくは10~5000μm、特に好ましくは100~1000μmである。粉状物の平均粒子径が10000μmを上回ると、混練性に劣るものになるおそれがある。他方、粉状物の平均粒子径が1μmを下回るものにするには大きなエネルギーが必要になるため、経済的でない。
 粉状物の平均粒子径の制御は、粉砕の程度を制御することのほか、フィルター、サイクロン等の分級装置を使用した分級によることができる。
 混合物(粉状物)の嵩比重は、好ましくは0.03~1.0、より好ましくは0.04~0.9、特に好ましくは0.05~0.8である。嵩比重が1.0を超えるということは繊維状セルロース同士の水素結合がより強固であり、樹脂中で分散させることは容易ではなくなることを意味する。他方、嵩比重が0.03を下回るものにするのは、移送コストの面から不利である。
 嵩比重は、JIS K7365に準じて測定した値である。
 混合物(粉状物)の水分率は、好ましくは50%以下、より好ましくは30%以下、特に好ましくは10%以下である。水分率が50%を上回ると、樹脂と混練する際のエネルギーが膨大になり、経済的でない。
 水分率は、定温乾燥機を用いて、試料を105℃で6時間以上保持し質量の変動が認められなくなった時点の質量を乾燥後質量とし、下記式にて算出した値である。
 繊維水分率(%)=[(乾燥前質量-乾燥後質量)÷乾燥前質量]×100
 この乾燥粉砕物は、混練して繊維状セルロース複合樹脂とする。無水マレイン酸変性ポリプロピレン及びポリエチレンを併用した形態の複合樹脂によると、繊維状セルロースの配合率が、例えば50質量%以上と高い場合であっても加工適性に優れ、ストランドをひくことができる。
 ちなみに、複合樹脂全量に対する繊維状セルロースの配合率は、例えば50質量%以上、好ましくは50~70質量%、より好ましくは55~68質量%である。配合率が70質量%を超えると、本形態によっても複合樹脂の加工適性が不十分とされる可能性がある。
 乾燥粉状物の混練は、例えば、以下に説明する更なる樹脂を添加して混練する場合と同様の方法で行うことができる。したがって、ここでは説明を省略する。
 本形態の繊維状セルロース複合樹脂は、更なる樹脂と混練し、繊維状セルロースの配合率が、例えば10%となるまで希釈して使用することができる。この混練は、例えば、粉状物である本形態の複合樹脂とペレット状の更なる樹脂とを混ぜ合わせる方法によることのほか、更なる樹脂をまず溶融し、この溶融物の中に粉状物である本形態の複合樹脂を添加するという方法によることもできる。
 混練処理には、例えば、単軸又は二軸以上の多軸混練機、ミキシングロール、ニーダー、ロールミル、バンバリーミキサー、スクリュープレス、ディスパーザー等の中から1種又は2種以上を選択して使用することができる。これらの装置なかで、二軸以上の多軸混練機を使用することが好ましい。二軸以上の多軸混練機を2機以上、並列又は直列にして、使用しても良い。
 混練処理の温度は、樹脂のガラス転移点以上であり、樹脂の種類によって異なるが、80~280℃とするのが好ましく、90~260℃とするのがより好ましく、100~240℃とするのが特に好ましい。
 更なる樹脂としては、熱可塑性樹脂又は熱硬化性樹脂の少なくともいずれか一方を使用することができる。
 熱可塑性樹脂としては、例えば、ポリプロピレン(PP)、ポリエチレン(PE)等のポリオレフィン、脂肪族ポリエステル樹脂や芳香族ポリエステル樹脂等のポリエステル樹脂、ポリスチレン、メタアクリレート、アクリレート等のポリアクリル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂等の中から1種又は2種以上を選択して使用することができる。
 ただし、ポリオレフィン及びポリエステル樹脂の少なくともいずれか一方を使用するのが好ましい。また、ポリオレフィンとしては、ポリプロピレンを使用するのが好ましい。さらに、ポリエステル樹脂としては、脂肪族ポリエステル樹脂として、例えば、ポリ乳酸、ポリカプロラクトン等を例示することができ、芳香族ポリエステル樹脂として、例えば、ポリエチレンテレフタレート等を例示することができるが、生分解性を有するポリエステル樹脂(単に「生分解性樹脂」ともいう。)を使用するのが好ましい。
 生分解性樹脂としては、例えば、ヒドロキシカルボン酸系脂肪族ポリエステル、カプロラクトン系脂肪族ポリエステル、二塩基酸ポリエステル等の中から1種又は2種以上を選択して使用することができる。
 ヒドロキシカルボン酸系脂肪族ポリエステルとしては、例えば、乳酸、リンゴ酸、グルコース酸、3-ヒドロキシ酪酸等のヒドロキシカルボン酸の単独重合体や、これらのヒドロキシカルボン酸のうちの少なくとも1種を用いた共重合体等の中から1種又は2種以上を選択して使用することができる。ただし、ポリ乳酸、乳酸と乳酸を除く上記ヒドロキシカルボン酸との共重合体、ポリカプロラクトン、上記ヒドロキシカルボン酸のうちの少なくとも1種とカプロラクトンとの共重合体を使用するのが好ましく、ポリ乳酸を使用するのが特に好ましい。
 この乳酸としては、例えば、L-乳酸やD-乳酸等を使用することができ、これらの乳酸を単独で使用しても、2種以上を選択して使用してもよい。
 カプロラクトン系脂肪族ポリエステルとしては、例えば、ポリカプロラクトンの単独重合体や、ポリカプロラクトン等と上記ヒドロキシカルボン酸との共重合体等の中から1種又は2種以上を選択して使用することができる。
 二塩基酸ポリエステルとしては、例えば、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリブチレンアジペート等の中から1種又は2種以上を選択して使用することができる。
 生分解性樹脂は、1種を単独で使用しても、2種以上を併用してもよい。
 熱硬化性樹脂としては、例えば、フェノール樹脂、尿素樹脂、メラミン樹脂、フラン樹脂、不飽和ポリエステル、ジアリルフタレート樹脂、ビニルエステル樹脂、エポキシ樹脂、ウレタン系樹脂、シリコーン樹脂、熱硬化性ポリイミド系樹脂等を使用することができる。これらの樹脂は、単独で又は二種以上組み合わせて使用することができる。
 繊維状セルロース及び樹脂全量の配合割合は、好ましくは繊維状セルロースが1質量部以上、樹脂が99質量部以下、より好ましくは繊維状セルロースが2質量部以上、樹脂が98質量部以下、特に好ましくは繊維状セルロースが3質量部以上、樹脂が97質量部以下である。また、好ましくは繊維状セルロースが50質量部以下、樹脂が50質量部以上、より好ましくは繊維状セルロースが40質量部以下、樹脂が60質量部以上、特に好ましくは繊維状セルロースが30質量部以下、樹脂が70質量部以上である。特に繊維状セルロースが10~50質量部であると、樹脂組成物の強度、特に曲げ強度及び引張り弾性率の強度を著しく向上させることができる。
 なお、最終的に得られ樹脂組成物に含まれる繊維状セルロース及び樹脂の含有割合は、通常、繊維状セルロース及び樹脂の上記配合割合と同じとなる。
(その他)
 繊維状セルロース複合樹脂、あるいはこの複合樹脂を希釈して複合樹脂は、必要により再度混練する等した後、所望の形状に成形することができる。この成形の大きさや厚さ、形状等は、特に限定されず、例えば、シート状、ペレット状、粉末状、繊維状等とすることができる。
 成形処理の際の温度は、樹脂のガラス転移点以上であり、樹脂の種類によって異なるが、例えば90~260℃、好ましくは100~240℃である。
 混練物の成形は、例えば、金型成形、射出成形、押出成形、中空成形、発泡成形等によることができる。また、混練物を紡糸して繊維状にし、前述した植物材料等と混繊してマット形状、ボード形状とすることもできる。混繊は、例えば、エアーレイにより同時堆積させる方法等によることができる。
 混練物を成形する装置としては、例えば、射出成形機、吹込成形機、中空成形機、ブロー成形機、圧縮成形機、押出成形機、真空成形機、圧空成形機等の中から1種又は2種以上を選択して使用することができる。
 以上の成形は、混練に続いて行うことも、混練物をいったん冷却し、破砕機等を使用してチップ化した後、このチップを押出成形機や射出成形機等の成形機に投入して行うこともできる。もちろん、成形は、本発明の必須の要件ではない。
 次に、本発明の実施例を説明する。
(試験例1)
 水分率50%以下の針葉樹晒クラフトパルプに、固形分濃度30%の尿素水溶液を固形分換算の質量比でパルプ:尿素が100:50の割合となるように混合した後、105℃で乾燥させた。その後、160℃、1時間静置することで反応させ、カルバメート変性パルプ(CAパルプ)を得た。
 得られたカルバメート変性パルプに対して蒸留水で希釈攪拌して、脱水洗浄を2回繰り返し、固形分濃度3.0質量%に調製することで洗浄後カルバメート変性パルプを得た。
 洗浄後カルバメート変性パルプを叩解機を用いて、Fine率(FS5による繊維長分布測定で0.2mm以下の繊維の割合)が40%以上となるまで叩解して、カルバメート変性マイクロ繊維セルロース(CAMFC)を得た。
 固形分濃度3.0質量%のカルバメート変性マイクロ繊維セルロース916gに、無水マレイン酸変性ポリプロピレン20.7g及びポリエチレン粉末を6.8g添加し、攪拌後、140℃に加熱した接触式乾燥機を用いて加熱乾燥し、繊維状セルロース含有物を得た。この繊維状セルロース含有物の含水率は、5~22%であった。
 繊維状セルロース含有物を、170℃、75rpmの条件で二軸混練機にて混練し、2mm径、2mm長の円柱状にカットすることで、繊維配合率66.7%の繊維状セルロース複合樹脂を得た。
 繊維配合率66.7%の繊維状セルロース複合樹脂とPPペレットを乾燥質量比で9:51となるようにドライブレンドし、170℃、75rpmの条件で二軸混練機にて混練し、ペレッターで2mm径、2mm長の円柱状にカットすることで、繊維配合率10%の繊維状セルロース複合樹脂を得た。この繊維配合率10%の繊維状セルロース複合樹脂は、180℃で直方体試験片(長さ59mm、幅9.6mm、厚さ3.8mm)に射出成形した。
(その他の試験例)
 繊維状セルロースについて、カルバメート化マイクロ繊維セルロースの一部又は全部をカルバメート化パルプに変える、繊維状セルロースのファイン率(Fine率)を変化させる等して、他の試験を行った。詳細は、表1に示した。
 得られた各試験片について、夾雑面積率(mm/m)、分散性(目視で確認できる凝集の存在が2個未満の場合を○、目視で確認できる凝集の存在が2個以上の場合を△、長径1mm以上の大きさの凝集の存在が2個以上の場合を×。)、曲げ弾性率(ベースPPの曲げ弾性率を100とした場合の相対値)、曲げ強度(ベースPPの曲げ強度を100とした場合の相対値)、MFR(200℃10kgf)を表1に示した。なお、夾雑面積率はJIS P 8145:2011に準拠して測定した。また、曲げ試験においては、JIS K7171:2008に準拠して調べた。なお、調整ファイン(Fine)率とは、カルバメート化マイクロ繊維セルロースとカルバメート化パルプを混合した繊維のファイン(Fine)率を意味する。
Figure JPOXMLDOC01-appb-T000002
(考察)
 カルバメート化マイクロ繊維セルロース)は、カルバメート化パルプと混合することで分散性が改善することが分かる。また、改善の程度は、カルバメート化マイクロ繊維セルロースのファイン率によって異なることも分かる。さらに、パルプのみでは曲げ物性が不足し、カルバメート化マイクロ繊維セルロースが必要であることも分かる。これは、マイクロ繊維セルロースは叩解を受けてフィブリル化することで、樹脂との接触点が増加し、複合樹脂に添加した場合において曲げ物性が向上するためと考えられる。
 本発明は、繊維状セルロース複合樹脂として利用可能である。

Claims (6)

  1.  繊維状セルロース及び樹脂を含み、
     前記繊維状セルロースとして、
     平均繊維長が0.15~0.90mmで、かつヒドロキシ基の一部又は全部がカルバメート基で置換されているカルバメート化マイクロ繊維セルロースと、
     平均繊維長が1.0~5.0mmで、かつヒドロキシ基の一部又は全部がカルバメート基で置換されているカルバメート化パルプとを含み、
     前記カルバメート化マイクロ繊維セルロースのファイン率が70%以下である、
     ことを特徴とする繊維状セルロース複合樹脂。
  2.  前記カルバメート化マイクロ繊維セルロース及び前記カルバメート化パルプのカルバメート基の導入量の比が、0.3~4.0である、
     請求項1に記載の繊維状セルロース複合樹脂。
  3.  前記カルバメート化マイクロ繊維セルロース及び前記カルバメート化パルプの平均繊維径の比が、1.1~50.0である、
     請求項1に記載の繊維状セルロース複合樹脂。
  4.  前記カルバメート化マイクロ繊維セルロース及び前記カルバメート化パルプの平均繊維長の比が、1.1~20.0である、
     請求項1に記載の繊維状セルロース複合樹脂。
  5.  前記カルバメート化マイクロ繊維セルロース及び前記カルバメート化パルプの乾燥質量の比が0.01~100である、
     請求項1に記載の繊維状セルロース複合樹脂。
  6.  前記樹脂として無水マレイン酸変性樹脂を含み、
     前記繊維状セルロースの配合率が50質量%以上である、
     請求項1に記載の繊維状セルロース複合樹脂。
PCT/JP2023/020994 2022-07-07 2023-06-06 繊維状セルロース複合樹脂 WO2024009668A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022109717A JP7440574B2 (ja) 2022-07-07 2022-07-07 繊維状セルロース複合樹脂
JP2022-109717 2022-07-07

Publications (1)

Publication Number Publication Date
WO2024009668A1 true WO2024009668A1 (ja) 2024-01-11

Family

ID=89453163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020994 WO2024009668A1 (ja) 2022-07-07 2023-06-06 繊維状セルロース複合樹脂

Country Status (2)

Country Link
JP (1) JP7440574B2 (ja)
WO (1) WO2024009668A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203147A1 (ja) * 2019-03-29 2020-10-08 大王製紙株式会社 繊維状セルロース複合樹脂及びその製造方法、並びに樹脂の補強材
WO2021039706A1 (ja) * 2019-08-29 2021-03-04 大王製紙株式会社 繊維状セルロース複合樹脂及びその製造方法
JP2021143240A (ja) * 2020-03-11 2021-09-24 大王製紙株式会社 繊維状セルロースの製造方法、及び繊維状セルロース複合樹脂の製造方法
WO2021193119A1 (ja) * 2020-03-26 2021-09-30 大王製紙株式会社 繊維状セルロース、繊維状セルロース複合樹脂及び繊維状セルロースの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203147A1 (ja) * 2019-03-29 2020-10-08 大王製紙株式会社 繊維状セルロース複合樹脂及びその製造方法、並びに樹脂の補強材
WO2021039706A1 (ja) * 2019-08-29 2021-03-04 大王製紙株式会社 繊維状セルロース複合樹脂及びその製造方法
JP2021143240A (ja) * 2020-03-11 2021-09-24 大王製紙株式会社 繊維状セルロースの製造方法、及び繊維状セルロース複合樹脂の製造方法
WO2021193119A1 (ja) * 2020-03-26 2021-09-30 大王製紙株式会社 繊維状セルロース、繊維状セルロース複合樹脂及び繊維状セルロースの製造方法

Also Published As

Publication number Publication date
JP2024008128A (ja) 2024-01-19
JP7440574B2 (ja) 2024-02-28

Similar Documents

Publication Publication Date Title
JP7460329B2 (ja) 繊維状セルロース複合樹脂及びその製造方法、並びに樹脂の補強材
JP7483418B2 (ja) 繊維状セルロースの製造方法、及び繊維状セルロース複合樹脂の製造方法
CN115516023B (zh) 纤维状纤维素含有物、纤维状纤维素复合树脂和纤维状纤维素含有物的制造方法
JP2022089848A5 (ja)
WO2021182180A1 (ja) 繊維状セルロース、繊維状セルロース複合樹脂及び繊維状セルロースの製造方法
KR20220158223A (ko) 섬유상 셀룰로오스, 섬유상 셀룰로오스 복합 수지 및 섬유상 셀룰로오스의 제조 방법
CN115551897B (zh) 纤维状纤维素和纤维状纤维素复合树脂
JP2023168387A (ja) マイクロ繊維セルロース固形物、マイクロ繊維セルロース固形物の製造方法
JP2021195483A5 (ja)
JP7150783B2 (ja) カルバメート化セルロース繊維の製造方法及びカルバメート化微細繊維の製造方法
JP7440574B2 (ja) 繊維状セルロース複合樹脂
JP7449323B2 (ja) 繊維状セルロース複合樹脂
KR20220149657A (ko) 섬유상 셀룰로오스 함유물, 섬유상 셀룰로오스 복합 수지, 및 섬유상 셀룰로오스 함유물의 제조 방법
JP7213296B2 (ja) 繊維状セルロース含有物、繊維状セルロース複合樹脂、及び繊維状セルロース含有物の製造方法
JP2024008128A5 (ja)
JP7265514B2 (ja) セルロース繊維含有物の製造方法、及びセルロース繊維複合樹脂の製造方法
JP7213926B2 (ja) 繊維状セルロースの製造方法及び繊維状セルロース複合樹脂の製造方法
JP2023142300A5 (ja)
WO2024070062A1 (ja) 繊維状セルロース複合樹脂、繊維状セルロース含有物、及び繊維状セルロース複合樹脂の製造方法
JP2024078170A (ja) セルロース繊維複合樹脂及びセルロース繊維複合樹脂の製造方法
JP2024078169A (ja) 繊維状セルロース含有物及び繊維状セルロース複合樹脂
WO2023162433A1 (ja) 繊維状セルロース、繊維状セルロース複合樹脂及び繊維状セルロースの製造方法
JP2022152279A (ja) マイクロ繊維セルロースの製造方法、マイクロ繊維セルロース複合樹脂の製造方法、及びマイクロ繊維セルロース
JPWO2023162433A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835204

Country of ref document: EP

Kind code of ref document: A1