WO2011049162A1 - ミクロフィブリル化植物繊維を含む組成物 - Google Patents

ミクロフィブリル化植物繊維を含む組成物 Download PDF

Info

Publication number
WO2011049162A1
WO2011049162A1 PCT/JP2010/068565 JP2010068565W WO2011049162A1 WO 2011049162 A1 WO2011049162 A1 WO 2011049162A1 JP 2010068565 W JP2010068565 W JP 2010068565W WO 2011049162 A1 WO2011049162 A1 WO 2011049162A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer compound
maleic anhydride
polyolefin
microfibrillated plant
modified
Prior art date
Application number
PCT/JP2010/068565
Other languages
English (en)
French (fr)
Inventor
矢野 浩之
勝人 鈴木
佐藤 明弘
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to EP20100825011 priority Critical patent/EP2492305B1/en
Priority to US13/502,581 priority patent/US9056969B2/en
Priority to CA2778560A priority patent/CA2778560C/en
Priority to JP2011537299A priority patent/JP5717643B2/ja
Publication of WO2011049162A1 publication Critical patent/WO2011049162A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers

Definitions

  • the present invention relates to a composition containing microfibrillated plant fibers and a molded product obtained by heat-treating the composition.
  • a composite material composed of a cellulose-based microfibrillated plant fiber and a polyolefin such as polypropylene (hereinafter sometimes abbreviated as “PP”), maleic acid-modified polypropylene (hereinafter sometimes abbreviated as “MAPP”).
  • PP polypropylene
  • MAPP maleic acid-modified polypropylene
  • a microfibrillated plant fiber containing lignin and a composite material obtained from PP and MAPP are disclosed.
  • the Example of Patent Document 3 discloses a composite material of lignocellulose fiber, PP and MAPP.
  • MAPP and lignin are considered to function as an interfacial reinforcing agent between PP and microfibrillated plant fibers or between lignocellulose fibers.
  • polyolefins such as PP are generally highly hydrophobic, when mixed with vegetable fibers based on highly hydrophilic cellulose as a main component, the uniform dispersibility and interfacial interaction between them are not sufficient even by such a method. It cannot be said that it was difficult to obtain a molded body having high strength.
  • the main object of the present invention is to provide a polyolefin-based molded article containing microfibrillated plant fibers having high strength and high elastic modulus.
  • the present inventor has a polymer compound modified with maleic anhydride and a primary amino group in a polyolefin-based molded article containing microfibrillated plant fibers. It has been found that a polyolefin-based molded article having high strength and high elastic modulus can be obtained by using in combination with an amine-based polymer compound.
  • the present invention has been completed by further intensive studies based on such knowledge. That is, the present invention provides the compositions shown in the following items 1 to 9, and molded articles obtained by heat-treating the compositions.
  • Item 1 (1) a polymer compound having a primary amino group, (2) a polymer compound modified with maleic anhydride, (3) A composition comprising microfibrillated plant fibers, and (4) a polyolefin.
  • Item 2 The composition according to Item 1, wherein the polymer compound modified with maleic anhydride is a maleic anhydride-modified polyolefin.
  • Item 3. The composition according to Item 1 or 2, wherein the maleic anhydride-modified polyolefin is maleic anhydride-modified polypropylene, and the polyolefin is polypropylene.
  • the polymer compound having the primary amino group is represented by the following general formula (A):
  • Item 4 The composition according to any one of Items 1 to 3, which is at least one selected from the group consisting of a polyethyleneimine compound having a repeating unit represented by the formula: and a salt thereof.
  • Item 5. A molded article obtained by heat-treating the composition according to any one of Items 1 to 4 at 100 to 300 ° C.
  • Item 6 which contains 20 to 65% by mass of microfibrillated plant fiber in a solid content and has a tensile strength of 58 MPa or more measured in accordance with a test method (plastic tensile test method) specified in JIS K-7113.
  • Item 7. (1) a polymer compound having a primary amino group, (2) a polymer compound modified with maleic anhydride, Item 5.
  • Item 8 The process of defibrating raw pulp, (3) For the microfibrillated plant fiber obtained by the above process, Item 5.
  • Item 9 A method for producing a molded article, comprising a step of heat-treating the composition obtained by the production method according to Item 7 or 8 at 100 to 300 ° C.
  • a polyolefin-based molded article containing microfibrillated plant fibers is combined with (1) an amine-based polymer compound having a primary amino group and (2) a polymer modified with maleic anhydride.
  • each component in the molded body in particular, highly hydrophilic microfibrillated plant fiber and highly hydrophobic polyolefin can be uniformly dispersed.
  • both the bonding strength between the microfibrillated plant fibers and the interfacial adhesive strength between the microfibrillated plant fibers and the polyolefin can be improved, and a polyolefin-based molded article having a high strength and a high elastic modulus can be obtained.
  • the present invention by replacing the glass fiber of the existing glass fiber reinforced polyolefin with the microfibrillated plant fiber, it can be expected to reduce the weight, increase the strength, thin the wall, reduce the incineration ash at the time of disposal, and the like. .
  • strength and elastic modulus of the molded object obtained in Examples 1-3 The graph which shows the intensity
  • composition of the present invention the molded product, and the production methods thereof will be described in detail.
  • composition of the present invention comprises: (1) a polymer compound having a primary amino group, (2) a polymer compound modified with maleic anhydride, It comprises (3) microfibrillated plant fiber and (4) polyolefin.
  • Polymer compound having primary amino group In the composition of the present invention, it is important to include a polymer compound having a primary amino group in the molecule.
  • the weight average molecular weight of the polymer compound having a primary amino group is usually about 1,000 to 1,000,000, preferably about 1200 to 700,000.
  • the weight average molecular weight is determined by gel permeation chromatography (GPC) method (PEG conversion), GPC method (pullulan conversion) or GPC-MALLS with a multi-angle light scattering detector connected to a GPC column. It is a value measured by any method.
  • GPC gel permeation chromatography
  • the amino group of the polymer compound having a primary amino group may form a salt with an organic acid or inorganic acid.
  • examples of the inorganic acid from which the amino group can form a salt include hydrochloric acid, sulfuric acid, phosphoric acid, boric acid, hydrobromic acid, hydroiodic acid, and the like
  • examples of the organic acid include formic acid, acetic acid, and the like.
  • the high molecular compound which has a primary amino group may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • the polymer compound having a primary amino group may be synthesized by a conventionally known method, or a commercially available product may be used.
  • polymer compound having a primary amino group examples include the following general formula (A)
  • the compound having a repeating unit represented by the general formula (A) may be a copolymer or graft polymer containing other repeating units in addition to the repeating unit represented by the general formula (A). .
  • repeating units that form a copolymer or graft polymer by combining with the repeating unit represented by the general formula (A) include polyacrylate units, polymethacrylate units, polyacrylamide units, and polydiallylamine units. Examples include units containing secondary amines, units containing tertiary amines such as polymethyldiallylamine units, units containing quaternary ammonium salts such as polydiallyldimethylammonium salt units, and the like. The order of combining the repeating units is not limited, and may be random or block.
  • the compound containing the repeating unit represented by the general formula (A) is more preferably a homopolymer containing only the repeating unit represented by the general formula (A) or a salt thereof.
  • the weight average molecular weight of the compound having a repeating unit represented by the general formula (A) is also the same as described above.
  • Examples of the salt of the compound having the repeating unit represented by the general formula (A) include hydrochloride, sulfate, phosphoric acid, hydrobromic acid, hydroiodide, and other inorganic acid salts, formate salts, and acetate salts. And organic acid salts such as propionate, p-toluenesulfonic acid, methanesulfonic acid, citric acid, and tartrate.
  • the compound having a repeating unit represented by the general formula (A) can be synthesized by a conventionally known polymerization method using allylamine or the like as a raw material, and a commercially available product is also readily available.
  • the compound having a repeating unit represented by the general formula (B) may be a copolymer or graft polymer containing other repeating units in addition to the repeating unit represented by the general formula (B). .
  • repeating units that combine with the repeating unit represented by formula (B) to form a copolymer or graft polymer include polyacrylate units, polymethyl methacrylate units, polyacrylamide units, polyvinylformamide units, polyvinyl Examples include acetamide units, units containing secondary amines such as polydiallylamine units, units containing tertiary amines such as polymethyldiallylamine units, units containing quaternary ammonium salts such as polydiallyldimethylammonium salt units, and the like. .
  • the order of combining the repeating units is not limited, and may be random or block.
  • the compound containing the repeating unit represented by the general formula (B) is more preferably a homopolymer containing only the repeating unit represented by the general formula (B) or a salt thereof.
  • the weight average molecular weight of the compound having a repeating unit represented by the general formula (B) is also the same as described above.
  • Examples of the salt of the compound having a repeating unit represented by the general formula (B) include hydrochloride, sulfuric acid, phosphoric acid, hydrobromic acid, hydroiodide, and other inorganic acid salts, formate salts, acetate salts, Examples include organic acid salts such as propionate, p-toluenesulfonic acid, methanesulfonic acid, citric acid, and tartrate.
  • the compound having a repeating unit represented by the general formula (B) is conventionally used, for example, by hydrolyzing a polymer of N-substituted amides such as N-vinylformamide or N-vinylacetamide, or by polymorphizing Hoffman. It can synthesize
  • the repeating unit represented by the general formula (C) may extend on a straight chain or may have a branched structure.
  • a graft polymer containing another repeating unit may be used.
  • the compound containing the repeating unit represented by the general formula (C) is more preferably a homopolymer containing only the repeating unit represented by the general formula (C) or a salt thereof. Examples of such a preferred homopolymer or a salt thereof include polyethyleneimine or a salt thereof.
  • the weight average molecular weight of the compound having a repeating unit represented by the general formula (C) is also the same as described above.
  • Examples of the salt of the compound having the repeating unit represented by the general formula (C) include inorganic acid salts such as hydrochloride, sulfate, phosphoric acid, hydrobromic acid, hydroiodide, formate, and acetate. And organic acid salts such as propionate, p-toluenesulfonate, methanesulfonic acid, citric acid, and tartrate.
  • inorganic acid salts such as hydrochloride, sulfate, phosphoric acid, hydrobromic acid, hydroiodide, formate, and acetate.
  • organic acid salts such as propionate, p-toluenesulfonate, methanesulfonic acid, citric acid, and tartrate.
  • the compound having a repeating unit represented by the general formula (C) is known as a cationic polymer, can be synthesized by a conventionally known polymerization method using aziridine as a raw material, and a commercially available product is also readily available.
  • composition of the present invention preferably contains at least one selected from the group consisting of compounds having repeating units represented by the above general formulas (A), (B) and (C), and salts thereof.
  • the amount of the polymer compound having a primary amino group is usually about 1 to 30 parts by mass, preferably 5 to 100 parts by mass of (3) microfibrillated plant fiber described later. About 30 parts by mass, particularly preferably about 7-15 parts by mass.
  • composition of the present invention a polymer compound modified with maleic anhydride is added in addition to the polymer compound having a primary amino group in the molecule. It is important to include.
  • the polymer compound modified with maleic anhydride may have a weight average molecular weight of usually about 30,000 to 100,000, preferably about 50,000 to 100,000. Moreover, the high molecular compound modified with maleic anhydride may be used alone or in combination of two or more.
  • the polymer compound modified with maleic anhydride may be synthesized by a conventionally known method, or a commercially available product may be used.
  • maleic anhydride-modified polyolefin As the polymer compound modified with maleic anhydride, maleic anhydride-modified polyolefin is preferable.
  • the maleic anhydride-modified polyolefin include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified polybutadiene, maleic anhydride-modified polystyrene, maleic anhydride-modified polymethacrylate, and the like.
  • linear olefins such as ethylene, propylene, 1-butene, 1-pentene and 1-hexene, and branches such as 3-methyl-1-butene, 3-methyl-1-pentene and 4-methyl-1-pentene
  • examples thereof include maleic anhydride-modified products of copolymers such as olefins, butadiene, and styrene.
  • the polymer compound modified with maleic anhydride preferably has the same skeleton as (4) polyolefin described later. That is, for example, when (4) polypropylene is used as the polyolefin, it is particularly preferable to use (2) maleic anhydride-modified polypropylene as the polymer compound modified with maleic anhydride.
  • the maleic anhydride modification rate of the polymer compound modified with maleic anhydride is usually about 1 to 10% by mass, preferably about 3 to 5% by mass.
  • the blending amount of the polymer compound modified with maleic anhydride is usually about 4 to 50 parts by weight, preferably 6 to 100 parts by weight per 100 parts by weight of the above (3) microfibrillated plant fiber. About 15 parts by mass, particularly preferably about 10 to 15 parts by mass.
  • the polymer compound having a primary amino group includes (3) hydroxyl groups and hydrogen bonds derived from cellulose and hemicellulose present on the surface of microfibrillated plant fibers, and carboxyl groups present slightly.
  • the polymer compound modified with maleic anhydride By electrostatic interaction, (3) while reinforcing the network structure between microfibrillated plant fibers, (2) reacting with and interacting with the anhydride ring of the polymer compound modified with maleic anhydride (3 It is considered that there is a function to reinforce the interface between the microfibrillated plant fiber and (4) polyolefin. Therefore, usually, the number of primary amino groups in the composition is preferably larger than the number of maleic anhydride groups.
  • microfibrillated plant fiber contained in the composition of the present invention is publicly known. It is produced by defibration or refinement by grinding or beating with a high-pressure homogenizer medium stirring mill, stone mill, grinder, vibration mill, sand grinder or the like. It can also be manufactured by a method. Furthermore, a commercially available product can be used.
  • Cellulose fiber-containing materials include plants (eg, wood, bamboo, hemp, jute, kenaf, farmland waste, cloth, pulp (conifer unbleached kraft pulp (NUKP), conifer bleached kraft pulp (NBKP), hardwood unbleached kraft pulp) (LUKP), hardwood bleached kraft pulp (LBKP), softwood unbleached sulfite pulp (NUSP), softwood bleached sulfite pulp (NBSP) thermomechanical pulp (TMP), recycled pulp, waste paper, etc.), animals (for example, ascidians) , Algae, microorganisms (for example, acetic acid bacteria (Acetobacter)), those originating from microbial products, etc.
  • plants eg, wood, bamboo, hemp, jute, kenaf, farmland waste, cloth, pulp (conifer unbleached kraft pulp (NUKP), conifer bleached kraft pulp (NBKP), hardwood unbleached kraft
  • cellulose fibers derived from plants or microorganisms More preferably, it is a cellulose fiber derived from a plant.
  • pulp in particular softwood unbleached kraft pulp (NUKP), bleached softwood kraft pulp (NUKP)
  • NUKP softwood unbleached kraft pulp
  • NUKP bleached softwood kraft pulp
  • the average fiber diameter of the microfibrillated plant fiber is preferably 4 nm to 50 ⁇ m, more preferably 4 nm to 10 ⁇ m, and even more preferably 4 nm to 1000 nm.
  • the microfibrillated plant fiber is a fiber having a very long fiber length relative to the fiber diameter, and it is difficult to determine the fiber length, but the average value is preferably 5 times or more, more preferably 10 times the fiber diameter. More preferably, it is 20 times or more.
  • the microfibrillated plant fiber may be treated with an alkaline solution (eg, an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide, aqueous ammonia).
  • an alkaline solution eg, an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide, aqueous ammonia.
  • the microfibrillated plant fiber is formed into a shape (for example, powder, fiber, sheet, etc.) in which the cellulose fiber-containing material can be efficiently treated with a refiner, if necessary, and then treated with an alkali solution.
  • this treated product is ground and / or beaten by a known defibrating or refining technique used for the production of microfibrillated plant fibers, generally a refiner, a high-pressure homogenizer, a medium stirring mill, a stone mill, a grinder, etc. It may be obtained by doing.
  • a known defibrating or refining technique used for the production of microfibrillated plant fibers, generally a refiner, a high-pressure homogenizer, a medium stirring mill, a stone mill, a grinder, etc. It may be obtained by doing.
  • the amount of the microfibrillated plant fiber is usually about 1 to 90% by mass, preferably about 5 to 80% by mass in the total amount of the composition.
  • a known polyolefin may be used as the main component polyolefin.
  • the polyolefin include linear ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 4-methyl- Examples thereof include branched olefins such as 1-pentene, homopolymers or copolymers such as styrene, butadiene, isoprene, chloroprene, isobutylene and isoprene, and cyclic polyolefins having a norbornene skeleton.
  • the weight average molecular weight of polyolefin is usually about 100,000 to 400,000, preferably about 200,000 to 300,000. Moreover, polyolefin may be used individually by 1 type, and 2 or more types may be mixed and used for it. Polyolefin may be synthesized by a conventionally known method, or a commercially available product may be used.
  • the blending amount of the polyolefin is usually about 2 to 98 parts by mass, preferably about 5 to 95 parts by mass with respect to 100 parts by mass of the above (3) microfibrillated plant fiber.
  • the blending amount of polyolefin is usually about 1 to 99% by mass, preferably about 2 to 98% by mass in the total amount of the composition.
  • composition of the present invention includes (1) a polymer compound having a primary amino group, (2) a polymer compound modified with maleic anhydride, (3) a microfibrillated plant fiber, and (4) a polyolefin.
  • a polymer compound having a primary amino group (2) a polymer compound modified with maleic anhydride, (3) a microfibrillated plant fiber, and (4) a polyolefin.
  • other components may be contained as necessary.
  • Examples of other components include water; alkali such as sodium hydroxide, potassium hydroxide, magnesium hydroxide, and calcium hydroxide; inorganic filler such as clay, talc, calcium carbonate, mica, titanium dioxide, and zinc oxide; carbon black , Organic fillers such as graphite and glass flakes, bengara, azo pigments, dyes or pigments such as phthalocyanines; dispersants, lubricants, plasticizers, mold release agents, flame retardants, antioxidants (phenolic antioxidants, phosphorylation inhibitors) Additives, sulfur-based antioxidants), antistatic agents, light stabilizers, UV absorbers, metal deactivators, crystallization accelerators (nucleating agents), foaming agents, crosslinking agents, antibacterial agents, etc. Various additives such as an agent are listed.
  • the amine-based polymer compound having a primary amino group and (2) the polymer compound modified with maleic anhydride are used in combination and mixed in the composition.
  • the microfibrillated plant fiber and the polyolefin can be uniformly dispersed.
  • a microfibrillated plant fiber-containing molded body having high strength and high elastic modulus can be obtained as described later. That is, the composition of the present invention is useful as a raw material for a resin containing a microfibrillated plant fiber.
  • the production method of the composition of the present invention is not particularly limited, and (1) the polymer compound having a primary amino group, (2) the polymer compound modified with maleic anhydride. (3) Microfibrillated plant fiber, (4) Polyolefin, and other components may be mixed if necessary.
  • the order of mixing the components (1) to (4) and other components is not particularly limited.
  • the mixing method of the components (1) to (4) and other components is not particularly limited, and a conventionally known method can be employed.
  • the components (1) to (4) and other components can be uniformly dispersed by kneading them with a twin screw extruder (a twin screw kneader) or the like.
  • a twin screw extruder a twin screw kneader
  • the amine-based polymer compound having a primary amino group and (2) the polymer compound modified with maleic anhydride are used in combination,
  • Each component contained in the composition of the present invention can be uniformly dispersed.
  • the temperature at the time of mixing each component is not particularly limited, and is usually about 0 ° C to 300 ° C.
  • pulp or the like which is a raw material of microfibrillated plant fiber is defibrated by a twin screw extruder or the like, and the above (1), (2), (4) and water used as necessary If the other components are added and stirred, the composition of the present invention is obtained.
  • components (1), (2), (4), and other components used as needed when pulp is defibrated with a refiner, a twin screw extruder, etc. to obtain microfibrillated plant fibers May be mixed together, and the production of microfibrillated plant fibers by defibrating the cellulose fiber-containing material and the stirring of each component may be performed simultaneously.
  • Molded body The molded body of the present invention can be obtained by heat-treating the composition of the present invention as described later.
  • the temperature at the time of heat treatment is usually preferably equal to or higher than the melting point of (4) polyolefin contained in the composition.
  • the (1) amine polymer compound having a primary amino group and the (2) polymer compound modified with maleic anhydride are used in combination and mixed.
  • the microfibrillated plant fiber and the polyolefin can be uniformly dispersed.
  • both the bonding strength between the microfibrillated plant fibers and the interfacial adhesive strength between the highly hydrophilic microfibrillated plant fibers and the highly hydrophobic polyolefin can be improved.
  • a polyolefin-based molded article having high strength and high elastic modulus can be obtained by heat-treating a composition in which these components are uniformly dispersed.
  • the primary amino group in the component (1) is slightly present on the maleic anhydride site in the component (2) and on the surface of the microfibrillated plant fiber (3). It is considered that a part or all of the carboxyl group reacts and is bonded by heating. These bonds are considered to contribute to the improvement of the strength and elastic modulus of the resin material.
  • replacing existing glass fiber reinforced polyolefin glass fibers with microfibrillated plant fibers can be expected to reduce weight, increase strength, reduce wall thickness, and reduce incineration ash during disposal.
  • the tensile strength of the molded product of the present invention is usually 58 MPa or more when the molded product contains 20 to 65% by mass of microfibrillated plant fiber. Moreover, the tensile elasticity modulus of the molded object of this invention is 3.5 GPa or more normally.
  • the amount of each component contained in the composition before the heat treatment and the molded product after the heat treatment is substantially the same. It is. That is, the amount of each component in the molded article of the present invention is the same as the description of the blending amount of each component in the composition.
  • the tensile strength is a value measured using a No. 2 type test piece (dumbbell type, thickness 1 mm) based on JIS K-7113 (plastic tensile test method).
  • the tensile strength is a value measured using a universal material testing machine Instron 3365 type (Instron Japan Company Limited).
  • the molded object of the present invention can be obtained by heat-treating the composition of the present invention.
  • the temperature at which the composition of the present invention is heat-treated is usually about 100 to 300 ° C., preferably about 110 to 250 ° C., particularly preferably about 120 to 220 ° C.
  • the molded body obtained by the heat treatment can be molded into a desired shape by a conventionally known resin molded body.
  • the composition can be molded into a desired shape by heating, melting, kneading, pelletizing with a pelletizer or the like, and then subjecting the resulting pellet to injection molding, mold molding, or the like.
  • any of the same methods as those for molding a normal thermoplastic resin composition can be applied.
  • any of the same methods as those for molding a normal thermoplastic resin composition can be applied.
  • extrusion molding, hollow molding, foam molding, etc. are adopted. can do.
  • the molded body of the present invention is lighter and higher in strength than conventionally used glass fiber reinforced materials and the like, for example, in a housing (housing) of home appliances such as personal computers and mobile phones. Can be used. It can also be used for office equipment such as stationery, household items such as furniture, sports equipment, interiors of automobile dashboards, airplane luggage, structural components for transportation equipment, building materials such as sashes in houses, etc. it can. Furthermore, since it is excellent in insulation, application to electrical / electronic / communication equipment can be expected.
  • allylamine hydrochloride polymer (PAA, manufactured by Nittobo Co., Ltd .: trade name “PAA-HCl-10L”) as a compound having an allylamine unit is diluted with water to 5 wt%, and then diluted with sodium hydroxide. The pH of the liquid was adjusted to 10.
  • the obtained mixture was put into a twin screw extruder (manufactured by Technobel: screw diameter: 15 mm), and NUKP defibration and NUKP, PP, MAPP, and PAA were simultaneously mixed.
  • the rotation speed was 400 / min
  • the defibration speed was 400 g / hr
  • the barrel temperature was 5 to 60 ° C.
  • the obtained microfibrillated mixture of NUKP, PP, MAPP, and PAA was melted and kneaded with the above-mentioned Technobel twin screw extruder (screw diameter: 15 mm) (rotation speed 200 / min, processing speed 200 g / hour, (The temperature was 160-180 ° C.) and pelletized using a pelletizer (Technobel). Further, the obtained pellets were put into an injection molding machine (NPX7-1F, manufactured by Nissei Resin Co., Ltd.) to obtain a dumbbell-shaped molded product. The molding temperature was 200 ° C. Table 1 shows the tensile strength and tensile elastic modulus of the obtained molded product. The measuring method of the tensile strength and the tensile elastic modulus is as described above.
  • Examples 2 to 11 and Comparative Examples 1 to 6 In the same manner as in Example 1, a polymer compound having a primary amino group described in Table 1 (component (1)), a polymer compound modified with maleic anhydride (component (2)), and microfibrillation A dumbbell-shaped molding was obtained from the plant fiber (component (3)) and polypropylene (component (4)). The mass ratio of each component is the same as in Example 1. Tables 1 and 2 show the tensile strength and tensile elastic modulus of the obtained molded product.
  • Example 12 Dumbbell-shaped molded product in the same manner as in Example 9 except that the mass ratio of component (1): component (2): component (3): component (4) was 20: 75.3: 2.7: 2.
  • Table 2 shows the tensile strength and tensile elastic modulus of the obtained molded product.
  • PAA is a polymer having a repeating unit represented by the general formula (A)
  • T-ND104, 106, 107 (manufactured by Seiko PMC Co., Ltd.) has a repeating unit represented by the general formula (B).
  • the respective cation amounts (representative values) are 23 mol%, 94 mol% and 23 mol%, respectively.
  • P-1000 and SP-012 are polyethyleneimine (trademark “Epomin”) having a unit represented by the general formula (C) manufactured by Nippon Shokubai Co., Ltd., and PAS-21CL is polydiallylamine hydrochloride (Nittobo Co., Ltd.)
  • HE-3040 is a high density polyethylene (trade name “Flow Bead”) manufactured by Sumitomo Seika Co., Ltd. The same applies to Table 2.
  • Table 1 corresponds to compounds having repeating units represented by the above general formulas (A) to (C). The same applies to Table 2 below.
  • KBE-903 is 3-aminopropyltriethoxysilane (manufactured by Shin-Etsu Silicone).
  • Comparative Examples 1 and 3 in which the compound having a primary amino group was not blended, the tensile strength was particularly low as compared with Examples 1-12. Moreover, when APS which is a low molecular compound which has a primary amino group was mix

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、高強度、高弾性率のミクロフィブリル化植物繊維を含むポリオレフィン系成形体を提供する。 (1)第1級アミノ基を有する高分子化合物、(2)無水マレイン酸で変性された高分子化合物、(3)ミクロフィブリル化植物繊維、及び(4)ポリオレフィンを含む組成物、及び該組成物を加熱処理してなる成形体。

Description

ミクロフィブリル化植物繊維を含む組成物
 本発明は、ミクロフィブリル化植物繊維を含む組成物及びこれを加熱処理してなる成形体に関する。
 セルロース系のミクロフィブリル化植物繊維とポリプロピレン(以下「PP」と略記することがある)等のポリオレフィンからなる複合材料において、マレイン酸変性ポリプロピレン(以下、「MAPP」と略記することがある。)を相溶化剤、又は界面補強剤として使用することが広く知られている(例えば、特許文献1等)。
 また、特許文献2の実施例には、リグニンを含有するミクロフィブリル化植物繊維と、PP、MAPPから得られた複合材料が開示されている。さらに、特許文献3の実施例にはリグノセルロース繊維、PP及びMAPPの複合材料が開示されている。これらの複合材料においては、MAPP及びリグニンが、PPとミクロフィブリル化植物繊維との間、又はリグノセルロース繊維間の界面補強剤として機能していると考えられる。しかしながら、一般にPP等のポリオレフィンは疎水性が高い為、親水性の高いセルロースを主成分とする植物繊維と混合した場合、このような方法によっても両者の均一分散性や界面相互作用は十分とは言えず、強度の高い成形体を得ることは困難であった。
米国特許公開公報第US2008/0146701号 特開2009-19200号公報 特表2009-516032号公報
 本発明は、高強度、高弾性率のミクロフィブリル化植物繊維を含むポリオレフィン系成形体を提供することを主な課題とする。
 本発明者は、上記課題を解決するために鋭意研究を重ねた結果、ミクロフィブリル化植物繊維を含むポリオレフィン系成形体において、無水マレイン酸で変性された高分子化合物と第1級アミノ基を有するアミン系高分子化合物とを併用することにより、高強度、高弾性率のポリオレフィン系成形体が得られることを見出した。本発明は、この様な知見に基づき、さらに鋭意検討して完成されたものである。すなわち、本発明は下記項1~9に示す組成物、及びこれを加熱処理してなる成形体を提供する。
 項1.(1)第1級アミノ基を有する高分子化合物、
(2)無水マレイン酸で変性された高分子化合物、
(3)ミクロフィブリル化植物繊維、及び
(4)ポリオレフィン
を含む組成物。
 項2.前記無水マレイン酸で変性された高分子化合物が、無水マレイン酸変性ポリオレフィンである項1に記載の組成物。
 項3.前記無水マレイン酸変性ポリオレフィンが無水マレイン酸変性ポリプロピレンであり、前記ポリオレフィンがポリプロピレンである項1又は2に記載の組成物。
 項4.前記第1級アミノ基を有する高分子化合物が、下記一般式(A)
Figure JPOXMLDOC01-appb-C000004
で表される繰り返し単位を有する化合物、
下記一般式(B)
Figure JPOXMLDOC01-appb-C000005
で表される繰り返し単位を有する化合物、
下記一般式(C)
Figure JPOXMLDOC01-appb-C000006
で表される繰り返し単位を有するポリエチレンイミン化合物、及びこれらの塩からなる群から選ばれる少なくとも1種である項1~3のいずれかに記載の組成物。
 項5.項1~4のいずれかに記載の組成物を100~300℃で加熱処理してなる成形体。
 項6.ミクロフィブリル化植物繊維を固形分中20~65質量%含有し、JIS K-7113に規定される試験方法(プラスチックの引張り試験方法)に準拠して測定された引張り強度が58MPa以上
である項5に記載の成形体。
 項7.(1)第1級アミノ基を有する高分子化合物、
(2)無水マレイン酸で変性された高分子化合物、
(3)ミクロフィブリル化植物繊維、及び
(4)ポリオレフィン
を混練する工程を含む項1~4のいずれかに記載の組成物の製造方法。
 項8.原料パルプを解繊する工程、
前記工程によって得られる(3)ミクロフィブリル化植物繊維に対して、
(1)第1級アミノ基を有する高分子化合物、(2)無水マレイン酸で変性された高分子化合物、及び(4)ポリオレフィンを加え、攪拌する工程
を含む項1~4のいずれかに記載の組成物の製造方法。
 項9.項7又は8の製造方法によって得られる組成物を100~300℃で加熱処理する工程を含む成形体の製造方法。
 本発明においては、ミクロフィブリル化植物繊維を含有するポリオレフィン系成形体に、前記(1)第1級アミノ基を有するアミン系高分子化合物、及び前記(2)無水マレイン酸で変性された高分子化合物が配合されていることにより、成形体中の各成分、特に親水性の高いミクロフィブリル化植物繊維と疎水性の高いポリオレフィンとを均一に分散させることができる。これにより、ミクロフィブリル化植物繊維間の結合強度、ミクロフィブリル化植物繊維とポリオレフィン間の界面接着強度の両方を向上させることができ、高強度、高弾性率のポリオレフィン系成形体を得ることができる。従って、本発明によれば、既存のガラス繊維強化ポリオレフィンのガラス繊維をミクロフィブリル化植物繊維に代替することで、軽量化、高強度化、肉薄化、廃棄時の焼却灰の低減等が期待できる。
実施例1~3で得られた成形体の強度及び弾性率を示すグラフ 実施例4~6で得られた成形体の強度及び弾性率を示すグラフ 実施例7~9で得られた成形体の強度及び弾性率を示すグラフ 実施例10~12で得られた成形体の強度及び弾性率を示すグラフ 比較例1~3で得られた成形体の強度及び弾性率を示すグラフ 比較例4及び5で得られた成形体の強度及び弾性率を示すグラフ
 以下、本願発明の組成物、成形体及びこれらの製造方法について、詳述する。
 1.組成物
 本発明の組成物は、
(1)第1級アミノ基を有する高分子化合物、
(2)無水マレイン酸で変性された高分子化合物、
(3)ミクロフィブリル化植物繊維、及び
(4)ポリオレフィン
を含むことを特徴とする。
 (1)第1級アミノ基を有する高分子化合物
 本発明の組成物においては、分子内に第1級アミノ基を有する高分子化合物を含むことが重要である。
 第1級アミノ基を有する高分子化合物の重量平均分子量は、通常1000~100万程度、好ましくは1200~70万程度である。
 なお、本発明において、重量平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法(PEG換算)、GPC法(プルラン換算)又はGPCカラムに多角度光散乱検出器を接続したGPC-MALLSのいずれかの方法で測定した値である。
 第1級アミノ基を有する高分子化合物のアミノ基は、有機酸又は無機酸と塩を形成していてもよい。該アミノ基が塩を形成し得る無機酸としては、例えば、塩酸、硫酸、リン酸、ホウ酸、臭化水素酸、よう化水素酸等が挙げられ、有機酸としては、例えば、ギ酸、酢酸、プロピオン酸、p-トルエンスルホン酸、メタンスルホン酸、クエン酸、酒石酸等が挙げられる。また、第1級アミノ基を有する高分子化合物は1種単独で使用してもよいし、2種以上を混合して使用してもよい。第1級アミノ基を有する高分子化合物は、従来公知の方法で合成してもよく、市販品を使用してもよい。
 第1級アミノ基を有する高分子化合物としては、例えば下記一般式(A)
Figure JPOXMLDOC01-appb-C000007
で表されるアリルアミン単位を繰り返し単位として有する化合物及びその塩が挙げられる。
 一般式(A)で表される繰り返し単位を有する化合物は、前記一般式(A)で表される繰り返し単位の他に、他の繰り返し単位を含む共重合体、グラフト重合体であってもよい。
 前記一般式(A)で表される繰り返し単位と結合して共重合体、グラフト重合体を形成する他の繰り返し単位としては、例えばポリアクリレート単位、ポリメタクリレート単位、ポリアクリルアミド単位、ポリジアリルアミン単位の様に2級アミンを含む単位、ポリメチルジアリルアミン単位の様に3級アミンを含む単位、ポリジアリルジメチルアンモニウム塩単位の様に4級アンモニウム塩を含む単位等が挙げられる。各繰り返し単位の結合順は限定されず、ランダムでもブロックでもよい。
 ただし、一般式(A)で表される繰り返し単位以外の繰り返し単位量が多くなり過ぎると、単位重量当たりの第1級アミノ基の数が減るので好ましくない。一般式(A)で表される繰り返し単位を含む化合物は、一般式(A)で表される繰り返し単位のみを含むホモポリマー又はその塩であることがより好ましい。
 一般式(A)で表される繰り返し単位を有する化合物の重量平均分子量も、上記と同じである。
 一般式(A)で表される繰り返し単位を有する化合物の塩としては、塩酸塩、硫酸塩、リン酸、臭化化水素酸、よう化水素酸塩等の無機酸塩、ギ酸塩、酢酸塩、プロピオン酸塩、p-トルエンスルホン酸、メタンスルホン酸、クエン酸、酒石酸塩等の有機酸塩が挙げられる。一般式(A)で表される繰り返し単位を有する化合物は、アリルアミン等を原料として従来公知の重合方法で合成することができ、市販品も容易に入手可能である。
 また、第1級アミノ基を有する高分子化合物としては、例えば下記一般式(B)
Figure JPOXMLDOC01-appb-C000008
で表されるビニルアミン単位を繰り返し単位として有する化合物及びその塩も挙げられる。
 一般式(B)で表される繰り返し単位を有する化合物は、前記一般式(B)で表される繰り返し単位の他に、他の繰り返し単位を含む共重合体、グラフト重合体であってもよい。
 前記一般式(B)で表される繰り返し単位と結合して共重合体、グラフト重合体を形成する他の繰り返し単位としてはポリアクリレート単位、ポリメチルメタクリレート単位、ポリアクリルアミド単位、ポリビニルホルムアミド単位、ポリビニルアセトアミド単位、ポリジアリルアミン単位の様に2級アミンを含む単位、ポリメチルジアリルアミン単位の様に3級アミンを含む単位、ポリジアリルジメチルアンモニウム塩単位の様に4級アンモニウム塩を含む単位等が挙げられる。各繰り返し単位の結合順は限定されず、ランダムでもブロックでもよい。
 ただし、一般式(B)で表される繰り返し単位以外の繰り返し単位量が多くなり過ぎると、単位重量当たりの1級アミノ基の数が減るので好ましくない。一般式(B)で表される繰り返し単位を含む化合物は、一般式(B)で表される繰り返し単位のみを含むホモポリマー又はその塩であることがより好ましい。
 一般式(B)で表される繰り返し単位を有する化合物の重量平均分子量も、上記と同じである。
 一般式(B)で表される繰り返し単位を有する化合物の塩としては、塩酸塩、硫酸、リン酸、臭化化水素酸、よう化水素酸塩等の無機酸塩、ギ酸塩、酢酸塩、プロピオン酸塩、p-トルエンスルホン酸、メタンスルホン酸、クエン酸、酒石酸塩等の有機酸塩が挙げられる。
 一般式(B)で表される繰り返し単位を有する化合物は、例えばN-ビニルホルムアミドやN-ビニルアセトアミド等のN置換アミド類の重合体を加水分解するか、ポリアクリルアミドをホフマン変性する等の従来公知の重合方法で合成することができ、市販品も容易に入手可能である。
 さらに、第1級アミノ基を有する高分子化合物としては、例えば下記一般式(C)
Figure JPOXMLDOC01-appb-C000009
で表される繰り返し単位を有する化合物及びその塩も挙げられる。
 一般式(C)で表される繰り返し単位を有する化合物は、前記一般式(C)で表される繰り返し単位が直鎖上に伸びていても良いし、分岐構造を取っていても良い。また一般式(C)の他に、他の繰り返し単位を含むグラフト重合体であってもよい。
 一般式(C)で表される繰り返し単位以外の繰り返し単位量が多くなり過ぎると、単位重量当たりの1級アミノ基の数が減るので好ましくない。一般式(C)で表される繰り返し単位を含む化合物は、一般式(C)で表される繰り返し単位のみを含むホモポリマー又はその塩であることがより好ましい。このような好ましいホモポリマー又はその塩としては、ポリエチレンイミン又はその塩が挙げられる。
 一般式(C)で表される繰り返し単位を有する化合物の重量平均分子量も、上記と同じである。
 一般式(C)で表される繰り返し単位を有する化合物の塩としては、塩酸塩、硫酸塩、リン酸、臭化化水素酸、よう化水素酸塩等の無機酸塩、ギ酸塩、酢酸塩、プロピオン酸塩、p-トルエンスルホン酸塩、メタンスルホン酸、クエン酸、酒石酸塩等の有機酸塩が挙げられる。
 一般式(C)で表される繰り返し単位を有する化合物は、カチオンポリマーとして知られており、アジリジンを原料として従来公知の重合方法で合成することができ、市販品も容易に入手可能である。
 本発明の組成物は、上記一般式(A)、(B)及び(C)で表される繰り返し単位を有する化合物、及びこれらの塩からなる群から選ばれる少なくとも1種を含むことが好ましい。
 本発明の組成物において、第1級アミノ基を有する高分子化合物の配合量は、後述の(3)ミクロフィブリル化植物繊維100質量部に対して、通常1~30質量部程度、好ましくは5~30質量部程度、特に好ましくは7~15質量部程度である。
 (2)無水マレイン酸で変性された高分子化合物
 本発明の組成物においては、前記分子内に第1級アミノ基を有する高分子化合物に加えて、無水マレイン酸で変性された高分子化合物を含むことが重要である。
 無水マレイン酸で変性された高分子化合物は、重量平均分子量で通常3万~10万程度、好ましくは5万~10万程度の分子量のものを使用すればよい。また、無水マレイン酸で変性された高分子化合物は1種単独で使用してもよいし、2種以上を混合して使用してもよい。無水マレイン酸で変性された高分子化合物は、従来公知の方法で合成してもよく、市販品を使用してもよい。
 無水マレイン酸で変性された高分子化合物としては、無水マレイン酸変性ポリオレフィンが好ましい。無水マレイン酸変性ポリオレフィンとしては、例えば、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性ポリブタジエン、無水マレイン酸変性ポリスチレン、無水マレイン酸変性ポリメタクリレート等が挙げられる。また、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン等の直鎖状オレフィンや3-メチル-1-ブテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン等の分岐状オレフィン、ブタジエン、スチレン等の共重合体の無水マレイン酸変性体も挙げられる。
 無水マレイン酸で変性された高分子化合物は、通常、後述の(4)ポリオレフィンと同様の骨格を有することが好ましい。すなわち、例えば、(4)ポリオレフィンとしてポリプロピレンを用いる場合は、(2)無水マレイン酸で変性された高分子化合物として無水マレイン酸変性ポリプロピレンを使用することが特に好ましい。
 無水マレイン酸で変性された高分子化合物の無水マレイン酸変性率は、通常1~10質量%程度、好ましくは3~5質量%程度である。
 本発明の組成物において、無水マレイン酸で変性された高分子化合物の配合量は、上記(3)ミクロフィブリル化植物繊維100質量部に対して、通常4~50質量部程度、好ましくは6~15質量部程度、特に好ましくは10~15質量部程度である。
 本発明において、(1)第1級アミノ基を有する高分子化合物には、(3)ミクロフィブリル化植物繊維表面に存在するセルロースやヘミセルロース由来の水酸基と水素結合、さらに僅かに存在するカルボキシル基と静電相互作用することによって、(3)ミクロフィブリル化植物繊維同士のネットワーク構造を補強するとともに、(2)無水マレイン酸で変性された高分子化合物の無水環と反応、相互作用して(3)ミクロフィブリル化植物繊維と(4)ポリオレフィンとの界面を補強する働きがあると考えられる。よって、通常、組成物中の第1級アミノ基の数は、無水マレイン酸基の数よりも多い方が好ましい。
 (3)ミクロフィブリル化植物繊維
 本発明の組成物に含まれるミクロフィブリル化植物繊維は公知であり、一般的には、セルロース繊維含有材料をリファイナー、二軸混錬機(二軸押出機)、高圧ホモジナイザー媒体攪拌ミル、石臼、グラインダー、振動ミル、サンドグラインダー等により磨砕ないし叩解することによって解繊又は微細化して製造されるが、特開2005-42283号公報に記載の方法等の公知の方法で製造することもできる。さらに、市販品を利用することも可能である。
 セルロース繊維含有材料は、植物(例えば、木材、竹、麻、ジュート、ケナフ、農地残廃物、布、パルプ(針葉樹未漂白クラフトパルプ(NUKP)、針葉樹漂白クラフトパルプ(NBKP)、広葉樹未漂白クラフトパルプ(LUKP)、広葉樹漂白クラフトパルプ(LBKP)、針葉樹未漂白サルファイトパルプ(NUSP)、針葉樹漂白サルファイトパルプ(NBSP)サーモメカニカルパルプ(TMP)、再生パルプ、古紙等)、動物(例えばホヤ類)、藻類、微生物(例えば酢酸菌(アセトバクター))、微生物産生物等を起源とするものが知られており、本発明ではそのいずれも使用できる。好ましくは植物又は微生物由来のセルロース繊維であり、より好ましくは植物由来のセルロース繊維である。植物由来のセルロース繊維の中でも、パルプ(特に針葉樹未漂白クラフトパルプ(NUKP)、針葉樹漂白クラフトパルプ(NUKP))が特に好ましい。
 本発明において、ミクロフィブリル化植物繊維の繊維径は平均値が4nm~50μmであることが好ましく、4nm~10μmであることがより好ましく、4nm~1000nmであることがより一層好ましい。
 また、ミクロフィブリル化植物繊維は、繊維径に対する繊維長が非常に長い繊維であり、その繊維長を決定することは難しいが、好ましくは平均値が繊維径の5倍以上、より好ましくは10倍以上、より一層好ましくは20倍以上である。
 また、本発明において、ミクロフィブリル化植物繊維は、アルカリ溶液(例;水酸化ナトリウム、水酸化カリウム等のアルカリ水溶液、アンモニア水)で処理されたものであってもよい。また、ミクロフィブリル化植物繊維は、セルロース繊維含有材料を、必要に応じてリファイナー等によりアルカリ溶液処理を効率よく行える形状(例えば、粉体、繊維状、シート状等)とした後、アルカリ溶液処理し、この処理物をミクロフィブリル化植物繊維の製造に使用される公知の解繊又は微細化技術、一般的にはリファイナー、高圧ホモジナイザー、媒体撹拌ミル、石臼、グラインダー等により磨砕及び/又は叩解することによって得られるものであってもよい。
 本発明の組成物において、ミクロフィブリル化植物繊維の配合量は、組成物全体量中、通常1~90質量%程度、好ましくは5~80質量%程度である。
 (4)ポリオレフィン
 本発明の組成物において、主成分であるポリオレフィンは、公知のものを使用すればよい。ポリオレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン等の直鎖状αオレフィンや、3-メチル-1-ブテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン等の分岐状オレフィン、スチレン、ブタジエン、イソプレン、クロロプレン、イソブチレン、イソプレン等の単独重合体又は共重合体、ノルボルネン骨格を有する環状ポリオレフィン等が挙げられる。
 ポリオレフィンの重量平均分子量は、通常10万~40万程度、好ましくは20万~30万程度である。また、ポリオレフィンは1種単独で使用してもよいし、2種以上を混合して使用してもよい。ポリオレフィンは、従来公知の方法で合成してもよく、市販品を使用してもよい。
 本発明の組成物において、ポリオレフィンの配合量は、上記、(3)ミクロフィブリル化植物繊維100質量部に対して、通常2~98質量部程度、好ましくは5~95質量部程度である。
 また、本発明の組成物において、ポリオレフィンの配合量は、組成物全体量中、通常1~99質量%程度、好ましくは2~98質量%程度である。
 本発明の組成物には、(1)第1級アミノ基を有する高分子化合物、(2)無水マレイン酸で変性された高分子化合物、(3)ミクロフィブリル化植物繊維、及び(4)ポリオレフィンに加えて、必要に応じて他の成分を含んでいてもよい。他の成分としては、例えば、水;水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム等のアルカリ;クレー、タルク、炭酸カルシウム、マイカ、二酸化チタン、酸化亜鉛等の無機填料;カーボンブラック、グラファイト、ガラスフレーク等の有機填料、ベンガラ、アゾ顔料、フタロシアニン等の染料又は顔料;分散剤、滑剤、可塑剤、離型剤、難燃剤、酸化防止剤(フェノール系酸化防止剤、リン酸化防止剤、イオウ系酸化防止剤)、帯電防止剤、光安定剤、紫外線吸収剤、金属不活性剤、結晶化促進剤(造核剤)、発泡剤、架橋剤、抗菌剤等の改質用添加剤等の各種添加剤等が挙げられる。
 本発明においては、前記(1)第1級アミノ基を有するアミン系高分子化合物、及び前記(2)無水マレイン酸で変性された高分子化合物を併用して混合することにより、組成物中において、ミクロフィブリル化植物繊維とポリオレフィンとを均一に分散させることができる。また、各成分が均一に分散した組成物を加熱処理することにより、後述の通り、高強度、高弾性率のミクロフィブリル化植物繊維含有成形体を得ることができる。すなわち、本発明の組成物は、ミクロフィブリル化植物繊維含有樹脂の原料として有用である。
 2.本発明の組成物の製造方法
 本発明の組成物の製造方法は特に限定されず、前記(1)第1級アミノ基を有する高分子化合物、(2)無水マレイン酸で変性された高分子化合物、(3)ミクロフィブリル化植物繊維、(4)ポリオレフィン、及び必要に応じて他の成分を混合すればよい。(1)~(4)成分及び他の成分の混合順序は特に限定されない。
 また、前記(1)~(4)成分及び他の成分の混合方法は、特に限定されず、従来公知の方法を採用することができる。例えば、前記(1)~(4)成分及び他の成分を二軸押出機(二軸混練機)等で混練することによって、各成分を均一に分散させることができる。前記の通り、本発明においては、前記(1)第1級アミノ基を有するアミン系高分子化合物、及び前記(2)無水マレイン酸で変性された高分子化合物を併用して混合することにより、本発明の組成物に含まれる各成分を均一に分散させることができる。各成分の混合の際の温度も特に限定されず、通常0℃~300℃程度である。
 例えば、ミクロフィブリル化植物繊維の原料であるパルプ等を二軸押出機等で解繊して、これに前記(1)、(2)、(4)及び必要に応じて使用される水等の他の成分を加え、攪拌すれば本発明の組成物が得られる。また、パルプ等をリファイナー、二軸押出機等で解繊してミクロフィブリル化植物繊維を得る際に、成分(1)、(2)、(4)、必要に応じて使用される他の成分も一緒に混合し、セルロース繊維含有材料の解繊によるミクロフィブリル化植物繊維の製造と各成分の攪拌とを同時に行ってもよい。
 3.成形体
 本発明の成形体は、後述の通り、本発明の前記組成物を加熱処理することによって得られる。
 加熱処理する際の温度は、通常、上記組成物に含まれる(4)ポリオレフィンの融点以上の温度とすることが好ましい。
 上記の通り、本発明においては、前記(1)1級アミノ基を有するアミン系高分子化合物、及び前記(2)無水マレイン酸で変性された高分子化合物を併用して混合することにより、組成物中において、ミクロフィブリル化植物繊維とポリオレフィンとを均一に分散させることができる。また、ミクロフィブリル化植物繊維間の結合強度、親水性の高いミクロフィブリル化植物繊維と疎水性の高いポリオレフィン間の界面接着強度の両方を向上させることができる。本発明においては、これら各成分が均一に分散した組成物を加熱処理することにより、高強度、高弾性率のポリオレフィン系成形体を得ることができる。
 また、本発明の成形体においては、前記(1)成分中の第1級アミノ基は、前記(2)成分中の無水マレイン酸部位及び(3)ミクロフィブリル化植物繊維表面に僅かに存在するカルボキシル基と、加熱により一部又は全部が反応し結合していると考えられる。これらの結合が、樹脂材料の強度、弾性率の向上に貢献していると考えられる。
 よって、既存のガラス繊維強化ポリオレフィンのガラス繊維をミクロフィブリル化植物繊維に代替することで、軽量化、高強度化、肉薄化、廃棄時の焼却灰の低減等が期待できる。
 本発明の成形体の引張り強度は、20~65質量%のミクロフィブリル化植物繊維を成形体に含有する場合、通常58MPa以上である。また、本発明の成形体の引張り弾性率は、通常3.5GPa以上である。
 なお、本発明の前記組成物に上記加熱処理によって蒸発する成分がほとんど含まれていなければ、加熱処理の前の組成物と加熱処理後の成形体に含まれる各成分の量は実質的に同じである。即ち、本発明の成形体中の各成分の量は、前記組成物における各成分の配合量の記載と同じである。
 本発明において、引張り強度は、JIS K-7113(プラスチックの引張り試験方法)に基づき2号形試験片(ダンベル型 厚さ1mm)を用いて測定した値である。また、引張り強度は万能材料試験機インストロン3365型(インストロンジャパンカンパニイリミテッド製を用いて測定した値である。
 4.成形体の製造方法
 本発明の成形体は、本発明の前記組成物を加熱処理することによって得られる。本発明の組成物を加熱処理(加熱、溶融、混練等の処理)する際の温度は、通常100~300℃程度、好ましくは110~250℃程度、特に好ましくは120~220℃程度である。加熱処理により得られた成形体は、従来公知の樹脂成形体により目的とする形状に成形することができる。
 例えば、前記組成物を加熱、溶融、混練し、ペレタイザー等によりペレット化した後、得られたペレットを射出成形、金型成形等に供することにより、目的の形状に成形できる。
 成形方法としては、通常の熱可塑性樹脂組成物の成形方法と同様な方法をいずれも適用することができ、例えば、射出成形、金型成形の他、押出成形、中空成形、発泡成形等を採用することができる。
 本発明の成形体は、従来使用されているガラス繊維強化材料等に比して軽く、かつ高い強度を有しているので、例えば、パソコン、携帯電話等の家電製品の筐体(ハウジング)に用いることができる。また、文具等の事務機器、家具等の生活用品、スポーツ用品、自動車のダッシュボード等の内装、飛行機の荷物入れ、輸送用機器の構造部材、住宅におけるサッシ等の建材等にも使用することができる。更に、絶縁性に優れるので、電気・電子・通信機器への応用が期待できる。
 以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
 <実施例1>
 アリルアミン単位を有する化合物としてアリルアミン塩酸塩重合体(PAA,日東紡(株)製:商品名「PAA-HCl-10L」)を水で希釈して5重量%とした後、水酸化ナトリウムにて希釈液のpHを10に調整した。次いで、針葉樹未漂白クラフトパルプ(NUKP,王子製紙(株)製:濃度:25%)に上記水溶液、ポリプロピレン(PP,日本ポリプロ(株)製:商品名「MA4AHB」)、マレイン酸変性ポリプロピレン(MAPP,東洋化成工業(株)製:商品名「トーヨータックH1000P」,マレイン酸含有量:4質量%、メルトフローレート100(190℃、2.16kg))を添加してミキサーにて10分間攪拌した(各々の成分の固形分比(質量比)は次の通りである。NUKP:PP:MAPP:PAA=30:63:3:4)。
 得られた混合物を2軸押出機(テクノベル製:スクリュー直径:15mm)に投入し、NUKPの解繊とNUKP、PP、MAPP、PAAの混合を同時に行った。回転数は400/分、解繊速度は400g/時、バレル温度は5~60℃であった。
 得られたミクロフィブリル化されたNUKPとPP、MAPP、PAAの混合物を上記のテクノベル製二軸押出機、(スクリュー直径:15mm)で溶融・混練(回転数200/分、処理速度200g/時、温度160-180℃である)した後、ペレタイザー(テクノベル製)を用いてペレット化した。更に得られたペレットを射出成型機(NPX7-1F、日精樹脂(株)製)に投入しダンベル型の成型物を得た。成形温度は200℃とした。得られた成型物の引張り強度及び引張り弾性率を表1に示す。引張り強度及び引張り弾性率の測定方法は前記の通りである。
 <実施例2~11及び比較例1~6>
 実施例1と同様にして、表1に記載の第1級アミノ基を有する高分子化合物(成分(1))、無水マレイン酸で変性された高分子化合物(成分(2))、ミクロフィブリル化植物繊維(成分(3))及びポリプロピレン(成分(4))から、ダンベル型の成型物を得た。各成分の質量比は、実施例1と同一である。得られた成型物の引張り強度及び引張り弾性率を表1及び表2に示す。
 <実施例12>
 成分(1):成分(2):成分(3):成分(4)の質量比率を20:75.3:2.7:2とした以外は実施例9と同様にしてダンベル型の成型物を得た。得られた成型物の引張り強度及び引張り弾性率を表2に示す。
Figure JPOXMLDOC01-appb-T000010
 なお、表1中、PAAは一般式(A)で表わされる繰り返し単位を持つポリマー、T-ND104,106,107(星光PMC(株)製)は一般式(B)で表わされる繰り返し単位を持つポリマーで、それぞれのカチオン量(代表値)は、それぞれ23mol%、94mol%及び23mol%である。P-1000、SP-012は、日本触媒(株)製の一般式(C)で表わされる単位を持つポリエチレンイミン(商標「エポミン」)、PAS-21CLはポリジアリルアミン塩酸塩(日東紡績(株)製)、HE-3040は住友精化(株)製の高密度ポリエチレン(商標「フロービーズ」)である。表2中も同じである。
 表1中の分類は、上記一般式(A)~(C)で表される繰り返し単位を有する化合物に対応する。下記表2においても同様である。 
Figure JPOXMLDOC01-appb-T000011
 表2中、KBE-903は3-アミノプロピルトリエトキシシラン(信越シリコーン(株)製)である。
 第1級アミノ基を有する化合物を配合しなかった比較例1及び比較例3においては、実施例1~12に比して、特に引張り強度が低くかった。また、比較例4のように、第1級アミノ基を有する低分子化合物であるAPSを配合した場合、引張り強度及び引張り弾性率のいずれの点でも劣っていた。また、比較例2のように、第2級アミノ基を有するカチオンポリマーとして知られるPAS-21CLを使用した場合にも、引張り強度の点で劣る結果となった。さらに、第1級アミノ基を有する高分子化合物及びMAPPのいずれも配合しなかった比較例3及び5は、引張り強度及び引張り弾性率のいずれの点でも劣っていた。

Claims (9)

  1. (1)第1級アミノ基を有する高分子化合物、
    (2)無水マレイン酸で変性された高分子化合物、
    (3)ミクロフィブリル化植物繊維、及び
    (4)ポリオレフィン
    を含む組成物。
  2. 前記無水マレイン酸で変性された高分子化合物が、無水マレイン酸変性ポリオレフィンである請求項1に記載の組成物。
  3. 前記無水マレイン酸変性ポリオレフィンが無水マレイン酸変性ポリプロピレンであり、前記ポリオレフィンがポリプロピレンである請求項1又は2に記載の組成物。
  4. 前記第1級アミノ基を有する高分子化合物が、下記一般式(A)
    Figure JPOXMLDOC01-appb-C000001
    で表される繰り返し単位を有する化合物、
    下記一般式(B)
    Figure JPOXMLDOC01-appb-C000002
    で表される繰り返し単位を有する化合物、
    下記一般式(C)
    Figure JPOXMLDOC01-appb-C000003
    で表される繰り返し単位を有するポリエチレンイミン化合物、及びこれらの塩からなる群から選ばれる少なくとも1種である請求項1~3のいずれかに記載の組成物。
  5. 請求項1~4のいずれかに記載の組成物を100~300℃で加熱処理してなる成形体。
  6. ミクロフィブリル化植物繊維を固形分中20~65質量%含有し、JIS K-7113に規定される試験方法(プラスチックの引張り試験方法)に準拠して測定された引張り強度が58MPa以上
    である請求項5に記載の成形体。
  7. (1)第1級アミノ基を有する高分子化合物、
    (2)無水マレイン酸で変性された高分子化合物、
    (3)ミクロフィブリル化植物繊維、及び
    (4)ポリオレフィン
    を混練する工程を含む請求項1~4のいずれかに記載の組成物の製造方法。
  8. セルロース繊維を解繊する工程、
    前記工程によって得られる(3)ミクロフィブリル化植物繊維に、(1)第1級アミノ基を有する高分子化合物、(2)無水マレイン酸で変性された高分子化合物、及び(4)ポリオレフィンを加え、攪拌する工程
    を含む請求項1~4のいずれかに記載の組成物の製造方法。
  9. 請求項7又は8の製造方法によって得られる組成物を100~300℃で加熱処理する工程を含む成形体の製造方法。
PCT/JP2010/068565 2009-10-23 2010-10-21 ミクロフィブリル化植物繊維を含む組成物 WO2011049162A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20100825011 EP2492305B1 (en) 2009-10-23 2010-10-21 Composition containing microfibrillated plant fibers
US13/502,581 US9056969B2 (en) 2009-10-23 2010-10-21 Composition containing microfibrillated plant fibers
CA2778560A CA2778560C (en) 2009-10-23 2010-10-21 Composition containing microfibrillated plant fibers
JP2011537299A JP5717643B2 (ja) 2009-10-23 2010-10-21 ミクロフィブリル化植物繊維を含む組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-244804 2009-10-23
JP2009244804 2009-10-23

Publications (1)

Publication Number Publication Date
WO2011049162A1 true WO2011049162A1 (ja) 2011-04-28

Family

ID=43900385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068565 WO2011049162A1 (ja) 2009-10-23 2010-10-21 ミクロフィブリル化植物繊維を含む組成物

Country Status (5)

Country Link
US (1) US9056969B2 (ja)
EP (1) EP2492305B1 (ja)
JP (1) JP5717643B2 (ja)
CA (1) CA2778560C (ja)
WO (1) WO2011049162A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236906A (ja) * 2011-05-11 2012-12-06 Nissan Motor Co Ltd 樹脂組成物
US20130197131A1 (en) * 2012-01-30 2013-08-01 Sumitomo Rubber Industries, Ltd. Rubber composition for tire, method of producing the same, and pneumatic tire
US20130303657A1 (en) * 2012-05-09 2013-11-14 Sumitomo Rubber Industries, Ltd. Rubber composition and pneumatic tire
WO2014087767A1 (ja) * 2012-12-05 2014-06-12 日本製紙株式会社 複合材料及びそれを用いた成形体
EP2747978A1 (de) * 2011-08-25 2014-07-02 Johnson Controls GmbH Spritzgiessteil, compound und fertigungsverfahren
WO2014133019A1 (ja) * 2013-02-26 2014-09-04 王子ホールディングス株式会社 セルロース及び分散剤を含む組成物
US9068060B2 (en) 2013-01-10 2015-06-30 Sumitomo Rubber Industries, Ltd. Composite and method for producing the same, rubber composition, and pneumatic tire
JP2015124306A (ja) * 2013-12-26 2015-07-06 東ソー株式会社 樹脂組成物、微生物固定化担体及び浄化方法
US9181355B2 (en) 2010-06-10 2015-11-10 Sumitomo Rubber Industries, Ltd. Modified natural rubber, method for producing same, rubber composition, and pneumatic tire
US9217075B2 (en) 2012-01-24 2015-12-22 Sumitomo Rubber Industries, Ltd. Rubber composition for tire, and pneumatic tire
WO2016063914A1 (ja) * 2014-10-21 2016-04-28 古河電気工業株式会社 ポリオレフィン樹脂組成物、成形品および車両用外板
JP2016089077A (ja) * 2014-11-07 2016-05-23 星光Pmc株式会社 樹脂強化用セルロース繊維の製造方法、樹脂強化用セルロース繊維、樹脂組成物及び樹脂成形体
JP2016098314A (ja) * 2014-11-21 2016-05-30 セイコーエプソン株式会社 セルロース系材料、造形物製造用組成物セット、造形物、ダイアライザー、透析装置、透析方法および造形物の製造方法
US9410033B2 (en) 2011-11-11 2016-08-09 Sumitomo Rubber Industries, Ltd. Rubber composition for undertread, and pneumatic tire
WO2017159778A1 (ja) * 2016-03-18 2017-09-21 国立大学法人京都大学 アシル化修飾ミクロフィブリル化植物繊維を含有するマスターバッチ
KR20170129182A (ko) 2015-03-19 2017-11-24 고쿠리츠 다이가쿠 호진 교토 다이가쿠 화학적으로 개질된 셀룰로오스 나노섬유 및 열가소성 수지를 포함하는 섬유 강화 수지 조성물
JP2018527447A (ja) * 2015-09-17 2018-09-20 エイピーアイ インテレクチュアル プロパティー ホールディングス,リミテッド ライアビリティー カンパニーAPI Intellectual Property Holdings,LLC ポリマー−ナノセルロース複合材料用の相溶化剤
JP2018532815A (ja) * 2015-06-30 2018-11-08 エッセンチウム・マテリアルズ,エルエルシー セルロースナノ材料を有し、合成的に改質された熱可塑性ポリマー複合材料
JPWO2017169494A1 (ja) * 2016-03-30 2019-02-14 出光ライオンコンポジット株式会社 難燃性熱可塑性樹脂組成物
US10336890B2 (en) 2014-03-17 2019-07-02 Sumitomo Rubber Industries, Ltd. Rubber composition for studless winter tires, and studless winter tire
WO2023074691A1 (ja) * 2021-10-25 2023-05-04 国立大学法人京都大学 樹脂組成物、それを用いた成形体、及び樹脂組成物の製造方法
US11655358B2 (en) 2021-03-31 2023-05-23 Toyoda Gosei Co., Ltd. Cellulose fiber-reinforced polyolefin resin composition and resin molded product

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2308907B1 (en) * 2008-07-31 2014-01-01 Kyoto University Molding material containing unsaturated polyester resin and microfibrillated plant fiber
JP5496435B2 (ja) * 2012-03-09 2014-05-21 国立大学法人京都大学 変性ミクロフィブリル化植物繊維を含む樹脂組成物の製造方法、及びその樹脂組成物
CN108884328A (zh) 2016-03-31 2018-11-23 古河电气工业株式会社 热塑性树脂组合物、热塑性树脂组合物的制造方法、纤维素增强树脂成型品和纤维素增强树脂成型品的制造方法
CN108779310A (zh) 2016-03-31 2018-11-09 古河电气工业株式会社 热塑性树脂组合物、热塑性树脂组合物的制造方法、纤维素增强树脂成型品和纤维素增强树脂成型品的制造方法
EP3730555A1 (en) 2016-03-31 2020-10-28 Furukawa Electric Co., Ltd. Thermoplastic resin composition, cellulose-reinforced thermoplastic resin composition, method of producing cellulose-reinforced thermoplastic resin composition, molded article of cellulose-reinforced resin, and method of producing molded article of cellulose-reinforced resin
US10053567B2 (en) 2016-08-04 2018-08-21 Ford Global Technologies, Llc Recycled polypropylene compositions and vehicular components
EP3689972A4 (en) 2017-09-29 2021-07-07 Furukawa Electric Co., Ltd. MOLDED ARTICLE
EP3689974A4 (en) * 2017-09-29 2021-07-07 Furukawa Electric Co., Ltd. MOLDED ARTICLE
WO2019066071A1 (ja) 2017-09-29 2019-04-04 古河電気工業株式会社 成形品
EP3705520A4 (en) 2017-10-31 2021-07-21 Furukawa Electric Co., Ltd. MOLDED ARTICLE
CN111234383B (zh) * 2020-03-21 2023-02-24 贵州省材料技术创新基地 一种抗菌植物纤维增强复合材料及其制备方法和用途

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873545A (ja) * 1994-09-08 1996-03-19 Mazda Motor Corp 高分子複合体およびその製造方法
JP2003261703A (ja) * 2002-03-08 2003-09-19 Toppan Printing Co Ltd 木質樹脂発泡成形体及び化粧材
JP2005042283A (ja) 2003-07-08 2005-02-17 Kansai Tlo Kk 脂肪族ポリエステル組成物の製造方法とそれに用いるパルプ及びセルロース系繊維並びにそのミクロフィブリル化方法
JP2005187524A (ja) * 2003-12-24 2005-07-14 Idemitsu Kosan Co Ltd ポリオレフィン組成物及びその成形品
JP2006016418A (ja) * 2004-06-30 2006-01-19 Idemitsu Kosan Co Ltd ポリオレフィン組成物及びその成形品
US20080146701A1 (en) 2003-10-22 2008-06-19 Sain Mohini M Manufacturing process of cellulose nanofibers from renewable feed stocks
JP2008169344A (ja) * 2007-01-15 2008-07-24 Toray Ind Inc 熱可塑性樹脂組成物
JP2008260887A (ja) * 2007-04-13 2008-10-30 Yokohama Rubber Co Ltd:The 熱可塑性エラストマーおよび熱可塑性エラストマー組成物
JP2008274247A (ja) * 2007-03-30 2008-11-13 National Institute Of Advanced Industrial & Technology 微細繊維状セルロース系物質及びその製造方法
JP2009019200A (ja) 2007-06-11 2009-01-29 Kyoto Univ リグニン含有ミクロフィブリル化植物繊維及びその製造方法
JP2009516032A (ja) 2005-11-18 2009-04-16 モヒーニ エム セイン 高性能リグノセルロース繊維複合材料の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001054884A1 (en) * 2000-01-26 2001-08-02 Sekisui Chemical Co., Ltd. Molded article from thermoplastic composite material and method for producing the same
US20060258810A1 (en) 2003-07-31 2006-11-16 Mitsubishi Rayon Co., Ltd Carbon fiber bundle process for producing the same and thermoplastic resin composition and molded article thereof
US20090297819A1 (en) 2004-05-24 2009-12-03 Prime Polymer Co., Ltd Fiber-reinforced resin composition and molded article thereof
JP2006187524A (ja) * 2005-01-07 2006-07-20 Dairitsu:Kk ダンパー開閉装置
US20120142532A1 (en) * 2009-08-10 2012-06-07 Monsanto Technology Llc Low volatility auxin herbicide formulations

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873545A (ja) * 1994-09-08 1996-03-19 Mazda Motor Corp 高分子複合体およびその製造方法
JP2003261703A (ja) * 2002-03-08 2003-09-19 Toppan Printing Co Ltd 木質樹脂発泡成形体及び化粧材
JP2005042283A (ja) 2003-07-08 2005-02-17 Kansai Tlo Kk 脂肪族ポリエステル組成物の製造方法とそれに用いるパルプ及びセルロース系繊維並びにそのミクロフィブリル化方法
US20080146701A1 (en) 2003-10-22 2008-06-19 Sain Mohini M Manufacturing process of cellulose nanofibers from renewable feed stocks
JP2005187524A (ja) * 2003-12-24 2005-07-14 Idemitsu Kosan Co Ltd ポリオレフィン組成物及びその成形品
JP2006016418A (ja) * 2004-06-30 2006-01-19 Idemitsu Kosan Co Ltd ポリオレフィン組成物及びその成形品
JP2009516032A (ja) 2005-11-18 2009-04-16 モヒーニ エム セイン 高性能リグノセルロース繊維複合材料の製造方法
JP2008169344A (ja) * 2007-01-15 2008-07-24 Toray Ind Inc 熱可塑性樹脂組成物
JP2008274247A (ja) * 2007-03-30 2008-11-13 National Institute Of Advanced Industrial & Technology 微細繊維状セルロース系物質及びその製造方法
JP2008260887A (ja) * 2007-04-13 2008-10-30 Yokohama Rubber Co Ltd:The 熱可塑性エラストマーおよび熱可塑性エラストマー組成物
JP2009019200A (ja) 2007-06-11 2009-01-29 Kyoto Univ リグニン含有ミクロフィブリル化植物繊維及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2492305A4

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181355B2 (en) 2010-06-10 2015-11-10 Sumitomo Rubber Industries, Ltd. Modified natural rubber, method for producing same, rubber composition, and pneumatic tire
JP2012236906A (ja) * 2011-05-11 2012-12-06 Nissan Motor Co Ltd 樹脂組成物
EP2747978A1 (de) * 2011-08-25 2014-07-02 Johnson Controls GmbH Spritzgiessteil, compound und fertigungsverfahren
US9410033B2 (en) 2011-11-11 2016-08-09 Sumitomo Rubber Industries, Ltd. Rubber composition for undertread, and pneumatic tire
US9217075B2 (en) 2012-01-24 2015-12-22 Sumitomo Rubber Industries, Ltd. Rubber composition for tire, and pneumatic tire
US20130197131A1 (en) * 2012-01-30 2013-08-01 Sumitomo Rubber Industries, Ltd. Rubber composition for tire, method of producing the same, and pneumatic tire
US20130303657A1 (en) * 2012-05-09 2013-11-14 Sumitomo Rubber Industries, Ltd. Rubber composition and pneumatic tire
WO2014087767A1 (ja) * 2012-12-05 2014-06-12 日本製紙株式会社 複合材料及びそれを用いた成形体
JPWO2014087767A1 (ja) * 2012-12-05 2017-01-05 日本製紙株式会社 複合材料及びそれを用いた成形体
US9068060B2 (en) 2013-01-10 2015-06-30 Sumitomo Rubber Industries, Ltd. Composite and method for producing the same, rubber composition, and pneumatic tire
JP2014162880A (ja) * 2013-02-26 2014-09-08 Kyoto Univ セルロース及び分散剤を含む組成物
WO2014133019A1 (ja) * 2013-02-26 2014-09-04 王子ホールディングス株式会社 セルロース及び分散剤を含む組成物
JP2015124306A (ja) * 2013-12-26 2015-07-06 東ソー株式会社 樹脂組成物、微生物固定化担体及び浄化方法
US10336890B2 (en) 2014-03-17 2019-07-02 Sumitomo Rubber Industries, Ltd. Rubber composition for studless winter tires, and studless winter tire
US11485841B2 (en) 2014-10-21 2022-11-01 Furukawa Electric Co., Ltd. Polyolefin resin composition, molded article, and outer panel for a vehicle
WO2016063914A1 (ja) * 2014-10-21 2016-04-28 古河電気工業株式会社 ポリオレフィン樹脂組成物、成形品および車両用外板
JP2016089077A (ja) * 2014-11-07 2016-05-23 星光Pmc株式会社 樹脂強化用セルロース繊維の製造方法、樹脂強化用セルロース繊維、樹脂組成物及び樹脂成形体
JP2016098314A (ja) * 2014-11-21 2016-05-30 セイコーエプソン株式会社 セルロース系材料、造形物製造用組成物セット、造形物、ダイアライザー、透析装置、透析方法および造形物の製造方法
US10676615B2 (en) 2015-03-19 2020-06-09 Kyoto University Fiber-reinforced resin composition comprising chemically modified cellulose nanofibers and thermoplastic resin
KR20170129182A (ko) 2015-03-19 2017-11-24 고쿠리츠 다이가쿠 호진 교토 다이가쿠 화학적으로 개질된 셀룰로오스 나노섬유 및 열가소성 수지를 포함하는 섬유 강화 수지 조성물
JP2018532815A (ja) * 2015-06-30 2018-11-08 エッセンチウム・マテリアルズ,エルエルシー セルロースナノ材料を有し、合成的に改質された熱可塑性ポリマー複合材料
JP2018527447A (ja) * 2015-09-17 2018-09-20 エイピーアイ インテレクチュアル プロパティー ホールディングス,リミテッド ライアビリティー カンパニーAPI Intellectual Property Holdings,LLC ポリマー−ナノセルロース複合材料用の相溶化剤
JP2017171713A (ja) * 2016-03-18 2017-09-28 国立大学法人京都大学 アシル化修飾ミクロフィブリル化植物繊維を含有するマスターバッチ
US10858485B2 (en) 2016-03-18 2020-12-08 Kyoto University Master batch containing acylation-modified microfibrillated plant fibers
WO2017159778A1 (ja) * 2016-03-18 2017-09-21 国立大学法人京都大学 アシル化修飾ミクロフィブリル化植物繊維を含有するマスターバッチ
JPWO2017169494A1 (ja) * 2016-03-30 2019-02-14 出光ライオンコンポジット株式会社 難燃性熱可塑性樹脂組成物
JP7139242B2 (ja) 2016-03-30 2022-09-20 出光ファインコンポジット株式会社 難燃性熱可塑性樹脂組成物
US11655358B2 (en) 2021-03-31 2023-05-23 Toyoda Gosei Co., Ltd. Cellulose fiber-reinforced polyolefin resin composition and resin molded product
WO2023074691A1 (ja) * 2021-10-25 2023-05-04 国立大学法人京都大学 樹脂組成物、それを用いた成形体、及び樹脂組成物の製造方法

Also Published As

Publication number Publication date
EP2492305A4 (en) 2013-03-13
EP2492305B1 (en) 2014-12-10
US20120214911A1 (en) 2012-08-23
CA2778560C (en) 2015-02-03
CA2778560A1 (en) 2011-04-28
JP5717643B2 (ja) 2015-05-13
EP2492305A1 (en) 2012-08-29
JPWO2011049162A1 (ja) 2013-03-14
US9056969B2 (en) 2015-06-16

Similar Documents

Publication Publication Date Title
JP5717643B2 (ja) ミクロフィブリル化植物繊維を含む組成物
JP6275651B2 (ja) 複合材料及びそれを用いた成形体
JP7305718B2 (ja) 木材パルプを含むセルロース複合材料および同セルロース複合材料を製造するプロセス
US11655310B2 (en) Fine cellulose fiber, production method thereof, slurry, and composite
JP6012206B2 (ja) 変性セルロースナノファイバー及び変性セルロースナノファイバーを含む樹脂組成物
Ichazo et al. Polypropylene/wood flour composites: treatments and properties
JP6681157B2 (ja) 熱可塑性樹脂組成物及び熱可塑性樹脂組成物の製造方法
JP5433949B2 (ja) セルロース繊維含有ポリオレフィン系樹脂組成物
GB2090849A (en) A composite resin composition
KR101889744B1 (ko) 리그닌-셀룰로오스-올레핀계 복합소재 조성물
JP7349264B2 (ja) セルロース複合樹脂及びその製造方法
JP2013107987A (ja) セルロース複合熱可塑性樹脂及びその成形体
EP3613805B1 (en) Cellulose composite resin and method for the production thereof
JP2004197068A (ja) 充填材含有ポリオレフィン樹脂組成物、ペレット及びその成形品
US20090326082A1 (en) Compositions and Methods for Producing Articles from Recycled Materials
JP2002302578A (ja) 有機繊維フィラー含有ポリプロピレン樹脂組成物およびそれを用いた成形品
EP3161042B1 (en) Reinforced thermoplastic polymer composition
WO2022270167A1 (ja) 抗菌性及び抗ウイルス性複合樹脂成形体
JP6982122B2 (ja) 熱可塑性樹脂組成物の製造方法
US20230126138A1 (en) Fibrous cellulose-containing material, fibrous cellulose composite resin, and method for preparing fibrous cellulose-containing material
JP2001119791A (ja) スピーカーフレーム及びその製造方法
JP7269259B2 (ja) 樹脂成形体及び樹脂組成物
KR20240040282A (ko) 섬유 망상 구조를 포함하는 열가소성 수지 조성물 및 그 제조방법
JP2023112982A (ja) ポリオレフィン樹脂組成物、およびその成形体
Immonen et al. A novel method for improving cellulose functionality towards plasticization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10825011

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011537299

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13502581

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2778560

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010825011

Country of ref document: EP