WO2014078486A1 - Sustained-release dosage forms of ruxolitinib - Google Patents

Sustained-release dosage forms of ruxolitinib Download PDF

Info

Publication number
WO2014078486A1
WO2014078486A1 PCT/US2013/070012 US2013070012W WO2014078486A1 WO 2014078486 A1 WO2014078486 A1 WO 2014078486A1 US 2013070012 W US2013070012 W US 2013070012W WO 2014078486 A1 WO2014078486 A1 WO 2014078486A1
Authority
WO
WIPO (PCT)
Prior art keywords
dosage form
sustained
ruxolitinib
mean
release dosage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2013/070012
Other languages
English (en)
French (fr)
Inventor
Yong Ni
Bhavnish Parikh
Krishnaswamy Yeleswaram
Susan Erickson-Viitanen
William V. Williams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Incyte Corp
Original Assignee
Incyte Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49681181&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014078486(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP13798840.8A priority Critical patent/EP2919766B1/en
Priority to IL291391A priority patent/IL291391B/en
Priority to PL13798840T priority patent/PL2919766T3/pl
Priority to BR112015010663-3A priority patent/BR112015010663B1/pt
Priority to EP21174620.1A priority patent/EP3949953A1/en
Priority to IL317061A priority patent/IL317061A/en
Priority to KR1020157015681A priority patent/KR102242077B1/ko
Priority to UAA201505798A priority patent/UA120834C2/uk
Priority to MX2020012676A priority patent/MX2020012676A/es
Priority to LTEP13798840.8T priority patent/LT2919766T/lt
Priority to AU2013344780A priority patent/AU2013344780B2/en
Priority to MYPI2015001254A priority patent/MY191357A/en
Priority to EA201590930A priority patent/EA201590930A1/ru
Priority to IL297429A priority patent/IL297429A/en
Priority to ES13798840T priority patent/ES2880814T3/es
Priority to DK13798840.8T priority patent/DK2919766T3/da
Priority to HRP20211158TT priority patent/HRP20211158T1/hr
Priority to MX2015005947A priority patent/MX380147B/es
Priority to SI201331922T priority patent/SI2919766T1/sl
Priority to CR20190073A priority patent/CR20190073A/es
Priority to HK16101836.8A priority patent/HK1213796B/en
Priority to NZ708157A priority patent/NZ708157A/en
Application filed by Incyte Corp filed Critical Incyte Corp
Priority to SG11201503695XA priority patent/SG11201503695XA/en
Priority to PE2019001988A priority patent/PE20200175A1/es
Priority to KR1020217009090A priority patent/KR20210037012A/ko
Priority to PH1/2020/551186A priority patent/PH12020551186B1/en
Priority to RS20210982A priority patent/RS62329B1/sr
Priority to KR1020227040652A priority patent/KR20220162825A/ko
Priority to CA2890755A priority patent/CA2890755C/en
Priority to CN201380070296.8A priority patent/CN105007901A/zh
Priority to JP2015542764A priority patent/JP2015537030A/ja
Priority to SM20210436T priority patent/SMT202100436T1/it
Publication of WO2014078486A1 publication Critical patent/WO2014078486A1/en
Priority to IL238765A priority patent/IL238765B/en
Priority to PH12015501089A priority patent/PH12015501089A1/en
Anticipated expiration legal-status Critical
Priority to CR20150265A priority patent/CR20150265A/es
Priority to AU2018203899A priority patent/AU2018203899B2/en
Priority to PH12019501070A priority patent/PH12019501070A1/en
Priority to AU2020201011A priority patent/AU2020201011B2/en
Priority to CY20211100742T priority patent/CY1124446T1/el
Priority to AU2022201582A priority patent/AU2022201582A1/en
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/14Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/04Antipruritics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/14Decongestants or antiallergics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/12Drugs for disorders of the metabolism for electrolyte homeostasis
    • A61P3/14Drugs for disorders of the metabolism for electrolyte homeostasis for calcium homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to sustained-release formulations and dosage forms of ruxolitinib, or a pharmaceutically acceptable salt thereof, which are useful in the treatment of Janus kinase-associated diseases such as myeloproliferative disorders.
  • Ruxolitinib ((3 R)-3 -cyclopentyl-3 - [4-(7H-pyrrolo [2,3 -d]pyrimidin-4-yl)pyrazol- 1 - yl]propanenitrile) is the first FDA approved Janus kinase (JAK) inhibitor and is the only drug currently approved for treatment of myelofibrosis.
  • the compound has been shown in the clinic to effectively reduce spleen volume and improve total symptom scores in patients suffering from myelofibrosis. See, e.g., Verstovsek, S., et al.
  • ruxolitinib is a BCS Class I molecule with rapid oral absorption and a short half-life of about 3 hours. See, Shi et al, J. Clin. Pharmacol. 2012 Jun;52(6):809-18. Epub 2011 May 20. These properties result in a high peak/trough plasma concentration ratio in human subjects leading to multiple daily doses for optimal treatment, and potentially contributing to problems with patient compliance and unwanted side effects.
  • Ruxolitinib therapy is often associated with the adverse events of thrombocytopenia
  • Thrombocytopenia is dose-dependent and considered the dose-limiting toxic effect.
  • the present invention is directed to a sustained-release dosage form comprising at least one active ingredient which is ruxolitinib, or a pharmaceutically acceptable salt thereof, wherein the ruxolitinib, or pharmaceutically acceptable salt thereof, is present in the dosage form in an amount of about 10 to about 60 mg on a free base basis.
  • the present invention is further directed to a method of treating a disease associated with JAK activity in a patient in need thereof, comprising administering the sustained-release dosage form of the invention to said patient.
  • Figure 1 shows a graph comparing plasma concentrations of ruxolitinib after administration of a single dose of either 25 mg immediate-release or 25 mg sustained-release formulation in fasted, healthy human subjects.
  • Figure 2 shows a graph comparing spleen volume responders in the COMFORT -I immediate-release formulation study and the sustained-release study.
  • Figure 3 shows a graph comparing total symptom scores in the COMFORT -I immediate-release formulation study and the sustained-release study.
  • Figure 4 shows a graph comparing ruxolitinib steady state plasma concentrations in MF patients dosed with 25 mg immediate-release or 25 mg sustained-release formulations.
  • the present invention provides, inter alia, an oral, sustained-release dosage form comprising ruxolitinib, or a pharmaceutically acceptable salt thereof, as an active ingredient.
  • the dosage form can contain ruxolitinib, or a pharmaceutically acceptable salt thereof, in an amount of about 10 to about 60 mg, about 10 to about 40 mg, about 20 to about 40 mg, or about 20 to about 30 mg on a free base basis.
  • the dosage form contains about 10 mg, about 12.5 mg, about 20 mg, about 25 mg, about 30 mg, about 37.5 mg, about 40 mg, about 50 mg, or about 60 mg on a free base basis.
  • the dosage form contains about 25 mg of ruxolitinib on a free base basis.
  • the phrase "on a free base basis" indicates that the amount of ruxolitinib or salt thereof in the dosage form is measured based on the molecular weight of ruxolitinib free base only, even when the actual active ingredient is a salt of ruxolitinib having a different molecular weight than the free base.
  • the conversion factor for ruxolitinib phosphate salt to free base is 0.7575.
  • the active ingredient is a pharmaceutically acceptable salt of ruxolitinib, such as the maleic acid salt, sulfuric acid salt, or phosphoric acid salt.
  • the active ingredient is ruxolitinib phosphate (i.e., phosphoric acid salt of ruxolitinib).
  • the dosage form of the invention comprises a sustained-release formulation of ruxolitinib, or a pharmaceutically acceptable salt thereof.
  • sustained-release is used as generally understood in the art and refers to a formulation designed to slowly release the active ingredient into a patient after oral administration and to maintain an essentially steady, therapeutically effective plasma level of active ingredient over a relatively long period of time, such as about 8 to about 24 hours or longer.
  • the dosage forms of the invention include a sustained-release matrix former.
  • Example sustained-release matrix formers include cellulosic ethers such as hydroxypropyl methylcellulose (HPMC, hypromellose) which is a high viscosity polymer.
  • the sustained- release dosage forms of the invention can include, for example, about 10 to about 30%, about 15 to about 25%, or about 18 to about 24 % by weight of hydroxypropyl methylcellulose(s). In some embodiments, the formulation has about 20 % by weight of one or more
  • hydroxypropyl methylcelluloses In further embodiments, the formulation has about 22 % by weight of one or more hydroxypropyl methyl celluloses.
  • Example hydroxypropyl methylcelluloses include Methocel K15M, Methocel K4M, and Methocel K100LV.
  • the sustained-release dosage forms of the invention can further include one or more fillers, glidants, disintegrants, binders, or lubricants as inactive ingredients. Fillers can be present in the formulations in an amount of 0 to about 85 % by weight. In some
  • the formulation has about 50 to about 80%, about 55 to about 75%, or about 60 to about 70% by weight of filler.
  • fillers include lactose monohydrate, microcrystalline cellulose, starch 1500, and lactose anhydrous, or combinations thereof.
  • the filler comprises microcrystalline cellulose, lactose monohydrate, or both.
  • Lubricants can be present in the dosage forms of the invention in an amount of 0 to about 5% by weight.
  • Non-limiting examples of lubricants include magnesium stearate, stearic acid (stearin), hydrogenated oil, polyethylene glycol, sodium stearyl fumarate, and glyceryl behenate.
  • the formulations include magnesium stearate, stearic acid, or both.
  • Glidants can be present in the dosage forms of the invention in an amount of 0 to about 5% by weight.
  • Non-limiting examples of glidants include talc, colloidal silicon dioxide, and cornstarch.
  • the glidant is colloidal silicon dioxide.
  • Disintegrants can be present in the dosage forms of the invention in an amount of 0 to about 10% by weight.
  • Non-limiting examples of disintegrants include croscarmellose sodium, crospovidone, starch, cellulose, and low substituted hydroxypropyl cellulose. Croscarmellose sodium is a preferred disintegrant.
  • Film-coating agents can be present in an amount of 0 to about 5% by weight.
  • Non- limiting illustrative examples of film-coating agents include hypromellose or polyvinyl alcohol based coating with titanium dioxide, talc and optionally colorants available in several commercially available complete coating systems.
  • the dosage form of the invention includes a sustained-release formulation comprising about 12.2% ruxolitinib phosphate, about 20% hydroxypropyl methylcellulose, about 64.3% filler, about 2.5% lubricant, and about 1% glidant, all by weight.
  • the dosage form of the invention includes a sustained-release formulation comprising about 12.2% ruxolitinib phosphate, about 22% hydroxypropyl methylcellulose, about 62.3% filler, about 2.5% lubricant, and about 1% glidant, all by weight.
  • the dosage form of the invention includes a sustained-release formulation as set out below.
  • the dosage form of the invention includes a sustained-release formulation as set out below.
  • the dosage form of the invention includes a sustained-release formulation as set out below.
  • dosage form is meant to refer to a physically discrete unit of sustained-release formulation of the invention to be administered to a patient.
  • Example dosage forms include tablets, caplets, capsules, and the like, containing any of the sustained- release formulations described herein. Dosage forms can further include pharmaceutically acceptable coatings, pigments, or dyes.
  • the dosage forms of the invention contain a sustained-release formulation that results in the relatively slow release of ruxolitinib once administered, characterized by particular pharmacokinetic parameters different from those of an immediate-release formulation.
  • the sustained-release dosage forms of the invention can minimize potentially harmful spikes in drug plasma concentrations that are associated with immediate-release formulations, and can help provide continuous, steady, and therapeutically effective plasma levels of drug.
  • the dosage forms of the invention can be administered to a human patient as needed for therapeutic efficacy against the disease being treated, for example, once daily.
  • the dosage forms of the invention are administered to fasted patients.
  • fasted means, in reference to a human patient or subject, that the patient or subject has not ingested food or drink (except water) for at least 3 hours prior to dosing. In some embodiments, patients are fasted for at least 10 hours prior to dosing.
  • the dosage forms of the invention are administered to non- fasted human patients or subjects.
  • Bioavailability of ruxolitinib is high (e.g., about 70-80%) and no food effect has been observed in immediate-release dosage forms. Accordingly, it is believed that the pharmacokinetics of ruxolitinib administered as a sustained-release dosage form would not be significantly different in fasted and non-fasted patients.
  • administration of the sustained-release dosage form of the invention to a human results in a mean peak plasma concentration (C max ) of ruxolitinib of about 700 nM or less.
  • administration of the sustained-release dosage form of the invention to a human results in a mean peak plasma concentration (C max ) of ruxolitinib of about 600 nM or less.
  • administration of the sustained-release dosage form of the invention to a human results in a mean peak plasma concentration (C max ) of ruxolitinib of about 500 nM or less.
  • administration of the sustained-release dosage form of the invention to a human results in a mean peak plasma concentration (C max ) of ruxolitinib of about 400 nM or less.
  • administration of the sustained-release dosage form of the invention to a human results in a mean peak plasma concentration (C max ) of ruxolitinib of about 200 to about 700 nM.
  • administration of the sustained-release dosage form of the invention to a human results in a mean peak plasma concentration (C max ) of ruxolitinib of about 200 to about 600 nM.
  • administration of the sustained-release dosage form of the invention to a human results in a mean peak plasma concentration (C max ) of ruxolitinib of about 300 to about 500 nM. In some embodiments, administration of the sustained-release dosage form of the invention to a human results in a mean peak plasma concentration (C max ) of ruxolitinib of about 300 to about 400 nM.
  • administration of the sustained-release dosage form of the invention to a human results a mean time to peak plasma concentration (T max ) of ruxolitinib of about 1.5 hours or more.
  • administration of the sustained-release dosage form of the invention to a human results in a mean time to peak plasma concentration (T max ) of ruxolitinib of about 1.5 hours to about 5 hours.
  • administration of the sustained-release dosage form of the invention to a human results in a mean time to peak plasma concentration (T max ) of ruxolitinib of about 2 hours to about 4 hours.
  • administration of the sustained-release dosage form of the invention to a human results in a ratio of mean peak plasma concentration (C max ) to mean 12- hour plasma concentration (Cnh) of ruxolitinib of about 10 or less.
  • administration of the sustained-release dosage form of the invention to a human results in a ratio of mean peak plasma concentration (C max ) to mean 12- hour plasma concentration (Cnh) of ruxolitinib of about 6 or less.
  • administration of the sustained-release dosage form of the invention to a human results in a ratio of mean peak plasma concentration (C max ) to mean 12- hour plasma concentration (Ci 2 h) of ruxolitinib of about 5 or less.
  • administration of the sustained-release dosage form of the invention to a human results in a ratio of mean peak plasma concentration (C max ) to mean 12- hour plasma concentration (Cnh) of ruxolitinib of about 4 or less.
  • administration of the sustained-release dosage form of the invention to a human results in a ratio of mean peak plasma concentration (C max ) to mean 12- hour plasma concentration (Cnh) of ruxolitinib of about 1 to 10.
  • administration of the sustained-release dosage form of the invention to a human results in a ratio of mean peak plasma concentration (C max ) to mean 12- hour plasma concentration (Cnh) of ruxolitinib of about 2 to 7.
  • administration of the sustained-release dosage form of the invention to a human results in a mean half-life (t ⁇ ) of from about 3.5 hours to about 1 1 hours. In some embodiments, administration of the sustained-release dosage form of the invention to a human results in a mean half-life (t ⁇ ) of from about 4 hours to about 8 hours.
  • administration of a single dose of a sustained-release dosage form of the invention to a human results in mean bioavailability (AUCo- ⁇ ) of ruxolitinib of at least about 3000 nM*h.
  • administration of a single dose of a sustained-release dosage form of the invention to a human results in mean bioavailability (AUCo- ⁇ ) of ruxolitinib of at least about 3500 nM*h.
  • administration of a single dose of a sustained-release dosage form of the invention to a human results in mean bioavailability (AUCo- ⁇ ) of ruxolitinib of about 3000 to about 4000 nM*h.
  • administration of a single dose of a sustained-release dosage form of the invention to a human results in mean bioavailability (AUCo- ⁇ ) of ruxolitinib of about 3100 to about 3800 nM*h.
  • the sustained-release dosage form of the invention has a mean relative bioavailability based on AUC of from about 65 % to about 1 10 % or about 75% to about 95% relative to an immediate release formulation comprising the same amount of ruxolitinib, or a pharmaceutically acceptable salt thereof, in patients.
  • AUC can be, for example, AUCo- ⁇ (e.g., for a single dose) or AUCo-t where t is a specified time.
  • mean when preceding a pharmacokinetic value (e.g. mean C max ) represents the arithmetic mean value of the pharmacokinetic value taken from a population of patients unless otherwise specified.
  • C max means the maximum observed plasma concentration
  • Ci2h refers to the plasma concentration measured at 12 hours from administration.
  • T max refers to the time at which the maximum blood plasma concentration is observed.
  • Tm refers to the time at which the plasma concentration is half of the observed maximum.
  • AUC refers to the area under the plasma concentration-time curve which is a measure of total bioavailability.
  • AUCo- ⁇ refers to the area under the plasma concentration-time curve extrapolated to infinity.
  • AUCo-t refers to the area under the plasma concentration-time curve from time 0 to the last time point with a quantifiable plasma concentration, usually about 12- 36 hours.
  • AUCo- T refers to the area under the plasma concentration-time curve from time 0 to the time of the next dose.
  • sustained-release dosage forms of the invention have certain advantages over immediate-release dosage forms.
  • the maintenance of steady, therapeutically effective plasma levels of ruxolitinib afforded by the sustained-release dosage forms of the invention allows for reduced dosing, such as doing only once per day, as opposed to twice or more for immediate-release forms.
  • the reduced dosing can help with patient compliance in their treatment regimen.
  • administration of the sustained-release dosage form of the invention to a human results in a therapeutically effective plasma level of ruxolitinib for at least about 8 hours, at least about 10 hours, at least about 12 hours, at least about 18, or at least about 24 hours.
  • the sustained-release dosage form of the invention maintains a plasma level between about 75 and about 500 nM for at least about 8 hours, at least about 12 hours, or at least about 18 hours.
  • the sustained-release dosage form of the invention maintains a plasma level between about 100 and about 400 nM for at least about 6 hours or at least about 8 hours.
  • sustained-release dosage form e.g., containing 25 mg of ruxolitinib phosphate on a free base basis
  • an immediate-release dosing regimen e.g. 15 mg or 20 mg BID.
  • a sustained-release formulation of ruxolitinib could both maintain therapeutic efficacy and significantly reduce unwanted side effects related to thrombocytopenia or reduced hemoglobin levels.
  • Clinical data related to efficacy and side effects in myelofibrosis patients for both sustained-release and immediate-release dosing is compared in the Examples.
  • administration of the sustained-release dosage form of the invention to a human once daily for at least 16 weeks results in a mean decrease in mean base platelet count of no more than about 100 x 10 9 /L, no more than about 80 x 10 9 /L, no more than about 60 x 10 9 /L, or no more than about 40 x 10 9 /L.
  • administration of the sustained-release dosage form of the invention to a human once daily for at least 16 weeks results in a mean decrease in mean base platelet count of between about 0 x 10 9 /L and about 100 x 10 9 /L, between about 30 x 10 9 /L and about 80 x 10 9 /L, or between about 50 x 10 9 /L and about 70 x 10 9 /L.
  • administration of the sustained-release dosage form of the invention to a human once daily for at least 16 weeks results in a mean decrease in mean baseline hemoglobin (Hgb) of no more than about 15 g/L, no more than about 10 g/L, no more than about 8 g/L, or no more than about 6 g/L.
  • Hgb mean baseline hemoglobin
  • administration of the sustained-release dosage form of the invention to a human once daily for at least 16 weeks results in a mean decrease in mean baseline hemoglobin (Hgb) of about 0 to about 15 g/L, about 5 to about 15 g/L, about 2 to about 12 g/L, or about 5 to about 12 g/L.
  • Hgb mean baseline hemoglobin
  • the platelet counts and hemoglobin levels are measured in patients having received no blood transfusions during the treatment period.
  • Mean baseline platelet counts and mean baseline hemoglobin levels are typically measured prior to the start of treatment.
  • a JAK-associated disease can include any disease, disorder or condition that is directly or indirectly linked to expression or activity of the JAK, including overexpression and/or abnormal activity levels.
  • a JAK-associated disease can also include any disease, disorder or condition that can be prevented, ameliorated, or cured by modulating JAK activity.
  • JAK-associated diseases include diseases involving the immune system including, for example, organ transplant rejection (e.g., allograft rejection and graft versus host disease).
  • Further examples of JAK-associated diseases include autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, juvenile arthritis, psoriatic arthritis, type I diabetes, lupus, psoriasis, inflammatory bowel disease, ulcerative colitis, Crohn's disease, myasthenia gravis, immunoglobulin nephropathies, myocarditis, autoimmune thyroid disorders, chronic obstructive pulmonary disease (COPD), and the like.
  • the autoimmune disease is an autoimmune bullous skin disorder such as pemphigus vulgaris (PV) or bullous pemphigoid (BP).
  • JAK-associated diseases include allergic conditions such as asthma, food allergies, eszematous dermatitis, contact dermatitis, atopic dermatitis (atropic eczema), and rhinitis.
  • JAK-associated diseases include viral diseases such as Epstein Barr Virus (EBV), Hepatitis B, Hepatitis C, HIV, HTLV 1, Varicella-Zoster Virus (VZV) and Human Papilloma Virus (HPV).
  • EBV Epstein Barr Virus
  • Hepatitis B Hepatitis C
  • HIV HTLV 1
  • VZV Varicella-Zoster Virus
  • HPV Human Papilloma Virus
  • JAK-associated disease examples include diseases associated with cartilage turnover, for example, gouty arthritis, septic or infectious arthritis, reactive arthritis, reflex sympathetic dystrophy, algodystrophy, Tietze syndrome, costal athropathy, osteoarthritis deformans endemica, Mseleni disease, Handigodu disease, degeneration resulting from fibromyalgia, systemic lupus erythematosus, scleroderma, or ankylosing spondylitis.
  • diseases associated with cartilage turnover for example, gouty arthritis, septic or infectious arthritis, reactive arthritis, reflex sympathetic dystrophy, algodystrophy, Tietze syndrome, costal athropathy, osteoarthritis deformans endemica, Mseleni disease, Handigodu disease, degeneration resulting from fibromyalgia, systemic lupus erythematosus, scleroderma, or ankylosing spondylitis.
  • JAK-associated disease examples include congenital cartilage
  • malformations including hereditary chrondrolysis, chrondrodysplasias, and
  • pseudochrondrodysplasias e.g., microtia, enotia, and metaphyseal chrondrodysplasia.
  • JAK-associated diseases or conditions include skin disorders such as psoriasis (for example, psoriasis vulgaris), atopic dermatitis, skin rash, skin irritation, skin sensitization (e.g., contact dermatitis or allergic contact dermatitis).
  • skin disorders such as psoriasis (for example, psoriasis vulgaris), atopic dermatitis, skin rash, skin irritation, skin sensitization (e.g., contact dermatitis or allergic contact dermatitis).
  • certain substances including some pharmaceuticals when topically applied can cause skin sensitization.
  • co-administration or sequential administration of at least one JAK inhibitor of the invention together with the agent causing unwanted sensitization can be helpful in treating such unwanted sensitization or dermatitis.
  • the skin disorder is treated by topical administration of at least one JAK inhibitor of the invention.
  • the JAK-associated disease is cancer including those characterized by solid tumors (e.g., prostate cancer, renal cancer, hepatic cancer, pancreatic cancer, gastric cancer, breast cancer, lung cancer, cancers of the head and neck, thyroid cancer, glioblastoma, Kaposi's sarcoma, Castleman's disease, uterine leiomyosarcoma, melanoma etc.), hematological cancers (e.g., lymphoma, leukemia such as acute lymphoblastic leukemia (ALL), acute myelogenous leukemia (AML) or multiple myeloma), and skin cancer such as cutaneous T-cell lymphoma (CTCL) and cutaneous B-cell lymphoma.
  • CTCLs include Sezary syndrome and mycosis fungoides.
  • the JAK inhibitors described herein, or in combination with other JAK inhibitors, such as those reported in U.S. Ser. No. 1 1/637,545, which is incorporated herein by reference in its entirety, can be used to treat inflammation-associated cancers.
  • the cancer is associated with inflammatory bowel disease.
  • the inflammatory bowel disease is ulcerative colitis.
  • the inflammatory bowel disease is Crohn's disease.
  • the inflammation-associated cancer is colitis-associated cancer.
  • the inflammation-associated cancer is colon cancer or colorectal cancer.
  • the cancer is gastric cancer, gastrointestinal carcinoid tumor, gastrointestinal stromal tumor (GIST), adenocarcinoma, small intestine cancer, or rectal cancer.
  • JAK-associated diseases can further include those characterized by expression of: JAK2 mutants such as those having at least one mutation in the pseudo-kinase domain (e.g., JAK2V617F); JAK2 mutants having at least one mutation outside of the pseudo-kinase domain; JAK1 mutants; JAK3 mutants; erythropoietin receptor (EPOR) mutants; or deregulated expression of CRLF2.
  • JAK2 mutants such as those having at least one mutation in the pseudo-kinase domain (e.g., JAK2V617F); JAK2 mutants having at least one mutation outside of the pseudo-kinase domain; JAK1 mutants; JAK3 mutants; erythropoietin receptor (EPOR) mutants; or deregulated expression of CRLF2.
  • JAK-associated diseases can further include myeloproliferative disorders (MPDs) such as polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis
  • MPDs myeloproliferative disorders
  • PV polycythemia vera
  • ET essential thrombocythemia
  • the myeloproliferative disorder is myelofibrosis (e.g., primary myelofibrosis (PMF) or post polycythemia vera/essential thrombocythemia myelofibrosis (Post-PV/ET MF)). In some embodiments, the myeloproliferative disorder is post-essential thrombocythemia myelofibrosis (Post-ET MF). In some embodiments, the
  • myeloproliferative disorder is post polycythemia vera myelofibrosis (Post-PV MF).
  • the present invention further provides methods of treating psoriasis or other skin disorders by administration of a topical formulation containing a compound of the invention.
  • sustained-release formulation and dosage forms described herein can be used to treat pulmonary arterial hypertension.
  • the sustained-release formulation and dosage forms described herein can be used to treat mast cell activation syndrome.
  • the present invention further provides a method of treating dermatological side effects of other pharmaceuticals by administration of the sustained-release dosage form of the invention.
  • numerous pharmaceutical agents result in unwanted allergic reactions which can manifest as acneiform rash or related dermatitis.
  • compositions that have such undesirable side effects include anti-cancer drugs such as gefitinib, cetuximab, erlotinib, and the like.
  • anti-cancer drugs such as gefitinib, cetuximab, erlotinib, and the like.
  • the dosage form of the invention can be administered in combination with (e.g., simultaneously or sequentially) the pharmaceutical agent having the undesirable dermatological side effect.
  • JAK-associated diseases include inflammation and inflammatory diseases.
  • Example inflammatory diseases include sarcoidosis, inflammatory diseases of the eye (e.g., crizis, uveitis, scleritis, conjunctivitis, or related disease), inflammatory diseases of the respiratory tract (e.g., the upper respiratory tract including the nose and sinuses such as rhinitis or sinusitis or the lower respiratory tract including bronchitis, chronic obstructive pulmonary disease, and the like), inflammatory myopathy such as myocarditis, and other inflammatory diseases.
  • the inflammation disease of the eye is blepharitis.
  • the sustained-release dosage forms herein can further be used to treat ischemia reperfusion injuries or a disease or condition related to an inflammatory ischemic event such as stroke or cardiac arrest.
  • the sustained-release dosage forms described herein can further be used to treat endotoxin-driven disease state (e.g., complications after bypass surgery or chronic endotoxin states contributing to chronic cardiac failure).
  • the sustained-release dosage forms described herein can further be used to treat anorexia, cachexia, or fatigue such as that resulting from or associated with cancer.
  • the sustained-release dosage forms described herein can further be used to treat restenosis, sclerodermitis, or fibrosis.
  • the sustained-release dosage forms described herein can further be used to treat conditions associated with hypoxia or astrogliosis such as, for example, diabetic retinopathy, cancer, or neurodegeneration. See, e.g., Dudley, A.C. et al. Biochem. J. 2005, 390(Pt 2):427-36 and Sriram, K. et al. J. Biol. Chem. 2004, 279(19): 19936-47. Epub 2004 Mar 2, both of which are incorporated herein by reference in their entirety.
  • the sustained-release dosage forms described herein can be used to treat Alzheimer's disease.
  • the sustained-release dosage forms described herein can further be used to treat other inflammatory diseases such as systemic inflammatory response syndrome (SIRS) and septic shock.
  • SIRS systemic inflammatory response syndrome
  • the sustained-release dosage forms described herein can further be used to treat gout and increased prostate size due to, e.g., benign prostatic hypertrophy or benign prostatic hyperplasia.
  • JAK-associated diseases include bone resorption diseases such as
  • Bone resorption can also be associated with other conditions such as hormonal imbalance and/or hormonal therapy, autoimmune disease (e.g. osseous sarcoidosis), or cancer (e.g. myeloma).
  • autoimmune disease e.g. osseous sarcoidosis
  • cancer e.g. myeloma
  • the reduction of the bone resorption due to the JAK inhibitors can be about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, or about 90%.
  • sustained-release dosage forms described herein can further be used to treat a dry eye disorder.
  • dry eye disorder is intended to encompass the disease states summarized in a recent official report of the Dry Eye Workshop (DEWS), which defined dry eye as "a multifactorial disease of the tears and ocular surface that results in symptoms of discomfort, visual disturbance, and tear film instability with potential damage to the ocular surface. It is accompanied by increased osmolarity of the tear film and inflammation of the ocular surface.”
  • DEWS Dry Eye Workshop
  • the dry eye disorder is selected from aqueous tear-deficient dry eye (ADDE) or evaporative dry eye disorder, or appropriate combinations thereof.
  • the dry eye disorder is Sjogren syndrome dry eye (SSDE).
  • the dry eye disorder is non-Sjogren syndrome dry eye (NSSDE).
  • the present invention provides a method of treating conjunctivitis, uveitis (including chronic uveitis), chorioditis, retinitis, cyclitis, sclieritis, episcleritis, or ulceris; treating inflammation or pain related to corneal transplant, LASIK (laser assisted in situ keratomileusis), photorefractive keratectomy, or LASEK (laser assisted sub-epithelial keratomileusis); inhibiting loss of visual acuity related to corneal transplant, LASIK, photorefractive keratectomy, or LASEK; or inhibiting transplant rejection in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of the compound of the invention, or a pharmaceutically acceptable salt thereof.
  • sustained-release dosage forms of the invention can be used to treat respiratory dysfunction or failure associated with viral infection, such as influenza and SARS.
  • the term "individual,” “subject,” or “patient,” refers to a human, who can be fasted or un-fasted when the dosage form of the invention is administered.
  • pharmaceutically acceptable refers to those compounds, materials, compositions and/or dosage forms, which are, within the scope of sound medical judgment, suitable for contact humans without excessive toxicity, irritation, allergic response and other problem complications commensurate with a reasonable benefit/risk ratio.
  • the term "treating" or “treatment” refers to one or more of (1) preventing the disease; for example, preventing a disease, condition or disorder in an individual who may be predisposed to the disease, condition or disorder but does not yet experience or display the pathology or symptomatology of the disease; (2) inhibiting the disease; for example, inhibiting a disease, condition or disorder in an individual who is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder (i.e., arresting further development of the pathology and/or symptomatology); and (3) ameliorating the disease; for example, ameliorating a disease, condition or disorder in an individual who is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder (i.e., reversing the pathology and/or symptomatology) such as decreasing the severity of disease.
  • preventing the disease for example, preventing a disease, condition or disorder in an individual who may be predisposed to the disease, condition or disorder but does not yet experience or display the pathology or symptomatology of
  • One or more additional pharmaceutical agents such as, for example,
  • chemotherapeutics anti-inflammatory agents, steroids, immunosuppressants, as well as Bcr- Abl, Flt-3, RAF and FAK kinase inhibitors such as, for example, those described in WO 2006/056399, which is incorporated herein by reference in its entirety, or other agents can be used in combination with the sustained-release dosage forms described herein for treatment of JAK-associated diseases, disorders or conditions.
  • additional agents such as, for example, those described in WO 2006/056399, which is incorporated herein by reference in its entirety, or other agents can be used in combination with the sustained-release dosage forms described herein for treatment of JAK-associated diseases, disorders or conditions.
  • additional agents such as, for example, those described in WO 2006/056399, which is incorporated herein by reference in its entirety, or other agents can be used in combination with the sustained-release dosage forms described herein for treatment of JAK-associated diseases, disorders or conditions.
  • pharmaceutical agents can be administered to a patient simultaneously or sequentially.
  • Example chemotherapeutics include proteosome inhibitors (e.g., bortezomib), thalidomide, revlimid, and DNA-damaging agents such as melphalan, doxorubicin, cyclophosphamide, vincristine, etoposide, carmustine, and the like.
  • proteosome inhibitors e.g., bortezomib
  • thalidomide thalidomide
  • revlimid thalidomide
  • DNA-damaging agents such as melphalan, doxorubicin, cyclophosphamide, vincristine, etoposide, carmustine, and the like.
  • Example steroids include coriticosteroids such as dexamethasone or prednisone.
  • Example Bcr-Abl inhibitors include the compounds, and pharmaceutically acceptable salts thereof, of the genera and species disclosed in U.S. Pat. No. 5,521, 184, WO 04/005281, and U.S. Ser. No. 60/578,491, all of which are incorporated herein by reference in their entirety.
  • Example suitable Flt-3 inhibitors include compounds, and their pharmaceutically acceptable salts, as disclosed in WO 03/037347, WO 03/099771, and WO 04/046120, all of which are incorporated herein by reference in their entirety.
  • Example suitable RAF inhibitors include compounds, and their pharmaceutically acceptable salts, as disclosed in WO 00/09495 and WO 05/028444, both of which are incorporated herein by reference in their entirety.
  • Example suitable FAK inhibitors include compounds, and their pharmaceutically acceptable salts, as disclosed in WO 04/080980, WO 04/056786, WO 03/024967, WO 01/064655, WO 00/053595, and WO 01/014402, all of which are incorporated herein by reference in their entirety.
  • one or more of the compounds of the invention can be used in combination with one or more other kinase inhibitors including imatinib, particularly for treating patients resistant to imatinib or other kinase inhibitors.
  • one or more JAK inhibitors of the invention can be used in combination with a chemotherapeutic in the treatment of cancer, such as multiple myeloma, and may improve the treatment response as compared to the response to the chemotherapeutic in the treatment of cancer, such as multiple myeloma, and may improve the treatment response as compared to the response to the chemotherapeutic in the treatment of cancer, such as multiple myeloma, and may improve the treatment response as compared to the response to the
  • chemotherapeutic agent alone, without exacerbation of its toxic effects.
  • additional pharmaceutical agents used in the treatment of multiple myeloma can include, without limitation, melphalan, melphalan plus prednisone [MP], doxorubicin, dexamethasone, and Velcade (bortezomib).
  • Further additional agents used in the treatment of multiple myeloma include Bcr-Abl, Flt-3, RAF and FAK kinase inhibitors. Additive or synergistic effects are desirable outcomes of combining a JAK inhibitor of the present invention with an additional agent.
  • agents such as dexamethasone may be reversible upon treatment with a JAK inhibitor of the present invention.
  • the agents can be combined with the present compounds in a single or continuous dosage form, or the agents can be administered simultaneously or sequentially as separate dosage forms.
  • a corticosteroid such as dexamethasone is administered to a patient in combination with at least one JAK inhibitor where the dexamethasone is administered intermittently as opposed to continuously.
  • combinations of sustained-release dosage forms with other therapeutic agents can be administered to a patient prior to, during, and/or after a bone marrow transplant or stem cell transplant.
  • the additional therapeutic agent is fluocinolone acetonide (Retisert®), or rimexolone (AL-2178, Vexol, Alcon).
  • the additional therapeutic agent is cyclosporine (Restasis®). In some embodiments, the additional therapeutic agent is a corticosteroid. In some embodiments, the corticosteroid is triamcinolone, dexamethasone, fluocinolone, cortisone, prednisolone, or flumetholone.
  • the additional therapeutic agent is selected from DehydrexTM (Holies Labs), Civamide (Opko), sodium hyaluronate (Vismed, Lantibio/TRB Chemedia), cyclosporine (ST-603, Sirion Therapeutics), ARG101(T) (testosterone, Argentis),
  • AGR1012(P) (Argentis), ecabet sodium (Senju-Ista), gefarnate (Santen), 15-(s)- hydroxyeicosatetraenoic acid (15(S)-HETE), cevilemine, doxycycline (ALTY-0501, Alacrity), minocycline, iDestrinTM (NP50301, Nascent Pharmaceuticals), cyclosporine A (Nova22007, Novagali), oxytetracycline (Duramycin, MOLI1901, Lantibio), CF101
  • dehydroepiandrosterone anakinra, efalizumab, mycophenolate sodium, etanercept (Embrel®), hydroxychloroquine, NGX267 (TorreyPines Therapeutics), actemra, gemcitabine, oxaliplatin, L-asparaginase, or thalidomide.
  • the additional therapeutic agent is an anti-angiogenic agent, cholinergic agonist, TRP-1 receptor modulator, a calcium channel blocker, a mucin secretagogue, MUC 1 stimulant, a calcineurin inhibitor, a corticosteroid, a P2Y2 receptor agonist, a muscarinic receptor agonist, an mTOR inhibitor, another JAK inhibitor, Bcr-Abl kinase inhibitor, Flt-3 kinase inhibitor, RAF kinase inhibitor, and FAK kinase inhibitor such as, for example, those described in WO 2006/056399, which is incorporated herein by reference in its entirety.
  • the additional therapeutic agent is a tetracycline derivative (e.g., minocycline or doxycline). In some embodiments, the additional therapeutic agent binds to FKBP 12. In some embodiments, the additional therapeutic agent is an alkylating agent or DNA cross-linking agent; an anti-metabolite/demethylating agent (e.g., 5-flurouracil, capecitabine or azacitidine); an anti-hormone therapy (e.g., hormone receptor antagonists, SERMs, or aromotase inhibitor); a mitotic inhibitor (e.g. vincristine or paclitaxel); an topoisomerase (I or II) inhibitor (e.g.
  • an anti-metabolite/demethylating agent e.g., 5-flurouracil, capecitabine or azacitidine
  • an anti-hormone therapy e.g., hormone receptor antagonists, SERMs, or aromotase inhibitor
  • a mitotic inhibitor e.g. vincri
  • mitoxantrone and irinotecan an apoptotic inducers (e.g. ABT-737); a nucleic acid therapy (e.g. antisense or R Ai); nuclear receptor ligands (e.g., agonists and/or antagonists: all-trans retinoic acid or bexarotene); epigenetic targeting agents such as histone deacetylase inhibitors (e.g. vorinostat), hypomethylating agents (e.g. decitabine); regulators of protein stability such as Hsp90 inhibitors, ubiquitin and/or ubiquitin like conjugating or deconjugating molecules; or an EGFR inhibitor (erlotinib).
  • apoptotic inducers e.g. ABT-737
  • a nucleic acid therapy e.g. antisense or R Ai
  • nuclear receptor ligands e.g., agonists and/or antagonists: all-trans retinoic acid or bexaroten
  • the additional therapeutic agent(s) are demulcent eye drops (also known as "artificial tears"), which include, but are not limited to, compositions containing polyvinylalcohol, hydroxypropyl methylcellulose, glycerin, polyethylene glycol (e.g. PEG400), or carboxymethyl cellulose. Artificial tears can help in the treatment of dry eye by compensating for reduced moistening and lubricating capacity of the tear film.
  • the additional therapeutic agent is a mucolytic drug, such as N-acetyl- cysteine, which can interact with the mucoproteins and, therefore, to decrease the viscosity of the tear film.
  • the additional therapeutic agent includes an antibiotic, antiviral, antifungal, anesthetic, anti-inflammatory agents including steroidal and nonsteroidal anti-inflammatories, and anti-allergic agents.
  • suitable medicaments include aminoglycosides such as amikacin, gentamycin, tobramycin, streptomycin, netilmycin, and kanamycin; fluoroquinolones such as ciprofloxacin, norfloxacin, ofloxacin, trovafloxacin, lomefloxacin, levofloxacin, and enoxacin; naphthyridine; sulfonamides;
  • polymyxin polymyxin; chloramphenicol; neomycin; paramomycin; colistimethate; bacitracin;
  • vancomycin vancomycin; tetracyclines; rifampin and its derivatives ("rifampins"); cycloserine; beta- lactams; cephalosporins; amphotericins; fluconazole; flucytosine; natamycin; miconazole; ketoconazole; corticosteroids; diclofenac; flurbiprofen; ketorolac; suprofen; cromolyn;
  • lodoxamide lodoxamide; levocabastin; naphazoline; antazoline; pheniramine; or azalide antibiotic.
  • a 25 mg sustained-release formulation of ruxolitinib phosphate was prepared according to the following protocol.
  • the formulation components are provided in Table 1 a. Percentages are by weight.
  • conversion factor for phosphate salt to free base is 0.7575.
  • Step 1 Add microcrystalline cellulose, ruxolitinib phosphate, lactose monohydrate, and hypromelloses to a suitable blender and mix.
  • Step 2 Transfer the mix from Step 1 to a suitable granulator and mix.
  • Step 3 Add purified water while mixing.
  • Step 4 Screen the wet granules from Step 3.
  • Step 5 Transfer the granules from Step 4 into a suitable dryer and dry until LOD is no more than 3%.
  • Step 6 Screen the granules from Step 5.
  • Step 7 Mix colloidal silicon dioxide with granules in Step 6 in a suitable blender.
  • Step 8 Mix stearic acid and magnesium stearate with the blend in Step 7 and continue blending.
  • Step 9 Compress the final blend in Step 8 on a suitable rotary tablet press.
  • Formulation SR-1 An alternate 25 mg sustained-release formulation of ruxolitinib phosphate has been prepared as described below. The formulation components are provided in Table lb.
  • conversion factor for phosphate salt to free base is 0.7575.
  • Step 1 Add microcrystalline cellulose, ruxolitinib phosphate, lactose monohydrate, and hypromelloses to a suitable blender and mix.
  • Step 2 Transfer the mix from Step 1 to a suitable granulator and mix.
  • Step 3 Add purified water while mixing.
  • Step 4 Screen the wet granules from Step 3.
  • Step 5 Transfer the granules from Step 4 into a suitable dryer and dry until LOD is no more than 3%.
  • Step 6 Screen the granules from Step 5.
  • Step 7 Mix colloidal silicon dioxide with granules in Step 6 in a suitable blender.
  • Step 8 Mix stearic acid and magnesium stearate with the blend in Step 7 and continue blending.
  • Step 9 Compress the final blend in Step 8 on a suitable rotary tablet press.
  • Immediate-release dosage forms of ruxolitinib phosphate can be obtained commercially in 5, 10, 15, 20, and 25 mg doses as the drug product Jakafi® (ruxolitinib phosphate (tablets)) (NDA no. N202192).
  • the commercially available dosage forms are the same as used in the Phase 3 COMFORT- 1 and COMFORT-II studies.
  • This study was performed to evaluate pharmacokinetic performance of two ruxolitinib phosphate sustained release (SR) formulations compared to the ruxolitinib phosphate immediate release (IR) tablets.
  • the study was conducted as a 3-period study in which each subject received the IR tablets, the SR-1 tablets and the SR-2 tablets, all in fasted state. All treatments were administered as a single dose in one tablet.
  • Nine healthy subjects enrolled in this study received IR tablets in Period 1, and 8 subjects continued on the study were randomized into 2 sequences to receive SR-1 and SR-2 tablets in Period 2 and Period 3.
  • Blood samples for determination of plasma concentrations of ruxolitinib were collected at 0, 0.25, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12, 16, 24 and 36 hours post-dose using lavender top (K2EDTA) Vacutainer® tubes. No samples were collected for determination of urine concentrations of ruxolitinib.
  • Plasma and urine samples were shipped to Incyte Corporation for determination of ruxolitinib concentrations.
  • the plasma samples were assayed by validated, GLP,
  • Standard non-compartmental pharmacokinetic methods were used to analyze the ruxolitinib plasma concentration data using Phoenix WinNonlin version 6.0 (Pharsight Corporation, Mountain View, CA). Thus, C max and T max were taken directly from the observed plasma concentration data.
  • the absorption lag time (Ti ag ) was defined as the sampling time immediately preceding that corresponding to the first measurable (non-zero) concentration.
  • the terminal-phase disposition rate constant ( ⁇ ⁇ ) was estimated using a log- linear regression of the concentration data in the terminal disposition phase, and ti/2 was estimated as 1 ⁇ (2)/ ⁇ ⁇ .
  • AUCo-t was estimated using the linear trapezoidal rule for increasing concentrations and the log-trapezoidal rule for decreasing concentrations, and the total AUCo- oo was calculated as AUCo-t + C t / -
  • the oral-dose clearance (Cl/F) was estimated as
  • the log-transformed pharmacokinetic parameters were compared among the treatments using a 2 -factor ANOVA with the fixed factor for treatment and random factor for subject.
  • the relative bioavailability of the fasted administration of the SR formulations (test treatments) compared to fasted administration of the IR tablets (reference treatment) were estimated using the geometric mean relative bioavailability and 90% confidence intervals for Cmax, AUCo-t and AUCo- ⁇ , which were calculated from the adjusted means (least square means) from the ANOVA. All statistical analyses were performed using SAS version 9.1 (SAS Institute, Inc., Cary, NC).
  • SR-2 sustained-release formulation
  • All patients were treated with 25 mg once daily doses for 8 weeks. After 8 weeks, depending upon the clinical response, the investigator was allowed to (a) maintain the same dose of SR-2, (b) increase the dose to 50 mg once daily, (c) increase the dose to alternating doses of 25 mg and 50 mg, dosed once daily, or (d) switch to treatment with the immediate release formulation.
  • Part 1 evaluated two dose levels of 25 mg bid and 50 mg bid
  • Part 2 studied five dose regimens of 10 mg bid, 25 mg bid, 25 mg qd, 50 mg qd and 100 mg qd
  • Part 3 assessed six dose regimens of 10 mg bid, 15 mg bid, 25 mg bid, 50 mg qd, 100 mg qd and 200 mg qd.
  • pharmacokinetic samples were collected at pre-dose and 0.5, 1, 1.5, 2, 4, 6 and 9 hours post-dose on Day 15 of Cycle 1 and at pre-dose on Day 1 of Cycles 2 and 3.
  • the pharmacokinetic samples were collected at pre-dose and 2 hours after administration of the morning dose of ruxolitinib on Day 15 of Cycle 1 and Day 1 of Cycles 2 and 3.
  • Plasma concentration data from Cycle 1 for subjects in Part 1 and 2 were used for non-compartmental analysis while all plasma concentration data were used for population PK analysis.
  • Table 4b The study was comprised of 3 parts: Part 1-dose escalation and expansion cohort, bid dosing, Part 2- alternative dosing schedules (A, B and C), and Part 3 -three independent patient groups (Group I, II and III). Schedules A, B and C in Part 2 were once daily (qd) dosing regimens, low dose regimen of 10 mg bid and induction/maintenance regimen, respectively. Part 3 was studied in three separate groups of patients to further evaluate the safety and efficacy of selected starting dose levels and to explore dose modification on an individual patient basis as appropriate. Dose hold and withdrawal for safety were defined in terms of platelet count and absolute neutrophil count (ANC) while provision for dose increase was provided based on inadequate efficacy defined by change in spleen size.
  • ANC absolute neutrophil count
  • Ruxolitinib phosphate tablets (5 and 25 mg) were administered as oral doses with water in an outpatient setting. Doses ranged from 10 mg bid to 50 mg bid, and from 25 mg qd to
  • pharmacokinetic samples were collected at pre-dose and 0.5, 1, 1.5, 2, 4, 6 and 9 hours post-dose on Day 15 of Cycle 1 and at pre-dose on Day 1 of Cycles 2 and 3.
  • the pharmacokinetic samples were collected at pre-dose and 2 hours after administration of the morning dose on Day 15 of Cycle 1 and Day 1 of Cycles 2 and 3.
  • Plasma samples were shipped to Incyte Corporation and assayed by a validated, GLP, LC/MS/MS method with a linear range of 1 to 1000 nM and a limit of quantification of 1 nM.
  • C max and T max were taken directly from the observed plasma concentration data.
  • the terminal-phase disposition rate constant ( ⁇ ⁇ ) was estimated using a log-linear regression of the concentration data in the terminal disposition phase, and ti /2 was estimated as 1 ⁇ (2)/ ⁇ ⁇ .
  • AUCo- t was estimated using the linear-trapezoidal rule for increasing concentrations and the log-trapezoidal rule for decreasing concentrations, and the total AUCo- ⁇ was calculated as AUCo-t + C Z .
  • the oral-dose clearance (Cl/F) was estimated as Dose/ AUCo- ⁇
  • the terminal-phase volume of distribution (V z /F) was estimated as Dose/[ AUCo- ⁇ * ⁇ ⁇ ].
  • ⁇ ⁇ was estimated using a log-linear regression of the concentration data in the terminal disposition phase, and ti/2 was estimated as ln(2)/ ⁇ ⁇ .
  • the AUC over one dosing interval (AUCo-i2h for ql2h administration, or AUCo-24h for q24h administration) was estimated using the linear trapezoidal rule for increasing concentrations and the log-trapezoidal rule for decreasing concentrations.
  • the Cl/F was estimated as Dose/AUC
  • V z /F was estimated as Dose/[AUC* ⁇ ⁇ ].
  • the Cmin and AUCo-t (Area under the steady-state plasma concentration-time curve from time zero to the time of the last sample obtained) were calculated for the multiple-dose data.
  • the PK parameters of ruxolitinib were summarized for each dose group using descriptive statistics, and the log-transformed ruxolitinib PK parameters were compared among the dose groups using a 1-factor analysis of variance.
  • ruxolitinib The pharmacokinetics of ruxolitinib in MF patients was similar to that in healthy volunteers.
  • Enlarged spleen is a common and prominent symptom of myelofibrosis. Reduction in spleen volume serves as a measure for assessing the effectiveness of a given treatment.
  • Table 5a reports the mean reduction in spleen volume in MF patients enrolled in the sustained- release study (See Example 3) at 16 weeks of treatment, while Table 5b reports the mean reduction in spleen volume in MF patients enrolled in the COMFORT-I study (immediate release, see Comparative Example A) at 24 weeks of treatment.
  • both the sustained-release and immediate release treatment regimens were effective in reducing spleen volume.
  • Effectiveness of a treatment regimen in an MF patient can also be assessed by Total Symptom Score.
  • symptoms of MF were assessed using a symptom diary (modified MFSAF v2.0 diary) where subjects recorded answers to queries regarding MF symptoms on a handheld device. Symptoms assessed included filling up quickly/early satiety, abdominal discomfort, abdominal pain, inactivity, night sweats, itching, and bone/muscle pain.
  • Table 5c reports the Total Symptom Score results in the sustained-release study (see Example 3) while Table 5d reports the Total Symptom Score results in the COMFORT-I study (immediate-release, see Comparative Example A) at 24 weeks.
  • both the SR and IR regimens were effective at treating MF in patients.
  • Adverse events are graded according to CTCAE criteria which can be found online at ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm or evs.nci.nih.gov/ftpl/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf.
  • a Grade 3 adverse event generally corresponds to a reaction that is severe or medically significant, but not immediately life-threatening where hospitalization or prolongation of hospitalization is indicated and where the reaction is disabling to the extent of limiting self care. Higher Grades are 4 (life-threatening requiring urgent intervention) and 5 (death). For anemia, Grade 3 corresponds to Hgb ⁇ 8.0 g/dL; ⁇ 4.9 mmol/L; ⁇ 80 g/L, where a transfusion is indicated. For thrombocytopenia (decreased platelet count), Grade 3 corresponds to ⁇ 50,000- 25,000/mm 3 ; ⁇ 50.0-25.0xl0 9 /L. The sustained-release data was evaluated for patients over the course of 16 weeks. Mean duration of exposure to ruxolitinib in the COMFORT-I was approximately 242 days. Typically, the majority of hematologic adverse events occur within the first few months of therapy as observed in the COMFORT-I study.
  • Tables 6b and 6c report the number and percentage of patients in the studies exhibiting certain reactions including anemia and thrombocytopenia.
  • the sustained-release data was evaluated for patients over the course of 16 weeks. Mean duration of exposure to ruxolitinib in the COMFORT-I study was approximately 242 days. The vast majority of hematologic adverse events occur within the first few months of therapy as observed in the COMFORT-I study. As can be seen from the data in the tables, the number and percentage of patients exhibiting blood-related adverse events is lower in the sustained-release study. Additionally, the severity of the adverse events is lesser in the sustained-release study.
  • myelofibrosis patients In this double-blind trial, patients with intermediate-2 or high risk myelofibrosis were randomly assigned to twice-daily oral, immediate-release (see Example 1) ruxolitinib (155 patients) or placebo (154 patients).
  • the starting dose of ruxolitinib depended on the baseline platelet count: 15 mg twice daily for a platelet count of 100x 109 to 200x 109 per liter and 20 mg twice daily for a count that exceeded 200x 109 per liter. The dose was adjusted for lack of efficacy or excess toxicity.
  • the primary end point was the proportion of patients with a reduction in spleen volume of 35% or more at 24 weeks, assessed by means of magnetic resonance imaging. Secondary end points included the durability of response, changes in symptom burden (assessed by the total symptom score), and overall survival.
  • the proportion of patients with a reduction of 35% or more in spleen volume at week 24 was 41.9% in the ruxolitinib group as compared with 0.7% in the placebo group.
  • Myelofibrosis patients were randomly assigned, in a 2: 1 ratio, to receive ruxolitinib or the best available therapy, which included any commercially available agents (as
  • the starting dose of ruxolitinib tablets was 15 mg twice daily of an immediate release formulation (See Example 1) if the baseline platelet count was 200x 109 per liter or less and 20 mg orally twice daily if the baseline platelet count was greater than 200x 109 per liter.
  • the primary end point was a reduction of 35% or more in spleen volume from baseline at week 48. At week 48, most of the patients in the ruxolitinib group had a reduction in spleen volume. Only patients in the ruxolitinib group met the criterion for the primary end point,

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Diabetes (AREA)
  • Virology (AREA)
  • Hematology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Neurology (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • Obesity (AREA)
  • Communicable Diseases (AREA)
  • Endocrinology (AREA)
  • Molecular Biology (AREA)
  • Dermatology (AREA)
  • Urology & Nephrology (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Nutrition Science (AREA)
  • Pulmonology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • AIDS & HIV (AREA)
PCT/US2013/070012 2012-11-15 2013-11-14 Sustained-release dosage forms of ruxolitinib Ceased WO2014078486A1 (en)

Priority Applications (40)

Application Number Priority Date Filing Date Title
SM20210436T SMT202100436T1 (it) 2012-11-15 2013-11-14 Forme di dosaggio a rilascio prolungato di ruxolitinib
IL291391A IL291391B (en) 2012-11-15 2013-11-14 Sustained-release dosage forms of ruxolitinib
PL13798840T PL2919766T3 (pl) 2012-11-15 2013-11-14 Postacie dawkowania ruksolitynibu o przedłużonym uwalnianiu
BR112015010663-3A BR112015010663B1 (pt) 2012-11-15 2013-11-14 Formas de dosagem oral de liberação sustentada, e uso de ruxolitinib ou de sal farmaceuticamente aceitável do mesmo
EP21174620.1A EP3949953A1 (en) 2012-11-15 2013-11-14 Sustained-release dosage forms of ruxolitinib
IL317061A IL317061A (en) 2012-11-15 2013-11-14 Extended release dosage forms of ruxolitinib
KR1020157015681A KR102242077B1 (ko) 2012-11-15 2013-11-14 룩솔리티니브의 서방성 제형
UAA201505798A UA120834C2 (uk) 2012-11-15 2013-11-14 Лікарські форми руксолітинібу зі сповільненим вивільненням
MX2020012676A MX2020012676A (es) 2012-11-15 2013-11-14 Formas de dosificación de ruxolitinib de liberación sostenida.
LTEP13798840.8T LT2919766T (lt) 2012-11-15 2013-11-14 Ruksolitinibo pailginto atpalaidavimo vaisto formos
AU2013344780A AU2013344780B2 (en) 2012-11-15 2013-11-14 Sustained-release dosage forms of ruxolitinib
MYPI2015001254A MY191357A (en) 2012-11-15 2013-11-14 Sustained-release dosage forms of ruxolitinib
EA201590930A EA201590930A1 (ru) 2012-11-15 2013-11-14 Лекарственные формы руксолитиниба с замедленным высвобождением
IL297429A IL297429A (en) 2012-11-15 2013-11-14 Sustained release dosage forms of roxolitinib
ES13798840T ES2880814T3 (es) 2012-11-15 2013-11-14 Formas de dosificación de liberación sostenida de ruxolitinib
DK13798840.8T DK2919766T3 (da) 2012-11-15 2013-11-14 Ruxolitinib-depotdosisformer
HRP20211158TT HRP20211158T1 (hr) 2012-11-15 2013-11-14 Oblici za doziranje ruksolitiniba s odgođenim oslobađanjem
MX2015005947A MX380147B (es) 2012-11-15 2013-11-14 Formas de dosificacion de ruxolitinib de liberacion sostenida.
SI201331922T SI2919766T1 (sl) 2012-11-15 2013-11-14 Farmacevtske oblike ruksolitiniba s podaljšanim sproščanjem
CR20190073A CR20190073A (es) 2012-11-15 2013-11-14 FORMAS DE DOSIFICACIÓN DE RUXOLITINIB DE LIBERACIÓN SOTENIDA (Divisional 2015-265)
NZ708157A NZ708157A (en) 2012-11-15 2013-11-14 Sustained-release dosage forms of ruxolitinib
EP13798840.8A EP2919766B1 (en) 2012-11-15 2013-11-14 Sustained-release dosage forms of ruxolitinib
HK16101836.8A HK1213796B (en) 2012-11-15 2013-11-14 Sustained-release dosage forms of ruxolitinib
SG11201503695XA SG11201503695XA (en) 2012-11-15 2013-11-14 Sustained-release dosage forms of ruxolitinib
PE2019001988A PE20200175A1 (es) 2012-11-15 2013-11-14 Formas de dosificacion de ruxolitinib de liberacion sostenida
KR1020217009090A KR20210037012A (ko) 2012-11-15 2013-11-14 룩솔리티니브의 서방성 제형
PH1/2020/551186A PH12020551186B1 (en) 2012-11-15 2013-11-14 Sustained-release dosage forms of ruxolitinib
RS20210982A RS62329B1 (sr) 2012-11-15 2013-11-14 Dozni oblici ruksolitiniba sa produženim vremenom oslobađanja
KR1020227040652A KR20220162825A (ko) 2012-11-15 2013-11-14 룩솔리티니브의 서방성 제형
CA2890755A CA2890755C (en) 2012-11-15 2013-11-14 Sustained-release dosage forms of ruxolitinib
CN201380070296.8A CN105007901A (zh) 2012-11-15 2013-11-14 鲁索利替尼的缓释剂型
JP2015542764A JP2015537030A (ja) 2012-11-15 2013-11-14 ルキソリチニブの徐放性投薬形態
IL238765A IL238765B (en) 2012-11-15 2015-05-11 Sustained release dosage forms of roxolitinib
PH12015501089A PH12015501089A1 (en) 2012-11-15 2015-05-15 Sustained-release dosage forms of ruxolitinib
CR20150265A CR20150265A (es) 2012-11-15 2015-05-19 Formas de dosificación de ruxolitinib de liberación sostenida
AU2018203899A AU2018203899B2 (en) 2012-11-15 2018-06-01 Sustained-release dosage forms of ruxolitinib
PH12019501070A PH12019501070A1 (en) 2012-11-15 2019-05-14 Sustained-release dosage forms of ruxolitinib
AU2020201011A AU2020201011B2 (en) 2012-11-15 2020-02-12 Sustained-release dosage forms of ruxolitinib
CY20211100742T CY1124446T1 (el) 2012-11-15 2021-08-19 Μορφες δοσολογιας της ρουξολιτινιμπης παρατεταμενης αποδεσμευσης
AU2022201582A AU2022201582A1 (en) 2012-11-15 2022-03-08 Sustained-release dosage forms of ruxolitinib

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261726893P 2012-11-15 2012-11-15
US61/726,893 2012-11-15
US201361769408P 2013-02-26 2013-02-26
US61/769,408 2013-02-26

Publications (1)

Publication Number Publication Date
WO2014078486A1 true WO2014078486A1 (en) 2014-05-22

Family

ID=49681181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/070012 Ceased WO2014078486A1 (en) 2012-11-15 2013-11-14 Sustained-release dosage forms of ruxolitinib

Country Status (34)

Country Link
US (9) US10166191B2 (enExample)
EP (2) EP3949953A1 (enExample)
JP (4) JP2015537030A (enExample)
KR (3) KR20220162825A (enExample)
CN (3) CN105007901A (enExample)
AR (1) AR093490A1 (enExample)
AU (4) AU2013344780B2 (enExample)
BR (1) BR112015010663B1 (enExample)
CA (2) CA3178452A1 (enExample)
CL (1) CL2015001286A1 (enExample)
CR (2) CR20190073A (enExample)
CY (1) CY1124446T1 (enExample)
DK (1) DK2919766T3 (enExample)
EA (1) EA201590930A1 (enExample)
ES (1) ES2880814T3 (enExample)
HR (1) HRP20211158T1 (enExample)
HU (1) HUE055894T2 (enExample)
IL (4) IL291391B (enExample)
LT (1) LT2919766T (enExample)
MX (3) MX2020012676A (enExample)
MY (1) MY191357A (enExample)
NZ (2) NZ708157A (enExample)
PE (2) PE20200175A1 (enExample)
PH (2) PH12020551186B1 (enExample)
PL (1) PL2919766T3 (enExample)
PT (1) PT2919766T (enExample)
RS (1) RS62329B1 (enExample)
SG (3) SG11201503695XA (enExample)
SI (1) SI2919766T1 (enExample)
SM (1) SMT202100436T1 (enExample)
TW (4) TW201922255A (enExample)
UA (1) UA120834C2 (enExample)
WO (1) WO2014078486A1 (enExample)
ZA (1) ZA202202711B (enExample)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016020901A1 (en) 2014-08-07 2016-02-11 Acerta Pharma B.V. Methods of treating cancers, immune and autoimmune diseases, and inflammatory diseases based on btk occupancy and btk resynthesis rate
US10561659B2 (en) 2016-05-04 2020-02-18 Concert Pharmaceuticals, Inc. Treatment of hair loss disorders with deuterated JAK inhibitors
WO2020039401A1 (en) 2018-08-24 2020-02-27 Novartis Ag Treatment comprising il-1βeta binding antibodies and combinations thereof
EP3450434B1 (en) * 2012-06-15 2021-02-24 CoNCERT Pharmaceuticals, Inc. Deuterated derivatives of ruxolitinib
EP2919766B1 (en) 2012-11-15 2021-05-26 Incyte Holdings Corporation Sustained-release dosage forms of ruxolitinib
US11744832B2 (en) 2005-12-13 2023-09-05 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors
US20230293531A1 (en) * 2020-07-30 2023-09-21 Assistance Publique-Hôpitaux de Paris Method for treating immune toxicities induced by immune checkpoint inhibitors
US11833155B2 (en) 2020-06-03 2023-12-05 Incyte Corporation Combination therapy for treatment of myeloproliferative neoplasms
WO2024028193A1 (en) * 2022-08-03 2024-02-08 Medichem, S.A. Stable oral pharmaceutical formulation containing ruxolitinib hemifumarate
WO2024189132A1 (en) * 2023-03-15 2024-09-19 Zhejiang Qizheng Pharmaceutical Co., Ltd. Pharmaceutical composition comprising ruxolitinib
WO2024189130A1 (en) * 2023-03-15 2024-09-19 Zhejiang Qizheng Pharmaceutical Co., Ltd. Pharmaceutical composition comprising ruxolitinib
US12151026B2 (en) 2013-08-07 2024-11-26 Incyte Corporation Sustained release dosage forms for a JAK1 inhibitor
US12285432B2 (en) 2021-08-11 2025-04-29 Sun Pharmaceutical Industries, Inc. Treatment of hair loss disorders with deuterated JAK inhibitors

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008157208A2 (en) 2007-06-13 2008-12-24 Incyte Corporation Salts of the janus kinase inhibitor (r)-3-(4-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)-1h-pyrazol-1-yl)-3-cyclopentylpropanenitrile
TW201100429A (en) 2009-05-22 2011-01-01 Incyte Corp N-(hetero)aryl-pyrrolidine derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines and pyrrol-3-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors
DK2432472T3 (da) 2009-05-22 2019-11-18 Incyte Holdings Corp 3-[4-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)-1h-pyrazol-1-yl]octan- eller heptan-nitril som jak-inhibitorer
PH12015502575A1 (en) 2010-03-10 2017-04-24 Incyte Corp Piperidin-4-yl azetidine derivatives as jak1 inhibitors
EP3087972A1 (en) 2010-05-21 2016-11-02 Incyte Holdings Corporation Topical formulation for a jak inhibitor
CN103415515B (zh) 2010-11-19 2015-08-26 因塞特公司 作为jak抑制剂的环丁基取代的吡咯并吡啶和吡咯并嘧啶衍生物
US8691807B2 (en) 2011-06-20 2014-04-08 Incyte Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors
UA111854C2 (uk) 2011-09-07 2016-06-24 Інсайт Холдінгс Корпорейшн Способи і проміжні сполуки для отримання інгібіторів jak
CA2888816A1 (en) 2012-11-01 2014-05-08 Incyte Corporation Tricyclic fused thiophene derivatives as jak inhibitors
BR112015021458B1 (pt) 2013-03-06 2022-06-07 Incyte Holdings Corporation "processos e intermediários para preparar {1-{1-[3-flúor2-(trifluormetil)isonicotinoil] piperidin-4-il}-3-[4-(7hpirrolo[2,3-d]pirimidin-4-il)-1h-pirazol-1-il]azetidin-3-il}acetonitrila, útil no tratamento de doenças relacionadas com a atividade de janus quinases
UA117830C2 (uk) 2013-05-17 2018-10-10 Інсайт Корпорейшн Похідні біпіразолу як інгібітори jak
NZ763326A (en) 2014-04-08 2023-04-28 Incyte Holdings Corp Treatment of b-cell malignancies by a combination jak and pi3k inhibitor
CR20160553A (es) 2014-04-30 2017-04-25 Incyte Corp Procesos para preparar un inhibidor de jak1 y nuevas formas de este
EP3148545B1 (en) * 2014-05-28 2023-03-15 Onco Tracker, Inc. Anti-cancer effects of jak2 inhibitors in combination with thalidomide derivatives and glucocorticoids
WO2015184305A1 (en) 2014-05-30 2015-12-03 Incyte Corporation TREATMENT OF CHRONIC NEUTROPHILIC LEUKEMIA (CNL) AND ATYPICAL CHRONIC MYELOID LEUKEMIA (aCML) BY INHIBITORS OF JAK1
CA3019007C (en) * 2016-04-26 2024-09-24 Lts Lohmann Therapie Systeme Ag FILM-BASED PHARMACEUTICAL FORMS FOR TRANSMUCOSAL ADMINISTRATION OF PEPTIDE ANTIDIABETICS
WO2017209106A1 (ja) * 2016-05-30 2017-12-07 大正製薬株式会社 チペピジンの経口用製剤
CN105902508A (zh) * 2016-06-13 2016-08-31 佛山市腾瑞医药科技有限公司 一种鲁索利替尼分散片及其制备方法
CN105919955A (zh) * 2016-06-13 2016-09-07 佛山市腾瑞医药科技有限公司 一种鲁索利替尼制剂及其应用
EP4190318A1 (en) * 2016-12-14 2023-06-07 Biora Therapeutics, Inc. Treatment of a disease of the gastrointestinal tract with a jak inhibitor and devices
TW201924683A (zh) 2017-12-08 2019-07-01 美商英塞特公司 用於治療骨髓增生性贅瘤的低劑量組合療法
DK3746429T3 (da) 2018-01-30 2022-05-02 Incyte Corp Fremgangsmåder til fremstilling af (1-(3-fluor-2-(trifluormethyl)isonicotinyl)piperidin-4-on)
BR122023022189A2 (pt) 2018-02-16 2024-02-20 Incyte Corporation Usos de inibidores da via de jak1 para o tratamento de distúrbios relacionados a citocinas
CN112423759A (zh) 2018-03-30 2021-02-26 因赛特公司 使用jak抑制剂治疗化脓性汗腺炎
EP3775284A1 (en) 2018-03-30 2021-02-17 Incyte Corporation Biomarkers for inflammatory skin disease
MX2020010815A (es) 2018-04-13 2020-12-11 Incyte Corp Biomarcadores para enfermedad de injerto contra hospedero.
PE20211208A1 (es) 2018-06-01 2021-07-05 Incyte Corp Regimen de dosificacion para el tratamiento de trastornos relacionados con pi3k
SG11202102982QA (en) * 2018-09-25 2021-04-29 Impact Biomedicines Inc Methods of treating myeloproliferative disorders
US20220000872A1 (en) * 2018-10-31 2022-01-06 Oncotracker, Inc. Method of enhancing immune-based therapy
EA202191170A1 (ru) 2018-10-31 2021-07-27 Инсайт Корпорейшн Комбинированная терапия для лечения гематологических заболеваний
EP3955920A1 (en) * 2019-04-16 2022-02-23 Institut National de la Santé et de la Recherche Médicale (INSERM) Use of jak inhibitors for the treatment of painful conditions involving nav1.7 channels
US11510923B2 (en) * 2019-09-05 2022-11-29 Incyte Corporation Ruxolitinib formulation for reduction of itch in atopic dermatitis
KR20220061149A (ko) * 2019-09-09 2022-05-12 더 칠드런스 호스피탈 오브 필라델피아 Clec16A 기능장애 또는 손실과 관련된 장애의 치료를 위한 조성물 및 방법
GB201913827D0 (en) * 2019-09-25 2019-11-06 Cape Peninsula Univ Of Technology Sustained Release Formulation Containing Aspalathus linearis Extract
JP2022551649A (ja) 2019-10-10 2022-12-12 インサイト・コーポレイション 移植片対宿主病のバイオマーカー
US12360120B2 (en) 2019-10-10 2025-07-15 Incyte Corporation Biomarkers for graft-versus-host disease
EP4054594A4 (en) * 2019-11-04 2023-12-13 Geron Corporation USE OF A JANUS KINASE INHIBITOR AND A TELOMERASE INHIBITOR FOR THE TREATMENT OF MYELOPROLIFERATIVE NEOPLASMS
JP2022553820A (ja) * 2019-11-05 2022-12-26 アッヴィ・インコーポレイテッド 骨髄線維症及びmpn関連障害をナビトクラクスで処置する際に使用するための投与レジメン
CN115038443A (zh) 2019-11-22 2022-09-09 因西特公司 包含alk2抑制剂和jak2抑制剂的组合疗法
US20230062278A1 (en) * 2019-12-26 2023-03-02 Actuate Therapeutics, Inc. Compounds for the treatment of myelofibrosis
IL298118B1 (en) 2020-06-02 2025-10-01 Incyte Corp Processes for preparing JAK1 inhibitor
MX2023002035A (es) 2020-08-18 2023-06-12 Incyte Corp Proceso e intermediarios para preparar un inhibidor de cinasa janus 1 (jak1).
AU2021329303A1 (en) 2020-08-18 2023-04-06 Incyte Corporation Process and intermediates for preparing a JAK inhibitor
WO2022125670A1 (en) 2020-12-08 2022-06-16 Incyte Corporation Jak1 pathway inhibitors for the treatment of vitiligo
DK4333840T3 (da) 2021-05-03 2025-11-24 Incyte Corp Jak1-vejinhibitorer til behandling af prurigo nodularis
US12071439B2 (en) 2021-07-12 2024-08-27 Incyte Corporation Process and intermediates for preparing a JAK inhibitor
WO2023022520A1 (ko) * 2021-08-18 2023-02-23 주식회사 삼양홀딩스 룩소리티닙의 경구용 정제 조성물 및 이의 제조 방법
EP4408431A1 (en) * 2021-09-30 2024-08-07 Université de Genève Treatment of nudt2 mutation
WO2024020092A2 (en) * 2022-07-20 2024-01-25 The Johns Hopkins University Inhibitors of calcium/calmodulin-dependent protein kinase ii and their uses
KR20240105295A (ko) * 2022-12-28 2024-07-05 주식회사 삼양홀딩스 룩소리티닙의 다중 방출제어 정제 조성물 및 이의 제조 방법
EP4491175A1 (en) * 2023-07-10 2025-01-15 Genepharm S.A. A solid oral composition of ruxolitinib
CN117298055A (zh) * 2023-09-18 2023-12-29 正大制药(青岛)有限公司 一种磷酸芦可替尼片及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090088410A1 (en) * 2002-11-06 2009-04-02 Celgene Corporation Methods for the treatment and management of myeloproliferative diseases using 4-(amino)-2-(2,6-dioxo(3-piperidyl)-isoindoline-1,3-dione in combination with other therapies

Family Cites Families (307)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2985589A (en) 1957-05-22 1961-05-23 Universal Oil Prod Co Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets
US3632836A (en) 1968-10-25 1972-01-04 Dow Chemical Co Solid curable polyepoxides modified with hydrolyzed liquid polyepoxides
US3832460A (en) 1971-03-19 1974-08-27 C Kosti Anesthetic-vasoconstrictor-antihistamine composition for the treatment of hypertrophied oral tissue
US4140755A (en) 1976-02-13 1979-02-20 Hoffmann-La Roche Inc. Sustained release tablet formulations
DE3036390A1 (de) 1980-09-26 1982-05-13 Troponwerke GmbH & Co KG, 5000 Köln Neue pyrrolo-pyrimidine, verfahren zu ihrer herstellung und ihre verwendung bei der herstellung von biologischen wirkstoffen
DE3220113A1 (de) 1982-05-28 1983-12-01 Basf Ag, 6700 Ludwigshafen Difluormethoxiphenylthiophosphorsaeureester
US4402832A (en) 1982-08-12 1983-09-06 Uop Inc. High efficiency continuous separation process
US4404335A (en) 1982-08-16 1983-09-13 The Dow Chemical Company Hydrolyzing epoxy resins in absence of solvent and in presence of oxalic acid and a phosphonium compound
US4548990A (en) 1983-08-15 1985-10-22 Ciba-Geigy Corporation Crosslinked, porous polymers for controlled drug delivery
US4498991A (en) 1984-06-18 1985-02-12 Uop Inc. Serial flow continuous separation process
NL8403224A (nl) 1984-10-24 1986-05-16 Oce Andeno Bv Dioxafosforinanen, de bereiding ervan en de toepassing voor het splitsen van optisch actieve verbindingen.
CA1306260C (en) 1985-10-18 1992-08-11 Shionogi & Co., Ltd. Condensed imidazopyridine derivatives
ATE139232T1 (de) 1989-10-11 1996-06-15 Teijin Ltd Bizyklische pyrimidinderivate, verfahren zu deren herstellung und diese enthaltende pharmazeutische zusammensetzung
US5403593A (en) 1991-03-04 1995-04-04 Sandoz Ltd. Melt granulated compositions for preparing sustained release dosage forms
IT1258781B (it) 1992-01-16 1996-02-29 Zambon Spa Composizione farmaceutica oftalmica contenente n-acetilcisteina e polivinilalcol
US5521184A (en) 1992-04-03 1996-05-28 Ciba-Geigy Corporation Pyrimidine derivatives and processes for the preparation thereof
FR2695126B1 (fr) 1992-08-27 1994-11-10 Sanofi Elf Dérivés d'acide thiényl ou pyrrolyl carboxyliques, leur préparation et médicaments les contenant.
AU671491B2 (en) 1992-12-18 1996-08-29 F. Hoffmann-La Roche Ag N-oxycarbonyl substituted 5'-deoxy-5-fluorcytidines
JPH0710876A (ja) 1993-06-24 1995-01-13 Teijin Ltd 4位に環状アミノ基を有するピロロ[2,3―d]ピリミジン
USH1439H (en) 1993-10-18 1995-05-02 The Dow Chemical Company Method to increase the level of α-glycol in liquid epoxy resin
EP0727217A3 (en) 1995-02-10 1997-01-15 Suntory Ltd Pharmaceutical and cosmetic compositions containing God-type ellagitannin as an active ingredient
IL117580A0 (en) 1995-03-29 1996-07-23 Merck & Co Inc Inhibitors of farnesyl-protein transferase and pharmaceutical compositions containing them
US5856326A (en) 1995-03-29 1999-01-05 Merck & Co., Inc. Inhibitors of farnesyl-protein transferase
CN1105113C (zh) 1995-07-05 2003-04-09 纳幕尔杜邦公司 杀真菌嘧啶酮
DK0836605T3 (da) 1995-07-06 2002-05-13 Novartis Ag Pyrrolopyrimidiner og fremgangsmåder til deres fremstilling
US5630943A (en) 1995-11-30 1997-05-20 Merck Patent Gesellschaft Mit Beschrankter Haftung Discontinuous countercurrent chromatographic process and apparatus
GB9604361D0 (en) 1996-02-29 1996-05-01 Pharmacia Spa 4-Substituted pyrrolopyrimidine compounds as tyrosine kinase inhibitors
CA2250232A1 (en) 1996-04-03 1997-10-09 Allen I. Oliff A method of treating cancer
WO1997038664A2 (en) 1996-04-18 1997-10-23 Merck & Co., Inc. A method of treating cancer
US5795909A (en) 1996-05-22 1998-08-18 Neuromedica, Inc. DHA-pharmaceutical agent conjugates of taxanes
JP2000508335A (ja) 1996-05-30 2000-07-04 メルク エンド カンパニー インコーポレーテッド 癌の治療方法
US6624138B1 (en) 2001-09-27 2003-09-23 Gp Medical Drug-loaded biological material chemically treated with genipin
JP2001524079A (ja) 1997-04-07 2001-11-27 メルク エンド カンパニー インコーポレーテッド ガンの治療方法
US6060038A (en) 1997-05-15 2000-05-09 Merck & Co., Inc. Radiolabeled farnesyl-protein transferase inhibitors
US6063284A (en) 1997-05-15 2000-05-16 Em Industries, Inc. Single column closed-loop recycling with periodic intra-profile injection
CA2295620A1 (en) 1997-08-11 1999-02-18 Boehringer Ingelheim Pharmaceuticals, Inc. 5,6-heteroaryl-dipyrido¬2,3-b:3',2'-f|azepines and their use in the prevention or treatment of hiv infection
US7153845B2 (en) * 1998-08-25 2006-12-26 Columbia Laboratories, Inc. Bioadhesive progressive hydration tablets
US6075056A (en) 1997-10-03 2000-06-13 Penederm, Inc. Antifungal/steroid topical compositions
US6025366A (en) 1998-04-02 2000-02-15 Merck & Co., Inc. Antagonists of gonadotropin releasing hormone
IL139811A0 (en) 1998-06-04 2002-02-10 Abbott Lab Cell adhesion-inhibiting antinflammatory compounds
US6232320B1 (en) 1998-06-04 2001-05-15 Abbott Laboratories Cell adhesion-inhibiting antiinflammatory compounds
PA8474101A1 (es) 1998-06-19 2000-09-29 Pfizer Prod Inc Compuestos de pirrolo [2,3-d] pirimidina
RS50087B (sr) 1998-06-19 2009-01-22 Pfizer Products Inc., Pirolo (2,3-d) pirimidin jedinjenja
EP1107964B8 (en) 1998-08-11 2010-04-07 Novartis AG Isoquinoline derivatives with angiogenesis inhibiting activity
JP2000119271A (ja) 1998-08-12 2000-04-25 Hokuriku Seiyaku Co Ltd 1h―イミダゾピリジン誘導体
TR200100708T2 (tr) 1998-09-10 2001-07-23 Nycomed Danmark A/S İlaç maddelerine mahsus çabuk salımlı farmasötik bileşimler.
US6413419B1 (en) 1998-10-29 2002-07-02 Institut Francais Du Petrole Process and device for separation with variable-length chromatographic
FR2785196B1 (fr) 1998-10-29 2000-12-15 Inst Francais Du Petrole Procede et dispositif de separation avec des zones chromatographiques a longueur variable
US6375839B1 (en) 1998-10-29 2002-04-23 Institut Francais Du Petrole Process and device for separation with variable-length chromatographic zones
US6133031A (en) 1999-08-19 2000-10-17 Isis Pharmaceuticals Inc. Antisense inhibition of focal adhesion kinase expression
JP2002538121A (ja) 1999-03-03 2002-11-12 メルク エンド カムパニー インコーポレーテッド プレニルタンパク質トランスフェラーゼの阻害剤
GB9905075D0 (en) 1999-03-06 1999-04-28 Zeneca Ltd Chemical compounds
US6217895B1 (en) 1999-03-22 2001-04-17 Control Delivery Systems Method for treating and/or preventing retinal diseases with sustained release corticosteroids
US6239113B1 (en) 1999-03-31 2001-05-29 Insite Vision, Incorporated Topical treatment or prevention of ocular infections
WO2000063168A1 (en) 1999-04-16 2000-10-26 Coelacanth Chemical Corporation Synthesis of azetidine derivatives
US6921763B2 (en) 1999-09-17 2005-07-26 Abbott Laboratories Pyrazolopyrimidines as therapeutic agents
DE60013464T2 (de) 1999-10-13 2005-09-15 Banyu Pharmaceutical Co., Ltd. Substituierte imidazolin-derivate
US7235258B1 (en) 1999-10-19 2007-06-26 Nps Pharmaceuticals, Inc. Sustained-release formulations for treating CNS-mediated disorders
CZ303875B6 (cs) 1999-12-10 2013-06-05 Pfizer Products Inc. Pyrrolo[2,3-d]pyrimidinová sloucenina a farmaceutická kompozice s jejím obsahem
IL150388A0 (en) 1999-12-24 2002-12-01 Aventis Pharma Ltd Azaindoles
GB0004890D0 (en) 2000-03-01 2000-04-19 Astrazeneca Uk Ltd Chemical compounds
US7235551B2 (en) 2000-03-02 2007-06-26 Smithkline Beecham Corporation 1,5-disubstituted-3,4-dihydro-1h-pyrimido[4,5-d]pyrimidin-2-one compounds and their use in treating csbp/p38 kinase mediated diseases
ES2206363T3 (es) 2000-04-07 2004-05-16 Laboratoire Medidom S.A. Formulaciones oftalmicas a base de ciclosporina, de acido hialuronico y de polisorbato.
WO2001081345A1 (en) 2000-04-20 2001-11-01 Mitsubishi Pharma Corporation Aromatic amide compounds
KR100785363B1 (ko) 2000-04-25 2007-12-18 이코스 코포레이션 인간 포스파티딜-이노시톨 3-키나제 델타의 억제제
EP1294752A2 (en) 2000-06-16 2003-03-26 Curis, Inc. Angiogenesis-modulating compositions and uses
US7498304B2 (en) 2000-06-16 2009-03-03 Curis, Inc. Angiogenesis-modulating compositions and uses
US6335342B1 (en) 2000-06-19 2002-01-01 Pharmacia & Upjohn S.P.A. Azaindole derivatives, process for their preparation, and their use as antitumor agents
ATE465756T1 (de) 2000-06-23 2010-05-15 Mitsubishi Tanabe Pharma Corp Antitumoreffekt-verstärker
EA006153B1 (ru) 2000-06-26 2005-10-27 Пфайзер Продактс Инк. СОЕДИНЕНИЯ ПИРРОЛО[2,3-d]ПИРИМИДИНА В КАЧЕСТВЕ ИММУНОДЕПРЕССАНТОВ
EP1294358B1 (en) 2000-06-28 2004-08-18 Smithkline Beecham Plc Wet milling process
AU2001278790A1 (en) 2000-08-22 2002-03-04 Hokuriku Seiyaku Co. Ltd 1h-imidazopyridine derivatives
ES2307667T3 (es) 2000-12-05 2008-12-01 Vertex Pharmaceuticals Incorporated Inhibidires de quinasas terminales c-jun(jnk) y otras proteinas quinasas.
GB0100622D0 (en) 2001-01-10 2001-02-21 Vernalis Res Ltd Chemical compounds V111
WO2002055496A1 (en) 2001-01-15 2002-07-18 Glaxo Group Limited Aryl piperidine and piperazine derivatives as inducers of ldl-receptor expression
WO2002060492A1 (en) 2001-01-30 2002-08-08 Cytopia Pty Ltd Methods of inhibiting kinases
AU2002308748A1 (en) 2001-05-16 2002-11-25 Vertex Pharmaceuticals Incorporated Heterocyclic substituted pyrazoles as inhibitors of src and other protein kinases
US7301023B2 (en) 2001-05-31 2007-11-27 Pfizer Inc. Chiral salt resolution
GB0115109D0 (en) 2001-06-21 2001-08-15 Aventis Pharma Ltd Chemical compounds
GB0115393D0 (en) 2001-06-23 2001-08-15 Aventis Pharma Ltd Chemical compounds
CA2455181C (en) 2001-08-01 2010-04-06 Merck & Co., Inc. Benzimidazo[4,5-f]isoquinolinone derivatives
WO2003024967A2 (en) 2001-09-19 2003-03-27 Aventis Pharma S.A. Indolizines as kinase protein inhibitors
US6429231B1 (en) 2001-09-24 2002-08-06 Bradley Pharmaceuticals, Inc. Compositions containing antimicrobials and urea for the treatment of dermatological disorders and methods for their use
EP1441737B1 (en) 2001-10-30 2006-08-09 Novartis AG Staurosporine derivatives as inhibitors of flt3 receptor tyrosine kinase activity
JP2003155285A (ja) 2001-11-19 2003-05-27 Toray Ind Inc 環状含窒素誘導体
US6949668B2 (en) 2001-11-30 2005-09-27 Teijin Limited Process for producing 5-(3-cyanophenyl)-3-formylbenzoic acid compound
GT200200234A (es) 2001-12-06 2003-06-27 Compuestos cristalinos novedosos
US6995144B2 (en) 2002-03-14 2006-02-07 Eisai Co., Ltd. Nitrogen containing heterocyclic compounds and medicines containing the same
EP1503739A4 (en) 2002-04-15 2006-06-21 Adams Respiratory Therapeutics REGULAR RELEASE OF COMBINED MEDICINAL PRODUCTS FROM GUAIFENESIN
TW200403058A (en) 2002-04-19 2004-03-01 Bristol Myers Squibb Co Heterocyclo inhibitors of potassium channel function
WO2003091246A1 (en) 2002-04-26 2003-11-06 Vertex Pharmaceuticals Incorporated Pyrrole derivatives as inhibitors of erk2 and uses thereof
EP1503757B1 (en) 2002-05-02 2007-12-19 Merck & Co., Inc. Tyrosine kinase inhibitors
MXPA04011004A (es) 2002-05-07 2005-01-25 Control Delivery Sys Inc Procesos para formar un dispositivo de administracion de farmaco.
US7122550B2 (en) 2002-05-23 2006-10-17 Cytopia Pty Ltd Protein kinase inhibitors
PE20040522A1 (es) 2002-05-29 2004-09-28 Novartis Ag Derivados de diarilurea dependientes de la cinasa de proteina
CN1630668A (zh) 2002-06-26 2005-06-22 出光兴产株式会社 氢化共聚物及其制备方法以及包含氢化共聚物的热熔粘合剂组合物
GB0215676D0 (en) 2002-07-05 2002-08-14 Novartis Ag Organic compounds
GB0215844D0 (en) 2002-07-09 2002-08-14 Novartis Ag Organic compounds
WO2004007472A1 (ja) 2002-07-10 2004-01-22 Ono Pharmaceutical Co., Ltd. Ccr4アンタゴニストおよびその医薬用途
CA2497977A1 (en) 2002-09-20 2004-04-01 Alcon, Inc. Use of cytokine synthesis inhibitors for the treatment of dry eye disorders
US20040204404A1 (en) 2002-09-30 2004-10-14 Robert Zelle Human N-type calcium channel blockers
US7259161B2 (en) 2002-11-04 2007-08-21 Vertex Pharmaceuticals Incorporated Compositions useful as inhibitors of JAK and other protein kinases
AR042052A1 (es) 2002-11-15 2005-06-08 Vertex Pharma Diaminotriazoles utiles como inhibidores de proteinquinasas
US20040099204A1 (en) 2002-11-25 2004-05-27 Nestor John J. Sheet, page, line, position marker
CA2507392A1 (en) 2002-11-26 2004-06-10 Pfizer Products Inc. Method of treatment of transplant rejection
UA80767C2 (en) 2002-12-20 2007-10-25 Pfizer Prod Inc Pyrimidine derivatives for the treatment of abnormal cell growth
TWI335819B (en) 2002-12-24 2011-01-11 Alcon Inc Use of oculosurface selective glucocorticoid in the treatment of dry eye
US7135493B2 (en) 2003-01-13 2006-11-14 Astellas Pharma Inc. HDAC inhibitor
US7167750B2 (en) 2003-02-03 2007-01-23 Enteromedics, Inc. Obesity treatment with electrically induced vagal down regulation
US7407962B2 (en) 2003-02-07 2008-08-05 Vertex Pharmaceuticals Incorporated Heteroaryl compounds useful as inhibitors or protein kinases
GB0305929D0 (en) 2003-03-14 2003-04-23 Novartis Ag Organic compounds
JP2006522124A (ja) 2003-04-03 2006-09-28 バーテックス ファーマシューティカルズ インコーポレイテッド プロテインキナーゼのインヒビターとして有用な組成物
SE0301372D0 (sv) 2003-05-09 2003-05-09 Astrazeneca Ab Novel compounds
SE0301373D0 (sv) 2003-05-09 2003-05-09 Astrazeneca Ab Novel compounds
FR2857454B1 (fr) 2003-07-08 2006-08-11 Aventis Pasteur Dosage des acides techoiques des bacteries gram+
US20050043346A1 (en) 2003-08-08 2005-02-24 Pharmacia Italia S.P.A. Pyridylpyrrole derivatives active as kinase inhibitors
JP5010917B2 (ja) 2003-08-29 2012-08-29 エグゼリクシス, インコーポレイテッド c−Kit調節因子および使用方法
EP1678147B1 (en) 2003-09-15 2012-08-08 Lead Discovery Center GmbH Pharmaceutically active 4,6-disubstituted aminopyrimidine derivatives as modulators of protein kinases
PE20050952A1 (es) 2003-09-24 2005-12-19 Novartis Ag Derivados de isoquinolina como inhibidores de b-raf
SI1679074T1 (sl) 2003-10-24 2011-04-29 Santen Pharmaceutical Co Ltd Terapevtsko sredstvo za keratokonjuktivno motnjo
US7387793B2 (en) 2003-11-14 2008-06-17 Eurand, Inc. Modified release dosage forms of skeletal muscle relaxants
MY141220A (en) 2003-11-17 2010-03-31 Astrazeneca Ab Pyrazole derivatives as inhibitors of receptor tyrosine kinases
WO2005051393A1 (en) 2003-11-25 2005-06-09 Pfizer Products Inc. Method of treatment of atherosclerosis
MXPA06007002A (es) 2003-12-17 2006-08-31 Pfizer Prod Inc Compuestos de pirrolo[2,3-d]pirimidina para tratar rechazo de transplantes.
DK1696920T3 (en) 2003-12-19 2015-01-19 Plexxikon Inc RELATIONS AND PROCEDURES FOR THE DEVELOPMENT OF LAW MODULATORS
ATE406356T1 (de) 2003-12-19 2008-09-15 Schering Corp Thiadiazole als cxc- und cc- chemokinrezeptorliganden
HRP20100675T1 (hr) 2003-12-23 2011-01-31 Astex Therapeutics Limited Derivati pirazola kao modulatori protein kinaze
US20050187389A1 (en) 2004-01-13 2005-08-25 Ambit Biosciences Corporation Pyrrolopyrimidine derivatives and analogs and their use in the treatment and prevention of diseases
EP1744751A4 (en) 2004-03-18 2010-03-10 Brigham & Womens Hospital METHOD FOR THE TREATMENT OF SYNUCLEINOPATHIES
WO2005095400A1 (en) 2004-03-30 2005-10-13 Vertex Pharmaceuticals Incorporated Azaindoles useful as inhibitors of jak and other protein kinases
JP5213229B2 (ja) 2004-04-23 2013-06-19 エグゼリクシス, インコーポレイテッド キナーゼ調節因子および使用方法
WO2005105814A1 (en) 2004-04-28 2005-11-10 Incyte Corporation Tetracyclic inhibitors of janus kinases
US7558717B2 (en) 2004-04-28 2009-07-07 Vertex Pharmaceuticals Incorporated Crystal structure of human JAK3 kinase domain complex and binding pockets thereof
EP1755680A1 (en) 2004-05-03 2007-02-28 Novartis AG Combinations comprising a s1p receptor agonist and a jak3 kinase inhibitor
US20060074102A1 (en) 2004-05-14 2006-04-06 Kevin Cusack Kinase inhibitors as therapeutic agents
PE20060426A1 (es) 2004-06-02 2006-06-28 Schering Corp DERIVADOS DE ACIDO TARTARICO COMO INHIBIDORES DE MMPs, ADAMs, TACE Y TNF-alfa
RU2401265C2 (ru) 2004-06-10 2010-10-10 Айрм Ллк Соединения и композиции в качестве ингибиторов протеинкиназы
WO2006001463A1 (ja) 2004-06-23 2006-01-05 Ono Pharmaceutical Co., Ltd. S1p受容体結合能を有する化合物およびその用途
WO2006004984A1 (en) 2004-06-30 2006-01-12 Vertex Pharmaceuticals Incorporated Azaindoles useful as inhibitors of protein kinases
US7138423B2 (en) 2004-07-20 2006-11-21 Bristol-Myers Squibb Company Arylpyrrolidine derivatives as NK-1 /SSRI antagonists
FR2873691B1 (fr) 2004-07-29 2006-10-06 Sanofi Synthelabo Derives d'amino-piperidine, leur preparation et leur application en therapeutique
WO2006013114A1 (en) 2004-08-06 2006-02-09 Develogen Aktiengesellschaft Use of a timp-2 secreted protein product for preventing and treating pancreatic diseases and/or obesity and/or metabolic syndrome
CN101006186A (zh) 2004-08-23 2007-07-25 财团法人牧岩生命工学研究所 用于检测sars冠状病毒的引物和探针,包括该引物和/或探针的试剂盒及其检测方法
US20070054916A1 (en) 2004-10-01 2007-03-08 Amgen Inc. Aryl nitrogen-containing bicyclic compounds and methods of use
CN101899049A (zh) 2004-10-13 2010-12-01 霍夫曼-拉罗奇有限公司 二取代吡唑并苯并二氮杂*类
UY29177A1 (es) 2004-10-25 2006-05-31 Astex Therapeutics Ltd Derivados sustituidos de purina, purinona y deazapurina, composiciones que los contienen métodos para su preparación y sus usos
MY179032A (en) 2004-10-25 2020-10-26 Cancer Research Tech Ltd Ortho-condensed pyridine and pyrimidine derivatives (e.g.purines) as protein kinase inhibitors
US7528138B2 (en) 2004-11-04 2009-05-05 Vertex Pharmaceuticals Incorporated Pyrazolo[1,5-a]pyrimidines useful as inhibitors of protein kinases
KR20070085433A (ko) 2004-11-24 2007-08-27 노파르티스 아게 Jak 저해제들과 bcr-abl, flt-3, fak 또는raf 키나제 저해제들 중 하나 이상의 조합물
US7517870B2 (en) 2004-12-03 2009-04-14 Fondazione Telethon Use of compounds that interfere with the hedgehog signaling pathway for the manufacture of a medicament for preventing, inhibiting, and/or reversing ocular diseases related with ocular neovascularization
US20060128803A1 (en) 2004-12-14 2006-06-15 Alcon, Inc. Method of treating dry eye disorders using 13(S)-HODE and its analogs
AR054416A1 (es) 2004-12-22 2007-06-27 Incyte Corp Pirrolo [2,3-b]piridin-4-il-aminas y pirrolo [2,3-b]pirimidin-4-il-aminas como inhibidores de las quinasas janus. composiciones farmaceuticas.
WO2006067445A2 (en) 2004-12-22 2006-06-29 Astrazeneca Ab Csf-1r kinase inhibitors
EP1844037A1 (en) 2005-01-20 2007-10-17 Pfizer Limited Chemical compounds
JP5227032B2 (ja) 2005-02-03 2013-07-03 バーテックス ファーマシューティカルズ インコーポレイテッド プロテインキナーゼの阻害剤として有用なピロロピリミジン
WO2007044050A2 (en) 2005-02-04 2007-04-19 Bristol-Myers Squibb Company 1h-imidazo[4,5-d]thieno[3,2-b]pyridine based tricyclic compounds and pharmaceutical compositions comprising same
BRPI0608513A2 (pt) 2005-03-15 2010-01-05 Irm Llc compostos e composições como inibidores da proteìna quinase
AU2006232105A1 (en) 2005-04-05 2006-10-12 Pharmacopeia, Inc. Purine and imidazopyridine derivatives for immunosuppression
GB0510139D0 (en) 2005-05-18 2005-06-22 Addex Pharmaceuticals Sa Novel compounds B1
RU2435769C2 (ru) 2005-05-20 2011-12-10 Вертекс Фармасьютикалз Инкорпорейтед Пирролопиридины, полезные в качестве ингибиторов протеинкиназы
GB0510390D0 (en) 2005-05-20 2005-06-29 Novartis Ag Organic compounds
RU2485106C2 (ru) 2005-06-08 2013-06-20 Райджел Фамэсьютикэлз, Инк. Соединения, проявляющие активность в отношении jak-киназы (варианты), способ лечения заболеваний, опосредованных jak-киназой, способ ингибирования активности jak-киназы (варианты), фармацевтическая композиция на основе указанных соединений
WO2006136823A1 (en) 2005-06-21 2006-12-28 Astex Therapeutics Limited Heterocyclic containing amines as kinase b inhibitors
WO2007002433A1 (en) 2005-06-22 2007-01-04 Plexxikon, Inc. Pyrrolo [2, 3-b] pyridine derivatives as protein kinase inhibitors
EP2251341A1 (en) 2005-07-14 2010-11-17 Astellas Pharma Inc. Heterocyclic Janus kinase 3 inhibitors
FR2889662B1 (fr) 2005-08-11 2011-01-14 Galderma Res & Dev Emulsion de type huile-dans-eau pour application topique en dermatologie
WO2007025090A2 (en) 2005-08-25 2007-03-01 Kalypsys, Inc. Heterobicyclic and - tricyclic inhibitors of mapk/erk kinase
US20070149506A1 (en) 2005-09-22 2007-06-28 Arvanitis Argyrios G Azepine inhibitors of Janus kinases
NZ567133A (en) 2005-09-30 2011-07-29 Vertex Pharma Deazapurines useful as inhibitors of janus kinases
WO2007044894A2 (en) 2005-10-11 2007-04-19 Chembridge Research Laboratories, Inc. Cell-free protein expression systems and methods of use thereof
KR101315574B1 (ko) 2005-10-14 2013-10-08 스미또모 가가꾸 가부시끼가이샤 히드라지드 화합물 및 이의 살충 용도
WO2007049041A1 (en) 2005-10-28 2007-05-03 Astrazeneca Ab 4- (3-aminopyrazole) pyrimidine derivatives for use as tyrosine kinase inhibitors in the treatment of cancer
MY167260A (en) 2005-11-01 2018-08-14 Targegen Inc Bi-aryl meta-pyrimidine inhibitors of kinases
WO2007062459A1 (en) 2005-11-29 2007-06-07 Cytopia Research Pty Ltd Selective kinase inhibitors based on pyridine scaffold
US20130137681A1 (en) 2005-12-13 2013-05-30 Incyte Corporation HETEROARYL SUBSTITUTED PYRROLO[2,3-b]PYRIDINES AND PYRROLO[2,3-b]PYRIMIDINES AS JANUS KINASE INHIBITORS
KR101391900B1 (ko) 2005-12-13 2014-05-02 인사이트 코포레이션 야누스 키나아제 억제제로서의 헤테로아릴 치환된 피롤로[2,3-b]피리딘 및 피롤로[2,3-b]피리미딘
WO2007076423A2 (en) 2005-12-22 2007-07-05 Smithkline Beecham Corporation INHIBITORS OF Akt ACTIVITY
SI1962830T1 (sl) 2005-12-23 2013-07-31 Glaxosmithkline Llc Azaindolni inhibitorji kinaz Aurora
US20100172988A1 (en) * 2006-01-10 2010-07-08 Kissei Pharmaceutical Co., Ltd. Sustained release preparation and method for production thereof
JP4643455B2 (ja) 2006-01-12 2011-03-02 株式会社ユニバーサルエンターテインメント 遊技システム
NZ601687A (en) 2006-01-17 2014-03-28 Vertex Pharma Azaindoles useful as inhibitors of janus kinases
EP1979353A2 (en) 2006-01-19 2008-10-15 OSI Pharmaceuticals, Inc. Fused heterobicyclic kinase inhibitors
JP2009525350A (ja) 2006-02-01 2009-07-09 スミスクライン ビーチャム コーポレーション Rafキナーゼ阻害薬として有用なピロロ[2,3,b]ピリジン誘導体
US7745477B2 (en) 2006-02-07 2010-06-29 Hoffman-La Roche Inc. Heteroaryl and benzyl amide compounds
US20070202172A1 (en) 2006-02-24 2007-08-30 Tomer Gold Metoprolol succinate E.R. tablets and methods for their preparation
US8003642B2 (en) 2006-03-10 2011-08-23 Ono Pharmaceutical Co., Ltd. Nitrogenated heterocyclic derivative, and pharmaceutical agent comprising the derivative as active ingredient
AU2007236707C1 (en) 2006-04-03 2012-05-24 Astellas Pharma Inc. Hetero compound
US8741912B2 (en) 2006-04-05 2014-06-03 Vertex Pharmaceuticals Incorporated Deazapurines useful as inhibitors of Janus kinases
US20090124636A1 (en) 2006-04-12 2009-05-14 Pfizer Inc. Chemical compounds
WO2007129195A2 (en) 2006-05-04 2007-11-15 Pfizer Products Inc. 4-pyrimidine-5-amino-pyrazole compounds
US20080051427A1 (en) 2006-05-18 2008-02-28 Fritz Schuckler Pharmaceutical Compositions and Methods of Using Same
US7691811B2 (en) 2006-05-25 2010-04-06 Bodor Nicholas S Transporter-enhanced corticosteroid activity and methods and compositions for treating dry eye
JO3235B1 (ar) 2006-05-26 2018-03-08 Astex Therapeutics Ltd مركبات بيررولوبيريميدين و استعمالاتها
NZ573174A (en) 2006-06-01 2012-01-12 Msd Consumer Care Inc Sustained release pharmaceutical dosage form containing phenylephrine
CA2658764A1 (en) 2006-07-20 2008-01-24 Mehmet Kahraman Benzothiophene inhibitors of rho kinase
WO2008013622A2 (en) 2006-07-27 2008-01-31 E. I. Du Pont De Nemours And Company Fungicidal azocyclic amides
US8492378B2 (en) 2006-08-03 2013-07-23 Takeda Pharmaceutical Company Limited GSK-3β inhibitor
US8318723B2 (en) 2006-08-16 2012-11-27 Boehringer Ingelheim International Gmbh Pyrazine compounds, their use and methods of preparation
AU2007293653B2 (en) 2006-09-08 2011-02-17 Novartis Ag N-biaryl (hetero) arylsulphonamide derivatives useful in the treatment of diseases mediated by lymphocytes interactions
WO2008035376A2 (en) 2006-09-19 2008-03-27 Council Of Scientific & Industrial Research A novel bio-erodible insert for ophthalmic applications and a process for the preparation thereof
US7915268B2 (en) 2006-10-04 2011-03-29 Wyeth Llc 8-substituted 2-(benzimidazolyl)purine derivatives for immunosuppression
AR063142A1 (es) 2006-10-04 2008-12-30 Pharmacopeia Inc Derivados de 2-(bencimidazolil) purina y purinonas 6-sustituidas utiles como inmunosupresores,y composiciones farmaceuticas que los contienen.
US20120225057A1 (en) 2006-10-11 2012-09-06 Deciphera Pharmaceuticals, Llc Methods and compositions for the treatment of myeloproliferative diseases and other proliferative diseases
CA2667487C (en) 2006-11-06 2017-04-04 Supergen, Inc. Imidazo[1,2-b]pyridazine and pyrazolo[1,5-a]pyrimidine derivatives and their use as protein kinase inhibitors
US20080119496A1 (en) 2006-11-16 2008-05-22 Pharmacopeia Drug Discovery, Inc. 7-Substituted Purine Derivatives for Immunosuppression
GEP20125658B (en) 2006-11-22 2012-10-10 Incyte Corp Imidazotriazines and imidazo pyrimidines as kinase inhibitors
WO2008067119A2 (en) 2006-11-27 2008-06-05 Smithkline Beecham Corporation Novel compounds
AU2007334436A1 (en) 2006-12-15 2008-06-26 Abbott Laboratories Novel oxadiazole compounds
MX2009006543A (es) 2006-12-20 2009-06-26 Amgen Inc Compuestos heterociclicos y su uso en el tratamiento de la inflamacion, angiogenesis y cancer.
AU2007338792B2 (en) 2006-12-20 2012-05-31 Amgen Inc. Substituted heterocycles and methods of use
EP2121692B1 (en) 2006-12-22 2013-04-10 Incyte Corporation Substituted heterocycles as janus kinase inhibitors
AU2007338210B2 (en) 2006-12-22 2013-01-31 Sigma-Tau Industrie Farmaceutiche Riunite S.P.A. Gel useful for the delivery of ophthalmic drugs
WO2008082839A2 (en) 2006-12-29 2008-07-10 Abbott Laboratories Pim kinase inhibitors as cancer chemotherapeutics
KR20080062876A (ko) 2006-12-29 2008-07-03 주식회사 대웅제약 신규한 항진균성 트리아졸 유도체
WO2008082840A1 (en) 2006-12-29 2008-07-10 Abbott Laboratories Pim kinase inhibitors as cancer chemotherapeutics
EA019951B1 (ru) 2007-03-01 2014-07-30 Новартис Аг Ингибиторы киназы pim и способы их применения
UA101611C2 (ru) 2007-04-03 2013-04-25 Аррей Байофарма Инк. СОЕДИНЕНИЯ ИМИДАЗО[1,2-а]ПИРИДИНА КАК ИНГИБИТОРЫ ТИРОЗИНКИНАЗЫ РЕЦЕПТОРОВ
US8188178B2 (en) 2007-05-07 2012-05-29 3M Innovative Properties Company Cold shrinkable article including an epichlorohydrin composition
GB0709031D0 (en) 2007-05-10 2007-06-20 Sareum Ltd Pharmaceutical compounds
WO2008145681A2 (en) 2007-05-31 2008-12-04 Boehringer Ingelheim International Gmbh Ccr2 receptor antagonists and uses thereof
GB0710528D0 (en) 2007-06-01 2007-07-11 Glaxo Group Ltd Novel compounds
CL2008001709A1 (es) 2007-06-13 2008-11-03 Incyte Corp Compuestos derivados de pirrolo [2,3-b]pirimidina, moduladores de quinasas jak; composicion farmaceutica; y uso en el tratamiento de enfermedades tales como cancer, psoriasis, artritis reumatoide, entre otras.
WO2008157208A2 (en) 2007-06-13 2008-12-24 Incyte Corporation Salts of the janus kinase inhibitor (r)-3-(4-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)-1h-pyrazol-1-yl)-3-cyclopentylpropanenitrile
EP2175858B1 (en) 2007-07-11 2014-09-10 Pfizer Inc. Pharmaceutical compositions and methods of treating dry eye disorders
KR20100038119A (ko) 2007-08-01 2010-04-12 화이자 인코포레이티드 피라졸 화합물 및 raf 억제제로서 이의 용도
WO2009049028A1 (en) 2007-10-09 2009-04-16 Targegen Inc. Pyrrolopyrimidine compounds and their use as janus kinase modulators
WO2009064486A2 (en) 2007-11-15 2009-05-22 Musc Foundation For Research Development Inhibitors of pim protein kinases, compositions, and methods for treating cancer
CN101910152B (zh) 2007-11-16 2014-08-06 因塞特公司 作为janus激酶抑制剂的4-吡唑基-n-芳基嘧啶-2-胺和4-吡唑基-n-杂芳基嘧啶-2-胺
GB0723815D0 (en) 2007-12-05 2008-01-16 Glaxo Group Ltd Compounds
TR201815961T4 (tr) 2008-01-18 2018-11-21 Inst Of Organic Chemistry And Biochemistry Of The Academy Of Sciences Of The Czech Republic Yeni sitostatik 7-deazapürin nükleozidleri.
MY158994A (en) 2008-02-04 2016-11-30 Mercury Therapeutics Inc Ampk modulators
AR070531A1 (es) 2008-03-03 2010-04-14 Novartis Ag Inhibidores de cinasa pim y metodos para su uso
MX2010010012A (es) 2008-03-11 2010-10-20 Incyte Corp Derivados de azetidina y ciclobutano como inhibidores de jak.
CN102015686B (zh) 2008-03-21 2014-07-02 诺华股份有限公司 杂环化合物及其用途
US8344144B2 (en) 2008-06-18 2013-01-01 Merck Sharp & Dohme Corp. Inhibitors of Janus kinases
KR20160130519A (ko) 2008-06-26 2016-11-11 안테리오스, 인코퍼레이티드 경피 운반
UY31952A (es) 2008-07-02 2010-01-29 Astrazeneca Ab 5-metilideno-1,3-tiazolidina-2,4-dionas sustituidas como inhibidores de quinasa pim
FR2933409B1 (fr) 2008-07-03 2010-08-27 Centre Nat Rech Scient NOUVEAUX PYRROLO °2,3-a! CARBAZOLES ET LEUR UTILISATION COMME INHIBITEURS DES KINASES PIM
US8557809B2 (en) 2008-08-19 2013-10-15 Array Biopharma Inc. Triazolopyridine compounds as PIM kinase inhibitors
TWI496779B (zh) 2008-08-19 2015-08-21 Array Biopharma Inc 作為pim激酶抑制劑之三唑吡啶化合物
PT2384326E (pt) 2008-08-20 2014-06-09 Zoetis Llc Compostos de pirrolo[2,3-d]pirimidina
US8759338B2 (en) 2008-09-02 2014-06-24 Novartis Ag Heterocyclic kinase inhibitors
BRPI0918268B1 (pt) 2008-09-02 2021-08-03 Novartis Ag Derivados de picolinamida, seu uso, e composição farmacêutica
MX2011002367A (es) 2008-09-02 2011-04-04 Novartis Ag Inhibidores de cinasa biciclicos.
CL2009001884A1 (es) 2008-10-02 2010-05-14 Incyte Holdings Corp Uso de 3-ciclopentil-3-[4-(7h-pirrolo[2,3-d]pirimidin-4-il)-1h-pirazol-1-il)propanonitrilo, inhibidor de janus quinasa, y uso de una composición que lo comprende para el tratamiento del ojo seco.
WO2010043052A1 (en) 2008-10-17 2010-04-22 Merck Frosst Canada Ltd. Azetidine derivatives as inhibitors of stearoyl-coenzyme a delta-9 desaturase
JOP20190230A1 (ar) 2009-01-15 2017-06-16 Incyte Corp طرق لاصلاح مثبطات انزيم jak و المركبات الوسيطة المتعلقة به
EP2210890A1 (en) 2009-01-19 2010-07-28 Almirall, S.A. Oxadiazole derivatives as S1P1 receptor agonists
US8263601B2 (en) 2009-02-27 2012-09-11 Concert Pharmaceuticals, Inc. Deuterium substituted xanthine derivatives
TW201100429A (en) 2009-05-22 2011-01-01 Incyte Corp N-(hetero)aryl-pyrrolidine derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines and pyrrol-3-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors
DK2432472T3 (da) 2009-05-22 2019-11-18 Incyte Holdings Corp 3-[4-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)-1h-pyrazol-1-yl]octan- eller heptan-nitril som jak-inhibitorer
UA110324C2 (en) 2009-07-02 2015-12-25 Genentech Inc Jak inhibitory compounds based on pyrazolo pyrimidine
US9346809B2 (en) 2009-07-08 2016-05-24 Leo Pharma A/S Heterocyclic compounds as JAK receptor and protein tyrosine kinase inhibitors
WO2011066371A2 (en) 2009-11-24 2011-06-03 Alder Biopharmaceuticals, Inc. Antibodies to il-6 and use thereof
EP2470534A4 (en) 2009-08-24 2013-02-27 Merck Sharp & Dohme JAK INHIBITION FOR BLOCKING TOXICITY ASSOCIATED WITH RNA INTERFERENCE
TW201111385A (en) 2009-08-27 2011-04-01 Biocryst Pharm Inc Heterocyclic compounds as janus kinase inhibitors
TW201113285A (en) 2009-09-01 2011-04-16 Incyte Corp Heterocyclic derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors
EP2475659B1 (en) 2009-09-08 2015-10-28 F.Hoffmann-La Roche Ag 4-substituted pyridin-3-yl-carboxamide compounds and methods of use
EP2305660A1 (en) 2009-09-25 2011-04-06 Almirall, S.A. New thiadiazole derivatives
ES2435491T3 (es) 2009-10-09 2013-12-19 Incyte Corporation Derivados de hidroxilo, ceto y glucurónido de 3-(4-(7H-pirrolo[2,3-d]pirimidin-4-il)-1H-pirazol-1-il)-3-ciclopentilpropanonitrilo
AU2010309882B2 (en) 2009-10-20 2016-01-28 Cellzome Limited Heterocyclyl pyrazolopyrimidine analogues as JAK inhibitors
US8671402B2 (en) 2009-11-09 2014-03-11 Bank Of America Corporation Network-enhanced control of software updates received via removable computer-readable medium
EP2332917B1 (en) 2009-11-11 2012-08-01 Sygnis Bioscience GmbH & Co. KG Compounds for PIM kinase inhibition and for treating malignancy
WO2011069141A2 (en) 2009-12-04 2011-06-09 Board Of Regents, The University Of Texas System Interferon therapies in combination with blockade of stat3 activation
JP5739446B2 (ja) 2009-12-18 2015-06-24 ファイザー・インク ピロロ[2,3−d]ピリミジン化合物
KR20140015162A (ko) 2010-01-12 2014-02-06 에프. 호프만-라 로슈 아게 트라이사이클릭 헤테로사이클릭 화합물, 조성물 및 이의 사용 방법
US20120309776A1 (en) 2010-02-05 2012-12-06 Pfitzer Inc. Pyrrolo[2,3-d]pyrimidine urea compounds as jak inhibitors
SA111320200B1 (ar) 2010-02-17 2014-02-16 ديبيوفارم اس ايه مركبات ثنائية الحلقة واستخداماتها كمثبطات c-src/jak مزدوجة
JP5858434B2 (ja) 2010-02-18 2016-02-10 インサイト・ホールディングス・コーポレイションIncyte Holdings Corporation Janusキナーゼ阻害薬としてのシクロブタンおよびメチルシクロブタン誘導体
PH12015502575A1 (en) 2010-03-10 2017-04-24 Incyte Corp Piperidin-4-yl azetidine derivatives as jak1 inhibitors
NZ603446A (en) 2010-04-14 2014-05-30 Array Biopharma Inc 5, 7-substituted-imidazo [1, 2-c] pyrimidines as inhibitors of jak kinases
EP2390252A1 (en) 2010-05-19 2011-11-30 Almirall, S.A. New pyrazole derivatives
EP3087972A1 (en) 2010-05-21 2016-11-02 Incyte Holdings Corporation Topical formulation for a jak inhibitor
US8637529B2 (en) 2010-06-11 2014-01-28 AbbYie Inc. Pyrazolo[3,4-d]pyrimidine compounds
US9351943B2 (en) 2010-07-01 2016-05-31 Matthew T. McLeay Anti-fibroblastic fluorochemical emulsion therapies
EP2621489A1 (en) 2010-09-30 2013-08-07 Portola Pharmaceuticals, Inc. Combinations of 4-(cyclopropylamino)-2-(4-(4-(ethylsulfonyl)piperazin-1-yl)phenylamino)pyrimidine-5-carboxamide and fludarabine
CN103415515B (zh) 2010-11-19 2015-08-26 因塞特公司 作为jak抑制剂的环丁基取代的吡咯并吡啶和吡咯并嘧啶衍生物
CA2818545C (en) 2010-11-19 2019-04-16 Incyte Corporation Heterocyclic-substituted pyrrolopyridines and pyrrolopyrimidines as jak inhibitors
US20140073643A1 (en) 2010-12-03 2014-03-13 Ym Biosciences Australia Pty Ltd Treatment of jak2-mediated conditions
PL2675451T3 (pl) 2011-02-18 2016-05-31 Novartis Pharma Ag Terapia skojarzona z inhibitorem mTOR/JAK
CN102247368B (zh) 2011-05-19 2013-05-29 安徽永生堂药业有限责任公司 一种复方阿伐斯汀缓释片及其制备方法
CN102218042A (zh) 2011-05-26 2011-10-19 青岛黄海制药有限责任公司 富马酸喹硫平组合物的缓释片剂及其制备方法
US8691807B2 (en) 2011-06-20 2014-04-08 Incyte Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors
WO2013007765A1 (en) 2011-07-13 2013-01-17 F. Hoffmann-La Roche Ag Fused tricyclic compounds for use as inhibitors of janus kinases
WO2013007768A1 (en) 2011-07-13 2013-01-17 F. Hoffmann-La Roche Ag Tricyclic heterocyclic compounds, compositions and methods of use thereof as jak inhibitors
WO2013023119A1 (en) 2011-08-10 2013-02-14 Novartis Pharma Ag JAK P13K/mTOR COMBINATION THERAPY
TW201313721A (zh) 2011-08-18 2013-04-01 Incyte Corp 作為jak抑制劑之環己基氮雜環丁烷衍生物
UA111854C2 (uk) 2011-09-07 2016-06-24 Інсайт Холдінгс Корпорейшн Способи і проміжні сполуки для отримання інгібіторів jak
TW201406761A (zh) 2012-05-18 2014-02-16 Incyte Corp 做爲jak抑制劑之哌啶基環丁基取代之吡咯并吡啶及吡咯并嘧啶衍生物
US10155987B2 (en) 2012-06-12 2018-12-18 Dana-Farber Cancer Institute, Inc. Methods of predicting resistance to JAK inhibitor therapy
SMT202500302T1 (it) 2012-06-15 2025-09-12 Sun Pharmaceutical Industries Inc Derivati deuterati del ruxolitinib
EP2877162A1 (en) 2012-07-27 2015-06-03 ratiopharm GmbH Oral dosage forms for modified release comprising ruxolitinib
CN102772384A (zh) 2012-08-07 2012-11-14 四川百利药业有限责任公司 一种盐酸米诺环素缓释片及其制备方法
EP2890691B1 (en) 2012-08-31 2018-04-25 Principia Biopharma Inc. Benzimidazole derivatives as itk inhibitors
CA2888816A1 (en) 2012-11-01 2014-05-08 Incyte Corporation Tricyclic fused thiophene derivatives as jak inhibitors
EP3949953A1 (en) 2012-11-15 2022-02-09 Incyte Holdings Corporation Sustained-release dosage forms of ruxolitinib
BR112015021458B1 (pt) 2013-03-06 2022-06-07 Incyte Holdings Corporation "processos e intermediários para preparar {1-{1-[3-flúor2-(trifluormetil)isonicotinoil] piperidin-4-il}-3-[4-(7hpirrolo[2,3-d]pirimidin-4-il)-1h-pirazol-1-il]azetidin-3-il}acetonitrila, útil no tratamento de doenças relacionadas com a atividade de janus quinases
UA117830C2 (uk) 2013-05-17 2018-10-10 Інсайт Корпорейшн Похідні біпіразолу як інгібітори jak
WO2015021153A1 (en) 2013-08-07 2015-02-12 Incyte Corporation Sustained release dosage forms for a jak1 inhibitor
TW201529074A (zh) 2013-08-20 2015-08-01 Incyte Corp 在c-反應蛋白含量較高之實體腫瘤患者中的存活益處
SI3110409T1 (sl) 2014-02-28 2018-11-30 Incyte Corporation Inhibitorji JAK1 za zdravljenje mielodisplastičnih sindromov
NZ763326A (en) 2014-04-08 2023-04-28 Incyte Holdings Corp Treatment of b-cell malignancies by a combination jak and pi3k inhibitor
CR20160553A (es) 2014-04-30 2017-04-25 Incyte Corp Procesos para preparar un inhibidor de jak1 y nuevas formas de este
EP3148545B1 (en) 2014-05-28 2023-03-15 Onco Tracker, Inc. Anti-cancer effects of jak2 inhibitors in combination with thalidomide derivatives and glucocorticoids
WO2015184305A1 (en) 2014-05-30 2015-12-03 Incyte Corporation TREATMENT OF CHRONIC NEUTROPHILIC LEUKEMIA (CNL) AND ATYPICAL CHRONIC MYELOID LEUKEMIA (aCML) BY INHIBITORS OF JAK1
US10766900B2 (en) 2017-12-29 2020-09-08 Formosa Laboratories, Inc. Baricitinib intermediate, method for forming Baricitinib intermediate, and method for preparing Baricitinib or pharmaceutically acceptable salt thereof
WO2020163653A1 (en) 2019-02-06 2020-08-13 Concert Pharmaceuticals, Inc. Process for preparing enantiomerically enriched jak inhibitors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090088410A1 (en) * 2002-11-06 2009-04-02 Celgene Corporation Methods for the treatment and management of myeloproliferative diseases using 4-(amino)-2-(2,6-dioxo(3-piperidyl)-isoindoline-1,3-dione in combination with other therapies

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"FDA prescribing information forJakafi (Ruxolitinib dosage form)", 1 November 2011 (2011-11-01), XP055080930, Retrieved from the Internet <URL:http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/202192lbl.pdf> [retrieved on 20130925] *
CHAUHAN ET AL: "A concise review on sustained drug delivery system and its opportunities", vol. 2, no. 2, March 2012 (2012-03-01), XP002718280, Retrieved from the Internet <URL:http://www.ajptr.com/archive/volume-2/april-2012-issue-2/article-137.html> [retrieved on 20140102] *
J. MASCARENHAS ET AL: "Ruxolitinib: The First FDA Approved Therapy for the Treatment of Myelofibrosis", CLINICAL CANCER RESEARCH, vol. 18, no. 11, 1 June 2012 (2012-06-01), pages 3008 - 3014, XP055094693, ISSN: 1078-0432, DOI: 10.1158/1078-0432.CCR-11-3145 *
NATIONAL INSTITUTES OF HEALTH: "Study of Ruxolitinib Sustained release formulations in Myelofibrosis Patients", 23 July 2013 (2013-07-23), XP002718274, Retrieved from the Internet <URL:http://clinicaltrials.gov/ct2/show/results/NCT01340651> [retrieved on 20140102] *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11744832B2 (en) 2005-12-13 2023-09-05 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors
EP3450434B1 (en) * 2012-06-15 2021-02-24 CoNCERT Pharmaceuticals, Inc. Deuterated derivatives of ruxolitinib
US11337927B2 (en) 2012-11-15 2022-05-24 Incyte Holdings Corporation Sustained-release dosage forms of ruxolitinib
EP2919766B1 (en) 2012-11-15 2021-05-26 Incyte Holdings Corporation Sustained-release dosage forms of ruxolitinib
US11576865B2 (en) 2012-11-15 2023-02-14 Incyte Corporation Sustained-release dosage forms of ruxolitinib
US11576864B2 (en) 2012-11-15 2023-02-14 Incyte Corporation Sustained-release dosage forms of ruxolitinib
US11896717B2 (en) 2012-11-15 2024-02-13 Incyte Holdings Corporation Sustained-release dosage forms of ruxolitinib
US12151026B2 (en) 2013-08-07 2024-11-26 Incyte Corporation Sustained release dosage forms for a JAK1 inhibitor
WO2017025814A1 (en) 2014-08-07 2017-02-16 Acerta Pharma B.V. Methods of treating cancers, immune and autoimmune diseases, and inflammatory diseases based on btk occupancy and btk resynthesis rate
WO2016020901A1 (en) 2014-08-07 2016-02-11 Acerta Pharma B.V. Methods of treating cancers, immune and autoimmune diseases, and inflammatory diseases based on btk occupancy and btk resynthesis rate
US10561659B2 (en) 2016-05-04 2020-02-18 Concert Pharmaceuticals, Inc. Treatment of hair loss disorders with deuterated JAK inhibitors
US12076323B2 (en) 2016-05-04 2024-09-03 Sun Pharmaceuticals Industries, Inc. Treatment of hair loss disorders with deuterated JAK inhibitors
WO2020039401A1 (en) 2018-08-24 2020-02-27 Novartis Ag Treatment comprising il-1βeta binding antibodies and combinations thereof
US11833155B2 (en) 2020-06-03 2023-12-05 Incyte Corporation Combination therapy for treatment of myeloproliferative neoplasms
US12440495B2 (en) 2020-06-03 2025-10-14 Incyte Corporation Combination therapy for treatment of myeloproliferative neoplasms
US20230293531A1 (en) * 2020-07-30 2023-09-21 Assistance Publique-Hôpitaux de Paris Method for treating immune toxicities induced by immune checkpoint inhibitors
US12285432B2 (en) 2021-08-11 2025-04-29 Sun Pharmaceutical Industries, Inc. Treatment of hair loss disorders with deuterated JAK inhibitors
WO2024028193A1 (en) * 2022-08-03 2024-02-08 Medichem, S.A. Stable oral pharmaceutical formulation containing ruxolitinib hemifumarate
WO2024189130A1 (en) * 2023-03-15 2024-09-19 Zhejiang Qizheng Pharmaceutical Co., Ltd. Pharmaceutical composition comprising ruxolitinib
WO2024189132A1 (en) * 2023-03-15 2024-09-19 Zhejiang Qizheng Pharmaceutical Co., Ltd. Pharmaceutical composition comprising ruxolitinib

Also Published As

Publication number Publication date
PE20151157A1 (es) 2015-08-19
US20220323363A1 (en) 2022-10-13
PE20200175A1 (es) 2020-01-24
HUE055894T2 (hu) 2021-12-28
MX2020012676A (es) 2023-01-03
KR20210037012A (ko) 2021-04-05
CA3178452A1 (en) 2014-05-22
IL238765B (en) 2022-04-01
NZ708157A (en) 2019-07-26
US20220331253A1 (en) 2022-10-20
BR112015010663A2 (pt) 2017-07-11
US11576864B2 (en) 2023-02-14
HK1213796A1 (en) 2016-07-15
CR20190073A (es) 2019-04-25
JP2019112436A (ja) 2019-07-11
TWI702057B (zh) 2020-08-21
MY191357A (en) 2022-06-19
JP7577146B2 (ja) 2024-11-01
US10166191B2 (en) 2019-01-01
TW202228704A (zh) 2022-08-01
US20250312279A1 (en) 2025-10-09
ZA202202711B (en) 2024-02-28
IL317061A (en) 2025-01-01
SG11201503695XA (en) 2015-06-29
AU2013344780A1 (en) 2015-05-28
PH12020551186B1 (en) 2024-03-20
PH12015501089A1 (en) 2015-07-27
PT2919766T (pt) 2021-07-29
CN113384545A (zh) 2021-09-14
AU2020201011B2 (en) 2021-12-09
ES2880814T3 (es) 2021-11-25
MX380147B (es) 2025-03-12
CN105007901A (zh) 2015-10-28
CA2890755C (en) 2024-02-20
CY1124446T1 (el) 2022-07-22
TW202106304A (zh) 2021-02-16
CL2015001286A1 (es) 2015-08-28
HRP20211158T1 (hr) 2021-10-15
AU2018203899B2 (en) 2020-03-05
JP2023058604A (ja) 2023-04-25
SI2919766T1 (sl) 2021-11-30
IL297429A (en) 2022-12-01
US11337927B2 (en) 2022-05-24
LT2919766T (lt) 2021-09-27
AU2022201582A1 (en) 2022-03-31
DK2919766T3 (da) 2021-07-12
SMT202100436T1 (it) 2021-09-14
BR112015010663A8 (pt) 2021-06-22
TW201922255A (zh) 2019-06-16
AU2018203899A1 (en) 2018-06-21
UA120834C2 (uk) 2020-02-25
CR20150265A (es) 2015-08-24
AU2013344780B2 (en) 2018-03-01
PH12020551186A1 (en) 2021-07-26
MX2015005947A (es) 2015-09-08
AR093490A1 (es) 2015-06-10
MX2023000255A (es) 2023-02-13
US20230136579A1 (en) 2023-05-04
JP2021113208A (ja) 2021-08-05
IL238765A0 (en) 2015-06-30
JP6975738B2 (ja) 2021-12-01
US20190231696A1 (en) 2019-08-01
TW201434496A (zh) 2014-09-16
IL291391B (en) 2022-11-01
JP7225299B2 (ja) 2023-02-20
AU2020201011A1 (en) 2020-03-05
JP2015537030A (ja) 2015-12-24
EA201590930A1 (ru) 2015-08-31
US11576865B2 (en) 2023-02-14
SG10201703685UA (en) 2017-06-29
IL291391A (en) 2022-05-01
US20140135350A1 (en) 2014-05-15
KR20150085833A (ko) 2015-07-24
CN113384546A (zh) 2021-09-14
SG10202111768XA (en) 2021-11-29
KR102242077B1 (ko) 2021-04-20
EP2919766B1 (en) 2021-05-26
PL2919766T3 (pl) 2021-10-04
RS62329B1 (sr) 2021-10-29
US11896717B2 (en) 2024-02-13
US20210128477A1 (en) 2021-05-06
KR20220162825A (ko) 2022-12-08
BR112015010663B1 (pt) 2022-12-06
CA2890755A1 (en) 2014-05-22
NZ748448A (en) 2019-12-20
TWI761825B (zh) 2022-04-21
US10874616B2 (en) 2020-12-29
EP2919766A1 (en) 2015-09-23
US20220211631A1 (en) 2022-07-07
EP3949953A1 (en) 2022-02-09
US20250064746A1 (en) 2025-02-27

Similar Documents

Publication Publication Date Title
US11576864B2 (en) Sustained-release dosage forms of ruxolitinib
HK40068526A (en) Sustained-release dosage forms of ruxolitinib
HK1213796B (en) Sustained-release dosage forms of ruxolitinib

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13798840

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2890755

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 238765

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/005947

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2015542764

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 000624-2015

Country of ref document: PE

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12015501089

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: CR2015-000265

Country of ref document: CR

WWE Wipo information: entry into national phase

Ref document number: 15114028

Country of ref document: CO

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015010663

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2013344780

Country of ref document: AU

Date of ref document: 20131114

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013798840

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201590930

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 20157015681

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201503544

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 112015010663

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150511

WWR Wipo information: refused in national office

Ref document number: 297429

Country of ref document: IL