WO2014051032A1 - 全固体二次電池用スラリー、全固体二次電池用電極の製造方法、全固体二次電池用電解質層の製造方法及び全固体二次電池 - Google Patents
全固体二次電池用スラリー、全固体二次電池用電極の製造方法、全固体二次電池用電解質層の製造方法及び全固体二次電池 Download PDFInfo
- Publication number
- WO2014051032A1 WO2014051032A1 PCT/JP2013/076219 JP2013076219W WO2014051032A1 WO 2014051032 A1 WO2014051032 A1 WO 2014051032A1 JP 2013076219 W JP2013076219 W JP 2013076219W WO 2014051032 A1 WO2014051032 A1 WO 2014051032A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid
- secondary battery
- active material
- slurry
- electrode active
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a slurry for an all-solid secondary battery, a method for producing an electrode for an all-solid secondary battery, a method for producing an electrolyte layer for an all-solid secondary battery, and an all-solid secondary battery.
- secondary batteries such as lithium batteries have been used in various applications such as portable power terminals such as personal digital assistants and portable electronic devices, as well as small household power storage devices, motorcycles, electric vehicles, and hybrid electric vehicles. Has increased.
- Patent Document 1 an electrode active material layer and an electrolyte layer are prepared using a slurry in which toluene as a dispersion medium is added to a binder having an inorganic solid electrolyte and an ethylene oxide skeleton.
- Patent Document 2 an intervening layer made of a polymer in which a lithium salt is dissolved is provided between the solid electrolyte layer and the negative electrode active material layer. This intervening layer is formed using a solution obtained by adding tetrahydrofuran as a dispersion medium to a lithium salt and a polymer.
- a dispersion medium it is required to dissolve or disperse a binder and other components and to use a material that does not react with an inorganic solid electrolyte.
- an electrode (active material layer) and an electrolyte layer are prepared.
- a uniform active material layer and electrolyte layer can be obtained, and further, the degree of drying can be further controlled from the viewpoint of extending the life of the obtained all-solid-state secondary battery. It is necessary to select a dispersion medium.
- An object of the present invention is to provide a slurry for an all-solid-state secondary battery capable of producing a uniform active material layer and / or an electrode and making the obtained secondary battery have a long life, and for this all-solid-state secondary battery. It is providing the manufacturing method of the all-solid-state secondary battery electrode using a slurry, the manufacturing method of an all-solid-state secondary battery electrolyte layer, and an all-solid-state secondary battery.
- the present inventor has found that the above object can be achieved by using a specific dispersion medium as the dispersion medium contained in the slurry, and has completed the present invention.
- An all-solid secondary comprising an inorganic solid electrolyte, an ion conductive polymer, an alkali metal salt and an ether or / and ketone solvent, the dispersion medium having a boiling point of 100 ° C. to 250 ° C. Slurry for batteries, (2) The all-solid-state secondary battery slurry according to (1), wherein the dispersion medium has a solubility parameter of 8 to 12 (cal / cm 3 ) 1/2 .
- a method for producing an electrolyte layer for an all-solid-state secondary battery comprising a drying step of drying the slurry for a secondary battery at 100 ° C. or higher, (5)
- An all-solid secondary battery electrode obtained by the production method described in (3) and at least one of an electrolyte layer for an all-solid secondary battery obtained by the production method described in (4) A solid secondary battery is provided.
- the slurry for all-solid-state secondary batteries which can produce a uniform active material layer and / or an electrode, and can make the obtained secondary battery long life, this all-solid-state secondary battery use
- a method for producing an all-solid secondary battery electrode using a slurry a method for producing an all-solid secondary battery electrolyte layer, and an all-solid secondary battery.
- the slurry for an all-solid-state secondary battery according to an embodiment of the present invention comprises an inorganic solid electrolyte, an ion conductive polymer, an alkali metal salt, an ether or / and a ketone-based solvent having a boiling point of 100 ° C. to 250 ° C. Including.
- the inorganic solid electrolyte contained in the all-solid-state secondary battery slurry of the present invention is not particularly limited as long as it has lithium ion conductivity, but is not limited to a crystalline inorganic lithium ion conductor or an amorphous inorganic lithium ion. It is preferable to include a conductor.
- Crystalline inorganic lithium ion conductors include Li 3 N, LIICON (Li 14 Zn (GeO 4 ) 4 ), perovskite Li 0.5 La 0.5 TiO 3 , LIPON (Li 3 + y PO 4-x N x ), Thio -LISICON (Li 3.25 Ge 0.25 P 0.75 S 4 ) and the like, and amorphous inorganic lithium ion conductors include glass Li-Si-SO and Li-PS. Among these, from the viewpoint of conductivity, an amorphous inorganic lithium ion conductor is preferable, and a sulfide containing Li, P, and S is more preferable.
- the sulfide containing Li, P and S Since the sulfide containing Li, P and S has high lithium ion conductivity, the internal resistance of the battery can be lowered and the output characteristics can be reduced by using the sulfide containing Li, P and S as the inorganic solid electrolyte. Can be improved.
- the sulfide containing Li, P and S is more preferably a sulfide glass composed of Li 2 S and P 2 S 5 from the viewpoint of lowering the internal resistance of the battery and improving the output characteristics, and Li 2 S :
- a sulfide glass produced from a mixed raw material of Li 2 S and P 2 S 5 having a molar ratio of: P 2 S 5 of 65:35 to 85:15 is particularly preferable.
- a sulfide containing Li, P and S is synthesized by a mechanochemical method using a mixed material of Li 2 S and P 2 S 5 having a molar ratio of Li 2 S: P 2 S 5 of 65:35 to 85:15. It is preferable that it is the sulfide glass ceramic obtained by doing this.
- the lithium ion conductivity is preferably 1 ⁇ 10 ⁇ 4 S / cm or more, and more preferably 1 ⁇ 10 ⁇ 3 S / cm or more.
- Inorganic solid electrolytes include not only sulfide glass composed only of Li, P and S, sulfide glass ceramic composed only of Li, P and S, but also include materials other than Li, P and S, as will be described later. May be.
- the average particle size of the inorganic solid electrolyte is preferably in the range of 0.1 to 50 ⁇ m.
- the average particle size of the inorganic solid electrolyte is more preferably in the range of 0.1 to 20 ⁇ m.
- the average particle size can be determined by measuring the particle size distribution by laser diffraction.
- the inorganic solid electrolyte at least one selected from the group consisting of Al 2 S 3 , B 2 S 3 and SiS 2 as a starting material in addition to the P 2 S 5 and Li 2 S as long as the ion conductivity is not lowered. It is preferred to include seed sulfides. When such a sulfide is added, the glass component in the inorganic solid electrolyte can be stabilized.
- At least one orthooxo acid selected from the group consisting of Li 3 PO 4 , Li 4 SiO 4 , Li 4 GeO 4 , Li 3 BO 3 and Li 3 AlO 3 in addition to Li 2 S and P 2 S 5. It is preferable to include lithium. When such a lithium orthooxo acid is contained, the glass component in the inorganic solid electrolyte can be stabilized.
- organic polymer which functions as a binder (binder) and has ion conductivity is preferable.
- organic polymers include, for example, polyether polymers, graft polymers containing polyether units, polycarbonate, polyamide, polyester, polysulfide, polyamine, and other units constituting each of these polymers. Examples thereof include polymers having a chain or a side chain, copolymers thereof, and polymers having a nitrile group.
- polyether polymer in addition to polyethylene oxide (PEO) and polypropylene oxide (PPO), an ethylene oxide monomer unit and a propylene oxide monomer unit can be copolymerized with these as required. And a polymer obtained by copolymerizing an oxirane monomer unit.
- PEO polyethylene oxide
- PPO polypropylene oxide
- oxirane monomers include alkylene oxides having 4 to 20 carbon atoms, glycidyl ethers having 4 to 10 carbon atoms, oxides of aromatic vinyl compounds, and a crosslinkable oxirane monomer having a crosslinkable group introduced into these oxirane monomers.
- Examples include the body.
- the form of copolymerization may be a block copolymer or a random copolymer, and is not particularly limited, but a random copolymer is preferred. By using a random copolymer, the effect of inhibiting the crystallinity of the polyethylene oxide portion is increased, so that the ionic conductivity at a low temperature tends to increase. Further, it may be a comb polymer obtained by grafting a short repeating unit of polyoxyethylene as a side chain to a polymer having a flexible main chain structure.
- the polyether polymer as the ion conductive polymer can be obtained by ring-opening polymerization of a predetermined oxirane compound by a solution polymerization method or a solvent slurry polymerization method.
- Examples of the polymerization catalyst include a catalyst obtained by reacting water and acetylacetone with organoaluminum (Japanese Patent Publication No. 35-15797), and a catalyst obtained by reacting phosphoric acid and triethylamine with triisobutylaluminum (Japanese Patent Publication No. 46-27534). , A catalyst obtained by reacting triisobutylaluminum with an organic acid salt of diazaviacycloundecene and phosphoric acid (Japanese Patent Publication No.
- a catalyst comprising a partially hydrolyzed aluminum alkoxide and an organic zinc compound JP-B 43-2945
- a catalyst comprising an organic zinc compound and a polyhydric alcohol JP-B 45-7775
- a catalyst comprising a dialkylzinc and water JP-B 36-3394
- aromatic hydrocarbons such as benzene and toluene
- chain saturated hydrocarbons such as n-pentane and n-hexane
- alicyclic hydrocarbons such as cyclopentane and cyclohexane; and the like are used.
- solvent slurry polymerization using a solvent such as n-pentane, n-hexane, and cyclopentane is preferable.
- the stability of the polymerization reaction system can be determined by treating the catalyst in advance with a monomer that gives a polymer insoluble in the solvent and a monomer that gives a polymer that is soluble in the solvent. From the viewpoint of In the treatment of the catalyst, the catalyst component and a small amount of each of the above monomers are mixed and aged at a temperature of 0 to 100 ° C., preferably 30 to 50 ° C. for 10 to 30 minutes.
- the polymerization reaction can be performed at 0 to 100 ° C., preferably 30 to 70 ° C., by an arbitrary method such as a batch system, a semi-batch system, or a continuous system.
- graft polymer containing a polyether unit examples include those obtained by graft polymerization of the above-described polyether polymer and poly (meth) acrylate, polystyrene, polyphosphazene, polysilicon and the like.
- the content of ethylene oxide monomer units in these polyether polymers and graft polymers containing polyether units is preferably 80 to 98% by mass, more preferably 85 to 95% by mass.
- the polymer having a nitrile group examples include a copolymer of an ⁇ , ⁇ -ethylenically unsaturated nitrile group-containing monomer and a conjugated diene monomer or an ⁇ -olefin monomer (hereinafter referred to as “nitrile rubber”). And the hydride thereof.
- the ⁇ , ⁇ -ethylenically unsaturated nitrile group-containing monomer include acrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -bromoacrylonitrile, methacrylonitrile and the like, with acrylonitrile being preferred.
- Examples of the conjugated diene monomer include 1,3-butadiene, isoprene, 1,3-pentadiene and the like.
- Examples of the ⁇ -olefin monomer include ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene and the like.
- 1,3-butadiene and isoprene are preferred, and 1,3-butadiene is more preferred.
- Nitrile rubber may be further copolymerized with a monomer copolymerizable with these monomers within a range that does not substantially impair the object of the present invention.
- the content of the ⁇ , ⁇ -ethylenically unsaturated nitrile group-containing monomer unit in the nitrile rubber is preferably 10 to 60% by mass, more preferably 15 to 50% by mass.
- acrylonitrile-butadiene rubber polyethylene oxide (PEO), and polypropylene oxide (PPO) are preferably used from the viewpoint of obtaining a secondary battery having good ion conductivity.
- Alkali metal salt It does not specifically limit as an alkali metal salt contained in the slurry for all-solid-state secondary batteries of this invention, If it is a salt soluble in the said ion conductive polymer, it will not specifically limit.
- alkali metal salts include salts composed of the following anions and cations.
- examples include sulfonate ions, octyl sulfonate ions, dodecylbenzene sulfonate ions, naphthalene sulfonate ions, dodecyl naphthalene sulfonate ions, 7,7,8,8-tetracyano-p-quinodimethane ions, and the like.
- Examples of cations include Li + , Na + , K + and the like. Combinations of these anions and cations are arbitrary, and two or more salts may be used in combination as necessary. Among these, from the viewpoint of obtaining a secondary battery with good ion conductivity, a lithium salt and a sodium salt are preferable.
- LiCF 3 SO 3 , LiPF 6 , LiBF 4 , LiSCN, LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , and LiClO 4 are more preferable.
- the content of the alkali metal salt with respect to the ion conductive polymer is usually 0.001 to 5, preferably It is 0.005 to 3, more preferably 0.01 to 1. If the content of the alkali metal salt is too large, the workability, formability, and mechanical strength of the solid electrolyte film may be lowered, or the ion conductivity may be lowered. On the other hand, if the content of the alkali metal salt is too small, the ionic conductivity tends to be too low.
- the dispersion medium used for the all-solid secondary battery slurry of the present invention has an ether solvent and / or ketone solvent having a boiling point of 100 ° C. to 250 ° C., preferably 110 ° C. to 240 ° C., more preferably 120 ° C. to 230 ° C. It is.
- the boiling point is within this range, drying during the production of the slurry for an all-solid secondary battery can be prevented, and a uniform slurry can be obtained. Furthermore, the drying rate at the time of forming an active material layer (a positive electrode active material layer and a negative electrode active material layer) and a solid electrolyte layer can be increased.
- anisole (boiling point: 153.8 ° C.), ethyl isoamyl ether (boiling point: 112 ° C.), ethyl benzyl ether (boiling point: 186 ° C.), epichlorohydrin (boiling point: 116.1 ° C.) Cresyl methyl ether (boiling point: 171.8-176.5 ° C), diisoamyl ether (boiling point: 173.2 ° C), diethyl acetal (boiling point: 102.7 ° C), dioxane (boiling point: 101.4 ° C) 1,8-cineol (boiling point: 176.4 ° C), dibutyl ether (boiling point: 141.97 ° C), trioxane (boiling point: 114.5 ° C), bis (2-chloroethyl) ether (boiling point: 114.5 ° C), bis (2
- the solubility parameter (SP value) of the dispersion medium is 8 to 12 from the viewpoint that the solubility of the ion conductive polymer and the alkali metal salt is good and a stable slurry can be obtained without reacting with the inorganic solid electrolyte.
- SP value solubility parameter
- the content of the dispersion medium in the slurry for the all-solid-state secondary battery when forming the solid electrolyte layer is the inorganic solid electrolyte from the viewpoint of obtaining good coating properties while maintaining the dispersibility of the inorganic solid electrolyte in the slurry.
- the amount is preferably 10 to 700 parts by mass, more preferably 30 to 500 parts by mass with respect to 100 parts by mass.
- the content of the dispersion medium in the case of forming the positive electrode active material layer is based on 100 parts by mass of the positive electrode active material described later from the viewpoint of obtaining good paint properties while maintaining the dispersibility of the positive electrode active material and the inorganic solid electrolyte.
- the amount is preferably 20 to 300 parts by mass, more preferably 30 to 200 parts by mass.
- the content of the dispersion medium is based on 100 parts by mass of the negative electrode active material described later from the viewpoint of obtaining good coating properties while maintaining the dispersibility of the negative electrode active material and the inorganic solid electrolyte.
- the amount is preferably 20 to 300 parts by mass, more preferably 30 to 200 parts by mass.
- the slurry for an all-solid-state secondary battery of the present invention is obtained by mixing the inorganic solid electrolyte, the ion conductive polymer, the alkali metal salt, the dispersion medium, and other components added as necessary, which will be described later.
- the mixing method of each component contained in the slurry for all-solid-state secondary batteries is not specifically limited, For example, the method using mixing apparatuses, such as a stirring type, a shaking type, and a rotation type, is mentioned.
- a method using a dispersion kneader such as a homogenizer, a ball mill, a bead mill, a planetary mixer, a sand mill, a roll mill, and a planetary kneader can be used. From the viewpoint that aggregation of an inorganic solid electrolyte can be suppressed, a planetary mixer, a ball mill Alternatively, a method using a bead mill is preferable.
- the viscosity when the slurry for an all-solid secondary battery produced as described above is used for forming a solid electrolyte layer is preferably 10 to 500 mPa ⁇ s, more preferably 15 to 400 mPa ⁇ s, and particularly preferably 20 to 300 mPa ⁇ s. It is.
- the viscosity of the slurry for the all-solid-state secondary battery for forming the solid electrolyte layer is in the above range, the dispersibility and the coatability of the slurry are improved. Further, if the viscosity of the slurry is less than 10 mPa ⁇ s, the slurry for forming the solid electrolyte layer may sag. Moreover, when the viscosity of the slurry exceeds 500 mPa ⁇ s, it may be difficult to reduce the thickness of the solid electrolyte layer.
- the viscosity when using the slurry for an all-solid-state secondary battery produced as described above for forming the positive electrode active material layer or the negative electrode active material layer is preferably from the viewpoint of improving the dispersibility and coating properties of the slurry. It is 3000 to 50000 mPa ⁇ s, more preferably 4000 to 30000 mPa ⁇ s, and particularly preferably 5000 to 10000 mPa ⁇ s.
- the viscosity of the slurry is less than 3000 mPa ⁇ s, the active material and the inorganic solid electrolyte in the slurry may settle.
- the viscosity of a slurry exceeds 50000 mPa * s, the uniformity of a coating film may be lost.
- the all-solid-state secondary battery of the present invention includes a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a solid electrolyte layer between the positive electrode active material layer and the negative electrode active material layer. At least one of the active material layer, the negative electrode active material layer, and the solid electrolyte layer is formed using the all-solid secondary battery slurry described above, and all these layers are formed using the all-solid secondary battery slurry. It is preferable.
- the positive electrode in the all-solid-state secondary battery of the present invention is an all-solid-state secondary battery slurry for forming the positive electrode active material layer on the current collector. It is manufactured by coating and drying to form a positive electrode active material layer.
- the negative electrode in the all-solid secondary battery of the present invention is prepared by applying an all-solid secondary battery slurry for forming a negative electrode active material layer on a current collector different from the positive electrode current collector and drying it. It is manufactured by forming a material layer.
- the slurry for the all-solid-state secondary battery for forming the solid electrolyte layer is applied on the formed positive electrode active material layer or negative electrode active material layer and dried to form a solid electrolyte layer.
- the solid electrolyte layer may be formed by applying a slurry for forming a solid electrolyte layer for forming a solid electrolyte layer on a carrier film, drying it, and then transferring it onto the positive electrode active material layer or the negative electrode active material layer. it can.
- an all-solid-state secondary battery element is manufactured by bonding together the electrode which did not form a solid electrolyte layer, and the electrode which formed said solid electrolyte layer.
- the pressurizing method is not particularly limited, and examples thereof include a flat plate press, a roll press, and CIP (Cold Isostatic Press).
- the pressure for pressing is preferably 5 to 700 MPa, more preferably 7 to 500 MPa. This is because by setting the pressure of the pressure press within the above range, the resistance at each interface between the electrode and the solid electrolyte layer, and further, the contact resistance between particles in each layer is lowered, and good battery characteristics are exhibited.
- the slurry for the all-solid secondary battery is applied to the positive electrode active material layer or the negative electrode active material layer, but the all-solid-state secondary battery is applied to the active material layer having the larger particle diameter of the electrode active material to be used. It is preferable to apply a slurry.
- the particle diameter of the electrode active material is large, irregularities are formed on the surface of the active material layer. Therefore, the irregularities on the surface of the active material layer can be reduced by applying the slurry. Therefore, when the electrode formed with the solid electrolyte layer and the electrode not formed with the solid electrolyte layer are bonded and laminated, the contact area between the solid electrolyte layer and the electrode is increased, and the interface resistance can be suppressed. .
- the obtained all-solid-state secondary battery element is put into a battery container as it is or wound or folded according to the shape of the battery, and sealed to obtain an all-solid-state secondary battery.
- an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate or the like can be placed in the battery container to prevent an increase in pressure inside the battery and overcharge / discharge.
- the shape of the battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
- the solid electrolyte layer, the positive electrode active material layer, and the negative electrode active material layer will be described in this order.
- the solid electrolyte layer is an all-solid-state secondary battery slurry for forming a solid electrolyte layer (hereinafter sometimes referred to as “slurry for a solid electrolyte layer”), which will be described later. It is formed by applying on the active material layer and drying.
- the application of the slurry for the all-solid-state secondary battery is such that the relative humidity is 0.1% or less from the viewpoint that the inorganic solid electrolyte does not react with moisture present in the application environment and a battery with high ion conductivity is obtained. In an environment of preferably 0.05% or less, more preferably 0.01% or less.
- coating method in particular of the slurry for all-solid-state secondary batteries on a positive electrode active material layer or a negative electrode active material layer is not restrict
- doctor blade method, dipping method, reverse roll method, direct roll method, gravure method, extrusion method, brush coating method, etc. are mentioned, and coating by gravure method from the viewpoint that a thin solid electrolyte layer can be formed.
- the amount to be applied is not particularly limited, but is an amount such that the thickness of the solid electrolyte layer formed after removing the dispersion medium is preferably 1 to 15 ⁇ m, more preferably 3 to 14 ⁇ m.
- the thickness of the solid electrolyte layer in the all solid state secondary battery of the present invention is preferably 1 to 15 ⁇ m, more preferably 2 to 13 ⁇ m, and particularly preferably 3 to 10 ⁇ m.
- the thickness of the solid electrolyte layer is in the above range, the internal resistance of the all-solid secondary battery can be reduced.
- drying is performed at a temperature at which the dispersion medium is sufficiently volatilized.
- the drying temperature is 100 ° C. or more and 200 ° C. or less, preferably 105 ° C. or more and 190 ° C. or less, more preferably from the viewpoint of increasing the drying speed and suppressing crystallization of the inorganic solid electrolyte to obtain a battery having high ion conductivity. Is 110 ° C. or higher and 180 ° C. or lower.
- Examples of the drying method include drying by warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
- the drying time is not particularly limited, but is usually in the range of 5 seconds to 10 minutes.
- the solid electrolyte layer can also be formed by applying a slurry for an all-solid secondary battery on a carrier film, drying it, and then transferring it onto the positive electrode active material layer or the negative electrode active material layer.
- the slurry for an all-solid-state secondary battery includes the inorganic solid electrolyte, the binder composed of the ion conductive polymer, the alkali metal salt, and other components added as necessary, in addition to the dispersion medium. You may go out. Other components added as necessary are not particularly limited as long as they do not affect the battery reaction, and examples include other binders, dispersants, leveling agents, and antifoaming agents. .
- the all-solid-state secondary battery slurry may contain a binder other than the binder composed of an ion conductive polymer.
- binders that may be used in the formation of the solid electrolyte layer include polymer compounds such as fluorine polymers, diene polymers, acrylic polymers, and silicone polymers. Fluorine polymer, diene polymer, or acrylic polymer is preferable, and acrylic polymer is more preferable in that the withstand voltage can be increased and the energy density of the all-solid secondary battery can be increased. .
- fluoropolymer examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and tetrafluoroethylene-hexafluoropropylene copolymer (FEP).
- PTFE polytetrafluoroethylene
- PVDF polyvinylidene fluoride
- FEP tetrafluoroethylene-hexafluoropropylene copolymer
- the diene polymer is a polymer including a monomer unit derived from a conjugated diene and a monomer unit derived from an aromatic vinyl.
- conjugated diene and the aromatic vinyl other polymers in the negative electrode active material layer described later are used. The thing similar to what was illustrated in (1) is mentioned.
- the acrylic polymer is a polymer containing a monomer unit derived from an ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl ester. Specifically, the acrylic polymer is an ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl ester.
- Examples of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl esters include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, and t-butyl acrylate, acrylic acid- Acrylic acid alkyl esters such as 2-ethylhexyl, 2-methoxyethyl acrylate, 2-ethoxyethyl acrylate, and benzyl acrylate; 2- (perfluorobutyl) ethyl acrylate, 2- (perfluoropentyl) ethyl acrylate 2- (perfluoroalkyl) ethyl acrylate such as methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, and t-butyl meth
- the content ratio of the monomer unit derived from the ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl ester in the acrylic polymer is usually 40% by mass or more, preferably 50% by mass or more, more preferably 60% by mass or more. .
- the upper limit of the content ratio of the monomer unit derived from the ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl ester in the acrylic polymer is usually 100% by mass or less, preferably 95% by mass or less.
- the acrylic polymer includes a copolymer of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl ester and another monomer copolymerizable with the ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl ester.
- Polymers are preferred.
- the copolymerizable monomer include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid; two or more carbons such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane triacrylate.
- Carboxylates having carbon double bonds styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, ⁇ -methyl styrene, Styrene monomers such as divinylbenzene; Amide monomers such as acrylamide, methacrylamide, N-methylolacrylamide, and acrylamide-2-methylpropanesulfonic acid; Olefins such as ethylene and propylene Diene monomers such as butadiene and isoprene; monomers containing halogen atoms such as vinyl chloride and vinylidene chloride; vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate and vinyl benzoate; methyl vinyl ether, ethyl Vinyl ethers such as vinyl ether and butyl vinyl ether;
- styrene monomers, amide monomers, and ⁇ , ⁇ -unsaturated nitrile compounds are preferable from the viewpoint of solubility in a dispersion medium.
- the content of the copolymerizable monomer unit in the acrylic polymer is usually 60% by mass or less, preferably 55% by mass or less, more preferably 25% by mass or more and 45% by mass or less.
- the silicone polymer include silicone rubber, fluorosilicone rubber, and polyimide silicone.
- the content of other binders in the binder is usually 50% by mass or less, preferably Is 40% by mass or less.
- the content of the binder (the binder made of an ion conductive polymer and other binders) in the slurry for the all-solid-state secondary battery is the same between the inorganic solid electrolyte particles.
- the binder made of an ion conductive polymer and other binders
- the content of the binder in the slurry for the all-solid-state secondary battery is the same between the inorganic solid electrolyte particles.
- 0.1 to 10 parts by mass with respect to 100 parts by mass of the inorganic solid electrolyte More preferred is 0.5 to 7 parts by mass, and particularly preferred is 0.5 to 5 parts by mass.
- Dispersant examples include an anionic compound, a cationic compound, a nonionic compound, and a polymer compound.
- a dispersing agent is selected according to the solid electrolyte to be used.
- the content of the dispersant in the composition is preferably within a range that does not affect the battery characteristics. Specifically, the content is 10 parts by mass or less with respect to 100 parts by mass of the inorganic solid electrolyte.
- Leveling agent examples include surfactants such as alkyl surfactants, silicone surfactants, fluorine surfactants, and metal surfactants. By mixing the above-mentioned surfactant, it is possible to prevent the repelling that occurs when the slurry for an all-solid-state secondary battery is applied to the surface of the positive electrode active material layer or the negative electrode active material layer, which will be described later. Can be improved.
- the content of the leveling agent in the composition is preferably in a range that does not affect the battery characteristics, and specifically 10 parts by mass or less with respect to 100 parts by mass of the solid electrolyte.
- the antifoaming agent examples include mineral oil antifoaming agents, silicone antifoaming agents, and polymer antifoaming agents.
- the antifoaming agent is selected according to the solid electrolyte used.
- the content of the antifoaming agent in the composition is preferably within a range that does not affect the battery characteristics. Specifically, it is 10 parts by mass or less with respect to 100 parts by mass of the solid electrolyte.
- the positive electrode active material layer is a slurry for an all solid secondary battery for forming a positive electrode active material layer (hereinafter, also referred to as “slurry for positive electrode active material layer”) on a collector to be described later. It is formed by applying and drying.
- the application of the slurry for the positive electrode active material layer is such that the inorganic solid electrolyte does not react with moisture present in the application environment, and a relative humidity is 0.1% or less from the viewpoint of obtaining a battery having high ion conductivity. It is performed in an environment, preferably in an environment of 0.05% or less, more preferably in an environment of 0.01% or less.
- coating method of the slurry for positive electrode active material layers to the collector surface is not restrict
- examples thereof include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
- the amount to be applied is not particularly limited, but is such an amount that the thickness of the positive electrode active material layer formed after removing the dispersion medium is usually 5 to 300 ⁇ m, preferably 10 to 250 ⁇ m.
- the drying temperature is 100 ° C. or higher and 200 ° C. or lower, preferably 105 ° C. or higher and 190 ° C. or lower, from the viewpoint of increasing the drying speed and suppressing crystallization of the inorganic solid electrolyte to obtain a battery having high ionic conductivity. More preferably, it is 110 degreeC or more and 180 degrees C or less.
- Examples of the drying method include drying by warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
- the drying time is not particularly limited, but is usually in the range of 1 to 60 minutes.
- the drying conditions are such that the dispersion medium volatilizes as soon as possible within a speed range in which stress concentration usually occurs and the positive electrode active material layer cracks or the positive electrode active material layer does not peel from the current collector. Adjust to. Furthermore, you may stabilize an electrode by pressing the electrode after drying. Examples of the pressing method include, but are not limited to, a mold press and a calendar press.
- the slurry for the all-solid-state secondary battery for forming the positive electrode active material layer includes the positive electrode active material, the inorganic solid electrolyte, the binder composed of the ion conductive polymer, the alkali metal salt, and the dispersion medium.
- the slurry for the all-solid-state secondary battery for forming the positive electrode active material layer includes, as necessary, the inorganic solid electrolyte, the binder composed of the ion conductive polymer, the alkali metal salt, and the dispersion medium. It may contain other components to be added. The other components added as necessary are not particularly limited as long as they do not affect the battery reaction.
- binders for example, other binders and the above-mentioned all-solid-state secondary battery for forming a solid electrolyte layer may be used.
- the all-solid-state secondary battery slurry may contain a binder other than the binder made of an ion conductive polymer.
- binders other binders
- the binder composed of an ion conductive polymer include alicyclic structure-containing polymers, fluorine-based polymers, and dienes.
- Polymer compounds such as a polymer, an acrylic polymer, and a silicone polymer, and a fluorine polymer, a diene polymer, or an acrylic polymer is preferable, and the acrylic polymer can increase a withstand voltage. And it is more preferable at the point which can make the energy density of an all-solid-state secondary battery high.
- the alicyclic structure-containing polymer is a polymer containing an alicyclic structural unit in the repeating unit of the polymer. Any of the main chain and side chain of the polymer may have an alicyclic structural unit, but from the viewpoint of the strength, heat resistance, etc. of the polymer, the main chain contains an alicyclic structural unit. More preferred. Therefore, a preferred functional group-containing polymer contains a functional group that reacts with the current collector surface and an alicyclic structural unit.
- the alicyclic structure is preferably a structure in which an aromatic ring is hydrogenated, specifically, a saturated cyclic hydrocarbon (cycloalkane) structure, an unsaturated cyclic hydrocarbon (cycloalkene) structure, and the like.
- a cycloalkane structure is more preferable from the viewpoint of the thermal stability of the polymer.
- the number of carbon atoms constituting the alicyclic structure is usually in the range of 4 to 30, preferably 5 to 20, and more preferably 5 to 15. When the number of carbon atoms is within this range, the resulting polymer has excellent heat resistance.
- the proportion of the repeating unit having an alicyclic structure in the alicyclic structure-containing polymer may be appropriately selected depending on the intended use of the polymer, but is preferably from the viewpoint of excellent heat resistance of the resulting polymer. Is 20 to 60% by mass, more preferably 25 to 55% by mass, and particularly preferably 30 to 50% by mass. In addition, the remainder other than the repeating unit which has an alicyclic structure in an alicyclic structure containing polymer is suitably selected according to the intended purpose.
- the alicyclic structure-containing polymer examples include (1) a norbornene polymer, (2) a monocyclic olefin polymer, (3) a cyclic conjugated diene polymer, and (4) a vinyl alicyclic polymer.
- examples thereof include hydrocarbon polymers and hydrides of (1) to (4).
- norbornene-based polymers, cyclic conjugated diene-based polymers, vinyl alicyclic hydrocarbon-based polymers, and hydrides thereof are preferable from the viewpoint of heat resistance and strength of the obtained polymer.
- Polymers, vinyl alicyclic hydrocarbon polymers and their hydrides are more preferred, and vinyl alicyclic hydrocarbon polymers and their hydrides are particularly preferred.
- the acrylic polymer is a polymer containing monomer units derived from an ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl ester.
- Examples of the ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl ester include those exemplified for the other polymers in the above-mentioned solid electrolyte layer.
- the content ratio of the monomer unit derived from the ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl ester in the acrylic polymer suitable as the other polymer is preferably 60 to 100% by mass, more preferably 65 to 90% by mass.
- the acrylic polymer includes a copolymer of an ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl ester and a monomer copolymerizable with the ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl ester. Coalescence is preferred.
- the copolymerizable monomer is the same as that exemplified in the other polymer in the solid electrolyte layer.
- the content of other binders in the binders is usually 50% by mass or less, preferably Is 40% by mass or less.
- the content of the binder (the binder made of an ion conductive polymer and other binders) in the all-solid-state secondary battery slurry inhibits the battery reaction.
- the amount is preferably 0.1 to 10 parts by mass, more preferably 0.2 to 7 parts by mass with respect to 100 parts by mass of the positive electrode active material. .
- the positive electrode active material is a compound that can occlude and release lithium ions.
- the positive electrode active material is roughly classified into those made of inorganic compounds and those made of organic compounds.
- the positive electrode active material made of an inorganic compound examples include transition metal oxides, composite oxides of lithium and transition metals, and transition metal sulfides.
- transition metal Fe, Co, Ni, Mn and the like are used.
- inorganic compounds used for the positive electrode active material include lithium-containing composite metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4 ; TiS 2 , TiS 3 , non- Transition metal sulfides such as crystalline MoS 2 ; transition metal oxides such as Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 It is done. These compounds may be partially element-substituted.
- Examples of the positive electrode active material made of an organic compound include polyaniline, polypyrrole, polyacene, disulfide compounds, polysulfide compounds, and N-fluoropyridinium salts.
- the positive electrode active material may be a mixture of the above inorganic compound and organic compound.
- the average particle size of the positive electrode active material is usually 0.1 to 50 ⁇ m, preferably 1 to 20 ⁇ m, from the viewpoint of improving battery characteristics such as load characteristics and cycle characteristics.
- the average particle size can be determined by measuring the particle size distribution by laser diffraction.
- the mass ratio of the positive electrode active material to the inorganic solid electrolyte in the positive electrode active material layer is preferably 90:10 to 30:70, preferably 80:20 to 40:60, in the positive electrode active material: inorganic solid electrolyte. If the mass ratio of the positive electrode active material is too small, the amount of the positive electrode active material in the battery is reduced, leading to a decrease in capacity as a battery. On the other hand, if the mass ratio of the inorganic solid electrolyte is too small, sufficient conductivity cannot be obtained, and the positive electrode active material cannot be used effectively, leading to a decrease in capacity as a battery.
- the positive electrode active material layer slurry includes, as necessary, other components such as lithium salts, dispersants, leveling agents, antifoaming agents, conductive agents, reinforcing materials, and the like. Additives that exhibit various functions may be included. These are not particularly limited as long as they do not affect the battery reaction.
- the conductive agent is not particularly limited as long as it can impart conductivity, and usually includes carbon powders such as acetylene black, carbon black and graphite, and fibers and foils of various metals.
- the addition amount of the conductive agent is preferably 0.1 to 20 with respect to 100 parts by mass of the positive electrode active material from the viewpoint of imparting sufficient electronic conductivity to the electrode active material layer while keeping the battery capacity high.
- Part by mass more preferably 0.5 to 15 parts by mass, particularly preferably 1 to 10 parts by mass.
- the reinforcing material various inorganic and organic spherical, plate-like, rod-like or fibrous fillers can be used.
- the addition amount of the reinforcing material is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoint of imparting sufficient strength to the electrode active material layer while keeping the battery capacity high. More preferably, it is 0.5 to 5 parts by mass, particularly preferably 1 to 3 parts by mass.
- Negative electrode active material layer is a slurry for an all-solid-state secondary battery for forming a negative electrode active material layer (hereinafter, also referred to as “slurry for negative electrode active material layer”) on a collector described later. It is formed by applying and drying.
- the application of the slurry for the negative electrode active material layer is such that the inorganic solid electrolyte does not react with moisture present in the application environment, and a relative humidity is 0.1% or less from the viewpoint of obtaining a battery with high ion conductivity. It is performed in an environment, preferably in an environment of 0.05% or less, more preferably in an environment of 0.01% or less.
- coating method of the slurry for negative electrode active material layers to the collector surface is not restrict
- examples thereof include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
- the amount to be applied is not particularly limited, but is such an amount that the thickness of the active material layer formed after removing the dispersion medium is usually 5 to 300 ⁇ m, preferably 10 to 250 ⁇ m.
- the drying temperature is 100 ° C. or higher and 200 ° C. or lower, preferably 105 ° C. or higher and 190 ° C. or lower, from the viewpoint of increasing the drying speed and suppressing crystallization of the inorganic solid electrolyte to obtain a battery having high ionic conductivity. More preferably, it is 110 degreeC or more and 180 degrees C or less.
- Examples of the drying method include drying by warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
- the drying time is not particularly limited, but is usually in the range of 1 to 60 minutes.
- the drying conditions are such that the dispersion medium volatilizes as soon as possible within a speed range in which stress concentration usually occurs and the positive electrode active material layer cracks or the positive electrode active material layer does not peel from the current collector. Adjust to. Furthermore, you may stabilize an electrode by pressing the electrode after drying. Examples of the pressing method include, but are not limited to, a mold press and a calendar press.
- the slurry for an all-solid-state secondary battery for forming the negative electrode active material layer comprises a negative electrode active material, the inorganic solid electrolyte, a binder composed of the ion conductive polymer, the alkali metal salt, and the dispersion medium.
- the slurry for the all-solid-state secondary battery for forming the negative electrode active material layer includes, as necessary, the inorganic solid electrolyte, the binder composed of the ion conductive polymer, the alkali metal salt, and the dispersion medium. It may contain other components to be added. The other components added as necessary are not particularly limited as long as they do not affect the battery reaction.
- binders and the above-mentioned all-solid-state secondary battery for forming a solid electrolyte layer may be used.
- the all-solid-state secondary battery slurry may contain a binder other than the binder composed of an ion conductive polymer.
- binders other binders
- the binder composed of an ion conductive polymer include alicyclic structure-containing polymers, fluorine-based polymers, and dienes.
- high molecular compounds such as polymer, acrylic polymer, and silicone polymer.
- a diene polymer containing a monomer unit derived from a conjugated diene and a monomer unit derived from an aromatic vinyl can bind negative electrode active materials to each other, and has a high binding force between the active material layer and the current collector. More preferred.
- the content of monomer units derived from conjugated dienes is preferably 30 to 70% by mass, more preferably 35 to 65% by mass, and the content of monomer units derived from aromatic vinyl is preferably 30 to 70% by mass. %, More preferably 35 to 65% by mass.
- the conjugated diene include butadiene, isoprene, 2-chloro-1,3-butadiene, chloroprene and the like. Of these, butadiene is preferred.
- aromatic vinyl examples include styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, ⁇ -methyl styrene, divinyl benzene, and the like. . Of these, styrene, ⁇ -methylstyrene, and divinylbenzene are preferable.
- the diene polymer may be a copolymer of a conjugated diene, an aromatic vinyl, and a monomer copolymerizable therewith.
- the copolymerizable monomer include ⁇ , ⁇ -unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid; ethylene, propylene, and the like Olefins; Halogen-containing monomers such as vinyl chloride and vinylidene chloride; Vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate and vinyl benzoate; Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether and butyl vinyl ether; Methyl vinyl ketone And vinyl ketones such as ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone and isopropenyl vinyl ketone
- the content of other binders in the binders is usually 50% by mass or less, Preferably it is 40 mass% or less.
- the content of the binder (the binder composed of an ion conductive polymer and other binders) in the all-solid-state secondary battery slurry inhibits the battery reaction.
- the amount is preferably 0.1 to 10 parts by mass, more preferably 0.2 to 7 parts by mass with respect to 100 parts by mass of the negative electrode active material. .
- the negative electrode active material examples include carbon allotropes such as graphite and coke.
- the negative electrode active material composed of the allotrope of carbon can also be used in the form of a mixture with a metal, a metal salt, an oxide, or the like or a cover.
- oxides and sulfates such as silicon, tin, zinc, manganese, iron, and nickel
- lithium alloys such as lithium metal, Li—Al, Li—Bi—Cd, and Li—Sn—Cd, Lithium transition metal nitride, silicone, etc. can be used.
- the average particle size of the negative electrode active material is usually 1 to 50 ⁇ m, preferably 15 to 30 ⁇ m, from the viewpoint of improving battery characteristics such as load characteristics and cycle characteristics.
- the average particle size can be determined by measuring the particle size distribution by laser diffraction.
- the mass ratio of the negative electrode active material to the inorganic solid electrolyte is 90:10 to 30:70, preferably 80:20 to 40:60, for the negative electrode active material: inorganic solid electrolyte. is there. If the mass ratio of the negative electrode active material is too small, the amount of the negative electrode active material in the battery is reduced, leading to a decrease in capacity as a battery. On the other hand, if the mass ratio of the inorganic solid electrolyte is too small, sufficient conductivity cannot be obtained, and the negative electrode active material cannot be used effectively, leading to a decrease in capacity as a battery.
- the current collector is not particularly limited as long as it is an electrically conductive and electrochemically durable material. From the viewpoint of having heat resistance, for example, iron, copper, aluminum, nickel, stainless steel, etc. Metal materials such as titanium, tantalum, gold, and platinum are preferable. Among these, aluminum is particularly preferable for the positive electrode, and copper is particularly preferable for the negative electrode.
- the shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable. In order to increase the adhesive strength between the current collector and the positive and negative electrode active material layers described above, the current collector is preferably used after being subjected to a roughening treatment.
- Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
- a mechanical polishing method an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used.
- an intermediate layer may be formed on the surface of the current collector in order to increase the adhesive strength and conductivity between the current collector and the positive / negative electrode active material layer.
- the surface shape (surface roughness Ra) of the films obtained in Examples and Comparative Examples was measured according to JIS B 0601 (1994). Further, the measured surface roughness was evaluated according to the following criteria. The smaller the value of the surface roughness Ra, the smoother the surface. A: Less than 1 ⁇ m B: 1 ⁇ m or more and less than 3 ⁇ m C: 3 ⁇ m or more and less than 5 ⁇ m D: 5 ⁇ m or more
- Voltage drop ⁇ V is 100 mV to less than 120 mV
- B Voltage drop ⁇ V is 120 mV to less than 140 mV
- C Voltage drop ⁇ V is 140 mV to less than 160 mV
- D Voltage drop ⁇ V is 160 mV to less than 180 mV
- E Voltage drop ⁇ V is 180 mV to less than 200 mV
- F Voltage drop ⁇ V is 200 mV or more
- the charge / discharge capacity retention rate is evaluated according to the following criteria as an evaluation criterion for cycle characteristics. It shows that it is excellent in high temperature cycling characteristics, so that the value of a charge / discharge capacity retention rate is high.
- PEO2 polyethylene oxide
- LiN (CF 3 SO 2 ) 2 LiN (CF 3 SO 2 ) 2 as a lithium salt.
- the obtained solid electrolyte layer slurry was applied on a carrier film made of aluminum foil by a doctor blade method, dried at 120 ° C. for 10 minutes, and formed on the carrier film.
- a solid electrolyte layer for measuring the surface roughness was obtained.
- the surface roughness of the solid electrolyte layer was measured and evaluated by the method described above. The results are shown in Table 1.
- the slurry for negative electrode active material layers was prepared by mixing with a planetary mixer. The viscosity of the negative electrode active material layer slurry was
- the above positive electrode active material layer slurry is applied to the surface of a current collector (aluminum, thickness 15 ⁇ m) using a C-type coater in an environment with a relative humidity of 0.01% or less, and dried (130 ° C., 20 minutes).
- a positive electrode active material layer having a thickness of 50 ⁇ m was formed to manufacture a positive electrode.
- the negative electrode active material layer slurry is applied to the surface of another current collector (copper, thickness 10 ⁇ m) and dried (130 ° C., 20 minutes) to form a negative electrode active material layer having a thickness of 30 ⁇ m. Manufactured.
- the solid electrolyte layer slurry is applied to the surface of the positive electrode active material layer in an environment with a relative humidity of 0.01% or less, and dried (130 ° C., 2 minutes) to have a thickness of 11 ⁇ m. Formed.
- the solid electrolyte layer laminated on the surface of the positive electrode active material layer and the negative electrode active material layer of the negative electrode were bonded together and pressed to obtain an all-solid secondary battery.
- the thickness of the solid electrolyte layer of the all-solid secondary battery after pressing was 9 ⁇ m. Using this battery, low temperature output characteristics and high temperature cycle characteristics were evaluated. The results are shown in Table 1.
- Example 2 The dispersion medium used in the production of the solid electrolyte layer slurry, the positive electrode active material layer slurry, and the negative electrode active material layer slurry was diethylene glycol diethyl ether (boiling point: 188 ° C., SP value: 9.4 (cal / cm 3 ) 1 / 2 )
- a positive electrode active material layer, a negative electrode active material layer, a solid electrolyte layer, and an all-solid secondary battery were produced in the same manner as in Example 1 except that.
- Example 3 The dispersion medium used in the production of the solid electrolyte layer slurry, the positive electrode active material layer slurry, and the negative electrode active material layer slurry was cyclopentanone (boiling point: 131 ° C., SP value 10.4 (cal / cm 3 ) 1 / 2 )
- a positive electrode active material layer, a negative electrode active material layer, a solid electrolyte layer, and an all-solid secondary battery were produced in the same manner as in Example 1 except that.
- Example 4 The alkali metal salt used in the production of the solid electrolyte layer slurry, the positive electrode active material layer slurry, and the negative electrode active material layer slurry is LiN (C 2 F 5 SO 2 ) 2 , and the dispersion medium is cyclopentyl methyl ether (boiling point: 106).
- the positive electrode active material layer, the negative electrode active material layer, the solid electrolyte layer, and the all solid state secondary battery were manufactured in the same manner as in Example 1 except that the temperature was SP and the SP value was 8.4 (cal / cm 3 ) 1/2 ). went.
- a binder composed of an ion conductive polymer used in the production of the solid electrolyte layer slurry, the positive electrode active material layer slurry, and the negative electrode active material layer slurry is an ethylene oxide-propylene oxide copolymer (manufactured by Wako Pure Chemical Industries, Ltd.).
- a positive electrode active material layer, a negative electrode active material layer, a solid electrolyte layer, and an all solid state secondary battery were manufactured in the same manner as in Example 1 except that poly (ethylene oxide- ⁇ -propylene oxide) (EO-PO)) was used. It was.
- Example 1 The dispersion medium used in the production of the solid electrolyte layer slurry, the positive electrode active material layer slurry, and the negative electrode active material layer slurry was toluene (boiling point: 111 ° C., SP value 8.8 (cal / cm 3 ) 1/2 ).
- a positive electrode active material layer, a negative electrode active material layer, a solid electrolyte layer, and an all-solid secondary battery were produced in the same manner as in Example 1 except that.
- Example 2 The dispersion medium used in the production of the solid electrolyte layer slurry, the positive electrode active material layer slurry, and the negative electrode active material layer slurry is acetonitrile (boiling point: 82 ° C., SP value 11.9 (cal / cm 3 ) 1/2 ).
- a positive electrode active material layer, a negative electrode active material layer, a solid electrolyte layer, and an all-solid secondary battery were produced in the same manner as in Example 1 except that.
- Example 5 The positive electrode active material layer, the negative electrode active material layer, the same as in Example 1, except that no alkali metal salt was used in the production of the solid electrolyte layer slurry, the positive electrode active material layer slurry, and the negative electrode active material layer slurry. A solid electrolyte layer and an all-solid secondary battery were manufactured.
- an inorganic solid electrolyte, an ion conductive polymer, an alkali metal salt and an ether or / and a ketone solvent which includes a dispersion medium having a boiling point of 100 ° C. to 250 ° C.
- a dispersion medium having a boiling point of 100 ° C. to 250 ° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Dispersion Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
(1) 無機固体電解質、イオン伝導性高分子、アルカリ金属塩及びエーテルまたは/およびケトン系溶剤であって、沸点が100℃~250℃である分散媒を含むことを特徴とする全固体二次電池用スラリー、
(2) 前記分散媒の溶解度パラメータが8~12(cal/cm3)1/2であることを特徴とする(1)記載の全固体二次電池用スラリー、
(3) さらに活物質を含んでなる(1)または(2)記載の全固体二次電池用スラリーを、集電体上に相対湿度0.1%以下の環境下で塗布する塗布工程と、前記塗布工程により塗布された全固体二次電池用スラリーを100℃以上200℃以下で乾燥する乾燥工程とを含むことを特徴とする全固体二次電池用電極の製造方法、
(4) 電極上に、(1)または(2)記載の全固体二次電池用スラリーを相対湿度0.1%以下の環境下で塗布する塗布工程と、前記塗布工程により塗布した全固体二次電池用スラリーを100℃以上で乾燥する乾燥工程とを含むことを特徴とする全固体二次電池用電解質層の製造方法、
(5) (3)記載の製造方法により得られる全固体二次電池用電極及び(4)記載の製造方法により得られる全固体二次電池用電解質層の少なくとも一方を含むことを特徴とする全固体二次電池
が提供される。
本発明の全固体二次電池用スラリーに含まれる無機固体電解質は、リチウムイオン伝導性を有していれば特に限定されないが、結晶性の無機リチウムイオン伝導体、又は非晶性の無機リチウムイオン伝導体を含むことが好ましい。
イオン伝導性高分子としては、特に限定されないが、バインダー(結着剤)として機能し、かつ、イオン伝導性を有している有機高分子が好ましい。このような有機高分子としては、たとえば、ポリエーテル重合体や、ポリエーテル単位を含むグラフトポリマー、並びに、ポリカーボネート、ポリアミド、ポリエステル、ポリスルフィド、ポリアミンなどの他、これら各高分子を構成するユニットを主鎖あるいは側鎖に有する高分子や、これらの共重合体、ニトリル基を有する重合体などが挙げられる。
共重合の形式としては、ブロック共重合体でもランダム共重合体でもよく、特に限定されないが、ランダム共重合体が好ましい。ランダム共重合体とすることにより、ポリエチレンオキシド部分の結晶性阻害効果が大きくなるため、特に低温でのイオン伝導性が高くなる傾向にある。また、柔軟性のある主鎖構造を有する重合体に、側鎖としてポリオキシエチレンの短い繰り返し単位をグラフトした櫛型重合体であってもよい。
重合反応は、0~100℃、好ましくは30~70℃で、回分式、半回分式、連続式などの任意の方法で行うことができる。
本発明の全固体二次電池用スラリーに含有されるアルカリ金属塩としては特に限定されず、上記イオン伝導性高分子に可溶な塩であれば特に限定されない。このようなアルカリ金属塩としては、たとえば、以下に示す陰イオンと、陽イオンとからなる塩が挙げられる。
本発明の全固体二次電池用スラリーに用いられる分散媒は、沸点が100℃~250℃好ましくは110℃~240℃、より好ましくは120℃~230℃のエーテル系溶媒及び/またはケトン系溶剤である。沸点がこの範囲であることにより、全固体二次電池用スラリーの製造時の乾燥を防止でき、また、均一なスラリーを得ることができる。さらに、活物質層(正極活物質層及び負極活物質層)や固体電解質層を形成する際の乾燥速度を早くすることができる。
本発明の全固体二次電池用スラリーは、上述した無機固体電解質、イオン伝導性高分子、アルカリ金属塩、分散媒及び後述する必要に応じて添加される他の成分を混合して得られる。全固体二次電池用スラリーに含まれる各成分の混合法は特に限定されないが、例えば、撹拌式、振とう式、および回転式などの混合装置を使用した方法が挙げられる。また、ホモジナイザー、ボールミル、ビーズミル、プラネタリーミキサー、サンドミル、ロールミル、および遊星式混練機などの分散混練装置を使用した方法が挙げられ、無機固体電解質の凝集を抑制できるという観点からプラネタリーミキサー、ボールミル又はビーズミルを使用した方法が好ましい。
本発明の全固体二次電池は、正極活物質層を有する正極と、負極活物質層を有する負極と、前記正極活物質層及び負極活物質層の層間に固体電解質層とを有し、正極活物質層、負極活物質層および固体電解質層の少なくとも一層が上述の全固体二次電池用スラリーを用いて形成され、これらのすべての層が全固体二次電池用スラリーを用いて形成されることが好ましい。
以下、固体電解質層、正極活物質層、負極活物質層の順に説明する。
固体電解質層は、固体電解質層形成用の全固体二次電池用スラリー(以下、「固体電解質層用スラリー」ということがある。)を、後述する、電極における正極活物質層または負極活物質層の上に塗布し、乾燥することにより形成される。ここで、全固体二次電池用スラリーの塗布は、無機固体電解質が塗布環境下に存在する水分と反応せず、イオン伝導性の高い電池が得られる観点から、相対湿度が0.1%以下の環境下、好ましくは0.05%以下の環境下、より好ましくは0.01%以下の環境下で行われる。また、正極活物質層または負極活物質層の上への全固体二次電池用スラリーの塗布方法は特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられ、薄膜の固体電解質層を形成できるという観点からグラビア法で塗布を行うことが好ましい。塗布する量も特に制限されないが、分散媒を除去した後に形成される固体電解質層の厚さが、好ましくは1~15μm、より好ましくは3~14μmになる程度の量である。なお、本発明の全固体二次電池における固体電解質層の厚さは、好ましくは1~15μm、より好ましくは2~13μm、特に好ましくは3~10μmである。固体電解質層の厚さが上記範囲にあることで、全固体二次電池の内部抵抗を小さくすることができる。
固体電解質層の形成に用いる場合に、全固体二次電池用スラリーは、イオン導電性高分子からなる結着剤以外の結着剤を含んでいてもよい。固体電解質層の形成に用いる場合に、用いてもよいその他の結着剤としては、例えば、フッ素系重合体、ジエン系重合体、アクリル系重合体、シリコーン系重合体等の高分子化合物が挙げられ、フッ素系重合体、ジエン系重合体又はアクリル系重合体が好ましく、アクリル系重合体が、耐電圧を高くでき、かつ全固体二次電池のエネルギー密度を高くすることができる点でより好ましい。
シリコーン系重合体としては、シリコーンゴム、フルオロシリコーンラバー、ポリイミドシリコーンが挙げられる。
分散剤としてはアニオン性化合物、カチオン性化合物、非イオン性化合物、高分子化合物が例示される。分散剤は、用いる固体電解質に応じて選択される。組成物中の分散剤の含有量は、電池特性に影響が及ばない範囲が好ましく、具体的には、無機固体電解質100質量部に対して10質量部以下である。
レベリング剤としてはアルキル系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。上記界面活性剤を混合することにより、全固体二次電池用スラリーを後述する正極活物質層または負極活物質層の表面に塗工する際に発生するはじきを防止でき、正負極の平滑性を向上させることができる。
該組成物中のレベリング剤の含有量は、電池特性に影響が及ばない範囲が好ましく、具体的には、固体電解質100質量部に対して10質量部以下である。
消泡剤としてはミネラルオイル系消泡剤、シリコーン系消泡剤、ポリマー系消泡剤が例示される。消泡剤は、用いる固体電解質に応じて選択される。組成物中の消泡剤の含有量は、電池特性に影響が及ばない範囲が好ましく、具体的には、固体電解質100質量部に対して10質量部以下である。
正極活物質層は、正極活物質層形成用の全固体二次電池用スラリー(以下、「正極活物質層用スラリー」ということがある。)を、後述する集電体上に塗布し、乾燥することにより形成される。ここで、正極活物質層用スラリーの塗布は、無機固体電解質が塗布環境下に存在する水分と反応せず、イオン伝導性の高い電池が得られる観点から、相対湿度が0.1%以下の環境下、好ましくは0.05%以下の環境下、より好ましくは0.01%以下の環境下で行われる。また、集電体表面への正極活物質層用スラリーの塗布方法は特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。塗布する量も特に制限されないが、分散媒を除去した後に形成される正極活物質層の厚さが通常5~300μm、好ましくは10~250μmになる程度の量である。
正極活物質層の形成に用いる場合に、全固体二次電池用スラリーは、イオン導電性高分子からなる結着剤以外の結着剤を含んでいてもよい。正極活物質層に用いてもよいイオン導電性高分子からなる結着剤以外の結着剤(その他の結着剤)としては、例えば、脂環式構造含有重合体、フッ素系重合体、ジエン系重合体、アクリル系重合体、シリコーン系重合体等の高分子化合物が挙げられ、フッ素系重合体、ジエン系重合体又はアクリル系重合体が好ましく、アクリル系重合体が、耐電圧を高くでき、かつ全固体二次電池のエネルギー密度を高くすることができる点でより好ましい。
正極活物質は、リチウムイオンを吸蔵および放出可能な化合物である。正極活物質は、無機化合物からなるものと有機化合物からなるものとに大別される。
なお、正極活物質は、上記の無機化合物と有機化合物の混合物であってもよい。
導電剤は、導電性を付与できるものであれば特に制限されないが、通常、アセチレンブラック、カーボンブラック、黒鉛などの炭素粉末、各種金属のファイバーや箔などが挙げられる。
補強材としては、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。補強材の添加量は、電池の容量を高く保持した上で、電極活物質層に十分な強度を付与する観点から、正極活物質100質量部に対して、好ましくは0.1~20質量部、より好ましくは0.5~5質量部、特に好ましくは1~3質量部である。
負極活物質層は、負極活物質層形成用の全固体二次電池用スラリー(以下、「負極活物質層用スラリー」ということがある。)を、後述する集電体上に塗布し、乾燥することにより形成される。ここで、負極活物質層用スラリーの塗布は、無機固体電解質が塗布環境下に存在する水分と反応せず、イオン伝導性の高い電池が得られる観点から、相対湿度が0.1%以下の環境下、好ましくは0.05%以下の環境下、より好ましくは0.01%以下の環境下で行われる。また、集電体表面への負極活物質層用スラリーの塗布方法は特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。塗布する量も特に制限されないが、分散媒を除去した後に形成される活物質層の厚さが通常5~300μm、好ましくは10~250μmになる程度の量である。
負極活物質層の形成に用いる場合に、全固体二次電池用スラリーは、イオン導電性高分子からなる結着剤以外の結着剤を含んでいてもよい。負極活物質層に用いてもよいイオン導電性高分子からなる結着剤以外の結着剤(その他の結着剤)としては、例えば、脂環式構造含有重合体、フッ素系重合体、ジエン系重合体、アクリル系重合体、シリコーン系重合体等の高分子化合物等が挙げられる。中でも共役ジエンから導かれるモノマー単位と芳香族ビニルから導かれるモノマー単位とを含むジエン系重合体が、負極活物質同士を結着でき、活物質層と集電体との結着力も高い点でより好ましい。
共役ジエンとしては、ブタジエン、イソプレン、2-クロロ-1,3-ブタジエン、クロロプレンなどが挙げられる。これらの中でもブタジエンが好ましい。
負極活物質としては、グラファイトやコークス等の炭素の同素体が挙げられる。前記炭素の同素体からなる負極活物質は、金属、金属塩、酸化物などとの混合体や被覆体の形態で利用することも出来る。また、負極活物質としては、ケイ素、錫、亜鉛、マンガン、鉄、ニッケル等の酸化物や硫酸塩、金属リチウム、Li-Al、Li-Bi-Cd、Li-Sn-Cd等のリチウム合金、リチウム遷移金属窒化物、シリコーン等を使用できる。
集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するとの観点から、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料が好ましい。中でも、正極用としてはアルミニウムが特に好ましく、負極用としては銅が特に好ましい。集電体の形状は特に制限されないが、厚さ0.001~0.5mm程度のシート状のものが好ましい。集電体は、上述した正・負極活物質層との接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、集電体と正・負極活物質層との接着強度や導電性を高めるために、集電体表面に中間層を形成してもよい。
実施例および比較例において得られたフィルムの表面の形状(表面粗さRa)をJIS B 0601(1994)により測定した。また、測定された表面粗さを下記の基準により評価した。表面粗さRaの値が小さいほど、表面が平滑であることを示す。
A:1μm未満
B:1μm以上3μm未満
C:3μm以上5μm未満
D:5μm以上
実施例および比較例で作製したラミネート型セルを用い、25℃で0.1Cの定電流で充電深度(SOC)50%まで充電し、電圧V0を測定した。その後、-10℃で1Cの定電流で10秒間放電し、電圧V1を測定した。これらの測定結果から、電圧降下ΔV=V0-V1を算出した。
算出された電圧降下ΔVを、下記の基準により評価した。電圧降下ΔVの値が小さいほど、低温出力特性に優れることを示す。
A:電圧降下ΔVが100mV以上120mV未満
B:電圧降下ΔVが120mV以上140mV未満
C:電圧降下ΔVが140mV以上160mV未満
D:電圧降下ΔVが160mV以上180mV未満
E:電圧降下ΔVが180mV以上200mV未満
F:電圧降下ΔVが200mV以上
実施例および比較例で製造したラミネート型セルのリチウムイオン二次電池を24時間静置させた後に、4.2V、0.1Cの充放電レートにて充放電の操作を行い、初期容量C0を測定した。さらに、60℃の環境下で充放電を繰り返し、100サイクル後の容量C2を測定した。高温サイクル特性は、ΔCC=C2/C0×100(%)で示す容量変化率ΔCCにて評価した。この容量変化率ΔCCの値が高いほど、高温サイクル特性に優れることを示す。
充放電容量保持率をサイクル特性の評価基準として、下記の基準により評価する。充放電容量保持率の値が高いほど、高温サイクル特性に優れることを示す。
A:充放電容量保持率が80%以上
B:充放電容量保持率が70%以上80%未満
C:充放電容量保持率が60%以上70%未満
D:充放電容量保持率が50%以上60%未満
E:充放電容量保持率が40%以上50%未満
F:充放電容量保持率が40%未満
(固体電解質層用スラリーの製造)
無機固体電解質としてLi2SとP2S5とからなる硫化物ガラス(Li2S/P2S5=70mol%/30mol%、個数平均粒子径:1.2μm、累積90%の粒子径:2.1μm)100部、イオン導電性高分子からなる結着剤としてポリエチレンオキサイド(住友精化株式会社製PEO2)3部(固形分相当)、リチウム塩としてLiN(CF3SO2)21.5部を混合し、さらに分散媒としてシクロヘキサノン(沸点:156℃、SP値9.9(cal/cm3)1/2)を加えて固形分濃度50%に調整した後にプラネタリーミキサーで混合して固体電解質層用スラリーを調製した。固体電解質層用スラリーの粘度は、52mPa・sであった。
正極活物質としてコバルト酸リチウム(平均粒子径:11.5μm)100部と、無機固体電解質としてLi2SとP2S5とからなる硫化物ガラス(Li2S/P2S5=70mol%/30mol%、個数平均粒子径:0.4μm)150部と、導電剤としてアセチレンブラック13部と、イオン導電性高分子からなる結着剤としてポリエチレンオキサイド(住友精化株式会社製PEO3)3部(固形分相当)、リチウム塩としてLiN(CF3SO2)21.5部を混合し、さらに分散媒としてシクロヘキサノンを加えて固形分濃度78%に調整した後にプラネタリーミキサーで60分混合した。さらにシクロヘキサノンを加えて固形分濃度74%に調整した後に10分間混合して正極活物質層用スラリーを得た。正極活物質層用スラリーの粘度は、6100mPa・sであった。
負極活物質としてグラファイト(平均粒子径:20μm)100部と、無機固体電解質としてLi2SとP2S5とからなる硫化物ガラス(Li2S/P2S5=70mol%/30mol%、個数平均粒子径:0.4μm)50部と、イオン導電性高分子からなる結着剤としてポリエチレンオキサイド(住友精化株式会社製PEO3)3部(固形分相当)、リチウム塩としてLiN(CF3SO2)21.5部を混合し、さらに分散媒としてシクロヘキサノン(沸点:156℃、SP値9.9(cal/cm3)1/2)を加えて固形分濃度60%に調整した後にプラネタリーミキサーで混合して負極活物質層用スラリーを調製した。負極活物質層用スラリーの粘度は、5000mPa・sであった。
相対湿度0.01%以下の環境下で、集電体(アルミニウム、厚み15μm)の表面に上記正極活物質層用スラリーをC型コーターを用いて塗布し、乾燥(130℃、20分)させて厚さ50μmの正極活物質層を形成して正極を製造した。
固体電解質層用スラリー、正極活物質層用スラリーおよび負極活物質層用スラリーの製造の際に用いる分散媒をジエチレングリコールジエチルエーテル(沸点:188℃、SP値9.4(cal/cm3)1/2)とした以外は、実施例1と同様に正極活物質層、負極活物質層、固体電解質層および全固体二次電池の製造を行った。
固体電解質層用スラリー、正極活物質層用スラリーおよび負極活物質層用スラリーの製造の際に用いる分散媒をシクロペンタノン(沸点:131℃、SP値10.4(cal/cm3)1/2)とした以外は、実施例1と同様に正極活物質層、負極活物質層、固体電解質層および全固体二次電池の製造を行った。
固体電解質層用スラリー、正極活物質層用スラリーおよび負極活物質層用スラリーの製造の際に用いるアルカリ金属塩をLiN(C2F5SO2)2、分散媒をシクロペンチルメチルエーテル(沸点:106℃、SP値8.4(cal/cm3)1/2)とした以外は、実施例1と同様に正極活物質層、負極活物質層、固体電解質層および全固体二次電池の製造を行った。
固体電解質層用スラリー、正極活物質層用スラリーおよび負極活物質層用スラリーの製造の際に用いるイオン導電性高分子からなる結着剤をエチレンオキサイド-プロピレンオキサイド共重合体(和光純薬社製:ポリ(エチレンオキシド-β-プロピレンオキシド)(EO-PO))とした以外は、実施例1と同様に正極活物質層、負極活物質層、固体電解質層および全固体二次電池の製造を行った。
固体電解質層用スラリー、正極活物質層用スラリーおよび負極活物質層用スラリーの製造の際に用いる分散媒をトルエン(沸点:111℃、SP値8.8(cal/cm3)1/2)とした以外は、実施例1と同様に正極活物質層、負極活物質層、固体電解質層および全固体二次電池の製造を行った。
固体電解質層用スラリー、正極活物質層用スラリーおよび負極活物質層用スラリーの製造の際に用いる分散媒をアセトニトリル(沸点:82℃、SP値11.9(cal/cm3)1/2)とした以外は、実施例1と同様に正極活物質層、負極活物質層、固体電解質層および全固体二次電池の製造を行った。
固体電解質層用スラリー、正極活物質層用スラリーおよび負極活物質層用スラリーの製造の際に用いる分散媒をエチレングリコールジメチルエーテル(沸点:85.2℃、SP値8.6(cal/cm3)1/2)とした以外は、実施例1と同様に正極活物質層、負極活物質層、固体電解質層および全固体二次電池の製造を行った。
固体電解質層用スラリー、正極活物質層用スラリーおよび負極活物質層用スラリーの製造の際に用いる分散媒をビス[2-(2-メトキシエトキシ)エチル]エーテル(沸点:275℃)とした以外は、実施例1と同様に正極活物質層、負極活物質層、固体電解質層および全固体二次電池の製造を行った。
固体電解質層用スラリー、正極活物質層用スラリーおよび負極活物質層用スラリーの製造の際にアルカリ金属塩を用いなかった以外は、実施例1と同様に正極活物質層、負極活物質層、固体電解質層および全固体二次電池の製造を行った。
Claims (5)
- 無機固体電解質、イオン伝導性高分子、アルカリ金属塩及びエーテルまたは/およびケトン系溶剤であって、沸点が100℃~250℃である分散媒を含むことを特徴とする全固体二次電池用スラリー。
- 前記分散媒の溶解度パラメータが8~12(cal/cm3)1/2であることを特徴とする請求項1記載の全固体二次電池用スラリー。
- さらに活物質を含んでなる請求項1または2記載の全固体二次電池用スラリーを、集電体上に相対湿度0.1%以下の環境下で塗布する塗布工程と、
前記塗布工程により塗布された全固体二次電池用スラリーを100℃以上200℃以下で乾燥する乾燥工程と
を含むことを特徴とする全固体二次電池用電極の製造方法。 - 電極上に、請求項1または2記載の全固体二次電池用スラリーを相対湿度0.1%以下の環境下で塗布する塗布工程と、
前記塗布工程により塗布した全固体二次電池用スラリーを100℃以上で乾燥する乾燥工程と
を含むことを特徴とする全固体二次電池用電解質層の製造方法。 - 請求項3記載の製造方法により得られる全固体二次電池用電極及び請求項4記載の製造方法により得られる全固体二次電池用電解質層の少なくとも一方を含むことを特徴とする全固体二次電池。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020147035701A KR20150063021A (ko) | 2012-09-28 | 2013-09-27 | 전고체 2 차 전지용 슬러리, 전고체 2 차 전지용 전극의 제조 방법, 전고체 2 차 전지용 전해질층의 제조 방법 및 전고체 2 차 전지 |
JP2014538620A JP6187468B2 (ja) | 2012-09-28 | 2013-09-27 | 全固体二次電池用スラリー、全固体二次電池用電極の製造方法及び全固体二次電池用電解質層の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012217136 | 2012-09-28 | ||
JP2012-217136 | 2012-09-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014051032A1 true WO2014051032A1 (ja) | 2014-04-03 |
Family
ID=50388426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/076219 WO2014051032A1 (ja) | 2012-09-28 | 2013-09-27 | 全固体二次電池用スラリー、全固体二次電池用電極の製造方法、全固体二次電池用電解質層の製造方法及び全固体二次電池 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6187468B2 (ja) |
KR (1) | KR20150063021A (ja) |
WO (1) | WO2014051032A1 (ja) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016013224A1 (ja) * | 2014-07-23 | 2016-01-28 | 出光興産株式会社 | 固体電解質組成物、その製造方法、固体電解質含有層の製造方法、電解質層及び電池 |
WO2016136090A1 (ja) * | 2015-02-27 | 2016-09-01 | 富士フイルム株式会社 | 固体電解質組成物、電極活物質及びその製造方法、電池用電極シート及びその製造方法、並びに全固体二次電池及びその製造方法 |
JP2017054761A (ja) * | 2015-09-11 | 2017-03-16 | 日本碍子株式会社 | 全固体リチウム電池の検査方法及び全固体リチウム電池の製造方法 |
WO2017046915A1 (ja) * | 2015-09-17 | 2017-03-23 | 株式会社東芝 | 二次電池用複合電解質、二次電池及び電池パック |
WO2017047378A1 (ja) * | 2015-09-16 | 2017-03-23 | 日本ゼオン株式会社 | 全固体二次電池 |
JP2017117672A (ja) * | 2015-12-24 | 2017-06-29 | アルプス電気株式会社 | 全固体蓄電デバイスおよびその製造方法 |
JP2017157362A (ja) * | 2016-03-01 | 2017-09-07 | 古河機械金属株式会社 | 固体電解質膜および全固体型リチウムイオン電池 |
WO2018168505A1 (ja) * | 2017-03-14 | 2018-09-20 | 富士フイルム株式会社 | 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、並びに、固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法 |
CN109155162A (zh) * | 2016-05-23 | 2019-01-04 | 富士胶片株式会社 | 固体电解质组合物、含固体电解质的片材及全固态二次电池以及含固体电解质的片材及全固态二次电池的制造方法 |
JP2019503050A (ja) * | 2015-12-28 | 2019-01-31 | シーオ インコーポレーテッドSeeo, Inc. | リチウムポリマー電池用セラミック‐ポリマー複合電解質 |
JP2019029353A (ja) * | 2017-07-28 | 2019-02-21 | コリア インスティテュート オブ インダストリアル テクノロジーKorea Institute Of Industrial Technology | 全固体リチウム二次電池用固体電解質、その製造方法、及びそれを含む全固体リチウム二次電池 |
WO2019087750A1 (ja) | 2017-10-30 | 2019-05-09 | 富士フイルム株式会社 | 活物質層形成用組成物及びその製造方法、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法 |
CN109786811A (zh) * | 2017-11-15 | 2019-05-21 | 丰田自动车株式会社 | 全固体电池的制造方法、全固体电池和浆液 |
WO2019151373A1 (ja) | 2018-02-05 | 2019-08-08 | 富士フイルム株式会社 | 固体電解質組成物及びその製造方法、固体電解質含有シート、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法 |
CN110291674A (zh) * | 2017-02-17 | 2019-09-27 | 富士胶片株式会社 | 固体电解质组合物、含固体电解质的片材及其制造方法、全固态二次电池及其制造方法、以及聚合物及其非水溶剂分散物 |
JP2019200890A (ja) * | 2018-05-15 | 2019-11-21 | トヨタ自動車株式会社 | 電極層の製造方法 |
US10818968B2 (en) | 2017-07-28 | 2020-10-27 | Korea Institute Of Industrial Technology | Method of preparing a gallium-doped LLZO solid electrolyte for an all-solid-state lithium secondary battery |
JP2021068703A (ja) * | 2019-10-22 | 2021-04-30 | 輝能科技股▲分▼有限公司Prologium Technology Co., Ltd. | セラミックセパレータ |
JP2021068673A (ja) * | 2019-10-28 | 2021-04-30 | トヨタ自動車株式会社 | スラリー、全固体電池および全固体電池の製造方法 |
JP2021073660A (ja) * | 2021-01-29 | 2021-05-13 | 古河機械金属株式会社 | 固体電解質膜の製造方法および全固体型リチウムイオン電池の製造方法 |
EP3726634A4 (en) * | 2017-12-15 | 2021-06-30 | Zeon Corporation | COMPOSITION OF BINDER FOR FULLY SOLID SECONDARY BATTERY, COMPOSITION OF SLURRY FOR FULLY SOLID SECONDARY BATTERY, FUNCTIONAL LAYER FOR FULLY SOLID SECONDARY BATTERY, AND FULLY SOLID SECONDARY BATTERY |
JP2021108260A (ja) * | 2019-12-27 | 2021-07-29 | 太陽誘電株式会社 | 全固体電池およびその製造方法 |
JP2021163579A (ja) * | 2020-03-31 | 2021-10-11 | 本田技研工業株式会社 | 全固体電池及びその製造方法 |
JP7484919B2 (ja) | 2019-07-19 | 2024-05-16 | 株式会社レゾナック | 複合電極材料、電極層、および固体電池 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6615337B2 (ja) * | 2016-05-23 | 2019-12-04 | 富士フイルム株式会社 | 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法 |
CN109768318A (zh) * | 2019-03-12 | 2019-05-17 | 浙江锋锂新能源科技有限公司 | 一种混合固液电解质锂蓄电池 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04267056A (ja) * | 1991-02-22 | 1992-09-22 | Matsushita Electric Ind Co Ltd | 固形電極組成物 |
JPH09171814A (ja) * | 1995-01-25 | 1997-06-30 | Ricoh Co Ltd | リチウム二次電池用負極および該負極を用いたリチウム二次電池 |
JPH10334948A (ja) * | 1997-05-30 | 1998-12-18 | Tdk Corp | 電極、この電極を用いたリチウム2次電池および電気2重層キャパシタ |
JP2001043862A (ja) * | 1999-07-28 | 2001-02-16 | Nagase Chemtex Corp | エポキシバインダー、それを用いた電極材料用組成物、該組成物を用いた電極材料および電極 |
JP2004171890A (ja) * | 2002-11-19 | 2004-06-17 | Sharp Corp | リチウムポリマー二次電池、その製造方法及びその製造装置 |
JP2011006508A (ja) * | 2009-06-23 | 2011-01-13 | Tosoh Corp | 重合体の製造方法 |
JP2013118143A (ja) * | 2011-12-05 | 2013-06-13 | Toyota Motor Corp | 固体電池用電極の製造方法 |
-
2013
- 2013-09-27 JP JP2014538620A patent/JP6187468B2/ja active Active
- 2013-09-27 KR KR1020147035701A patent/KR20150063021A/ko not_active IP Right Cessation
- 2013-09-27 WO PCT/JP2013/076219 patent/WO2014051032A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04267056A (ja) * | 1991-02-22 | 1992-09-22 | Matsushita Electric Ind Co Ltd | 固形電極組成物 |
JPH09171814A (ja) * | 1995-01-25 | 1997-06-30 | Ricoh Co Ltd | リチウム二次電池用負極および該負極を用いたリチウム二次電池 |
JPH10334948A (ja) * | 1997-05-30 | 1998-12-18 | Tdk Corp | 電極、この電極を用いたリチウム2次電池および電気2重層キャパシタ |
JP2001043862A (ja) * | 1999-07-28 | 2001-02-16 | Nagase Chemtex Corp | エポキシバインダー、それを用いた電極材料用組成物、該組成物を用いた電極材料および電極 |
JP2004171890A (ja) * | 2002-11-19 | 2004-06-17 | Sharp Corp | リチウムポリマー二次電池、その製造方法及びその製造装置 |
JP2011006508A (ja) * | 2009-06-23 | 2011-01-13 | Tosoh Corp | 重合体の製造方法 |
JP2013118143A (ja) * | 2011-12-05 | 2013-06-13 | Toyota Motor Corp | 固体電池用電極の製造方法 |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016013224A1 (ja) * | 2014-07-23 | 2016-01-28 | 出光興産株式会社 | 固体電解質組成物、その製造方法、固体電解質含有層の製造方法、電解質層及び電池 |
US20170214081A1 (en) * | 2014-07-23 | 2017-07-27 | Idemitsu Kosan Co., Ltd. | Solid electrolyte composition, method for producing same, method for producing solid electrolyte-containing layer, electrolyte layer, and battery |
JPWO2016013224A1 (ja) * | 2014-07-23 | 2017-04-27 | 出光興産株式会社 | 固体電解質組成物、その製造方法、固体電解質含有層の製造方法、電解質層及び電池 |
WO2016136090A1 (ja) * | 2015-02-27 | 2016-09-01 | 富士フイルム株式会社 | 固体電解質組成物、電極活物質及びその製造方法、電池用電極シート及びその製造方法、並びに全固体二次電池及びその製造方法 |
JP2017054761A (ja) * | 2015-09-11 | 2017-03-16 | 日本碍子株式会社 | 全固体リチウム電池の検査方法及び全固体リチウム電池の製造方法 |
WO2017047378A1 (ja) * | 2015-09-16 | 2017-03-23 | 日本ゼオン株式会社 | 全固体二次電池 |
WO2017046915A1 (ja) * | 2015-09-17 | 2017-03-23 | 株式会社東芝 | 二次電池用複合電解質、二次電池及び電池パック |
EP3352277A4 (en) * | 2015-09-17 | 2019-04-03 | Kabushiki Kaisha Toshiba | COMPOUND ELECTROLYTE FOR SECONDARY BATTERIES, SECONDARY BATTERY AND BATTERY PACK |
CN107431241B (zh) * | 2015-09-17 | 2020-12-25 | 株式会社东芝 | 二次电池用复合电解质、二次电池及电池包 |
JPWO2017046915A1 (ja) * | 2015-09-17 | 2017-10-19 | 株式会社東芝 | 二次電池用複合電解質、二次電池及び電池パック |
CN107431241A (zh) * | 2015-09-17 | 2017-12-01 | 株式会社东芝 | 二次电池用复合电解质、二次电池及电池包 |
US20170358825A1 (en) * | 2015-09-17 | 2017-12-14 | Kabushiki Kaisha Toshiba | Secondary battery composite electrolyte, secondary battery, and battery pack |
US11362366B2 (en) | 2015-09-17 | 2022-06-14 | Kabushiki Kaisha Toshiba | Secondary battery composite electrolyte, secondary battery, and battery pack |
JP2017117672A (ja) * | 2015-12-24 | 2017-06-29 | アルプス電気株式会社 | 全固体蓄電デバイスおよびその製造方法 |
JP2019503050A (ja) * | 2015-12-28 | 2019-01-31 | シーオ インコーポレーテッドSeeo, Inc. | リチウムポリマー電池用セラミック‐ポリマー複合電解質 |
US10622672B2 (en) | 2015-12-28 | 2020-04-14 | Seeo, Inc | Ceramic-polymer composite electrolytes for lithium polymer batteries |
JP2017157362A (ja) * | 2016-03-01 | 2017-09-07 | 古河機械金属株式会社 | 固体電解質膜および全固体型リチウムイオン電池 |
CN109155162A (zh) * | 2016-05-23 | 2019-01-04 | 富士胶片株式会社 | 固体电解质组合物、含固体电解质的片材及全固态二次电池以及含固体电解质的片材及全固态二次电池的制造方法 |
CN109155162B (zh) * | 2016-05-23 | 2021-06-11 | 富士胶片株式会社 | 固体电解质组合物、含固体电解质的片材及全固态二次电池以及含固体电解质的片材及全固态二次电池的制造方法 |
US11431022B2 (en) | 2017-02-17 | 2022-08-30 | Fujifilm Corporation | Solid electrolyte composition, solid electrolyte-containing sheet and manufacturing method therefor, all-solid state secondary battery and manufacturing method therefor, and polymer and non-aqueous solvent dispersion thereof |
CN110291674A (zh) * | 2017-02-17 | 2019-09-27 | 富士胶片株式会社 | 固体电解质组合物、含固体电解质的片材及其制造方法、全固态二次电池及其制造方法、以及聚合物及其非水溶剂分散物 |
EP3584870A4 (en) * | 2017-02-17 | 2020-07-29 | FUJIFILM Corporation | FIXED ELECTROLYTE COMPOSITION, FIXED ELECTROLYTE FILM AND METHOD FOR THE PRODUCTION THEREOF, SOLID BODY SECONDARY BATTERY AND METHOD FOR THE PRODUCTION THEREOF AND POLYMER AND WATER-FREE SOLVENT DISPERSION THEREOF |
WO2018168505A1 (ja) * | 2017-03-14 | 2018-09-20 | 富士フイルム株式会社 | 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、並びに、固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法 |
JPWO2018168505A1 (ja) * | 2017-03-14 | 2019-12-12 | 富士フイルム株式会社 | 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、並びに、固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法 |
JP2019029353A (ja) * | 2017-07-28 | 2019-02-21 | コリア インスティテュート オブ インダストリアル テクノロジーKorea Institute Of Industrial Technology | 全固体リチウム二次電池用固体電解質、その製造方法、及びそれを含む全固体リチウム二次電池 |
US10818968B2 (en) | 2017-07-28 | 2020-10-27 | Korea Institute Of Industrial Technology | Method of preparing a gallium-doped LLZO solid electrolyte for an all-solid-state lithium secondary battery |
CN111247673A (zh) * | 2017-10-30 | 2020-06-05 | 富士胶片株式会社 | 活性物质层形成用组合物及其制造方法、以及全固态二次电池用电极片及全固态二次电池的制造方法 |
CN111247673B (zh) * | 2017-10-30 | 2023-11-10 | 富士胶片株式会社 | 活性物质层形成用组合物、电池、电极片及相关制造方法 |
US11658282B2 (en) | 2017-10-30 | 2023-05-23 | Fujifilm Corporation | Composition for forming active material layer and method for manufacturing the same, and methods for manufacturing electrode sheet for all-solid state secondary battery and all-solid state secondary battery |
WO2019087750A1 (ja) | 2017-10-30 | 2019-05-09 | 富士フイルム株式会社 | 活物質層形成用組成物及びその製造方法、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法 |
US10916775B2 (en) * | 2017-11-15 | 2021-02-09 | Toyota Jidosha Kabushiki Kaisha | Slurry of sulfide solid electrolyte, PVDF, and ketone solvent, method for producing all-solid-state battery including the slurry, and all-solid-state battery produced by the method |
JP2019091632A (ja) * | 2017-11-15 | 2019-06-13 | トヨタ自動車株式会社 | 全固体電池の製造方法、全固体電池およびスラリー |
CN109786811A (zh) * | 2017-11-15 | 2019-05-21 | 丰田自动车株式会社 | 全固体电池的制造方法、全固体电池和浆液 |
JP6996244B2 (ja) | 2017-11-15 | 2022-01-17 | トヨタ自動車株式会社 | 全固体電池の製造方法、全固体電池およびスラリー |
US11557766B2 (en) | 2017-12-15 | 2023-01-17 | Zeon Corporation | Binder composition for all-solid-state secondary battery, slurry composition for all-solid-state secondary battery, functional layer for all-solid-state secondary battery, and all-solid-state secondary battery |
EP3726634A4 (en) * | 2017-12-15 | 2021-06-30 | Zeon Corporation | COMPOSITION OF BINDER FOR FULLY SOLID SECONDARY BATTERY, COMPOSITION OF SLURRY FOR FULLY SOLID SECONDARY BATTERY, FUNCTIONAL LAYER FOR FULLY SOLID SECONDARY BATTERY, AND FULLY SOLID SECONDARY BATTERY |
KR20200096823A (ko) | 2018-02-05 | 2020-08-13 | 후지필름 가부시키가이샤 | 고체 전해질 조성물 및 그 제조 방법, 고체 전해질 함유 시트, 및 전고체 이차 전지용 전극 시트와 전고체 이차 전지의 제조 방법 |
WO2019151373A1 (ja) | 2018-02-05 | 2019-08-08 | 富士フイルム株式会社 | 固体電解質組成物及びその製造方法、固体電解質含有シート、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法 |
US11605833B2 (en) | 2018-02-05 | 2023-03-14 | Fujifilm Corporation | Solid electrolyte composition and method of manufacturing the same, solid electrolyte-containing sheet, electrode sheet for all-solid state secondary battery, and method of manufacturing all-solid state secondary battery |
JP7014043B2 (ja) | 2018-05-15 | 2022-02-01 | トヨタ自動車株式会社 | 電極層の製造方法 |
JP2019200890A (ja) * | 2018-05-15 | 2019-11-21 | トヨタ自動車株式会社 | 電極層の製造方法 |
JP7484919B2 (ja) | 2019-07-19 | 2024-05-16 | 株式会社レゾナック | 複合電極材料、電極層、および固体電池 |
JP7071471B2 (ja) | 2019-10-22 | 2022-05-19 | 輝能科技股▲分▼有限公司 | セラミックセパレータ |
JP2021068703A (ja) * | 2019-10-22 | 2021-04-30 | 輝能科技股▲分▼有限公司Prologium Technology Co., Ltd. | セラミックセパレータ |
JP7124814B2 (ja) | 2019-10-28 | 2022-08-24 | トヨタ自動車株式会社 | スラリー、全固体電池および全固体電池の製造方法 |
JP2021068673A (ja) * | 2019-10-28 | 2021-04-30 | トヨタ自動車株式会社 | スラリー、全固体電池および全固体電池の製造方法 |
JP2021108260A (ja) * | 2019-12-27 | 2021-07-29 | 太陽誘電株式会社 | 全固体電池およびその製造方法 |
JP7425600B2 (ja) | 2019-12-27 | 2024-01-31 | 太陽誘電株式会社 | 全固体電池およびその製造方法 |
JP2021163579A (ja) * | 2020-03-31 | 2021-10-11 | 本田技研工業株式会社 | 全固体電池及びその製造方法 |
US11817549B2 (en) | 2020-03-31 | 2023-11-14 | Honda Motor Co., Ltd. | All-solid-state battery and method for manufacturing same |
JP7037680B2 (ja) | 2021-01-29 | 2022-03-16 | 古河機械金属株式会社 | 固体電解質膜の製造方法および全固体型リチウムイオン電池の製造方法 |
JP2021073660A (ja) * | 2021-01-29 | 2021-05-13 | 古河機械金属株式会社 | 固体電解質膜の製造方法および全固体型リチウムイオン電池の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20150063021A (ko) | 2015-06-08 |
JP6187468B2 (ja) | 2017-08-30 |
JPWO2014051032A1 (ja) | 2016-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6187468B2 (ja) | 全固体二次電池用スラリー、全固体二次電池用電極の製造方法及び全固体二次電池用電解質層の製造方法 | |
CN107210482B (zh) | 全固体二次电池 | |
JP5644851B2 (ja) | 全固体二次電池及び全固体二次電池の製造方法 | |
CN104752728B (zh) | 经表面处理的阴极活性材料及使用该材料的锂二次电池 | |
JP5768815B2 (ja) | 全固体二次電池 | |
JP6409782B2 (ja) | リチウムイオン二次電池のバインダー用の粒子状重合体、接着層及び多孔膜組成物 | |
KR102408243B1 (ko) | 비수계 이차전지용 적층체 및 그 제조 방법, 및 비수계 이차전지 | |
KR102060429B1 (ko) | 리튬 이온 이차 전지 | |
US10297819B2 (en) | Slurry composition for lithium ion secondary battery negative electrode, negative electrode for lithium ion secondary battery and method for producing the same, and lithium ion secondary battery | |
KR102188318B1 (ko) | 리튬 이온 이차 전지용 바인더 조성물, 리튬 이온 이차 전지용 슬러리 조성물, 리튬 이온 이차 전지용 전극, 리튬 이온 이차 전지, 그리고 리튬 이온 이차 전지용 바인더 조성물의 제조 방법 | |
KR102232551B1 (ko) | 전기 화학 소자 전극용 바인더, 전기 화학 소자 전극용 입자 복합체, 전기 화학 소자 전극, 전기 화학 소자 및 전기 화학 소자 전극의 제조 방법 | |
JP6327251B2 (ja) | リチウムイオン二次電池用多孔膜スラリー組成物、リチウムイオン二次電池用セパレーター、リチウムイオン二次電池用電極及びリチウムイオン二次電池 | |
JP7122858B2 (ja) | 水系バインダー樹脂組成物、非水系電池用スラリー、非水系電池電極、非水系電池セパレータ、及び非水系電池 | |
JP6459691B2 (ja) | 全固体二次電池 | |
JP6111895B2 (ja) | リチウムイオン二次電池負極用スラリー組成物、二次電池用負極および二次電池 | |
JP2014032758A (ja) | リチウムイオン二次電池用電極の製造方法、及びリチウムイオン二次電池 | |
JP2014146471A (ja) | 二次電池負極用スラリー組成物、その製造方法、二次電池用負極、及び二次電池 | |
KR20170050278A (ko) | 질산리튬을 포함하는 고분자 전해질 및 이를 포함하는 전고체 전지 | |
CN113195562B (zh) | 全固态二次电池电极用导电材料糊 | |
JP2016181472A (ja) | 全固体二次電池 | |
JP6728653B2 (ja) | 非水系二次電池およびその製造方法 | |
JPWO2020137435A5 (ja) | ||
JP7256706B2 (ja) | 全固体リチウムイオン二次電池用電極活物質成形体、全固体リチウムイオン二次電池用電極、全固体リチウムイオン二次電池及び全固体リチウムイオン二次電池用電極活物質成形体の製造方法 | |
CN114868284A (zh) | 电化学装置、电化学装置用电极、电化学装置用涂覆液及其用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13842088 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014538620 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20147035701 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13842088 Country of ref document: EP Kind code of ref document: A1 |