WO2017046915A1 - 二次電池用複合電解質、二次電池及び電池パック - Google Patents

二次電池用複合電解質、二次電池及び電池パック Download PDF

Info

Publication number
WO2017046915A1
WO2017046915A1 PCT/JP2015/076473 JP2015076473W WO2017046915A1 WO 2017046915 A1 WO2017046915 A1 WO 2017046915A1 JP 2015076473 W JP2015076473 W JP 2015076473W WO 2017046915 A1 WO2017046915 A1 WO 2017046915A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
secondary battery
negative electrode
organic
composite
Prior art date
Application number
PCT/JP2015/076473
Other languages
English (en)
French (fr)
Inventor
一臣 吉間
康宏 原田
高見 則雄
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to CN201580077113.4A priority Critical patent/CN107431241B/zh
Priority to JP2017540413A priority patent/JP6710692B2/ja
Priority to PCT/JP2015/076473 priority patent/WO2017046915A1/ja
Priority to EP15904104.5A priority patent/EP3352277B1/en
Publication of WO2017046915A1 publication Critical patent/WO2017046915A1/ja
Priority to US15/688,215 priority patent/US11362366B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Embodiments of the present invention relate to a composite electrolyte for a secondary battery, a secondary battery using the same, and a battery pack.
  • non-aqueous electrolyte batteries such as lithium (Li) ion secondary batteries have been actively researched and developed as high energy density batteries.
  • Nonaqueous electrolyte batteries are expected as power sources for uninterruptible power supplies of hybrid vehicles, electric vehicles, and mobile phone base stations.
  • all-solid-state Li-ion secondary batteries have been actively studied as in-vehicle batteries, and their high safety has attracted attention.
  • the all solid-state Li ion secondary battery uses a solid electrolyte as compared with a Li ion secondary battery using a non-aqueous electrolyte, so there is no risk of ignition.
  • high-capacity all-solid-state Li-ion secondary batteries have not yet been put into practical use.
  • One of the causes is an interface between the solid electrolyte and the active material of the electrode.
  • Both the solid electrolyte and the active material are solid, and they can be bonded relatively easily when heat is applied.
  • the active material expands and contracts due to Li insertion and desorption, the active material peels off from the solid electrolyte when repeatedly charged and discharged, making it impossible to perform a good charge / discharge cycle. There was a possibility. Therefore, the solid electrolyte is required to reduce the influence of expansion and contraction of the active material and to form a good interface between the solid electrolyte and the active material. There is also a need to operate the battery in a wider operating temperature range.
  • the problem to be solved by the present invention is to provide a composite electrolyte for a secondary battery capable of obtaining a wide operating temperature range.
  • the composite electrolyte for a secondary battery according to the embodiment includes inorganic solid particles having an inorganic compound having a Li ion conductivity of 1 ⁇ 10 ⁇ 10 S / cm or more at room temperature and an average particle size of 0.05 ⁇ m or more and less than 8 ⁇ m, organic An electrolyte.
  • the weight ratio of the organic electrolyte to the inorganic compound is 0.1% or more and 20% or less.
  • FIG. 2 is a partial SEM image of the electrode body of Example 1.
  • FIG. It is a SEM image of another site
  • part of the electrode body of FIG. 42 is a schematic diagram showing a manufacturing process for the secondary battery in Example 47.
  • FIG. It is a figure which shows the modulus spectrum of Example 1 and Comparative Example 4.
  • It is a graph which shows the Arrhenius plot from the temperature dependence of the ion conductivity (sigma) of Example 1 and Comparative Example 1.
  • FIG. 16 is a discharge curve graph of the cell of FIG. 15 at a high temperature. It is a graph which shows the discharge curve in the low temperature of the cell of FIG. It is a graph which shows the accelerated life cycle test result of the cell of FIG.
  • the composite electrolyte for a secondary battery according to the first embodiment includes an inorganic compound and an organic electrolyte.
  • the inorganic compound forms inorganic solid particles.
  • the inorganic solid particles and the organic electrolyte form a composite electrolyte for a secondary battery.
  • inorganic solid particles are used as the inorganic compound.
  • the inorganic solid particles are particles of an inorganic compound having a certain average particle diameter described later.
  • the inorganic solid particles are preferably non-Li ion conductive inorganic solid particles that are non-Li ion conductive.
  • the non-Li ion conductivity means that the Li ion conductivity is less than 1 ⁇ 10 ⁇ 10 S / cm at 25 ° C.
  • the non-Li ion conductive inorganic solid particles have high electrochemical stability because Li migration does not occur due to polarization, and particularly excellent stability at high temperatures. Thereby, the lifetime characteristic of the battery using this electrolyte can be improved.
  • the inorganic compound used for the non-Li ion conductive inorganic solid particles is not particularly limited, but from the viewpoint of high reducibility and low cost, aluminum oxide, zirconium oxide, silicon oxide, and magnesium oxide are preferable. Similar effects can be obtained by using metal oxides such as niobium, tantalum oxide, hafnium oxide, yttrium oxide, gallium oxide, and germanium oxide, and lanthanoid oxides such as lanthanum oxide.
  • the preferred particle size (average particle size) of the non-Li ion conductive inorganic solid particles is 0.01 ⁇ m to 10 ⁇ m. Further, the particle size of the non-Li ion conductive inorganic solid particles is more preferably 0.01 ⁇ m to 8 ⁇ m.
  • the particle size can be determined by a laser diffraction method when only non-ion conductive inorganic solid particles can be isolated.
  • the electrode material and the nonionic conductive inorganic are measured by using a transmission electron microscope (SEM) and energy dispersive X-ray spectroscopy.
  • SEM transmission electron microscope
  • the particle diameter can be obtained by observing the particles while identifying the solid material.
  • a focused ion beam (Focused Ion Beam: FIB) is used to cut the electrode-coated surface diagonally without destroying the tissue structure, and an SEM is used to observe both ends along the cut surface.
  • FIG. 8 is an SEM image in which the cross section of the positive electrode / electrolyte / negative electrode electrode body was cut out by FIB on the diagonal of the electrode and the cut surface was observed.
  • 11A is a positive electrode
  • 12A is a composite electrolyte
  • 13A is a negative electrode.
  • FIG. 8 when observing the cross section of the electrode with an SEM image, as shown in the schematic diagram showing the average particle diameter measurement method shown in FIG. Draws a circle C with the smallest (referred to as the minimum circumscribed circle). The diameter of this minimum circumscribed circle is defined as the particle diameter.
  • inorganic solid particles having Li ion conductivity are preferably used because they have high Li ion conductivity and high reduction resistance and a wide electrochemical window.
  • La 5 + x A x La 3-x M 2 O 12 (A is Ca, Sr, Ba, M is Nb, Ta), Li 3 M 2-x L 2 O 12 (M is Ta , Nb, and L are Zr), Li 7-3x Al x La 3 Zr 3 O 12 , and Li 7 La 3 Zr 2 O 12 .
  • Li 6.25 Al 0.25 La 3 Zr 3 O 12 and Li 7 La 3 Zr 2 O 12 have high Li ion conductivity (ion conductivity) and are electrochemically stable, so that they have discharge performance and cycle life performance. And has the advantage of being chemically stable with respect to the organic solvent even if it is made finer.
  • x is preferably in the range of 0 to 0.5.
  • Li ion conductive inorganic compound particles having a Li ion conductivity of 1 ⁇ 10 ⁇ 10 S / cm or more at 25 ° C. are used, so that when combined with an organic electrolyte, Li ions are formed at the contact interface. The concentration can be increased.
  • Li ions can freely move by an external electric field.
  • this Li ion conductive inorganic compound is disposed as an electrolyte between the positive electrode and the negative electrode, polarization occurs at the contact interface between the inorganic compound and the organic electrolyte due to the potential difference between the positive electrode and the negative electrode.
  • Li ions gather on the surface of the Li ion conductive inorganic compound by polarization, a portion having a high Li ion concentration is generated.
  • the organic electrolyte contains Li (lithium) ions exhibiting ionic conductivity and at least one selected from propylene carbonate, ethylene carbonate, diethyl carbonate, and methyl ethyl carbonate. Note that it is not preferable to use sulfide solid electrolyte particles having high Li ion conductivity for the organic electrolyte because the sulfur component dissolves.
  • the weight ratio of the organic electrolyte to the inorganic compound is 0.1% or more and 20% or less. In other words, when the inorganic compound is 100 parts by mass, the content of the organic electrolyte is 0.1 to 20 parts by mass.
  • the weight ratio of the organic electrolyte to the inorganic compound is preferably 1% or more and 10% or less, particularly preferably about 4%.
  • the Li ion concentration at the contact interface between the inorganic compound and the organic electrolyte is C Li (surface)
  • the lithium ion concentration at the center of the inorganic compound particle is C Li (bulk)
  • the Li ion concentration in the organic electrolyte is C Li.
  • C Li (surface) > C Li (organic) ⁇ C Li (bulk)
  • an Li ion conductive path that facilitates the conduction of Li ions is formed on the surface of the inorganic compound, and a good interface between the solid electrolyte and the active material is formed, improving the high temperature durability and cycle life of the battery. It is done.
  • the concentration distribution in the solid electrolyte can be quantified by in-situ measurement using Rutherford Backscattering Spectroscopy (RBS) / Nuclear Reaction Analysis (NRA).
  • Gold (Au) electrodes are vapor-deposited on both sides of an electrolyte layer that is a composite of an inorganic compound and an organic electrolyte, and RBS / NRA measurement is performed while a voltage of 5 V is applied between both electrodes, and Li on the surface of the inorganic compound in the electrolyte layer.
  • the ion concentration C Li (surface), the Li ion concentration C Li (bulk) inside the inorganic compound, and the Li ion concentration C Li (organic) in the organic electrolyte away from the inorganic compound are measured and compared.
  • the composite electrolyte for a secondary battery of the present embodiment has ⁇ max-hybrid of the secondary battery composite electrolyte, where ⁇ max is the peak frequency of the complex modulus spectrum represented by the following formula (1).
  • ⁇ max-inorganic of the inorganic compound contained in the secondary battery composite electrolyte and ⁇ max-organic of the organic electrolyte contained in the secondary battery composite electrolyte is ⁇ max-hybrid > ⁇ max-organic. It is preferable to have a relationship.
  • Non-Patent Document 1 measurement of the complex modulus spectrum of the composite electrolyte for a secondary battery.
  • a measurement method using a modulus spectrum is performed.
  • the modulus spectrum reflects charge transfer, and in this case, the density of the movable Li ion concentration can be estimated.
  • Non-Patent Document 1 Non-Patent Document 1
  • the measurement is performed using a frequency response analyzer 1260 manufactured by Solartron, with an electrolyte sandwiched between gold (Au) electrodes (a schematic diagram of a modulus spectrum measurement method is shown in FIG. 20).
  • the measurement frequency range is 5 Hz to 32 MHz, and the electrolyte is placed in a dry argon atmosphere without exposure to the atmosphere, and measurement is performed in a 25 ° C. environment.
  • M ( ⁇ ) i ⁇ 0 Z ( ⁇ ) / k [ ⁇ : angular frequency, ⁇ 0 : dielectric constant, Z ( ⁇ ): complex impedance, k: cell constant], the frequency (Hz ) Of the common logarithm with the base of 10 and the vertical axis representing the imaginary part (M ′′) of the complex modulus, and the vertex frequency of the obtained graph is denoted by ⁇ max .
  • ⁇ max (Nv * 1 / ⁇ ) / ⁇ fp, it is reported that the value of ⁇ max increases in proportion to the magnitude of Nv, since Nv corresponds to the concentration of charge carriers.
  • Non-Patent Document 1 and 2 can be defined as an index of the Li ion concentration in the electrolyte, and as the number of Li ions that move easily in the electrolyte increases, the speed of ion movement statistically diversifies, so the peak that appears in the modulus plot Wide (Non-Patent Document 1 and 2).
  • the omega max-hybrid in the composite electrolyte, the omega max-Organic when the organic electrolyte alone can be compared by measuring respectively.
  • the composite electrolyte for a secondary battery according to the present embodiment includes d hybrid in the value d of the composite electrolyte at a value d that is 1 ⁇ 2 of the half-value width that can be measured from the peak of the modulus spectrum. It is preferable that d hybrid is larger than 1 when d organic is 1 where d is the value of d organic in the organic electrolyte.
  • the crystallinity of the inorganic solid electrolyte layer at the same particle diameter is reflected in the half width of the peak in the X-ray diffraction method.
  • the crystallinity is high and the regularity of the atomic arrangement is high, the full width at half maximum becomes narrow.
  • the inorganic compound in the electrolyte layer can be isolated, the crystal structure and crystallinity can be examined by powder X-ray diffraction using a Cu—K ⁇ ray source.
  • an inorganic compound as a target sample is pulverized to prepare a sample having an average particle size of about 5 ⁇ m.
  • the average particle diameter can be determined by a laser diffraction method.
  • the obtained sample is filled in a holder portion having a depth of 0.2 mm formed on a glass sample plate. At this time, care should be taken that the sample is sufficiently filled in the holder portion.
  • another glass plate is pressed from the outside to smooth the surface of the filled sample. Care should be taken to fill the sample with a sufficient amount so that there are no cracks, voids, irregularities, etc. in the sample. Care should be taken to press the glass plate with sufficient pressure.
  • the glass plate filled with the sample is placed in a powder X-ray diffractometer, and in the measurement by the X-ray diffraction method using the parallel beam method of the Cu-K ⁇ radiation source, the diffraction pattern is obtained using a K ⁇ filter or a monochromator. get.
  • the measurement conditions are a scanning speed of 5 deg / min, a step width of 0.2 deg, a tube voltage of 40 kV, and a tube current of 300 mA.
  • the orientation of the sample is high, the position of the peak may be shifted or the peak intensity ratio may be changed depending on how the sample is filled.
  • Such a sample with extremely high orientation is measured using a capillary. Specifically, a sample is inserted into a capillary, and this capillary is placed on a rotary sample table for measurement. The orientation can be relaxed by such a measuring method.
  • the crystal structure and crystallinity of the contained inorganic compound can be examined by powder X-ray diffraction measurement of the entire electrolyte layer.
  • the thickness of the electrolyte layer to be measured and the depth of the measurement holder are matched so that the measurement surface irradiated with X-rays does not have irregularities.
  • a step angle 2 ⁇ 0.02 ° or less, more preferably 2 ⁇ using a K ⁇ filter or a monochromator.
  • the regularity of atomic arrangement in the crystal is high, and an inorganic compound is generated by an external electric field.
  • the composite electrolyte for a secondary battery according to the present embodiment may further contain a binder.
  • the binder is more preferably a polymer that gels with carbonates such as polyacrylonitrile (PAN), polyethylene oxide (PEO), poly (vinylidene fluoride) (PVdF), or polymethyl methacrylate. If the content of the binder is PVdF, it is preferably less than 20% by weight with respect to the total mass of the composite electrolyte for a secondary battery.
  • the composite electrolyte for secondary battery of the present embodiment is preferably a solid polymer electrolyte or a gel polymer electrolyte. Whether the composite electrolyte for a secondary battery is solid or gel can be appropriately adjusted by selecting the composition of the organic electrolyte and the binder. If the composite electrolyte for secondary batteries is a solid polymer electrolyte, the secondary battery device can generally be made compact. If the composite electrolyte for the secondary battery is a gel polymer electrolyte, operations such as making the secondary battery device and changing the shape are easy.
  • the ionic conductivity can be increased by combining the organic electrolyte with an inorganic compound. This is because the movable Li ion concentration increases at the interface between the Li ion conductive inorganic solid particles and the organic electrolyte, and Li ions can be easily moved.
  • the movement of Li ions is further facilitated.
  • the Li-containing oxide solid electrolyte having high Li ion conductivity is used as the organic electrolyte, the movement of Li ions is easier.
  • improving the ionic conductivity of the electrolyte is the same as lowering the activation energy of the electrolyte itself. If the activation energy can be reduced, the battery can be operated in a wider operating temperature range.
  • the inorganic compound does not cause problems such as being chemically stable and dissolved in the organic electrolyte, and by using Li ion conductive inorganic solid particles, Also, the reduction reaction due to the movement of Li hardly occurs, and the stability and life of the composite electrolyte can be improved.
  • the secondary battery according to the second embodiment is generally configured to include a positive electrode, a negative electrode made of negative electrode active material particles that occlude and release Li ions, and an electrolyte layer.
  • a positive electrode 11, an electrolyte layer 12, and a negative electrode 13 are laminated in this order, and this structure is sandwiched between current collectors 14 to constitute an electrode body 10 ⁇ / b> A.
  • a single-layer electrode body in which one set of the above structures is laminated.
  • the electrolyte layer 12 of the present embodiment is a layer made of the secondary battery composite electrolyte described in the first embodiment.
  • the interface between the electrolyte layer 12, the positive electrode 11, and the negative electrode 13 is formed along the unevenness of the surfaces of the positive electrode 11 and the negative electrode 13.
  • the surfaces of the positive electrode 11 and the negative electrode 13 are uneven by the constituent materials, and the positive electrode active material and the negative electrode active material are provided on these surfaces, respectively. And the unevenness
  • the surface of the negative electrode 13 has large irregularities when particles having an average particle size larger than 5 ⁇ m are used as the secondary particles of the negative electrode active material, as will be described later.
  • the electrolyte layer 12 is in close contact with the positive electrode 11 and the negative electrode 13 along the unevenness.
  • the organic electrolyte 122 since the organic electrolyte 122 is in the form of a gel in the manufacturing process described later or has fluidity before curing, the organic electrolyte 122 penetrates into and enters the recesses formed by the particles on the surfaces of the positive electrode 11 and the negative electrode 13. Yes.
  • the inorganic solid particles 121A which are part of the inorganic solid particles 121, enter the back of the recesses of the negative electrode 13, so that the surface including the recesses of the negative electrode 13 has good conductivity through the inorganic solid particles 121A. Is given. Further, as shown in FIG.
  • the solid metal particles 121 ⁇ / b> B that are hard particles give the structural strength of the electrolyte layer 12, and ensure a certain thickness in the electrolyte layer 12 (the positive electrode 11 and the negative electrode). 13 does not directly contact and short-circuit).
  • the thickness of the electrolyte layer 12 is less than 8 ⁇ m at the smallest thickness. More preferably, it is less than 5 ⁇ m. As shown in FIG. 4, the portion where the thickness of the electrolyte layer 12 is the smallest is the smallest when the thickness of the electrolyte layer 12 is observed (in other words, the surface structures of the positive electrode 11 and the negative electrode 13). Is a thickness L (in other words, the distance between the positive electrode 11 and the negative electrode 13 in the portion).
  • the thickness of the electrolyte layer 12 is measured as follows.
  • the electrode body When the electrode body is taken out from the produced battery, and the taken out electrode body has a quadrangular shape (or other polygonal shape), it is on the diagonal line, and when it is circular (or a substantially circular shape including an ellipse)
  • a cross section of the positive electrode / electrolyte / negative electrode laminated section is cut out using FIB on the diameter line, and all cut surfaces are measured by SEM.
  • the observation magnification at this time is preferably 20000 times. All the diagonal lines of the electrode are observed, and the thickness of the portion where the electrolyte layer 12 is the thinnest is defined as the thickness of the portion where the thickness of the electrolyte device is the smallest.
  • the thickness of the electrolyte layer 12 can be reduced, and by reducing the thickness of the electrolyte layer 12, There is an advantage that the secondary battery becomes smaller and the capacity per volume increases.
  • the electrolyte layer 12 has an average thickness of 0.1 ⁇ m or more and less than 8 ⁇ m. More preferably, it is 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the electrode application surface is cut diagonally without destroying the tissue structure using FIB, and all cross sections are observed at the same magnification up to both ends along the cut surface using SEM. The observation magnification at this time is preferably 20000 times.
  • the average thickness can be obtained by converting the observed magnification.
  • means such as applying the electrolyte layer 12 to the positive electrode 11 or the negative electrode or injecting between the positive electrode 13 and the negative electrode 13 may be used.
  • the electrolyte layer 12 can be manufactured by the following manufacturing method. First, as shown in FIG. 3A, a binder dispersion liquid in which inorganic solid particles 121 are dispersed in the described binder solution is applied onto the positive electrode 11, and the inorganic solid particles 121 are provided on the positive electrode 11. Thereafter, as shown in FIG. 3B, the positive electrode 11 is impregnated with an organic electrolyte 122 and heated and mixed, whereby a gel-like composite electrolyte for a secondary battery 123 containing an organic electrolyte 122 and inorganic solid particles 121 is obtained. To do.
  • the positive electrode 11 and the negative electrode 13 are placed opposite to each other and pressed to obtain an electrode body in which the secondary battery composite electrolyte 12 is sandwiched between the positive electrode 11 and the negative electrode 13 as shown in FIG.
  • the thickness of the electrolyte layer 12 is adjusted to be in the above-described range.
  • the secondary battery composite electrolyte 123 (12) is in the form of a gel, when pressed against the unevenness of the positive electrode 11 and the negative electrode 13, particularly the unevenness of the active material on the surface of these electrodes, The composite electrolyte 123 (12) enters or permeates the uneven gap. For this reason, the positive electrode 11 and the negative electrode 13 and the electrolyte layer 12 are in close contact with each other.
  • an organic electrolyte having fluidity before solidification may be applied on the positive electrode 11.
  • a spray or the like may be used. By using the spray, the composite electrolyte for the secondary battery can be uniformly provided on the positive electrode 11, and the thickness of the electrolyte layer 12 can be easily adjusted by adjusting the amount of the composite electrolyte for the secondary battery. it can.
  • the organic electrolyte 122 is injected and infiltrated. Good.
  • the electrolyte layer 12 and the positive electrode 11 and the negative electrode 13 are in close contact with each other without a gap. Since the interface between the electrolyte layer 12 and the positive electrode 11 and the negative electrode 13 is well formed, the ionic conductivity through the electrolyte layer 12 is good. Since the positive electrode 11 and the negative electrode 13 and the electrolyte device 12 are in close contact with each other, the thickness of the electrolyte layer 12 can be in the small range described above.
  • the positive electrode 11 is carried on one side of the current collector 14 in the single-layer electrode body 10A shown in FIG.
  • the positive electrode 11 includes an active material, a conductive agent, and a binder.
  • the Al alloy is preferably an alloy containing one or more elements selected from the group consisting of Fe, Mg, Zn, Mn, and Si in addition to Al.
  • Al—Fe alloy, Al—Mn alloy and Al—Mg alloy can obtain higher strength than Al.
  • the content of transition metals such as Ni and Cr in Al and Al alloys is preferably 100 ppm or less (including 0 ppm).
  • an Al—Cu alloy increases strength, but deteriorates corrosion resistance, and is not suitable for the current collector 14.
  • the more preferable Al purity used for the current collector 14 on which the positive electrode 11 is carried is in the range of 99.99 to 99.0%. Within this range, high temperature cycle life deterioration due to dissolution of impurity elements can be reduced.
  • Li—Mn composite oxide Li—Ni composite oxide, Li—Co—Al composite oxide, Li—Ni—Co—Mn composite oxide, spinel type Li—Mn—Ni composite oxide Li-Mn-Co composite oxide, olipine-type Li iron phosphate (LiFePO 4 ), Li-Mn phosphate (LiMnPO 4 ), and the like.
  • Li—Mn composite oxide such as Li x Mn 2 O 4 or Li x MnO 2
  • Li—Ni—Al composite oxide such as LixNi 1-y Al y O 2
  • Li—Co such as Li x CoO 2 complex oxide
  • Li-Ni-Co composite oxide such as Li x Ni 1-y-z Co y Mn z O 2
  • Li-Mn-Co composite oxide such as Li x Mn y Co 1-y O 2
  • spinel type Li—Mn—Ni composite oxides such as Li x Mn 2 -y Ni y O 4
  • olivine structures such as Li x FePO 4 , Li x Fe 1 -y Mn y PO 4 , and Li x CoPO 4 are used.
  • Li phosphorus oxides such as fluorinated iron sulfate Li x FeSO 4 F.
  • x and y are preferably in the range of 0 to 1 unless otherwise specified. Use of these is preferable because a high positive electrode voltage can be obtained.
  • the Li—Ni—Al composite oxide, Li—Ni—Co—Mn composite oxide, and Li—Mn—Co composite oxide can suppress the reaction with the non-aqueous electrolyte in a high temperature environment. Battery life can be greatly improved.
  • Li—Ni—Co—Mn composite represented by Li x Ni 1-yz Co y Mn z O 2 (0 ⁇ x ⁇ 1.1, 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.5) Oxides are preferred.
  • a Li—Ni—Co—Mn composite oxide By using the Li—Ni—Co—Mn composite oxide, a higher temperature durability can be obtained.
  • the conductive agent is added to the positive electrode 11 in order to increase the electron conductivity and suppress the contact resistance with the current collector.
  • Examples of the conductive agent include acetylene black, carbon black, and graphite.
  • binder for binding the active material and the conductive agent examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), or fluorine-based rubber.
  • the positive electrode active material is 80% by weight to 95% by weight
  • the conductive agent is 3% by weight to 18% by weight
  • the binder is 2% by weight to 7%. It is preferable to make it into the range below weight%.
  • the conductive agent the effect described above can be exhibited when it is 3% by weight or more, and when it is 18% by weight or less, the decomposition of the nonaqueous electrolyte on the surface of the conductive agent under high temperature storage is reduced. be able to.
  • the binder is 2% by weight or more, sufficient electrode strength can be obtained, and when it is 7% by weight or less, the insulating portion of the electrode can be reduced.
  • the positive electrode 11 is produced, for example, by suspending a positive electrode active material, a conductive agent, and a binder in an appropriate solvent, applying the suspension to a positive electrode current collector, drying, and pressing.
  • the positive electrode pressing pressure is preferably in the range of 0.15 ton / mm to 0.3 ton / mm. Within this range, the adhesion (peel strength) between the positive electrode layer and the Al foil positive electrode current collector is enhanced, and the elongation percentage of the positive electrode current collector foil is preferably 20% or less.
  • the negative electrode 13 is carried on one side of the current collector 14 in the single-layer electrode body 10A shown in FIG.
  • the negative electrode 13 includes an active material, a conductive agent, and a binder.
  • the current collector used for the negative electrode is preferably an Al alloy foil having a purity of 98% or more from pure Al (purity 100%).
  • the Al alloy is preferably an alloy containing one or more elements selected from the group consisting of Fe, Mg, Zn, Mn, and Si in addition to Al.
  • Al—Fe alloy, Al—Mn alloy and Al—Mg alloy can obtain higher strength than Al.
  • the content of transition metals such as Ni and Cr in Al and Al alloys is preferably 100 ppm or less (including 0 ppm).
  • an Al—Cu alloy increases strength, but deteriorates corrosion resistance, and is not suitable for the current collector 14.
  • the more preferable Al purity used for the current collector 14 on which the negative electrode 13 is supported is in the range of 99.95 to 98.0%. As will be described later, this purity range is appropriate because the negative electrode press pressure can be reduced and the elongation of the Al foil can be reduced by using Ti-containing oxide particles of 2 ⁇ m or more as the secondary particles of the present embodiment of the negative electrode active material. . As a result, it is possible to produce a low-resistance negative electrode by suppressing the crushing of secondary particles of the Ti-containing oxide described later, with the advantage that the electronic conductivity of the Al foil current collector can be increased.
  • Negative electrode active material particles that occlude and release Li ions of the negative electrode active material.
  • examples thereof include a carbon material, a graphite material, a Li alloy material, a metal oxide, or a metal sulfide.
  • the thing containing Ti element is preferable. Among them, at least one selected from Li—Ti oxide, Ti oxide, Nb—Ti oxide, and Li—Na—Nb—Ti oxide whose Li ion occlusion and release potential is in the range of 1 to 3 V with respect to the Li potential. It is particularly preferred to select the Ti-containing oxide negative electrode active material particles.
  • Li—Ti oxide As a Li—Ti oxide, a spinel structure Li—Ti oxide represented by the general formula Li 4 + x Ti 5 O 12 (x is ⁇ 1 ⁇ x ⁇ 3), or Li2 + x Ti 3 O 7 as a ramsdelide structure Li—Ti oxide.
  • Li-Ti oxides such as Li 1 + x Ti 2 O 4 , Li 1.1 + x Ti 1.8 O 4 , Li 1.07 + x Ti 1.86 O 4 , Li x TiO 2 (x is 0 ⁇ x), etc.
  • Monoclinic structure represented by the formula Li x TiO 2 (0 ⁇ x) (TiO 2 (B) as pre-charge structure), rutile structure, anatase structure Ti oxide (TiO 2 as pre-charge structure), Nb— Ti oxide is Li a TiM b Nb 2 ⁇ ⁇ O 7 ⁇ ⁇ (0 ⁇ a ⁇ 5, 0 ⁇ b ⁇ 0.3, 0 ⁇ ⁇ 0.3, 0 ⁇ ⁇ 0.3, M is At least one element of Fe, V, Mo, Ta) It is intended to be. These may be used alone or in combination.
  • LiTi oxide that can be expressed by the general formula Li 4 + x Ti 5 O 12 (x is ⁇ 1 ⁇ x ⁇ 3) with very little volume change.
  • the same Al foil as that of the positive electrode current collector can be used for the negative electrode current collector in place of the conventional copper foil, thereby realizing weight reduction and cost reduction. Further, it is advantageous in the capacity per unit weight and size of the secondary battery constituting the bipolar electrode structure described later.
  • the average particle diameter of the negative electrode active material falls within the above range when the specific surface area of the negative electrode 13 is increased to 3 to 50 m 2 / g using one particle having an average particle diameter exceeding 1 ⁇ m. This is because a decline cannot be avoided. However, if the average particle size is small, the particles tend to aggregate and the non-aqueous electrolyte distribution is biased toward the negative electrode 13, which may lead to depletion of the electrolyte at the positive electrode 11, so the lower limit is set to 0.001 ⁇ m. It is desirable to do.
  • Negative electrode active material it is desirable that the average particle size of at 1 ⁇ m or less, and a specific surface area of the BET method by N 2 adsorption in the range of 3m 2 / g ⁇ 200m 2 / g. Thereby, the affinity with the nonaqueous electrolyte of the negative electrode 13 can be further increased.
  • the negative electrode active material may contain secondary particles in addition to the primary particles described above.
  • the average particle diameter (diameter) of the secondary particles of the negative electrode active material is preferably larger than 5 ⁇ m. More preferably, it is 7 ⁇ m to 20 ⁇ m. Within this range, a high-density negative electrode can be produced while keeping the pressure of the negative electrode press low, and the elongation of the Al foil current collector can be suppressed.
  • an active material precursor is produced by reacting and synthesizing active material raw materials, and then subjected to a firing treatment, and a pulverizer such as a ball mill or a jet mill is used. After performing the pulverization treatment, the active material precursor (precursor) is agglomerated and grown into secondary particles having a large particle diameter in the firing treatment.
  • the negative electrode active material desirably has an average primary particle size of 1 ⁇ m or less. Thereby, this effect becomes remarkable in high input performance (rapid charge). This is because, for example, the diffusion distance of Li ions inside the active material is shortened and the specific surface area is increased.
  • a more preferable average particle diameter is 0.1 ⁇ m to 0.8 ⁇ m.
  • secondary particles and primary particles of a Ti-containing oxide may be mixed in the negative electrode layer after the negative electrode is manufactured. From the viewpoint of increasing the density, it is preferable that 5 to 50% by volume of primary particles are present in the negative electrode layer.
  • the specific surface area of the negative electrode 13 is defined within the above range.
  • the specific surface area is less than 3 m 2 / g, the aggregation of particles is conspicuous, the affinity between the negative electrode 13 and the non-aqueous electrolyte is reduced, and the interface resistance of the negative electrode 13 is increased. Decreases.
  • the specific surface area exceeds 50 m 2 / g, the distribution of the non-aqueous electrolyte is biased toward the negative electrode 13 and the non-aqueous electrolyte in the positive electrode 11 is insufficient, so that the output characteristics and the charge / discharge cycle characteristics cannot be improved.
  • a more preferable range of the specific surface area is 5 m 2 / g to 50 m 2 / g.
  • the specific surface area of the negative electrode 13 means a surface area per 1 g of the negative electrode layer (excluding the weight of the current collector).
  • the negative electrode layer is a porous layer containing a negative electrode active material, a conductive agent, and a binder carried on a current collector.
  • the porosity of the negative electrode 13 (excluding the current collector) is preferably in the range of 20 to 50%. Thereby, the negative electrode 13 which is excellent in the affinity between the negative electrode 13 and the nonaqueous electrolyte and has a high density can be obtained. A more preferable range of the porosity is 25 to 40%.
  • the negative electrode current collector is preferably an Al foil or an Al alloy foil.
  • the thickness of the Al foil and the Al alloy foil is 20 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the purity of the Al foil is preferably 99.99% or more.
  • As the Al alloy an alloy containing elements such as Mg, zinc and silicon is preferable.
  • transition metals such as iron, copper, Ni, and Cr are preferably 100 ppm or less.
  • a carbon material can be used as the conductive agent.
  • the carbon material include acetylene black, carbon black, coke, carbon fiber, graphite, Al powder, and TiO. More preferably, coke, graphite, TiO powder having an average particle diameter of 10 ⁇ m or less at a heat treatment temperature of 800 ° C. to 2000 ° C., or carbon fiber having an average fiber diameter of 1 ⁇ m or less is preferable.
  • the BET specific surface area by N 2 adsorption of the carbon material is preferably 10 m 2 / g or more.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, styrene butadiene rubber, and core-shell binder.
  • the mixing ratio of the active material, the conductive agent and the binder of the negative electrode 13 is preferably in the range of 80 to 95% by weight of the negative electrode active material, 3 to 18% by weight of the conductive agent, and 2 to 7% by weight of the binder. .
  • the negative electrode 13 is produced by suspending the above-described negative electrode active material, conductive agent, and binder in an appropriate solvent, applying the suspension to a current collector, drying, and applying a heating press. . At this time, the negative electrode active material particles are uniformly dispersed with a small amount of the binder added. This is because the amount of the binder added tends to increase the dispersibility of the particles, but the surface of the particles is easily covered with the binder, and the specific surface area of the negative electrode 13 is reduced. If the amount of the binder added is small, the particles are likely to aggregate. Therefore, the fine particles can be uniformly dispersed by adjusting the stirring conditions (ball mill rotation speed, stirring time and stirring temperature) to suppress the aggregation of the particles.
  • the stirring conditions ball mill rotation speed, stirring time and stirring temperature
  • the negative electrode 13 of the present embodiment is obtained. Furthermore, even if the binder addition amount and the stirring conditions are within the proper range, if the addition amount of the conductive agent is large, the surface of the negative electrode active material tends to be covered with the conductive agent, and the pores on the negative electrode surface tend to decrease. For this reason, the specific surface area of the negative electrode 13 tends to be small. Further, when the addition amount of the conductive agent is small, the negative electrode active material is easily crushed and the specific surface area of the negative electrode 13 is increased, or the dispersibility of the negative electrode active material is decreased and the specific surface area of the negative electrode 13 is decreased. There is.
  • the conductive agent desirably has an average particle size that is equal to or less than the average particle size of the negative electrode active material and a specific surface area that is greater than the specific surface area of the negative electrode active material.
  • an electrode body 10B having a bipolar electrode structure as shown in FIG. 2 can be configured. That is, two or more sets of a structure in which the current collector 14, the positive electrode 11, the electrolyte layer 12, and the negative electrode 13 are stacked in this order are stacked, and the current collector 14 is stacked on one side of the most negative electrode 13. May be.
  • the number of the stacked structures can be appropriately selected according to the design of the shape and size of the battery. In the illustrated example, five sets are stacked.
  • the electrode body 10B of the present embodiment can be thinned by bringing the positive electrode 11, the electrolyte layer 12, and the negative electrode 13 into close contact with each other. Therefore, by laminating a large number of them, the electrode body 10B is thin, requires less space, and has a large capacity. A secondary battery excellent in cycle life performance, thermal stability, and electrochemical stability can be obtained.
  • the electrode bodies 10A and 10B are housed in an exterior material.
  • an exterior material As the exterior material in which the electrode bodies 10A and 10B are accommodated, a metal exterior material or a laminate film exterior material can be used.
  • a metal can made of Al, Al alloy, iron, stainless steel or the like having a square or cylindrical shape can be used.
  • the plate thickness of the exterior material is desirably 0.5 mm or less, and a more preferable range is 0.3 mm or less.
  • the laminate film exterior material examples include a multilayer film in which an Al foil is coated with a resin film.
  • the resin polymers such as polypropylene (PP), polyethylene (PE), nylon, polyethylene terephthalate (PET) can be used.
  • the thickness of the laminate film is preferably 0.2 mm or less.
  • the purity of the Al foil is preferably 99.5% or more.
  • the metal can made of an Al alloy is preferably an alloy having an Al purity of 99.8% or less containing an element such as Mn, Mg, Zn, or Si.
  • the strength of the metal can is dramatically increased, so that the thickness of the can can be reduced. As a result, a thin, lightweight, high output and excellent heat dissipation battery can be realized.
  • the above secondary batteries may be connected in series or in parallel, combined with other types of batteries, and / or combined with a casing or the like to form a battery pack.
  • FIG. 5 is an exploded perspective view showing a schematic configuration of the battery pack 90 that houses the secondary battery 10C of the present embodiment
  • FIG. 6 is a side sectional view of the secondary battery 90 that constitutes the secondary battery 10C
  • FIG. 7 is a block diagram showing an electronic circuit of the battery pack 90.
  • the secondary battery 10 ⁇ / b> C is housed in an exterior material 80, and the positive electrode 11, the electrolyte layer 12, the negative electrode 13, and the current collector 14 are laminated in the same manner as the bipolar electrode bodies 10 ⁇ / b> A and 10 ⁇ / b> B in FIG. 2.
  • a positive electrode current collecting tab 63A is disposed on the current collector 14 (upper end in the figure) adjacent to the positive electrode 11 at the end, and a negative current collector is disposed on the current collector 14 (lower end in the figure) adjacent to the negative electrode 13 at the end.
  • a power tab 64A is provided. As shown in FIG. 5, a negative electrode terminal 63 and a positive electrode terminal 64 extending to the outside are connected to the positive electrode current collecting tab 63A and the negative electrode current collecting tab 64A, respectively.
  • the plurality of secondary batteries 90 are fastened with an adhesive tape 65 to constitute a secondary battery 10C.
  • the printed wiring board 67 shown in FIG. 5 is disposed to face the side surface from which the negative electrode terminal 63 and the positive electrode terminal 64 of the secondary battery 10C extend.
  • a thermistor 68, a protection circuit 69, and a terminal 70 for energizing external devices are mounted on the printed wiring board 67.
  • An insulating plate (not shown) is attached to the surface of the printed wiring board 67 facing the secondary battery 10C in order to avoid unnecessary connection with the wiring of the secondary battery 10C.
  • the positive electrode side lead 71 is connected to a positive electrode terminal 64 located in the lowermost layer of the secondary battery 10C, and the tip thereof is inserted into the positive electrode side connector 72 of the printed wiring board 67 and electrically connected thereto.
  • the negative electrode side lead 73 is connected to the negative electrode terminal 63 located in the uppermost layer of the secondary battery 10 ⁇ / b> C, and the tip thereof is inserted into the negative electrode side connector 74 of the printed wiring board 67 to be electrically connected.
  • These connectors 72 and 74 are connected to the protection circuit 69 through wirings 75 and 76 formed on the printed wiring board 67.
  • the thermistor 68 detects the temperature of the secondary battery 10 ⁇ / b> C, and the detection signal is transmitted to the protection circuit 69.
  • the protection circuit 69 can cut off the plus side wiring 77a and the minus side wiring 77b between the protection circuit 69 and the terminal 70 for energization to an external device under a predetermined condition.
  • An example of the predetermined condition is, for example, when the temperature detected by the thermistor 68 is equal to or higher than a predetermined temperature.
  • Another example of the predetermined condition is when, for example, overcharge, overdischarge, overcurrent, or the like of the secondary battery 10C is detected. This detection of overcharge or the like is performed for the entire secondary battery 10C.
  • the battery voltage When detecting an overcharge or the like of the secondary battery 10C, the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected. In the latter case, a lithium electrode used as a reference electrode is inserted into each secondary battery 10C. In the case of the battery pack 90 of FIGS. 5 to 7, a wiring 78 for voltage detection is connected to each secondary battery 10C. A detection signal is transmitted to the protection circuit 69 through these wirings 78.
  • Protective sheets 79 made of rubber or resin are respectively disposed on the three side surfaces of the secondary battery 10C excluding the side surfaces from which the positive electrode terminal 64 and the negative electrode terminal 63 protrude.
  • the secondary battery 10 ⁇ / b> C is stored in the storage container 80 together with each protective sheet 79 and the printed wiring board 67. That is, the protective sheet 79 is disposed on each of the inner side surface in the long side direction and the inner side surface in the short side direction of the storage container 80, and the printed wiring board 67 is disposed on the inner side surface on the opposite side in the short side direction.
  • the secondary battery 10 ⁇ / b> C is located in a space surrounded by the protective sheet 79 and the printed wiring board 67.
  • the lid 81 is attached to the upper surface of the storage container 80.
  • a heat shrinkable tape may be used for fixing the secondary battery 10C.
  • the protective sheets 79 are arranged on both side surfaces of the secondary battery 10C, the heat shrinkable tube is circulated, and then the heat shrinkable tube is thermally contracted to bind the secondary battery 10C.
  • the aspect of the battery pack 90 is appropriately changed depending on the application.
  • As a use of the battery pack 90 one in which cycle characteristics with a large current characteristic are desired is preferable.
  • Specific applications include power supplies for digital cameras, and in-vehicle applications such as two-wheel to four-wheel hybrid electric vehicles, two-wheel to four-wheel electric vehicles, and assist bicycles.
  • the battery pack 90 is particularly suitable for in-vehicle use.
  • the junction between the positive electrode 11 and the negative electrode 13 and the electrolyte layer 12 made of the composite electrolyte for a secondary battery does not deteriorate in the charge / discharge cycle, and the increase in interface resistance is suppressed. Life performance is greatly improved. Further, the use of the organic electrolyte for the electrolyte layer 12 improves the thermal stability and electrochemical stability in a high temperature environment.
  • Example 1 In order to investigate the performance of the composite electrolyte, a single-layer electrode body composed of a positive electrode / composite electrolyte / negative electrode in the form of FIG. 1 was prepared.
  • the positive electrode active material is LiMn 0.85 Fe 0.1 Mg 0.05 having an olivine structure with an average particle diameter of 50 nm of primary particles having carbon fine particles (average particle diameter of 5 nm) attached to the surface (adhesion amount 0.1 wt%).
  • PO 4 3% by weight of vapor-grown carbon fiber having a fiber diameter of 0.1 ⁇ m as a conductive agent, 5% by weight of graphite powder, and 5% of the whole positive electrode as a binder as a conductive agent.
  • the negative electrode active material is composed of Li 4 Ti 5 O 12 particles having an average particle diameter of 0.6 ⁇ m and a specific surface area of 10 m 2 / g, graphite powder having an average particle diameter of 6 ⁇ m as a conductive agent, and PVdF as a binder in a weight ratio.
  • 95: 3: 2 was mixed and dispersed in an n-methylpyrrolidone (NMP) solvent, and a slurry was prepared using a ball mill with stirring at a rotation speed of 1000 rpm and a stirring time of 2 hours. .
  • the obtained slurry was applied to an aluminum alloy foil (purity: 99.3%) having a thickness of 15 ⁇ m, dried, and subjected to a hot press process to prepare a negative electrode.
  • the negative electrode layer on one side had a thickness of 59 ⁇ m and an electrode density of 2.2 g / cm 3 negative electrode was produced.
  • the negative electrode porosity excluding the current collector was 35%.
  • the composite electrolyte is a mixed solvent of propylene carbonate and diethyl carbonate (volume ratio 1: 2) in which 1.2 M Li 7 La 3 Zr 2 O 12 particles having a primary particle size (average particle size) of 0.1 ⁇ m and LiPF 6 are dissolved.
  • a predetermined amount of the contained gel-like polyacrylonitrile polymer was mixed so as to have a weight ratio of 96: 3.2: 0.8 to form a composite electrolyte having a thickness of 2 ⁇ m on the positive electrode and the negative electrode.
  • the electrolyte compounding step involves dispersing Li 7 La 3 Zr 2 O 12 particles in a PVdF binder solution dissolved in an n-methylpyrrolidone (NMP) solution before gelation, and applying the dispersion to the positive and negative electrodes.
  • NMP n-methylpyrrolidone
  • a polymer of a mixed solvent of propylene carbonate and diethyl carbonate (volume ratio 1: 2) and polyacrylonitrile (PAN) in which 1.2 M of LiPF 6 to which a gelling agent has been added is dissolved ( 2 wt%) of the solution was impregnated into the electrode and the composite electrolyte, and the composite electrolyte gelled by heating.
  • the amounts of organic components in the electrode and in the composite electrolyte were adjusted to 3% and 4% by weight, respectively.
  • the inorganic particles, the binder, and the organic component in the composite electrolyte are expressed by weight ratio, 94.3: 1.9: 3.8 is obtained.
  • the thickness of the composite electrolyte it was cut with FIB, and the cross section of the composite electrolyte was observed with SEM. The magnification at that time was 20000 times.
  • FIG. 8 shows an SEM image of the single-layer electrode body of Example 1 in which the laminated cross section of the positive electrode 11A, the electrolyte 12A, and the negative electrode 13A is cut out on the diagonal of the electrode by FIB and the cut surface is observed.
  • the magnification is 20000 times.
  • the interface between the composite electrolyte 12A (LLZ hybrid electrolyte layer), the positive electrode 11A (LTO anode), and the negative electrode 13A (LMFP cathode) has irregularities, and the thickness of the composite electrolyte 12A varies depending on the site, but the average is 2 ⁇ m.
  • FIG. 9 shows another part of the same example.
  • the electrolyte 12A is in close contact with the positive electrode 11A and the negative electrode 13A, and the thickness is smaller than that in FIG.
  • Example 2 to 14 The composite electrolyte was prepared in the same manner as the lithium secondary battery described in Example 1, except that Li 7 La 3 Zr 2 O 12 particles having a primary particle size (average particle size) of 0.05 ⁇ m to 7.8 ⁇ m were used. .
  • Example 15 to 24 The composite electrolyte was prepared in the same manner as the lithium secondary battery described in Example 1 using Li 7 La 3 Zr 2 O 12 particles having a primary particle size (average particle size) of 0.1 ⁇ m. At this time, a composite electrolyte having a thickness of 0.6 ⁇ m to 7.9 ⁇ m was formed on the positive electrode and the negative electrode.
  • Example 25 to 31 The composite electrolyte uses Li 7 La 3 Zr 2 O 12 particles having a primary particle size (average particle size) of 0.1 ⁇ m so that the amount of organic components in the electrode is 0.1 wt% to 25.0 wt%.
  • a lithium secondary battery described in Example 1 was prepared in the same manner as in Example 1 except that the adjustment was made.
  • the composite electrolyte is a mixed solvent of propylene carbonate and diethyl carbonate (volume ratio 1: 2) in which 1.2 M Li 7 La 3 Zr 2 O 12 particles having a primary particle size (average particle size) of 0.1 ⁇ m and LiPF 6 are dissolved.
  • the gel-like polyacrylonitrile polymer contained was in a weight ratio of 96: 3.5: 0.5, 96: 3.0: 1.0, 96: 2.5: 1.5, 96: 2.0: 2.
  • Example 1 except that a predetermined amount was mixed so as to be 0, 96: 1.5: 2.5, 96: 1.0: 3.0, 96: 0.5: 3.5, and combined. It was produced in the same manner as the lithium secondary battery described in 1.
  • the composite electrolyte uses Li 7 La 3 Zr 2 O 12 particles having a primary particle size (average particle diameter) of 0.1 ⁇ m, and the inorganic particles, the binder, and the organic components in the composite electrolyte are 94.3: 0. 1: 5.6, 94.3: 0.5: 5.2, 94.3: 2.9: 2.9, 94.3: 5.6: 0.1
  • the lithium secondary battery described in Example 1 was produced in the same manner.
  • Example 43 To the composite electrolyte, Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 (Example 43), Li 0.5 La 0.5 TiO 3 (primary particle size (average particle diameter) 0.1 ⁇ m) ( Example 44) A composite electrolyte was prepared in the same manner as in Example 1 except that Li 3.6 Si 0.6 PO 4 (Example 45) and LiPON (Example 46) were used for composite.
  • Example 47 In order to investigate the battery performance of a secondary battery having a bipolar electrode structure, a positive and negative electrode double-sided coated electrode in which the positive electrode described in Example 1 was formed on one side of the Al current collector and the negative electrode described in Example 1 was formed on the other side. was made. An electrode having a positive electrode formed on one side of an Al current collector and a negative electrode formed on the other side was prepared. Then, the composite electrolyte described in Example 1 was coated on the positive electrode and negative electrode surfaces using a spray for coating. The thickness of the electrolyte layer covering the surface is 2 ⁇ m.
  • Comparative Example 2 A lithium secondary battery described in Comparative Example 1 was prepared in the same manner except that a 20 ⁇ m polyethylene (PE) separator was used.
  • PE polyethylene
  • Comparative Example 3 A sintered body was prepared using Li 7 La 3 Zr 2 O 12 particles having a primary particle size (average particle diameter) of 1 ⁇ m, and this was sandwiched between a positive electrode and a negative electrode to prepare a lithium secondary battery.
  • Example 5 A lithium secondary battery was produced in the same manner as in Example 1, except that the composite electrolyte was composited using Al 2 O 3 having a primary particle size (average particle size) of 0.1 ⁇ m.
  • Tables 1-1 to 1-3 show the measurement results of the composition ratio, conductivity, and modulus of each example and comparative example.
  • Tables 2-1 to 2-3 show the capacity retention ratio (%) after 50 cycles as the performance of these examples and comparative examples, that is, 25 ° C. rate performance, low temperature performance, and 60 ° C.-life characteristics.
  • the result of Example 1 (A) and Comparative Example 4 (B) was shown in FIG. 11, respectively.
  • the ionic conductivity at room temperature of the electrolyte layer was measured using a frequency response analyzer 1260 manufactured by Solartron, with the electrolyte sandwiched between gold electrodes in the same manner as the modulus measurement.
  • the charge transfer resistance at room temperature was estimated from the obtained arc.
  • the ionic conductivity was measured by aligning the thicknesses and areas of all the electrolyte layers to be measured and taking the reciprocal of the numerical value obtained by multiplying the respective values and resistance values.
  • Table 3 shows the conductivity of the entire composite electrolyte and the composition of the electrolyte in Example 1.
  • the composite electrolyte of the present application has higher conductivity than the solid electrolyte and organic gel electrolyte alone before the composite, and the result that the conductivity is the second highest after the liquid electrolyte with the highest conductivity. Obtained.
  • the activation energy of the electrolyte layer was measured in the range from ⁇ 30 ° C. to 70 ° C. in the same manner as the measurement method for measuring the ionic conductivity.
  • the horizontal axis is the reciprocal of the temperature, a graph in which the logarithm of the obtained ionic conductivity at each temperature is plotted on the vertical axis is created, and the activation energy is calculated from the obtained slope.
  • the discharge curve according to temperature of the single phase cell using the electrolyte of Example 1 and Comparative Example 1 is shown in FIG. As is apparent from this result, a performance with excellent discharge performance at a low temperature was obtained.
  • the AC impedance measurement result of this single-phase cell is shown in FIG.
  • Example 1 has a lower AC impedance component than that of Comparative Example 1, and lithium is easy to move. Moreover, when the Arrhenius plot was taken from the temperature dependence of the ion conductivity ⁇ (FIG. 14), the result that Example 1 had the lowest apparent activation energy of lithium ion conductivity was 17.5 kJ. .
  • FIG. 15 shows a charge / discharge curve of a five-layer bipolar secondary battery using the composite electrolyte of Example 47. It can be seen that with these combinations, an output of 12 V or more is obtained as the operating voltage of the battery.
  • FIG. 16 shows the transition of the discharge curve when the discharge rate is changed. In this way, discharge can be performed even at a discharge rate as high as 20C.
  • FIG. 17 shows a discharge curve at a high temperature
  • FIG. 18 shows a discharge curve at a low temperature.
  • FIG. 19 shows an accelerated life cycle test result at an environmental temperature of 60 ° C. and a current rate of 2C. Thus, the result that charging / discharging was possible stably was obtained.
  • the composite electrolyte for a secondary battery according to this embodiment the effect of expansion and contraction of the active material is eased, a good interface between the solid electrolyte and the active material is formed, and the ionic conductivity in the electrolyte is improved to widen the operating temperature range Can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

活物質の膨張伸縮の影響を和らげ、活物質の膨張伸縮の影響を和らげ、固体電解質-活物質間の良好な界面を形成し、電解質中のイオン導電性を向上させて広い作動温度範囲を得ることを目的とする。二次電池用複合電解質は、室温におけるLiイオン導電率が1×10-10S/cm以上であり、粒子径が0.05μm以上8μm未満の無機化合物と、有機電解質とを含む。前記有機電解質の前記無機化合物に対する重量比率が0.1%以上20%以下である。

Description

二次電池用複合電解質、二次電池及び電池パック
 本発明の実施形態は、二次電池用複合電解質、それを用いた二次電池、及び電池パックに関する。
 近年、高エネルギー密度電池として、リチウム(Li)イオン二次電池のような非水電解質電池の研究開発が盛んに進められている。非水電解質電池は、ハイブリッド自動車や、電気自動車、又は携帯電話基地局の無停電電源用などの電源として期待されている。特に車載用電池として、全固体型Liイオン二次電池が盛んに研究されており、その高い安全性が注目されている。
 全固体型Liイオン二次電池は、非水電解質を用いるLiイオン二次電池に比べて、固体電解質を用いるため発火の恐れがない。しかしながら、高容量の全固体型Liイオン二次電池は未だ実用化されていないのが現状である。この原因の一つとして、固体電解質と電極の活物質との間の界面が挙げられる。固体電解質と活物質は両者とも固体であり、両者は熱を加えれば比較的簡単に接着する。しかし、活物質はLiの挿入脱離に伴う膨張伸縮をすることから、繰り返し充放電を行った場合には活物質が固体電解質から剥離してしまい、良好な充放電のサイクルを行えなくなってしまう可能性があった。したがって、固体電解質には、活物質の膨張伸縮の影響を和らげ、固体電解質-活物質間の良好な界面の形成が必要とされている。また、電池をより広い作動温度範囲において動作させることも求められている。
特開2014-212103号公報
I. M. Hodge, M. D. Ingram, and A.R. West, Journal of Electroanalytical Chemistry 74 (1976) 125 B. Roling, Journal of Non-Crystalline Solids 244 (1999) 34
 本発明が解決しようとする課題は、広い作動温度範囲を得ることができる二次電池用複合電解質を提供することである。
 実施形態の二次電池用複合電解質は、室温におけるLiイオン導電率が1×10-10 S/cm以上の無機化合物を有し平均粒子径が0.05μm以上8μm未満の無機固体粒子と、有機電解質とを含む。前記有機電解質の前記無機化合物に対する重量比率が0.1%以上20%以下である。
第2の実施形態の電極体を示す側面模式図である。 第2の実施形態の別の態様のバイポーラ電極構造を有する電極体を示す側面模式図である。 第2の実施形態の電極体の製造方法の一工程を示す模式図である。 図3Aの製造方法の次の一工程を示す模式図である。 製造後の図3Bの電極体を示す模式図である。 本実施の形態の二次電池を収納する電池パックの概略構成を示す分解斜視図である。 本実施の形態の二次電池の側断面図である。 図5の電池パックの電子回路を示すブロック図である。 実施例1の電極体の部分SEM像である。 図8の電極体の別の部位のSEM像である。 実施例47の二次電池の製造工程を示す模式図である。 実施例1及び比較例4のモジュラススペクトラを示す図である。 実施例1及び比較例1の電解質を用いた単相セルの温度別放電カーブを示すグラフ図である。 実施例1及び比較例1の単相セルの交流インピーダンス測定結果を示すグラフ図である。 実施例1及び比較例1のイオン導電性σの温度依存性からのアレニウスプロットを示すグラフ図である。 実施例47の複合電解質を用いた5層バイポーラ型セルの充放電カーブを示すグラフ図である。 図15のセルの放電レートを変化させたときの放電カーブの推移を示すグラフ図である。 図15のセルの高温における放電カーブグラフ図である。 図15のセルの低温における放電カーブを示すグラフ図である。 図15のセルの加速寿命サイクル試験結果を示すグラフ図である。 モジュラススペクトルの測定法を示す模式図である。 平均粒子径の測定法を示す模式図である。
 以下、実施形態の二次電池用複合電解質を、図面を参照して説明する。
 なお、実施形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は発明の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術を参酌して適宜、設計変更することができる。
(第1の実施形態)
 第1の実施形態に係る二次電池用複合電解質は、無機化合物と有機電解質を含む。本実施形態では、無機化合物は無機固体粒子を形成している。この無機固体粒子と有機電解質とで、二次電池用複合電解質を形成している。
 無機化合物は、本実施形態では無機固体粒子を用いる。ここで無機固体粒子とは、後述する一定の平均粒径を有する無機化合物の粒子である。さらに、無機固体粒子は非Liイオン導電性である非Liイオン導電性無機固体粒子であることが好ましい。非Liイオン導電性であるとは、本実施形態ではLiイオン導電性が25℃において1×10-10 S/cm未満であることである。非Liイオン導電性無機固体粒子は、分極に依るLiの移動が生じないため電気化学的な安定性が高く、特に高温における安定性が優れる。これにより、本電解質を用いた電池の寿命特性を向上させることができる。
 非Liイオン導電性無機固体粒子に用いる無機化合物は特に限定されないが、還元性の高さと低コストの観点から、酸化アルミニウム、酸化ジルコニウム、酸化ケイ素、酸化マグネシウムが好ましく、そのほかにも酸化チタン、酸化ニオブ、酸化タンタル、酸化ハフニウム、酸化イットリウム、酸化ガリウム、酸化ゲルマニウムなどの金属酸化物や、酸化ランタンなどのランタノイド系酸化物などを使っても同様の効果が得られる。非Liイオン導電性無機固体粒子の好ましい粒子サイズ(平均粒子径)は、0.01μm~10μmである。さらに、非Liイオン導電性無機固体粒子の粒子サイズは、0.01μm~8μmであることがより好ましい。ここで、粒子サイズは、非イオン導電性無機固体粒子のみを単離できる場合は、レーザー回折法によって求めることができる。一方、非イオン導電性無機固体粒子が電池の電解質中に含まれる場合、透過型電子顕微鏡(Scanning Electron Microscope: SEM)及びエネルギー分散型X線分光法を用いて、電極材料と非イオン導電性無機固体材料を識別しながら粒子を観察することで粒子径を求めることができる。このとき、収束イオンビーム(Focused Ion Beam: FIB)を用いて組織構造を破壊せずに電極塗布面を対角線上に切断し、SEMを用いて切断面に沿って両端まで観察する。このとき、非イオン導電性無機固体材料の粒子を無作為に観察し、少なくとも100点測定した平均値を算出する。ここで、粒子径は次のようにして決定することができる。図8は、正極/電解質/負極の電極体の積層断面を電極の対角線上にFIBで切り出し、切断面を観察したSEM像である。図8において、11Aが正極、12Aが複合電解質、13Aが負極である。この図8に示すように、SEM像で電極断面を観察したときに、図21に示す平均粒子径の測定法を示す模式図の通り、粒子を包絡する円(すなわち外接円)のうち、直径が最小の円C(最小外接円と称す)を描く。この最小外接円の直径を粒子径として定義する。
 一方で、Liイオン導電性を有する無機固体粒子は、Liイオン導電性が高く耐還元性の高さや、電気化学窓が広い利点があることから、ガーネット型構造の無機固体粒子を用いることが好ましい。ガーネット型構造の無機固体粒子としてLa5+xLa3-x12(AはCa,Sr,Ba,MはNb,Ta),Li2-x12(MはTa,Nb、LはZr)、Li7-3xAlLaZr12、LiLaZr12が挙げられる。中でもLi6.25Al0.25LaZr12やLiLaZr12はLiイオン導電性(イオン伝導性)が高く、電気化学的に安定なため放電性能とサイクル寿命性能に優れ、さらに微粒子化しても前記有機溶媒に対して化学的に安定な利点がある。xは0~0.5の範囲が好ましい。
 本実施形態では、Liイオン導電性が25℃で1×10-10S/cm以上であるLiイオン導電性無機化合物粒子を用いることで、有機電解質と複合化した際に、接触界面においてLiイオン濃度を高めることが可能となる。Liイオン導電性無機化合物は、外部からの電場によってLiイオンが自由に移動することができる。このLiイオン導電性無機化合物が、正極及び負極の間に電解質として配置されると、正極及び負極の電位差を受けて無機化合物と有機電解質の接触界面に分極が生じる。このとき、分極によってLiイオン導電性無機化合物の表面にLiイオンが集まるため、Liイオンの濃度が濃い部分が生成する。
 有機電解質は、本実施形態ではイオン導電性を示すLi(リチウム)イオンとプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、およびメチルエチルカーボネートから選択される少なくとも一種からなるものを含有している。なお、有機電解質にLiイオン導電性が高い硫化物固体電解質粒子を用いると、硫黄成分が溶解するため好ましくない。
 本実施形態では、有機電解質の無機化合物に対する重量比率が0.1%以上20%以下である。換言すれば、無機化合物を100質量部とした場合の有機電解質の含有量が0.1~20質量部である。有機電解質の無機化合物に対する重量比率は1%以上10%以下であることが好ましく、約4%であることが特に好ましい。
 また、前記無機化合物及び有機電解質との接触界面におけるLiイオン濃度をCLi(surface)、前記無機化合物の粒子中心部におけるリチウムイオン濃度をCLi(bulk)、有機電解質中のLiイオン濃度をCLi(organic)としたとき、CLi(surface)>CLi(organic)≧CLi(bulk)であることが好ましい。この構成により、無機化合物表面にLiイオンが導電しやすいLiイオン導電パスが形成され、固体電解質-活物質間の良好な界面を形成し電池の高温耐久性及びサイクル寿命を向上させるという効果が得られる。
 固体電解質中の濃度分布は、ラザフォード後方散乱分光法(Rutherford Back-scattering Spectrometry :RBS)/核反応分析法(Nuclear Reaction Analysis :NRA)を併用したin-situ測定にて定量可能である。無機化合物及び有機電解質を複合化した電解質層の両面に金(Au)電極を蒸着し、両電極間に5Vの電圧を印加しながらRBS/NRA測定を行い、電解質層中の無機化合物表面のLiイオン濃度CLi(surface)、無機化合物内部のLiイオン濃度CLi(bulk)ならびに無機化合物から離れた有機電解質中のLiイオン濃度CLi(organic)を測定して比較する。
 さらに、本実施形態の二次電池用複合電解質は、下記(1)の式で表される複素モジュラススペクトルのピーク周波数をωmaxとしたとき、二次電池用複合電解質のωmax-hybrid、二次電池用複合電解質中に含まれる無機化合物のωmax-inorganic、二次電池用複合電解質中に含まれる有機電解質のωmax-organicの関係が、ωmax-hybrid>ωmax-organicであるという関係を有することが好ましい。
Figure JPOXMLDOC01-appb-M000002
  
 ここで、二次電池用複合電解質の複素モジュラススペクトルの測定について説明する。電解質中におけるLiイオン濃度を規定するために、モジュラススペクトラを用いた測定方法を実施する。モジュラススペクトラは電荷移動を反映し、今回のケースでは移動可能なLiイオン濃度の濃淡を見積もることができる。本式のパラメータ等、詳細な説明については、非特許文献1に記載されている。
 測定は金(Au)電極を用いて電解質を挟み、ソーラトロン社製周波数応答アナライザ1260型を用いて行う(図20にモジュラススペクトルの測定法の模式図を示す)。測定周波数範囲は、5Hzから32MHzの範囲とし、電解質を大気に暴露することなく乾燥アルゴン雰囲気下に入れ、25℃環境下にて測定する。M(ω)=iωεZ(ω)/k[ω:角周波数、ε:誘電率、Z(ω):複素インピーダンス、k:セル定数]で与えられる式から、横軸に周波数(Hz)の10を底とする常用対数、縦軸に複素モジュラスの虚数部(M”)としたモジュラスプロットグラフを作製し、得られるグラフの頂点周波数をωmaxとする。ここで、非特許文献2によると、ωmax=(Nv*1/τ)/ε fpからNvの大きさに比例しωmaxの値が大きくなることが報告されている。Nvは電荷担体の濃度に相当するから、ωmaxは電解質中におけるLiイオン濃度の指標として規定することができる。また、電解質中で動きやすいLiイオンが増えると、統計的にイオンの動きの速さが多様化するため、モジュラスプロットに現れるピーク幅は広くなる(非特許文献1並びに2)。この方法を用いて、複合電解質におけるωmax-hybridと、有機電解質単独の場合のωmax-organicを、それぞれ測定して比較することができる。
 さらに、本実施形態の二次電池用複合電解質は、前記モジュラススペクトルのピークから測定できる半値幅の1/2の値dにおいて、前記複合電解質におけるdの値をdhybrid、前記複合電解質中に含まれる有機電解質におけるdの値をdorganicとしたとき、dorganicを1とするとdhybridが1よりも大きくなることが好ましい。
 一般に、同一の粒子径における無機固体電解質層の結晶性は、X線回折法におけるピークの半値幅に反映される。結晶性が高く原子配列の規則性が高いと、半値幅は狭くなる。電解質層中の無機化合物を単離できる場合は、Cu-Kα線源を用いた粉末X線回折法により結晶構造ならびに結晶性を調べることができる。まず、対象試料である無機化合物を粉砕し、平均粒子径が約5μmの試料を調製する。平均粒子径はレーザー回折法によって求めることができる。得られた試料を、ガラス試料板上に形成された深さ0.2mmのホルダー部分に充填する。この時、試料が十分にホルダー部分に充填されるように留意する。次いで、外部から別のガラス板を押し付けて、充填された試料の表面を平滑化する。充填された試料にひび割れ、空隙、凹凸等が生じないように、過不足ない量の試料を充填するように注意する。また、ガラス板は十分な圧力で押し付けるように留意する。次いで、試料が充填されたガラス板を粉末X線回折装置に設置し、Cu-Kα線源の平行ビーム法を用いたX線回折法による測定において、Kβフィルターまたはモノクロメータを用いて回折パターンを取得する。測定条件は、走査速度5deg/min、ステップ幅0.2deg、管電圧40kV、管電流300mAとする。なお、試料の配向性が高い場合は、試料の充填の仕方によってピークの位置がずれたり、ピーク強度比が変化したりする可能性がある。このような配向性が著しく高い試料は、キャピラリを用いて測定する。具体的には、試料をキャピラリに挿入し、このキャピラリを回転式試料台に載置して測定する。このような測定方法により、配向性を緩和することができる。得られた電解質中の無機化合物の回折線において、上位1つの最強度ピークの半値幅が0.05deg以上1.00deg未満であると、結晶中の原子配置の規則性が高く、外部からの電場によって無機化合物と有機電解質の接触界面に大きな分極が得られ、該接触界面にLiイオンの濃度が濃い部分が生成しやすくなるという効果がある。
 一方、電解質中の無機化合物を単離できない場合は、電解質層全体を粉末X線回折測定することで、含まれる無機化合物の結晶構造ならびに結晶性を調べることができる。この場合は、測定対象とする電解質層の厚みと測定用ホルダーの深さを合わせて、X線を照射する測定面に凹凸が生じないようにする。40kV200mA以上の出力が得られるCu-Kα線源の平行ビーム法を用いたX線回折法による測定において、Kβフィルターまたはモノクロメータを用いて、ステップ角2θ=0.02°以下、より好ましくは2θ=0.01°以下とし、θ/2θ連動スキャンモードにおける走査速度を5deg/min以下、より好ましくは1deg/minとした状態で、最強度ピークのカウントが5000cps以上となる条件で測定した際の上位1つの最強度ピークの半値幅が2θ=0.05deg以上1.00deg未満であることが好ましい。得られた電解質層12の回折線において上位1つの最強度ピークの半値幅が0.05deg以上1.00deg未満であると、結晶中の原子配置の規則性が高く、外部からの電場によって無機化合物と有機電解質の接触界面に大きな分極が得られ、該接触界面にLiイオンの濃度が濃い部分が生成しやすくなるという効果がある。
 本実施形態の二次電池用複合電解質は、さらにバインダを含有してもよい。バインダは、ポリアクリロニトリル(PAN)、ポロエチレンオキサド(PEO)、ポリフッ化ビリニデン(PVdF)、又はポリメチルメタクリレートなどカーボネート類とゲル化する高分子体を用いることがより好ましい。バインダの含有量は、PVdFであれば、二次電池用複合電解質の全体質量に対して20重量%未満が好ましい。
 本実施形態の二次電池用複合電解質は、固体状ポリマー電解質またはゲル状ポリマー電解質であることが好ましい。二次電池用複合電解質が固体状になるかゲル状になるかは、前記有機電解質及びバインダの組成を選択することによって適宜調整することができる。二次電池用複合電解質が固体状ポリマー電解質であれば一般に二次電池装置のコンパクト化を図ることができる。二次電池用複合電解質がゲル状ポリマー電解質であれば二次電池装置の作成や形状を変更する等の操作が容易である。
 本実施形態の二次電池用複合電解質によれば、前記有機電解質を無機化合物と複合化することで、イオン導電性を高めることができる。これはLiイオン導電性無機固体粒子と前記有機電解質の界面において、可動Liイオン濃度が増え、Liイオンの移動が容易となるためである。有機電解質には、Liイオン導電性の高いLi含有酸化物固体電解質を用いると、よりLiイオンの移動が更に容易となる。本実施形態では、有機電解質に、Liイオン導電性の高いLi含有酸化物固体電解質を用いているため、よりLiイオンの移動が容易である。また、電解質のイオン導電性を向上させることは電解質自身の活性化エネルギーを下げることと同じであり、活性化エネルギーを低下させることができればより広い作動温度範囲で電池の動作が可能となる。
 また、前述の有機電解質及び無機化合物を用いることで、無機化合物が有機電解質に対して化学的に安定で溶解するなどの問題を生じないうえ、Liイオン導電性無機固体粒子を使うことで、高温においてもLiの移動にともなう還元反応が生じにくく、複合電解質の安定性及び寿命を高めることができる。
(第2の実施形態)
 第2の実施形態に係る二次電池は、正極と、Liイオンを吸蔵放出する負極活物質粒子からなる負極と、電解質層とを備えて概略構成される。本実施形態では、図1に示すように正極11、電解質層12及び負極13の順に積層され、この構造を集電体14で挟み込んで、電極体10Aを構成している。図1の例では上記構造が1組積層された単層電極体である。
 (電解質層)
 本実施形態の電解質層12は、第1の実施形態で説明した二次電池用複合電解質からなる層である。本実施形態の電解質層12は、電解質層12と、正極11及び負極13との界面が、正極11及び負極13の表面の凹凸に沿って形成されている。図4及び図8に示すように、正極11及び負極13の表面は、これらの構成素材による凹凸、及びこれらの表面にそれぞれ正極活物質及び負極活物質が設けられていることにより、正極活物質及び負極活物質の粒子による凹凸が存在している。特に、負極13の表面は後述するように負極活物質の二次粒子に5μmよりも平均粒径の大きい粒子を使用している場合、大きな凹凸を有する。電解質層12は、この凹凸に沿って正極11及び負極13に密着している。具体的には、有機電解質122が、後述する製造過程においてゲル状であるか又は硬化前の流動性を有するため、正極11及び負極13の表面の粒子によって形成されている凹部に浸透し入り込んでいる。
 このような構造により、電解質層12と、正極11及び負極13とは、図8のSEM像に示されるように、電解質層12の表面が、正極11及び負極13の表面の凹凸に沿って、互いの表面が密着するように形成されており、電解質層12と、正極11及び負極13との間にほぼ隙間が無い状態となっている。特に、無機固体粒子121の一部である無機固体粒子121Aは、負極13の凹部の奥に入り込んでいることで、負極13の凹部を含めた表面に無機固体粒子121Aを介して良好に導電性が与えられる。また、図4に示すように、電解質層12において、硬質の粒子である固体金属粒子121Bが電解質層12の構造的強度を与え、電解質層12にある程度の厚さを確保させる(正極11及び負極13が直接に密着して短絡することがない)作用も有する。
 本実施形態では、電解質層12の厚さは、厚さが最も小さい部位で8μm未満である。さらに好ましくは、5μm未満である。電解質層12の厚さが最も小さい部位とは、図4に示すように、電解質層12の厚さをすべて観測した場合に最も厚さが小さい(換言すれば、正極11と負極13の表面構造の凸部において、正極11と負極13が最も近くなっている部位)の厚さL(換言すれば、正極11と負極13の前記部位における距離)である。ここで、実際に製造された電池においては、電解質層12の厚さは、以下のように測定する。作製した電池から電極体を取り出し、取り出した電極体が四角形状(またはその他の多角形状)であった場合は対角線上に、円形(または楕円形を含む略円形状)であった場合は円の直径線上にFIBを用いて正極/電解質/負極の積層断面を切り出し、切断面を全てSEMで測定する。このときの観測倍率は、20000倍が好ましい。電極の対角線上をすべて観察し、電解質層12が最も薄い部分の厚みを前記電解質装の厚さが最も小さい部位の厚さとして規定する。本実施形態では、電解質層12が固体電解質-活物質間の良好な界面を形成しているため電解質層12の厚さを小さくすることができ、電解質層12の厚さを小さくすることで、二次電池が小型となり体積あたりの容量が増加する利点がある。
 さらに、本実施形態では、電解質層12の厚さは、平均厚さが0.1μm以上、8μm未満である。より好ましくは0.5μm以上、5μm以下である。厚さの測定法としては、FIBを用いて組織構造を破壊せずに電極塗布面を対角線上に切断し、SEMを用いて切断面に沿って両端まで断面をすべて同一の倍率で観察する。このときの観測倍率は、20000倍が好ましい。得られたSEM像から対角線断面中のすべての電解質層の面積を求め、その面積の値を、積層方向に垂直な向きに伸びた電解質層の幅、すなわち切断した対角線断面の長さで割り、観察した倍率で換算することで平均厚さを求めることができる。
 電解質層12を電池に設ける際は、電解質層12を正極11若しくは負極に塗布する、又は正極13と負極13の間に注入するといった手段を用いてもよい。
 さらに具体的には、以下のような製造方法により電解質層12を製造することができる。まず、図3Aに示すように、無機固体粒子121を記述のバインダの溶液に分散させたバインダ分散液を正極11上に塗布し、正極11上に無機固体粒子121を設ける。その後、図3Bに示すように、この正極11上に有機電解質122を含浸させ、加熱混合することで、有機電解質122と無機固体粒子121とを含有するゲル状の二次電池用複合電解質123とする。ついで、正極11と負極13を対向配置させ押圧することで、図4に示すような正極11と負極13の間に二次電池用複合電解質12を挟持した電極体を得る。本実施形態では、この際に電解質層12の厚さが上述した範囲となるよう調節する。
 二次電池用複合電解質123(12)はゲル状であるため、前記押し付けた際に、正極11及び負極13の凹凸、特にこれらの電極の表面の活物質の凹凸に対して、二次電池用複合電解質123(12)が、凹凸の隙間に入り込み又は浸透する。そのため、正極11及び負極13と、電解質層12とが、それぞれの凹凸に沿って密着する。
 なお、前記有機電解質が固体状ポリマーの場合、固化する前の流動性を有する有機電解質を正極11上に塗布してもよい。また、前記塗布する際は、二次電池用複合電解質の流動性が充分に高い場合は、スプレー等を用いてもよい。スプレーを用いることで、正極11上に均一に二次電池用複合電解質を設けることができ、二次電池用複合電解質を設ける量の調整による電解質層12の厚さの調整も容易に行うことができる。さらに、無機固体粒子121を配置した正極11及び負極13を一定の距離(電解質層12の厚みとして設定される値)に配置した後、有機電解質122を注入、浸透させるといった方法により製造してもよい。
 本実施形態では、正極11及び負極13の微細な凹部に、有機電解質122と無機固体粒子121がそれぞれ入り込んでいるため、電解質層12と、正極11及び負極13とが隙間なく密着している。電解質層12と、正極11及び負極13との界面が良好に形成されているため、電解質層12を介したイオン導電性が良好となる。正極11及び負極13と電解質装12とが密着しているので、電解質層12の厚さを上述した小さい範囲にすることができる。
 (正極)
 正極11は、図1に示す単層電極体10Aにおいては、集電体14の片面に担持されている。正極11は、活物質、導電剤および結着剤を含む。正極11に用いる正極集電体としては、Al(アルミニウム)箔を用い、純Al(純度100%)から純度99%以上のAl合金箔を用いることが好ましい。Al合金としては、Alの他に、Fe、Mg、Zn、Mn及びSiよりなる群から選択される1種類以上の元素を含む合金が好ましい。例えば、Al-Fe合金、Al-Mn系合金およびAl-Mg系合金は、Alよりさらに高い強度を得ることが可能である。一方、AlおよびAl合金中のNi、Crなどの遷移金属の含有量は100ppm以下(0ppmを含む)にすることが好ましい。例えば、Al-Cu系合金では、強度は高まるが、耐食性は悪化するので、集電体14としては不適である。
 正極11が担持される集電体14に用いる、より好ましいAl純度は99.99~99.0%の範囲である。この範囲であると不純物元素の溶解による高温サイクル寿命劣化を軽減することができる。
 正極活物質としては、Li-Mn複合酸化物、Li-Ni複合酸化物、Li-Co-Al複合酸化物、Li-Ni-Co-Mn複合酸化物、スピネル型Li-Mn-Ni複合酸化物、Li-Mn-Co複合酸化物、オリピン型のLiリン酸鉄(LiFePO)やLiリン酸Mn(LiMnPO)などが挙げられる。
 例えば、LiMnまたはLiMnOなどのLi-Mn複合酸化物、LixNi1-yAlなどのLi-Ni-Al複合酸化物、LiCoOなどのLi-Co複合酸化物、LiNi1-y-zCoMnなどのLi-Ni-Co複合酸化物、LiMnCo1-yなどのLi-Mn-Co複合酸化物、例えばLiMn2―yNiなどのスピネル型Li-Mn-Ni複合酸化物、例えばLiFePO、LiFe1-yMnPO、LiCoPOなどのオリビン構造を有するLiリン酸化物、例えばフッ素化硫酸鉄LiFeSOFが挙げられる。x,yは、特に記載がない限り、0~1の範囲であることが好ましい。これらを用いると、高い正極電圧を得られるので好ましい。中でも、Li-Ni-Al複合酸化物、Li-Ni-Co-Mn複合酸化物、Li-Mn-Co複合酸化物によると、高温環境下での非水電解質との反応を抑制することができ、電池寿命を大幅に向上することができる。特にLiNi1-y―zCoMn(0<x<1.1、0<y<0.5、0<z<0.5)で表せるLi-Ni-Co-Mn複合酸化物が好ましい。Li-Ni-Co-Mn複合酸化物の使用により、より高温耐久寿命を得ることができる。
 導電剤は、正極11に電子伝導性を高め、集電体との接触抵抗を抑えるために加えられる。導電剤としては、例えば、アセチレンブラック、カーボンブラック、または黒鉛等を挙げることができる。
 活物質と導電剤を結着させるための結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、またはフッ素系ゴムなどが挙げられる。
 正極活物質、導電剤及び結着剤の配合比については、正極活物質は80重量%以上95重量%以下、導電剤は3重量%以上18重量%以下、結着剤は2重量%以上7重量%以下の範囲にすることが好ましい。導電剤については、3重量%以上であることにより上述した効果を発揮することができ、18重量%以下であることにより、高温保存下での導電剤表面での非水電解質の分解を低減することができる。結着剤については、2重量%以上であることにより十分な電極強度が得られ、7重量%以下であることにより、電極の絶縁部を減少させることが出来る。
 正極11は、例えば、正極活物質、導電剤及び結着剤を適当な溶媒に懸濁し、この懸濁物を正極集電体に塗布し、乾燥し、プレスを施すことにより作製される。正極プレス圧力は、0.15ton/mm~0.3ton/mmの範囲が好ましい。この範囲であると正極層とAl箔正極集電体との密着性(剥離強度)が高まり、かつ正極集電体箔の伸び率が20%以下となり好ましい。
(負極)
 負極13は、図1に示す単層電極体10Aにおいては、集電体14の片面に担持されている。負極13は活物質、導電剤および結着剤を含む。負極に用いる集電体は、Al箔は純Al(純度100%)から純度98%以上のAl合金箔を用いることが好ましい。Al合金としては、Alの他に、Fe、Mg、Zn、Mn及びSiよりなる群から選択される1種類以上の元素を含む合金が好ましい。例えば、Al-Fe合金、Al-Mn系合金およびAl-Mg系合金は、Alよりさらに高い強度を得ることが可能である。一方、AlおよびAl合金中のNi、Crなどの遷移金属の含有量は100ppm以下(0ppmを含む)にすることが好ましい。例えば、Al-Cu系合金では、強度は高まるが、耐食性は悪化するので、集電体14としては不適である。
 負極13が担持される集電体14に用いるより好ましいAl純度は99.95~98.0%の範囲である。後述するように負極活物質の本実施形態の二次粒子として2μm以上のTi含有酸化物粒子を用いることで負極プレス圧を低減してAl箔の伸びが少なくできるためこの純度範囲が適切となる。その結果、Al箔集電体の電子伝導性は高くできる利点と、さらに、後述するTi含有酸化物の二次粒子の解砕を抑制して低抵抗な負極を作製することができる。
 負極活物質のLiイオンを吸蔵放出する負極活物質粒子は。炭素材料、黒鉛材料、Li合金材料、金属酸化物、又は金属硫化物が挙げられる。さらに、Ti元素を含有するものが好ましい。中でもLiイオンの吸蔵放出電位がLi電位基準で1~3Vの範囲にあるLi-Ti酸化物、Ti酸化物、Nb-Ti酸化物、Li-Na-Nb-Ti酸化物から選ばれる一種以上のTi含有酸化物の負極活物質粒子を選択することが特に好ましい。
 Li-Ti酸化物として、一般式Li4+xTi12(xは-1≦x≦3)で表せるスピネル構造Li-Ti酸化物や、ラムスデライド構造Li-Ti酸化物としてLi2+xTi、Li1+xTi、Li1.1+xTi1.8、Li1.07+xTi1.86、LiTiO(xは0≦x)などのLi-Ti酸化物、一般式LiTiO(0≦x)で表される単斜晶構造(充電前構造としてTiO(B))、ルチル構造、アナターゼ構造のTi酸化物(充電前構造としてTiO)、Nb-Ti酸化物は、LiTiMNb2±β7±σ(0<a<5、0<b<0.3、0<β<0.3、0<σ<0.3、MはFe、V、Mo、Taを少なくとも1種以上の元素)で表されるものである。これらを単独で用いても、あるいは混合しても良い。より好ましくは、体積変化の極めて少ない一般式Li4+xTi12(xは-1≦x≦3)で表せるスピネル構造LiTi酸化物である。これらTi含有酸化物を用いることで、負極集電体に従来の銅箔に代わって正極集電体と同じAl箔を用いるこができ軽量化と低コスト化を実現できる。また、後述するバイポーラ電極構造を構成した二次電池の重量及び大きさあたりの容量において有利となる。
 負極活物質の平均粒径を前記範囲にするのは、平均粒径が1μmを超える一粒子を使用して負極13の比表面積を3~50m/gと大きくすると、負極13の多孔度の低下を避けられないからである。但し、平均粒径が小さいと、粒子の凝集が起こりやすくなり、非水電解質の分布が負極13に偏って正極11での電解質の枯渇を招く恐れがあることから、下限値は0.001μmにすることが望ましい。
 負極活物質は、その平均粒径が1μm以下で、かつN吸着によるBET法での比表面積が3m/g~200m/gの範囲であることが望ましい。これにより、負極13の非水電解質との親和性をさらに高くすることができる。
 負極活物質は、上述した一次粒子の他に二次粒子を含んでいてもよい。負極活物質の二次粒子の平均粒子径(直径)は、5μmより大きいことが好ましい。より好ましくは7μm~20μmである。この範囲であると負極プレスの圧力を低く保ったまま高密度の負極を作製でき、Al箔集電体の伸びを抑制することができる。
 二次粒子の平均粒子径5μmより大きい負極活物質は、活物質原料を反応合成して平均粒子径1μm以下の活物質プリカーサーを作製した後、焼成処理を行い、ボールミルやジェトミルなどの粉砕機を用いて粉砕処理を施した後、さらに焼成処理において、活物質プリカーサー(前駆体)を凝集し粒子径の大きい二次粒子に成長させる。負極活物質は、一次粒子の平均粒子径は1μm以下とすることが望ましい。これにより、高入力性能(急速充電)においてこの効果は顕著となる。これは、例えば、活物質内部でのLiイオンの拡散距離が短くなり、比表面積が大きくなるためである。なお、より好ましい平均粒子径は、0.1μm~0.8μmである。また、二次粒子表面に炭素材料を被覆することも負極抵抗の低減のため好ましい。これは二次粒子製造過程で炭素材料のプリカーサーを添加し不活性雰囲気下で500℃以上で焼成することで作製することができる。
 また、負極作製後の負極層にはTi含有酸化物の二次粒子と一次粒子が混在しても良い。より高密度化する観点から負極層に一次粒子が5~50体積%存在することが好ましい。
 負極13の比表面積を前記範囲に規定する理由を説明する。比表面積が3m/g未満であるものは、粒子の凝集が目立ち、負極13と非水電解質との親和性が低くなり、負極13の界面抵抗が増加するため、出力特性と充放電サイクル特性が低下する。一方、比表面積が50m/gを超えるものは、非水電解質の分布が負極13に偏り、正極11での非水電解質不足を招くため、出力特性と充放電サイクル特性の改善を図れない。比表面積のより好ましい範囲は、5m/g~50m/gである。ここで、負極13の比表面積とは、負極層(集電体重量を除く)1g当りの表面積を意味する。なお、負極層とは、集電体上に担持された負極活物質、導電剤及び結着剤を含む多孔質の層である。
 負極13の多孔度(集電体を除く)は、20~50%の範囲にすることが望ましい。これにより、負極13と非水電解質との親和性に優れ、かつ高密度な負極13を得ることができる。多孔度のさらに好ましい範囲は、25~40%である。
 負極集電体は、Al箔またはAl合金箔であることが望ましい。Al箔およびAl合金箔の厚さは、20μm以下、より好ましくは15μm以下である。Al箔の純度は99.99%以上が好ましい。Al合金としては、Mg、亜鉛、ケイ素などの元素を含む合金が好ましい。一方、鉄、銅、Ni、Crなどの遷移金属は100ppm以下にすることが好ましい。
 前記導電剤としては、例えば、炭素材料を用いることができる。炭素材料としては、例えば、アセチレンブラック、カーボンブラック、コークス、炭素繊維、黒鉛、Al粉末、またはTiO等を挙げることができる。より好ましくは、熱処理温度が800℃~2000℃の平均粒子径10μm以下のコークス、黒鉛、TiOの粉末、または平均繊維径1μm以下の炭素繊維が好ましい。前記炭素材料のN吸着によるBET比表面積は10m/g以上が好ましい。
 前記結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレンブタジェンゴム、またはコアシェルバインダーなどが挙げられる。
 前記負極13の活物質、導電剤及び結着剤の配合比は、負極活物質80~95重量%、導電剤3~18重量%、結着剤2~7重量%の範囲にすることが好ましい。
 負極13は、前述した負極活物質、導電剤及び結着剤を適当な溶媒に懸濁させ、この懸濁物を集電体に塗布し、乾燥し、加温プレスを施すことにより作製される。この際、結着剤の添加量が少ない状態で負極活物質の粒子を均一分散させる。結着剤の添加量が多い方が粒子の分散性が高くなる傾向があるものの、粒子の表面が結着剤で覆われやすく、負極13の比表面積としては小さくなるからである。結着剤の添加量が少ないと、粒子が凝集しやすくなるため、攪拌条件(ボールミルの回転数、攪拌時間及び攪拌温度)を調整して粒子の凝集を抑えることによって、微粒子を均一分散させることができ、本実施形態の負極13が得られる。さらに、結着剤添加量と攪拌条件が適正範囲内でも、導電剤の添加量が多いと、負極活物質の表面が導電剤で被覆されやすく、また、負極表面のポアも減少する傾向があることから、負極13の比表面積としては小さくなる傾向がある。また、導電剤の添加量が少ないと、負極活物質が粉砕されやすくなって負極13の比表面積が大きくなったり、あるいは負極活物質の分散性が低下して負極13の比表面積が小さくなる傾向がある。さらには、導電剤の添加量だけでなく、導電剤の平均粒径と比表面積も負極13の比表面積に影響を与え得る。導電剤は、平均粒径が負極活物質の平均粒子径以下で、比表面積が負極活物質の比表面積よりも大きいことが望ましい。
 (バイポーラ電極構造)
 本実施形態の別の態様として、図2のようにバイポーラ電極構造を持つ電極体10Bを構成することもできる。すなわち、集電体14、正極11、電解質層12、及び負極13の順に積層された1組の構造が、2組以上積層され、最も端の負極13の片面に集電体14が積層されていてもよい。前記構造を積層する数は、電池の形状及び大きさの設計に応じて適宜選択できる。図示した例では5組積層されている。本実施形態の電極体10Bは、正極11、電解質層12、及び負極13をそれぞれ密着させて薄型にすることができるので、これらを多数積層することで薄型で要するスペースが少なく、かつ大容量でサイクル寿命性能、熱安定性及び電気化学的安定性に優れた二次電池とすることができる。
(外装材)
 上記電極体10A、10Bは、外装材に収容して用いられる。電極体10A、10Bが収容される外装材には、金属製外装材や、ラミネートフィルム製外装材を使用することができる。
 金属製外装材としては、Al、Al合金、鉄、またはステンレスなどからなる金属缶で角形、円筒形の形状のものが使用できる。また、外装材の板厚は、0.5mm以下にすることが望ましく、さらに好ましい範囲は0.3mm以下である。
 ラミネートフィルム外装材としては、例えば、Al箔を樹脂フィルムで被覆した多層フィルムなどを挙げることができる。樹脂としては、ポリプロピレン(PP)、ポリエチレン(PE)、ナイロン、ポリエチレンテレフタレート(PET)などの高分子を用いることができる。また、ラミネートフィルムの厚さは0.2mm以下にすることが好ましい。Al箔の純度は99.5%以上が好ましい。
 Al合金からなる金属缶は、Mn、Mg、Zn、またはSiなどの元素を含むAl純度99.8%以下の合金が好ましい。Al合金を用いることで、金属缶の強度が飛躍的に増大することにより缶の肉厚を薄くすることができる。その結果、薄型で軽量かつ高出力で放熱性に優れた電池を実現することができる。
 上記の二次電池は、直列又は並列に接続し、他種の電池と組み合わせ、及び/又はケーシング等と組み合わせて、電池パックとしてもよい。
 図5は、本実施の形態の二次電池10Cを収納する電池パック90の概略構成を示す分解斜視図であり、図6は二次電池10Cを構成する二次電池90の側断面図であり、図7は電池パック90の電子回路を示すブロック図である。
 二次電池10Cは、図6に示すように外装材80に収納され、図2のバイポーラ電極体10A、10B同様に正極11、電解質層12、負極13、集電体14が積層されている。最も端部の正極11と隣接する集電体14(図の上端)には正極集電用タブ63Aが、最も端部の負極13と隣接する集電体14(図の下端)には負極集電用タブ64Aが設けられている。この正極集電用タブ63A及び負極集電用タブ64Aには、図5に示すように外部に延出した負極端子63及び正極端子64がそれぞれ接続されている。複数の二次電池90は粘着テープ65で締結され二次電池10Cを構成している。
 図5に示すプリント配線基板67は、二次電池10Cの負極端子63及び正極端子64が延出する側面に対向して配置されている。プリント配線基板67には、図7に示すようにサーミスタ68、保護回路69及び外部機器への通電用端子70が搭載されている。なお、二次電池10Cと対向するプリント配線基板67の面には二次電池10Cの配線と不要な接続を回避するために絶縁板(図示せず)が取り付けられている。
 正極側リード71は、二次電池10Cの最下層に位置する正極端子64に接続され、その先端はプリント配線基板67の正極側コネクタ72に挿入されて電気的に接続されている。負極側リード73は、二次電池10Cの最上層に位置する負極端子63に接続され、その先端はプリント配線基板67の負極側コネクタ74に挿入されて電気的に接続されている。これらのコネクタ72及び74は、プリント配線基板67に形成された配線75及び76を通して保護回路69に接続されている。
 サーミスタ68は、二次電池10Cの温度を検出し、その検出信号は保護回路69に送信される。保護回路69は、所定の条件で保護回路69と外部機器への通電用端子70との間のプラス側配線77a及びマイナス側配線77bを遮断できる。所定の条件の一例とは、例えば、サーミスタ68の検出温度が所定温度以上になったときである。また、所定の条件の他の例とは、例えば、二次電池10Cの過充電、過放電、過電流等を検出したときである。この過充電等の検出は、二次電池10C全体について行われる。
 二次電池10Cの過充電等を検出する場合、電池電圧を検出してもよいし、正極電位もしくは負極電位を検出してもよい。後者の場合、個々の二次電池10C中に参照極として用いるリチウム電極が挿入される。図5~7の電池パック90の場合、二次電池10Cそれぞれに電圧検出のための配線78が接続されている。これら配線78を通して検出信号が保護回路69に送信される。
 正極端子64及び負極端子63が突出する側面を除く二次電池10Cの三側面には、ゴムもしくは樹脂からなる保護シート79がそれぞれ配置されている。
 二次電池10Cは、各保護シート79及びプリント配線基板67と共に収納容器80内に収納される。すなわち、収納容器80の長辺方向の両方の内側面と短辺方向の内側面それぞれに保護シート79が配置され、短辺方向の反対側の内側面にプリント配線基板67が配置される。二次電池10Cは、保護シート79及びプリント配線基板67で囲まれた空間内に位置する。蓋81は、収納容器80の上面に取り付けられている。
 なお、二次電池10Cの固定には粘着テープ65に代えて、熱収縮テープを用いてもよい。この場合、二次電池10Cの両側面に保護シート79を配置し、熱収縮チューブを周回させた後、熱収縮チューブを熱収縮させて二次電池10Cを結束させる。
また、電池パック90の態様は用途により適宜変更される。電池パック90の用途としては、大電流特性でのサイクル特性が望まれるものが好ましい。具体的な用途としては、デジタルカメラの電源用や、二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、アシスト自転車等の車載用が挙げられる。電池パック90は、特に、車載用が好適である。
 本実施形態の二次電池によれば、正極11、負極13と、前記二次電池用複合電解質からなる電解質層12の接合は、充放電サイクルにおいて劣化すること無く、界面抵抗上昇が抑制されサイクル寿命性能が大幅に改善される。また、電解質層12には前記有機電解質を用いることで高温環境下での熱安定性と電気化学的安定性が向上する。
(実施例1)
 複合電解質の性能を調べるために、図1の形態の正極/複合電解質/負極からなる単層電極体を作製した。正極活物質は、炭素微粒子(平均粒子径5nm)が表面に付着(付着量0.1重量%)した一次粒子の平均粒子径50nmのオリビン構造のLiMn0.85Fe0.1Mg0.05POを用い、これに、導電剤として正極全体に対して繊維径0.1μmの気相成長の炭素繊維を3重量%、黒鉛粉末を5重量%、結着剤として正極全体に対して5重量%のPVdFをそれぞれ配合してn-メチルピロリドン(NMP)溶媒に分散してスラリーを調製した後、厚さ15μmのアルミニウム合金箔(純度99%)に方面塗布し、乾燥し、プレス工程を経て、片面の正極層の厚さは67μm、電極密度2.2g/cmの正極を作製した。
 負極活物質は、平均粒子径0.6μm、比表面積10m/gのLiTi12粒子と、導電剤として平均粒子径6μmの黒鉛粉末と、結着剤としてPVdFとを重量比で95:3:2となるように配合してn-メチルピロリドン(NMP)溶媒に分散させ、ボールミルを用いて回転数1000rpmで、かつ攪拌時間が2時間の条件で攪拌を用い、スラリーを調製した。得られたスラリーを厚さ15μmのアルミニウム合金箔(純度99.3%)に塗布し、乾燥し、加熱プレス工程を経ることにより、負極を作成した。片面の負極層の厚さは59μm、電極密度2.2g/cm負極を作製した。集電体を除く負極多孔度は、35%であった。
 複合電解質は、一次粒子サイズ(平均粒径)0.1μmのLiLaZr12粒子とLiPFを1.2M溶解したプロピレンカーボネートとジエチルカーボネートの混合溶媒(体積比1:2)を含有したゲル状ポリアクリロニトリル高分子体を重量比96:3.2:0.8となるように所定量混合して複合化させ、厚さ2μmの複合電解質を正極および負極電極上に作製した。
 前記電解質の複合化工程は、ゲル化前にn-メチルピロリドン(NMP)溶液に溶解したPVdFバインダ溶液にLiLaZr12粒子を分散し、その分散液を正極、負極に塗装用スプレーを用いて塗布、乾燥した後、ゲル化剤を添加したLiPFを1.2M溶解したプロピレンカーボネートとジエチルカーボネートの混合溶媒(体積比1:2)とポリアクリロニトリル(PAN)の高分子体(2重量%)の溶液を電極および複合電解質に含浸させ、加熱することでゲル化した複合電解質と作製することができた。このときの電極内および複合電解質における有機成分量はそれぞれ、重量比で3%と4%となるように調整した。また、複合電解質内の無機粒子とバインダ、有機成分を重量比で表わすと94.3:1.9:3.8となる。なお、以下実施例において、複合電解質の厚み測定を行う際には、FIBで切断し、複合電解質の断面をSEMにより観察した。その時の倍率は20000倍であった。
 実施例1の単層電極体について、正極11A、電解質12A、負極13Aの積層断面を電極の対角線上にFIBで切り出し、切断面を観察したSEM像を図8に示す。倍率は20000倍である。複合電解質12A(LLZ hybrid electrolyte layer)と正極11A(LTO anode)、負極13A(LMFP cathode)の界面には凹凸があり複合電解質12Aの厚さは部位によって異なるが、平均は2μmである。複合電解質12Aと、正極11A及び負極13Aとの界面が、正極11A及び負極13Aの表面の凹凸に沿って形成され、電解質12Aが正極11A及び負極13Aと密着しているのが確認できる。また、同実施例の別の部位を図9に示す。電解質12Aが、正極11A及び負極13Aと密着し図8よりもさらに厚さが小さくなっている。
(実施例2~14)
 複合電解質は、一次粒子サイズ(平均粒径)0.05μm~7.8μmのLiLaZr12粒子を用いた以外は、実施例1に記載のリチウム二次電池と同様に作製した。
(実施例15~24)
 複合電解質は、一次粒子サイズ(平均粒径)0.1μmのLiLaZr12粒子を用いて、実施例1に記載のリチウム二次電池と同様に作製した。このとき厚さ0.6μm~7.9μmの複合電解質を正極および負極電極上に作製した。
(実施例25~31)
 複合電解質は、一次粒子サイズ(平均粒径)0.1μmのLiLaZr12粒子を用いて、電極内の有機成分量が0.1重量~25.0重量%となるように調整した以外は実施例1に記載のリチウム二次電池と同様に作製した。
(実施例32~38)
 複合電解質は、一次粒子サイズ(平均粒径)0.1μmのLiLaZr12粒子とLiPFを1.2M溶解したプロピレンカーボネートとジエチルカーボネートの混合溶媒(体積比1:2)を含有したゲル状ポリアクリロニトリル高分子体を重量比96:3.5:0.5、96:3.0:1.0、96:2.5:1.5、96:2.0:2.0、96:1.5:2.5、96:1.0:3.0、96:0.5:3.5となるように所定量混合して複合化させた以外は、実施例1に記載のリチウム二次電池と同様に作製した。
(実施例39~42)
 複合電解質は、一次粒子サイズ(平均粒径)0.1μmのLiLaZr12粒子を用いて、複合電解質内の無機粒子とバインダ、有機成分を重量比で94.3:0.1:5.6、94.3:0.5:5.2、94.3:2.9:2.9、94.3:5.6:0.1、となるように調整した以外は実施例1に記載のリチウム二次電池と同様に作製した。
(実施例43~46)
 複合電解質に、一次粒子サイズ(平均粒径)0.1μmのLi1.4Al0.4Ti1.6(PO(実施例43)、Li0.5La0.5TiO(実施例44)、Li3.6Si0.6PO(実施例45)、LiPON(実施例46)を用いて複合化させたこと以外は、実施例1と同様に複合電解質を作製した。
(実施例47)
 バイポーラ電極構造を有する二次電池による電池性能を調べるため、Al集電体の片面に実施例1に記載の正極、もう一方の面に実施例1に記載の負極を形成した正負極両面塗布電極を作製した。Al集電体の一方に正極、もう一方に負極を形成した電極を作製した。そこに実施例1に記載の複合電解質を正極と負極表面に塗装用スプレーを用いて被覆した。表面を被覆した電解質層の厚さは2μmである。一方、ゲル化前のLiPFを1M溶解したプロピレンカーボネート(PC)とジエチルカーボネートの混合溶媒(体積比1:2)とポリアクルロニトリルの高分子体(2重量%)の溶液を注入することで正極と負極の空隙に浸透させた。その後、ゲル化剤にて加熱することでゲル化させることで、5層バイポーラ電極構造を有する電極体(図2)を作製した。その後、ラミネート製外装材に収納し外装材の外周部を熱封止することで二次電池を作製した。これらの工程を図10に示す。
(比較例1)
 20μmのポリプロピレン(PP)セパレータを正極と負極の間に挟み、有機電解質としてLiPFを1.2M溶解したプロピレンカーボネートとジエチルカーボネートの混合溶媒(体積比1:2)を含有したゲル状ポリアクリロニトリル高分子体(2重量%)を用いて含浸させてリチウム二次電池を作製した。
(比較例2)
 20μmのポリエチレン(PE)セパレータを用いた以外は、比較例1に記載のリチウム二次電池と同様に作製した。
(比較例3)
 一次粒子サイズ(平均粒径)1μmのLiLaZr12粒子を用いて、焼結体を作製し、これを正極と負極の間に挟みリチウム二次電池を作製した。
(比較例4)
 LiPFを1.2M溶解したプロピレンカーボネートとジエチルカーボネートの混合溶媒(体積比1:2)を含有したゲル状ポリアクリロニトリル高分子体(2重量%)を40μmのシート状にし、これを正極と負極の間に挟んだ後、有機電解質を含浸させてリチウム二次電池を作製した。
(比較例5)
 複合電解質に、一次粒子サイズ(平均粒径)0.1μmのAlを用いて複合化させたこと以外は、実施例1と同様にリチウム二次電池を作製した。
 各実施例、比較例の組成比、導電率及びモジュラスの測定結果を表1-1~表1-3に示す。これらの実施例及び比較例の性能、すなわち25℃レート性能、低温性能及び60℃-寿命特性として50サイクロ後の容量維持率(%)を表2-1~表2-3に示す。なお、実施例1及び比較例4のモジュラススペクトルの測定について、図11に実施例1(A)及び比較例4(B)の結果をそれぞれ示した。
 実施例においては、いずれも電解質厚さを8μm未満としても優れた性能が得られた。すなわち、電解質厚さが20μm以上で、焼結体やシート状の電解質層を持つ比較例1~4と比較しても、25℃レート性能、低温性能ではいずれも優れており、60℃-寿命特性では同等の結果となった。
 電解質層の室温におけるイオン電導率を、モジュラス測定と同様に金電極を用いて電解質を挟み、ソーラトロン社製周波数応答アナライザ1260型を用いて測定を行った。得られる円弧から室温における電荷移動抵抗を見積もった。測定する全ての電解質層の厚さと面積を揃え、それぞれの値と抵抗値を掛け合わせた数値の逆数をとることでイオン伝導度を測定した。実施例1における複合電解質全体の導電性ならびに電解質の組成を表3に示す。この結果から明らかなように、本願の複合電解質は、複合前の固体電解質、有機ゲル電解質単独に比して導電性が高く、最も導電性の高い液体電解液に次いで導電性が高いという結果が得られた。
 電解質層の活性化エネルギーを、上記イオン電導率測定の測定方法と同様に、-30℃から70℃までの範囲で測定を行った。横軸は温度の逆数とし、得られた各温度でのイオン電導率の対数を縦軸にプロットしたグラフを作成し、得られた傾きから活性化エネルギーを算出した。実施例1及び比較例1の電解質を用いた単相セルの温度別放電カーブを図12に示す。この結果から明らかなように、低温における放電性能が優れた性能が得られた。この単相セルの交流インピーダンス測定結果を図13に示す。この結果からも、実施例1が比較例1に比して、低い交流インピーダンス成分を持っており、リチウムが動き易くなっていることが分かった。また、イオン導電性σの温度依存性から、アレニウスプロットを取ると(図14)、実施例1はリチウムイオン導電の見かけの活性化エネルギーが最も低く、17.5kJであるという結果が得られた。
 図15には、実施例47の複合電解質を用いた5層バイポーラ型二次電池の充放電カーブを示す。これらの組み合わせで、電池の作動電圧として12V以上の出力が得られていることが分かる。図16には、放電レートを変化させたときの放電カーブの推移を示す。このように、20Cという高い放電レートでも放電することができる。図17には、高温における放電カーブ、図18には低温における放電カーブを示す。このように、-40°から80°に至るまで、広い温度範囲で作動させることができるという結果が得られた。図19には、環境温度60℃、電流率2Cにおける加速寿命サイクル試験結果を示す。このように安定して充放電ができるという結果が得られた。
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000009
 
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 本実施形態に係る二次電池用複合電解質、活物質の膨張伸縮の影響を和らげ、固体電解質-活物質間の良好な界面を形成し、電解質中のイオン導電性を向上させて広い作動温度範囲を得ることができる。
 10A、10B 電極体
 10C 二次電池
 11、11A 正極
 12、12A 電解質層
 13、12A 負極
 14 集電体
 63A 正極集電用タブ
 64A 負極集電用タブ
 90 電池パック
 121、121A、121B 無機固体粒子
 122 有機電解質
 123 二次電池用複合電解質
 L 厚さ
 C 円
 P 粒子

Claims (12)

  1.  25℃におけるLiイオン導電率が1×10-10S/cm以上の無機化合物を有し平均粒子径が0.05μm以上8μm未満の無機固体粒子と、有機電解質とを含み、
     前記有機電解質の前記無機化合物に対する重量比率が0.1%以上20%以下である二次電池用複合電解質。
  2.  前記無機化合物及び前記有機電解質との接触界面におけるLiイオン濃度をCLi(surface)、前記無機化合物の粒子中心部におけるリチウムイオン濃度をCLi(bulk)、有機電解質中のLiイオン濃度をCLi(organic)としたとき、CLi(surface)>CLi(organic)≧CLi(bulk)である請求項1に記載の二次電池用複合電解質。
  3.  下記(1)の式で表される複素モジュラスの虚数部を測定周波数の常用対数でプロットした複素モジュラススペクトルにおいて、ピーク周波数をωmaxとしたとき、前記二次電池用複合電解質のωmax-hybrid、前記二次電池用複合電解質中に含まれる無機化合物のωmax-inorganic、前記二次電池用複合電解質中に含まれる有機電解質のωmax-organicの関係が、ωmax-hybrid>ωmax-organicである請求項1又は2に記載の二次電池用複合電解質。
    Figure JPOXMLDOC01-appb-M000001
     
     ここで、iは複素数、ωは角周波数、εは真空誘電率、Z(ω)は複素インピーダンス、kは電解質層の厚さを面積で割ったセル定数である。
  4.  前記モジュラススペクトルのピークから測定できる半値幅の1/2の値dにおいて、前記複合電解質におけるdの値をdhybrid、前記複合電解質中に含まれる有機電解質におけるdの値をdorganicとしたとき、dorganicを1とするとdhybridが1よりも大きくなる請求項3に記載の二次電池用複合電解質。
  5.  Cu-Kα線源とするX線回折法による測定において、上位1つの最強度ピークの半値幅が2θ=0.05deg以上1.00deg未満である請求項1から3のいずれか1に記載の二次電池用複合電解質。
  6.  固体状ポリマー電解質またはゲル状ポリマー電解質である請求項1から5のいずれか1に記載の二次電池用複合電解質。
  7.  正極と、Liイオンを吸蔵放出する負極活物質粒子からなる負極と、前記正極及び前記負極の間に配置された電解質層とを備え、
     前記電解質層は、Liイオン伝導率が25℃において10-10S/cm以上の無機化合物を有し粒子径が0.05μm以上8μm未満の無機固体粒子と、有機電解質とを含む二次電池用複合電解質からなり、
     前記二次電池用複合電解質は、固形状ポリマー電解質又はゲル状ポリマー電解質で、
     前記電解質層と前記正極及び負極とは、電解質層12の表面が正極11及び負極13の表面の凹凸に沿って密着するよう形成され、
     前記二次電池用複合電解質は、前記有機電解質の前記無機化合物に対する重量比率が0.1%以上20%以下である二次電池。
  8.  前記電解質層は、厚さが最も小さい部位で8μm未満である請求項7に記載の二次電池。
  9.  前記二次電池用複合電解質は、バインダとして前記二次電池用複合電解質の全体質量に対して20質量%未満のPVdFを含む請求項7又は8に記載の二次電池。
  10.  前記負極は、Ti元素を含有する負極活物質を備える請求項7から9のいずれか1に記載の二次電池。
  11.  正極と負極が前記電解質層を挟んで交互に積層された構造を2組以上有するバイポーラ電極構造を備える請求項7から10のいずれか1に記載の二次電池。
  12.  請求項7から11のいずれか1に記載の二次電池を含む電池パック。
PCT/JP2015/076473 2015-09-17 2015-09-17 二次電池用複合電解質、二次電池及び電池パック WO2017046915A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580077113.4A CN107431241B (zh) 2015-09-17 2015-09-17 二次电池用复合电解质、二次电池及电池包
JP2017540413A JP6710692B2 (ja) 2015-09-17 2015-09-17 二次電池用複合電解質、二次電池及び電池パック
PCT/JP2015/076473 WO2017046915A1 (ja) 2015-09-17 2015-09-17 二次電池用複合電解質、二次電池及び電池パック
EP15904104.5A EP3352277B1 (en) 2015-09-17 2015-09-17 Secondary battery comprising a composite electrolyte and battery pack
US15/688,215 US11362366B2 (en) 2015-09-17 2017-08-28 Secondary battery composite electrolyte, secondary battery, and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/076473 WO2017046915A1 (ja) 2015-09-17 2015-09-17 二次電池用複合電解質、二次電池及び電池パック

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/688,215 Continuation US11362366B2 (en) 2015-09-17 2017-08-28 Secondary battery composite electrolyte, secondary battery, and battery pack

Publications (1)

Publication Number Publication Date
WO2017046915A1 true WO2017046915A1 (ja) 2017-03-23

Family

ID=58288298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076473 WO2017046915A1 (ja) 2015-09-17 2015-09-17 二次電池用複合電解質、二次電池及び電池パック

Country Status (5)

Country Link
US (1) US11362366B2 (ja)
EP (1) EP3352277B1 (ja)
JP (1) JP6710692B2 (ja)
CN (1) CN107431241B (ja)
WO (1) WO2017046915A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066390A1 (ja) * 2016-10-04 2018-04-12 株式会社豊田自動織機 双極型電極
WO2019022095A1 (ja) * 2017-07-24 2019-01-31 公立大学法人首都大学東京 電解質組成物、電解質膜及び電池
US10396331B2 (en) 2016-03-16 2019-08-27 Kabushiki Kaisha Toshiba Laminate, secondary battery, battery pack, and vehicle
JP2019145264A (ja) * 2018-02-19 2019-08-29 株式会社東芝 無機化合物粒子、複合電解質、複合電極、二次電池、電池パック及び車両
US10505223B2 (en) 2017-03-21 2019-12-10 Kabushiki Kaisha Toshiba Composite electrolyte, secondary battery, battery pack, and vehicle
US10559820B2 (en) 2016-03-15 2020-02-11 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
US10978691B2 (en) 2017-09-21 2021-04-13 Kabushiki Kaisha Toshiba Electrode group, secondary battery, battery pack, and vehicle
WO2021080005A1 (ja) * 2019-10-25 2021-04-29 日本特殊陶業株式会社 リチウムイオン伝導性固体電解質およびリチウムイオン伝導性固体電解質の製造方法
JP2022514514A (ja) * 2019-04-18 2022-02-14 エルジー エナジー ソリューション リミテッド 全固体電池用電解質膜及びそれを含む全固体電池
US11430985B2 (en) 2019-03-20 2022-08-30 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle
WO2023100241A1 (ja) * 2021-11-30 2023-06-08 株式会社 東芝 二次電池の診断方法、充放電制御方法、診断装置、管理システム、及び、診断プログラム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110537283A (zh) * 2017-04-21 2019-12-03 日立化成株式会社 聚合物电解质组合物和聚合物二次电池
DE102017128719A1 (de) * 2017-12-04 2019-06-06 Schott Ag Lithiumionenleitendes Verbundmaterial, umfassend wenigstens ein Polymer und lithiumionenleitende Partikel, und Verfahren zur Herstellung eines Lithiumionenleiters aus dem Verbundmaterial
CN108365258A (zh) * 2018-01-19 2018-08-03 上海大学 具有室温电导率的聚合物基质的固体电解质及其制备方法
KR102460016B1 (ko) * 2018-10-19 2022-10-28 주식회사 엘지에너지솔루션 전지용 전극의 분석 방법
CN111276668B (zh) * 2018-12-05 2023-03-10 丰田自动车株式会社 全固体电池用电极层叠体及其制造方法
CN110931849B (zh) * 2019-06-12 2021-05-28 北京当升材料科技股份有限公司 梯度复合固态电解质及其制备方法和固态锂电池
JP7226401B2 (ja) * 2020-07-03 2023-02-21 トヨタ自動車株式会社 電極構造体
CN114597484A (zh) * 2020-12-04 2022-06-07 通用汽车环球科技运作有限责任公司 制造双极固态电池组的原位胶凝方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331912A (ja) * 2002-05-10 2003-11-21 National Institute For Materials Science リチウムイオン伝導性固体電解質複合体及びリチウム電池
JP2006086102A (ja) * 2004-08-17 2006-03-30 Ohara Inc リチウムイオン二次電池および固体電解質
JP2012230810A (ja) * 2011-04-26 2012-11-22 Sumitomo Electric Ind Ltd チタン酸リチウム、非水電解質電池用電極、及び非水電解質電池
JP5082197B2 (ja) * 2005-03-09 2012-11-28 日産自動車株式会社 電池
WO2014051032A1 (ja) * 2012-09-28 2014-04-03 日本ゼオン株式会社 全固体二次電池用スラリー、全固体二次電池用電極の製造方法、全固体二次電池用電解質層の製造方法及び全固体二次電池
JP2014203595A (ja) * 2013-04-02 2014-10-27 本田技研工業株式会社 電解質−負極構造体及びそれを備えるリチウムイオン二次電池
JP2014212103A (ja) * 2013-04-04 2014-11-13 本田技研工業株式会社 電解質−正極構造体及びそれを備えるリチウムイオン二次電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA742760B (en) 1974-05-01 1975-01-29 F Crooks Improvements in load-bearing walls and similar structures
JP4745472B2 (ja) * 1998-07-16 2011-08-10 株式会社オハラ リチウムイオン伝導性ガラスセラミックスおよびこれを用いた電池、ガスセンサー
JP3724960B2 (ja) 1998-10-19 2005-12-07 Tdk株式会社 固体電解質およびこれを用いた電気化学デバイス
WO2000060683A1 (en) 1999-03-31 2000-10-12 Koninklijke Philips Electronics N.V. Microporous electrode or separator for use in a non-aqueous battery, and method of manufacturing
JP5413090B2 (ja) 2009-09-25 2014-02-12 株式会社豊田中央研究所 全固体型リチウム二次電池
JP2013182836A (ja) 2012-03-02 2013-09-12 Honda Motor Co Ltd リチウムイオン伝導性電解質及びそれを用いるリチウムイオン二次電池
CN103515649A (zh) * 2012-06-14 2014-01-15 东丽先端材料研究开发(中国)有限公司 有机/无机复合电解质及其制备方法
WO2014005132A1 (en) * 2012-06-29 2014-01-03 Pei Li Compression system for backpack
KR102038621B1 (ko) 2013-02-14 2019-10-30 삼성전자주식회사 고체이온전도체, 이를 포함하는 고체전해질, 이를 포함하는 리튬전지, 및 이의 제조방법
CN104393232B (zh) * 2013-05-07 2017-11-21 株式会社Lg化学 二次电池用电极、其制备、以及包含其的二次电池和线缆型二次电池
CN103337660A (zh) * 2013-07-01 2013-10-02 彩虹集团公司 一种锂离子电解液
JP6245524B2 (ja) * 2013-09-25 2017-12-13 富士フイルム株式会社 重合硬化膜の製造方法、電池用電極シートの製造方法および全固体二次電池の製造方法
JP5742905B2 (ja) * 2013-09-27 2015-07-01 トヨタ自動車株式会社 正極活物質層

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331912A (ja) * 2002-05-10 2003-11-21 National Institute For Materials Science リチウムイオン伝導性固体電解質複合体及びリチウム電池
JP2006086102A (ja) * 2004-08-17 2006-03-30 Ohara Inc リチウムイオン二次電池および固体電解質
JP5082197B2 (ja) * 2005-03-09 2012-11-28 日産自動車株式会社 電池
JP2012230810A (ja) * 2011-04-26 2012-11-22 Sumitomo Electric Ind Ltd チタン酸リチウム、非水電解質電池用電極、及び非水電解質電池
WO2014051032A1 (ja) * 2012-09-28 2014-04-03 日本ゼオン株式会社 全固体二次電池用スラリー、全固体二次電池用電極の製造方法、全固体二次電池用電解質層の製造方法及び全固体二次電池
JP2014203595A (ja) * 2013-04-02 2014-10-27 本田技研工業株式会社 電解質−負極構造体及びそれを備えるリチウムイオン二次電池
JP2014212103A (ja) * 2013-04-04 2014-11-13 本田技研工業株式会社 電解質−正極構造体及びそれを備えるリチウムイオン二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3352277A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10559820B2 (en) 2016-03-15 2020-02-11 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
US10396331B2 (en) 2016-03-16 2019-08-27 Kabushiki Kaisha Toshiba Laminate, secondary battery, battery pack, and vehicle
WO2018066390A1 (ja) * 2016-10-04 2018-04-12 株式会社豊田自動織機 双極型電極
US10505223B2 (en) 2017-03-21 2019-12-10 Kabushiki Kaisha Toshiba Composite electrolyte, secondary battery, battery pack, and vehicle
WO2019022095A1 (ja) * 2017-07-24 2019-01-31 公立大学法人首都大学東京 電解質組成物、電解質膜及び電池
JP7038382B2 (ja) 2017-07-24 2022-03-18 東京都公立大学法人 電解質組成物、電解質膜及び電池
CN110945701A (zh) * 2017-07-24 2020-03-31 公立大学法人首都大学东京 电解质组合物、电解质膜和电池
JPWO2019022095A1 (ja) * 2017-07-24 2020-07-02 東京都公立大学法人 電解質組成物、電解質膜及び電池
US10978691B2 (en) 2017-09-21 2021-04-13 Kabushiki Kaisha Toshiba Electrode group, secondary battery, battery pack, and vehicle
US11108085B2 (en) 2018-02-19 2021-08-31 Kabushiki Kaisha Toshiba Inorganic compound particles, composite electrolyte, composite electrode, secondary battery, battery pack, and vehicle
JP2019145264A (ja) * 2018-02-19 2019-08-29 株式会社東芝 無機化合物粒子、複合電解質、複合電極、二次電池、電池パック及び車両
JP7062462B2 (ja) 2018-02-19 2022-05-06 株式会社東芝 無機化合物粒子、複合電解質膜、複合電極、二次電池、電池パック及び車両
US11430985B2 (en) 2019-03-20 2022-08-30 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle
JP2022514514A (ja) * 2019-04-18 2022-02-14 エルジー エナジー ソリューション リミテッド 全固体電池用電解質膜及びそれを含む全固体電池
JP7222096B2 (ja) 2019-04-18 2023-02-14 エルジー エナジー ソリューション リミテッド 全固体電池用電解質膜及びそれを含む全固体電池
WO2021080005A1 (ja) * 2019-10-25 2021-04-29 日本特殊陶業株式会社 リチウムイオン伝導性固体電解質およびリチウムイオン伝導性固体電解質の製造方法
JPWO2021080005A1 (ja) * 2019-10-25 2021-11-18 日本特殊陶業株式会社 リチウムイオン伝導性固体電解質およびリチウムイオン伝導性固体電解質の製造方法
JP7382399B2 (ja) 2019-10-25 2023-11-16 日本特殊陶業株式会社 リチウムイオン伝導性固体電解質およびリチウムイオン伝導性固体電解質の製造方法
WO2023100241A1 (ja) * 2021-11-30 2023-06-08 株式会社 東芝 二次電池の診断方法、充放電制御方法、診断装置、管理システム、及び、診断プログラム

Also Published As

Publication number Publication date
CN107431241A (zh) 2017-12-01
EP3352277B1 (en) 2021-01-20
US11362366B2 (en) 2022-06-14
JP6710692B2 (ja) 2020-06-17
EP3352277A1 (en) 2018-07-25
US20170358825A1 (en) 2017-12-14
JPWO2017046915A1 (ja) 2017-10-19
EP3352277A4 (en) 2019-04-03
CN107431241B (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
JP6710692B2 (ja) 二次電池用複合電解質、二次電池及び電池パック
JP7220642B2 (ja) 固体電池、セパレータ、電極および製造方法
JP6085370B2 (ja) 全固体電池、全固体電池用電極及びその製造方法
CN107845830B (zh) 固体电解质、锂电池、电池包、及车辆
KR102240980B1 (ko) 리튬 망가니즈 복합 산화물, 이차 전지, 및 이들의 제조 방법
JP6659639B2 (ja) 複合電解質、二次電池、電池パック及び車両
JP6786231B2 (ja) リチウムイオン二次電池用積層体、リチウムイオン二次電池、電池パック及び車両
US11329316B2 (en) Secondary battery composite electrolyte, secondary battery, and battery pack
JP6259704B2 (ja) 全固体電池用電極の製造方法及び全固体電池の製造方法
US20240120524A1 (en) Battery and method for producing battery
WO2015159331A1 (ja) 全固体電池、全固体電池用電極及びその製造方法
JP2021157936A (ja) 負極活物質、負極及び二次電池
WO2023171825A1 (ja) 固体電解質、固体電解質層及び固体電解質電池
WO2024071221A1 (ja) 全固体電池
WO2024070660A1 (ja) 固体電解質、固体電解質層及び固体電解質電池
WO2023007939A1 (ja) 負極材料、負極および電池及びそれらの製造方法
WO2023153394A1 (ja) 固体電解質電池用負極及び固体電解質電池
JP2023060591A (ja) 固体電解質材料および全固体電池
JP2023171360A (ja) 全固体電池用電極及び全固体電池
JP2020119802A (ja) 全固体リチウムイオン二次電池用負極
CN116072836A (zh) 锂离子电池用正极活性物质及其制造方法以及锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904104

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017540413

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015904104

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE