WO2021080005A1 - リチウムイオン伝導性固体電解質およびリチウムイオン伝導性固体電解質の製造方法 - Google Patents

リチウムイオン伝導性固体電解質およびリチウムイオン伝導性固体電解質の製造方法 Download PDF

Info

Publication number
WO2021080005A1
WO2021080005A1 PCT/JP2020/039971 JP2020039971W WO2021080005A1 WO 2021080005 A1 WO2021080005 A1 WO 2021080005A1 JP 2020039971 W JP2020039971 W JP 2020039971W WO 2021080005 A1 WO2021080005 A1 WO 2021080005A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion conductive
solid electrolyte
polymer
conductive solid
Prior art date
Application number
PCT/JP2020/039971
Other languages
English (en)
French (fr)
Inventor
クライヴ ランドール
エンリケ ゴメス
ジュ ファン ソ
将任 岩崎
裕登 中屋
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to CN202080074177.XA priority Critical patent/CN114600291A/zh
Priority to US17/770,395 priority patent/US20220384842A1/en
Priority to JP2021518986A priority patent/JP7382399B2/ja
Priority to KR1020227013790A priority patent/KR20220071232A/ko
Priority to EP20878911.5A priority patent/EP4049974A1/en
Publication of WO2021080005A1 publication Critical patent/WO2021080005A1/ja
Priority to JP2022173113A priority patent/JP2023021987A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/006Compounds containing, besides tungsten, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • C01G35/006Compounds containing, besides tantalum, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • H01M2300/0077Ion conductive at high temperature based on zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the techniques disclosed herein relate to lithium ion conductive solid electrolytes.
  • all-solid-state battery an all-solid-state lithium-ion secondary battery (hereinafter referred to as an "all-solid-state battery") in which all battery elements are solid is expected.
  • the all-solid-state battery is safer than the conventional lithium-ion secondary battery that uses an organic electrolytic solution in which a lithium salt is dissolved in an organic solvent, because there is no risk of leakage or ignition of the organic electrolytic solution. Since the exterior can be simplified, the energy density per unit mass or unit volume can be improved.
  • Lithium ion conductive solid electrolytes containing lithium ion conductive powders are known.
  • Examples of the lithium ion conductive powder contained in such a lithium ion conductive solid electrolyte include Li 7 La 3 Zr 2 O 12 (hereinafter referred to as “LLZ”) and LLZ.
  • LLZ-MgSr LLZ subjected to element substitution of Mg and Sr
  • Patent Document 1 LLZ-MgSr
  • these lithium ion conductive powders are referred to as “LLZ-based lithium ion conductive powders”.
  • Lithium-ion conductive solid electrolytes that make up the solid electrolyte layer and electrodes of all-solid-state batteries have high lithium-ion conductivity and lithium ions, for example, in order to improve the output density of the battery and the temperature stability of the output density. High conductivity temperature stability is required.
  • the LLZ-based lithium ion conductive powder In the state of a compact (compact powder) obtained by pressure-molding the powder, the LLZ-based lithium ion conductive powder has high resistance between the particles because the contact between the particles is point contact, and the lithium ion conductivity is high. Is relatively low.
  • Lithium-ion conductivity can be increased by firing the LLZ-based lithium-ion conductive powder at a high temperature, but it is difficult to increase the size of the battery due to warpage and deformation caused by high-temperature firing, and the temperature is high.
  • a high resistance layer may be formed by the reaction with the electrode active material or the like during firing, and the lithium ion conductivity may decrease. It is also possible to obtain a molded product of an LLZ-based lithium ion conductive powder using a binder. However, since the binder does not have lithium ion conductivity, the lithium ion conductivity of the obtained molded product is low.
  • the lithium ion conductive polymer has a relatively low lithium ion conductivity at a low temperature, and the change in the lithium ion conductivity with a temperature change is also relatively large, so that the lithium ion conductivity of the obtained molded product is low. In addition, the temperature stability of lithium ion conductivity is also low.
  • This specification discloses a technique capable of solving the above-mentioned problems.
  • the lithium ion conductive solid electrolyte disclosed in the present specification includes a lithium ion conductive powder having a garnet-type crystal structure containing at least Li, La, Zr and O, a lithium ion conductive polymer, and a lithium ion conductive polymer. It is a lithium ion conductive solid electrolyte containing, and can retain the shape of the lithium ion conductive solid electrolyte without using another polymer different from the lithium ion conductive polymer, and is active at 20 ° C. or higher and 80 ° C. or lower.
  • the chemical energy is 30 kJ / mol or less. According to this lithium ion conductive solid electrolyte, since the activation energy at 20 ° C.
  • the present lithium ion conductive solid electrolyte since the shape of the lithium ion conductive solid electrolyte can be maintained without using another polymer different from the lithium ion conductive polymer, no binder is included. .. Therefore, the present lithium ion conductive solid electrolyte can suppress a decrease in lithium ion conductivity due to the presence of a binder having no lithium ion conductivity.
  • the lithium ion conductivity can be improved and the temperature stability of the lithium ion conductivity can be improved.
  • the lithium ion conductive solid electrolyte preferably contains only the lithium ion conductive polymer as the polymer.
  • the lithium ion conductive solid electrolyte can more appropriately exhibit the above-mentioned effects by containing only the lithium ion conductive polymer as the polymer.
  • the activation energy of the lithium ion conductive solid electrolyte at 20 ° C. or higher and 80 ° C. or lower is the activation energy in lithium ion conduction, preferably 27 kJ / mol or less, and more preferably 15 kJ / mol or less. Further, this activation energy is preferably 1 kJ / mol or more.
  • the mixing ratio of the lithium ion conductive powder and the lithium ion conductive polymer is in the range of 80 vol%: 20 vol% to 99 vol%: 1 vol%. It is preferable that the heating temperature in the heating and pressurizing step in the manufacturing process of the lithium ion conductive solid electrolyte described later is 50 ° C. or higher and 200 ° C. or lower. Further, it is preferable to use an aprotic polar solvent as the solvent used in the production process.
  • the lithium ion conductive polymer is, for example, a mixture of a lithium salt and a polymer material, as will be described later.
  • the volume content of the lithium ion conductive powder is 80 vol% or more. It may have a certain configuration. According to this lithium ion conductive solid electrolyte, the volume content of the lithium ion conductive powder, which has a small change in lithium ion conductivity with temperature change, is relatively high as compared with the lithium ion conductive polymer, and therefore lithium ions.
  • the conductive temperature stability can be effectively improved.
  • the volume content of the above-mentioned lithium ion conductive powder is preferably 85 vol% or more, more preferably 90 vol% or more. Further, this volume content is preferably 99 vol% or less.
  • the method for producing a lithium ion conductive solid electrolyte disclosed in the present specification is a lithium ion conductive powder containing a lithium ion conductive powder having a garnet-type crystal structure containing at least Li, La, Zr and O.
  • a method for producing a solid electrolyte which comprises a slurry preparation step of preparing a slurry containing a lithium salt, a polymer, the lithium ion conductive powder, and at least one aproton polar solvent, and heating the slurry.
  • a heating and pressurizing step of producing a lithium ion conductive solid electrolyte containing the lithium ion conductive powder and the lithium ion conductive polymer by pressurizing while performing and the heating temperature in the heating and pressurizing step is It is higher than the boiling point of the at least one kind of aprotonic polar solvent and lower than the decomposition temperature of the polymer.
  • a slurry is prepared using an aprotonic polar solvent instead of water or alcohol, and the slurry is heated and pressurized so that the polymer is effectively contained in the slurry.
  • Li and La can be mixed without using a binder and without firing at a high temperature of about 1200 ° C. or higher.
  • a solid electrolyte containing a high proportion of a lithium ion conductive powder having a garnet-type crystal structure containing at least Zr and O can be produced, and the solid electrolyte has high lithium ion conductivity and high lithium ion conductivity.
  • a solid electrolyte having temperature stability can be obtained.
  • the present method for producing a lithium ion conductive solid electrolyte it is possible to suppress thermal decomposition of the polymer in the heating and pressurizing step, and the lithium ion conductivity of the solid electrolyte due to the thermal decomposition of the polymer. Can be suppressed from decreasing.
  • the slurry may be configured to contain a plurality of types of the aprotic polar solvents.
  • the solubility of the polymer in the slurry can be easily adjusted by using a plurality of kinds of solvents, so that the content ratio of the polymer can be reduced to reduce the content ratio of the polymer to the solid electrolyte.
  • the temperature stability of lithium ion conductivity can be effectively improved.
  • the heating temperature in the heating and pressurizing step is higher than the boiling point of at least one of the aprotic polar solvents, and at least one of the other said.
  • the composition may be lower than the boiling point of the aprotic polar solvent.
  • the solid electrolyte obtained through the heating and pressurizing step is made into a gel polymer having high heat resistance due to the presence of the solvent. be able to.
  • the pressurizing pressure in the heating and pressurizing step may be 100 MPa or more. According to the method for producing the lithium ion conductive solid electrolyte, the voids existing at the grain boundaries in the slurry can be effectively crushed, and the density of the solid electrolyte obtained through the heating and pressurizing step can be improved. it can.
  • the pressurizing pressure in the above-mentioned heating and pressurizing step is preferably 100 MPa or more and 500 MPa or less, and more preferably 300 MPa or more and 500 MPa or less.
  • the technique disclosed in the present specification can be realized in various forms, for example, a lithium ion conductive solid electrolyte, a solid electrolyte layer or electrode containing the lithium ion conductive solid electrolyte, and the solid. It can be realized in the form of an electrolyte layer, a power storage device including the electrode, a method for manufacturing the same, and the like.
  • FIG. 1 is an explanatory view schematically showing a cross-sectional configuration of the all-solid-state lithium ion secondary battery 102 in the present embodiment.
  • FIG. 2 is an explanatory diagram schematically showing a garnet-type crystal structure.
  • FIG. 3 is a flowchart showing an example of a method for producing the lithium ion conductive solid electrolyte 202 according to the present embodiment.
  • FIG. 4 is an explanatory diagram showing the result of performance evaluation.
  • FIG. 5 is an explanatory diagram schematically showing the configuration of the heating and pressurizing device 20.
  • FIG. 6 is an explanatory diagram illustrating an Arrhenius plot drawn for sample S3.
  • FIG. 1 is an explanatory diagram schematically showing a cross-sectional configuration of an all-solid-state lithium-ion secondary battery (hereinafter, referred to as “all-solid-state battery”) 102 in the present embodiment.
  • FIG. 1 shows XYZ axes that are orthogonal to each other to specify the direction.
  • the Z-axis positive direction is referred to as an upward direction
  • the Z-axis negative direction is referred to as a downward direction.
  • the all-solid-state battery 102 includes a battery body 110, a positive electrode side current collector 154 arranged on one side (upper side) of the battery body 110, and a negative electrode side current collector arranged on the other side (lower side) of the battery body 110. It includes a member 156.
  • the positive electrode side current collecting member 154 and the negative electrode side current collecting member 156 are substantially flat plate-shaped members having conductivity, and are, for example, stainless steel, Ni (nickel), Ti (titanium), Fe (iron), and Cu (copper). , Al (aluminum), a conductive metal material selected from these alloys, a carbon material, and the like.
  • the positive electrode side current collecting member 154 and the negative electrode side current collecting member 156 are also collectively referred to as a current collecting member.
  • the battery body 110 is a lithium ion secondary battery body in which all battery elements are solid.
  • the fact that the battery elements are all made of solid means that the skeletons of all the battery elements are made of solid, for example, a form in which the skeleton is impregnated with a liquid or the like. It does not exclude it.
  • the battery body 110 includes a positive electrode 114, a negative electrode 116, and a solid electrolyte layer 112 arranged between the positive electrode 114 and the negative electrode 116.
  • the positive electrode 114 and the negative electrode 116 are also collectively referred to as electrodes.
  • the solid electrolyte layer 112 is a member having a substantially flat plate shape, and contains a lithium ion conductive solid electrolyte 202. More specifically, the solid electrolyte layer 112 of the present embodiment is a flat plate-shaped member made of the lithium ion conductive solid electrolyte 202.
  • the positive electrode 114 is a member having a substantially flat plate shape, and contains a positive electrode active material 214.
  • the positive electrode active material 214 include S (sulfur), TiS 2 , LiCoO 2 (hereinafter referred to as “LCO”), LiMn 2 O 4 , LiFePO 4 , and Li (Co 1/3 Ni 1/3 Mn 1 /). 3 ) O 2 (hereinafter referred to as “NCM”), LiNi 0.8 Co 0.15 Al 0.05 O 2 and the like are used.
  • the positive electrode 114 contains a lithium ion conductive solid electrolyte 204 as a lithium ion conductive auxiliary agent.
  • the positive electrode 114 may further contain an electron conductive auxiliary agent (for example, conductive carbon, Ni (nickel), Pt (platinum), Ag (silver)).
  • the negative electrode 116 is a member having a substantially flat plate shape, and contains a negative electrode active material 216.
  • the negative electrode active material 216 include Li metal, Li—Al alloy, Li 4 Ti 5 O 12 (hereinafter referred to as “LTO”), carbon (graphite, natural graphite, artificial graphite, and low crystalline carbon on the surface). Coated core-shell type graphite), Si (silicon), SiO and the like are used.
  • the negative electrode 116 contains a lithium ion conductive solid electrolyte 206 as a lithium ion conductive auxiliary agent.
  • the negative electrode 116 may further contain an electron conductive auxiliary agent (for example, conductive carbon, Ni, Pt, Ag).
  • the lithium ion conductive solid electrolyte 202 constituting the solid electrolyte layer 112 contains a lithium ion conductive powder. More specifically, the lithium ion conductive solid electrolyte 202 is a lithium ion conductive powder having a garnet-type crystal structure containing at least Li, La, Zr, and O of the above-mentioned LLZ-based lithium ion conductive powder. For example, LLZ and LLZ-MgSr) are included.
  • the "garnet-type crystal structure" is a crystal structure represented by the general formula C 3 A 2 B 3 O 12.
  • FIG. 2 is an explanatory diagram schematically showing a garnet-type crystal structure. As shown in FIG.
  • C-site Sc is dodecahedron-coordinated with oxygen atom Oa
  • A-site Sa is octahedrally coordinated with oxygen atom Oa
  • B-site Sb is oxygen atom Oa and 4 It is face-to-face.
  • Lithium can be present in the lithium ion conductive powder (lithium ion conductive solid electrolyte) having a garnet type crystal structure.
  • the oxygen atom Oa is octahedrally coordinated and becomes a void V.
  • Lithium can be present.
  • the gap V is, for example, a portion sandwiched between the B site Sb1 and the B site Sb2 in FIG.
  • Lithium present in the void V is an octahedral coordination with oxygen atoms Oa constituting an octahedron including a tetrahedral surface Fb1 forming the B site Sb1 and a tetrahedral surface Fb2 forming the B site Sb2. doing.
  • a lithium ion conductive powder lithium ion conductive solid electrolyte
  • lantern occupies C site Sc and zirconium occupies A site Sa. Then, lithium can occupy the B site Sb and the void V.
  • the lithium ion conductive powder has a garnet-type crystal structure containing at least Li, La, Zr and O.
  • XRD X-ray diffractometer
  • the obtained X-ray diffraction pattern was compared with the ICDD (International Center for Diffraction Data) card (01-080-4497) (Li 7 La 3 Zr 2 O 12 ) corresponding to LLZ, and the diffraction of the diffraction peak in both If the angles and the diffraction intensity ratios are substantially the same, it can be determined that the lithium ion conductive powder has a garnet-type crystal structure containing at least Li, La, Zr, and O.
  • Preferred aspects of LLZ-based lithium ion conductive powder" described later is X-ray diffraction obtained from the powder.
  • the pattern has a garnet-type crystal structure containing at least Li, La, Zr, and O. Will be done.
  • the lithium ion conductive solid electrolyte 202 in the present embodiment further contains a lithium ion conductive polymer.
  • the lithium ion conductive solid electrolyte 202 can maintain the shape of the lithium ion conductive solid electrolyte without using another polymer different from the lithium ion conductive polymer. That is, the lithium ion conductive solid electrolyte 202 does not contain other polymers other than the lithium ion conductive polymer (for example, a polymer that functions as a binder (for example, polyvinylidene fluoride (PVDF))).
  • PVDF polyvinylidene fluoride
  • the fact that the lithium ion conductive solid electrolyte 202 does not use another polymer different from the lithium ion conductive polymer means that, for example, the molecular weight of the polymer and the polymer can be determined by using thermogravimetric analysis (TG-MS). It can be specified by identifying the polymer species contained in the lithium ion conductive solid electrolyte 202 by measuring the constituent functional groups and determining whether or not there is only one polymer species.
  • TG-MS thermogravimetric analysis
  • the lithium ion conductive polymer is a polymer having lithium ion conductivity, for example, a mixture of a lithium salt and a polymer material.
  • the polymer material constituting the lithium ion conductive polymer for example, polyethylene oxide (hereinafter referred to as “PEO”), polypropylene carbonate (hereinafter referred to as “PPC”) and the like are used.
  • the lithium salt constituting the lithium ion conductive polymer include lithium bis (trifluoromethanesulfonyl) imide (LiN (SO 2 CF 3 ) 2 ) (hereinafter referred to as “Li-TFSI”) and perchlorate. Lithium (LiClO 4 ) or the like is used.
  • a polymer composed of a mixture of PEO and Li-TFSI a polymer composed of a mixture of PPC and LiClO 4, and the like are used.
  • the lithium ion conductive solid electrolyte 202 in the present embodiment contains the LLZ-based lithium ion conductive powder and the lithium ion conductive polymer.
  • the volume content of the LLZ-based lithium-ion conductive powder in the lithium-ion conductive solid electrolyte 202 (the total of the LLZ-based lithium ion conductive powder and the lithium ion conductive polymer is 100 vol%) is 80 vol% or more.
  • the volume content of the LLZ-based lithium ion conductive powder in the lithium ion conductive solid electrolyte 202 is more preferably 85 vol% or more, and further preferably 90 vol% or more.
  • the activation energy of the lithium ion conductive solid electrolyte 202 in the present embodiment at 20 ° C. or higher and 80 ° C. or lower is 30 kJ / mol or less.
  • the "activation energy” referred to here is the activation energy in lithium ion conduction. Since the activation energy in lithium ion conduction has the same meaning as the change in lithium ion conductivity with respect to temperature change, the larger the activation energy, the larger the change in lithium ion conductivity with temperature change. Since the activation energy of the lithium ion conductive solid electrolyte 202 in the present embodiment at 20 ° C. or higher and 80 ° C.
  • the activation energy of the lithium ion conductive solid electrolyte 202 at 20 ° C. or higher and 80 ° C. or lower is more preferably 27 kJ / mol or less, and even more preferably 15 kJ / mol or less.
  • FIG. 3 is a flowchart showing an example of a method for producing the lithium ion conductive solid electrolyte 202 according to the present embodiment.
  • a slurry containing these is prepared by mixing an LLZ-based lithium ion conductive powder, a lithium salt, a polymer, and a solvent (S110).
  • an aprotic polar solvent is used as the solvent for producing the slurry.
  • the aprotic polar solvent for example, acetonitrile (hereinafter referred to as "ACN"), N, N-dimethylformamide (hereinafter referred to as "DMF”) and the like are used.
  • ACN acetonitrile
  • DMF N-dimethylformamide
  • One kind of aprotic polar solvent may be used, or a plurality of kinds of aprotic polar solvents may be used for preparing the slurry.
  • the solubility of the polymer in the slurry can be easily adjusted, so that the content of the polymer can be reduced. As will be described later, this reduces the content of the polymer in which the change in lithium ion conductivity is relatively large with the temperature change, and has an effect on the temperature stability of the lithium ion conductivity of the lithium ion conductive solid electrolyte 202. It leads to improvement.
  • the step of S110 corresponds to the slurry preparation step in the claims.
  • a lithium ion conductive solid electrolyte 202 containing an LLZ-based lithium ion conductive powder and a lithium ion conductive polymer is produced (S120). That is, by the heating and pressurizing step of S120, the aprotic polar solvent contained in the slurry is evaporated in a state where the lithium ion conductive polymer is effectively dispersed in the slurry, and lithium as a solidified body obtained by solidifying the slurry. The ionic conductive solid electrolyte 202 is obtained.
  • the heating and pressurizing step of S120 the voids between the particles are reduced by the pressurization, and a dense (high density) lithium ion conductive solid electrolyte 202 is obtained.
  • the solvent contained in the slurry is not water or alcohol but an aprotic polar solvent, the reaction between the LLZ-based lithium ion conductive powder and the solvent in the heating and pressurizing step of S120 is suppressed, which is caused by the reaction. It is possible to suppress the decrease in lithium ion conductivity.
  • the step of S120 corresponds to the heating and pressurizing step in the claims.
  • the heating temperature in the heating and pressurizing step of S120 is higher than the boiling point of at least one aprotic polar solvent contained in the slurry. Therefore, the solvent can be smoothly evaporated in the heating and pressurizing step of S120, and the solvent can be prevented from remaining excessively in the lithium ion conductive solid electrolyte 202 obtained through the heating and pressurizing step of S120. It is possible to suppress the decrease in the density of the lithium ion conductive solid electrolyte 202 and the decrease in the lithium ion conductivity of the lithium ion conductive solid electrolyte 202 due to the excessive residual of the solvent. Can be done.
  • the heating temperature in the heating and pressurizing step of S120 is lower than the decomposition temperature of the polymer contained in the slurry. Therefore, in the heating and pressurizing step of S120, it is possible to suppress the thermal decomposition of the polymer, and the lithium ion conductivity of the lithium ion conductive solid electrolyte 202 is lowered due to the thermal decomposition of the polymer. It can be suppressed.
  • the heating temperature in the heating and pressurizing step of S120 is higher than the boiling point of at least one aprotic polar solvent and at least one type. It is preferably lower than the boiling point of other aprotic polar solvents.
  • at least one solvent it is possible to prevent the solvent from remaining excessively in the lithium ion conductive solid electrolyte 202 obtained through the heating and pressurizing step of S120. It is possible to suppress a decrease in the density of the lithium ion conductive solid electrolyte 202 due to the residue and a decrease in the lithium ion conductivity of the lithium ion conductive solid electrolyte 202.
  • the presence of the solvent can make the lithium ion conductive solid electrolyte 202 obtained through the heating and pressurizing step of S120 a gel polymer having high heat resistance.
  • the pressurizing pressure in the heating and pressurizing step of S120 is preferably 100 MPa or more. By doing so, the voids existing at the grain boundaries in the slurry can be effectively crushed, and the density of the lithium ion conductive solid electrolyte 202 obtained through the heating and pressurizing step of S120 is effectively improved. be able to.
  • the pressurizing pressure in the heating and pressurizing step of S120 is more preferably 300 MPa or more, further preferably 400 MPa or more.
  • the pressurizing pressure in the heating and pressurizing step of S120 is preferably not more than the upper limit of pressurizing capacity of the manufacturing equipment (for example, 500 MPa).
  • the solid electrolyte layer 112 is prepared. Specifically, the lithium ion conductive solid electrolyte 202 is produced by the above-mentioned method, and the solid electrolyte layer 112 is formed by the lithium ion conductive solid electrolyte 202.
  • the positive electrode 114 and the negative electrode 116 are separately manufactured. Specifically, the powder of the positive electrode active material 214, the lithium ion conductive solid electrolyte 204, and the powder of the electron conduction auxiliary agent, if necessary, are mixed at a predetermined ratio and pressure-molded at a predetermined pressure, or a binder. Is added to form a sheet, or the positive electrode 114 is produced. Further, the powder of the negative electrode active material 216, the lithium ion conductive solid electrolyte 206, and the powder of the electron conduction aid, if necessary, are mixed and pressure-molded at a predetermined pressure, or a binder is added to form a sheet. The negative electrode 116 is manufactured by molding or the like.
  • the positive electrode side current collecting member 154, the positive electrode 114, the solid electrolyte layer 112, the negative electrode 116, and the negative electrode side current collecting member 156 are laminated in this order and pressurized to integrate them.
  • the all-solid-state battery 102 having the above-described configuration is manufactured.
  • the lithium ion conductive solid electrolyte 202 of the present embodiment contains a lithium ion conductive powder having a garnet-type crystal structure containing at least Li, La, Zr, and O, and also contains lithium ion conductivity.
  • the shape of the lithium ion conductive solid electrolyte can be maintained without using another polymer different from the polymer.
  • the activation energy at 20 ° C. or higher and 80 ° C. or lower is 30 kJ / mol or less. According to the lithium ion conductive solid electrolyte 202 of the present embodiment, since the activation energy at 20 ° C.
  • the lithium ion conductive solid electrolyte 202 of the present embodiment the shape of the lithium ion conductive solid electrolyte can be maintained without using another polymer different from the lithium ion conductive polymer, and thus binding is performed. Does not contain wood. Therefore, the lithium ion conductive solid electrolyte 202 of the present embodiment can suppress a decrease in lithium ion conductivity due to the presence of a binder having no lithium ion conductivity. Therefore, according to the lithium ion conductive solid electrolyte 202 of the present embodiment, the temperature stability of the lithium ion conductivity and the lithium ion conductivity can be improved.
  • the volume content of the LLZ-based lithium ion conductive powder is 80 vol% or more. According to the lithium ion conductive solid electrolyte 202 of the present embodiment, the volume content of the LLZ-based lithium ion conductive powder, which has a small change in lithium ion conductivity with a temperature change, is compared with that of the lithium ion conductive polymer. Since the target is high, the temperature stability of lithium ion conductivity can be effectively improved.
  • the method for producing the lithium ion conductive solid electrolyte 202 of the present embodiment prepares a slurry containing a lithium salt, a polymer, an LLZ-based lithium ion conductive powder, and at least one aprotic polar solvent.
  • the heating temperature in the heating and pressurizing step is higher than the boiling point of at least one aprotic polar solvent and lower than the decomposition temperature of the polymer.
  • a slurry is prepared using an aprotonic polar solvent instead of water or alcohol, and the slurry is heated and pressurized to form a polymer in the slurry. Since the slurry can be solidified in a state of being effectively dispersed, even if the amount of the polymer added is small, no binder is used and the slurry is not fired at a high temperature of about 1200 ° C. or higher.
  • a solid electrolyte containing a high proportion of lithium ion conductive powder having a garnet-type crystal structure containing at least Li, La, Zr, and O can be produced, and has high lithium ion conductivity and high lithium.
  • a solid electrolyte having ionic conductivity and temperature stability can be obtained. Further, according to the method for producing the lithium ion conductive solid electrolyte 202 of the present embodiment, it is possible to suppress the thermal decomposition of the polymer in the heating and pressurizing step, and the solid electrolyte is caused by the thermal decomposition of the polymer. It is possible to suppress a decrease in lithium ion conductivity. In addition, it is possible to prevent the solvent from remaining excessively in the solid electrolyte obtained through the heating and pressurizing step, and the density of the solid electrolyte decreases due to the excessive remaining of the solvent, or the solid electrolyte It is possible to suppress a decrease in lithium ion conductivity.
  • the slurry contains a plurality of types of aprotic polar solvents.
  • the solubility of the polymer in the slurry can be easily adjusted by using a plurality of types of solvents, so that the content ratio of the polymer can be lowered and the temperature of the lithium ion conductivity of the solid electrolyte can be reduced. Stability can be effectively improved.
  • the heating temperature in the heating and pressurizing step is at least one non-type. It is preferably higher than the boiling point of the protic and aprotic solvent and lower than the boiling point of at least one other aprotic polar solvent.
  • the presence of the solvent makes it possible to obtain a solid electrolyte obtained through the heating and pressurizing step as a gel polymer having high heat resistance.
  • the pressurizing pressure in the heating and pressurizing step is preferably 100 MPa or more.
  • Performance evaluation was performed for lithium-ion conductive solid electrolytes.
  • FIG. 4 is an explanatory diagram showing the result of performance evaluation.
  • LLZ-Mg, Sr LLZ with elemental substitution of Mg and Sr
  • These LLZ-Mg and Sr were produced by the following methods. First, Li 2 CO 3 , MgO, La (OH) 3 so that the composition is Li 6.95 Mg 0.15 La 2.75 Sr 0.25 Zr 2.0 O 12 (LLZ-Mg ⁇ Sr). , SrCO 3 and ZrO 2 were weighed. At that time, in consideration of the volatilization of Li during firing, Li 2 CO 3 was further added so as to be excessive by about 15 mol% in terms of elements.
  • This raw material was put into a nylon pot together with zirconia balls, and pulverized and mixed in an organic solvent for 15 hours with a ball mill. After pulverization and mixing, the slurry was dried and reduced and calcined on an MgO plate at 1200 ° C. for 10 hours to prepare a powder of LLZ-Mg ⁇ Sr.
  • the particle size (D90) of the LLZ-Mg and Sr powders was adjusted to 3.2 ⁇ m by wet pulverizing the obtained powder with a planetary ball mill in an environment not exposed to the atmosphere.
  • a mixture of a polymer and a lithium salt (lithium ion conductive polymer) was added to the LLZ-Ta powder.
  • the mixing ratio of the LLZ-Ta powder and the lithium ion conductive polymer was 87 vol%: 13 vol%. This mixing ratio corresponds to the volume content of the lithium ion conductive powder when the total of the LLZ-Ta powder, which is a lithium ion conductive powder, and the lithium ion conductive polymer is 100 vol%.
  • Li-TFSI lithium bis (trifluoromethanesulfonyl) imide
  • a slurry is obtained by adding 10 wt% of ACN (acetonitrile), which is an aprotic polar solvent, to a mixture of LLZ-Ta powder and a lithium ion conductive polymer by external addition and mixing in a mortar. It was. The slurry was solidified using the heating and pressurizing device 20 shown in FIG. As shown in FIG.
  • the heating and pressurizing device 20 is inserted into a cylindrical mold 21 having a hollow portion diameter of 13.0 mm and a hollow portion of the mold 21, and pressurizes an object 10 such as a slurry. It includes a lower surface punch 23 and an upper surface punch 22 that face each other by sandwiching them, and a cover heater 24 that covers the outer periphery of the mold 21. 0.5 g of the above slurry is weighed and put into the hollow portion of the die 21, and while the die 21 is heated by the cover heater 24 set at 120 ° C., the press machine (bottom punch 23 and top punch 22) is used at 400 MPa.
  • a disk-shaped solidified body (sample of lithium ion conductive solid electrolyte) having a diameter of 13.0 mm and a thickness of about 1.0 mm was obtained. Since the boiling point of ACN, which is an aprotic polar solvent, is 82 ° C., and the decomposition temperature of PEO, which is a polymer, is about 200 ° C., the heating temperature (120 ° C.) in the heating and pressurizing step during the preparation of sample S1. ) Can be said to be higher than the boiling point of the aprotic polar solvent and lower than the decomposition temperature of the polymer.
  • the method for producing the sample S2 is different from the method for producing the sample S1 in terms of the type of the LLZ-based lithium ion conductive powder, the mixing ratio of the LLZ-based lithium ion conductive powder and the lithium ion conductive polymer, and the heating and pressurizing step.
  • the heating temperature in is different. That is, a mixture of the polymer and the lithium salt (lithium ion conductive polymer) was added to the powder of LLZ-Mg and Sr.
  • the mixing ratio of the LLZ-Mg and Sr powder and the lithium ion conductive polymer was 90 vol%: 10 vol%.
  • a slurry was obtained by adding 10 wt% of ACN, which is an aprotic polar solvent, to a mixture of LLZ-Mg and Sr powder and a lithium ion conductive polymer by external addition and mixing in a mortar. .. 0.5 g of the slurry is weighed and put into the hollow portion of the die 21, and while the die 21 is heated by the cover heater 24 set at 100 ° C., the press machine (bottom punch 23 and top punch 22) is used at 400 MPa.
  • ACN which is an aprotic polar solvent
  • a disk-shaped solidified body (sample of lithium ion conductive solid electrolyte) having a diameter of 13.0 mm and a thickness of about 1.0 mm was obtained. Since the boiling point of ACN, which is an aprotic polar solvent, is 82 ° C., and the decomposition temperature of PEO, which is a polymer, is about 200 ° C., the heating temperature (100 ° C.) in the heating and pressurizing step during the preparation of sample S2. ) Can be said to be higher than the boiling point of the aprotic polar solvent and lower than the decomposition temperature of the polymer.
  • the method for producing sample S3 differs from the method for producing sample S2 in the types of polymers and lithium salts, the types of solvents, and the heating temperature in the heating and pressurizing step. That is, a mixture of the polymer and the lithium salt (lithium ion conductive polymer) was added to the powder of LLZ-Mg and Sr. The mixing ratio of the LLZ-Mg and Sr powder and the lithium ion conductive polymer was 90 vol%: 10 vol%.
  • the polymer PPC (polypropylene carbonate) was used, and as the lithium salt, LiClO 4 (lithium perchlorate) was used, and a mixture of both at a mass ratio of 2: 1 was used.
  • ACN and DMF N, N-dimethylformamide which are aprotic polar solvents, were added externally to 10 wt% and 0.
  • a slurry was obtained by adding only 15 wt% and mixing in a mortar. 0.5 g of the slurry is weighed and put into the hollow portion of the die 21, and while the die 21 is heated by the cover heater 24 set at 120 ° C., the press machine (bottom punch 23 and top punch 22) is used at 400 MPa.
  • a disk-shaped solidified body (sample of lithium ion conductive solid electrolyte) having a diameter of 13.0 mm and a thickness of about 1.0 mm was obtained.
  • the boiling point of ACN, which is an aprotic polar solvent, is 82 ° C.
  • the boiling point of DMF, which is also an aprotic polar solvent is 153 ° C.
  • the decomposition temperature of PPC, which is a polymer is about 200 ° C.
  • the heating temperature (120 ° C.) in the heating and pressurizing step during the preparation of sample S3 is higher than the boiling point of one aprotic polar solvent (ACN) and that of another aprotic polar solvent (DMF). It can be said that it is lower than the boiling point and lower than the decomposition temperature of the polymer.
  • a disk-shaped solidified body (sample of lithium ion conductive solid electrolyte) having a diameter of 13.0 mm and a thickness of about 1.0 mm.
  • the method for producing sample S5 differs from the method for producing sample S2 in the mixing ratio of the LLZ-based lithium ion conductive powder and the lithium ion conductive polymer and the heating temperature in the heating and pressurizing step. That is, a mixture of the polymer and the lithium salt (lithium ion conductive polymer) was added to the powder of LLZ-Mg and Sr. The mixing ratio of the LLZ-Mg and Sr powder and the lithium ion conductive polymer was 87 vol%: 13 vol%. PEO was used as the polymer, Li-TFSI was used as the lithium salt, and a mixture of the two at a mass ratio of 2: 1 was used.
  • a slurry was obtained by adding 10 wt% of ACN, which is an aprotic polar solvent, to a mixture of LLZ-Mg and Sr powder and a lithium ion conductive polymer by external addition and mixing in a mortar. .. 0.5 g of the slurry is weighed and put into the hollow portion of the die 21, and while the die 21 is heated by the cover heater 24 set at 250 ° C., the press machine (bottom punch 23 and top punch 22) is used at 400 MPa. By holding the uniaxially pressed state for 120 minutes, a disk-shaped solidified body (sample of lithium ion conductive solid electrolyte) having a diameter of 13.0 mm and a thickness of about 1.0 mm was obtained.
  • ACN is an aprotic polar solvent
  • the heating temperature (250 ° C.) in the heating and pressurizing step during the preparation of sample S5. ) can be said to be higher than the boiling point of the aprotic polar solvent and higher than the decomposition temperature of the polymer.
  • the method for producing sample S6 differs from the method for producing sample S2 in the presence or absence of solvent addition, the mixing ratio of the LLZ-based lithium ion conductive powder and the lithium ion conductive polymer, and the heating temperature in the heating and pressurizing step. .. That is, a mixture of the polymer and the lithium salt (lithium ion conductive polymer) was added to the powder of LLZ-Mg and Sr. The mixing ratio of the LLZ-Mg and Sr powder and the lithium ion conductive polymer was 87 vol%: 13 vol%. PEO was used as the polymer, Li-TFSI was used as the lithium salt, and a mixture of the two at a mass ratio of 2: 1 was used.
  • the decomposition temperature of the polymer PEO is about 200 ° C., it can be said that the heating temperature (120 ° C.) in the heating and pressurizing step at the time of producing the sample S6 is lower than the decomposition temperature of the polymer.
  • the method for producing sample S7 is the presence or absence of addition of a lithium salt, the mixing ratio of the LLZ-based lithium ion conductive powder and the lithium ion conductive polymer, and the heating temperature in the heating and pressurizing step, as compared with the method for producing sample S2. Is different. That is, the polymer was added to the powder of LLZ-Mg and Sr. At this time, no lithium salt was added to the powder of LLZ-Mg and Sr. The mixing ratio of the LLZ-Mg and Sr powder and the polymer was 87 vol%: 13 vol%. As the polymer, PEO was used.
  • ACN which is an aprotic polar solvent
  • the heating temperature (120 ° C.) in the heating and pressurizing step during the preparation of sample S7. ) can be said to be higher than the boiling point of the aprotic polar solvent and lower than the decomposition temperature of the polymer.
  • the lithium ion conductivity was evaluated for the samples (S1 to S3, S5 to S7) that were judged to be acceptable in the density evaluation. Specifically, for each sample, the lithium ion conductivity at room temperature (25 ° C.) was measured by the AC impedance method, and the samples having the lithium ion conductivity of 1 ⁇ 10 -4 S / cm or more were accepted.
  • a carbon-coated aluminum foil as a collector electrode is placed on the upper and lower surfaces of a pellet-shaped solidified body (sample) having a diameter of 13.0 mm and a thickness of about 1.0 mm.
  • the activation energy was evaluated for the samples (S1 to S3) that were judged to be acceptable in the evaluation of the lithium ion conductivity. Specifically, for each sample, the lithium ion conductivity at 20 ° C. or higher and 80 ° C. or lower is measured by the AC impedance method, an Arrhenius plot is drawn from the measurement results, the activation energy is calculated from the Arrhenius plot, and activation is performed. Samples with an energy of 30 kJ / mol or less were accepted.
  • FIG. 6 is an explanatory diagram illustrating an Arrhenius plot drawn for sample S3.
  • the solidified body (sample) to be measured was placed in a constant temperature bath, and the lithium ion conductivity of the solidified body was measured by the AC impedance method described above for each set temperature. Before each measurement, in order to keep the solidified body at a uniform temperature, it was held for 20 minutes after the temperature of the constant temperature bath reached the set temperature.
  • the horizontal axis is 1000 multiplied by the reciprocal of the measured temperature, and the vertical axis is the logarithmic value of the lithium ion conductivity. I drew the Arrhenius plot I took.
  • the samples S1 to S3 and S5 to S7 had a density of 80% or more and were judged to be acceptable, but the sample S4 had a density of less than 80% and was judged to be unacceptable.
  • the sample S4 was prepared by pressing the powder of LLZ-Mg and Sr at room temperature without using a lithium salt, a polymer and a solvent in the preparation thereof. Since the LLZ-based lithium ion conductive powder is harder than other oxide-based lithium ion conductors and non-oxide-based lithium ion conductors (for example, sulfide-based lithium ion conductors), the powder is pressed at room temperature. It is probable that high density could not be achieved just by performing.
  • the samples S1 to S3 had a lithium ion conductivity of 1 ⁇ 10 -4 S / cm or more and were judged to be acceptable, but the samples S5 to S7 had the lithium ion conductivity.
  • the heating temperature of the sample S5 at the time of its production is 250 ° C., which is higher than the decomposition temperature of the polymer, the lithium ion conductive polymer is thermally decomposed in the heating and pressurizing step, and the lithium ion conductivity is caused by the thermal decomposition. Is considered to have decreased.
  • the lithium ion conductive polymer was not well dispersed in the sample S6 because no solvent was used in the preparation thereof, and the lithium ion conductivity was lowered. Further, it is considered that the sample S7 was not imparted with lithium ion conductivity to the polymer because the lithium salt was not added during the production thereof, and the lithium ion conductivity was lowered.
  • the activation energies of the samples S1 to S3 were 30 kJ / mol or less, and it was judged to be acceptable. It is considered that this is because the content ratio of the lithium ion conductive polymer is relatively low in these samples (in other words, the content ratio of the LLZ-based lithium ion conductive powder is relatively high). That is, the lithium ion conductive polymer has a large activation energy (in other words, a large change in ionic conductivity with a temperature change) as compared with the LLZ-based lithium ion conductive powder, but in these samples, Since the content ratio of the lithium ion conductive polymer is relatively low, it is considered that the activation energy is relatively small. Therefore, in these samples, it can be said that the change in lithium ion conductivity due to the temperature change is small and the temperature stability of lithium ion conductivity is high.
  • sample S3 has a very high lithium ion conductivity of 5.6 ⁇ 10 -4 S / cm and a very small activation energy of 12.17 kJ / mol, resulting in very good evaluation results.
  • the sample S3 uses a plurality of types of aprotic polar solvents during its preparation, the solubility of the polymer in the slurry can be easily adjusted, and the sample S3 is dense even if the polymer content is reduced. It could be produced as a solid polymer. As a result, it is considered that the sample S3 was able to increase the lithium ion conductivity and reduce the activation energy.
  • the heating temperature in the heating and pressurizing step is higher than the boiling point of at least one aprotonic polar solvent and lower than the decomposition temperature of the polymer. Therefore, it can be said that it has been confirmed that a solid electrolyte having high lithium ion conductivity and high temperature stability of lithium ion conductivity can be obtained.
  • the pressurizing pressure in the heating and pressurizing step is preferably 100 MPa or more. It can be said that this has been confirmed.
  • the slurry contains a plurality of types of aprotic polar solvents.
  • the heating temperature in the heating and pressurizing step is higher than the boiling point of at least one aprotic polar solvent and lower than the boiling point of at least one other aprotic polar solvent. It can be said that it was confirmed that is preferable.
  • Reference Examples R1 to R5 described in the above-mentioned documents have a molar ratio of 8: 1 with respect to LLZ powders 0, 0.5, 1.0, 1.7, and 2.4 vol%, respectively.
  • Polymer 100, 99.5, 99.0, 98.3, 97.6 vol% consisting of a mixture of PEO (polyethylene oxide) and Li-TFSI (lithium bis (trifluoromethanesulfonyl) imide) is added, and the mixture is further added.
  • It is a lithium ion conductive solid electrolyte produced by preparing a slurry by dissolving it in ACN (acetalis), forming the slurry into a sheet by casting, and vacuum-drying it at 60 ° C.
  • the lithium ion conductive solid electrolytes of these reference examples have low lithium ion conductivity and also have low temperature stability of lithium ion conductivity.
  • the lithium ion conductive solid electrolyte in the present embodiment is an LLZ-based lithium ion conductive powder (a lithium ion conductive powder having a garnet-type crystal structure containing at least Li, La, Zr, and O). Includes.
  • the LLZ-based lithium ion conductive powder include Mg, Al, Si, Ca (calcium), Ti, V (vanadium), Ga (gallium), Sr, Y (yttrium), Nb (niobium), Sn (tin), and so on.
  • Examples of the LLZ-based lithium ion conductor having a garnet-type crystal structure include the following. Li 6 La 3 Zr 1.5 W 0.5 O 12 Li 6.15 La 3 Zr 1.75 Ta 0.25 Al 0.2 O 12 Li 6.15 La 3 Zr 1.75 Ta 0.25 Ga 0.2 O 12 Li 6.25 La 3 Zr 2 Ga 0.25 O 12 Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 Li 6.5 La 3 Zr 1.75 Te 0.25 O 12 Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 Li 6.9 La 3 Zr 1.675 Ta 0.289 Bi 0.036 O 12 Li 6.46 Ga 0.23 La 3 Zr 1.85 Y 0.15 O 12 Li 6.8 La 2.95 Ca 0.05 Zr 1.75 Nb 0.25 O 12 Li 7.05 La 3.00 Zr 1.95 Gd 0.05 O 12
  • the LLZ-based lithium ion conductive powder having a garnet-type crystal structure contains at least one of Mg and element A (A is at least one element selected from the group consisting of Ca, Sr and Ba). It is preferable to use an element in which each element contained satisfies the following formulas (1) to (3) in terms of molar ratio. Since Mg and element A have a relatively large reserve and are inexpensive, if at least one of Mg and element A is used as a substitution element for the LLZ-based lithium ion conductive powder, the LLZ-based lithium ion conductive powder is stable. Supply can be expected and the cost can be reduced. (1) 1.33 ⁇ Li / (La + A) ⁇ 3 (2) 0 ⁇ Mg / (La + A) ⁇ 0.5 (3) 0 ⁇ A / (La + A) ⁇ 0.67
  • the LLZ-based lithium ion conductive powder it is possible to adopt a powder containing both Mg and element A, in which each contained element satisfies the following formulas (4) to (6) in terms of molar ratio. preferable. (4) 2.0 ⁇ Li / (La + A) ⁇ 2.5 (5) 0.01 ⁇ Mg / (La + A) ⁇ 0.14 (6) 0.04 ⁇ A / (La + A) ⁇ 0.17
  • the LLZ-based lithium ion conductive powder preferably satisfies any of the following (a) to (c), and more preferably (c) among these, (d). It can be said that it is more preferable to satisfy.
  • (A) It contains Mg, and the content of each element satisfies 1.33 ⁇ Li / La ⁇ 3 and 0 ⁇ Mg / La ⁇ 0.5 in terms of molar ratio.
  • (C) Contains Mg and element A, and the content of each element is 1.33 ⁇ Li / (La + A) ⁇ 3, 0 ⁇ Mg / (La + A) ⁇ 0.5, and 0 ⁇ A / ( La + A) ⁇ 0.67 is satisfied.
  • (D) Contains Mg and element A, and the content of each element is 2.0 ⁇ Li / (La + A) ⁇ 2.5, 0.01 ⁇ Mg / (La + A) ⁇ 0.14, and 0 in molar ratio. .04 ⁇ A / (La + A) ⁇ 0.17 is satisfied.
  • the LLZ-based lithium ion conductive powder is good lithium when the above (a) is satisfied, that is, when Li, La, Zr and Mg are contained so as to satisfy the above formulas (1) and (2) in molar ratio. Shows ionic conductivity.
  • the mechanism is not clear, but for example, when the LLZ-based lithium ion conductive powder contains Mg, the ionic radius of Li and the ionic radius of Mg are close to each other, so that the Li site where Li is arranged in the LLZ crystal phase Mg is easily arranged, and Li is replaced with Mg, so that the difference in charge between Li and Mg causes vacancies in the Li site in the crystal structure, which makes it easier for Li ions to move, and as a result, lithium ion conduction. It is thought that the rate will improve.
  • the lithium ion conductive powder when the molar ratio of Li to the sum of La and element A is less than 1.33 or more than 3, not only the lithium ion conductive powder having a garnet-type crystal structure but also another metal Oxides are likely to be formed. As the content of another metal oxide increases, the content of the lithium ion conductive powder having a garnet-type crystal structure becomes relatively small, and the lithium ion conductivity of another metal oxide is low, so that lithium ion conduction The rate drops. As the content of Mg in the LLZ-based lithium ion conductive powder increases, Mg is arranged at the Li site, pores are formed at the Li site, and the lithium ion conductivity is improved.
  • the LLZ-based lithium ion conductive powder is good when the above (b) is satisfied, that is, when Li, La, Zr and the element A are contained so as to satisfy the above formulas (1) and (3) in molar ratio. Shows lithium ion conductivity.
  • the mechanism is not clear, but for example, when the LLZ-based lithium ion conductive powder contains the element A, the ionic radius of La and the ionic radius of the element A are close to each other, so that La is arranged in the LLZ crystal phase. Element A is easily placed at the site, and when La is replaced with element A, lattice strain occurs, and free Li ions increase due to the difference in charge between La and element A, improving lithium ionic conductivity. It is thought that.
  • the LLZ-based lithium ion conductive powder when the molar ratio of Li to the sum of La and element A is less than 1.33 or more than 3, not only the lithium ion conductive powder having a garnet-type crystal structure but also another metal Oxides are likely to be formed. As the content of another metal oxide increases, the content of the lithium ion conductive powder having a garnet-type crystal structure becomes relatively small, and the lithium ion conductivity of another metal oxide is low, so that lithium ion conduction The rate drops. As the content of element A in the LLZ-based lithium ion conductive powder increases, element A is arranged at the La site, the lattice strain increases, and free Li ions increase due to the difference in charge between La and element A.
  • Lithium ion conductivity is improved, but when the molar ratio of element A to the sum of La and element A exceeds 0.67, another metal oxide containing element A is likely to be formed. As the content of the other metal oxide containing the element A increases, the content of the lithium ion conductive powder having a garnet-type crystal structure becomes relatively small, and the content of the other metal oxide containing the element A further decreases. Since the lithium ion conductivity is low, the lithium ion conductivity is lowered.
  • the element A is at least one element selected from the group consisting of Ca, Sr and Ba.
  • Ca, Sr and Ba are Group 2 elements in the periodic table, and tend to be divalent cations, and all have a common property that the ionic radii are close to each other. Since Ca, Sr and Ba all have an ionic radius close to that of La, they are likely to be replaced with La arranged at the La site in the LLZ-based lithium ion conductive powder. It is preferable that the LLZ-based lithium ion conductive powder contains Sr among these elements A because it can be easily formed by sintering and a high lithium ion conductivity can be obtained.
  • the LLZ-based lithium ion conductive powder satisfies the above (c), that is, when it contains Li, La, Zr, Mg and element A in a molar ratio so as to satisfy the above formulas (1) to (3). It can be easily formed by sintering, and the lithium ion conductivity is further improved. Further, when the LLZ-based lithium ion conductive powder satisfies the above (d), that is, Li, La, Zr, Mg and element A are contained so as to satisfy the above formulas (4) to (6) in terms of molar ratio. At that time, the lithium ion conductivity is further improved.
  • the mechanism is not clear, but for example, Li at the Li site in the LLZ-based lithium ion conductive powder is replaced with Mg, and La at the La site is replaced with the element A, so that holes are formed in the Li site. It is considered that the generated and free Li ions increase, and the lithium ion conductivity becomes even better.
  • the LLZ-based lithium ion conductive powder contains Li, La, Zr, Mg and Sr so as to satisfy the above formulas (1) to (3), and particularly to satisfy the above formulas (4) to (6). This is preferable from the viewpoint that a high lithium ion conductivity can be obtained and a lithium ion conductor having a high relative density can be obtained.
  • the LLZ-based lithium ion conductive powder preferably contains Zr in a molar ratio so as to satisfy the following formula (4).
  • Zr in this range, a lithium ion conductive powder having a garnet-type crystal structure can be easily obtained. (4) 0.33 ⁇ Zr / (La + A) ⁇ 1
  • the configuration of the all-solid-state battery 102 in the above embodiment is merely an example and can be changed in various ways.
  • the lithium ion conductive solid electrolyte is contained in all of the solid electrolyte layer 112, the positive electrode 114, and the negative electrode 116, and the lithium ion conductive solid electrolyte is contained in the solid electrolyte layer 112 and the positive electrode. It may be contained in at least one of 114 and the negative electrode 116.
  • the method for producing the lithium ion conductive solid electrolyte 202 and the method for producing the all-solid-state battery 102 in the above embodiment are merely examples and can be changed in various ways.
  • the pressurizing pressure in the heating and pressurizing step is 100 MPa or more, but the pressurizing pressure may be less than 100 MPa.
  • the heating temperature in the heating and pressurizing step is at least one aprotic polar solvent. Although it is said to be lower than the boiling point of all aprotic polar solvents, the heating temperature may be higher than the boiling point of all aprotic polar solvents.
  • the technique disclosed in the present specification is not limited to the solid electrolyte layer and electrodes constituting the all-solid-state battery 102, and constitutes other power storage devices (for example, a lithium air battery, a lithium flow battery, a solid capacitor, etc.). It is also applicable to solid electrolyte layers and electrodes.

Abstract

リチウムイオン伝導性固体電解質は、LiとLaとZrとOとを少なくとも含有するガーネット型結晶構造を有するリチウムイオン伝導性粉末と、リチウムイオン伝導性ポリマーと、を含む。また、リチウムイオン伝導性固体電解質は、リチウムイオン伝導性ポリマーとは異なる他のポリマーを用いることなく当該リチウムイオン伝導性固体電解質の形状を保持可能である。このリチウムイオン伝導性固体電解質において、20℃以上80℃以下における活性化エネルギーは30kJ/mol以下である。

Description

リチウムイオン伝導性固体電解質およびリチウムイオン伝導性固体電解質の製造方法
 本明細書によって開示される技術は、リチウムイオン伝導性固体電解質に関する。
 近年、パソコンや携帯電話等の電子機器の普及、電気自動車の普及、太陽光や風力等の自然エネルギーの利用拡大等に伴い、高性能な電池の需要が高まっている。なかでも、電池要素がすべて固体で構成された全固体リチウムイオン二次電池(以下、「全固体電池」という。)の活用が期待されている。全固体電池は、有機溶媒にリチウム塩を溶解させた有機電解液を用いる従来型のリチウムイオン二次電池と比べて、有機電解液の漏洩や発火等のおそれがないため安全であり、また、外装を簡略化することができるため単位質量または単位体積あたりのエネルギー密度を向上させることができる。
 全固体電池の固体電解質層や電極を構成するリチウムイオン伝導性固体電解質として、例えば、Li(リチウム)とLa(ランタン)とZr(ジルコニウム)とO(酸素)とを少なくとも含有するガーネット型結晶構造を有するリチウムイオン伝導性粉末を含むリチウムイオン伝導性固体電解質が知られている。このようなリチウムイオン伝導性固体電解質に含まれるリチウムイオン伝導性粉末としては、例えば、LiLaZr12(以下、「LLZ」という。)や、LLZに対して元素置換を行ったもの(例えば、LLZに対してMgおよびSrの元素置換を行ったもの(以下、「LLZ-MgSr」という。))が知られている(例えば、特許文献1参照)。以下、これらのリチウムイオン伝導性粉末を、「LLZ系リチウムイオン伝導性粉末」という。
日本国特開2016-40767号公報
 全固体電池の固体電解質層や電極を構成するリチウムイオン伝導性固体電解質については、例えば電池の出力密度の向上や出力密度の温度安定性の向上のため、リチウムイオン伝導性が高いことやリチウムイオン伝導性の温度安定性が高いことが求められる。LLZ系リチウムイオン伝導性粉末は、該粉末を加圧成形した成形体(圧粉体)の状態においては、粒子間の接触が点接触であるために粒子間の抵抗が高く、リチウムイオン伝導性が比較的低い。LLZ系リチウムイオン伝導性粉末を高温で焼成することにより、リチウムイオン伝導性を高くすることはできるが、高温焼成に伴う反りや変形が起こるために電池の大型化が困難であり、また、高温焼成に伴う電極活物質等との反応により高抵抗層が生成されてリチウムイオン伝導性が低下するおそれがある。また、結着材(バインダー)を用いてLLZ系リチウムイオン伝導性粉末の成形体を得ることも可能である。しかし、結着材はリチウムイオン伝導性を有さないため、得られる成形体のリチウムイオン伝導性が低くなる。また、LLZ系リチウムイオン伝導性粉末とリチウムイオン伝導性ポリマーと溶媒とを用いてスラリーを形成し、該スラリーをキャスティングすることにより成形体を得ることも可能である。しかし、このような方法により成形体を得るためには、リチウムイオン伝導性ポリマーの含有量を比較的多くする必要がある。リチウムイオン伝導性ポリマーは、低温でのリチウムイオン伝導性が比較的低く、かつ、温度変化に伴うリチウムイオン伝導性の変化も比較的大きいため、得られる成形体のリチウムイオン伝導性が低くなり、かつ、リチウムイオン伝導性の温度安定性も低くなる。
 なお、このような課題は、全固体電池の固体電解質層や電極に用いられるリチウムイオン伝導性固体電解質に限らず、LiとLaとZrとOとを少なくとも含有するガーネット型結晶構造を有するリチウムイオン伝導性粉末を含むリチウムイオン伝導性固体電解質一般に共通の課題である。
 本明細書では、上述した課題を解決することが可能な技術を開示する。
 本明細書に開示される技術は、例えば、以下の形態として実現することが可能である。
(1)本明細書に開示されるリチウムイオン伝導性固体電解質は、LiとLaとZrとOとを少なくとも含有するガーネット型結晶構造を有するリチウムイオン伝導性粉末と、リチウムイオン伝導性ポリマーと、を含むリチウムイオン伝導性固体電解質であって、リチウムイオン伝導性ポリマーとは異なる他のポリマーを用いることなく当該リチウムイオン伝導性固体電解質の形状を保持可能であり、20℃以上80℃以下における活性化エネルギーが30kJ/mol以下である。本リチウムイオン伝導性固体電解質によれば、20℃以上80℃以下における活性化エネルギーが比較的小さいため、温度変化に伴うリチウムイオン伝導性の変化が小さくなり、リチウムイオン伝導性の温度安定性を向上させることができる。また、本リチウムイオン伝導性固体電解質によれば、リチウムイオン伝導性ポリマーとは異なる他のポリマーを用いることなく当該リチウムイオン伝導性固体電解質の形状を保持可能であるため、結着材を含まない。このため、本リチウムイオン伝導性固体電解質は、リチウムイオン伝導性を有さない結着材の存在に起因するリチウムイオン伝導性の低下を抑制することができる。従って、本リチウムイオン伝導性固体電解質によれば、リチウムイオン伝導性を向上させることができると共に、リチウムイオン伝導性の温度安定性を向上させることができる。なお、リチウムイオン伝導性固体電解質は、ポリマーとしてリチウムイオン伝導性ポリマーのみを含むことが好ましい。リチウムイオン伝導性固体電解質は、ポリマーとしてリチウムイオン伝導性ポリマーのみを含むことで、より適正に上述した効果を奏し得る。
 本リチウムイオン伝導性固体電解質の20℃以上80℃以下における活性化エネルギーは、リチウムイオン伝導における活性化エネルギーであり、好ましくは27kJ/mol以下であり、より好ましくは15kJ/mol以下である。更に、この活性化エネルギーは、好ましくは1kJ/mol以上である。
 このような活性化エネルギーをリチウムイオン伝導性固体電解質が有するためには、リチウムイオン伝導性粉末とリチウムイオン伝導性ポリマーとの混合比率が80vol%:20vol%から99vol%:1vol%までの範囲内であることが好ましく、後述するリチウムイオン伝導性固体電解質の製造過程における加熱加圧工程の加熱温度が50℃以上200℃以下であることが好ましい。更に、製造過程で用いる溶媒として非プロトン性極性溶媒が用いることが好ましい。なお、リチウムイオン伝導性ポリマーは、後述するように、例えば、リチウム塩とポリマー材料との混合物である。
(2)上記リチウムイオン伝導性固体電解質において、前記リチウムイオン伝導性粉末と前記リチウムイオン伝導性ポリマーとの合計を100vol%としたときの前記リチウムイオン伝導性粉末の体積含有率が80vol%以上である構成としてもよい。本リチウムイオン伝導性固体電解質によれば、リチウムイオン伝導性ポリマーと比較して、温度変化に伴うリチウムイオン伝導性の変化が小さいリチウムイオン伝導性粉末の体積含有率が比較的高いため、リチウムイオン伝導性の温度安定性を効果的に向上させることができる。
 上述したリチウムイオン伝導性粉末の体積含有率は、好ましくは85vol%以上であり、より好ましくは90vol%以上である。更に、この体積含有率は、好ましくは99vol%以下である。
(3)本明細書に開示されるリチウムイオン伝導性固体電解質の製造方法は、LiとLaとZrとOとを少なくとも含有するガーネット型結晶構造を有するリチウムイオン伝導性粉末を含むリチウムイオン伝導性固体電解質の製造方法であって、リチウム塩と、ポリマーと、前記リチウムイオン伝導性粉末と、少なくとも1種の非プロトン性極性溶媒と、を含むスラリーを作製するスラリー作製工程と、前記スラリーを加熱しつつ加圧することにより、前記リチウムイオン伝導性粉末とリチウムイオン伝導性ポリマーとを含むリチウムイオン伝導性固体電解質を作製する加熱加圧工程と、を備え、前記加熱加圧工程における加熱の温度は、前記少なくとも1種の前記非プロトン性極性溶媒の沸点より高く、かつ、前記ポリマーの分解温度より低い。本リチウムイオン伝導性固体電解質の製造方法によれば、水やアルコールではなく非プロトン性極性溶媒を用いてスラリーを作製し、該スラリーを加熱・加圧することにより、スラリー中にポリマーが効果的に分散した状態でスラリーを固化することができるため、ポリマーの添加量が少なくても、結着材を用いることなく、かつ、1200℃程度以上の高温での焼成を行うことなく、LiとLaとZrとOとを少なくとも含有するガーネット型結晶構造を有するリチウムイオン伝導性粉末を高い割合で含む固体電解質を作製することができ、高いリチウムイオン伝導性を有し、かつ、リチウムイオン伝導性の高い温度安定性を有する固体電解質を得ることができる。また、本リチウムイオン伝導性固体電解質の製造方法によれば、加熱加圧工程においてポリマーが熱分解することを抑制することができ、該ポリマーの熱分解に起因して固体電解質のリチウムイオン伝導性が低下することを抑制することができる。また、加熱加圧工程を経て得られる固体電解質に溶媒が過度に残存することを抑制することができ、該溶媒の過度の残存に起因して固体電解質の緻密度が低下したり、固体電解質のリチウムイオン伝導性が低下したりすることを抑制することができる。
(4)上記リチウムイオン伝導性固体電解質の製造方法において、前記スラリーは、複数種類の前記非プロトン性極性溶媒を含む構成としてもよい。本リチウムイオン伝導性固体電解質の製造方法によれば、複数種類の溶媒を用いることにより、スラリーにおけるポリマーの溶解度を容易に調整することができるため、ポリマーの含有割合を低下させて、固体電解質のリチウムイオン伝導性の温度安定性を効果的に向上させることができる。
(5)上記リチウムイオン伝導性固体電解質の製造方法において、前記加熱加圧工程における加熱の温度は、少なくとも1種の前記非プロトン性極性溶媒の沸点より高く、かつ、少なくとも1種の他の前記非プロトン性極性溶媒の沸点より低い構成としてもよい。本リチウムイオン伝導性固体電解質の製造方法によれば、前記複数種類の前記非プロトン性極性溶媒のうちの少なくとも1種の溶媒については、加熱加圧工程を経て得られる固体電解質に該溶媒が過度に残存することを抑制することができ、該溶媒の残存に起因して固体電解質の緻密度が低下したり、固体電解質のリチウムイオン伝導性が低下したりすることを抑制することができる。また、前記複数種類の前記非プロトン性極性溶媒のうちの他の少なくとも1種の溶媒については、該溶媒の存在により、加熱加圧工程を経て得られる固体電解質を耐熱性の高いゲルポリマーとすることができる。
(6)上記リチウムイオン伝導性固体電解質の製造方法において、前記加熱加圧工程における加圧の圧力は、100MPa以上である構成としてもよい。本リチウムイオン伝導性固体電解質の製造方法によれば、スラリー中の粒界に存在する空隙を効果的に潰すことができ、加熱加圧工程を経て得られる固体電解質の緻密度を向上させることができる。
 上述した加熱加圧工程における加圧の圧力は、好ましくは100MPa以上500MPa以下であり、より好ましくは300MPa以上500MPa以下である。
 なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、リチウムイオン伝導性固体電解質、該リチウムイオン伝導性固体電解質を含む固体電解質層または電極、該固体電解質層または該電極を備える蓄電デバイス、それらの製造方法等の形態で実現することが可能である。
図1は、本実施形態における全固体リチウムイオン二次電池102の断面構成を概略的に示す説明図である。 図2は、ガーネット型結晶構造を模式的に示す説明図である。 図3は、本実施形態におけるリチウムイオン伝導性固体電解質202の製造方法の一例を示すフローチャートである。 図4は、性能評価の結果を示す説明図である。 図5は、加熱加圧装置20の構成を概略的に示す説明図である。 図6は、サンプルS3について作図されたアレニウスプロットを例示する説明図である。
A.実施形態:
A-1.全固体電池102の構成:
(全体構成)
 図1は、本実施形態における全固体リチウムイオン二次電池(以下、「全固体電池」という。)102の断面構成を概略的に示す説明図である。図1には、方向を特定するための互いに直交するXYZ軸が示されている。本明細書では、便宜的に、Z軸正方向を上方向といい、Z軸負方向を下方向という。
 全固体電池102は、電池本体110と、電池本体110の一方側(上側)に配置された正極側集電部材154と、電池本体110の他方側(下側)に配置された負極側集電部材156とを備える。正極側集電部材154および負極側集電部材156は、導電性を有する略平板形状部材であり、例えば、ステンレス鋼、Ni(ニッケル)、Ti(チタン)、Fe(鉄)、Cu(銅)、Al(アルミニウム)、これらの合金から選択される導電性金属材料、炭素材料等によって形成されている。以下の説明では、正極側集電部材154と負極側集電部材156とを、まとめて集電部材ともいう。
(電池本体110の構成)
 電池本体110は、電池要素がすべて固体で構成されたリチウムイオン二次電池本体である。なお、本明細書において、電池要素がすべて固体で構成されているとは、すべての電池要素の骨格が固体で構成されていることを意味し、例えば該骨格中に液体が含浸した形態等を排除するものではない。電池本体110は、正極114と、負極116と、正極114と負極116との間に配置された固体電解質層112とを備える。以下の説明では、正極114と負極116とを、まとめて電極ともいう。
(固体電解質層112の構成)
 固体電解質層112は、略平板形状の部材であり、リチウムイオン伝導性固体電解質202を含んでいる。より詳細には、本実施形態の固体電解質層112は、リチウムイオン伝導性固体電解質202からなる平板状の部材である。
(正極114の構成)
 正極114は、略平板形状の部材であり、正極活物質214を含んでいる。正極活物質214としては、例えば、S(硫黄)、TiS、LiCoO(以下、「LCO」という。)、LiMn、LiFePO、Li(Co1/3Ni1/3Mn1/3)O(以下、「NCM」という。)、LiNi0.8Co0.15Al0.05等が用いられる。また、正極114は、リチウムイオン伝導助剤としてのリチウムイオン伝導性固体電解質204を含んでいる。正極114は、さらに電子伝導助剤(例えば、導電性カーボン、Ni(ニッケル)、Pt(白金)、Ag(銀))を含んでいてもよい。
(負極116の構成)
 負極116は、略平板形状の部材であり、負極活物質216を含んでいる。負極活物質216としては、例えば、Li金属、Li-Al合金、LiTi12(以下、「LTO」という。)、カーボン(グラファイト、天然黒鉛、人造黒鉛、表面に低結晶性炭素がコーティングされたコアシェル型黒鉛)、Si(ケイ素)、SiO等が用いられる。また、負極116は、リチウムイオン伝導助剤としてのリチウムイオン伝導性固体電解質206を含んでいる。負極116は、さらに電子伝導助剤(例えば、導電性カーボン、Ni、Pt、Ag)を含んでいてもよい。
A-2.リチウムイオン伝導性固体電解質の構成:
 次に、固体電解質層112を構成するリチウムイオン伝導性固体電解質202の構成について説明する。なお、正極114に含まれるリチウムイオン伝導性固体電解質204および負極116に含まれるリチウムイオン伝導性固体電解質206の構成は、固体電解質層112に含まれるリチウムイオン伝導性固体電解質202の構成と同様であるため、説明を省略する。
 本実施形態において、固体電解質層112を構成するリチウムイオン伝導性固体電解質202は、リチウムイオン伝導性粉末を含んでいる。より詳細には、リチウムイオン伝導性固体電解質202は、上述したLLZ系リチウムイオン伝導性粉末(LiとLaとZrとOとを少なくとも含有するガーネット型結晶構造を有するリチウムイオン伝導性粉末であり、例えば、LLZやLLZ-MgSr)を含んでいる。なお、「ガーネット型結晶構造」とは、一般式C12で表される結晶構造である。図2は、ガーネット型結晶構造を模式的に示す説明図である。図2に示すように、ガーネット型結晶構造において、CサイトScは酸素原子Oaと12面体配位し、AサイトSaは酸素原子Oaと8面体配位し、BサイトSbは酸素原子Oaと4面体配位している。なお、ガーネット型結晶構造を有するリチウムイオン伝導性粉末(リチウムイオン伝導性固体電解質)では、通常のガーネット型結晶構造では酸素原子Oaと8面体配位する箇所であって、空隙Vとなる箇所に、リチウムが存在し得る。空隙Vは、例えば、図2におけるBサイトSb1とBサイトSb2とに挟まれる箇所である。空隙Vに存在するリチウムは、BサイトSb1を形成する4面体の面Fb1とBサイトSb2を形成する4面体の面Fb2とを一部に含む8面体を構成する酸素原子Oaと8面体配位している。例えば、LiLaZr12という組成のガーネット型結晶構造を有するリチウムイオン伝導性粉末(リチウムイオン伝導性固体電解質)では、CサイトScをランタンが占有し、AサイトSaをジルコニウムが占有し、BサイトSbと空隙Vとをリチウムが占有し得る。なお、リチウムイオン伝導性粉末がLiとLaとZrとOとを少なくとも含有するガーネット型結晶構造を有するものであることは、X線回折装置(XRD)で分析することにより確認することができる。具体的には、リチウムイオン伝導性粉末をX線回折装置により分析することにより、X線回折パターンを得る。得られたX線回折パターンと、LLZに対応するICDD(International Center for Diffraction Data)カード(01-080-4947)(LiLaZr12)とを対比し、両者における回折ピークの回折角度及び回折強度比が概ね一致していれば、該リチウムイオン伝導性粉末はLiとLaとZrとOとを少なくとも含有するガーネット型結晶構造を有するものであると判定することができる。例えば、後述の「A-6.LLZ系リチウムイオン伝導性粉末の好ましい態様」に記載された各リチウムイオン伝導性粉末(LLZ系リチウムイオン伝導性粉末)は、該粉末から得られたX線回折パターンとLLZに対応するICDDカードとの両者における回折ピークの回折角度及び回折強度比が概ね一致するため、LiとLaとZrとOとを少なくとも含有するガーネット型結晶構造を有するものであると判定される。
 また、本実施形態におけるリチウムイオン伝導性固体電解質202は、さらに、リチウムイオン伝導性ポリマーを含んでいる。なお、リチウムイオン伝導性固体電解質202は、リチウムイオン伝導性ポリマーとは異なる他のポリマーを用いることなく当該リチウムイオン伝導性固体電解質の形状を保持可能である。すなわち、リチウムイオン伝導性固体電解質202は、リチウムイオン伝導性ポリマー以外の他のポリマー(例えば、結着材として機能するポリマー(例えば、ポリフッ化ビニリデン(PVDF)等))を含まない。
 なお、リチウムイオン伝導性固体電解質202がリチウムイオン伝導性ポリマーとは異なる他のポリマーを用いることないということは、例えば、熱重量・質量分析(TG-MS)を用いてポリマーの分子量およびポリマーを構成する官能基を測定することにより、リチウムイオン伝導性固体電解質202に含まれるポリマー種を特定し、ポリマー種が1つのみか否かを判定することにより、特定することができる。
 リチウムイオン伝導性ポリマーは、リチウムイオン伝導性を有するポリマーであり、例えば、リチウム塩とポリマー材料との混合物である。リチウムイオン伝導性ポリマーを構成するポリマー材料としては、例えば、ポリエチレンオキサイド(以下、「PEO」という。)、ポリプロピレンカーボネート(以下、「PPC」という。)等が用いられる。また、リチウムイオン伝導性ポリマーを構成するリチウム塩としては、例えば、リチウム ビス(トリフルオロメタンスルホニル)イミド(LiN(SOCF)(以下、「Li-TFSI」という。)、過塩素酸リチウム(LiClO)等が用いられる。また、リチウムイオン伝導性ポリマーとしては、例えば、PEOとLi-TFSIとの混合物からなるポリマー、PPCとLiClOとの混合物からなるポリマー等が用いられる。
 このように、本実施形態におけるリチウムイオン伝導性固体電解質202は、LLZ系リチウムイオン伝導性粉末とリチウムイオン伝導性ポリマーとを含んでいる。リチウムイオン伝導性固体電解質202におけるLLZ系リチウムイオン伝導性粉末の体積含有率(LLZ系リチウムイオン伝導性粉末とリチウムイオン伝導性ポリマーとの合計を100vol%とする)は、80vol%以上である。なお、リチウムイオン伝導性固体電解質202におけるLLZ系リチウムイオン伝導性粉末の体積含有率は、85vol%以上であることがさらに好ましく、90vol%以上であることが一層好ましい。
 また、本実施形態におけるリチウムイオン伝導性固体電解質202の20℃以上80℃以下における活性化エネルギーは、30kJ/mol以下である。ここで言う「活性化エネルギー」は、リチウムイオン伝導における活性化エネルギーである。リチウムイオン伝導における活性化エネルギーは、温度変化に対するリチウムイオン伝導性の変化と同様の意味を持つことから、活性化エネルギーが大きいほど、温度変化に伴うリチウムイオン伝導性の変化が大きいこととなる。本実施形態におけるリチウムイオン伝導性固体電解質202の20℃以上80℃以下における活性化エネルギーは、30kJ/mol以下と比較的小さいため、温度変化に伴うリチウムイオン伝導性の変化が小さく、リチウムイオン伝導性の温度安定性が高いと言える。リチウムイオン伝導性固体電解質202の20℃以上80℃以下における活性化エネルギーは、27kJ/mol以下であることがさらに好ましく、15kJ/mol以下であることが一層好ましい。
A-3.リチウムイオン伝導性固体電解質202の製造方法:
 次に、本実施形態におけるリチウムイオン伝導性固体電解質202の製造方法の一例を説明する。図3は、本実施形態におけるリチウムイオン伝導性固体電解質202の製造方法の一例を示すフローチャートである。
 はじめに、LLZ系リチウムイオン伝導性粉末と、リチウム塩と、ポリマーと、溶媒とを混合することにより、これらを含むスラリーを作製する(S110)。ここで、本実施形態では、スラリーを作製するための溶媒として、非プロトン性極性溶媒が用いられる。非プロトン性極性溶媒としては、例えば、アセトニトリル(以下、「ACN」という。)、N,N-ジメチルホルムアミド(以下、「DMF」という。)等が用いられる。スラリーの作製には、1種類の非プロトン性極性溶媒が用いられてもよいし、複数種類の非プロトン性極性溶媒が用いられてもよい。スラリーの作製では、複数種類の非プロトン性極性溶媒が用いられると、スラリーにおけるポリマーの溶解度を容易に調整することができるため、ポリマーの含有量を低下させることができる。このことは、後述するように、温度変化に伴うリチウムイオン伝導性の変化が比較的大きいポリマーの含有量を低下させて、リチウムイオン伝導性固体電解質202のリチウムイオン伝導性の温度安定性を効果的に向上させることに繋がる。S110の工程は、特許請求の範囲におけるスラリー作製工程に相当する。
 次に、得られたスラリーを加熱しつつ加圧することにより、LLZ系リチウムイオン伝導性粉末とリチウムイオン伝導性ポリマーとを含むリチウムイオン伝導性固体電解質202を作製する(S120)。すなわち、S120の加熱加圧工程により、スラリー中にリチウムイオン伝導性ポリマーが効果的に分散した状態で、スラリーに含まれる非プロトン性極性溶媒を蒸発させ、該スラリーが固化した固化体としてのリチウムイオン伝導性固体電解質202が得られる。また、S120の加熱加圧工程の際には、加圧によって粒子間の空隙が減少し、緻密な(密度の高い)リチウムイオン伝導性固体電解質202が得られる。また、スラリーに含まれる溶媒が、水やアルコールではなく非プロトン性極性溶媒であるため、S120の加熱加圧工程におけるLLZ系リチウムイオン伝導性粉末と溶媒との反応が抑制され、該反応に起因するリチウムイオン伝導性の低下を抑制することができる。S120の工程は、特許請求の範囲における加熱加圧工程に相当する。
 ここで、S120の加熱加圧工程における加熱の温度は、スラリーに含まれる少なくとも1種の非プロトン性極性溶媒の沸点より高い。そのため、S120の加熱加圧工程において該溶媒を円滑に蒸発させることができ、S120の加熱加圧工程を経て得られるリチウムイオン伝導性固体電解質202に該溶媒が過度に残存することを抑制することができ、該溶媒の過度の残存に起因してリチウムイオン伝導性固体電解質202の緻密度が低下したり、リチウムイオン伝導性固体電解質202のリチウムイオン伝導性が低下したりすることを抑制することができる。また、S120の加熱加圧工程における加熱の温度は、スラリーに含まれるポリマーの分解温度より低い。そのため、S120の加熱加圧工程においては、ポリマーが熱分解することを抑制することができ、該ポリマーの熱分解に起因してリチウムイオン伝導性固体電解質202のリチウムイオン伝導性が低下することを抑制することができる。
 また、スラリーが複数種類の非プロトン性極性溶媒を含む場合には、S120の加熱加圧工程における加熱の温度は、少なくとも1種の非プロトン性極性溶媒の沸点より高く、かつ、少なくとも1種の他の非プロトン性極性溶媒の沸点より低いことが好ましい。このようにすれば、少なくとも1種の溶媒については、S120の加熱加圧工程を経て得られるリチウムイオン伝導性固体電解質202に該溶媒が過度に残存することを抑制することができ、該溶媒の残存に起因してリチウムイオン伝導性固体電解質202の緻密度が低下したり、リチウムイオン伝導性固体電解質202のリチウムイオン伝導性が低下したりすることを抑制することができる。また、少なくとも1種の他の溶媒については、該溶媒の存在により、S120の加熱加圧工程を経て得られるリチウムイオン伝導性固体電解質202を耐熱性の高いゲルポリマーとすることができる。
 また、S120の加熱加圧工程における加圧の圧力は、100MPa以上であることが好ましい。このようにすれば、スラリー中の粒界に存在する空隙を効果的に潰すことができ、S120の加熱加圧工程を経て得られるリチウムイオン伝導性固体電解質202の緻密度を効果的に向上させることができる。S120の加熱加圧工程における加圧の圧力は、300MPa以上あることがさらに好ましく、400MPa以上であることが一層好ましい。なお、S120の加熱加圧工程における加圧の圧力は、製造設備の加圧能力上限値(例えば、500MPa)以下であることが好ましい。
A-4.全固体電池102の製造方法:
 次に、本実施形態の全固体電池102の製造方法の一例を説明する。はじめに、固体電解質層112を作製する。具体的には、上述した方法によりリチウムイオン伝導性固体電解質202を作製し、該リチウムイオン伝導性固体電解質202によって固体電解質層112を構成する。
 また、別途、正極114および負極116を作製する。具体的には、正極活物質214の粉末と、リチウムイオン伝導性固体電解質204と、必要により電子伝導助剤の粉末とを所定の割合で混合し、所定の圧力で加圧成形したり、バインダーを添加してシート状に成形したりすることにより正極114を作製する。また、負極活物質216の粉末と、リチウムイオン伝導性固体電解質206と、必要により電子伝導助剤の粉末とを混合し、所定の圧力で加圧成形したり、バインダーを添加してシート状に成形したりすることにより負極116を作製する。
 次に、正極側集電部材154と、正極114と、固体電解質層112と、負極116と、負極側集電部材156とをこの順に積層して加圧することにより一体化する。以上の工程により、上述した構成の全固体電池102が製造される。
A-5.本実施形態の効果:
 以上説明したように、本実施形態のリチウムイオン伝導性固体電解質202は、LiとLaとZrとOとを少なくとも含有するガーネット型結晶構造を有するリチウムイオン伝導性粉末を含むと共に、リチウムイオン伝導性ポリマーとは異なる他のポリマーを用いることなく当該リチウムイオン伝導性固体電解質の形状を保持可能である。また、本実施形態のリチウムイオン伝導性固体電解質202において、20℃以上80℃以下における活性化エネルギーは30kJ/mol以下である。本実施形態のリチウムイオン伝導性固体電解質202によれば、20℃以上80℃以下における活性化エネルギーが比較的小さいため、温度変化に伴うリチウムイオン伝導性の変化が小さくなり、リチウムイオン伝導性の温度安定性を向上させることができる。また、本実施形態のリチウムイオン伝導性固体電解質202によれば、リチウムイオン伝導性ポリマーとは異なる他のポリマーを用いることなく当該リチウムイオン伝導性固体電解質の形状を保持可能であるため、結着材を含まない。このため、本実施形態のリチウムイオン伝導性固体電解質202は、リチウムイオン伝導性を有さない結着材の存在に起因するリチウムイオン伝導性の低下を抑制することができる。従って、本実施形態のリチウムイオン伝導性固体電解質202によれば、リチウムイオン伝導性、および、リチウムイオン伝導性の温度安定性を向上させることができる。
 また、本実施形態のリチウムイオン伝導性固体電解質202では、LLZ系リチウムイオン伝導性粉末の体積含有率が80vol%以上である。本実施形態のリチウムイオン伝導性固体電解質202によれば、リチウムイオン伝導性ポリマーと比較して、温度変化に伴うリチウムイオン伝導性の変化が小さいLLZ系リチウムイオン伝導性粉末の体積含有率が比較的高いため、リチウムイオン伝導性の温度安定性を効果的に向上させることができる。
 また、本実施形態のリチウムイオン伝導性固体電解質202の製造方法は、リチウム塩と、ポリマーと、LLZ系リチウムイオン伝導性粉末と、少なくとも1種の非プロトン性極性溶媒と、を含むスラリーを作製するスラリー作製工程と、該スラリーを加熱しつつ加圧することにより、LLZ系リチウムイオン伝導性粉末とリチウムイオン伝導性ポリマーとを含むリチウムイオン伝導性固体電解質202を作製する加熱加圧工程とを備え、上記加熱加圧工程における加熱の温度は、少なくとも1種の非プロトン性極性溶媒の沸点より高く、かつ、ポリマーの分解温度より低い。本実施形態のリチウムイオン伝導性固体電解質202の製造方法によれば、水やアルコールではなく非プロトン性極性溶媒を用いてスラリーを作製し、該スラリーを加熱・加圧することにより、スラリー中にポリマーが効果的に分散した状態でスラリーを固化することができるため、ポリマーの添加量が少なくても、結着材を用いることなく、かつ、1200℃程度以上の高温での焼成を行うことなく、LiとLaとZrとOとを少なくとも含有するガーネット型結晶構造を有するリチウムイオン伝導性粉末を高い割合で含む固体電解質を作製することができ、高いリチウムイオン伝導性を有し、かつ、高いリチウムイオン伝導性の温度安定性を有する固体電解質を得ることができる。また、本実施形態のリチウムイオン伝導性固体電解質202の製造方法によれば、加熱加圧工程においてポリマーが熱分解することを抑制することができ、該ポリマーの熱分解に起因して固体電解質のリチウムイオン伝導性が低下することを抑制することができる。また、加熱加圧工程を経て得られる固体電解質に溶媒が過度に残存することを抑制することができ、該溶媒の過度の残存に起因して固体電解質の緻密度が低下したり、固体電解質のリチウムイオン伝導性が低下したりすることを抑制することができる。
 また、本実施形態のリチウムイオン伝導性固体電解質202の製造方法において、上記スラリーは、複数種類の非プロトン性極性溶媒を含むことが好ましい。このような構成とすれば、複数種類の溶媒を用いることにより、スラリーにおけるポリマーの溶解度を容易に調整することができるため、ポリマーの含有割合を低下させて、固体電解質のリチウムイオン伝導性の温度安定性を効果的に向上させることができる。
 また、本実施形態のリチウムイオン伝導性固体電解質202の製造方法において、上記スラリーが複数種類の非プロトン性極性溶媒を含む場合に、上記加熱加圧工程における加熱の温度は、少なくとも1種の非プロトン性極性溶媒の沸点より高く、かつ、少なくとも1種の他の非プロトン性極性溶媒の沸点より低いことが好ましい。このような構成とすれば、少なくとも1種の溶媒については、加熱加圧工程を経て得られる固体電解質に該溶媒が過度に残存することを抑制することができ、該溶媒の残存に起因して固体電解質の緻密度が低下したり、固体電解質のリチウムイオン伝導性が低下したりすることを抑制することができる。また、少なくとも1種の他の溶媒については、該溶媒の存在により、加熱加圧工程を経て得られる固体電解質を耐熱性の高いゲルポリマーとすることができる。
 また、本実施形態のリチウムイオン伝導性固体電解質202の製造方法において、上記加熱加圧工程における加圧の圧力は、100MPa以上であることが好ましい。このような構成とすれば、スラリー中の粒界に存在する空隙を効果的に潰すことができ、加熱加圧工程を経て得られる固体電解質の緻密度を向上させることができる。
A-6.性能評価:
 リチウムイオン伝導性固体電解質を対象として、性能評価を行った。図4は、性能評価の結果を示す説明図である。
 図4に示すように、性能評価には、7個のリチウムイオン伝導性固体電解質のサンプル(S1~S7)が用いられた。なお、図4には、今回の性能評価の対象ではないが、参考のために、文献「フェイ・チェン(Fei Chen)、外9名、「全固体リチウム二次電池のための立方晶LiLaZr12を含む固体高分子電解質(Solid polymer electrolytes incorporating cubic Li7La3Zr2O12for all-solid-state lithium rechargeable batteries)」、エレクトロキミカ アクタ(Electrochimica Acta)、エルゼビア(Elsevier)、2017年12月20日、258号、p.1106-1114」に記載された例を参考例R1~R5として掲載している。
A-6-1.各サンプルの作製方法:
 各サンプルの作製方法は、以下の通りである。サンプルS1については、LLZ系リチウムイオン伝導性粉末として、LLZに対してTaの元素置換を行ったもの(以下、「LLZ-Ta」という。)が用いられた。このLLZ-Taは、MSE Suppliesより購入した。
 一方、サンプルS2~S7については、LLZ系リチウムイオン伝導性粉末として、LLZに対してMgおよびSrの元素置換を行ったもの(LLZ-Mg,Sr)が用いられた。このLLZ-Mg,Srは、以下の方法により作製した。まず、組成:Li6.95Mg0.15La2.75Sr0.25Zr2.012(LLZ-Mg・Sr)となるように、LiCO、MgO、La(OH)、SrCO、ZrOを秤量した。その際、焼成時のLiの揮発を考慮し、元素換算で15mol%程度過剰になるように、LiCOをさらに加えた。この原料をジルコニアボールとともにナイロンポットに投入し、有機溶剤中で15時間、ボールミルで粉砕混合を行った。粉砕混合後、スラリーを乾燥させ、1200℃で10時間、MgO板上にて還元焼成を行うことにより、LLZ-Mg・Srの粉末を作製した。得られた粉末を大気非曝露環境で遊星ボールミルにて湿式粉砕することにより、LLZ-Mg,Srの粉末の粒径(D90)を3.2μmに調整した。
 サンプルS1については、LLZ-Taの粉末に対して、ポリマーとリチウム塩との混合物(リチウムイオン伝導性ポリマー)を加えた。LLZ-Taの粉末とリチウムイオン伝導性ポリマーとの混合比率は、87vol%:13vol%とした。この混合比率は、リチウムイオン伝導性粉末であるLLZ-Taの粉末とリチウムイオン伝導性ポリマーとの合計を100vol%としたときのリチウムイオン伝導性粉末の体積含有率に相当する。なお、ポリマーとしては、PEO(ポリエチレンオキサイド)を用い、リチウム塩としては、Li-TFSI(リチウム ビス(トリフルオロメタンスルホニル)イミド)を用い、両者を質量比2:1で混合したものを用いた。LLZ-Taの粉末とリチウムイオン伝導性ポリマーとの混合物に対して、非プロトン性極性溶媒であるACN(アセトニトリル)を外添加で10wt%分だけ加え、乳鉢にて混合することにより、スラリーを得た。該スラリーを、図5に示す加熱加圧装置20を用いて固化させた。図5に示すように、加熱加圧装置20は、中空部の直径が13.0mmの円筒形状の金型21と、金型21の中空部に挿入され、スラリー等の加圧対象物10を挟んで対峙する下面パンチ23および上面パンチ22と、金型21の外周を覆うカバーヒーター24とを備えている。上記スラリーを0.5g秤量して金型21の中空部に投入し、120℃に設定したカバーヒーター24で金型21を加熱しつつ、プレス機(下面パンチ23および上面パンチ22)により400MPaで一軸プレスした状態を120分間保持することにより、直径13.0mm、厚さ約1.0mmの円板状の固化体(リチウムイオン伝導性固体電解質のサンプル)を得た。なお、非プロトン性極性溶媒であるACNの沸点は82℃であり、ポリマーであるPEOの分解温度は約200℃であるため、サンプルS1の作製の際の加熱加圧工程における加熱温度(120℃)は、非プロトン性極性溶媒の沸点より高く、かつ、ポリマーの分解温度より低いと言える。
 サンプルS2の作製方法は、サンプルS1の作製方法に対して、LLZ系リチウムイオン伝導性粉末の種類、LLZ系リチウムイオン伝導性粉末とリチウムイオン伝導性ポリマーとの混合比率、および、加熱加圧工程における加熱温度が異なる。すなわち、LLZ-Mg,Srの粉末に対して、ポリマーとリチウム塩との混合物(リチウムイオン伝導性ポリマー)を加えた。LLZ-Mg,Srの粉末とリチウムイオン伝導性ポリマーとの混合比率は、90vol%:10vol%とした。なお、ポリマーとしては、PEOを用い、リチウム塩としては、Li-TFSIを用い、両者を質量比2:1で混合したものを用いた。LLZ-Mg,Srの粉末とリチウムイオン伝導性ポリマーとの混合物に対して、非プロトン性極性溶媒であるACNを外添加で10wt%分だけ加え、乳鉢にて混合することにより、スラリーを得た。該スラリーを0.5g秤量して金型21の中空部に投入し、100℃に設定したカバーヒーター24で金型21を加熱しつつ、プレス機(下面パンチ23および上面パンチ22)により400MPaで一軸プレスした状態を120分間保持することにより、直径13.0mm、厚さ約1.0mmの円板状の固化体(リチウムイオン伝導性固体電解質のサンプル)を得た。なお、非プロトン性極性溶媒であるACNの沸点は82℃であり、ポリマーであるPEOの分解温度は約200℃であるため、サンプルS2の作製の際の加熱加圧工程における加熱温度(100℃)は、非プロトン性極性溶媒の沸点より高く、かつ、ポリマーの分解温度より低いと言える。
 サンプルS3の作製方法は、サンプルS2の作製方法に対して、ポリマーおよびリチウム塩の種類、溶媒の種類、および、加熱加圧工程における加熱温度が異なる。すなわち、LLZ-Mg,Srの粉末に対して、ポリマーとリチウム塩との混合物(リチウムイオン伝導性ポリマー)を加えた。LLZ-Mg,Srの粉末とリチウムイオン伝導性ポリマーとの混合比率は、90vol%:10vol%とした。なお、ポリマーとしては、PPC(ポリプロピレンカーボネート)を用い、リチウム塩としては、LiClO(過塩素酸リチウム)を用い、両者を質量比2:1で混合したものを用いた。LLZ-Mg,Srの粉末とリチウムイオン伝導性ポリマーとの混合物に対して、非プロトン性極性溶媒であるACNおよびDMF(N,N-ジメチルホルムアミド)を、それぞれ外添加で10wt%分および0.15wt%分だけ加え、乳鉢にて混合することにより、スラリーを得た。該スラリーを0.5g秤量して金型21の中空部に投入し、120℃に設定したカバーヒーター24で金型21を加熱しつつ、プレス機(下面パンチ23および上面パンチ22)により400MPaで一軸プレスした状態を120分間保持することにより、直径13.0mm、厚さ約1.0mmの円板状の固化体(リチウムイオン伝導性固体電解質のサンプル)を得た。なお、非プロトン性極性溶媒であるACNの沸点は82℃であり、同じく非プロトン性極性溶媒であるDMFの沸点は153℃であり、ポリマーであるPPCの分解温度は約200℃であるため、サンプルS3の作製の際の加熱加圧工程における加熱温度(120℃)は、1種の非プロトン性極性溶媒(ACN)の沸点より高く、他の1種の非プロトン性極性溶媒(DMF)の沸点より低く、かつ、ポリマーの分解温度より低いと言える。
 サンプルS4については、LLZ-Mg,Srの粉末を0.5g秤量して金型21の中空部に投入し、常温で、プレス機(下面パンチ23および上面パンチ22)により400MPaで一軸プレスした状態を120分間保持することにより、直径13.0mm、厚さ約1.0mmの円板状の固化体(リチウムイオン伝導性固体電解質のサンプル)を得た。
 サンプルS5の作製方法は、サンプルS2の作製方法に対して、LLZ系リチウムイオン伝導性粉末とリチウムイオン伝導性ポリマーとの混合比率、および、加熱加圧工程における加熱温度が異なる。すなわち、LLZ-Mg,Srの粉末に対して、ポリマーとリチウム塩との混合物(リチウムイオン伝導性ポリマー)を加えた。LLZ-Mg,Srの粉末とリチウムイオン伝導性ポリマーとの混合比率は、87vol%:13vol%とした。なお、ポリマーとしては、PEOを用い、リチウム塩としては、Li-TFSIを用い、両者を質量比2:1で混合したものを用いた。LLZ-Mg,Srの粉末とリチウムイオン伝導性ポリマーとの混合物に対して、非プロトン性極性溶媒であるACNを外添加で10wt%分だけ加え、乳鉢にて混合することにより、スラリーを得た。該スラリーを0.5g秤量して金型21の中空部に投入し、250℃に設定したカバーヒーター24で金型21を加熱しつつ、プレス機(下面パンチ23および上面パンチ22)により400MPaで一軸プレスした状態を120分間保持することにより、直径13.0mm、厚さ約1.0mmの円板状の固化体(リチウムイオン伝導性固体電解質のサンプル)を得た。なお、非プロトン性極性溶媒であるACNの沸点は82℃であり、ポリマーであるPEOの分解温度は約200℃であるため、サンプルS5の作製の際の加熱加圧工程における加熱温度(250℃)は、非プロトン性極性溶媒の沸点より高く、かつ、ポリマーの分解温度より高いと言える。
 サンプルS6の作製方法は、サンプルS2の作製方法に対して、溶媒添加の有無、LLZ系リチウムイオン伝導性粉末とリチウムイオン伝導性ポリマーとの混合比率、および、加熱加圧工程における加熱温度が異なる。すなわち、LLZ-Mg,Srの粉末に対して、ポリマーとリチウム塩との混合物(リチウムイオン伝導性ポリマー)を加えた。LLZ-Mg,Srの粉末とリチウムイオン伝導性ポリマーとの混合比率は、87vol%:13vol%とした。なお、ポリマーとしては、PEOを用い、リチウム塩としては、Li-TFSIを用い、両者を質量比2:1で混合したものを用いた。その後、溶媒を添加することなく、LLZ-Mg,Srの粉末とリチウムイオン伝導性ポリマーとの混合物を0.5g秤量して金型21の中空部に投入し、120℃に設定したカバーヒーター24で金型21を加熱しつつ、プレス機(下面パンチ23および上面パンチ22)により400MPaで一軸プレスした状態を120分間保持することにより、直径13.0mm、厚さ約1.0mmの円板状の固化体(リチウムイオン伝導性固体電解質のサンプル)を得た。なお、ポリマーであるPEOの分解温度は約200℃であるため、サンプルS6の作製の際の加熱加圧工程における加熱温度(120℃)は、ポリマーの分解温度より低いと言える。
 サンプルS7の作製方法は、サンプルS2の作製方法に対して、リチウム塩の添加の有無、LLZ系リチウムイオン伝導性粉末とリチウムイオン伝導性ポリマーとの混合比率、および、加熱加圧工程における加熱温度が異なる。すなわち、LLZ-Mg,Srの粉末に対して、ポリマーを加えた。このとき、LLZ-Mg,Srの粉末に対して、リチウム塩を加えなかった。LLZ-Mg,Srの粉末とポリマーとの混合比率は、87vol%:13vol%とした。なお、ポリマーとしては、PEOを用いた。LLZ-Mg,Srの粉末とポリマーとの混合物に対して、非プロトン性極性溶媒であるACNを外添加で10wt%分だけ加え、乳鉢にて混合することにより、スラリーを得た。該スラリーを0.5g秤量して金型21の中空部に投入し、120℃に設定したカバーヒーター24で金型21を加熱しつつ、プレス機(下面パンチ23および上面パンチ22)により400MPaで一軸プレスした状態を120分間保持することにより、直径13.0mm、厚さ約1.0mmの円板状の固化体(リチウムイオン伝導性固体電解質のサンプル)を得た。なお、非プロトン性極性溶媒であるACNの沸点は82℃であり、ポリマーであるPEOの分解温度は約200℃であるため、サンプルS7の作製の際の加熱加圧工程における加熱温度(120℃)は、非プロトン性極性溶媒の沸点より高く、かつ、ポリマーの分解温度より低いと言える。
A-6-2.評価方法:
 各サンプルを対象として、密度、リチウムイオン伝導度、および、活性化エネルギーについての評価を行った。密度の評価については、各サンプルの寸法および重量を測定し、両者の値から各サンプルの密度を算出した。各サンプルの密度の評価においては、密度が80%以上であるサンプルを合格とした。
 また、密度の評価において合格と判定されたサンプル(S1~S3,S5~S7)を対象として、リチウムイオン伝導度についての評価を行った。具体的には、各サンプルについて、室温(25℃)でのリチウムイオン伝導度を交流インピーダンス法により測定し、リチウムイオン伝導度が1×10-4S/cm以上であるサンプルを合格とした。なお、交流インピーダンス法によるリチウムイオン伝導度の測定の際には、直径13.0mm、厚さ約1.0mmのペレット状の固化体(サンプル)の上下面に、集電極としてのカーボン被覆アルミ箔を圧着し、AMETEK製のインピーダンスアナライザ(Solartron Analytical, Modulab XM MTS)を用いて、10mVの振幅で0.1Hzから1MHzの周波数範囲で測定を行った。測定された値からナイキストプロットを作図し、等価回路解析により各固化体(各サンプル)のリチウムイオン伝導度を算出した。
 また、リチウムイオン伝導度の評価において合格と判定されたサンプル(S1~S3)を対象として、活性化エネルギーについての評価を行った。具体的には、各サンプルについて、20℃以上80℃以下におけるリチウムイオン伝導度を交流インピーダンス法により測定し、測定結果からアレニウスプロットを作図し、該アレニウスプロットから活性化エネルギーを算出し、活性化エネルギーが30kJ/mol以下であるサンプルを合格とした。図6は、サンプルS3について作図されたアレニウスプロットを例示する説明図である。アレニウスプロットの作図にあたっては、測定対象の固化体(サンプル)を恒温槽に設置し、設定温度ごとに、上述した交流インピーダンス法により固化体のリチウムイオン伝導度を測定した。各測定の前には、固化体を均一の温度に保つため、恒温槽の温度が設定温度に達したのち20分間保持した。設定温度ごとに測定した固化体のリチウムイオン伝導度を用いて、図6に示すように、横軸に1000に測定温度の逆数を掛けた値を取り、縦軸にリチウムイオン伝導度の対数を取ったアレニウスプロットを作図した。得られたアレニウスプロットから近似直線の傾きを求め、下記(1)に示すアレニウスの式を用いて活性化エネルギーを算出した。
 logσ=logA+(1/2.303)×(-E/RT) ・・・(1)
 ただし、
 σ:リチウムイオン伝導度(S/cm)
 A:温度に依存しない定数
 E:活性化エネルギー(kJ)
 R:気体定数(=8.314kJ/mol)
 T:絶対温度(K)
 密度、リチウムイオン伝導度、および、活性化エネルギーのすべての評価において合格と判定されたサンプルを、総合的に優良である(図4において「〇」で示す)と判定した。
A-6-3.評価結果:
 密度の評価において、サンプルS1~S3,S5~S7は、密度が80%以上であり、合格と判定されたが、サンプルS4は、密度が80%未満であり、不合格と判定された。上述したように、サンプルS4は、その作製の際にリチウム塩、ポリマーおよび溶媒が用いられず、LLZ-Mg,Srの粉末を常温でプレスすることにより作製されたものである。LLZ系リチウムイオン伝導性粉末は、他の酸化物系リチウムイオン伝導体や酸化物系以外のリチウムイオン伝導体(例えば、硫化物系リチウムイオン伝導体)と比較して硬いため、粉末の常温プレスを行うだけでは高い密度を実現できなかったものと考えられる。
 また、リチウムイオン伝導度の評価において、サンプルS1~S3は、リチウムイオン伝導度が1×10-4S/cm以上であり、合格と判定されたが、サンプルS5~S7は、リチウムイオン伝導度が1×10-4S/cm未満であり、不合格と判定された。サンプルS5は、その作製の際の加熱温度が250℃と、ポリマーの分解温度より高いため、加熱加圧工程においてリチウムイオン伝導性ポリマーが熱分解され、該熱分解に起因してリチウムイオン伝導性が低下したものと考えられる。また、サンプルS6は、その作製の際に溶媒が用いられないため、リチウムイオン伝導性ポリマーが良好に分散されず、リチウムイオン伝導性が低下したものと考えられる。また、サンプルS7は、その作製の際にリチウム塩が添加されないため、ポリマーにリチウムイオン伝導性が付与されず、リチウムイオン伝導性が低下したものと考えられる。
 また、活性化エネルギーの評価において、サンプルS1~S3は、活性化エネルギーが30kJ/mol以下であり、合格と判定された。これは、これらのサンプルでは、リチウムイオン伝導性ポリマーの含有割合が比較的低い(換言すれば、LLZ系リチウムイオン伝導性粉末の含有割合が比較的高い)ためであると考えられる。すなわち、リチウムイオン伝導性ポリマーは、LLZ系リチウムイオン伝導性粉末と比較して、活性化エネルギーが大きい(換言すれば、温度変化に伴うイオン伝導度の変化が大きい)が、これらのサンプルでは、リチウムイオン伝導性ポリマーの含有割合が比較的低いため、活性化エネルギーが比較的小さくなったものと考えられる。そのため、これらのサンプルでは、温度変化に伴うリチウムイオン伝導度の変化が小さく、リチウムイオン伝導度の温度安定性が高いと言える。
 特に、サンプルS3は、リチウムイオン伝導度が5.6×10-4S/cmと非常に高く、かつ、活性化エネルギーが12.17kJ/molと非常に小さく、非常に良好な評価結果が得られた。サンプルS3は、その作製の際に複数種類の非プロトン性極性溶媒が用いられたものであるため、スラリーにおけるポリマーの溶解度を容易に調整することができ、ポリマーの含有量を低下させても緻密な固化体として作製することができた。その結果、サンプルS3は、リチウムイオン伝導度を高くし、かつ、活性化エネルギーを小さくすることができたものと考えられる。
 以上説明した性能評価結果を参照すると、LLZ系リチウムイオン伝導性粉末を含むリチウムイオン伝導性固体電解質の製造方法において、リチウム塩と、ポリマーと、LLZ系リチウムイオン伝導性粉末と、少なくとも1種の非プロトン性極性溶媒と、を含むスラリーを作製するスラリー作製工程と、該スラリーを加熱しつつ加圧することにより、LLZ系リチウムイオン伝導性粉末とリチウムイオン伝導性ポリマーとを含むリチウムイオン伝導性固体電解質を作製する加熱加圧工程とを備え、該加熱加圧工程における加熱の温度は、少なくとも1種の非プロトン性極性溶媒の沸点より高く、かつ、ポリマーの分解温度より低い、という構成を採用すれば、リチウムイオン伝導度が高く、かつ、リチウムイオン伝導度の温度安定性も高い固体電解質を得ることができることが確認されたと言える。
 また、以上説明した性能評価結果を参照すると、LLZ系リチウムイオン伝導性粉末を含むリチウムイオン伝導性固体電解質の製造方法において、上記加熱加圧工程における加圧の圧力は100MPa以上であることが好ましいことが確認されたと言える。
 また、以上説明した性能評価結果を参照すると、LLZ系リチウムイオン伝導性粉末を含むリチウムイオン伝導性固体電解質の製造方法において、上記スラリーは、複数種類の非プロトン性極性溶媒を含むことが好ましいこと、および、その場合に、上記加熱加圧工程における加熱の温度は、少なくとも1種の非プロトン性極性溶媒の沸点より高く、かつ、少なくとも1種の他の非プロトン性極性溶媒の沸点より低いことが好ましいことが確認されたと言える。
 なお、上述した文献に記載された参考例R1~R5は、それぞれ、LLZ粉末0、0.5、1.0、1.7、2.4vol%に対し、モル比がそれぞれ8:1となるPEO(ポリエチレンオキサイド)とLi-TFSI(リチウム ビス(トリフルオロメタンスルホニル)イミド)との混合物からなるポリマー100、99.5、99.0、98.3、97.6vol%を加え、さらに該混合物をACN(アセトニトリル)に溶解させることによってスラリーを作製し、該スラリーをキャスティングによりシート形状化し、60℃、24時間の条件で真空乾燥させることによって作製したリチウムイオン伝導性固体電解質である。これらの参考例では、LLZ粉末の体積含有割合は非常に低いため、リチウムイオン伝導度が低く、かつ、活性化エネルギーも非常に大きな値となっている。そのため、これらの参考例のリチウムイオン伝導性固体電解質は、リチウムイオン伝導度が低く、かつ、リチウムイオン伝導度の温度安定性も低いと言える。
A-7.LLZ系リチウムイオン伝導性粉末の好ましい態様:
 上述したように、本実施形態におけるリチウムイオン伝導性固体電解質は、LLZ系リチウムイオン伝導性粉末(LiとLaとZrとOとを少なくとも含有するガーネット型結晶構造を有するリチウムイオン伝導性粉末)を含んでいる。LLZ系リチウムイオン伝導性粉末としては、Mg、Al、Si、Ca(カルシウム)、Ti、V(バナジウム)、Ga(ガリウム)、Sr、Y(イットリウム)、Nb(ニオブ)、Sn(スズ)、Sb(アンチモン)、Ba(バリウム)、Hf(ハフニウム)、Ta(タンタル)、W(タングステン)、Bi(ビスマス)およびランタノイド元素からなる群より選択される少なくとも1種類の元素を含むものを採用することが好ましい。このような構成とすれば、LLZ系リチウムイオン伝導性粉末が良好なリチウムイオン伝導率を示す。
 なお、ガーネット型結晶構造を有するLLZ系リチウムイオン伝導体としては、例えば以下のものが挙げられる。
 LiLaZr1.50.512
 Li6.15LaZr1.75Ta0.25Al0.212
 Li6.15LaZr1.75Ta0.25Ga0.212
 Li6.25LaZrGa0.2512
 Li6.4LaZr1.4Ta0.612
 Li6.5LaZr1.75Te0.2512
 Li6.75LaZr1.75Nb0.2512
 Li6.9LaZr1.675Ta0.289Bi0.03612
 Li6.46Ga0.23LaZr1.850.1512
 Li6.8La2.95Ca0.05Zr1.75Nb0.2512
 Li7.05La3.00Zr1.95Gd0.0512
 また、ガーネット型結晶構造を有するLLZ系リチウムイオン伝導性粉末として、Mgと元素A(Aは、Ca、SrおよびBaからなる群より選択される少なくとも1種類の元素)との少なくとも一方を含み、含有される各元素がモル比で下記の式(1)~(3)を満たすものを採用することが好ましい。なお、Mgおよび元素Aは、比較的埋蔵量が多く安価であるため、LLZ系リチウムイオン伝導性粉末の置換元素としてMg及び元素Aの少なくとも一方を用いれば、LLZ系リチウムイオン伝導性粉末の安定的な供給が期待できると共にコストを低減することができる。
(1)1.33≦Li/(La+A)≦3
(2)0≦Mg/(La+A)≦0.5
(3)0≦A/(La+A)≦0.67
 また、LLZ系リチウムイオン伝導性粉末としては、Mgと元素Aとの両方を含み、含有される各元素がモル比で下記の式(4)~(6)を満たすものを採用することがより好ましい。
(4)2.0≦Li/(La+A)≦2.5
(5)0.01≦Mg/(La+A)≦0.14
(6)0.04≦A/(La+A)≦0.17
 上述の事項を換言すると、LLZ系リチウムイオン伝導性粉末は、次の(a)~(c)のいずれかを満たすことが好ましく、これらの中でも(c)を満たすことがより好ましく、(d)を満たすことがさらに好ましいと言える。
(a)Mgを含み、各元素の含有量がモル比で、1.33≦Li/La≦3、かつ、0≦Mg/La≦0.5 を満たす。
(b)元素Aを含み、各元素の含有量がモル比で、1.33≦Li/(La+A)≦3、かつ、0≦A/(La+A)≦0.67 を満たす。
(c)Mgおよび元素Aを含み、各元素の含有量がモル比で、1.33≦Li/(La+A)≦3、0≦Mg/(La+A)≦0.5、かつ0≦A/(La+A)≦0.67 を満たす。
(d)Mgおよび元素Aを含み、各元素の含有量がモル比で、2.0≦Li/(La+A)≦2.5、0.01≦Mg/(La+A)≦0.14、かつ0.04≦A/(La+A)≦0.17 を満たす。
 LLZ系リチウムイオン伝導性粉末は、上記(a)を満たすとき、すなわち、Li、La、ZrおよびMgを、モル比で上記式(1)および(2)を満たすように含むとき、良好なリチウムイオン伝導率を示す。そのメカニズムは明らかではないが、例えば、LLZ系リチウムイオン伝導性粉末がMgを含有すると、Liのイオン半径とMgのイオン半径とは近いので、LLZ結晶相においてLiが配置されているLiサイトにMgが配置されやすく、LiがMgに置換されることで、LiとMgとの電荷の違いにより結晶構造内のLiサイトに空孔が生じてLiイオンが動きやすくなり、その結果、リチウムイオン伝導率が向上すると考えられる。LLZ系リチウムイオン伝導性粉末において、Laと元素Aとの和に対するLiのモル比が1.33未満または3を超えると、ガーネット型結晶構造を有するリチウムイオン伝導性粉末だけでなく、別の金属酸化物が形成されやすくなる。別の金属酸化物の含有量が大きくなるほど相対的にガーネット型結晶構造を有するリチウムイオン伝導性粉末の含有量が小さくなり、更に別の金属酸化物のリチウムイオン伝導率は低いので、リチウムイオン伝導率が低下する。LLZ系リチウムイオン伝導性粉末におけるMgの含有量が多くなるほどLiサイトにMgが配置され、Liサイトに空孔が生じ、リチウムイオン伝導率が向上するが、Laと元素Aとの和に対するMgのモル比が0.5を超えると、Mgを含有する別の金属酸化物が形成されやすくなる。このMgを含有する別の金属酸化物の含有量が大きくなるほど相対的にガーネット型結晶構造を有するリチウムイオン伝導性粉末の含有量が小さくなる。Mgを含有する別の金属酸化物のリチウムイオン伝導率は低いので、Laと元素Aとの和に対するMgのモル比が0.5を超えると、リチウムイオン伝導率が低下する。
 LLZ系リチウムイオン伝導性粉末は、上記(b)を満たすとき、すなわち、Li、La、Zrおよび元素Aを、モル比で上記式(1)および(3)を満たすように含むとき、良好なリチウムイオン伝導率を示す。そのメカニズムは明らかではないが、例えば、LLZ系リチウムイオン伝導性粉末が元素Aを含有すると、Laのイオン半径と元素Aのイオン半径とが近いので、LLZ結晶相においてLaが配置されているLaサイトに元素Aが配置されやすく、Laが元素Aに置換されることで、格子ひずみが生じ、かつLaと元素Aとの電荷の違いにより自由なLiイオンが増加し、リチウムイオン伝導率が向上すると考えられる。LLZ系リチウムイオン伝導性粉末において、Laと元素Aとの和に対するLiのモル比が1.33未満または3を超えると、ガーネット型結晶構造を有するリチウムイオン伝導性粉末だけでなく、別の金属酸化物が形成されやすくなる。別の金属酸化物の含有量が大きくなるほど相対的にガーネット型結晶構造を有するリチウムイオン伝導性粉末の含有量が小さくなり、更に別の金属酸化物のリチウムイオン伝導率は低いので、リチウムイオン伝導率が低下する。LLZ系リチウムイオン伝導性粉末における元素Aの含有量が多くなるほどLaサイトに元素Aが配置され、格子ひずみが大きくなり、かつLaと元素Aとの電荷の違いにより自由なLiイオンが増加し、リチウムイオン伝導率が向上するが、Laと元素Aとの和に対する元素Aのモル比が0.67を超えると、元素Aを含有する別の金属酸化物が形成されやすくなる。この元素Aを含有する別の金属酸化物の含有量が大きくなるほど相対的にガーネット型結晶構造を有するリチウムイオン伝導性粉末の含有量が小さくなり、更に元素Aを含有する別の金属酸化物のリチウムイオン伝導率は低いので、リチウムイオン伝導率が低下する。
 上記元素Aは、Ca、SrおよびBaからなる群より選択される少なくとも1種類の元素である。Ca、SrおよびBaは、周期律表における第2族元素であり、2価の陽イオンになりやすく、いずれもイオン半径が近いという共通の性質を有する。Ca、SrおよびBaは、いずれもLaとイオン半径が近いので、LLZ系リチウムイオン伝導性粉末におけるLaサイトに配置されているLaと置換されやすい。LLZ系リチウムイオン伝導性粉末が、これらの元素Aの中でもSrを含有することが、焼結により容易に形成されることができ、高いリチウムイオン伝導率が得られる点で好ましい。
 LLZ系リチウムイオン伝導性粉末は、上記(c)を満たすとき、すなわち、Li、La、Zr、Mgおよび元素Aを、モル比で上記式(1)~(3)を満たすように含むとき、焼結により容易に形成されることができ、リチウムイオン伝導率がより一層向上する。また、LLZ系リチウムイオン伝導性粉末が、上記(d)を満たすとき、すなわち、Li、La、Zr、Mgおよび元素Aを、モル比で上記式(4)~(6)を満たすように含むとき、リチウムイオン伝導率がより一層向上する。そのメカニズムは明らかではないが、例えば、LLZ系リチウムイオン伝導性粉末におけるLiサイトのLiがMgに置換され、また、LaサイトのLaが元素Aに置換されることで、Liサイトに空孔が生じ、かつ自由なLiイオンが増加し、リチウムイオン伝導率がより一層良好になると考えられる。さらに、LLZ系リチウムイオン伝導性粉末が、Li、La、Zr、MgおよびSrを上記式(1)~(3)を満たすように、特に上記式(4)~(6)を満たすように含むことが、高いリチウムイオン伝導率が得られ、また、高い相対密度を有するリチウムイオン伝導体が得られる点から好ましい。
 なお、上記(a)~(d)のいずれの場合においても、LLZ系リチウムイオン伝導性粉末は、Zrを、モル比で以下の式(4)を満たすように含むことが好ましい。Zrを該範囲で含有することにより、ガーネット型結晶構造を有するリチウムイオン伝導性粉末が得られやすくなる。
(4)0.33≦Zr/(La+A)≦1
B.変形例:
 本明細書で開示される技術は、上記実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
 上記実施形態における全固体電池102の構成は、あくまで一例であり、種々変更可能である。例えば、上記実施形態では、リチウムイオン伝導性固体電解質が、固体電解質層112と正極114と負極116とのすべてに含まれているが、該リチウムイオン伝導性固体電解質が、固体電解質層112と正極114と負極116との少なくとも1つに含まれているとしてもよい。
 また、上記実施形態におけるリチウムイオン伝導性固体電解質202の製造方法や全固体電池102の製造方法は、あくまで一例であり、種々変更可能である。例えば、上記実施形態におけるリチウムイオン伝導性固体電解質202の製造方法では、加熱加圧工程における加圧の圧力は100MPa以上であるとしているが、加圧の圧力は100MPa未満であってもよい。また、上記実施形態におけるリチウムイオン伝導性固体電解質202の製造方法では、スラリーが複数種類の非プロトン性極性溶媒を含む場合、加熱加圧工程における加熱の温度は少なくとも1種の非プロトン性極性溶媒の沸点より低いとしているが、加熱の温度はすべての非プロトン性極性溶媒の沸点より高いとしてもよい。
 また、本明細書に開示される技術は、全固体電池102を構成する固体電解質層や電極に限られず、他の蓄電デバイス(例えば、リチウム空気電池やリチウムフロー電池、固体キャパシタ等)を構成する固体電解質層や電極にも同様に適用可能である。
  本出願は、2019年10月25日付けで出願された米国仮出願(US62/926,015)に基づくものであり、その内容はここに参照として取り込まれる。
10:加圧対象物 20:加熱加圧装置 21:金型 22:上面パンチ 23:下面パンチ 24:カバーヒーター 102:全固体電池 110:電池本体 112:固体電解質層 114:正極 116:負極 154:正極側集電部材 156:負極側集電部材 202:リチウムイオン伝導性固体電解質 204:リチウムイオン伝導性固体電解質 206:リチウムイオン伝導性固体電解質 214:正極活物質 216:負極活物質

Claims (6)

  1.  LiとLaとZrとOとを少なくとも含有するガーネット型結晶構造を有するリチウムイオン伝導性粉末と、リチウムイオン伝導性ポリマーと、を含むリチウムイオン伝導性固体電解質であって、
     前記リチウムイオン伝導性ポリマーとは異なる他のポリマーを用いることなく当該リチウムイオン伝導性固体電解質の形状を保持可能であり、
     20℃以上80℃以下における当該リチウムイオン伝導性固体電解質の活性化エネルギーが30kJ/mol以下である、
     ことを特徴とするリチウムイオン伝導性固体電解質。
  2.  請求項1に記載のリチウムイオン伝導性固体電解質において、
     前記リチウムイオン伝導性粉末と前記リチウムイオン伝導性ポリマーとの合計を100vol%としたときの前記リチウムイオン伝導性粉末の体積含有率が80vol%以上である、
     ことを特徴とするリチウムイオン伝導性固体電解質。
  3.  LiとLaとZrとOとを少なくとも含有するガーネット型結晶構造を有するリチウムイオン伝導性粉末を含むリチウムイオン伝導性固体電解質の製造方法であって、
     リチウム塩と、ポリマーと、前記リチウムイオン伝導性粉末と、少なくとも1種の非プロトン性極性溶媒と、を含むスラリーを作製するスラリー作製工程と、
     前記スラリーを加熱しつつ加圧することにより、前記リチウムイオン伝導性粉末とリチウムイオン伝導性ポリマーとを含むリチウムイオン伝導性固体電解質を作製する加熱加圧工程と、
    を備え、
     前記加熱加圧工程における加熱の温度は、前記少なくとも1種の前記非プロトン性極性溶媒の沸点より高く、かつ、前記ポリマーの分解温度より低い、
     ことを特徴とするリチウムイオン伝導性固体電解質の製造方法。
  4.  請求項3に記載のリチウムイオン伝導性固体電解質の製造方法において、
     前記スラリーは、複数種類の前記非プロトン性極性溶媒を含む、
     ことを特徴とするリチウムイオン伝導性固体電解質の製造方法。
  5.  請求項4に記載のリチウムイオン伝導性固体電解質の製造方法において、
     前記加熱加圧工程における加熱の温度は、前記複数種類の前記非プロトン性極性溶媒のうちの少なくとも1種の前記非プロトン性極性溶媒の沸点より高く、かつ、前記複数種類の前記非プロトン性極性溶媒のうちの他の少なくとも1種の前記非プロトン性極性溶媒の沸点より低い、
     ことを特徴とするリチウムイオン伝導性固体電解質の製造方法。
  6.  請求項3から請求項5までのいずれか一項に記載のリチウムイオン伝導性固体電解質の製造方法において、
     前記加熱加圧工程における加圧の圧力は、100MPa以上である、
     ことを特徴とするリチウムイオン伝導性固体電解質の製造方法。
     
     
     
PCT/JP2020/039971 2019-10-25 2020-10-23 リチウムイオン伝導性固体電解質およびリチウムイオン伝導性固体電解質の製造方法 WO2021080005A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080074177.XA CN114600291A (zh) 2019-10-25 2020-10-23 锂离子传导性固体电解质及锂离子传导性固体电解质的制造方法
US17/770,395 US20220384842A1 (en) 2019-10-25 2020-10-23 Lithium ion conductive solid electrolyte and production method for lithium ion conductive solid electrolyte
JP2021518986A JP7382399B2 (ja) 2019-10-25 2020-10-23 リチウムイオン伝導性固体電解質およびリチウムイオン伝導性固体電解質の製造方法
KR1020227013790A KR20220071232A (ko) 2019-10-25 2020-10-23 리튬 이온 전도성 고체 전해질 및 리튬 이온 전도성 고체 전해질의 제조 방법
EP20878911.5A EP4049974A1 (en) 2019-10-25 2020-10-23 Lithium ion conductive solid electrolyte and production method for lithium ion conductive solid electrolyte
JP2022173113A JP2023021987A (ja) 2019-10-25 2022-10-28 リチウムイオン伝導性固体電解質およびリチウムイオン伝導性固体電解質の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962926015P 2019-10-25 2019-10-25
US62/926,015 2019-10-25

Publications (1)

Publication Number Publication Date
WO2021080005A1 true WO2021080005A1 (ja) 2021-04-29

Family

ID=75620158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039971 WO2021080005A1 (ja) 2019-10-25 2020-10-23 リチウムイオン伝導性固体電解質およびリチウムイオン伝導性固体電解質の製造方法

Country Status (6)

Country Link
US (1) US20220384842A1 (ja)
EP (1) EP4049974A1 (ja)
JP (2) JP7382399B2 (ja)
KR (1) KR20220071232A (ja)
CN (1) CN114600291A (ja)
WO (1) WO2021080005A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022254524A1 (ja) * 2021-05-31 2022-12-08 日本電信電話株式会社 リチウム二次電池とその製造方法
WO2024029265A1 (ja) * 2022-08-03 2024-02-08 日本特殊陶業株式会社 酸化物、電解質組成物および蓄電デバイス
WO2024063160A1 (ja) * 2022-09-22 2024-03-28 住友化学株式会社 電解質組成物、電解質、及び電池
WO2024063158A1 (ja) * 2022-09-22 2024-03-28 住友化学株式会社 電解質組成物、電解質、及び電池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016040767A (ja) 2014-08-12 2016-03-24 日本特殊陶業株式会社 リチウムイオン伝導性セラミックス材料及びリチウム電池
KR20160079405A (ko) * 2014-12-26 2016-07-06 현대자동차주식회사 유무기 복합 고체전해질막, 그 제조방법 및 이를 포함하는 전고체 전지
WO2017046915A1 (ja) * 2015-09-17 2017-03-23 株式会社東芝 二次電池用複合電解質、二次電池及び電池パック
KR20180084236A (ko) * 2017-01-16 2018-07-25 한국생산기술연구원 Latp 함유 양극 복합재를 갖는 전고체 전지 및 이의 제조 방법
WO2018193628A1 (ja) * 2017-04-21 2018-10-25 日立化成株式会社 ポリマ電解質組成物及びポリマ二次電池
CN108963332A (zh) * 2017-05-18 2018-12-07 珠海市赛纬电子材料股份有限公司 一种复合固体电解质材料及制备方法和全固态电池
JP2019505074A (ja) * 2016-02-03 2019-02-21 コリア インスティテュート オブ インダストリアル テクノロジーKorea Institute Of Industrial Technology Llzo固体電解質を含む全固体リチウム二次電池及びその製造方法
WO2019052648A1 (en) * 2017-09-14 2019-03-21 Toyota Motor Europe COMPOSITE POLYMER ELECTROLYTE MEMBRANES (CPE) FOR SOLID-STATE LI-METALLIC SECONDARY CELLS AND PROCESS FOR PRODUCING SAME
JP2019102301A (ja) * 2017-12-04 2019-06-24 学校法人 工学院大学 固体電解質形成用組成物、高分子固体電解質、固体電解質形成用組成物の製造方法、高分子固体電解質の製造方法及び全固体電池
CN110224107A (zh) * 2018-03-02 2019-09-10 上海汽车集团股份有限公司 一种固态电池用电极及其制备方法以及一种固态电池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016040767A (ja) 2014-08-12 2016-03-24 日本特殊陶業株式会社 リチウムイオン伝導性セラミックス材料及びリチウム電池
KR20160079405A (ko) * 2014-12-26 2016-07-06 현대자동차주식회사 유무기 복합 고체전해질막, 그 제조방법 및 이를 포함하는 전고체 전지
WO2017046915A1 (ja) * 2015-09-17 2017-03-23 株式会社東芝 二次電池用複合電解質、二次電池及び電池パック
JP2019505074A (ja) * 2016-02-03 2019-02-21 コリア インスティテュート オブ インダストリアル テクノロジーKorea Institute Of Industrial Technology Llzo固体電解質を含む全固体リチウム二次電池及びその製造方法
KR20180084236A (ko) * 2017-01-16 2018-07-25 한국생산기술연구원 Latp 함유 양극 복합재를 갖는 전고체 전지 및 이의 제조 방법
WO2018193628A1 (ja) * 2017-04-21 2018-10-25 日立化成株式会社 ポリマ電解質組成物及びポリマ二次電池
CN108963332A (zh) * 2017-05-18 2018-12-07 珠海市赛纬电子材料股份有限公司 一种复合固体电解质材料及制备方法和全固态电池
WO2019052648A1 (en) * 2017-09-14 2019-03-21 Toyota Motor Europe COMPOSITE POLYMER ELECTROLYTE MEMBRANES (CPE) FOR SOLID-STATE LI-METALLIC SECONDARY CELLS AND PROCESS FOR PRODUCING SAME
JP2019102301A (ja) * 2017-12-04 2019-06-24 学校法人 工学院大学 固体電解質形成用組成物、高分子固体電解質、固体電解質形成用組成物の製造方法、高分子固体電解質の製造方法及び全固体電池
CN110224107A (zh) * 2018-03-02 2019-09-10 上海汽车集团股份有限公司 一种固态电池用电极及其制备方法以及一种固态电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Electrochimica Acta", vol. 258, 20 December 2017, ELSEVIER, article "Solid polymer electrolytes incorporating cubic Li La Zr 0 for all-solid-state lithium rechargeable batteries", pages: 1106 - 1114

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022254524A1 (ja) * 2021-05-31 2022-12-08 日本電信電話株式会社 リチウム二次電池とその製造方法
WO2024029265A1 (ja) * 2022-08-03 2024-02-08 日本特殊陶業株式会社 酸化物、電解質組成物および蓄電デバイス
WO2024063160A1 (ja) * 2022-09-22 2024-03-28 住友化学株式会社 電解質組成物、電解質、及び電池
WO2024063158A1 (ja) * 2022-09-22 2024-03-28 住友化学株式会社 電解質組成物、電解質、及び電池

Also Published As

Publication number Publication date
JP7382399B2 (ja) 2023-11-16
US20220384842A1 (en) 2022-12-01
CN114600291A (zh) 2022-06-07
JPWO2021080005A1 (ja) 2021-11-18
JP2023021987A (ja) 2023-02-14
EP4049974A1 (en) 2022-08-31
KR20220071232A (ko) 2022-05-31

Similar Documents

Publication Publication Date Title
WO2021080005A1 (ja) リチウムイオン伝導性固体電解質およびリチウムイオン伝導性固体電解質の製造方法
WO2019135328A1 (ja) 固体電解質材料、および、電池
WO2019135343A1 (ja) 固体電解質材料、および、電池
KR101234965B1 (ko) 비수전해질 이차전지용 양극 활물질 및 그것을 이용한 비수전해질 이차전지
JP5617417B2 (ja) ガーネット型リチウムイオン伝導性酸化物及びその製法
KR102637919B1 (ko) 리튬 이온 전기화학셀용 고체 전해질
JP6735425B2 (ja) イオン伝導性粉末、イオン伝導性成形体および蓄電デバイス
JP6682708B1 (ja) イオン伝導体およびリチウム電池
KR20200041974A (ko) 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 이 정극 활물질을 이용한 비수계 전해질 이차 전지
KR20200057047A (ko) 2차 전지
JP2013045738A (ja) 固体電解質焼結体、及びその製造方法、並びに全固体リチウム電池
WO2021033424A1 (ja) 蓄電デバイス用電極および蓄電デバイス
JP6840946B2 (ja) 固体電解質、全固体電池、およびそれらの製造方法
JP6682709B1 (ja) イオン伝導体、蓄電デバイス、および、イオン伝導体の製造方法
CN115676883A (zh) 一种固态电解质材料及其制备方法与应用
JP7332371B2 (ja) 蓄電デバイス
WO2020170463A1 (ja) イオン伝導体、蓄電デバイス、および、イオン伝導体の製造方法
WO2023013206A1 (ja) 固体電解質材料およびそれを用いた電池
WO2024071221A1 (ja) 全固体電池
JP7445504B2 (ja) リチウムイオン伝導体、蓄電デバイス、および、リチウムイオン伝導体の製造方法
US20230299285A1 (en) Positive electrode active material and lithium-ion secondary battery
WO2024062755A1 (ja) 固体電解質、電極材料、リチウム二次電池、および固体電解質の製造方法
EP4343882A2 (en) Anode-solid electrolyte sub-assembly for solid-state secondary battery, solid-state secondary battery including anode-solid electrolyte sub-assembly, and method of preparing anode-solid electrolyte sub-assembly
JP2021018859A (ja) リチウムイオン伝導体および蓄電デバイス
Oduncu Development of a novel polymer-garnet solid state composite electrolyte incorporating Li-La-Zr-Bi-O and polyethylene oxide

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021518986

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227013790

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020878911

Country of ref document: EP

Effective date: 20220525