WO2018168505A1 - 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、並びに、固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法 - Google Patents

固体電解質組成物、固体電解質含有シートおよび全固体二次電池、並びに、固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法 Download PDF

Info

Publication number
WO2018168505A1
WO2018168505A1 PCT/JP2018/007877 JP2018007877W WO2018168505A1 WO 2018168505 A1 WO2018168505 A1 WO 2018168505A1 JP 2018007877 W JP2018007877 W JP 2018007877W WO 2018168505 A1 WO2018168505 A1 WO 2018168505A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
group
organic compound
solid
secondary battery
Prior art date
Application number
PCT/JP2018/007877
Other languages
English (en)
French (fr)
Inventor
稔彦 八幡
宏顕 望月
雅臣 牧野
智則 三村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019505870A priority Critical patent/JPWO2018168505A1/ja
Publication of WO2018168505A1 publication Critical patent/WO2018168505A1/ja
Priority to US16/547,690 priority patent/US20190386322A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid electrolyte composition, a solid electrolyte-containing sheet, and an all-solid secondary battery, and a solid electrolyte composition, a solid electrolyte-containing sheet, and an all-solid secondary battery manufacturing method.
  • a lithium ion secondary battery is a storage battery that has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and enables charging and discharging by reciprocating lithium ions between the two electrodes.
  • an organic electrolytic solution has been used as an electrolyte in a lithium ion secondary battery.
  • the organic electrolyte is liable to leak, and there is a possibility that a short circuit occurs inside the battery due to overcharge or overdischarge, resulting in ignition, and further improvements in safety and reliability are required. Under such circumstances, an all-solid secondary battery using an inorganic solid electrolyte instead of an organic electrolyte has been attracting attention.
  • All-solid-state secondary batteries are composed of a solid negative electrode, electrolyte, and positive electrode, which can greatly improve safety and reliability, which is a problem of batteries using organic electrolytes, and can also extend the life. It will be. Furthermore, the all-solid-state secondary battery can have a structure in which electrodes and an electrolyte are directly arranged in series. Therefore, it is possible to increase the density of energy as compared with a secondary battery using an organic electrolyte, and therefore, application to an electric vehicle, a large storage battery, and the like is expected.
  • Patent Document 1 discloses that a cyclic polymer having a siloxane bond in at least one of a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer constituting an all-solid secondary battery, and a periodic rule.
  • an inorganic solid electrolyte containing a metal belonging to Table Group 1 or Group 2 and having ionic conductivity By including an inorganic solid electrolyte containing a metal belonging to Table Group 1 or Group 2 and having ionic conductivity, a decrease in ionic conductivity is suppressed, and all solids having excellent moisture resistance and stability over time. It is disclosed that a secondary battery can be provided.
  • the inorganic solid electrolyte containing a metal belonging to Group 1 or Group 2 of the periodic table and having ionic conductivity includes an oxide-based inorganic solid electrolyte and a sulfide-based inorganic solid electrolyte. Since the sulfide-based inorganic solid electrolyte is superior in ion conductivity as compared with the oxide-based inorganic solid electrolyte, the battery performance can be further improved.
  • the ionic conductivity of the sulfide-based inorganic solid electrolyte is lowered by reacting with water and a dispersion medium having a large polarity.
  • the cycle characteristics of the all-solid-state secondary battery also decrease. Therefore, when an all-solid secondary battery having excellent cycle characteristics is produced using a sulfide-based inorganic solid electrolyte, a dispersion medium having a small polarity tends to be used for the preparation of the solid electrolyte composition.
  • the present invention is a solid electrolyte composition containing a sulfide-based inorganic solid electrolyte and a highly polar (logP ⁇ 1) compound used for an all-solid secondary battery, and improves the cycle characteristics of the all-solid-state secondary battery. It is an object of the present invention to provide a solid electrolyte composition that can be used.
  • the present invention also relates to a solid electrolyte-containing sheet containing a sulfide-based inorganic solid electrolyte for use in an all-solid secondary battery, which can improve the cycle characteristics of the all-solid secondary battery. The issue is to provide.
  • this invention makes it a subject to provide the all-solid-state secondary battery using the said solid electrolyte composition. Furthermore, this invention makes it a subject to provide the manufacturing method of the said solid electrolyte composition, a solid electrolyte containing sheet
  • the organic compound (B) is a cyano group, hydroxy group, ester bond, amide bond, ketone group, carbonate group and / or sulfanyl group (cyano group, hydroxy group, ester bond, amide bond, ketone group, carbonate group and sulfanyl group).
  • the solid electrolyte composition according to ⁇ 1> which has at least one of the above.
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group or an aryl group, and L represents an alkylene group or an arylene group. R 1 and R 2 may combine with each other to form a ring. n represents an integer of 2 or more.
  • ⁇ 10> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 9>, wherein the content of water contained in the organic compound (B) is 1 ppm to 1,000 ppm by mass.
  • ⁇ 11> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 10>, containing a binder (D).
  • ⁇ 12> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 11>, which contains an active material (E).
  • the organic compound (B) is a cyano group, hydroxy group, ester bond, amide bond, ketone group, carbonate group and / or sulfanyl group (cyano group, hydroxy group, ester bond, amide bond, ketone group, carbonate group and sulfanyl group).
  • the solid electrolyte-containing sheet according to ⁇ 13> having at least one of the following.
  • ⁇ 15> The solid electrolyte-containing sheet according to ⁇ 13> or ⁇ 14>, wherein the organic compound (B) has 1 to 5 carbon atoms.
  • ⁇ 16> The solid electrolyte-containing sheet according to ⁇ 13>, wherein the organic compound (B) has an ether bond.
  • ⁇ 17> The solid electrolyte-containing sheet according to ⁇ 16>, wherein the number of ether bonds in one molecule of the organic compound (B) is 3 or more and 10 or less.
  • ⁇ 18> The solid electrolyte-containing sheet according to ⁇ 17>, wherein the organic compound (B) is a compound represented by the following general formula (b).
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group or an aryl group, and L represents an alkylene group or an arylene group. R 1 and R 2 may combine with each other to form a ring. n represents an integer of 2 or more.
  • ⁇ 19> The solid electrolyte-containing sheet according to ⁇ 18>, wherein the molecular weight of the organic compound (B) is 100 or more and less than 500.
  • R 1 and R 2 each independently represent an alkyl group or an aryl group in the general formula (b).
  • An all-solid secondary battery comprising a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer, wherein at least one of the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer is defined as ⁇ 1> to ⁇ 12
  • An all-solid-state secondary battery having a layer composed of the solid electrolyte composition according to any one of the above.
  • ⁇ 27> The method for producing a solid electrolyte composition according to any one of ⁇ 1> to ⁇ 12>, comprising the following steps (1) and (2).
  • ⁇ 28> ⁇ 1>- ⁇ 12>
  • ⁇ 29> The manufacturing method of the all-solid-state secondary battery which manufactures the all-solid-state secondary battery which has a solid electrolyte containing sheet through the manufacturing method as described in ⁇ 22>.
  • the “substance derived from an organic compound (B) having a log P ⁇ 1” means an organic compound (B) itself having a log P ⁇ 1 or less, and an organic compound having a coating layer of a sulfide-based inorganic solid electrolyte.
  • B a solvated salt in which an organic compound (B) having a log P ⁇ 1 or less interacts with a lithium salt, an oxidized form and a reduced form of the organic compound (B) having a log P ⁇ 1 or less, and the organic compound (B) and lithium Means a reactant.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the mass average molecular weight can be measured as a molecular weight in terms of polystyrene by gel permeation chromatography (GPC) unless otherwise specified.
  • GPC gel permeation chromatography
  • the GPC device HLC-8220 (trade name, manufactured by Tosoh Corporation) is used, the column is G3000HXL + G2000HXL (both trade names, manufactured by Tosoh Corporation), the flow rate is 1 mL / min at 23 ° C., and detection is performed by RI.
  • the eluent can be selected from THF (tetrahydrofuran), chloroform, NMP (N-methyl-2-pyrrolidone), m-cresol / chloroform (manufactured by Shonan Wako Pure Chemical Industries, Ltd.). Will be used.
  • the solid electrolyte composition of the present invention can improve the cycle characteristics of an all-solid secondary battery by using it for the production of an all-solid secondary battery. Moreover, the solid electrolyte containing sheet
  • seat of this invention can improve the cycling characteristics of an all-solid-state secondary battery by using it for an all-solid-state secondary battery. Moreover, the all-solid-state secondary battery of this invention is excellent in cycling characteristics. Furthermore, according to the method for producing a solid electrolyte composition, the method for producing a solid electrolyte-containing sheet and the method for producing an all-solid secondary battery according to the present invention, the solid electrolyte composition having the above-described excellent performance, the solid electrolyte-containing sheet, and An all-solid secondary battery can be manufactured.
  • FIG. 1 is a cross-sectional view schematically showing an all solid state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all-solid-state secondary battery 10 of this embodiment has a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order as viewed from the negative electrode side. .
  • Each layer is in contact with each other and has a laminated structure.
  • the solid electrolyte composition of the present invention can be preferably used as a molding material for the negative electrode active material layer, the solid electrolyte layer and / or the positive electrode active material layer.
  • the solid electrolyte-containing sheet of the present invention is suitable as the negative electrode active material layer, solid electrolyte layer and / or positive electrode active material layer.
  • a positive electrode active material layer (hereinafter also referred to as a positive electrode layer) and a negative electrode active material layer (hereinafter also referred to as a negative electrode layer) may be collectively referred to as an electrode layer or an active material layer.
  • the all-solid-state secondary battery having the layer configuration shown in FIG. 1 may be referred to as an all-solid-state secondary battery sheet.
  • the thicknesses of the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 are not particularly limited. In consideration of general battery dimensions, the thickness is preferably 10 to 1,000 ⁇ m, more preferably 20 ⁇ m or more and less than 500 ⁇ m. In the all solid state secondary battery of the present invention, it is more preferable that the thickness of at least one of the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 is 50 ⁇ m or more and less than 500 ⁇ m.
  • the solid electrolyte composition of the present invention includes a sulfide-based inorganic solid electrolyte (A) having conductivity of metal ions belonging to Group 1 or Group 2 of the periodic table, and an organic compound (B) with log P ⁇ 1. And lithium salt (C), and 0.1 mol or more of lithium salt (C) is contained per 1 mol of organic compound (B).
  • the “sulfide-based inorganic solid electrolyte (A) having conductivity of metal ions belonging to Group 1 or Group 2 of the periodic table” may be referred to as “sulfide-based inorganic solid electrolyte (A)”.
  • organic compound (B) of log P ⁇ 1 may be referred to as “organic compound (B)”.
  • each component contained in the solid electrolyte composition may be described without a symbol, simply as “sulfide-based inorganic solid electrolyte”. Hereinafter, each component in the composition will be described in detail.
  • the solid electrolyte composition of the present invention contains a sulfide-based inorganic solid electrolyte (A).
  • the inorganic solid electrolyte is an inorganic solid electrolyte, and the solid electrolyte is a solid electrolyte capable of moving ions inside. Since it does not contain organic substances as the main ion conductive material, organic solid electrolytes (polymer electrolytes typified by polyethylene oxide (PEO), etc., organics typified by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from the electrolyte salt).
  • PEO polyethylene oxide
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • the inorganic solid electrolyte is solid in a steady state, it is not usually dissociated or released into cations and anions. In this respect, it is also clearly distinguished from inorganic electrolyte salts (such as LiPF 6 , LiBF 4 , LiFSI, LiCl, etc.) in which cations and anions are dissociated or liberated in the electrolyte or polymer.
  • the inorganic solid electrolyte is not particularly limited as long as it has conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table, and generally does not have electron conductivity.
  • a solid electrolyte material applied to this type of product can be appropriately selected and used.
  • Typical examples of the inorganic solid electrolyte include (i) a sulfide-based inorganic solid electrolyte and (ii) an oxide-based inorganic solid electrolyte.
  • a sulfide-based inorganic solid electrolyte is used.
  • the sulfide-based inorganic solid electrolyte used in the present invention contains a sulfur atom (S), has an ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and has an electronic insulating property. Those having the following are preferred.
  • the sulfide-based inorganic solid electrolyte preferably contains at least Li, S and P as elements and has lithium ion conductivity. However, depending on the purpose or the case, other than Li, S and P may be used. An element may be included.
  • a lithium ion conductive sulfide-based inorganic solid electrolyte satisfying the composition represented by the following formula (I) can be mentioned.
  • L represents an element selected from Li, Na and K, and Li is preferred.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al, and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
  • a1 is further preferably 1 to 9, and more preferably 1.5 to 7.5.
  • b1 is preferably 0 to 3.
  • d1 is preferably 2.5 to 10, and more preferably 3.0 to 8.5.
  • e1 is preferably 0 to 5, and more preferably 0 to 3.
  • composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass ceramic), or only a part may be crystallized.
  • glass glass
  • glass ceramic glass ceramic
  • Li—PS system glass containing Li, P and S, or Li—PS system glass ceramics containing Li, P and S can be used.
  • the sulfide-based inorganic solid electrolyte includes, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), simple phosphorus, simple sulfur, sodium sulfide, hydrogen sulfide, lithium halide (for example, LiI, LiBr, LiCl) and a sulfide of an element represented by M (for example, SiS 2 , SnS, GeS 2 ) can be produced by reaction of at least two raw materials.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • simple phosphorus simple sulfur
  • sodium sulfide sodium sulfide
  • hydrogen sulfide lithium halide
  • a sulfide of an element represented by M for example, SiS 2 , SnS, GeS 2
  • the ratio of Li 2 S and P 2 S 5 in the Li—PS system glass and Li—PS system glass ceramic is a molar ratio of Li 2 S: P 2 S 5 , preferably 60:40 to 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be increased.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more. Although there is no particular upper limit, it is practical that it is 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li 2 S—P 2 S 5 Li 2 S—P 2 S 5 —LiCl, Li 2 S—P 2 S 5 —H 2 S, Li 2 S—P 2 S 5 —H 2 S—LiCl, Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—LiBr—P 2 S 5 , Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 S—P 2 S 5 —P 2 O 5 , Li 2 S—P 2 S 5 —SiS 2 , Li 2 S—P 2 S 5 —SiS 2 —LiCl, Li 2 S—P 2 S 5 —SnS, Li 2 S—P 2 S 5 —Al 2 S 3 , Li 2
  • Examples of a method for synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition include an amorphization method.
  • Examples of the amorphization method include a mechanical milling method, a solution method, and a melt quench method. This is because processing at room temperature (25 ° C.) is possible, and the manufacturing process can be simplified.
  • the volume average particle diameter of the sulfide-based inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more. As an upper limit, it is preferable that it is 100 micrometers or less, and it is more preferable that it is 50 micrometers or less.
  • the measurement of the average particle diameter of sulfide type inorganic solid electrolyte particle is performed in the following procedures.
  • the sulfide-based inorganic solid electrolyte particles are diluted and adjusted in a 20 ml sample bottle using water (heptane in the case of a substance unstable to water).
  • the diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that.
  • a laser diffraction / scattering particle size distribution analyzer LA-920 manufactured by HORIBA
  • data acquisition was performed 50 times using a measurement quartz cell at a temperature of 25 ° C. Get the diameter.
  • JISZ8828 2013 “Particle Size Analysis—Dynamic Light Scattering Method” is referred to as necessary. Five samples are prepared for each level, and the average value is adopted.
  • the content of the sulfide-based inorganic solid electrolyte in the solid component in the solid electrolyte composition is determined by considering the reduction of the interface resistance when used in an all-solid secondary battery and the maintenance of the reduced interface resistance. In terms of mass%, it is preferably 5 mass% or more, more preferably 10 mass% or more, and particularly preferably 15 mass% or more. As an upper limit, it is preferable that it is 99.9 mass% or less from the same viewpoint, It is more preferable that it is 99.5 mass% or less, It is especially preferable that it is 99 mass% or less.
  • the sulfide inorganic solid electrolyte may be used alone or in combination of two or more.
  • the solid content means a component that does not disappear by evaporation or evaporation when a drying treatment is performed at 80 ° C. for 6 hours in a nitrogen atmosphere. Typically, it refers to components other than the dispersion medium described below.
  • the solid electrolyte composition of the present invention may contain an oxide-based inorganic solid electrolyte within the range where the effects of the present invention are exhibited.
  • the oxide-based inorganic solid electrolyte is preferably a compound containing an oxygen atom (O), having an ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and having an electronic insulating property. .
  • Li xc B yc M cc zc Onc (M cc is C, S, Al, Si, Ga, Ge, In, Sn are at least one element, xc satisfies 0 ⁇ xc ⁇ 5, yc satisfies 0 ⁇ yc ⁇ 1, and zc satisfies 0 ⁇ zc ⁇ met 1, nc satisfies 0 ⁇ nc ⁇ 6.), Li xd ( l, Ga) yd (Ti, Ge) zd Si ad P md O nd ( provided that, 1 ⁇ xd ⁇ 3,0 ⁇ yd ⁇ 1,0 ⁇ zd ⁇ 2,0 ⁇ ad ⁇ 1,1 ⁇ md
  • D ee represents a halogen atom or Represents a combination of two or more halogen atoms.
  • Li 3 BO 3 —Li 2 SO 4 Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—SiO 2 , Li 6 BaLa 2 ta 2 O 12, Li 3 PO (4-3 / 2w) N w (w is w ⁇ 1), LI ICON (Lithium super ionic conductor) type Li 3.5 Zn 0.25 GeO 4 having a crystal structure, La 0.55 Li 0.35 TiO 3 having a perovskite crystal structure, NASICON (Natrium super ionic conductor) type crystal structure
  • Li, P and O Phosphorus compounds containing Li, P and O are also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON obtained by replacing a part of oxygen of lithium phosphate with nitrogen
  • LiPOD 1 LiPOD 1
  • LiA 1 ON A 1 is at least one selected from Si, B, Ge, Al, C, Ga, etc.
  • volume average particle size and measurement method of the sulfide-based inorganic solid electrolyte (A) can be preferably applied to the volume average particle size and measurement method of the oxide-based inorganic solid electrolyte.
  • the organic compound (B) used in the solid electrolyte composition of the present invention is not particularly limited as long as logP ⁇ 1.
  • the lower limit of the logP value is not particularly limited, but is practically -4 or more.
  • the LogP value is a value calculated by ChemBioDraw (trade name) Version: 12.9.2.10.76 from PerkinElmer.
  • the organic compound (B) acts as a dispersion medium.
  • the organic compound (B) coordinates well with the lithium salt (ion), can interact with the sulfide-based inorganic solid electrolyte and the active material, and exhibits good ionic conductivity.
  • a compound having a hydroxy group, an ester bond, an amide bond, a ketone group, a carbonate group and / or a sulfanyl group is preferable. In the description of the present invention, the compound having an amide bond and a carbonate group is not included in the compound having a ketone group.
  • the compound having a cyano group examples include acetonitrile, propionitrile, isopropionitrile, butyronitrile, isobutyronitrile, valeronitrile, isovaleronitrile, pivalonitrile, hexanenitrile, heptanenitrile, malononitrile and succinonitrile.
  • Specific examples of the compound having a hydroxy group include ethanol, triethylene glycol, methanol, propanol, isopropanol, butanol, isobutanol, phenol, benzyl alcohol, tert-butanol and hexanol.
  • the compound having an ester bond examples include ethyl acetate, methyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, methyl propionate, ethyl propionate, propyl propionate, isopropyl propionate, butyl propionate, propion Isobutyl, methyl butyrate, ethyl butyrate, propyl butyrate, isopropyl butyrate, butyl butyrate, isobutyl butyrate, tert-butyl butyrate, methyl formate, ethyl formate, propyl formate, isopropyl formate, butyl formate, isobutyl formate, ⁇ -butyrolactone, ⁇ -valerolactone , ⁇ valerolactone, ⁇ caprolactone, methyl benzoate and ethyl benzoate.
  • a compound having an ester bond is not classified into a compound having a ketone group and a compound having an ether bond.
  • Specific examples of the compound having an amide bond include NMP (N-methyl-2-pyrrolidone), N-ethyl-2-pyrrolidone, dimethylacetamide, dimethylimidazolidinone and dimethylformamide.
  • the compound having a ketone group include acetone, ethyl methyl ketone, diethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, 2-pentanone, 2-hexanone, 3-hexanone, diisopropyl ketone, cyclohexanone, acetophenone and diisobutyl ketone.
  • Specific examples of the compound having a carbonate group include propylene carbonate, ethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate.
  • the compound having a carbonate group is not classified into a compound having a ketone group, a compound having an ester bond, and a compound having an ether bond.
  • Specific examples of the compound having a sulfanyl group include propanethiol, butanethiol, isobutyl mercaptan, 3-methyl-2-butanethiol, isoamyl mercaptan, 2-methyl-1-butanethiol and hexanedithiol.
  • the organic compound (B) coordinates well with the lithium salt (ion), can interact with the sulfide-based inorganic solid electrolyte and the active material, and exhibits good ionic conductivity. It is also preferable that it is a compound having.
  • the ether bond does not include “—O—” in the ester bond and “—O—” in the carbonate group.
  • the compound having an ether bond a compound having 2 or more ether bonds in one molecule is preferable, and 3 or more is more preferable.
  • the upper limit is not particularly limited, but is preferably 100 or less, more preferably 50 or less, and particularly preferably 10 or less.
  • the ionic conductivity can be further increased. This is considered to be because the lithium ion of the lithium salt can be stabilized at a plurality of ether bond sites, and the interaction with the anion of the lithium salt is weakened.
  • the above-mentioned compound having an ether bond is preferably an ether compound represented by the following general formula (b) because it can coordinate more effectively with a lithium ion by an ether bond site.
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group or an aryl group, and L represents an alkylene group or an arylene group. R 1 and R 2 may combine with each other to form a ring. n represents an integer of 2 or more. R 1 , R 2 and L may have a substituent.
  • R 1 and R 2 each independently represent an alkyl group or an aryl group because it is considered possible to coordinate efficiently to lithium ions through an ether bonding site and is electrochemically stable.
  • an alkyl group is more preferable.
  • the number of carbon atoms of the alkyl group is preferably 1 to 10, more preferably 1 to 6, and particularly preferably 1 or 2.
  • Specific examples of the alkyl group include methyl, ethyl, t-butyl, i-propyl, and cyclohexyl.
  • the aryl group preferably has 6 to 20 carbon atoms, more preferably 6 to 13 carbon atoms, and particularly preferably 6 to 8 carbon atoms.
  • Specific examples of the alkyl group include phenyl and naphthyl.
  • L preferably represents an alkylene group.
  • the number of carbon atoms of the alkylene group represented by L is preferably 1 to 10, more preferably 1 to 6, and particularly preferably 1 to 3.
  • Specific examples of the alkylene group include methylene, ethylene, and propylene.
  • the number of carbon atoms of the arylene group represented by L is preferably 6 to 20, more preferably 6 to 13, and particularly preferably 6 to 8.
  • Specific examples of the arylene group include phenylene and naphthylene.
  • R 1 and R 2 may be bonded to each other to form a ring.
  • This ring is preferably a 6 to 24 membered ring, more preferably a 6 to 15 membered ring, and may be a ring in which these rings are condensed.
  • n is not particularly limited, but is preferably an integer of 20 or less, more preferably an integer of 9 or less, and particularly preferably 4 or less.
  • R 1 , R 2, and L may have include the substituent P described later.
  • the ionic conductivity can be increased by the interaction between the organic compound (B) and the lithium salt.
  • the lower limit of the molecular weight of the organic compound (B) is preferably 50 or more, more preferably 100 or more.
  • the upper limit is preferably less than 2000, and more preferably less than 500.
  • the molecular weight is particularly preferably 100 or more and less than 500.
  • an organic compound (B) has moderate viscosity, and can raise ionic conductivity more.
  • ether bond diethyl ether, diisopropyl ether, t-butyl methyl ether, ethylene glycol, ethylene glycol dimethyl ether, dibutyl ether, diethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether (tetraglyme), triethylene glycol dimethyl ether (triglyme), tetra Examples include ethylene glycol monomethyl ether, triethylene glycol monomethyl ether, tetraethylene glycol, and triethylene glycol.
  • diethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether (tetraglyme), triethylene glycol dimethyl ether (triglyme), tetraethylene glycol monomethyl ether, triethylene glycol monomethyl ether, tetraethylene glycol, and triethylene glycol are preferable, and lithium ions are efficiently distributed. Therefore, diethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, and triethylene glycol dimethyl ether are more preferable.
  • the said organic compound (B) may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the organic compound (B) is more easily coordinated to the lithium salt as the molecular polarity is higher. Moreover, since it is thought that the ionic conductivity is improved by interacting with the sulfide-based inorganic solid electrolyte, the organic compound (B) preferably has 1 or more carbon atoms. Although there is no restriction
  • the organic compound (B) used in the present invention is considered to interact with the lithium salt (C) as described later, water is contained in the organic compound (B) in an amount of 1 ppm to 1,000 ppm on a mass basis. Even if it is, the solid electrolyte composition of the present invention can be effective.
  • the lithium salt (C) that can be used in the present invention is preferably a lithium salt that is usually used in this type of product, and is not particularly limited. For example, those described below are preferable.
  • Inorganic lithium salts inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; perhalogenates such as LiClO 4 , LiBrO 4 , LiIO 4 ; inorganic chloride salts such as LiAlCl 4 etc.
  • Oxalatoborate salt lithium bis (oxalato) borate, lithium difluorooxalatoborate and the like.
  • LiBF 4 LiTFSI, LiBETI, and LiFSI are preferable.
  • lithium salt may be used individually by 1 type, or may combine 2 or more types arbitrarily.
  • the content of the lithium salt is 0.1 mol or more, preferably 0.3 mol or more, and more preferably 0.5 mol or more with respect to 1 mol of the organic compound (B). As an upper limit, it is preferable that it is 1.5 mol or less, and it is more preferable that it is 1 mol or less. If the content of the lithium salt is less than 0.1 mol with respect to 1 mol of the organic compound (B), there are a large number of polar substituents of the organic compound (B) that do not coordinate with the lithium salt (C). It can be a component that reacts with the inorganic inorganic electrolyte and increases the resistance of the all-solid-state secondary battery.
  • the organic compound (B) and the lithium salt (C) are considered to interact.
  • the form of interaction is not particularly limited, but the form in which the lithium salt is solvated by the organic compound (B), or the form in which the organic compound (B) and the lithium salt (C) are combined to form a coordinate bond Can be considered.
  • the interaction between the organic compound (B) and the lithium salt (C) suppresses the reaction between the sulfide-based inorganic solid electrolyte and the organic compound (B), and the sulfide-based inorganic It is considered that a decrease in ion conductivity of the solid electrolyte can be suppressed.
  • a compound other than the organic compound (B) (hereinafter referred to as “second dispersion”). It may also contain a dispersion medium having a log P value of more than 1.
  • the dispersant having a log P value exceeding 1 is not particularly limited, and examples thereof include hexane (3.0), butyronitrile (1.24), dibutyl ether (2.57), and diisopropyl ketone (2.64).
  • the solid electrolyte composition of the present invention may contain an ionic liquid in order to further improve the ionic conductivity of the solid electrolyte-containing sheet and the cycle characteristics of the all-solid secondary battery.
  • an ionic liquid What melt
  • the compound which consists of a combination of the following cation and an anion is mentioned.
  • (I) Cation Examples of the cation include an imidazolium cation, a pyridinium cation, a piperidinium cation, a pyrrolidinium cation, a morpholinium cation, a phosphonium cation, and a quaternary ammonium cation. However, these cations have a substituent described later. As the cation, one kind of these cations may be used alone, or two or more kinds may be used in combination. As the cation, a quaternary ammonium cation, a piperidinium cation or a pyrrolidinium cation is preferable.
  • Examples of the substituent that the cation has include an alkyl group (carbon number is preferably 1 to 8, more preferably 1 to 4), a hydroxyalkyl group (preferably 1 to 3 carbon atoms), an alkyloxyalkyl group (carbon The number is preferably 2 to 8, and more preferably 2 to 4.), a group having an ether bond (a group having at least one ether bond in the carbon chain of the alkyl group), an allyl group, an aminoalkyl group (carbon number) Is preferably 1 to 8, and more preferably 1 to 4, and an aryl group (the number of carbon atoms is preferably 6 to 12, and more preferably 6 to 8).
  • the substituent may form a cyclic structure containing a cation moiety.
  • the substituent may further have a substituent P described later.
  • Anions As anions, chloride ions, bromide ions, iodide ions, boron tetrafluoride ions, nitrate ions, dicyanamide ions, acetate ions, iron tetrachloride ions, bis (trifluoromethanesulfonyl) imide ions, bis ( Fluorosulfonyl) imide ions, bis (perfluorobutylmethanesulfonyl) imide ions, allyl sulfonate ions, hexafluorophosphate ions, trifluoromethane sulfonate ions, and the like.
  • these anions may be used alone or in combination of two or more.
  • Preferred is boron tetrafluoride ion, bis (trifluoromethanesulfonyl) imide ion, bis (fluorosulfonyl) imide ion or hexafluorophosphate ion, dicyanamide ion or allyl sulfonate ion, more preferably bis (trifluoromethanesulfonyl) imide ion.
  • they are a bis (fluoro sulfonyl) imide ion and an allyl sulfonate ion.
  • the ionic liquid examples include 1-allyl-3-ethylimidazolium bromide, 1-ethyl-3-methylimidazolium bromide, 1- (2-hydroxyethyl) -3-methylimidazolium bromide, 1- ( 2-methoxyethyl) -3-methylimidazolium bromide, 1-octyl-3-methylimidazolium chloride, N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium tetrafluoroborate, 1- Ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide, 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide, 1-ethyl-3-methylimidazolium dicyanamide, 1-butyl-1-methyl Pyrrolidinium bis (trifluoromethanesulfonyl) Trimethylbutylammonium bis
  • the content of the ionic liquid is preferably 0 part by mass or more, more preferably 1 part by mass or more, and most preferably 2 parts by mass or more with respect to 100 parts by mass of the inorganic solid electrolyte. As an upper limit, 50 mass parts or less are preferable, and 20 mass parts or less are more preferable.
  • substituent P examples include the following.
  • An alkyl group preferably an alkyl group having 1 to 20 carbon atoms such as methyl, ethyl, isopropyl, t-butyl, isobutyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • An alkenyl group preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl, etc.
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl, etc.
  • a cycloalkyl group (preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc., but in this specification, an alkyl group usually means a cycloalkyl group)
  • An aryl group Preferably an aryl group having 6 to 26 carbon atoms, such as phenyl, 1-naphthyl, 4-methoxyphenyl, 2-chlorophenyl, 3-methylphenyl, etc., an aralkyl group (preferably an aralkyl group having 7 to 23 carbon atoms, For example, benzyl, phenethyl, etc.), a heterocyclic group (preferably a heterocyclic group having 2 to 20 carbon atoms, preferably having at least one selected from an oxygen atom, a sulfur atom and a nitrogen atom as a ring constituent atom Or a 6-member
  • an alkoxy group usually means an aryloyl group.
  • An alkoxycarbonyl group preferably an alkoxycarbonyl group having 2 to 20 carbon atoms, such as ethoxycarbonyl, 2-ethylhexyloxycarbonyl, etc.
  • aryloxycarbonyl A group preferably an aryloxycarbonyl group having 6 to 26 carbon atoms, such as phenoxycarbonyl, 1-naphthyloxycarbonyl, 3-methylphenoxycarbonyl, 4-methoxyphenoxycarbonyl, etc.
  • an amino group preferably Or an amino group having 0 to 20 carbon atoms, an alkylamino group, an arylamino group, for example, amino, N, N-dimethylamino, N, N-diethylamino, N-ethylamino, anilino, etc.
  • sulfamoyl group Preferably a sulfamoyl group having 0 to 20
  • An acyloxy group (preferably an acyloxy group having 1 to 20 carbon atoms, such as acetyloxy), an aryloyloxy group (preferably an aryloyloxy group having 7 to 23 carbon atoms, such as benzoyloxy, etc., provided that In this specification, an acyloxy group usually means an aryloyloxy group), a carbamoyl group (preferably a carbamoyl group having 1 to 20 carbon atoms, such as N, N-dimethylcarbamoyl, N-phenylcarbamoyl, etc.
  • An acylamino group (preferably an acylamino group having 1 to 20 carbon atoms, such as acetylamino, benzoylamino, etc.), an alkylsulfanyl group (preferably an alkylsulfanyl group having 1 to 20 carbon atoms, such as methylsulfanyl, ethyl Sulfanyl, isopropyl Sulfanyl, benzylsulfanyl, etc.), arylsulfanyl groups (preferably arylsulfanyl groups having 6 to 26 carbon atoms, such as phenylsulfanyl, 1-naphthylsulfanyl, 3-methylphenylsulfanyl, 4-methoxyphenylsulfanyl, etc.), alkylsulfonyl A group (preferably an alkylsulfonyl group having 1 to 20 carbon atoms, such as methylsulfonyl or ethyls
  • a silyl group (preferably an alkylsilyl group having 1 to 20 carbon atoms, such as monomethylsilyl, dimethylsilyl, trimethylsilyl, triethylsilyl, etc.), an arylsilyl group (preferably 6 to 4 carbon atoms)
  • Arylsilyl groups such as triphenylsilyl
  • alkoxysilyl groups preferably alkoxysilyl groups having 1 to 20 carbon atoms such as monomethoxysilyl, dimethoxysilyl, trimethoxysilyl, triethoxysilyl, etc.
  • aryl An oxysilyl group (preferably an aryloxysilyl group having 6 to 42 carbon atoms, such as triphenyloxysilyl), a phosphoryl group (preferably a phosphoryl group having 0 to 20 carbon atoms, such as —OP ( ⁇ O) (R P ) 2 ), a phosphonyl group (preferably a phosphonyl
  • Groups such as -P (R P ) 2 ), (meth) acryloyl groups, (meth) acryloyloxy groups, ( (Meth) acryloylumimino group ((meth) acrylamide group), hydroxy group, sulfanyl group, carboxy group, phosphoric acid group, phosphonic acid group, sulfonic acid group, cyano group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, Iodine atom).
  • each of the groups listed as the substituent P may be further substituted with the substituent P described above.
  • substituent, linking group and the like include an alkyl group, an alkylene group, an alkenyl group, an alkenylene group, an alkynyl group and / or an alkynylene group, these may be cyclic or linear, and may be linear or branched. It may be substituted as described above or unsubstituted.
  • the solid electrolyte composition of the present invention contains a binder (D) (hereinafter also referred to as a binder) because the binding between solid particles and between the layers constituting the all-solid secondary battery is improved.
  • the binder used in the solid electrolyte composition of the present invention is not particularly limited as long as it is an organic polymer.
  • the binder that can be used in the present invention is not particularly limited, and for example, a binder made of the resin described below is preferable.
  • fluorine-containing resin examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP).
  • hydrocarbon-based thermoplastic resin examples include polyethylene, polypropylene, styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber (HSBR), butylene rubber, acrylonitrile butadiene rubber, polybutadiene, and polyisoprene.
  • acrylic resin examples include various (meth) acrylic monomers, (meth) acrylamide monomers, and copolymers of monomers constituting these resins.
  • copolymers with other vinyl monomers are also preferably used. Examples thereof include poly (meth) acrylate methyl-polystyrene copolymer, poly (meth) methyl methacrylate-acrylonitrile copolymer, and poly (meth) acrylate butyl-acrylonitrile-styrene copolymer.
  • other resins include polyurethane resin, polyurea resin, polyamide resin, polyimide resin, polyester resin, polyether resin, polycarbonate resin, and cellulose derivative resin. These may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the shape of the binder is not particularly limited, and may be particulate or indefinite in the solid electrolyte composition or in the all-solid secondary battery.
  • the water concentration of the polymer constituting the binder used in the present invention is preferably 100 ppm (mass basis) or less.
  • the polymer constituting the binder used in the present invention may be used in a solid state when forming a solid electrolyte-containing sheet or an all-solid secondary battery, or in the state of a polymer particle dispersion or a polymer solution. It may be used.
  • the mass average molecular weight of the polymer constituting the binder used in the present invention is preferably 10,000 or more, more preferably 20,000 or more, and further preferably 30,000 or more. As an upper limit, 1,000,000 or less is preferable, 200,000 or less is more preferable, and 100,000 or less is more preferable.
  • the molecular weight of the binder refers to the mass average molecular weight unless otherwise specified, and the mass average molecular weight in terms of standard polystyrene is measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • a value measured by the method of Condition 1 or Condition 2 (priority) below is basically used.
  • an appropriate eluent may be selected and used depending on the binder type.
  • Priority column A column in which TOSOH TSKgel Super HZM-H (trade name), TOSOH TSKgel Super HZ4000 (trade name), and TOSOH TSKgel Super HZ2000 (trade name) are used.
  • Carrier Tetrahydrofuran Measurement temperature: 40 ° C
  • Carrier flow rate 1.0 mL / min
  • Sample concentration 0.1% by mass
  • Detector RI (refractive index) detector
  • the solid electrolyte composition of the present invention may contain an active material (E) capable of inserting and releasing ions of metal elements belonging to Group 1 or Group 2 of the Periodic Table.
  • the active material (E) is also simply referred to as an active material.
  • the active material include a positive electrode active material and a negative electrode active material, and a transition metal oxide that is a positive electrode active material, or lithium titanate or graphite that is a negative electrode active material is preferable.
  • a solid electrolyte composition containing an active material positive electrode active material, negative electrode active material
  • an electrode composition positive electrode composition, negative electrode composition
  • the positive electrode active material that may be contained in the solid electrolyte composition of the present invention is preferably one that can reversibly insert and release lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide, an organic substance, an element that can be complexed with Li, such as sulfur, or a complex of sulfur and metal.
  • the positive electrode active material it is preferable to use a transition metal oxide, and a transition metal oxide having a transition metal element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu and V). More preferred.
  • this transition metal oxide includes an element M b (an element of the first (Ia) group of the metal periodic table other than lithium, an element of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Elements such as Sb, Bi, Si, P or B) may be mixed.
  • the mixing amount is preferably 0 ⁇ 30 mol% relative to the amount of the transition metal element M a (100mol%). Those synthesized by mixing so that the molar ratio of Li / Ma is 0.3 to 2.2 are more preferable.
  • transition metal oxide examples include (MA) a transition metal oxide having a layered rock salt structure, (MB) a transition metal oxide having a spinel structure, (MC) a lithium-containing transition metal phosphate compound, (MD And lithium-containing transition metal halide phosphate compounds and (ME) lithium-containing transition metal silicate compounds.
  • a transition metal oxide having a (MA) layered rock salt structure is preferred.
  • transition metal oxides having a layered rock salt structure LiCoO 2 (lithium cobaltate [LCO]), LiNiO 2 (lithium nickelate) LiNi 0.85 Co 0.10 Al 0.05 O 2 (Lithium nickel cobalt aluminate [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (nickel manganese lithium cobaltate [NMC]) and LiNi 0.5 Mn 0.5 O 2 (manganese nickel acid Lithium).
  • LiCoO 2 lithium cobaltate [LCO]
  • LiNiO 2 lithium nickelate
  • LiNi 0.85 Co 0.10 Al 0.05 O 2 Lithium nickel cobalt aluminate [NCA]
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 nickel manganese lithium cobaltate [NMC]
  • LiNi 0.5 Mn 0.5 O 2 mangaganese nickel acid Lithium
  • transition metal oxides having (MB) spinel structure include LiMn 2 O 4 (LMO), LiCoMnO 4, Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li 2 NiMn 3 O 8 is mentioned.
  • (MC) lithium-containing transition metal phosphate compounds include olivine-type iron phosphate salts such as LiFePO 4 (lithium iron phosphate [LFP]) and Li 3 Fe 2 (PO 4 ) 3 , LiFeP 2 O 7 and the like.
  • iron phosphate pyrophosphates cobalt phosphates such as LiCoPO 4
  • monoclinic Nasicon type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate).
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F
  • Cobalt fluorophosphates such as Examples of the (ME) lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4, and Li 2 CoSiO 4 .
  • (MC) a transition metal oxide having a lithium-containing transition metal phosphate compound is preferred, an olivine-type iron phosphate salt is more preferred, and LFP is more preferred.
  • the shape of the positive electrode active material is not particularly limited, but is preferably particulate.
  • the volume average particle diameter (sphere conversion average particle diameter) of the positive electrode active material is not particularly limited.
  • the thickness can be 0.1 to 50 ⁇ m.
  • an ordinary pulverizer or classifier may be used.
  • the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the volume average particle diameter (sphere-converted average particle diameter) of the positive electrode active material particles can be measured using a laser diffraction / scattering particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA).
  • the positive electrode active materials may be used alone or in combination of two or more.
  • the mass (mg) (weight per unit area) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. This can be determined as appropriate according to the designed battery capacity.
  • the content of the positive electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 95% by mass, more preferably 30 to 90% by mass, and even more preferably 50 to 85% by mass at 100% by mass. Preferably, it is 55 to 80% by mass.
  • the negative electrode active material that may be contained in the solid electrolyte composition of the present invention is preferably one that can reversibly insert and release lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and is a carbonaceous material, a metal oxide such as tin oxide, a silicon oxide, a metal composite oxide, a lithium simple substance and a lithium alloy such as a lithium aluminum alloy, and , Metals such as Sn, Si, Al, and In that can form an alloy with lithium.
  • a carbonaceous material or a lithium composite oxide is preferably used from the viewpoint of reliability.
  • the metal composite oxide is preferably capable of inserting and extracting lithium.
  • the material is not particularly limited, but preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
  • the carbonaceous material used as the negative electrode active material is a material substantially made of carbon.
  • various synthetics such as petroleum pitch, carbon black such as acetylene black (AB), graphite (natural graphite, artificial graphite such as vapor-grown graphite), PAN (polyacrylonitrile) -based resin, furfuryl alcohol resin, etc.
  • the carbonaceous material which baked resin can be mentioned.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber, and activated carbon fiber. Examples thereof include mesophase microspheres, graphite whiskers, and flat graphite.
  • an amorphous oxide is particularly preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used. It is done.
  • amorphous as used herein means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2 ⁇ , and is a crystalline diffraction line. You may have.
  • the amorphous oxide of the metalloid element and the chalcogenide are more preferable, and elements of Groups 13 (IIIB) to 15 (VB) of the periodic table, Al , Ga, Si, Sn, Ge, Pb, Sb and Bi are used alone or in combination of two or more thereof, and chalcogenides are particularly preferable.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 and SnSiS 3 are preferred. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
  • the negative electrode active material contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics due to small volume fluctuations during the insertion and release of lithium ions, and the deterioration of the electrodes is suppressed, and the lithium ion secondary This is preferable in that the battery life can be improved.
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • a Si-based negative electrode it is also preferable to apply a Si-based negative electrode.
  • a Si negative electrode can occlude more Li ions than a carbon negative electrode (such as graphite and acetylene black). That is, the amount of occlusion of Li ions per unit mass increases. Therefore, the battery capacity can be increased. As a result, there is an advantage that the battery driving time can be extended.
  • the shape of the negative electrode active material is not particularly limited, but is preferably particulate.
  • the average particle size of the negative electrode active material is preferably 0.1 to 60 ⁇ m.
  • a normal pulverizer or classifier is used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill, and a sieve are preferably used.
  • pulverizing wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary.
  • classification is preferably performed.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
  • the average particle diameter of the negative electrode active material particles can be measured by the same method as the above-described method for measuring the volume average particle diameter of the positive electrode active material.
  • the chemical formula of the compound obtained by the above firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method, and from a mass difference between powders before and after firing as a simple method.
  • ICP inductively coupled plasma
  • the said negative electrode active material may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the mass (mg) (weight per unit area) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. This can be determined as appropriate according to the designed battery capacity.
  • the content of the negative electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 80% by mass, and more preferably 20 to 80% by mass with a solid content of 100% by mass.
  • the surfaces of the positive electrode active material and the negative electrode active material may be coated with another metal oxide.
  • the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si, or Li. Specific examples include spinel titanate, tantalum-based oxides, niobium-based oxides, lithium niobate-based compounds, and the like. Specifically, Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 , LiTaO 3.
  • the electrode surface containing a positive electrode active material or a negative electrode active material may be surface-treated with sulfur or phosphorus. Further, the particle surface of the positive electrode active material or the negative electrode active material may be subjected to surface treatment with actinic rays or an active gas (plasma or the like) before and after the surface coating.
  • the solid electrolyte composition of the present invention contains a conductive additive.
  • a conductive support agent What is known as a general conductive support agent can be used.
  • graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor grown carbon fiber, carbon nanotube Carbon fibers such as graphene, carbonaceous materials such as graphene and fullerene, metal powders such as copper and nickel, metal fibers may be used, and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives are used.
  • the present invention when a negative electrode active material and a conductive additive are used in combination, Li is not inserted and released when the battery is charged / discharged, and the one that does not function as the negative electrode active material is used as the conductive aid. Therefore, among the conductive assistants, those that can function as the negative electrode active material in the negative electrode active material layer when the battery is charged and discharged are classified as negative electrode active materials, not conductive assistants. Whether or not the battery functions as a negative electrode active material when the battery is charged / discharged is not unambiguous and is determined by a combination with the negative electrode active material.
  • the content of the conductive additive in the solid electrolyte composition of the present invention is not particularly limited, but is preferably 0.1 to 15% by mass, more preferably 0.5 to 5% by mass with respect to 100% by mass of the solid component.
  • the solid electrolyte composition of the present invention may contain a dispersant. Even when the concentration of either the active material or the sulfide-based inorganic solid electrolyte is high by adding a dispersant, and when the particle diameter is fine and the surface area is increased, the aggregation is suppressed, and a uniform active material layer and A solid electrolyte layer can be formed.
  • the dispersant those usually used for all-solid secondary batteries can be appropriately selected and used. In general, compounds intended for particle adsorption and steric repulsion and / or electrostatic repulsion are preferably used.
  • the solid electrolyte composition of the present invention includes the following steps (1) and (2), and is obtained as a slurry containing a sulfide-based inorganic solid electrolyte (A), an organic compound (B), and a lithium salt (C). Can do.
  • Step (1) Mixing the organic compound (B) and the lithium salt (C);
  • Step (2) A step of mixing the mixture obtained in step (1) with the sulfide-based inorganic solid electrolyte (A).
  • a stirring apparatus of a process (1) For example, a stirrer is mentioned.
  • the mixing conditions are not particularly limited, but it is preferable to mix at 100 to 1500 rpm (rotation per minute) at 20 to 70 ° C. for 0.5 to 2 hours. Although it does not specifically limit as a mixing apparatus of a process (2), For example, a ball mill, bead mill, a planetary mixer, a blade mixer, a roll mill, a kneader, and a disk mill are mentioned.
  • the mixing conditions are not particularly limited. For example, when a ball mill is used, it is preferable to mix at 150 to 700 rpm for 1 to 24 hours.
  • the dispersion of the sulfide-based inorganic solid electrolyte (A) and the like described above may be added and mixed simultaneously with the step, or may be added and mixed separately in step (2).
  • the solid electrolyte-containing sheet of the present invention includes a sulfide-based inorganic solid electrolyte (A) having conductivity of metal ions belonging to Group 1 or Group 2 of the periodic table, and an organic compound (B) having a log P ⁇ 1 or less.
  • the lithium salt (C) is contained and contains 5 mass% or more of lithium salt (C).
  • the above description can be employed for the sulfide-based inorganic solid electrolyte (A), the organic compound (B), the lithium salt (C), and optional components.
  • the lithium salt (C) content is 5% by mass or more, preferably 6% by mass or more, and more preferably 7% by mass or more. Although there is no restriction
  • the material derived from the organic compound (B) having a log P ⁇ 1 or less and the lithium salt (C) are contained in the above range, so that in the solid electrolyte-containing sheet containing an active material, It is considered that the substance and the lithium salt block the void at the interface of the inorganic solid electrolyte particles.
  • the solid electrolyte-containing sheet of the present invention can be suitably used for an all-solid-state secondary battery, and includes various modes depending on the application.
  • the solid electrolyte-containing sheet used in the all-solid secondary battery include a sheet (also referred to as a solid electrolyte sheet for an all-solid secondary battery) that is preferably used for the solid electrolyte layer, and an electrode or a laminate of the electrode and the solid electrolyte layer.
  • the sheet (electrode sheet for an all-solid secondary battery) preferably used in the present invention can be mentioned, and the solid electrolyte-containing sheet of the present invention is suitably used for the electrode sheet for an all-solid secondary battery.
  • these various sheets may be collectively referred to as an all-solid secondary battery sheet.
  • the all-solid-state secondary battery sheet is a sheet having a solid electrolyte layer or an active material layer (electrode layer).
  • the sheet include a solid electrolyte layer or an active material layer (electrode layer) on a substrate.
  • the all-solid-state secondary battery sheet may have other layers as long as it has a base material and a solid electrolyte layer or an active material layer. It is classified as a secondary battery electrode sheet. Examples of other layers include a protective layer, a current collector, and a coat layer (current collector, solid electrolyte layer, active material layer) and the like.
  • Examples of the solid electrolyte sheet for an all-solid secondary battery include a sheet having a solid electrolyte layer and a protective layer in this order on a base material.
  • the substrate is not particularly limited as long as it can support the solid electrolyte layer, and examples thereof include materials described in the current collector, sheet materials (plate bodies) such as organic materials and inorganic materials, and the like.
  • Examples of the organic material include various polymers, and specific examples include polyethylene terephthalate, polypropylene, polyethylene, and cellulose.
  • Examples of the inorganic material include glass and ceramic.
  • the thickness of the solid electrolyte layer of the all-solid-state secondary battery sheet is the same as the thickness of the solid electrolyte layer described in the above-described all-solid-state secondary battery of the present invention.
  • This sheet forms a solid electrolyte layer on a substrate by forming (applying and drying) a solid electrolyte composition for forming a solid electrolyte layer on the substrate (may be through another layer). Is obtained.
  • the solid electrolyte composition of the present invention can be prepared by the above-described method.
  • An electrode sheet for an all-solid-state secondary battery of the present invention is a sheet for forming an active material layer of an all-solid-state secondary battery, and is on a metal foil as a current collector.
  • the electrode sheet having an active material layer is usually a sheet having a current collector and an active material layer, but an embodiment having a current collector, an active material layer, and a solid electrolyte layer in this order, and a current collector, an active material layer, and a solid electrolyte The aspect which has a layer and an active material layer in this order is also included.
  • each layer thickness of each layer constituting the electrode sheet is the same as the layer thickness of each layer described in the above-described all solid state secondary battery of the present invention.
  • the structure of each layer which comprises an electrode sheet is the same as the structure of each layer demonstrated in the postscript and the all-solid-state secondary battery of this invention.
  • the electrode sheet can be obtained by forming (coating and drying) the solid electrolyte composition of the present invention on a metal foil to form an active material layer on the metal foil.
  • a base material can be peeled and it can also be set as the solid electrolyte containing sheet
  • the all solid state secondary battery of the present invention has a positive electrode, a negative electrode facing the positive electrode, and a solid electrolyte layer between the positive electrode and the negative electrode.
  • the positive electrode has a positive electrode active material layer on a positive electrode current collector.
  • the negative electrode has a negative electrode active material layer on a negative electrode current collector. At least one of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer is preferably formed using the solid electrolyte composition of the present invention.
  • the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer formed using the solid electrolyte composition of the present invention preferably have a solid content of the solid electrolyte composition with respect to the component types to be contained and the content ratio thereof. Basically the same as the thing.
  • the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer may contain the organic compound (B) within a range that does not affect the battery performance, and the content is 10 ppm or more and 10, 000 ppm is preferred.
  • the content rate of the dispersion medium (C) in the active material layer of the all-solid-state secondary battery of this invention can be measured with reference to the method described in the term of the below-mentioned Example.
  • a preferred embodiment of the present invention will be described with reference to FIG. 1, but the present invention is not limited to this.
  • a positive electrode active material layer, solid electrolyte layer, negative electrode active material layer In the all-solid-state secondary battery 10, at least one of a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer is produced using the solid electrolyte composition of the present invention.
  • the positive electrode active material layer 4 and / or the negative electrode active material layer 2 are produced using the solid electrolyte composition of the present invention containing an active material, the positive electrode active material layer 4 and the negative electrode active material layer 2 are respectively And a positive electrode active material or a negative electrode active material, and further includes a sulfide-based inorganic solid electrolyte (A), a substance derived from an organic compound (B), and a lithium salt (C).
  • At least one of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer in the all-solid-state secondary battery includes a sulfide-based inorganic solid electrolyte (A), an organic compound (B), and lithium.
  • the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electronic conductors. In the present invention, either or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
  • Materials for forming the positive electrode current collector include aluminum, aluminum alloy, stainless steel, nickel and titanium, as well as the surface of aluminum or stainless steel treated with carbon, nickel, titanium or silver (formation of a thin film) Among them, aluminum and aluminum alloys are more preferable.
  • the material for forming the negative electrode current collector is treated with carbon, nickel, titanium or silver on the surface of aluminum, copper, copper alloy or stainless steel. What was made to do is preferable, and aluminum, copper, a copper alloy, and stainless steel are more preferable.
  • the current collector is usually in the form of a film sheet, but a net, a punched one, a lath, a porous body, a foam, a fiber group molded body, or the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m.
  • the current collector surface is roughened by surface treatment.
  • a functional layer, a member, or the like is appropriately interposed or disposed between or outside each of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector. May be.
  • Each layer may be composed of a single layer or a plurality of layers.
  • the basic structure of the all-solid-state secondary battery can be manufactured by arranging each of the above layers. Depending on the application, it may be used as an all-solid secondary battery as it is, but in order to form a dry battery, it is further enclosed in a suitable housing.
  • the housing may be metallic or made of resin (plastic). When using a metallic thing, the thing made from an aluminum alloy and stainless steel can be mentioned, for example.
  • the metallic housing is preferably divided into a positive-side housing and a negative-side housing, and electrically connected to the positive current collector and the negative current collector, respectively.
  • the casing on the positive electrode side and the casing on the negative electrode side are preferably joined and integrated through a gasket for preventing a short circuit.
  • the solid electrolyte-containing sheet of the present invention forms a solid electrolyte layer on a substrate by forming (coating and drying) the solid electrolyte composition of the present invention on the substrate (may be through another layer). Is obtained.
  • seat which has on the base material the layer containing a sulfide type inorganic solid electrolyte (A), the substance derived from an organic compound (B), and lithium salt (C). Can do.
  • the method as described in manufacture of the following all-solid-state secondary battery can be used.
  • seat of this invention contains the organic compound (B) in the said layer in the range which does not affect battery performance.
  • a preferable content is 10 ppm or more and 10,000 ppm or less on a mass basis.
  • seat of this invention is computable by the method as described in the term of an Example.
  • Manufacture of all-solid-state secondary battery and electrode sheet for all-solid-state secondary battery can be performed by a conventional method. Specifically, the all-solid-state secondary battery and the electrode sheet for the all-solid-state secondary battery can be manufactured by forming each of the above layers using the solid electrolyte composition of the present invention. This will be described in detail below.
  • the all-solid-state secondary battery of the present invention includes a step of applying the solid electrolyte composition of the present invention on a base material (for example, a metal foil to be a current collector) to form a coating film (film formation) ( Can be manufactured by a method.
  • a solid electrolyte composition containing a positive electrode active material is applied as a positive electrode material (positive electrode composition) on a metal foil that is a positive electrode current collector to form a positive electrode active material layer, and an all-solid secondary A positive electrode sheet for a battery is prepared.
  • a solid electrolyte composition for forming a solid electrolyte layer is applied on the positive electrode active material layer to form a solid electrolyte layer.
  • a solid electrolyte composition containing a negative electrode active material is applied as a negative electrode material (negative electrode composition) on the solid electrolyte layer to form a negative electrode active material layer.
  • An all-solid secondary battery having a structure in which a solid electrolyte layer is sandwiched between a positive electrode active material layer and a negative electrode active material layer is obtained by stacking a negative electrode current collector (metal foil) on the negative electrode active material layer. Can do. If necessary, this can be enclosed in a housing to obtain a desired all-solid secondary battery.
  • each layer is reversed, and a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is stacked to manufacture an all-solid secondary battery.
  • Another method includes the following method. That is, a positive electrode sheet for an all-solid secondary battery is produced as described above. Further, a negative electrode active material layer is formed by applying a solid electrolyte composition containing a negative electrode active material as a negative electrode material (negative electrode composition) on a metal foil as a negative electrode current collector, and forming an all-solid secondary A negative electrode sheet for a battery is prepared. Next, a solid electrolyte layer is formed on one of the active material layers of these sheets as described above. Furthermore, the other of the positive electrode sheet for an all solid secondary battery and the negative electrode sheet for an all solid secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other.
  • Another method includes the following method. That is, as described above, a positive electrode sheet for an all-solid secondary battery and a negative electrode sheet for an all-solid secondary battery are produced. Separately from this, a solid electrolyte composition is applied on a substrate to produce a solid electrolyte sheet for an all-solid secondary battery comprising a solid electrolyte layer. Furthermore, it laminates
  • An all-solid-state secondary battery can also be manufactured by a combination of the above forming methods. For example, as described above, a positive electrode sheet for an all-solid secondary battery, a negative electrode sheet for an all-solid secondary battery, and a solid electrolyte sheet for an all-solid secondary battery are produced. Then, after laminating the solid electrolyte layer peeled off from the base material on the negative electrode sheet for an all solid secondary battery, an all solid secondary battery can be produced by pasting the positive electrode sheet for the all solid secondary battery. it can. In this method, the solid electrolyte layer can be laminated on the positive electrode sheet for an all-solid secondary battery, and bonded to the negative electrode sheet for an all-solid secondary battery.
  • the method for applying the solid electrolyte composition is not particularly limited, and can be appropriately selected. Examples thereof include coating (preferably wet coating), spray coating, spin coating coating, dip coating, slit coating, stripe coating, and bar coating coating. At this time, the solid electrolyte composition may be dried after being applied, or may be dried after being applied in multiple layers.
  • the drying temperature is not particularly limited.
  • the lower limit is preferably 30 ° C or higher, more preferably 60 ° C or higher, and still more preferably 80 ° C or higher.
  • the upper limit is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 200 ° C. or lower.
  • the organic compound (B) outside the voids can be removed and a solid state can be obtained. Moreover, it is preferable because the temperature is not excessively raised and each member of the all-solid-state secondary battery is not damaged. Thereby, in the all-solid-state secondary battery, excellent overall performance can be exhibited and good binding properties can be obtained.
  • each layer or all-solid secondary battery After applying the solid electrolyte composition to the substrate or after producing an all-solid secondary battery. Moreover, it is also preferable to pressurize in the state which laminated
  • An example of the pressurizing method is a hydraulic cylinder press.
  • the applied pressure is not particularly limited and is generally preferably in the range of 50 to 1500 MPa.
  • the heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. It is also possible to press at a temperature higher than the glass transition temperature of the sulfide-based inorganic solid electrolyte.
  • each composition may be applied simultaneously, and application and drying presses may be performed simultaneously and / or sequentially. You may laminate
  • the atmosphere during pressurization is not particularly limited, and may be any of the following: air, dry air (dew point -20 ° C. or lower), and inert gas (for example, argon gas, helium gas, nitrogen gas).
  • the pressing time may be a high pressure in a short time (for example, within several hours), or a medium pressure may be applied for a long time (1 day or more).
  • a restraining tool screw tightening pressure or the like
  • the pressing pressure may be uniform or different with respect to the pressed part such as the sheet surface.
  • the pressing pressure can be changed according to the area and film thickness of the pressed part. Also, the same part can be changed stepwise with different pressures.
  • the press surface may be smooth or roughened.
  • the all solid state secondary battery manufactured as described above is preferably initialized after manufacture or before use.
  • the initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging in a state where the press pressure is increased, and then releasing the pressure until the general use pressure of the all-solid secondary battery is reached.
  • the all solid state secondary battery of the present invention can be applied to various uses. Although there is no particular limitation on the application mode, for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax machine, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, portable tape recorder, radio, backup power supply, memory card, etc.
  • Others for consumer use include automobiles (electric cars, etc.), electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.) . Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
  • An all-solid secondary battery in which all of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer are layers composed of the solid electrolyte composition of the present invention.
  • a solid electrolyte composition containing a sulfide-based inorganic solid electrolyte (A), an organic compound (B), a lithium salt (C), and a second dispersion medium.
  • a solid electrolyte composition preparation kit comprising a container containing an organic compound (B) and a lithium salt (C) and a container containing a sulfide-based inorganic solid electrolyte (A).
  • a solid electrolyte composition prepared from the kit for preparing a solid electrolyte composition [4] A solid electrolyte composition prepared from the kit for preparing a solid electrolyte composition. [5] An electrode sheet for an all-solid-state secondary battery, which is formed by applying any of the solid electrolyte compositions on a metal foil and forming a film. [6] A method for producing an electrode sheet for an all-solid-state secondary battery, wherein any of the solid electrolyte compositions is applied onto a metal foil to form a film.
  • the container used for the above-mentioned solid electrolyte composition preparation kit is not particularly limited.
  • Examples of the container containing the organic compound (B) and the lithium salt (C) include a glass container, a metal container (SUS container, aluminum container, etc.), a plastic container (Teflon (registered trademark) container). , Polyethylene containers, polypropylene containers, polyethylene terephthalate (PET) containers, polycarbonate containers).
  • the organic compound (B) and the lithium salt (C) may be mixed before being put in the container, or after being put in the container and before being mixed with the sulfide-based inorganic solid electrolyte.
  • the container containing the sulfide-based inorganic solid electrolyte (A) can be an ordinary container that encloses the sulfide-based inorganic solid electrolyte.
  • An all-solid secondary battery refers to a secondary battery in which the positive electrode, the negative electrode, and the electrolyte are all solid. In other words, it is distinguished from an electrolyte type secondary battery using a carbonate-based solvent as an electrolyte.
  • this invention presupposes an inorganic all-solid-state secondary battery.
  • the all-solid-state secondary battery includes an organic (polymer) all-solid-state secondary battery using a polymer compound such as polyethylene oxide as an electrolyte, and an inorganic all-solid-state using the above-described Li—PS glass, LLT, LLZ, etc. It is divided into secondary batteries.
  • an organic compound to an inorganic all-solid secondary battery is not hindered, and the organic compound can be applied as a binder or additive for a positive electrode active material, a negative electrode active material, and an inorganic solid electrolyte.
  • the inorganic solid electrolyte is distinguished from an electrolyte (polymer electrolyte) using the above-described polymer compound as an ion conductive medium, and the inorganic compound serves as an ion conductive medium. Specific examples include the above-described Li—PS glass, LLT, and LLZ.
  • the inorganic solid electrolyte itself does not release cations (Li ions) but exhibits an ion transport function.
  • electrolyte a material that is added to the electrolytic solution or the solid electrolyte layer and serves as a source of ions that release cations (Li ions) is sometimes called an electrolyte.
  • electrolyte salt When distinguishing from the electrolyte as the above ion transport material, this is called “electrolyte salt” or “supporting electrolyte”.
  • electrolyte salt An example of the electrolyte salt is LiTFSI.
  • composition means a mixture in which two or more components are uniformly mixed. However, as long as the uniformity is substantially maintained, aggregation or uneven distribution may partially occur within a range in which a desired effect is achieved.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • Ionic conductivity of the sulfide-based inorganic solid electrolyte thickness of sulfide-based inorganic solid electrolyte molded body (cm) / (R (ion) ⁇ sulfide-based inorganic solid electrolyte molded body area (radius ⁇ radius ⁇ ⁇ ) (cm 2 ))
  • Table 1 shows the LogP value of the dispersion medium used in Examples and Comparative Examples, and the number of carbon atoms or the number of ether bonds in one molecule of the organic compound (B).
  • Lithium salt solutions A002 to A014, A101 to A103, and cA001 to cA003 were prepared in the same manner as the lithium salt solution A001 except that the composition shown in Table 2 below was adopted. However, the lithium salt of cA002 was precipitated and remained without dissolving.
  • Mixing amount (1) Indicates the number of grams of the organic compound (B).
  • Mixing amount (2) Indicates the number of grams of lithium salt (C).
  • -Mixed amount (3) Number of moles of lithium salt (C) with respect to 1 mol of organic compound (B)-The number in parentheses in the column of organic compound (B) is the water content (mass basis) of organic compound (B). means.
  • Karl Fischer measuring instrument MKC-610 (trade name, manufactured by Kyoto Electronics Industry Co., Ltd.)
  • Anolyte Aquamicron AX 100mL
  • Counter electrode liquid Aquamicron CXU 5mL (Both are trade names, manufactured by Mitsubishi Chemical Corporation)
  • Solid electrolyte compositions of S-1 to S-16 and S-101 to S-103 are examples.
  • the solid electrolyte compositions cS-1 to cS-4 are comparative examples.
  • composition for positive electrode> Preparation of composition AS-1 for positive electrode- Fifty zirconia beads having a diameter of 3 mm were put into a 45 mL container (manufactured by Fritsch) made of zirconia, and 2.5 g of the solid electrolyte composition S-1 prepared above was added. To this, 4.37 g of a positive electrode active material NMC (111), 0.09 g of a conductive additive (acetylene black) were added, and 1 g of dibutyl ether was further added as a second dispersion medium. This container was set on a planetary ball mill P-7 (manufactured by Fritsch) and stirred at a temperature of 25 ° C. and a rotation speed of 100 rpm for 15 minutes to prepare a positive electrode composition AS-1.
  • a positive electrode active material NMC 111
  • a conductive additive acetylene black
  • the positive electrode compositions of AS-1 to AS-17 and AS-101 to AS-104 are examples.
  • the positive electrode compositions cAS-1 to cAS-4 are comparative examples.
  • NMC (111) was used as an active material.
  • NMC (111) is Li (Ni 1/3 Mn 1/3 Co 1/3 ) O 2 , and “(111)” indicates the composition ratio of Ni, Mn, and Co.
  • -Acetylene black was used as the conductive assistant.
  • -"-" In the table means that the corresponding component is not contained.
  • the amount of Li salt and the amount of residual organic compounds mean the amount in the positive electrode active material layer formed from the composition for positive electrodes mentioned later.
  • the amount of the remaining organic compound is the total amount of the organic compound (B) and the second dispersion medium.
  • the negative electrode compositions of BS-1 to BS-16 and BS-101 to BS-104 are examples.
  • the negative electrode compositions of cBS-1 to cBS-4 are comparative examples.
  • Solution 1 Measured using the Li-NMR method. 1 g of each layer was peeled off in a glove box after formation of each layer described later and before lamination, and stirred in a mortar for 5 minutes to obtain a powder. To this was added 10 g of heavy water (D 2 O) to which lithium chloride was added as an internal standard substance, and the mixture was stirred at room temperature for 30 minutes. After filtering the solid component, 1 Li-NMR measurement was performed, and a correlation curve was created for the correlation between the 1 Li-NMR peak area and the amount of the organic compound (B), and the amount of the remaining dispersion medium was calculated.
  • D 2 O heavy water
  • Solution 1 Measured using 1 H-NMR method. 1 g of each layer was peeled off in a glove box after formation of each layer described later and before lamination, and stirred in a mortar for 5 minutes to obtain a powder. This heavy water was added maleic acid (D 2 O) was 10g added as an internal standard substance, and the mixture was stirred for 30 minutes at room temperature. After filtering the solid component, 1 H-NMR measurement was performed, and a correlation curve was created for the correlation between the 1 H-NMR peak area and the amount of the organic compound (B), and the amount of the residual dispersion medium was calculated.
  • D 2 O maleic acid
  • the positive electrode composition cAS-2 prepared above was applied onto an aluminum foil (current collector) having a thickness of 20 ⁇ m by an applicator (trade name: SA-201 Baker type applicator, manufactured by Tester Sangyo Co., Ltd.), and at 80 ° C. After heating for 1 hour, the composition was further heated at 110 ° C. for 1 hour to dry the positive electrode composition. Then, using a heat press machine, it pressurized (180 Mpa, 1 minute), heating (120 degreeC), and produced the positive electrode sheet for all-solid-state secondary batteries which has a laminated structure of a positive electrode active material layer / aluminum foil. The thickness of the positive electrode active material layer was 90 ⁇ m.
  • the solid electrolyte composition cS-2 prepared above was applied by the Baker applicator and heated at 80 ° C. for 1 hour. Furthermore, it heated at 100 degreeC for 1 hour, and formed the 100-micrometer-thick solid electrolyte layer.
  • the negative electrode composition BS-1 prepared above was applied onto the obtained solid electrolyte layer with the above-described Baker type applicator, heated at 80 ° C. for 1 hour, and further heated at 110 ° C. for 1 hour to obtain a thickness. A 100 ⁇ m negative electrode active material layer was formed.
  • a copper foil having a thickness of 20 ⁇ m was combined on the negative electrode active material layer, and was pressurized while heating at 120 ° C. using a heat press machine (600 MPa, 1 minute). 101 all-solid-state secondary battery sheet was produced. In this all-solid-state secondary battery sheet, the capacity of the negative electrode is 1.2 times the capacity of the positive electrode.
  • Discharge capacity retention ratio (%) 100th cycle discharge capacity / first cycle discharge capacity ⁇ 100
  • Discharge capacity maintenance rate 90% to 100%
  • B Discharge capacity maintenance ratio 75% to less than 90%
  • C Discharge capacity maintenance ratio 50% to less than 75%
  • D Discharge capacity maintenance ratio 35% to less than 50%
  • E Discharge capacity maintenance ratio Less than 35%
  • Discharge capacity retention ratio (%) 100th cycle discharge capacity / first cycle discharge capacity ⁇ 100
  • a Discharge capacity maintenance rate 90% to 100% B Discharge capacity maintenance ratio: 75% to less than 90% C Discharge capacity maintenance ratio: 50% to less than 75% D Discharge capacity maintenance ratio: 35% to less than 50% E Discharge capacity maintenance ratio: Less than 35%
  • the negative electrode layer thickness “100/85” is No.
  • the thickness of the negative electrode active material layer of “No. 101 all-solid-state secondary battery sheet in which the negative electrode capacity is 1.2 times the positive electrode capacity” is 100 ⁇ m. It means that the thickness of the negative electrode active material layer of No. 101 all-solid secondary battery sheet whose negative electrode capacity is 1.01 times the positive electrode capacity is 85 ⁇ m.
  • the all-solid-state secondary battery of the present invention can exhibit high ionic conductivity at low temperatures by being excellent in cycle characteristics (0 ° C.). Moreover, the all-solid-state secondary battery of the present invention is excellent in cycle characteristics (N / P ratio 1.01), so that the negative electrode active material layer has a large expansion / contraction difference, and a gap is generated between the active material and the inorganic solid electrolyte. It can be seen that good ion conductivity can be maintained by using this configuration even in an easy system. It can be seen that the all-solid-state secondary battery of the present invention is excellent in both of these two cycle characteristics, and thus has excellent ionic conductivity in a wide temperature difference region even if the expansion / contraction difference of the negative electrode active material layer is large.

Abstract

周期律表第1族または第2族に属する金属のイオンの伝導性を有する硫化物系無機固体電解質(A)と、logP≦1の有機化合物(B)と、リチウム塩(C)とを含み、有機化合物(B)1molに対し、リチウム塩(C)を0.1mol以上含む固体電解質組成物、固体電解質含有シートおよび全固体二次電池、並びに、固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法。

Description

固体電解質組成物、固体電解質含有シートおよび全固体二次電池、並びに、固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法
 本発明は、固体電解質組成物、固体電解質含有シートおよび全固体二次電池、並びに、固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法に関する。
 リチウムイオン二次電池は、負極と、正極と、負極及び正極の間に挟まれた電解質とを有し、両極間にリチウムイオンを往復移動させることにより充放電を可能とした蓄電池である。リチウムイオン二次電池には、従来、電解質として有機電解液が用いられてきた。しかし、有機電解液は液漏れを生じやすく、また、過充電または過放電により電池内部で短絡が生じ発火するおそれもあり、安全性と信頼性のさらなる向上が求められている。
 このような状況下、有機電解液に代えて、無機固体電解質を用いた全固体二次電池が注目されている。全固体二次電池は負極、電解質および正極のすべてが固体からなり、有機電解液を用いた電池の課題とされる安全性ないし信頼性を大きく改善することができ、また長寿命化も可能になるとされる。さらに、全固体二次電池は、電極と電解質を直接並べて直列に配した構造とすることができる。そのため、有機電解液を用いた二次電池に比べてエネルギーの高密度化が可能となるので、電気自動車や大型蓄電池等への応用が期待されている。
 上記のような各利点から、次世代のリチウムイオン電池として全固体二次電池の実用化に向けた研究開発が活発に進められており、全固体二次電池の性能向上のための技術が多数報告されるようになってきた。例えば、特許文献1には、全固体二次電池を構成する正極活物質層、負極活物質層および固体電解質層のうち少なくとも1層に、シロキサン結合を有する環状化合物の架橋重合体と、周期律表第1族もしくは第2族に属する金属を含みかつイオン伝導性を有する無機固体電解質とを含有させることにより、イオン伝導度の低下が抑制され、耐湿性及び経時安定性に優れた全固体二次電池を提供できることが開示されている。
特開2016-33918号公報
 全固体二次電池の実用化においては、全固体二次電池の長期使用における性能の低下を抑えることが重要となる。すなわち、サイクル特性に優れることが重要である。
 上記周期律表第1族もしくは第2族に属する金属を含みかつイオン伝導性を有する無機固体電解質は、酸化物系無機固体電解質と硫化物系無機固体電解質とを含む。硫化物系無機固体電解質は、酸化物系無機固体電解質に比べてイオン伝導性に優れるため、より電池性能を向上させることができる。しかしながら、硫化物系無機固体電解質は、水及び極性の大きい分散媒と反応することでイオン伝導性が低下する。このイオン伝導性の低下に伴い、全固体二次電池のサイクル特性も低下してしまう。そのため、硫化物系無機固体電解質を用いてサイクル特性に優れる全固体二次電池を作製しようとすると、固体電解質組成物の調製に用いる分散媒は、極性の小さいものが使用される傾向にある。
 本発明は、全固体二次電池に用いる、硫化物系無機固体電解質及び極性の大きい(logP≦1)化合物を含有する固体電解質組成物であって、全固体二次電池のサイクル特性を向上させることができる固体電解質組成物を提供することを課題とする。また、本発明は、全固体二次電池に用いる、硫化物系無機固体電解質を含有する固体電解質含有シートであって、全固体二次電池のサイクル特性を向上させることができる固体電解質含有シートを提供することを課題とする。また、本発明は、上記固体電解質組成物を用いた全固体二次電池を提供することを課題とする。さらに、本発明は、上記固体電解質組成物、固体電解質含有シート及び全固体二次電池の製造方法を提供することを課題とする。
 本発明者らが鋭意検討した結果、特定の硫化物系無機固体電解質と、分散媒として作用する極性の大きい特定の有機化合物と、特定量のリチウム塩とを含有する固体電解質組成物において、この有機化合物が、リチウム塩と相互作用し得ることで、この固体電解質組成物を用いて製造した全固体二次電池を、サイクル特性に優れたものにできることを見出した。本発明はこの知見に基づきさらに検討を重ね、完成されるに至ったものである。
 本発明者らが種々検討した結果、上記の課題は以下の手段により解決された。
<1>
 周期律表第1族または第2族に属する金属のイオンの伝導性を有する硫化物系無機固体電解質(A)と、logP≦1の有機化合物(B)と、リチウム塩(C)とを含み、有機化合物(B)1molに対し、リチウム塩(C)を0.1mol以上含む固体電解質組成物。
<2>
 有機化合物(B)が、シアノ基、ヒドロキシ基、エステル結合、アミド結合、ケトン基、カーボネート基及び/又はスルファニル基(シアノ基、ヒドロキシ基、エステル結合、アミド結合、ケトン基、カーボネート基及びスルファニル基の少なくとも1種)を有する<1>に記載の固体電解質組成物。
<3>
 有機化合物(B)の炭素数が、1以上5以下である<1>又は<2>に記載の固体電解質組成物。
<4>
 有機化合物(B)が、エーテル結合を有する<1>に記載の固体電解質組成物。
<5>
 有機化合物(B)1分子中のエーテル結合数が、3以上10以下である<4>に記載の固体電解質組成物。
<6>
 有機化合物(B)が、下記一般式(b)で表わされる化合物である<5>に記載の固体電解質組成物。
Figure JPOXMLDOC01-appb-C000003
 式中、R及びRは各々独立して、水素原子、アルキル基またはアリール基を示し、Lはアルキレン基またはアリーレン基を示す。RとRは互いに結合して環を形成してもよい。nは2以上の整数を示す。
<7>
 有機化合物(B)の分子量が、100以上500未満である<6>に記載の固体電解質組成物。
<8>
 一般式(b)において、RおよびRが各々独立して、アルキル基またはアリール基を示す<6>または<7>に記載の固体電解質組成物。
<9>
 有機化合物(B)が、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテルおよび/またはテトラエチレングリコールジメチルエーテル(ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテルおよびテトラエチレングリコールジメチルエーテルの少なくとも1種)である<8>に記載の固体電解質組成物。
<10>
 有機化合物(B)に含まれる水の含有量が、質量基準で、1ppm以上1,000ppm以下である<1>~<9>のいずれか1つに記載の固体電解質組成物。
<11>
 バインダー(D)を含有する<1>~<10>のいずれか1つに記載の固体電解質組成物。
<12>
 活物質(E)を含有する<1>~<11>のいずれか1つに記載の固体電解質組成物。
<13>
 周期律表第1族または第2族に属する金属のイオンの伝導性を有する硫化物系無機固体電解質(A)と、logP≦1以下の有機化合物(B)に由来する物質とリチウム塩(C)とを含み、リチウム塩(C)を5質量%以上含有する固体電解質含有シート。
<14>
 有機化合物(B)が、シアノ基、ヒドロキシ基、エステル結合、アミド結合、ケトン基、カーボネート基及び/又はスルファニル基(シアノ基、ヒドロキシ基、エステル結合、アミド結合、ケトン基、カーボネート基及びスルファニル基の少なくとも1種)を有する<13>に記載の固体電解質含有シート。
<15>
 有機化合物(B)の炭素数が、1以上5以下である<13>又は<14>に記載の固体電解質含有シート。
<16>
 有機化合物(B)が、エーテル結合を有する<13>に記載の固体電解質含有シート。
<17>
 有機化合物(B)1分子中のエーテル結合数が、3以上10以下である<16>に記載の固体電解質含有シート。
<18>
 有機化合物(B)が、下記一般式(b)で表わされる化合物である<17>に記載の固体電解質含有シート。
Figure JPOXMLDOC01-appb-C000004
 式中、R及びRは各々独立して、水素原子、アルキル基またはアリール基を示し、Lはアルキレン基またはアリーレン基を示す。RとRは互いに結合して環を形成してもよい。nは2以上の整数を示す。
<19>
 有機化合物(B)の分子量が、100以上500未満である<18>に記載の固体電解質含有シート。
<20>
 一般式(b)において、RおよびRが各々独立して、アルキル基またはアリール基を示す<18>または<19>に記載の固体電解質含有シート。
<21>
 有機化合物(B)が、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテルおよび/またはテトラエチレングリコールジメチルエーテル(ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテルおよびテトラエチレングリコールジメチルエーテルの少なくとも1種)である<20>に記載の固体電解質含有シート。
<22>
 有機化合物(B)に含まれる水の含有量が、質量基準で、1ppm以上1,000ppm以下である<13>~<21>のいずれか1つに記載の固体電解質含有シート。
<23>
 有機化合物(B)の含有量が、質量基準で、10ppm以上10,000ppm以下である<13>~<22>のいずれか1つに記載の固体電解質含有シート。
<24>
 バインダー(D)を含有する<13>~<23>のいずれか1つに記載の固体電解質含有シート。
<25>
 活物質(E)を含有する<13>~<24>のいずれか1つに記載の記載の固体電解質含有シート。
<26>
 正極活物質層と負極活物質層と固体電解質層とを具備する全固体二次電池であって、正極活物質層、負極活物質層および固体電解質層の少なくともいずれかを<1>~<12>のいずれか1つに記載の固体電解質組成物で構成した層とした全固体二次電池。
<27>
 下記工程(1)及び(2)を含む<1>~<12>のいずれか1つに記載の固体電解質組成物の製造方法。
工程(1):
 有機化合物(B)とリチウム塩(C)とを混合する工程、
工程(2):
 工程(1)で得た混合物と、硫化物系無機固体電解質(A)とを混合する工程。
<28>
 <1>~<12>のいずれか1つに記載の固体電解質組成物を基材上に適用し、これを乾燥する固体電解質含有シートの製造方法。
<29>
 <22>に記載の製造方法を介して、固体電解質含有シートを有する全固体二次電池を製造する全固体二次電池の製造方法。
 本発明の説明において、「logP≦1以下の有機化合物(B)に由来する物質」とは、logP≦1以下の有機化合物(B)自体、硫化物系無機固体電解質の被覆層を有する有機化合物(B)、logP≦1以下の有機化合物(B)がリチウム塩と相互作用した溶媒和塩、logP≦1以下の有機化合物(B)の酸化体及び還元体、並びに有機化合物(B)とリチウムとの反応体を意味する。
 本発明の説明において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本発明の説明において、質量平均分子量は、特段の断りがない限り、ゲルパーミエーションクロマトグラフィー(GPC)によってポリスチレン換算の分子量として計測することができる。このとき、GPC装置HLC-8220(商品名、東ソー社製)を用い、カラムはG3000HXL+G2000HXL(いずれも商品名、東ソー社製)を用い、23℃で流量は1mL/minで、RIで検出することとする。溶離液としては、THF(テトラヒドロフラン)、クロロホルム、NMP(N-メチル-2-ピロリドン)、m-クレゾール/クロロホルム(湘南和光純薬社製)から選定することができ、溶解するものであればTHFを用いることとする。
 本発明の固体電解質組成物は、全固体二次電池の作製に用いることにより、全固体二次電池のサイクル特性を向上させることができる。また、本発明の固体電解質含有シートは、全固体二次電池に用いることにより、全固体二次電池のサイクル特性を向上させることができる。また、本発明の全固体二次電池は、サイクル特性に優れる。さらに、本発明の固体電解質組成物の製造方法、固体電解質含有シートの製造方法および全固体二次電池の製造方法によれば、上記の優れた性能を有する固体電解質組成物、固体電解質含有シートおよび全固体二次電池を製造することができる。
本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。 実施例で作製した全固体二次電池(コイン電池)を模式的に示す縦断面図である。
<好ましい実施形態>
 図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5を、この順に有する。各層はそれぞれ接触しており、積層した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位6に電子が供給される。図示した例では、作動部位6に電球を採用しており、放電によりこれが点灯するようにされている。
 本発明の固体電解質組成物は、上記負極活物質層、固体電解質層及び/又は正極活物質層の成形材料として好ましく用いることができる。また、本発明の固体電解質含有シートは、上記負極活物質層、固体電解質層及び/又は正極活物質層として好適である。
 本明細書において、正極活物質層(以下、正極層とも称す。)と負極活物質層(以下、負極層とも称す。)をあわせて電極層または活物質層と称することがある。
 また、図1に示す層構成を有する全固体二次電池を全固体二次電池シートと称することもある。
 正極活物質層4、固体電解質層3、負極活物質層2の厚さは特に限定されない。なお、一般的な電池の寸法を考慮すると、10~1,000μmが好ましく、20μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層4、固体電解質層3および負極活物質層2の少なくとも1層の厚さが、50μm以上500μm未満であることがさらに好ましい。
<固体電解質組成物>
 本発明の固体電解質組成物は、周期律表第1族または第2族に属する金属のイオンの伝導性を有する硫化物系無機固体電解質(A)と、logP≦1の有機化合物(B)と、リチウム塩(C)とを含み、有機化合物(B)1molに対し、リチウム塩(C)を0.1mol以上含む。
 以下、「周期律表第1族または第2族に属する金属のイオンの伝導性を有する硫化物系無機固体電解質(A)」を「硫化物系無機固体電解質(A)」と称することもある。また、「logP≦1の有機化合物(B)」を「有機化合物(B)」と称することもある。また、固体電解質組成物に含まれる各成分を、単に「硫化物系無機固体電解質」のように符号を付さずに記載することもある。
 以下、組成物中の各成分について詳述する。
(硫化物系無機固体電解質(A))
 本発明の固体電解質組成物は、硫化物系無機固体電解質(A)を含有する。
 無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオンおよびアニオンに解離または遊離していない。この点で、電解液やポリマー中でカチオンおよびアニオンが解離または遊離している無機電解質塩(LiPF、LiBF、LiFSI、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族または第2族に属する金属のイオンの伝導性を有するものであれば特に限定されず電子伝導性を有さないものが一般的である。
 上記無機固体電解質は、この種の製品に適用される固体電解質材料を適宜選定して用いることができる。無機固体電解質は(i)硫化物系無機固体電解質及び(ii)酸化物系無機固体電解質が代表例として挙げられる。本発明では、硫化物系無機固体電解質が用いられる。
 本発明に用いられる硫化物系無機固体電解質は、硫黄原子(S)を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLi、SおよびPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的または場合に応じて、Li、SおよびP以外の他の元素を含んでもよい。
 例えば下記式(I)で示される組成を満たすリチウムイオン伝導性硫化物系無機固体電解質が挙げられる。
 
   La1b1c1d1e1 式(I)
 
 式中、LはLi、NaおよびKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1はさらに、1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましい。d1はさらに、2.5~10が好ましく、3.0~8.5がより好ましい。e1はさらに、0~5が好ましく、0~3がより好ましい。
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、PおよびSを含有するLi-P-S系ガラス、またはLi、PおよびSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mであらわされる元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
 Li-P-S系ガラスおよびLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。たとえばLiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法および溶融急冷法を挙げられる。常温(25℃)での処理が可能になり、製造工程の簡略化を図ることができるからである。
 硫化物系無機固体電解質の体積平均粒子径は特に限定されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。なお、硫化物系無機固体電解質粒子の平均粒子径の測定は、以下の手順で行う。硫化物系無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調整する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
 硫化物系無機固体電解質の固体電解質組成物中の固形成分における含有量は、全固体二次電池に用いたときの界面抵抗の低減と低減された界面抵抗の維持を考慮したとき、固形成分100質量%において、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
 上記硫化物系無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 なお、本明細書において固形分(固形成分)とは、窒素雰囲気下80℃で6時間乾燥処理を行ったときに、揮発ないし蒸発して消失しない成分をいう。典型的には、後述の分散媒以外の成分を指す。
(酸化物系無機固体電解質)
 本発明の固体電解質組成物は、上記硫化物系無機固体電解質(A)の他に、本発明の効果を奏する範囲内で、酸化物系無機固体電解質を含有してもよい。酸化物系無機固体電解質は、酸素原子(O)を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 具体的な化合物例としては、例えばLixaLayaTiO〔xa=0.3~0.7、ya=0.3~0.7〕(LLT)、LixbLaybZrzbbb mbnb(MbbはAl,Mg,Ca,Sr,V,Nb,Ta,Ti,Ge,In,Snの少なくとも1種以上の元素でありxbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)、Lixcyccc zcnc(MccはC,S,Al,Si,Ga,Ge,In,Snの少なくとも1種以上の元素でありxcは0≦xc≦5を満たし、ycは0≦yc≦1を満たし、zcは0≦zc≦1を満たし、ncは0≦nc≦6を満たす。)、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(ただし、1≦xd≦3、0≦yd≦1、0≦zd≦2、0≦ad≦1、1≦md≦7、3≦nd≦13)、Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子または2種以上のハロゲン原子の組み合わせを表す。)、LixfSiyfzf(1≦xf≦5、0<yf≦3、1≦zf≦10)、Lixgygzg(1≦xg≦3、0<yg≦2、1≦zg≦10)、LiBO-LiSO、LiO-B-P、LiO-SiO、LiBaLaTa12、LiPO(4-3/2w)(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(ただし、0≦xh≦1、0≦yh≦1)、ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。
 上記酸化物系無機固体電解質の体積平均粒子径及び測定方法は、硫化物系無機固体電解質(A)の体積平均粒子径及び測定方法の記載を好ましく適用することができる。
(有機化合物(B))
 本発明の固体電解質組成物に用いられる有機化合物(B)は、logP≦1であれば特に限定されない。logP値の下限は特に制限されないが、-4以上であることが実際的である。なお、LogP値はPerkinElmer社製ChemBioDraw(商品名)Version:12.9.2.1076で算出した値である。有機化合物(B)は分散媒として作用する。
 有機化合物(B)は、リチウム塩(イオン)に対して良好に配位し、硫化物系無機固体電解質及び活物質との相互作用が可能で、良好なイオン伝導度を示すため、シアノ基、ヒドロキシ基、エステル結合、アミド結合、ケトン基、カーボネート基及び/またはスルファニル基を有する化合物であることが好ましい。なお、本発明の説明において、アミド結合及びカーボネート基を有する化合物は、ケトン基を有する化合物には含まれない。
 シアノ基を有する化合物具体例としては、アセトニトリル、プロピオニトリル、イソプロピオニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、イソバレロニトリル、ピバロニトリル、ヘキサンニトリル、ヘプタンニトリル、マロノニトリル及びスクシノニトリルが挙げられる。
 ヒドロキシ基を有する化合物の具体例としては、エタノール、トリエチレングリコール、メタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、フェノール、ベンジルアルコール、tert-ブタノール及びヘキサノールが挙げられる。
 エステル結合を有する化合物の具体例としては、酢酸エチル、酢酸メチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸イソプロピル、プロピオン酸ブチル、プロピオン酸イソブチル、酪酸メチル、酪酸エチル、酪酸プロピル、酪酸イソプロピル、酪酸ブチル、酪酸イソブチル、酪酸tert-ブチル、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸イソプロピル、ギ酸ブチル、ギ酸イソブチル、γブチロラクトン、γバレロラクトン、δバレロラクトン、εカプロラクトン、安息香酸メチル及び安息香酸エチルが挙げられる。なお、本発明の説明において、エステル結合を有する化合物は、ケトン基を有する化合物及びエーテル結合を有する化合物に分類されない。
 アミド結合を有する化合物の具体例としては、NMP(N-メチル-2-ピロリドン)、N-エチル-2-ピロリドン、ジメチルアセトアミド、ジメチルイミダゾリジノン及びジメチルホルムアミドが挙げられる。
 ケトン基を有する化合物の具体例としては、アセトン、エチルメチルケトン、ジエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、2-ペンタノン、2-ヘキサノン、3-ヘキサノン、ジイソプロピルケトン、シクロヘキサノン、アセトフェノン及びジイソブチルケトンが挙げられる。
 カーボネート基を有する化合物の具体例としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート及びジエチルカーボネートが挙げられる。なお、本発明の説明において、カーボネート基を有する化合物は、ケトン基を有する化合物、エステル結合を有する化合物及びエーテル結合を有する化合物に分類されない。
 スルファニル基を有する化合物の具体例としては、プロパンチオール、ブタンチオール、イソブチルメルカプタン、3-メチル2-ブタンチオール、イソアミルメルカプタン、2-メチル―1-ブタンチオール及びヘキサンジチオールが挙げられる。
 有機化合物(B)は、リチウム塩(イオン)に対して良好に配位し、硫化物系無機固体電解質及び活物質との相互作用が可能で、良好なイオン伝導度を示すため、エーテル結合を有する化合物であることも好ましい。なお、本発明の説明において、エーテル結合には、上記エステル結合中の「-O-」および上記カーボネート基中の「-O-」は含まれない。
 エーテル結合を有する化合物として、1分子中のエーテル結合数が2以上の化合物が好ましく、3以上がより好ましい。上限は特に限定されないが、100以下が好ましく、50以下がより好ましく、10以下が特に好ましい。1分子中のエーテル結合数が上記範囲にあることにより、イオン伝導度をより高めることが可能となる。これは、リチウム塩のリチウムイオンを複数のエーテル結合部位で安定化することが可能となり、リチウム塩のアニオンとの相互作用を弱めるためと考えられる。
 上記エーテル結合を有する化合物は、エーテル結合部位により、より効果的にリチウムイオンと配位することが可能になるため、下記一般式(b)で表わされるエーテル化合物が好ましい。
Figure JPOXMLDOC01-appb-C000005
 式中、R及びRは各々独立して、水素原子、アルキル基またはアリール基を示し、Lはアルキレン基またはアリーレン基を示す。RとRは互いに結合して環を形成してもよい。nは2以上の整数を示す。R、RおよびLは、置換基を有してもよい。
 エーテル結合部位により、効率的にリチウムイオンに配位することが可能と考えられ、さらに電気化学的に安定であるため、RおよびRは各々独立して、アルキル基またはアリール基を示すことが好ましく、アルキル基を示すことがより好ましい。
 上記アルキル基の炭素数は、1~10が好ましく、1~6がより好ましく、1または2が特に好ましい。上記アルキル基の具体例として、メチル、エチル、t-ブチル、i-プロピル、シクロヘキシルが挙げられる。
 上記アリール基の炭素数は、6~20が好ましく、6~13がより好ましく、6~8が特に好ましい。上記アルキル基の具体例として、フェニル、ナフチルが挙げられる。
 Lはアルキレン基を示すことが好ましい。
 Lにより示されるアルキレン基の炭素数は、1~10が好ましく、1~6がより好ましく、1~3が特に好ましい。上記アルキレン基の具体例として、メチレン、エチレン、プロピレンが挙げられる。
 Lにより示されるアリーレン基の炭素数は、6~20が好ましく、6~13がより好ましく、6~8が特に好ましい。上記アリーレン基の具体例として、フェニレン、ナフチレンが挙げられる。
 上述のように、RとRは互いに結合して環を形成してもよい。この環は、6~24員環が好ましく、6~15員環がより好ましく、これらの環が縮合した環であってもよい。
 nの上限は特に制限されないが、20以下の整数が好ましく、9以下の整数がより好ましく、4以下が特に好ましい。
 R、RおよびLが有してもよい置換基の具体例として、後述の置換基Pが挙げられる。
 有機化合物(B)とリチウム塩の相互作用により、イオン伝導度を高くすることができる。有機化合物(B)の分子量の下限は、50以上が好ましく、100以上がより好ましい。上限は、2000未満が好ましく、500未満がより好ましい。上記分子量は、100以上500未満が特に好ましい。有機化合物(B)の分子量が上記範囲内にあることにより、配位結合を介して、より効果的にリチウムイオンと相互作用することができる。また、有機化合物(B)が適度な粘度を有し、イオン伝導度をより高めることができる。
 エーテル結合を有する化合物として、ジエチルエーテル、ジイソプロピルエーテル、t-ブチルメチルエーテル、エチレングリコール、エチレングリコールジメチルエーテル、ジブチルエーテル、ジエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル(テトラグライム)、トリエチレングリコールジメチルエーテル(トリグライム)、テトラエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、テトラエチレングリコール、トリエチレングリコール等が挙げられる。
 中でもジエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル(テトラグライム)、トリエチレングリコールジメチルエーテル(トリグライム)、テトラエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、テトラエチレングリコール、トリエチレングリコールが好ましく、リチウムイオンを効率的に配位することができるため、ジエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテルがより好ましい。
 上記有機化合物(B)は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 有機化合物(B)は、分子の極性が高いほど、リチウム塩に配位しやすい。また、硫化物系無機固体電解質と相互作用することで、イオン伝導度を向上していると考えられるため、有機化合物(B)の炭素数は1以上であることが特に好ましい。上限に特に制限はないが、炭素数が12以下であることが好ましく、8以下であることがより好ましく、5以下であることが特に好ましい。
 本発明に用いられる有機化合物(B)は、後述のように、リチウム塩(C)と相互作用すると考えられるため、有機化合物(B)に水が、質量基準で、1ppm以上1,000ppm以下含まれていても、本発明の固体電解質組成物は効果を奏することができる。
(リチウム塩(C))
 本発明に用いることができるリチウム塩(C)としては、通常この種の製品に用いられるリチウム塩が好ましく、特に制限はないが、例えば、以下に述べるものが好ましい。
 (C-1)無機リチウム塩:LiPF、LiBF、LiAsF、LiSbF等の無機フッ化物塩;LiClO、LiBrO、LiIO等の過ハロゲン酸塩;LiAlCl等の無機塩化物塩等。
 (C-2)含フッ素有機リチウム塩:LiCFSO等のパーフルオロアルカンスルホン酸塩;LiN(CFSO〔LiTFSI〕、LiN(CFCFSO〔LiBETI〕、LiN(FSO〔LiFSI〕、LiN(CFSO)(CSO)等のパーフルオロアルカンスルホニルイミド塩;LiC(CFSO等のパーフルオロアルカンスルホニルメチド塩;Li[PF(CFCFCF)]、Li[PF(CFCFCF]、Li[PF(CFCFCF]、Li[PF(CFCFCFCF)]、Li[PF(CFCFCFCF]、Li[PF(CFCFCFCF]等のフルオロアルキルフッ化リン酸塩等。
 (C-3)オキサラトボレート塩:リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等。
 これらのなかで、LiBF、LiTFSI、LiBETI及びLiFSIが好ましい。
 なお、リチウム塩は、1種を単独で使用しても、2種以上を任意に組み合わせてもよい。
 リチウム塩の含有量は、有機化合物(B)1molに対して0.1mol以上であり、0.3mol以上であることが好ましく、0.5mol以上であることがより好ましい。上限としては、1.5mol以下であることが好ましく、1mol以下であることがより好ましい。リチウム塩の含有量が、有機化合物(B)1molに対して0.1mol未満であると、リチウム塩(C)と配位しない有機化合物(B)の極性置換基が多数存在するため、硫化物系無機固体電解質と反応し、全固体二次電池の抵抗を上昇させる成分になりうる。
 本発明の固体電解質組成物において、有機化合物(B)とリチウム塩(C)とは相互作用していると考えられる。相互作用の形態は特に制限されないが、リチウム塩が有機化合物(B)により溶媒和されている形態、有機化合物(B)とリチウム塩(C)とが配位結合を形成し複合している形態が考えられる。このように、有機化合物(B)とリチウム塩(C)とは相互作用していることにより、硫化物系無機固体電解質と有機化合物(B)とが反応することを抑制し、硫化物系無機固体電解質のイオン伝導性の低下を抑制することができると考えられる。
 本発明の固体電解質組成物において、有機化合物(B)とリチウム塩(C)とが相互作用しうる状態で含有されていれば、有機化合物(B)以外の化合物(以下、「第2の分散剤」とも称する。)、すなわち、logP値が1を超える分散媒を含有してもよい。logP値が1を超える分散剤は特に限定されないが、例えば、ヘキサン(3.0)、ブチロニトリル(1.24)、ジブチルエーテル(2.57)及びジイソプロピルケトン(2.64)が挙げられる。
(イオン液体)
 本発明の固体電解質組成物は、固体電解質含有シートのイオン伝導度および全固体二次電池のサイクル特性をより向上させるため、イオン液体を含有してもよい。イオン液体としては、特に限定されないが、上述したリチウム塩(C)を溶解するものが好ましい。例えば、下記のカチオンと、アニオンとの組み合わせよりなる化合物が挙げられる。
 (i)カチオン
 カチオンとしては、イミダゾリウムカチオン、ピリジニウムカチオン、ピペリジニウムカチオン、ピロリジニウムカチオン、モルホリニウムカチオン、ホスホニウムカチオンおよび第4級アンモニウムカチオン等が挙げられる。ただし、これらのカチオンは後述の置換基を有する。
 カチオンとしては、これらのカチオンを1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 カチオンとして、第4級アンモニウムカチオン、ピペリジニウムカチオン又はピロリジニウムカチオンが好ましい。
 上記カチオンが有する置換基としては、アルキル基(炭素数は1~8が好ましく、1~4がより好ましい。)、ヒドロキシアルキル基(炭素数1~3が好ましい。)、アルキルオキシアルキル基(炭素数は2~8が好ましく、2~4がより好ましい。)、エーテル結合を有する基(上記アルキル基の炭素鎖中にエーテル結合を少なくとも1つ有する基)、アリル基、アミノアルキル基(炭素数は1~8が好ましく、1~4がより好ましい。)、アリール基(炭素数は6~12が好ましく、6~8がより好ましい。)が挙げられる。上記置換基はカチオン部位を含有する形で環状構造を形成してもよい。置換基はさらに後記置換基Pを有していてもよい。
 (ii)アニオン
 アニオンとしては、塩化物イオン、臭化物イオン、ヨウ化物イオン、四フッ化ホウ素イオン、硝酸イオン、ジシアナミドイオン、酢酸イオン、四塩化鉄イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(フルオロスルホニル)イミドイオン、ビス(パーフルオロブチルメタンスルホニル)イミドイオン、アリルスルホネートイオン、ヘキサフルオロリン酸イオンおよびトリフルオロメタンスルホネートイオン等が挙げられる。
 アニオンとしては、これらのアニオンを1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 好ましくは、四フッ化ホウ素イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(フルオロスルホニル)イミドイオン又はヘキサフルオロリン酸イオン、ジシアナミドイオンまたはアリルスルホネートイオンであり、より好ましくはビス(トリフルオロメタンスルホニル)イミドイオンまたはビス(フルオロスルホニル)イミドイオン、アリルスルホネートイオンである。
 上記のイオン液体としては、例えば、1-アリル-3-エチルイミダゾリウムブロミド、1-エチル-3-メチルイミダゾリウムブロミド、1-(2-ヒドロキシエチル)-3-メチルイミダゾリウムブロミド、1-(2-メトキシエチル)-3-メチルイミダゾリウムブロミド、1-オクチル-3-メチルイミダゾリウムクロリド、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムテトラフルオロボラート、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド、1-エチル-3-メチルイミダゾリウムジシアナミド、1-ブチル-1-メチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド、トリメチルブチルアンモニウムビス(トリフルオロメタンスルホニル)イミド、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム ビス(トリフルオロメタンスルホニル)イミド、N-(2-メトキシエチル)-N-メチルピロリジニウム テトラフルオロボラード、1-ブチル-1-メチルピロリジニウム イミダゾリウムビス(フルオロスルホニル)イミド、(2-アクリロイルエチル)トリメチルアンモニウムビス(トリフルオロメタンスルホニル)イミド、1-エチルー1-メチルピロリジニウムアリルスルホネート、1-エチルー3-メチルイミダゾリウムアリルスルホネートおよび塩化トリヘキシルテトラデシルホスホニウムが挙げられる。
 イオン液体の含有量は、無機固体電解質100質量部に対して0質量部以上が好ましく、1質量部以上がより好ましく、2質量部以上が最も好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましい。
 リチウム塩とイオン液体の質量比は、リチウム塩:イオン液体=1:20~20:1が好ましく、1:10~10:1がより好ましく、1:5~2:1が最も好ましい。
 置換基Pとしては、下記のものが挙げられる。
 アルキル基(好ましくは炭素原子数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、イソブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等、ただし本明細書においてアルキル基というときには通常シクロアルキル基を含む意味である。)、アリール基(好ましくは炭素原子数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、アラルキル基(好ましくは炭素数7~23のアラルキル基、例えば、ベンジル、フェネチル等)、ヘテロ環基(好ましくは炭素原子数2~20のヘテロ環基、好ましくは、環構成原子として酸素原子、硫黄原子および窒素原子から選択される少なくとも1つを有する5又は6員環のヘテロ環基が好ましく、例えば、テトラヒドロピラニル、テトラヒドロフラニル、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル、ピロリドン基等)、アルコキシ基(好ましくは炭素原子数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等、ただし本明細書においてアルコキシ基というときには通常アリーロイル基を含む意味である。)、アルコキシカルボニル基(好ましくは炭素原子数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素原子数6~26のアリールオキシカルボニル基、例えば、フェノキシカルボニル、1-ナフチルオキシカルボニル、3-メチルフェノキシカルボニル、4-メトキシフェノキシカルボニル等)、アミノ基(好ましくは炭素原子数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素原子数0~20のスルファモイル基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(好ましくは炭素原子数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル等)、アリーロイル基(好ましくは炭素原子数7~23のアリーロイル基、例えば、ベンゾイル等、ただし本明細書においてアシル基というときには通常アリーロイル基を含む意味である。)、アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、アセチルオキシ等)、アリーロイルオキシ基(好ましくは炭素原子数7~23のアリーロイルオキシ基、例えば、ベンゾイルオキシ等、ただし本明細書においてアシルオキシ基というときには通常アリーロイルオキシ基を含む意味である。)、カルバモイル基(好ましくは炭素原子数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、アルキルスルファニル基(好ましくは炭素原子数1~20のアルキルスルファニル基、例えば、メチルスルファニル、エチルスルファニル、イソプロピルスルファニル、ベンジルスルファニル等)、アリールスルファニル基(好ましくは炭素原子数6~26のアリールスルファニル基、例えば、フェニルスルファニル、1-ナフチルスルファニル、3-メチルフェニルスルファニル、4-メトキシフェニルスルファニル等)、アルキルスルホニル基(好ましくは炭素原子数1~20のアルキルスルホニル基、例えば、メチルスルホニル、エチルスルホニル等)、アリールスルホニル基(好ましくは炭素原子数6~22のアリールスルホニル基、例えば、ベンゼンスルホニル等)、アルキルシリル基(好ましくは炭素原子数1~20のアルキルシリル基、例えば、モノメチルシリル、ジメチルシリル、トリメチルシリル、トリエチルシリル等)、アリールシリル基(好ましくは炭素原子数6~42のアリールシリル基、例えば、トリフェニルシリル等)、アルコキシシリル基(好ましくは炭素原子数1~20のアルコキシシリル基、例えば、モノメトキシシリル、ジメトキシシリル、トリメトキシシリル、トリエトキシシリル等)、アリールオキシシリル基(好ましくは炭素原子数6~42のアリールオキシシリル基、例えば、トリフェニルオキシシリル等)、ホスホリル基(好ましくは炭素原子数0~20のホスホリル基、例えば、-OP(=O)(R)、ホスホニル基(好ましくは炭素原子数0~20のホスホニル基、例えば、-P(=O)(R)、ホスフィニル基(好ましくは炭素原子数0~20のホスフィニル基、例えば、-P(R)、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルイミノ基((メタ)アクリルアミド基)、ヒドロキシ基、スルファニル基、カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)が挙げられる。
 また、これらの置換基Pで挙げた各基は、上記の置換基Pがさらに置換していてもよい。
 化合物、置換基および連結基等がアルキル基、アルキレン基、アルケニル基、アルケニレン基、アルキニル基および/またはアルキニレン基等を含むとき、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよく、上記のように置換されていても無置換でもよい。
(バインダー(D))
 本発明の固体電解質組成物がバインダー(D)(以下、バインダーとも称する)を含有することで固体粒子間および全固体二次電池を構成する各層間の結着性が向上するため好ましい。
 本発明の固体電解質組成物に用いられるバインダーは、有機ポリマーであれば特に限定されない。
 本発明に用いることができるバインダーは、特に制限はなく、例えば、以下に述べる樹脂からなるバインダーが好ましい。
 含フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニレンジフルオリド(PVdF)およびポリビニレンジフルオリドとヘキサフルオロプロピレンの共重合物(PVdF-HFP)が挙げられる。
 炭化水素系熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、水素添加スチレンブタジエンゴム(HSBR)、ブチレンゴム、アクリロニトリルブタジエンゴム、ポリブタジエンおよびポリイソプレンが挙げられる。
 アクリル樹脂としては、各種の(メタ)アクリルモノマー類、(メタ)アクリルアミドモノマー類、およびこれら樹脂を構成するモノマーの共重合体が挙げられる。
 また、そのほかのビニル系モノマーとの共重合体も好適に用いられる。例えば、ポリ(メタ)アクリル酸メチル-ポリスチレン共重合体、ポリ(メタ)アクリル酸メチル-アクリロニトリル共重合体およびポリ(メタ)アクリル酸ブチル-アクリロニトリル-スチレン共重合体が挙げられる。
 その他の樹脂としては例えばポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、セルロース誘導体樹脂等が挙げられる。
 これらは1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 バインダーの形状は特に限定されず、固体電解質組成物中ないし全固体二次電池中において粒子状であっても不定形状であってもよい。
 本発明に用いられるバインダーを構成するポリマーの水分濃度は、100ppm(質量基準)以下が好ましい。
 また、本発明に用いられるバインダーを構成するポリマーは、固体電解質含有シートないし全固体二次電池を形成する際、固体の状態で使用しても良いし、ポリマー粒子分散液またはポリマー溶液の状態で用いてもよい。
 本発明に用いられるバインダーを構成するポリマーの質量平均分子量は10,000以上が好ましく、20,000以上がより好ましく、30,000以上がさらに好ましい。上限としては、1,000,000以下が好ましく、200,000以下がより好ましく、100,000以下がさらに好ましい。
-分子量の測定-
 本発明においてバインダーの分子量については、特に断らない限り、質量平均分子量をいい、ゲルパーミエーションクロマトグラフィー(GPC)によって標準ポリスチレン換算の質量平均分子量を計測する。測定法としては、基本として下記条件1又は条件2(優先)の方法により測定した値とする。ただし、バインダー種によっては適宜適切な溶離液を選定して用いればよい。
(条件1)
  カラム:TOSOH TSKgel Super AWM-H(商品名)を2本つなげる。
  キャリア:10mMLiBr/N-メチルピロリドン
  測定温度:40℃
  キャリア流量:1.0mL/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
(条件2)優先
  カラム:TOSOH TSKgel Super HZM-H(商品名)、TOSOH TSKgel Super HZ4000(商品名)、TOSOH TSKgel Super HZ2000(商品名)をつないだカラムを用いる。
  キャリア:テトラヒドロフラン
  測定温度:40℃
  キャリア流量:1.0mL/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
(活物質(E))
 本発明の固体電解質組成物は、周期律表第1族又は第2族に属する金属元素のイオンの挿入放出が可能な活物質(E)を含有してもよい。以下、活物質(E)を単に活物質とも称する。
 活物質としては、正極活物質及び負極活物質が挙げられ、正極活物質である遷移金属酸化物、又は、負極活物質であるチタン酸リチウムもしくは黒鉛が好ましい。
 本発明において、活物質(正極活物質、負極活物質)を含有する固体電解質組成物を、電極用組成物(正極用組成物、負極用組成物)ということがある。
 -正極活物質-
 本発明の固体電解質組成物が含有してもよい正極活物質は、可逆的にリチウムイオンを挿入および放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物や、有機物、硫黄などのLiと複合化できる元素や硫黄と金属の複合物などでもよい。
 中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、CuおよびVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、PまたはBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0~30mol%が好ましい。Li/Maのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物および(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。本発明において、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましい。
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNiO(ニッケル酸リチウム)LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])およびLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO4、LiFeMn、LiCuMn、LiCrMnおよびLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO(リン酸鉄リチウム[LFP])およびLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類ならびにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩およびLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiOおよびLiCoSiO等が挙げられる。
 本発明では、(MC)リチウム含有遷移金属リン酸化合物を有する遷移金属酸化物が好ましく、オリビン型リン酸鉄塩がより好ましく、LFPがさらに好ましい。
 正極活物質の形状は特に制限されないが粒子状が好ましい。正極活物質の体積平均粒子径(球換算平均粒子径)は特に限定されない。例えば、0.1~50μmとすることができる。正極活物質を所定の粒子径にするには、通常の粉砕機や分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。正極活物質粒子の体積平均粒子径(球換算平均粒子径)は、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて測定することができる。
 上記正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
 正極活物質の、固体電解質組成物中における含有量は、特に限定されず、固形分100質量%において、10~95質量%が好ましく、30~90質量%がより好ましく、50~85質量がさらに好ましく、55~80質量%が特に好ましい。
 -負極活物質-
 本発明の固体電解質組成物が含有してもよい負極活物質は、可逆的にリチウムイオンを挿入および放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、酸化錫等の金属酸化物、酸化ケイ素、金属複合酸化物、リチウム単体およびリチウムアルミニウム合金等のリチウム合金、並びに、Sn、Si、AlおよびIn等のリチウムと合金形成可能な金属等が挙げられる。中でも、炭素質材料又はリチウム複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵および放出可能であることが好ましい。その材料は、特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂やフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。さらに、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維および活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカーならびに平板状の黒鉛等を挙げることもできる。
 負極活物質として適用される金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、さらに金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、SbおよびBiの1種単独あるいはそれらの2種以上の組み合わせからなる酸化物、ならびにカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、SbおよびSnSiSが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。
 負極活物質はチタン原子を含有することも好ましい。より具体的にはLiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。
 本発明においては、Si系の負極を適用することもまた好ましい。一般的にSi負極は、炭素負極(黒鉛およびアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。
 負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質の平均粒子径は、0.1~60μmが好ましい。所定の粒子径にするには、通常の粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミルおよび旋回気流型ジェットミルや篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式および湿式ともに用いることができる。負極活物質粒子の平均粒子径は、前述の正極活物質の体積平均粒子径の測定方法と同様の方法により測定することができる。
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
 負極活物質の、固体電解質組成物中における含有量は、特に限定されず、固形分100質量%において、10~80質量%であることが好ましく、20~80質量%がより好ましい。
 正極活物質および負極活物質の表面は別の金属酸化物で表面被覆されていてもよい。表面被覆剤としてはTi,Nb、Ta,W,Zr、Al,SiまたはLiを含有する金属酸化物等が挙げられる。具体的には、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、ニオブ酸リチウム系化合物等が挙げられ、具体的には、LiTi12,LiTi,LiTaO,LiNbO,LiAlO,LiZrO,LiWO,LiTiO,Li,LiPO,LiMoO,LiBO,LiBO,LiCO,LiSiO,SiO,TiO,ZrO,Al,B等が挙げられる。
 また、正極活物質または負極活物質を含む電極表面は硫黄またはリンで表面処理されていてもよい。
 さらに、正極活物質または負極活物質の粒子表面は、上記表面被覆の前後において活性光線または活性気体(プラズマ等)により表面処理を施されていても良い。
(導電助剤)
 本発明の固体電解質組成物は、導電助剤を含有することも好ましい。導電助剤としては、特に制限はなく、一般的な導電助剤として知られているものを用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維、カーボンナノチューブなどの炭素繊維類、グラフェン、フラーレンなどの炭素質材料であっても良いし、銅、ニッケルなどの金属粉、金属繊維でも良く、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体など導電性高分子を用いても良い。またこれらのうち1種を用いてもよいし、2種以上を用いてもよい。
 本発明において、負極活物質と導電助剤とを併用する場合、電池を充放電した際にLiの挿入と放出が起きず、負極活物質として機能しないものを導電助剤とする。したがって、導電助剤の中でも、電池を充放電した際に負極活物質層中において負極活物質として機能しうるものは、導電助剤ではなく負極活物質に分類する。電池を充放電した際に負極活物質として機能するか否かは、一義的ではなく、負極活物質との組み合わせにより決定される。
 本発明の固体電解質組成物中の導電助剤の含有量は特に制限されないが、固形成分100質量%において、0.1~15質量%が好ましく、0.5~5質量%がより好ましい。
(分散剤)
 本発明の固体電解質組成物は分散剤を含有してもよい。分散剤を添加することで活物質及び硫化物系無機固体電解質のいずれかの濃度が高い場合、並びに、粒子径が細かく表面積が増大する場合においてもその凝集を抑制し、均一な活物質層及び固体電解質層を形成することができる。分散剤としては、全固体二次電池に通常使用されるものを適宜選定して用いることができる。一般的には粒子吸着と立体反発および/または静電反発を意図した化合物が好適に使用される。
(固体電解質組成物の調製)
 本発明の固体電解質組成物は、下記工程(1)及び(2)を含み、硫化物系無機固体電解質(A)と有機化合物(B)とリチウム塩(C)とを含有するスラリーとして得ることができる。
工程(1):
 有機化合物(B)とリチウム塩(C)とを混合する工程、
工程(2):
 工程(1)で得た混合物と、硫化物系無機固体電解質(A)とを混合する工程。
 工程(1)の混合装置としては、特に限定されないが、例えば、スターラーが挙げられる。混合条件は特に制限されないが、100~1500rpm(rotation per minute)、20~70℃、0.5時間~2時間混合することが好ましい。
 工程(2)の混合装置としては、特に限定されないが、例えば、ボールミル、ビーズミル、プラネタリミキサー、ブレードミキサー、ロールミル、ニーダーおよびディスクミルが挙げられる。混合条件は特に制限されないが、例えば、ボールミルを用いた場合、150~700rpmで1時間~24時間混合することが好ましい。
 活物質(E)、導電助剤、粒子分散剤等の成分を含有する固体電解質組成物を調製する場合には、工程(2)において、上記の硫化物系無機固体電解質(A)等の分散工程と同時に添加及び混合してもよく、工程(2)において、別途添加及び混合してもよい。
[固体電解質含有シート]
 本発明の固体電解質含有シートは、周期律表第1族または第2族に属する金属のイオンの伝導性を有する硫化物系無機固体電解質(A)と、logP≦1以下の有機化合物(B)に由来する物質とリチウム塩(C)とを含み、リチウム塩(C)を5質量%以上含有する。
 硫化物系無機固体電解質(A)、有機化合物(B)及びリチウム塩(C)及び任意成分について、上述の記載を採用することができる。
 リチウム塩(C)の含有量は、5質量%以上であり、6質量%以上が好ましく、7質量%以上がより好ましい。上限に特に制限はないが、30質量%以下であることが実際的である。本発明の固体電解質含有シートに、logP≦1以下の有機化合物(B)に由来する物質とリチウム塩(C)が上記範囲で含まれることで、活物質を含有する固体電解質含有シートにおいて、上記物質とリチウム塩とが無機固体電解質粒子界面の空隙を塞ぐと考えられる。そのため、通常の非極性溶媒を用いた固体電解質組成物を用いて作製した全固体二次電池より活物質の膨張収縮に追随する無機固体電解質粒子が存在し、塞いだ空隙の間もリチウムイオン伝導することで、伝導度が向上し、全固体二次電池のサイクル特性を向上させることができると考えられる。
 本発明の固体電解質含有シートは、全固体二次電池に好適に用いることができ、その用途に応じて種々の態様を含む。全固体二次電池に用いられる固体電解質含有シートとしては、例えば、固体電解質層に好ましく用いられるシート(全固体二次電池用固体電解質シートともいう)及び電極又は電極と固体電解質層との積層体に好ましく用いられるシート(全固体二次電池用電極シート)が挙げられ、本発明の固体電解質含有シートは、全固体二次電池用電極シートに好適に用いられる。本発明において、これら各種のシートをまとめて全固体二次電池用シートということがある。
 全固体二次電池用シートは、固体電解質層又は活物質層(電極層)を有するシートで、例えば、基材上に固体電解質層又は活物質層(電極層)を有するシートの態様が挙げられる。以降、この態様のシートについて詳細に説明する。
 この全固体二次電池用シートは、基材と固体電解質層又は活物質層を有していれば、他の層を有してもよいが、活物質を含有するものは後述する全固体二次電池用電極シートに分類される。他の層としては、例えば、保護層、集電体、コート層(集電体、固体電解質層、活物質層)等が挙げられる。
 全固体二次電池用固体電解質シートとして、例えば、固体電解質層と保護層とを基材上に、この順で有するシートが挙げられる。
 基材としては、固体電解質層を支持できるものであれば特に限定されず、後記集電体で説明した材料、有機材料および無機材料等のシート体(板状体)等が挙げられる。有機材料としては、各種ポリマー等が挙げられ、具体的には、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレンおよびセルロース等が挙げられる。無機材料としては、例えば、ガラスおよびセラミック等が挙げられる。
 全固体二次電池用シートの固体電解質層の層厚は、上述の、本発明の全固体二次電池において説明した固体電解質層の層厚と同じである。
 このシートは、固体電解質層を形成するための固体電解質組成物を基材上(他の層を介していてもよい)に製膜(塗布乾燥)して、基材上に固体電解質層を形成することにより、得られる。
 ここで、本発明の固体電解質組成物は、上記の方法によって、調製できる。
 本発明の全固体二次電池用電極シート(単に「電極シート」ともいう。)は、全固体二次電池の活物質層を形成するためのシートであって、集電体としての金属箔上に活物質層を有する電極シートである。この電極シートは、通常、集電体及び活物質層を有するシートであるが、集電体、活物質層及び固体電解質層をこの順に有する態様、並びに、集電体、活物質層、固体電解質層及び活物質層をこの順に有する態様も含まれる。
 電極シートを構成する各層の層厚は、上述の、本発明の全固体二次電池において説明した各層の層厚と同じである。また、電極シートを構成する各層の構成は、後記、本発明の全固体二次電池において説明した各層の構成と同じである。
 電極シートは、本発明の固体電解質組成物を金属箔上に製膜(塗布乾燥)して、金属箔上に活物質層を形成することにより、得られる。
 なお、固体電解質層または活物質層を形成した後に基材を剥して固体電解質層または活物質層自体からなる固体電解質含有シートとすることもできる。
[全固体二次電池]
 本発明の全固体二次電池は、正極と、この正極に対向する負極と、正極及び負極の間の固体電解質層とを有する。正極は、正極集電体上に正極活物質層を有する。負極は、負極集電体上に負極活物質層を有する。
 正極活物質層、固体電解質層及び負極活物質層の少なくとも1つの層は、本発明の固体電解質組成物を用いて形成されることが好ましい。
 本発明の固体電解質組成物を用いて形成された正極活物質層、固体電解質層及び負極活物質層は、好ましくは、含有する成分種及びその含有量比について、固体電解質組成物の固形分におけるものと基本的に同じである。
 また、正極活物質層、固体電解質層及び負極活物質層は、電池性能に影響を与えない範囲で有機化合物(B)を含有していてもよく、含有量は質量基準で、10ppm以上10,000ppmが好ましい。なお、本発明の全固体二次電池の活物質層中における分散媒(C)の含有割合は、後述の実施例の項に記載する方法を参照し、測定することができる。
 以下に、図1を参照して、本発明の好ましい実施形態について説明するが、本発明はこれに限定されない。
〔正極活物質層、固体電解質層、負極活物質層〕
 全固体二次電池10においては、正極活物質層、固体電解質層及び負極活物質層の少なくとも1つの層が本発明の固体電解質組成物を用いて作製されている。
 正極活物質層4及び/又は負極活物質層2が、活物質を含有する本発明の固体電解質組成物を用いて作製されている場合、正極活物質層4及び負極活物質層2は、それぞれ、正極活物質又は負極活物質を含み、さらに、硫化物系無機固体電解質(A)と、有機化合物(B)に由来する物質とリチウム塩(C)とを含む。
 正極活物質層4、固体電解質層3及び負極活物質層2が含有する硫化物系無機固体電解質(A)と、有機化合物(B)に由来する物質と、リチウム塩(C)は、それぞれ、互いに同種であっても異種であってもよい。
 本発明においては、全固体二次電池における正極活物質層、固体電解質層及び負極活物質層の少なくとも1つの層が、硫化物系無機固体電解質(A)と、有機化合物(B)と、リチウム塩(C)とを含有する固体電解質組成物を用いて作製され、硫化物系無機固体電解質(A)と、有機化合物(B)に由来する物質と、リチウム塩(C)とを含有する層である。
〔集電体(金属箔)〕
 正極集電体5及び負極集電体1は、電子伝導体が好ましい。
 本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
 正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケルおよびチタンなどの他に、アルミニウムまたはステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウムおよびアルミニウム合金がより好ましい。
 負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケルおよびチタンなどの他に、アルミニウム、銅、銅合金またはステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金およびステンレス鋼がより好ましい。
 集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 集電体の厚みは、特に限定されないが、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
 本発明において、負極集電体、負極活物質層、固体電解質層、正極活物質層及び正極集電体の各層の間又はその外側には、機能性の層や部材等を適宜介在ないし配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。
〔筐体〕
 上記の各層を配置して全固体二次電池の基本構造を作製することができる。用途によってはこのまま全固体二次電池として使用してもよいが、乾電池の形態とするためにはさらに適当な筐体に封入して用いる。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金およびステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
[固体電解質含有シートの製造]
 本発明の固体電解質含有シートは、本発明の固体電解質組成物を基材上(他の層を介していてもよい)に製膜(塗布乾燥)して、基材上に固体電解質層を形成することにより、得られる。
 上記態様により、硫化物系無機固体電解質(A)と、有機化合物(B)に由来する物質と、リチウム塩(C)とを含有する層を基材上に有する固体電解質含有シートを作製することができる。
 その他、塗布等の工程については、下記全固体二次電池の製造に記載の方法を使用することができる。
 なお、本発明の固体電解質含有シートは、電池性能に影響を与えない範囲内で、上記層中に有機化合物(B)を含有する。好ましい含有量は、質量基準で、10ppm以上10,000ppm以下である。
 なお、本発明の固体電解質含有シートの上記層中の有機化合物(B)に由来する物質の含有割合は実施例の項に記載の方法で算出することができる。
[全固体二次電池及び全固体二次電池用電極シートの製造]
 全固体二次電池及び全固体二次電池用電極シートの製造は、常法によって行うことができる。具体的には、全固体二次電池及び全固体二次電池用電極シートは、本発明の固体電解質組成物等を用いて、上記の各層を形成することにより、製造できる。以下詳述する。
 本発明の全固体二次電池は、本発明の固体電解質組成物を、基材(例えば、集電体となる金属箔)上に塗布し、塗膜を形成(製膜)する工程を含む(介する)方法により、製造できる。
 例えば、正極集電体である金属箔上に、正極用材料(正極用組成物)として、正極活物質を含有する固体電解質組成物を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、この正極活物質層の上に、固体電解質層を形成するための固体電解質組成物を塗布して、固体電解質層を形成する。さらに、固体電解質層の上に、負極用材料(負極用組成物)として、負極活物質を含有する固体電解質組成物を塗布して、負極活物質層を形成する。負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。必要によりこれを筐体に封入して所望の全固体二次電池とすることができる。
 また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。
 別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シートを作製する。また、負極集電体である金属箔上に、負極用材料(負極用組成物)として、負極活物質を含有する固体電解質組成物を塗布して負極活物質層を形成し、全固体二次電池用負極シートを作製する。次いで、これらシートのいずれか一方の活物質層の上に、上記のようにして、固体電解質層を形成する。さらに、固体電解質層の上に、全固体二次電池用正極シート及び全固体二次電池用負極シートの他方を、固体電解質層と活物質層とが接するように積層する。このようにして、全固体二次電池を製造することができる。
 また別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シート及び全固体二次電池用負極シートを作製する。また、これとは別に、固体電解質組成物を基材上に塗布して、固体電解質層からなる全固体二次電池用固体電解質シートを作製する。さらに、全固体二次電池用正極シート及び全固体二次電池用負極シートで、基材から剥がした固体電解質層を挟むように積層する。このようにして、全固体二次電池を製造することができる。
 上記の形成法の組み合わせによっても全固体二次電池を製造することができる。例えば、上記のようにして、全固体二次電池用正極シート、全固体二次電池用負極シート及び全固体二次電池用固体電解質シートをそれぞれ作製する。次いで、全固体二次電池用負極シート上に、基材から剥がした固体電解質層を積層した後に、上記全固体二次電池用正極シートと張り合わせることで全固体二次電池を製造することができる。この方法において、固体電解質層を全固体二次電池用正極シートに積層し、全固体二次電池用負極シートと張り合わせることもできる。
(各層の形成(成膜))
 固体電解質組成物の塗布方法は、特に限定されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート、スリット塗布、ストライプ塗布およびバーコート塗布が挙げられる。
 このとき、固体電解質組成物は、それぞれ塗布した後に乾燥処理を施してもよいし、重層塗布した後に乾燥処理をしてもよい。乾燥温度は特に限定されない。下限は30℃以上が好ましく、60℃以上がより好ましく、80℃以上がさらに好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下がさらに好ましい。このような温度範囲で加熱することで、空隙外の有機化合物(B)を除去し、固体状態にすることができる。また、温度を高くしすぎず、全固体二次電池の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性を得ることができる。
 固体電解質組成物を基材に適用後、又は、全固体二次電池を作製した後に、各層又は全固体二次電池を加圧することが好ましい。また、各層を積層した状態で加圧することも好ましい。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては、特に限定されず、一般的には50~1500MPaの範囲であることが好ましい。
 また、塗布した固体電解質組成物は、加圧と同時に加熱してもよい。加熱温度としては、特に限定されず、一般的には30~300℃の範囲である。硫化物系無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。
 なお、各組成物は同時に塗布しても良いし、塗布乾燥プレスを同時および/または逐次行っても良い。別々の基材に塗布した後に、転写により積層してもよい。
 加圧中の雰囲気としては、特に限定されず、大気下、乾燥空気下(露点-20℃以下)および不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。
 プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。全固体二次電池用シート以外、例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
 プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
 プレス圧は被圧部の面積や膜厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
 プレス面は平滑であっても粗面化されていてもよい。
(初期化)
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化は、特に限定されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を開放することにより、行うことができる。
[全固体二次電池の用途]
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車(電気自動車等)、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
 本発明の好ましい実施形態によれば、以下のような各応用形態が導かれる。
〔1〕正極活物質層、固体電解質層および負極活物質層の全ての層が、本発明の固体電解質組成物で構成した層とした全固体二次電池。
〔2〕硫化物系無機固体電解質(A)と、有機化合物(B)と、リチウム塩(C)と、第2の分散媒とを含有する固体電解質組成物。
〔3〕有機化合物(B)とリチウム塩(C)とを含有する容器と、硫化物系無機固体電解質(A)を含有する容器とからなる固体電解質組成物調製用キット。
〔4〕上記固体電解質組成物調製用キットから調製された固体電解質組成物。
〔5〕上記固体電解質組成物のいずれかを金属箔上に適用し、製膜してなる全固体二次電池用電極シート。
〔6〕上記固体電解質組成物のいずれかを金属箔上に適用し、製膜する全固体二次電池用電極シートの製造方法。
 上記固体電解質組成物調製用キットに用いられる容器は特に制限されない。有機化合物(B)とリチウム塩(C)とを含有する容器としては、例えば、ガラス製容器、金属製容器(SUS製容器、アルミ製容器等)、プラスチック製容器(テフロン(登録商標)製容器、ポリエチレン製容器、ポリプロピレン製容器、ポリエチレンテレフタレート(PET)製容器、ポリカーボネート製容器)が挙げられる。有機化合物(B)とリチウム塩(C)は、容器に入れる前に混合されてもよく、容器に入れた後、硫化物系無機固体電解質と混合する前に混合してもよい。一方、硫化物系無機固体電解質(A)を含有する容器は、硫化物系無機固体電解質を封入する通常の容器を用いることができる。
 全固体二次電池とは、正極、負極、電解質がともに固体で構成された二次電池を言う。換言すれば、電解質としてカーボネート系の溶媒を用いるような電解液型の二次電池とは区別される。このなかで、本発明は無機全固体二次電池を前提とする。全固体二次電池には、電解質としてポリエチレンオキサイド等の高分子化合物を用いる有機(高分子)全固体二次電池と、上記のLi-P-S系ガラス、LLTおよびLLZ等を用いる無機全固体二次電池とに区分される。なお、無機全固体二次電池に有機化合物を適用することは妨げられず、正極活物質、負極活物質、無機固体電解質のバインダーや添加剤として有機化合物を適用することができる。
 無機固体電解質とは、上述した高分子化合物をイオン伝導媒体とする電解質(高分子電解質)とは区別されるものであり、無機化合物がイオン伝導媒体となるものである。具体例としては、上記のLi-P-S系ガラス、LLTおよびLLZが挙げられる。無機固体電解質は、それ自体が陽イオン(Liイオン)を放出するものではなく、イオンの輸送機能を示すものである。これに対して、電解液ないし固体電解質層に添加して陽イオン(Liイオン)を放出するイオンの供給源となる材料を電解質と呼ぶことがある。上記のイオン輸送材料としての電解質と区別する際には、これを「電解質塩」または「支持電解質」と呼ぶ。電解質塩としては、例えばLiTFSIが挙げられる。
 本発明において「組成物」というときには、2種以上の成分が均一に混合された混合物を意味する。ただし、実質的に均一性が維持されていればよく、所望の効果を奏する範囲で、一部において凝集や偏在が生じていてもよい。
 以下に、実施例に基づき本発明についてさらに詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。
<硫化物系無機固体電解質の合成>
-Li-P-S系ガラスの合成-
 硫化物系無機固体電解質として、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.HamGa,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235およびA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして、Li-P-S系ガラスを合成した。
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g及び五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳棒を用いて、5分間混合した。LiS及びPの混合比は、モル比でLiS:P=75:25とした。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、上記の硫化リチウムと五硫化二リンの混合物全量を投入し、アルゴン雰囲気下で容器を密閉した。フリッチュ社製遊星ボールミルP-7(商品名、フリッチュ社製)に容器をセットし、温度25℃で、回転数510rpmで20時間メカニカルミリングを行うことで、黄色粉体のLi-P-S系ガラス6.10gを得た。Li-P-S系ガラスのイオン伝導度は0.9×10-3S/cmであった。
 なお、硫化物系無機固体電解質のイオン伝導度は以下の方法で測定した。
(硫化物系無機固体電解質のイオン伝導度の算出方法)
 上記で合成した硫化物系無機固体電解質を100mg計測し、直径12mmの円形に成形可能な加圧成型機に投入し、360MPaの加圧を行うことで、直径12mmの硫化物系無機固体電解質成形体を得た。この成形体をステンレス鋼の電極板で挟み、電気化学測定用セルを作製した。
 得られた電気化学測定用セルを交流インピーダンス法で測定することにより、硫化物系無機固体電解質成形体のイオン伝導抵抗(R(ion))を得た。
 下記式から、硫化物系無機固体電解質のイオン伝導度を求めた。
 硫化物系無機固体電解質のイオン伝導度=硫化物系無機固体電解質成形体の厚み(cm)/(R(ion)×硫化物系無機固体電解質成形体面積(半径×半径×π)(cm))
 下記表1に、実施例及び比較例で使用した分散媒のLogP値、及び炭素数または有機化合物(B)1分子中のエーテル結合数を示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
<リチウム(Li)塩溶液の調製>
 アルゴンで満たされたグローブボックス中で300mLナスフラスコに回転子、アセトニトリル100gを投入し、更にリチウム塩としてLiTFS I70gを計量し、投入した。50℃で加熱しながらスターラーで撹拌し、1時間後透明なリチウム塩溶液A001を得た。
 下記表2の組成を採用したこと以外は、リチウム塩溶液A001の調製と同様にしてリチウム塩溶液A002~A014、A101~A103及びcA001~cA003を作製した。
 ただし、cA002はリチウム塩が沈降し、溶解せずに残存していた。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
<表の注>
・混合量(1):有機化合物(B)のg数を示す。
・混合量(2):リチウム塩(C)のg数を示す。
・混合量(3):有機化合物(B)1molに対するリチウム塩(C)のmol数
・有機化合物(B)の列の括弧中の数字は、有機化合物(B)の含水量(質量基準)を意味する。
<有機化合物(B)の含水率測定方法>
 有機化合物(B)をグローブボックス中でシリンジに10mL封入し、カールフィッシャー測定器に直接投入する事で含水率を定量した。投入量は投入前後のシリンジ重量差分から算出した。
カールフィッシャー測定器:MKC-610(商品名、京都電子工業社製)
陽極液:アクアミクロンAX 100mL
対極液:アクアミクロンCXU 5mL
(いずれも商品名、三菱化学社製)
<固体電解質組成物の調製例>
-固体電解質組成物S-1の調製-
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLi-P-S系ガラス9.7g、バインダーとしてPVdF-HFP(フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体)(アルケマ社製)0.3g、上記で調製したリチウム塩溶液A001を15g投入した。その後、この容器を遊星ボールミルP-7(商品名、フリッチュ社製)にセットし、温度25℃、回転数300rpmで2時間攪拌を続けた。このようにして、固体電解質組成物S-1を調製した。
-固体電解質組成物S-2~S-12、S-14~S-16、S-101~S-103及びcS-1~cS-3の調製-
 下記表3の組成を採用したこと以外は、固体電解質組成物S-1の調製と同様にして固体電解質組成物S-2~S-12、S-14~S-16、S-101~S-103及びcS-1~cS-3を調製した。
-固体電解質組成物S-13の調製-
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLi-P-S系ガラス9.7g、バインダーとしてPVdF-HFP(フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体)(アルケマ社製)0.3g、上記で調製したリチウム塩溶液A009を15g、ジブチルエーテル10gを投入した。その後、この容器を遊星ボールミルP-7(商品名、フリッチュ社製)にセットし、温度25℃、回転数300rpmで2時間攪拌を続けた。このようにして、固体電解質組成物S-13を調製した。
-固体電解質組成物cS-4の調製-
 上記で合成したLi-P-S系ガラス9.5g、バインダーとしてPVdF-HFP(フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体)(アルケマ社製)0.4g、リチウム塩としてLiTFSIを0.1g、分散媒としてヘプタン(LogP値:3.42)を15g投入した。その後、この容器を遊星ボールミルP-7(商品名、フリッチュ社製)にセットし、温度25℃、回転数300rpmで2時間攪拌を続けた。このようにして、固体電解質組成物cS-4を調製した。
 下記表3において、No.S-1~S-16およびS-101~S-103の固体電解質組成物が実施例であり、No.cS-1~cS-4の固体電解質組成物が比較例である。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
<表の注>
・表中の「-」は、該当する成分を含有しないこと等を意味する。
・(A):硫化物系無機固体電解質(A)の含有量(g)
・(D):バインダー(D)であるPVdF-HFPの含有量(g)
・Li塩量及び残存有機化合物量は、後述する、固体電解質組成物から形成された固体電解質層中の量を意味する。なお、残存有機化合物量は、有機化合物(B)と第2の分散媒の量の合計である。
<正極用組成物の調製例>
-正極用組成物AS-1の調製-
 ジルコニア製45mL容器(フリッチュ社製)に、直径3mmのジルコニアビーズを50個投入し、上記で調製した固体電解質組成物S-1を2.5g加えた。これに正極活物質NMC(111)を4.37g、導電助剤(アセチレンブラック)を0.09g加え、さらに第2の分散媒としてジブチルエーテルを1g加えた。この容器を遊星ボールミルP-7(フリッチュ社製)にセットし、温度25℃、回転数100rpmで15分間攪拌を続け、正極用組成物AS-1を調製した。
-正極用組成物AS-2~AS-17、AS-101~AS-104及びcAS-1~cAS-3の調製-
 下記表4の組成を採用したこと以外は、正極用組成物AS-1の調製と同様にして正極用組成物AS-2~AS-17、AS-101~AS-104及びcAS-1~cAS-3を調製した。
-正極用組成物cAS-4の調製-
 プラネタリ―ミキサー(商品名:TKハイビスミックス PRIMIX社製)に、正極活物質NMC(111)4.37g、アセチレンブラック0.22g、上記で得られたNo.cS-4の固体電解質組成物3.3g、ヘプタン12gを加え、温度25℃、回転数40rpmで1時間撹拌を行い、正極用組成物cAS-4を得た。
 下記表4において、No.AS-1~AS-17およびAS-101~AS-104の正極用組成物が実施例であり、No.cAS-1~cAS-4の正極用組成物が比較例である。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
<表の注>
・全ての正極用組成物において、活物質としてNMC(111)を用いた。NMC(111)とは、Li(Ni1/3Mn1/3Co1/3)Oであり、「(111)」は、Ni、Mn、Coの組成比を示す。
・導電助剤は、アセチレンブラックを用いた。
・表中の「-」は、該当する成分を含有しないこと等を意味する。
・Li塩量及び残存有機化合物量は、後述する、正極用組成物から形成された正極活物質層中の量を意味する。なお、残存有機化合物量は、有機化合物(B)と第2の分散媒の量の合計である。
-負極用組成物BS-1の調製-
 ジルコニア製45mL容器(フリッチュ社製)に、直径3mmのジルコニアビーズを50個投入し、上記で調製した固体電解質組成物S-1を2.5g加えた。これに負極活物質(黒鉛)を4.2g加え、さらに第2の分散媒としてジブチルエーテルを1g加えた。この容器を遊星ボールミルP-7(フリッチュ社製)にセットし、温度25℃、回転数100rpmで15分間攪拌を続け、負極用組成物BS-1を調製した。
-負極用組成物BS-2~BS-16、BS-101~BS-104及びcBS-1~cBS-3の調製-
 下記表5の組成を採用したこと以外は、負極用組成物BS-1の調製と同様にして負極用組成物BS-2~BS-16、BS-101~BS-104及びcBS-1~cBS-3を調製した。
-負極用組成物cBS-4の調製-
 プラネタリ―ミキサー(商品名:TKハイビスミックス PRIMIX社製)に、負極活物質(黒鉛)4.2g、アセチレンブラック0.2g、上記で得られたNo.cS-4の固体電解質組成物3.2g、ヘプタン11.3gを加え、温度25℃、回転数40rpmで1時間撹拌を行、負極用組成物cBS-4を得た。
 下記表5において、No.BS-1~BS-16およびBS-101~BS-104の負極用組成物が実施例であり、No.cBS-1~cBS-4の負極用組成物が比較例である。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
<表の注>
・全ての負極用組成物において、負極活物質として黒鉛を用いた。
・表中の「-」は、該当する成分を含有しないこと等を意味する。
・Li塩量及び残存有機化合物量は、後述する、負極用組成物から形成された負極活物質層中の量を意味する。なお、残存有機化合物量は、有機化合物(B)と第2の分散媒の量の合計である。
<各層中のLi塩量の測定方法>
溶液Li-NMR法を用いて測定した。
 後述の各層を形成後積層前に、グローブボックス中で、各層を1g剥ぎ取り、乳鉢で5分撹拌し、粉体とした。これに内部標準物質として塩化リチウムを加えた重水(DO)を10g添加し、室温で30分撹拌した。固形成分を濾過後、Li-NMR測定を行い、Li-NMRピーク面積と有機化合物(B)の量の相関性は検量線を作成して、残存分散媒量を算出した。
<各層中の残存有機化合物(B)量の測定方法>
 溶液H-NMR法を用いて測定した。
 後述の各層を形成後積層前に、グローブボックス中で、各層を1g剥ぎ取り、乳鉢で5分撹拌し、粉体とした。これに内部標準物質としてマレイン酸を加えた重水(DO)を10g添加し、室温で30分撹拌した。固形成分を濾過後、H-NMR測定を行い、H-NMRピーク面積と有機化合物(B)の量の相関性は検量線を作成して、残存分散媒量を算出した。
<全固体二次電池用正極シートの作製例>
 上記で調製した正極用組成物cAS-2を厚み20μmのアルミ箔(集電体)上に、アプリケーター(商品名:SA-201ベーカー式アプリケータ、テスター産業社製)により塗布し、80℃で1時間加熱後、さらに110℃で1時間加熱し、正極用組成物を乾燥させた。その後、ヒートプレス機を用いて、加熱(120℃)しながら加圧し(180MPa、1分)、正極活物質層/アルミ箔の積層構造を有する全固体二次電池用正極シートを作製した。正極活物質層の厚みは90μmであった。
<全固体二次電池の作製例>
 図1に示す層構成を有する、No.101の全固体二次電池を2種類作製した。
(全固体二次電池シートの作製)
 上記で得られた全固体二次電池用正極シートの正極活物質層上に、上記で調製した固体電解質組成物cS-2を、上記ベーカー式アプリケーターにより塗布し、80℃で1時間加熱後、さらに100℃で1時間加熱し、厚み100μmの固体電解質層を形成した。
 次いで、得られた固体電解質層上に、上記で調製した負極用組成物BS-1を、上記ベーカー式アプリケーターにより塗布し、80℃で1時間加熱後、さらに110℃で1時間加熱し、厚み100μmの負極活物質層を形成した。負極活物質層上に厚み20μmの銅箔を合わせ、ヒートプレス機を用いて、120℃加熱しながら加圧し(600MPa、1分)、下記表6に示すNo.101の全固体二次電池シートを作製した。この全固体二次電池シートは、正極の容量に対し、負極の容量が1.2倍である。
 負極活物質層を作製時に100μmの層を形成する代わりに85μmの負極活物質層を形成したこと以外は、「正極の容量に対し、負極の容量が1.2倍であるNo.101の全固体二次電池シート」と同様にして、「正極の容量に対し、負極の容量が1.01倍であるNo.101の全固体二次電池シート」を作製した。
(全固体二次電池の作製)
 上記で得られた各全固体二次電池シートを直径14.5mmの円板状に切り出した。直径14.5mmに切り出した直径14.5mmの全固体二次電池シート17をスペーサーとワッシャー(図2に示されていない)を組み込んだ、図2に示すステンレス製の2032型コインケース16に入れ、2032型コインケース16をかしめる(拘束圧:0.1MPa)ことで、図1に示す層構成を有するNo.101の全固体二次電池18を2つ作製した。すなわち、「正極の容量に対し、負極の容量が1.2倍であるNo.101の全固体二次電池」と「正極の容量に対し、負極の容量が1.01倍であるNo.101の全固体二次電池」を作製した。
 No.101の全固体二次電池と同様にして、表6~8に記載の各No.の全固体二次電池を2種類ずつ作製した。
<試験>
 上記で作製した全固体二次電池について下記サイクル特性試験を行った。以下、試験方法を記載する。結果を下記表6~8にまとめて記載する。
-サイクル特性(0℃)-
 上記で作製した、正極の容量に対し、負極の容量が1.2倍である全固体二次電池を用い、30℃の環境下、充電電流値0.35mAおよび放電電流値0.7mAの条件で4.2V~3.0Vの充放電を4回繰り返した。
 その後、サイクル試験として、0℃の環境下、充放電電流値0.7mAの条件で4.2V~3.0Vの充放電を繰り返す試験を実施した。
 1サイクル目の放電容量と100サイクル目の放電容量とを測定し、下記評価基準に従って評価した。「C」以上が合格である。
放電容量維持率(%)=100サイクル目の放電容量/1サイクル目の放電容量×100
-評価基準-
A 放電容量維持率:90%以上~100%
B 放電容量維持率:75%以上~90%未満
C 放電容量維持率:50%以上~75%未満
D 放電容量維持率:35%以上~50%未満
E 放電容量維持率:35%未満
-サイクル特性(N/P比1.01)-
 上記で作製した、正極の容量に対し、負極の容量が1.01倍である全固体二次電池を用い、30℃の環境下、充電電流値0.35mAおよび放電電流値0.7mAの条件で4.2V~3.0Vの充放電を4回繰り返した。
 その後、サイクル試験として、30℃の環境下、充放電電流値0.7mAの条件で4.2V~3.0Vの充放電を繰り返す試験を実施した。
 1サイクル目の放電容量と100サイクル目の放電容量とを測定し、下記評価基準に従って評価した。「C」以上が合格である。
放電容量維持率(%)=100サイクル目の放電容量/1サイクル目の放電容量×100
A 放電容量維持率:90%以上~100%
B 放電容量維持率:75%以上~90%未満
C 放電容量維持率:50%以上~75%未満
D 放電容量維持率:35%以上~50%未満
E 放電容量維持率:35%未満
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
<表の注>
 表6~8において、負極層の厚さ「100/85」は、No.101を例にして説明すると、「正極の容量に対し、負極の容量が1.2倍であるNo.101の全固体二次電池シート」の負極活物質層の厚さが100μmであり、「正極の容量に対し、負極の容量が1.01倍であるNo.101の全固体二次電池シート」の負極活物質層の厚さが85μmであることを意味する。
 表6~8から、本発明の規定を満たさない全固体二次電池は、サイクル特性(0℃)及びサイクル特性(N/P比1.01)がいずれも不合格であった。
 これに対し、本発明の全固体二次電池は、サイクル特性(0℃)に優れることにより、低温において高いイオン伝導性を奏することが可能であることが分かる。また、本発明の全固体二次電池は、サイクル特性(N/P比1.01)に優れることにより、負極活物質層の膨張収縮差が大きく、活物質、無機固体電解質間で隙間が生じやすい系においても、本構成を用いる事で良好なイオン伝導性を維持できることが分かる。本発明の全固体二次電池は、この2つのサイクル特性のいずれにも優れることにより、広い温度差領域で、負極活物質層の膨張収縮差が大きくともイオン伝導性に優れることが分かる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2017年3月14日に日本国で特許出願された特願2017-48865、及び、2017年7月21日に日本国で特許出願された特願2017-142285に基づく優先権を主張するものであり、これらはいずれもここに参照してその内容を本明細書の記載の一部として取り込む。
1 負極集電体
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
16 2032型コインケース
17 全固体二次電池シート
18 全固体二次電池

Claims (29)

  1.  周期律表第1族または第2族に属する金属のイオンの伝導性を有する硫化物系無機固体電解質(A)と、logP≦1の有機化合物(B)と、リチウム塩(C)とを含み、前記有機化合物(B)1molに対し、前記リチウム塩(C)を0.1mol以上含む固体電解質組成物。
  2.  前記有機化合物(B)が、シアノ基、ヒドロキシ基、エステル結合、アミド結合、ケトン基、カーボネート基及び/又はスルファニル基を有する請求項1に記載の固体電解質組成物。
  3.  前記有機化合物(B)の炭素数が、1以上5以下である請求項1又は2に記載の固体電解質組成物。
  4.  前記有機化合物(B)が、エーテル結合を有する請求項1に記載の固体電解質組成物。
  5.  前記有機化合物(B)1分子中のエーテル結合数が、3以上10以下である請求項4に記載の固体電解質組成物。
  6.  前記有機化合物(B)が、下記一般式(b)で表わされる化合物である請求項5に記載の固体電解質組成物。
    Figure JPOXMLDOC01-appb-C000001
     式中、R及びRは各々独立して、水素原子、アルキル基またはアリール基を示し、Lはアルキレン基またはアリーレン基を示す。RとRは互いに結合して環を形成してもよい。nは2以上の整数を示す。
  7.  前記有機化合物(B)の分子量が、100以上500未満である請求項6に記載の固体電解質組成物。
  8.  前記一般式(b)において、RおよびRが各々独立して、アルキル基またはアリール基を示す請求項6または7に記載の固体電解質組成物。
  9.  前記有機化合物(B)が、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテルおよび/またはテトラエチレングリコールジメチルエーテルである請求項8に記載の固体電解質組成物。
  10.  前記有機化合物(B)に含まれる水の含有量が、質量基準で、1ppm以上1,000ppm以下である請求項1~9のいずれか1項に記載の固体電解質組成物。
  11.  バインダー(D)を含有する請求項1~10のいずれか1項に記載の固体電解質組成物。
  12.  活物質(E)を含有する請求項1~11のいずれか1項に記載の固体電解質組成物。
  13.  周期律表第1族または第2族に属する金属のイオンの伝導性を有する硫化物系無機固体電解質(A)と、logP≦1以下の有機化合物(B)に由来する物質とリチウム塩(C)とを含み、前記リチウム塩(C)を5質量%以上含有する固体電解質含有シート。
  14.  前記有機化合物(B)が、シアノ基、ヒドロキシ基、エステル結合、アミド結合、ケトン基、カーボネート基及び/又はスルファニル基を有する請求項13に記載の固体電解質含有シート。
  15.  前記有機化合物(B)の炭素数が、1以上5以下である請求項13又は14に記載の固体電解質含有シート。
  16.  前記有機化合物(B)が、エーテル結合を有する請求項13に記載の固体電解質含有シート。
  17.  前記有機化合物(B)1分子中のエーテル結合数が、3以上10以下である請求項16に記載の固体電解質含有シート。
  18.  前記有機化合物(B)が、下記一般式(b)で表わされる化合物である請求項17に記載の固体電解質含有シート。
    Figure JPOXMLDOC01-appb-C000002
     式中、R及びRは各々独立して、水素原子、アルキル基またはアリール基を示し、Lはアルキレン基またはアリーレン基を示す。RとRは互いに結合して環を形成してもよい。nは2以上の整数を示す。
  19.  前記有機化合物(B)の分子量が、100以上500未満である請求項18に記載の固体電解質含有シート。
  20.  前記一般式(b)において、RおよびRが各々独立して、アルキル基またはアリール基を示す請求項18または19に記載の固体電解質含有シート。
  21.  前記有機化合物(B)が、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテルおよび/またはテトラエチレングリコールジメチルエーテルである請求項20に記載の固体電解質含有シート。
  22.  前記有機化合物(B)に含まれる水の含有量が、質量基準で、1ppm以上1,000ppm以下である請求項13~21のいずれか1項に記載の固体電解質含有シート。
  23.  前記有機化合物(B)の含有量が、質量基準で、10ppm以上10,000ppm以下である請求項13~22のいずれか1項に記載の固体電解質含有シート。
  24.  バインダー(D)を含有する請求項13~23のいずれか1項に記載の固体電解質含有シート。
  25.  活物質(E)を含有する請求項13~24のいずれか1項に記載の記載の固体電解質含有シート。
  26.  正極活物質層と負極活物質層と固体電解質層とを具備する全固体二次電池であって、前記正極活物質層、前記負極活物質層および前記固体電解質層の少なくともいずれかを請求項1~12のいずれか1項に記載の固体電解質組成物で構成した層とした全固体二次電池。
  27.  下記工程(1)及び(2)を含む請求項1~12のいずれか1項に記載の固体電解質組成物の製造方法。
    工程(1):
     前記有機化合物(B)と前記リチウム塩(C)とを混合する工程、
    工程(2):
     前記工程(1)で得た混合物と、硫化物系無機固体電解質(A)とを混合する工程。
  28.  請求項1~12のいずれか1項に記載の固体電解質組成物を基材上に適用し、これを乾燥する固体電解質含有シートの製造方法。
  29.  請求項28に記載の製造方法を介して、前記固体電解質含有シートを有する全固体二次電池を製造する全固体二次電池の製造方法。
PCT/JP2018/007877 2017-03-14 2018-03-01 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、並びに、固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法 WO2018168505A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019505870A JPWO2018168505A1 (ja) 2017-03-14 2018-03-01 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、並びに、固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法
US16/547,690 US20190386322A1 (en) 2017-03-14 2019-08-22 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, methods for manufacturing solid electrolyte composition, solid electrolyte-containing sheet, and all-solid state secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017048865 2017-03-14
JP2017-048865 2017-03-14
JP2017-142285 2017-07-21
JP2017142285 2017-07-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/547,690 Continuation US20190386322A1 (en) 2017-03-14 2019-08-22 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, methods for manufacturing solid electrolyte composition, solid electrolyte-containing sheet, and all-solid state secondary battery

Publications (1)

Publication Number Publication Date
WO2018168505A1 true WO2018168505A1 (ja) 2018-09-20

Family

ID=63523738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007877 WO2018168505A1 (ja) 2017-03-14 2018-03-01 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、並びに、固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法

Country Status (3)

Country Link
US (1) US20190386322A1 (ja)
JP (1) JPWO2018168505A1 (ja)
WO (1) WO2018168505A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137189A1 (ja) 2018-12-26 2020-07-02 パナソニックIpマネジメント株式会社 固体電解質組成物、および、固体電解質部材の製造方法
WO2021117778A1 (ja) 2019-12-12 2021-06-17 パナソニックIpマネジメント株式会社 固体電解質組成物、および、固体電解質部材の製造方法
WO2021131716A1 (ja) 2019-12-27 2021-07-01 パナソニックIpマネジメント株式会社 固体電解質組成物、固体電解質組成物の製造方法、および固体電解質部材の製造方法
WO2022224497A1 (ja) 2021-04-19 2022-10-27 パナソニックIpマネジメント株式会社 固体電解質組成物、固体電解質材料および固体電解質組成物の製造方法
EP4024529A4 (en) * 2019-08-30 2022-11-23 Panasonic Intellectual Property Management Co., Ltd. SECONDARY BATTERY WITH ANHYDROUS ELECTROLYTE
WO2023013305A1 (ja) 2021-08-06 2023-02-09 パナソニックIpマネジメント株式会社 正極材料、それを用いた電池、および電池の充電方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102552153B1 (ko) * 2018-04-18 2023-07-05 현대자동차주식회사 전고체 전지용 황화물계 고체 전해질의 제조 방법
KR20200065363A (ko) * 2018-11-30 2020-06-09 현대자동차주식회사 용해석출법에 의한 고이온전도성 황화물계 고체전해질의 제조방법 및 이에 사용되는 황화물계 고체전해질 제조용 조성물
DE102019210857A1 (de) * 2019-07-22 2021-01-28 Volkswagen Aktiengesellschaft Lithium-Ionen-Batteriezelle und Verfahren zu deren Herstellung
CN111224048B (zh) * 2020-01-13 2022-09-27 清华-伯克利深圳学院筹备办公室 富勒烯在固态电池中的应用和固态电池及其组装工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164783A (ja) * 2004-12-08 2006-06-22 Nissan Motor Co Ltd 電極、電池、およびその製造方法
JP2010113820A (ja) * 2008-11-04 2010-05-20 Idemitsu Kosan Co Ltd リチウムイオン伝導性固体電解質組成物及びそれを用いた電池
JP2012212652A (ja) * 2011-03-18 2012-11-01 Toyota Motor Corp スラリー、固体電解質層の製造方法、電極活物質層の製造方法、および全固体電池の製造方法
WO2014051032A1 (ja) * 2012-09-28 2014-04-03 日本ゼオン株式会社 全固体二次電池用スラリー、全固体二次電池用電極の製造方法、全固体二次電池用電解質層の製造方法及び全固体二次電池
JP2016139511A (ja) * 2015-01-27 2016-08-04 富士フイルム株式会社 固体電解質組成物およびこれを用いた電池用電極シートならびに電池用電極シートおよび全固体二次電池の製造方法
WO2016199723A1 (ja) * 2015-06-09 2016-12-15 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP2017045611A (ja) * 2015-08-26 2017-03-02 富士フイルム株式会社 全固体二次電池、全固体二次電池用電極シート及びこれらの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164783A (ja) * 2004-12-08 2006-06-22 Nissan Motor Co Ltd 電極、電池、およびその製造方法
JP2010113820A (ja) * 2008-11-04 2010-05-20 Idemitsu Kosan Co Ltd リチウムイオン伝導性固体電解質組成物及びそれを用いた電池
JP2012212652A (ja) * 2011-03-18 2012-11-01 Toyota Motor Corp スラリー、固体電解質層の製造方法、電極活物質層の製造方法、および全固体電池の製造方法
WO2014051032A1 (ja) * 2012-09-28 2014-04-03 日本ゼオン株式会社 全固体二次電池用スラリー、全固体二次電池用電極の製造方法、全固体二次電池用電解質層の製造方法及び全固体二次電池
JP2016139511A (ja) * 2015-01-27 2016-08-04 富士フイルム株式会社 固体電解質組成物およびこれを用いた電池用電極シートならびに電池用電極シートおよび全固体二次電池の製造方法
WO2016199723A1 (ja) * 2015-06-09 2016-12-15 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP2017045611A (ja) * 2015-08-26 2017-03-02 富士フイルム株式会社 全固体二次電池、全固体二次電池用電極シート及びこれらの製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137189A1 (ja) 2018-12-26 2020-07-02 パナソニックIpマネジメント株式会社 固体電解質組成物、および、固体電解質部材の製造方法
EP4024529A4 (en) * 2019-08-30 2022-11-23 Panasonic Intellectual Property Management Co., Ltd. SECONDARY BATTERY WITH ANHYDROUS ELECTROLYTE
WO2021117778A1 (ja) 2019-12-12 2021-06-17 パナソニックIpマネジメント株式会社 固体電解質組成物、および、固体電解質部材の製造方法
WO2021131716A1 (ja) 2019-12-27 2021-07-01 パナソニックIpマネジメント株式会社 固体電解質組成物、固体電解質組成物の製造方法、および固体電解質部材の製造方法
WO2022224497A1 (ja) 2021-04-19 2022-10-27 パナソニックIpマネジメント株式会社 固体電解質組成物、固体電解質材料および固体電解質組成物の製造方法
WO2023013305A1 (ja) 2021-08-06 2023-02-09 パナソニックIpマネジメント株式会社 正極材料、それを用いた電池、および電池の充電方法

Also Published As

Publication number Publication date
JPWO2018168505A1 (ja) 2019-12-12
US20190386322A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
WO2018168505A1 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、並びに、固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法
US11114689B2 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, and methods for manufacturing solid electrolyte-containing sheet and all-solid state secondary battery
JP6665284B2 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
JP6295333B2 (ja) 全固体二次電池、固体電解質組成物、これを用いた電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法
WO2016017758A1 (ja) 全固体二次電池、固体電解質組成物、これを用いた電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法
JP6615337B2 (ja) 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP6684901B2 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
JP6621532B2 (ja) 固体電解質組成物、固体電解質含有シート、全固体二次電池用電極シートおよび全固体二次電池ならびに固体電解質含有シート、全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP2017147173A (ja) 固体電解質組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2020138122A1 (ja) 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
WO2018016544A1 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
WO2019203334A1 (ja) 固体電解質組成物、全固体二次電池用シート、及び全固体二次電池、並びに、全固体二次電池用シート若しくは全固体二次電池の製造方法
JP2017162597A (ja) 電極用材料、これを用いた全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP2022169698A (ja) 固体電解質組成物、固体電解質含有シート及び全固体二次電池並びに固体電解質含有シート及び全固体二次電池の製造方法
JP6673785B2 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
JP7436692B2 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768691

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505870

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18768691

Country of ref document: EP

Kind code of ref document: A1