JP6684901B2 - 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法 - Google Patents

固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法 Download PDF

Info

Publication number
JP6684901B2
JP6684901B2 JP2018518242A JP2018518242A JP6684901B2 JP 6684901 B2 JP6684901 B2 JP 6684901B2 JP 2018518242 A JP2018518242 A JP 2018518242A JP 2018518242 A JP2018518242 A JP 2018518242A JP 6684901 B2 JP6684901 B2 JP 6684901B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
solid
secondary battery
electrolyte composition
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018518242A
Other languages
English (en)
Other versions
JPWO2017199821A1 (ja
Inventor
雅臣 牧野
雅臣 牧野
宏顕 望月
宏顕 望月
智則 三村
智則 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JPWO2017199821A1 publication Critical patent/JPWO2017199821A1/ja
Application granted granted Critical
Publication of JP6684901B2 publication Critical patent/JP6684901B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法に関する。
リチウムイオン二次電池は、負極と、正極と、負極及び正極の間に挟まれた電解質とを有し、両極間にリチウムイオンを往復移動させることにより充放電を可能とした蓄電池である。リチウムイオン二次電池には、従来、電解質として有機電解液が用いられてきた。しかし、有機電解液は液漏れを生じやすく、また、過充電または過放電により電池内部で短絡が生じ発火するおそれもあり、信頼性と安全性のさらなる向上が求められている。
かかる状況下、有機電解液に代えて、無機固体電解質を用いた全固体二次電池が注目されている。全固体二次電池は負極、電解質および正極のすべてが固体からなり、有機電解液を用いた電池の課題とされる安全性ないし信頼性を大きく改善することができ、また長寿命化も可能になるとされる。さらに、全固体二次電池は、電極と電解質を直接並べて直列に配した構造とすることができる。そのため、有機電解液を用いた二次電池に比べて高エネルギー密度化が可能となり、電気自動車や大型蓄電池等への応用が期待されている。
上記のような各利点から、次世代のリチウムイオン電池として全固体二次電池の開発が進められている。例えば、特許文献1には、硫化物系無機固体電解質を用いて導電率を確保しながら、大気中の水分との反応による硫化水素の発生を防止することができる全固体二次電池が記載されている。この全固体二次電池において硫化物系無機固体電解質は液状物質で被覆されている。
特開2009−117168号公報
特許文献1記載の全固体二次電池は、作製方法によっては、硫化物系無機固体電解質の機能劣化を防ぐことができ、電池電圧等の全固体二次電池の性能を一定程度向上させることができる。しかし、液状物質で被覆された硫化物系無機固体電解質と、分散媒体とを含んでなる固体電解質組成物を用いて全固体二次電池を作製する場合、分散媒体と液状物質とが相溶し、硫化物系無機固体電解質の被覆が除去されるおそれがある。その結果、硫化物系無機固体電解質が分散媒体中の水分と接触し、電解質としての機能および全固体二次電池の性能が低下する。
上記問題に鑑み、本発明は、無機固体電解質と水分との反応が抑制され、全固体二次電池において優れた電池電圧を実現できる、固体電解質組成物を提供することを課題とする。また、本発明は、無機固体電解質と水分との反応が抑制され、全固体二次電池において優れた電池電圧を実現できる固体電解質含有シート及び上記固体電解質含有シートを用いた全固体二次電池を提供することを課題とする。さらに、本発明は、上記固体電解質含有シート及び全固体二次電池の製造方法を提供することを課題とする。
本発明者らが鋭意検討した結果、脱水剤と、特定の無機固体電解質と、分散媒体とを含有する固体電解質組成物が、経時安定性に優れることを見出し、上記固体電解質組成物を用いることにより、電池電圧に優れる全固体二次電池を実現できることを見出した。本発明はこれらの知見に基づきさらに検討を重ね、完成されるに至ったものである。
すなわち、上記の課題は以下の手段により解決された。
<1>周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質(A)と、脱水剤(B)と、分散媒体(C)とを含有する全固体二次電池用固体電解質組成物であって、
分散媒体(C)が、アルコール化合物溶媒、エーテル化合物溶媒、アミド化合物溶媒、アミノ化合物溶媒、ケトン化合物溶媒、エステル化合物溶媒、カーボネート化合物溶媒、芳香族化合物溶媒、脂肪族化合物溶媒およびニトリル化合物溶媒の少なくとも1種であり、
無機固体電解質(A)の含有量が、全固体二次電池用固体電解質組成物の全固形分中、5質量%以上99質量%以下であり、
脱水剤(B)の含有量が、全固体二次電池用固体電解質組成物の全固形分中、1質量%以上50質量%以下であり、
分散媒体(C)の含有量が、全固体二次電池用固体電解質組成物中、20質量%以上80質量%以下である、全固体二次電池用固体電解質組成物
<2>無機固体電解質(A)が、硫化物系無機固体電解質である<1>に記載の全固体二次電池用固体電解質組成物。
<3>脱水剤(B)が、同一炭素原子または同一硫黄原子に2つ以上酸素原子が結合した部分構造を有する有機化合物である<1>または<2>に記載の全固体二次電池用固体電解質組成物。
<4>脱水剤(B)が、水と反応して下記一般式(1)〜(3)のいずれかで表される部分構造を有する生成物を形成する有機化合物である<1>〜<3>のいずれか1つに記載の全固体二次電池用固体電解質組成物。
Figure 0006684901
一般式(1)〜(3)中、R、R、R31およびR32は、ぞれぞれ独立に水素原子、アルキル基またはアリール基を示す。X、X、X31およびX32は、ぞれぞれ独立に単結合、酸素原子、硫黄原子、または−N(R)−を示す。Rは、水素原子、アルキル基またはアリール基を示す。Yは炭素原子または硫黄原子を示す。Yは硫黄原子を示す。Yはリン原子を示す。*は生成物中における連結部位を示す。
<5>脱水剤(B)が、酸無水物、酸ハロゲン化物、アセタールおよびオルトエステルからなる群から選択される少なくとも1種である<1>〜<4>のいずれか1つに記載の全固体二次電池用固体電解質組成物。
<6>脱水剤(B)が、フッ素原子を有する有機化合物である<1>〜<5>のいずれか1つに記載の全固体二次電池用固体電解質組成物。
<7>分散媒体(C)が、エーテル化合物溶媒、芳香族化合物溶媒および脂肪族化合物溶媒の少なくとも1種である<1>〜<6>のいずれか1つに記載の全固体二次電池用固体電解質組成物。
<8>脱水剤(B)が、分子量300以下または760mmHgにおける沸点が300℃以下である<1>〜<7>のいずれか1つに記載の全固体二次電池用固体電解質組成物。
<9>脱水剤(B)が25℃で液体であり、分散媒体(C)に対する質量比(B)/(C)が、1/99〜99/1である<1>〜<8>のいずれか1つに記載の全固体二次電池用固体電解質組成物。
<10>活物質(D)を含有する<1>〜<9>のいずれか1つに記載の全固体二次電池用固体電解質組成物。
<11>バインダー(E)を含有する<1>〜<10>のいずれか1つに記載の全固体二次電池用固体電解質組成物。
<12>バインダー(E)が、アクリル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリイミド樹脂、含フッ素樹脂および炭化水素系熱可塑性樹脂からなる群から選択される少なくとも1種である<11>に記載の全固体二次電池用固体電解質組成物。
<13>バインダー(E)が極性基を有する<11>または<12>に記載の全固体二次電池用固体電解質組成物。
<14>周期律表第1族又は第2族に属する金属のイオンの伝導性を有する、酸化物系無機固体電解質および硫化物系無機固体電解質の少なくとも1種と、脱水剤(B)と、分散媒体(C)とを含有する固体電解質組成物から形成された層を有する全固体二次電池用固体電解質含有シートであって、
分散媒体(C)が、アルコール化合物溶媒、エーテル化合物溶媒、アミド化合物溶媒、アミノ化合物溶媒、ケトン化合物溶媒、エステル化合物溶媒、カーボネート化合物溶媒、芳香族化合物溶媒、脂肪族化合物溶媒およびニトリル化合物溶媒のうちの少なくとも1種であり、
無機固体電解質の含有量が、固体電解質組成物の全固形分中、5質量%以上99質量%以下であり、
前記脱水剤(B)の含有量が、固体電解質組成物の全固形分中、1質量%以上50質量%以下であり、
分散媒体(C)の含有量が、固体電解質組成物中、20質量%以上80質量%以下であり、
上記層に含まれる全固形分中の上記脱水剤(B)の含有量が5質量%以下である全固体二次電池用固体電解質含有シート。
<15> <14>に記載の全固体二次電池用固体電解質含有シートの製造方法であって、
上記固体電解質組成物をろ過する工程と、
上記工程で得たろ液を基材上に塗布する工程と、
加熱乾燥する工程とを
有する全固体二次電池用固体電解質含有シートの製造方法。
<16>正極活物質層、負極活物質層および固体電解質層を具備する全固体二次電池であって、
正極活物質層、負極活物質層および固体電解質層の少なくとも1つの層が<14>に記載の全固体二次電池用固体電解質含有シートである全固体二次電池。
<17> <15>に記載の製造方法を介して、全固体二次電池を製造する全固体二次電池の製造方法。
本明細書において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本明細書において、単に「アクリル」又は「(メタ)アクリル」と記載するときは、メタアクリル及び/又はアクリルを意味する。また、単に「アクリロイル」又は「(メタ)アクリロイル」と記載するときは、メタアクリロイル及び/又はアクリロイルを意味する。
本明細書において、質量平均分子量(Mw)は、特段の断りがない限り、GPCによってポリスチレン換算の分子量として計測することができる。このとき、GPC装置HLC−8220(東ソー(株)社製)を用い、カラムはG3000HXL+G2000HXLを用い、23℃で流量は1mL/minで、RIで検出することとする。溶離液としては、THF(テトラヒドロフラン)、クロロホルム、NMP(N−メチル−2−ピロリドン)、m−クレゾール/クロロホルム(湘南和光純薬(株)社製)から選定することができ、溶解するものであればTHFを用いることとする。
本発明の固体電解質組成物は、無機固体電解質と水分との反応が抑制され、この固体電解質組成物を用いて作製された全固体二次電池において優れた電池電圧を実現できる。本発明の固体電解質含有シートは、無機固体電解質と水分との反応が抑制され、全固体二次電池において優れた電池電圧を実現できる。また、本発明の全固体二次電池は電池電圧に優れる。
また、本発明の製造方法によれば、本発明の、固体電解質含有シート及び全固体二次電池を製造することができる。
本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は、本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。 図2は、実施例で使用した試験装置を模式的に示す縦断面図である。 図3は、実施例で作製した全固体二次電池(コイン電池)を模式的に示す縦断面図である。
<好ましい実施形態>
図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5を、この順に有する。各層はそれぞれ接触しており、積層した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位6に電子が供給される。図示した例では、作動部位6に電球を採用しており、放電によりこれが点灯するようにされている。本発明の固体電解質組成物は、上記負極活物質層、正極活物質層、固体電解質層の成形材料として好ましく用いることができる。また、本発明の固体電解質含有シートは、上記負極活物質層、正極活物質層、固体電解質層として好適である。
本明細書において、正極活物質層(以下、正極層とも称す。)と負極活物質層(以下、負極層とも称す。)をあわせて電極層または活物質層と称することがある。
なお、図1に示す層構成を有する全固体二次電池を2032型コインケースに入れる場合、図1に示す層構成を有する全固体二次電池を全固体二次電池用電極シートと称し、この全固体二次電池用電極シートを2032型コインケースに入れて作製した電池を全固体二次電池と称して呼び分けることもある。
正極活物質層4、固体電解質層3、負極活物質層2の厚さは特に限定されない。なお、一般的な電池の寸法を考慮すると、10〜1,000μmが好ましく、20μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層4、固体電解質層3および負極活物質層2の少なくとも1層の厚さが、50μm以上500μm未満であることがさらに好ましい。
<固体電解質組成物>
本発明の固体電解質組成物は、周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質(A)と、脱水剤(B)と、分散媒体(C)とを含有する。
以下、無機固体電解質(A)、脱水剤(B)および分散媒体(C)を、それぞれ無機固体電解質、脱水剤および分散媒体と記載することもある。
(無機固体電解質(A))
無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオンおよびアニオンに解離または遊離していない。この点で、電解液やポリマー中でカチオンおよびアニオンが解離または遊離している無機電解質塩(LiPF、LiBF、LiFSI、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族または第2族に属する金属のイオンの伝導性を有するものであれば特に限定されず電子伝導性を有さないものが一般的である。
本発明において、無機固体電解質は、周期律表第1族または第2族に属する金属のイオン伝導性を有する。上記無機固体電解質は、この種の製品に適用される固体電解質材料を適宜選定して用いることができる。無機固体電解質は(i)硫化物系無機固体電解質と(ii)酸化物系無機固体電解質が代表例として挙げられる。本発明において、活物質と無機固体電解質との間により良好な界面を形成することができるため、硫化物系無機固体電解質が好ましく用いられる。
(i)硫化物系無機固体電解質
硫化物系無機固体電解質は、硫黄原子(S)を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLi、SおよびPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的または場合に応じて、Li、SおよびP以外の他の元素を含んでもよい。
例えば下記式(I)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。

a1b1c1d1e1 式(I)

式中、LはLi、NaおよびKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1〜e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1〜12:0〜5:1:2〜12:0〜10を満たす。a1はさらに、1〜9が好ましく、1.5〜7.5がより好ましい。b1は0〜3が好ましい。d1はさらに、2.5〜10が好ましく、3.0〜8.5がより好ましい。e1はさらに、0〜5が好ましく、0〜3がより好ましい。
各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。
硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、PおよびSを含有するLi−P−S系ガラス、またはLi、PおよびSを含有するLi−P−S系ガラスセラミックスを用いることができる。
硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mであらわされる元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
Li−P−S系ガラスおよびLi−P−S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40〜90:10、より好ましくは68:32〜78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10−4S/cm以上、より好ましくは1×10−3S/cm以上とすることができる。上限は特にないが、1×10−1S/cm以下であることが実際的である。
具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。たとえばLiS−P、LiS−P−LiCl、LiS−P−HS、LiS−P−HS−LiCl、LiS−LiI−P、LiS−LiI−LiO−P、LiS−LiBr−P、LiS−LiO−P、LiS−LiPO−P、LiS−P−P、LiS−P−SiS、LiS−P−SiS−LiCl、LiS−P−SnS、LiS−P−Al、LiS−GeS、LiS−GeS−ZnS、LiS−Ga、LiS−GeS−Ga、LiS−GeS−P、LiS−GeS−Sb、LiS−GeS−Al、LiS−SiS、LiS−Al、LiS−SiS−Al、LiS−SiS−P、LiS−SiS−P−LiI、LiS−SiS−LiI、LiS−SiS−LiSiO、LiS−SiS−LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法および溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
(ii)酸化物系無機固体電解質
酸化物系無機固体電解質は、酸素原子(O)を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
具体的な化合物例としては、例えばLixaLayaTiO〔xa=0.3〜0.7、ya=0.3〜0.7〕(LLT)、LixbLaybZrzbbb mbnb(MbbはAl,Mg,Ca,Sr,V,Nb,Ta,Ti,Ge,In,Snの少なくとも1種以上の元素でありxbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)、Lixcyccc zcnc(MccはC,S,Al,Si,Ga,Ge,In,Snの少なくとも1種以上の元素でありxcは0≦xc≦5を満たし、ycは0≦yc≦1を満たし、zcは0≦zc≦1を満たし、ncは0≦nc≦6を満たす。)、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(ただし、1≦xd≦3、0≦yd≦1、0≦zd≦2、0≦ad≦1、1≦md≦7、3≦nd≦13)、Li(3−2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子または2種以上のハロゲン原子の組み合わせを表す。)、LixfSiyfzf(1≦xf≦5、0<yf≦3、1≦zf≦10)、Lixgygzg(1≦xg≦3、0<yg≦2、1≦zg≦10)、LiBO−LiSO、LiO−B−P、LiO−SiO、LiBaLaTa12、LiPO(4−3/2w)(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2−xhSiyh3−yh12(ただし、0≦xh≦1、0≦yh≦1)、ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。
無機固体電解質の体積平均粒子径は特に限定されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。なお、無機固体電解質粒子の平均粒子径の測定は、以下の手順で行う。無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調整する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA−920(HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析−動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
無機固体電解質の固体電解質組成物中の固形成分における含有量は、全固体二次電池に用いたときの界面抵抗の低減と低減された界面抵抗の維持を考慮したとき、固形成分100質量%において、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
上記無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
なお、本明細書において固形分(固形成分)とは、窒素雰囲気下170℃で6時間乾燥処理を行ったときに、揮発ないし蒸発して消失しない成分をいう。典型的には、後述の分散媒体以外の成分を指す。
(脱水剤(B))
本発明の固体電解質組成物は、水との反応による無機固体電解質の変質を抑制するため、脱水剤を含有する。本発明に用いられる脱水剤は、水を吸着するまたは水と反応する化合物を意味し、乾燥剤および吸水剤を含むものとする。本発明において、脱水剤は特に限定されず、有機化合物および無機化合物のいずれでもよい。
なお、本発明において、脱水剤は1種単独で用いてもよく、複数種組み合わせて用いてもよい。
脱水剤のうち、無機化合物の具体例としては、五酸化二リン、三塩化リン、モレキュラーシーブス(3A、4A、5A、13X)、シリカゲル、ゼオライト、塩化リチウム、塩化カルシウム、硫酸ナトリウム、硫酸マグネシウム、酸化アルミニウム、酸化カルシウム、金属Na、金属Liおよび金属水素化物が挙げられる。金属水素化物の具体例としては、水素化リチウム、水素化ホウ素リチウム、水素化ナトリウム、水素化カルシウム、水素化ホウ素ナトリウムおよび水素化アルミニウムリチウムが挙げられる。
これらのうち、モレキュラーシーブスが水を吸着し、他は水と反応することにより脱水機能を発揮する。以下、無機化合物の脱水剤を無機系脱水剤と称することもある。
上記無機系脱水剤は、脱水剤として通常使用される態様で使用すればよい。例えば、モレキュラーシーブスは、十分に乾燥させた状態のモレキュラーシーブスを使用する。
無機系脱水剤として、化学物質の固有の性質(化学反応、潮解)を利用した化学的乾燥剤、及び、多孔質表面に水分子が吸着しやすい性質を利用した物理的乾燥剤を用いることができる。
脱水剤のうち、有機化合物は、水と反応することにより脱水機能を発揮する。以下、有機化合物の脱水剤を有機系脱水剤と称することもある。
有機系脱水剤として、水と反応しうる吸電子性を有しているため、ヘテロ原子含有二重結合を有する有機化合物が好ましい。
ヘテロ原子の具体例としては、酸素原子、硫黄原子、リン原子および窒素原子が挙げられる。ヘテロ原子含有二重結合の具体例としては、C=O、S=O、P=OおよびC=Nが挙げられる。
また、有機系脱水剤として、水との反応性が高く速やかに加水分解を起こして水を消費するため、同一炭素原子または同一硫黄原子に2つ以上酸素原子が結合した部分構造を有する有機化合物が好ましい。
同一炭素原子に2つ以上酸素原子が結合した部分構造の具体例としては、>C(−O−)、−C(=O)O−が挙げられる。一方、同一炭素原子に2つ以上硫黄原子が結合した部分構造の具体例としては、>S(=O)が挙げられる。
また、有機系脱水剤として、加水分解副生成物が酸性化合物である場合、無機固体電解質に対してイオン伝導度を低下させにくいため、水と反応して下記一般式(1)〜(3)のいずれかで表される部分構造を有する生成物を形成する有機化合物が好ましい。
Figure 0006684901
一般式(1)〜(3)中、R、R、R31およびR32は、ぞれぞれ独立に水素原子、アルキル基またはアリール基を示す。X、X、X31およびX32は、ぞれぞれ独立に単結合、酸素原子、硫黄原子、または−N(R)−を示す。Rは、水素原子、アルキル基またはアリール基を示す。Yは炭素原子または硫黄原子を示す。Yは硫黄原子を示す。Yはリン原子を示す。*は生成物中における連結部位を示す。
〜R、R31およびR32のアルキル基としては、後述の置換基Pにおけるアルキル基が好ましい。好ましくは炭素数1〜12のアルキル基であり、より好ましくは炭素数1〜6であり、特に好ましくはメチルおよびエチルである。
〜R、R31およびR32のアリール基としては、後述の置換基Pにおけるアリール基が好ましい。
一般式(1)で表される部分構造を有する生成物を形成する有機化合物の具体例としては蟻酸、酢酸、プロピオン酸、ピバル酸、トリフルオロ酢酸、アクリル酸、メタクリル酸およびこれらのエステル類が挙げられる。
一般式(2)で表される部分構造を有する生成物を形成する有機化合物の具体例としてはメタンスルホン酸、エタンスルホン酸、トリフルオロメタンスルホン酸、ビニルスルホン酸およびこれらのエステル類が挙げられる。
一般式(3)で表される部分構造を有する生成物を形成する有機化合物の具体例としては、メチルホスホン酸、エチルホスホン酸、ビニルホスホン酸、フェニルホスホン酸およびこれらのエステル類が挙げられる。
なお、本発明は上記具体例に限定されるものではない。
また、有機系脱水剤として、酸無水物、酸ハロゲン化物、アセタールおよびオルトエステルが水との反応性が高く速やかに加水分解を起こして水を消費するため、好ましく用いられる。なお、アセタールは>C(OR)(Rは任意の有機基を示す)構造を有する化合物であり、アルデヒドから得られる化合物とケトンから得られる化合物(ケタール)の両方を含む。
本発明に用いられる脱水剤は、フッ素原子を有する有機化合物であることが好ましく、パーフルオロ有機化合物であることがより好ましい。フッ素原子を有することにより、脱水剤本来の脱水効果に加えて、脱水剤の存在に起因する組成物中への水の侵入抑制効果を有するからである。
有機系脱水剤の具体例として、アルキルリチウム(例えば、ノルマルブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム、メチルリチウムおよびフェニルリチウム)、金属アミド(例えば、リチウムジイソプロピルアミド、リチウム−2,2,6,6−テトラメチルピペリジド、リチウムヘキサメチルジシラジド、リチウムアミドおよびナトリウムアミド)、シランカップリング剤、カルボン酸無水物(例えば、無水酢酸、無水トリフルオロ酢酸、無水コハク酸)、スルホン酸無水物(例えば、無水トリフルオロメタンスルホン酸)、カルボン酸ハロゲン化物(カルボン酸塩化物が好ましく、例えば、酢酸クロリド)、スルホン酸ハロゲン化物(スルホン酸塩化物が好ましく、例えば、トリフルオロメタンスルホン酸クロリド)、オルトイソ酪酸トリメチルおよび下記例示化合物(B−1)〜(B−4)が挙げられる。
Figure 0006684901
固体電解質組成物中の脱水剤の含有量は特に制限されないが、無機固体電解質への悪影響を除外しつつ十分な乾燥能力を発揮させるため、全固形分中、1質量%以上50質量%以下が好ましく、2質量%以上30質量%以下がより好ましく、3質量%以上20質量%以下が特に好ましい。
脱水剤は固体電解質組成物中に溶解していてもよいし不溶であってもよい。不溶の場合、固体電解質組成物中に均等に存在していても良いし、偏在化していてもよい。偏在化している場合、脱水剤の存在場所は、固体電解質組成物中の上部界面であっても低部界面であってもよい。特に固体電解質組成物に水分が接触しうる界面との間に脱水剤が存在していることが好ましい。
本発明に用いられる脱水剤の分子量および沸点は特に制限されないが、固体電解質含有シート作製時に余分な脱水剤を効率的に除去するため、分子量300以下または760mmHgにおける沸点が300℃以下であることが好ましい。
分子量の下限は、50以上であることが実際的である。一方、760mmHgにおける沸点の下限は、25℃以上であることが実際的である。
本発明に用いられる脱水剤(B)は、無機固体電解質への悪影響を除外しつつ十分な乾燥能力を発揮させるため、25℃で液体であり、分散媒体(C)に対する質量比(B)/(C)が、1/99〜99/1であることが好ましく、5/95〜50/5が好ましく、10/90〜30/70が特に好ましい。
本明細書において置換または無置換を明記していない化合物、部分構造ないし基については、その化合物、部分構造ないし基に適宜の置換基を有していてもよい意味である。これは置換または無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Pが挙げられる。
置換基Pとしては、下記のものが挙げられる。
アルキル基(好ましくは炭素原子数1〜20のアルキル基、例えばメチル、エチル、イソプロピル、t−ブチル、ペンチル、ヘプチル、1−エチルペンチル、ベンジル、2−エトキシエチル、1−カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2〜20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2〜20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3〜20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4−メチルシクロヘキシル等、ただし本明細書においてアルキル基というときには通常シクロアルキル基を含む意味である。)、アリール基(好ましくは炭素原子数6〜26のアリール基、例えば、フェニル、1−ナフチル、4−メトキシフェニル、2−クロロフェニル、3−メチルフェニル等)、アラルキル基(好ましくは炭素数7〜23のアラルキル基、例えば、ベンジル、フェネチル等)、ヘテロ環基(好ましくは炭素原子数2〜20のヘテロ環基、好ましくは、環構成原子として酸素原子、硫黄原子および窒素原子から選択される少なくとも1つを有する5又は6員環のヘテロ環基が好ましく、例えば、テトラヒドロピラニル、テトラヒドロフラニル、2−ピリジル、4−ピリジル、2−イミダゾリル、2−ベンゾイミダゾリル、2−チアゾリル、2−オキサゾリル、ピロリドン基等)、アルコキシ基(好ましくは炭素原子数1〜20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6〜26のアリールオキシ基、例えば、フェノキシ、1−ナフチルオキシ、3−メチルフェノキシ、4−メトキシフェノキシ等、ただし本明細書においてアルコキシ基というときには通常アリーロイル基を含む意味である。)、アルコキシカルボニル基(好ましくは炭素原子数2〜20のアルコキシカルボニル基、例えば、エトキシカルボニル、2−エチルヘキシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素原子数6〜26のアリールオキシカルボニル基、例えば、フェノキシカルボニル、1−ナフチルオキシカルボニル、3−メチルフェノキシカルボニル、4−メトキシフェノキシカルボニル等)、アミノ基(好ましくは炭素原子数0〜20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ、N,N−ジメチルアミノ、N,N−ジエチルアミノ、N−エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素原子数0〜20のスルファモイル基、例えば、N,N−ジメチルスルファモイル、N−フェニルスルファモイル等)、アシル基(好ましくは炭素原子数1〜20のアシル基、例えば、アセチル、プロピオニル、ブチリル等)、アリーロイル基(好ましくは炭素原子数7〜23のアリーロイル基、例えば、ベンゾイル等、ただし本明細書においてアシル基というときには通常アリーロイル基を含む意味である。)、アシルオキシ基(好ましくは炭素原子数1〜20のアシルオキシ基、例えば、アセチルオキシ等)、アリーロイルオキシ基(好ましくは炭素原子数7〜23のアリーロイルオキシ基、例えば、ベンゾイルオキシ等、ただし本明細書においてアシルオキシ基というときには通常アリーロイルオキシ基を含む意味である。)、カルバモイル基(好ましくは炭素原子数1〜20のカルバモイル基、例えば、N,N−ジメチルカルバモイル、N−フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1〜20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、アルキルスルファニル基(好ましくは炭素原子数1〜20のアルキルスルファニル基、例えば、メチルスルファニル、エチルスルファニル、イソプロピルスルファニル、ベンジルスルファニル等)、アリールスルファニル基(好ましくは炭素原子数6〜26のアリールスルファニル基、例えば、フェニルスルファニル、1−ナフチルスルファニル、3−メチルフェニルスルファニル、4−メトキシフェニルスルファニル等)、アルキルスルホニル基(好ましくは炭素原子数1〜20のアルキルスルホニル基、例えば、メチルスルホニル、エチルスルホニル等)、アリールスルホニル基(好ましくは炭素原子数6〜22のアリールスルホニル基、例えば、ベンゼンスルホニル等)、アルキルシリル基(好ましくは炭素原子数1〜20のアルキルシリル基、例えば、モノメチルシリル、ジメチルシリル、トリメチルシリル、トリエチルシリル等)、アリールシリル基(好ましくは炭素原子数6〜42のアリールシリル基、例えば、トリフェニルシリル等)、アルコキシシリル基(好ましくは炭素原子数1〜20のアルコキシシリル基、例えば、モノメトキシシリル、ジメトキシシリル、トリメトキシシリル、トリエトキシシリル等)、アリールオキシシリル基(好ましくは炭素原子数6〜42のアリールオキシシリル基、例えば、トリフェニルオキシシリル等)、ホスホリル基(好ましくは炭素原子数0〜20のホスホリル基、例えば、−OP(=O)(R)、ホスホニル基(好ましくは炭素原子数0〜20のホスホニル基、例えば、−P(=O)(R)、ホスフィニル基(好ましくは炭素原子数0〜20のホスフィニル基、例えば、−P(R)、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルイミノ基((メタ)アクリルアミド基)、ヒドロキシ基、スルファニル基、カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)が挙げられる。
また、これらの置換基Pで挙げた各基は、上記の置換基Pがさらに置換していてもよい。
化合物、置換基および連結基等がアルキル基、アルキレン基、アルケニル基、アルケニレン基、アルキニル基および/またはアルキニレン基等を含むとき、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよく、上記のように置換されていても無置換でもよい。
(分散媒体(C))
本発明の固体電解質組成物は、固形成分を分散させるため分散媒体を含有する。分散媒体の具体例としては下記のものが挙げられる。
アルコール化合物溶媒としては、例えば、メチルアルコール、エチルアルコール、1−プロピルアルコール、2−ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6−ヘキサンジオール、1,3−ブタンジオール、1,4−ブタンジオールが挙げられる。
エーテル化合物溶媒としては、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ポリエチレングリコール、プロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジブチルエーテル等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジブチルエーテル等)、アルキルアリールエーテル(アニソール)、テトラヒドロフラン、ジオキサン(1,2−、1,3−及び1,4−の各異性体を含む)、ジエトキシエタン、テトラエチレングリコールジメチルエーテル(テトラグライム)、トリエチレングリコールジメチルエーテル(トリグライム)、テトラエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、テトラエチレングリコール及びトリエチレングリコールが挙げられる。
アミド化合物溶媒としては、例えば、N,N−ジメチルホルムアミド、1−メチル−2−ピロリドン、2−ピロリジノン、1,3−ジメチル−2−イミダゾリジノン、2−ピロリジノン、ε−カプロラクタム、ホルムアミド、N−メチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなどが挙げられる。
アミノ化合物溶媒としては、例えば、トリエチルアミン、トリブチルアミンなどが挙げられる。
ケトン化合物溶媒としては、例えば、アセトン、メチルエチルケトン、ジエチルケトン、エチルプロピルケトン、ジプロピルケトン、ジブチルケトン、ジペンチルケトン、ジヘキシルケトン、シクロヘキサノンが挙げられる。
エステル化合物溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸ペンチル、酢酸ヘキシル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、酪酸メチル、酪酸エチル、酪酸プロピル、酪酸ブチル、酪酸ペンチル、吉草酸メチル、吉草酸エチル、吉草酸プロピル、吉草酸ブチル、カプロン酸メチル、カプロン酸エチル、カプロン酸プロピル及びカプロン酸ブチルが挙げられる。
カーボネート化合物溶媒としては、例えばエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネートが挙げられる。
芳香族化合物溶媒としては、例えば、ベンゼン、トルエン、キシレン、メシチレンなどが挙げられる。
脂肪族化合物溶媒としては、例えば、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、オクタン、ペンタン、シクロペンタンなどが挙げられる。
ニトリル化合物溶媒としては、例えば、アセトニトリル、プロピロニトリル、ブチロニトリルなどが挙げられる。
分散媒体は常圧(1気圧)での沸点が50℃以上であることが好ましく、70℃以上であることがより好ましい。上限は250℃以下であることが好ましく、220℃以下であることがさらに好ましい。上記分散媒体は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
本発明においては、中でも、エーテル化合物溶媒、芳香族化合物溶媒、脂肪族化合物溶媒が好ましく用いられる。脱水剤が固着せずに分散状態を保持できるため、無機系脱水剤とエーテル化合物溶媒または芳香族化合物溶媒、脂肪族化合物溶媒との組合せが好ましい。また、幅広い比率で混和するため、有機系脱水剤とエーテル化合物溶媒、ケトン化合物溶媒、エステル溶媒、芳香族化合物溶媒または脂肪族化合物溶媒との組合せが好ましい。
なお、エーテル化合物溶媒としては、なかでもジエチルエーテル、ジメトキシエタン、エチルフェニルエーテル、テトラヒドロフランおよび1,4−ジオキサンが好ましい。芳香族化合物溶媒としては、なかでもトルエンおよびキシレンが好ましい。脂肪族化合物溶媒としては、なかでもヘプタンおよびオクタンが好ましい。
なお、本発明の固体電解質組成物中の分散媒体の含有量は特に制限されないが、20〜80質量%が好ましく、30〜70質量%がより好ましく、40〜60質量%が特に好ましい。
分散媒体は固体電解質組成物に含まれるが、固体電解質含有シートまたは全固体二次電池の作製過程において除去され、固体電解質含有シートまたは全固体二次電池中に残存しないことが好ましい。なお、分散媒体は、固体電解質含有シートまたは全固体二次電池中に一部残存しても良い。残存する場合、これら分散媒体の、固体電解質含有シートまたは全固体二次電池中の残存量の許容量は上限として5質量%以下であり1質量%以下がより好ましく、0.1質量%以下がさらに好ましく、0.05質量%以下が最も好ましい。下限は特に規定されないが1ppb以上(質量基準)であるのが実際的である。
(活物質(D))
本発明の固体電解質組成物は、周期律表第1族又は第2族に属する金属元素のイオンの挿入放出が可能な活物質(D)を含有してもよい。以下、活物質(D)を単に活物質とも称する。
活物質としては、正極活物質及び負極活物質が挙げられ、正極活物質である遷移金属酸化物、又は、負極活物質である金属酸化物が好ましい。
本発明において、活物質(正極活物質、負極活物質)を含有する固体電解質組成物を、電極用組成物(正極用組成物、負極用組成物)ということがある。
−正極活物質−
本発明の固体電解質組成物が含有してもよい正極活物質は、可逆的にリチウムイオンを挿入および放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物や、有機物、硫黄などのLiと複合化できる元素や硫黄と金属の複合物などでもよい。
中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、CuおよびVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、PまたはBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0〜30mol%が好ましい。Li/Maのモル比が0.3〜2.2になるように混合して合成されたものが、より好ましい。
遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物および(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
(MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])およびLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
(MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO4、LiFeMn、LiCuMn、LiCrMnおよびLiNiMnが挙げられる。
(MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePOおよびLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類ならびにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
(MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩およびLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
(ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiOおよびLiCoSiO等が挙げられる。
本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO、LMO、NCA又はNMCがより好ましい。
正極活物質の形状は特に制限されないが粒子状が好ましい。正極活物質の体積平均粒子径(球換算平均粒子径)は特に限定されない。例えば、0.1〜50μmとすることができる。正極活物質を所定の粒子径にするには、通常の粉砕機や分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。正極活物質粒子の体積平均粒子径(球換算平均粒子径)は、レーザ回折/散乱式粒度分布測定装置LA−920(商品名、HORIBA社製)を用いて測定することができる。
上記正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
正極活物質の、固体電解質組成物中における含有量は、特に限定されず、固形分100質量%において、10〜95質量%が好ましく、30〜90質量%がより好ましく、50〜85質量がさらに好ましく、55〜80質量%が特に好ましい。
−負極活物質−
本発明の固体電解質組成物が含有してもよい負極活物質は、可逆的にリチウムイオンを挿入および放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、酸化錫等の金属酸化物、酸化ケイ素、金属複合酸化物、リチウム単体およびリチウムアルミニウム合金等のリチウム合金、並びに、Sn、Si、AlおよびIn等のリチウムと合金形成可能な金属等が挙げられる。中でも、炭素質材料又はリチウム複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵および放出可能であることが好ましい。その材料は、特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂やフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。さらに、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維および活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカーならびに平板状の黒鉛等を挙げることもできる。
負極活物質として適用される金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、さらに金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°〜40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。
上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族〜15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、SbおよびBiの1種単独あるいはそれらの2種以上の組み合わせからなる酸化物、ならびにカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、SbおよびSnSiSが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。
負極活物質はチタン原子を含有することも好ましい。より具体的にはLiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。
本発明においては、Si系の負極を適用することもまた好ましい。一般的にSi負極は、炭素負極(黒鉛およびアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。
負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質の平均粒子径は、0.1〜60μmが好ましい。所定の粒子径にするには、通常の粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミルおよび旋回気流型ジェットミルや篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式および湿式ともに用いることができる。負極活物質粒子の平均粒子径は、前述の正極活物質の体積平均粒子径の測定方法と同様の方法により測定することができる。
上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。
上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
負極活物質の、固体電解質組成物中における含有量は、特に限定されず、固形分100質量%において、10〜80質量%であることが好ましく、20〜80質量%がより好ましい。
正極活物質および負極活物質の表面は別の金属酸化物で表面被覆されていてもよい。表面被覆剤としてはTi,Nb、Ta,W,Zr、Al,SiまたはLiを含有する金属酸化物等が挙げられる。具体的には、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、ニオブ酸リチウム系化合物等が挙げられ、具体的には、LiTi12,LiTi,LiTaO,LiNbO,LiAlO,LiZrO,LiWO,LiTiO,Li,LiPO,LiMoO,LiBO,LiBO,LiCO,LiSiO,SiO,TiO,ZrO,Al,B等が挙げられる。
また、正極活物質または負極活物質を含む電極表面は硫黄またはリンで表面処理されていてもよい。
さらに、正極活物質または負極活物質の粒子表面は、上記表面被覆の前後において活性光線または活性気体(プラズマ等)により表面処理を施されていても良い。
(バインダー(E))
本発明の固体電解質組成物はバインダー(E)を含有してもよい。以下、バインダー(E)を単にバインダーとも称する。
本発明で使用するバインダーは、有機ポリマーであれば特に限定されない。
本発明に用いることができるバインダーは、特に制限はなく、例えば、以下に述べる樹脂からなるバインダーが好ましい。
含フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニレンジフルオリド(PVdF)、ポリビニレンジフルオリドとヘキサフルオロプロピレンとの共重合体(PVdF−HFP)が挙げられる。
炭化水素系熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、水素添加スチレンブタジエンゴム(HSBR)、ブチレンゴム、アクリロニトリルブタジエンゴム、ポリブタジエン、ポリイソプレンが挙げられる。
アクリル樹脂としては、各種の(メタ)アクリルモノマー類、(メタ)アクリルアミドモノマー類、およびこれら樹脂を構成するモノマーの共重合体(好ましくは、アクリル酸とアクリル酸メチルとの共重合体)が挙げられる。
また、そのほかのビニル系モノマーとの共重合体(コポリマー)も好適に用いられる。例えば、(メタ)アクリル酸メチルとスチレンとの共重合体、(メタ)アクリル酸メチルとアクリロニトリルとの共重合体、(メタ)アクリル酸ブチルとアクリロニトリルとスチレンとの共重合体が挙げられる。本願明細書において、コポリマーは、統計コポリマーおよび周期コポリマーのいずれでもよく、ブロックコポリマーが好ましい。
その他の樹脂としては例えばポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、セルロース誘導体樹脂等が挙げられる。
これらは1種を単独で用いても、2種以上を組み合わせて用いてもよい。
本発明に用いられるバインダーは、強い結着性を示す(集電体からの剥離抑制および、固体界面の結着によるサイクル寿命の向上)ため、上述のアクリル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリイミド樹脂、含フッ素樹脂および炭化水素系熱可塑性樹脂からなる群から選択される少なくとも1種であることが好ましい。
本発明に用いられるバインダーは、粒子表面への濡れ性や吸着性を高めるため、極性基を有することが好ましい。極性基とは、ヘテロ原子を含む1価の基、例えば、酸素原子、窒素原子および硫黄原子のいずれかと水素原子が結合した構造を含む1価の基が好ましく、具体例としては、カルボキシ基、ヒドロキシ基、アミノ基、リン酸基およびスルホ基が挙げられる。
バインダーの形状は特に限定されず、固体電解質組成物、固体電解質含有シートまたは全固体二次電池中において粒子状であっても不定形状であってもよい。
本発明において、バインダーが分散媒体に対して不溶の粒子であることが固体電解質組成物の分散安定性の観点から好ましい。ここで、「バインダーが分散媒体に対して不溶の粒子である」とは、30℃の分散媒体に添加し、24時間静置しても、平均粒子径が5%以上低下しないことを意味し、3%以上低下しないことが好ましく、1%以上低下しないことがより好ましい。
なお、バインダー粒子が分散媒体に全く溶解していない状態では、添加前に対する平均粒子径の上記変化量は0%である。
また、固体電解質組成物中におけるバインダーは、無機固体電解質の粒子間イオン伝導性の低下抑制のため、平均粒子径10〜1000nmのナノ粒子であることが好ましい。
バインダーの平均粒子径は、後述の実施例の項に記載の方法により算出することができる。
バインダーは1種の化合物からなるものでもよく、2種以上の化合物の組合せからなるものでもよい。バインダーが粒子の場合、粒子そのものは、均一分散物でなくコアシェル形状や中空形状であってもよい。またバインダー内部を形成するコア部に有機物や無機物を内包していても良い。コア部に内包される有機物としては後述の分散媒体、分散剤、リチウム塩、イオン液体、導電助剤等が挙げられる。
本発明に用いられるバインダー粒子の平均粒子径は、特に断らない限り、以下に記載の測定条件および定義に基づくものとする。
バインダー粒子を任意の溶媒(固体電解質組成物の調製に用いる分散媒体。例えば、オクタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA−920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、得られた体積平均粒子径を平均粒子径とする。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析−動的光散乱法」の記載を参照する。1水準につき5つの試料を作製して測定し、その平均値を採用する。
なお、作製された全固体二次電池からの測定は、例えば、電池を分解し電極を剥がした後、その電極材料について上記ポリマー粒子の平均粒子径の測定方法に準じてその測定を行い、あらかじめ測定していたポリマー粒子以外の粒子の平均粒子径の測定値を排除することにより行うことができる。
なお、本発明に用いられるバインダーは市販品を用いることができる。また、常法により調製することもできる。
本発明に用いられるバインダーを構成するポリマーの水分濃度は、100ppm(質量基準)以下が好ましい。
また、本発明に用いられるバインダーを構成するポリマーは、固体の状態で使用しても良いし、ポリマー粒子分散液またはポリマー溶液の状態で用いてもよい。
本発明に用いられるバインダーを構成するポリマーの質量平均分子量は10,000以上が好ましく、20,000以上がより好ましく、30,000以上がさらに好ましい。上限としては、1,000,000以下が好ましく、200,000以下がより好ましく、100,000以下がさらに好ましい。
バインダーの固体電解質組成物中での含有量は、全固体二次電池に用いたときの良好な界面抵抗の低減性とその維持性を考慮すると、固形成分100質量%において、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、1質量%以上がさらに好ましい。上限としては、電池特性の観点から、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下がさらに好ましい。
本発明では、バインダーの質量に対する、無機固体電解質と活物質の合計質量(総量)の質量比[(無機固体電解質の質量+活物質の質量)/バインダーの質量]は、1,000〜1の範囲が好ましい。この比率はさらに500〜2がより好ましく、100〜10がさらに好ましい。
(分散剤)
本発明の固体電解質組成物は分散剤を含有してもよい。分散剤を添加することで電極活物質及び無機固体電解質のいずれかの濃度が高い場合や、粒子径が細かく表面積が増大する場合においてもその凝集を抑制し、均一な活物質層及び固体電解質層を形成することができる。分散剤としては、全固体二次電池に通常使用されるものを適宜選定して用いることができる。一般的には粒子吸着と立体反発および/または静電反発を意図した化合物が好適に使用される。
(リチウム塩)
本発明の固体電解質組成物は、リチウム塩を含有してもよい。
リチウム塩としては、特に制限はなく、例えば、特開2015−088486号公報の段落0082〜0085記載のリチウム塩が好ましい。
リチウム塩の含有量は、無機固体電解質100質量部に対して0質量部以上が好ましく、5質量部以上がより好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましい。
(イオン液体)
本発明の固体電解質組成物は、固体電解質含有シートのイオン伝導度をより向上させるため、イオン液体を含有してもよい。イオン液体としては、特に限定されないが、イオン伝導度を効果的に向上させる観点から、上述したリチウム塩を溶解するものが好ましい。例えば、下記のカチオンと、アニオンとの組み合わせよりなる化合物が挙げられる。
(i)カチオン
カチオンとしては、以下の置換基を有するイミダゾリウムカチオン、以下の置換基を有するピリジニウムカチオン、以下の置換基を有するピペリジニウムカチオン、以下の置換基を有するピロリジニウムカチオン、以下の置換基を有するモルホリニウムカチオン、以下の置換基を有するホスホニウムカチオン、又は、以下の置換基を有する第4級アンモニウムカチオン等が挙げられる。
カチオンとしては、これらのカチオンを1種単独で用いてもよく、2種以上組み合わせて用いることもできる。
好ましくは、四級アンモニウムカチオン、ピペリジニウムカチオン又はピロリジニウムカチオンである。
置換基としては、アルキル基(炭素数1〜8のアルキル基が好ましく、炭素数1〜4のアルキル基がより好ましい。)、ヒドロキシアルキル基(炭素数1〜3のヒドロキシアルキル基が好ましい。)、アルキルオキシアルキル基(炭素数2〜8のアルキルオキシアルキル基が好ましく、炭素数2〜4のアルキルオキシアルキル基がより好ましい。)、エーテル基、アリル基、アミノアルキル基(炭素数1〜8のアミノアルキル基が好ましく、炭素数1〜4のアミノアルキル基がより好ましい。)、アリール基(炭素数6〜12のアリール基が好ましく、炭素数6〜8のアリール基がより好ましい。)が挙げられる。上記置換基はカチオン部位を含有する形で環状構造を形成していてもよい。これらの置換基はさらに上記置換基Pを有していてもよい。なお、上記エーテル基は、他の置換基と組み合わされて用いられる。このような置換基として、アルキルオキシ基、アリールオキシ基等が挙げられる。
(ii)アニオン
アニオンとしては、塩化物イオン、臭化物イオン、ヨウ化物イオン、四フッ化ホウ素イオン、硝酸イオン、ジシアナミドイオン、酢酸イオン、四塩化鉄イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(フルオロスルホニル)イミドイオン、ビス(パーフルオロブチルメタンスルホニル)イミドイオン、アリルスルホネートイオン、ヘキサフルオロリン酸イオン、又は、トリフルオロメタンスルホネートイオン等が挙げられる。
アニオンとしては、これらのアニオンを1種単独で用いてもよく、2種以上組み合わせて用いることもできる。
好ましくは、四フッ化ホウ素イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(フルオロスルホニル)イミドイオン、ヘキサフルオロリン酸イオン、ジシアナミドイオン又はアリルスルホネートイオンであり、さらに好ましくはビス(トリフルオロメタンスルホニル)イミドイオン、ビス(フルオロスルホニル)イミドイオン又はアリルスルホネートイオンである。
上記のイオン液体としては、例えば、1−アリル−3−エチルイミダゾリウムブロミド、1−エチル−3−メチルイミダゾリウムブロミド、1−(2−ヒドロキシエチル)−3−メチルイミダゾリウムブロミド、1−(2−メトキシエチル)−3−メチルイミダゾリウムブロミド、1−オクチル−3−メチルイミダゾリウムクロリド、N,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウムテトラフルオロボラート、1−エチル−3−メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1−エチル−3−メチルイミダゾリウムビス(フルオロスルホニル)イミド、1−エチル−3−メチルイミダゾリウムビストリフルオロメタンスルホン酸、1−エチル−3−メチルイミダゾリウムジシアナミド、1−ブチル−1−メチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド、トリメチルブチルアンモニウムビス(トリフルオロメタンスルホニル)イミド、N,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウム ビス(トリフルオロメタンスルホニル)イミド、N−(2−メトキシエチル)−N−メチルピロリジニウム テトラフルオロボラード、1−ブチル−1−メチルピロリジニウム イミダゾリウムビス(フルオロスルホニル)イミド、(2−アクリロイルエチル)トリメチルアンモニウムビス(トリフルオロメタンスルホニル)イミド、1−エチルー1−メチルピロリジニウムアリルスルホネート、1−エチルー3−メチルイミダゾリウムアリルスルホネート又は、塩化トリヘキシルテトラデシルホスホニウム等が挙げられる。
イオン液体の含有量は、無機固体電解質100質量部に対して0.1質量部以上が好ましく、0.5質量部以上がより好ましく、1質量部以上が特に好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましく、10質量部以下が特に好ましい。
リチウム塩とイオン液体の質量比は1:20〜20:1が好ましく、1:10〜10:1がより好ましく、1:5〜2:1が特に好ましい。
(導電助剤)
本発明の固体電解質組成物は、導電助剤を含有してもよい。導電助剤としては、特に制限はなく、一般的な導電助剤として知られているものを用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維やカーボンナノチューブなどの炭素繊維類、グラフェンやフラーレンなどの炭素質材料であっても良いし、銅、ニッケルなどの金属粉、金属繊維でも良く、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体など導電性高分子を用いても良い。またこれらの内1種を用いても良いし、2種以上を用いても良い。
(固体電解質組成物の調製)
本発明の固体電解質組成物は、無機固体電解質(A)を分散媒体(C)の存在下で分散して、スラリー化することで調製することができる。
スラリー化は、各種の混合機を用いて無機固体電解質と分散媒体とを混合することにより行うことができる。混合装置としては、特に限定されないが、例えば、ボールミル、ビーズミル、プラネタリミキサ―、ブレードミキサ―、ロールミル、ニーダーおよびディスクミルが挙げられる。混合条件は特に制限されないが、例えば、ボールミルを用いた場合、150〜700rpm(rotation per minute)で1時間〜24時間混合することが好ましい。
活物質、粒子分散剤等の成分を含有する固体電解質組成物を調製する場合には、上記の無機固体電解質(A)の分散工程と同時に添加及び混合してもよく、別途添加及び混合してもよい。なお、脱水剤(B)は、上記の無機固体電解質(A)及び/又は活物質、粒子分散剤等の成分の分散工程と同時に添加及び混合してもよく、別途添加及び混合してもよい。なかでも、無機系脱水剤は、固体電解質組成物を構成する無機系脱水剤以外の成分を分散及び/又は混合した後に加えることが好ましく、有機系脱水剤は、固体電解質組成物を構成する有機系脱水剤以外の成分を分散及び/又は混合した後に加えることが好ましい。
[全固体二次電池用シート]
本発明の固体電解質含有シートは、全固体二次電池に好適に用いることができ、その用途に応じて種々の態様を含む。例えば、固体電解質層に好ましく用いられるシート(全固体二次電池用固体電解質シートともいう)、電極又は電極と固体電解質層との積層体に好ましく用いられるシート(全固体二次電池用電極シート)等が挙げられる。本発明において、これら各種のシートをまとめて全固体二次電池用シートということがある。
全固体二次電池用シートは、基材上に固体電解質層又は活物質層(電極層)を有するシートである。この全固体二次電池用シートは、基材と固体電解質層又は活物質層を有していれば、他の層を有してもよいが、活物質を含有するものは後述する全固体二次電池用電極シートに分類される。他の層としては、例えば、保護層、集電体、コート層(集電体、固体電解質層、活物質層)等が挙げられる。
全固体二次電池用固体電解質シートとして、例えば、固体電解質層と保護層とを基材上に、この順で有するシートが挙げられる。
基材としては、固体電解質層を支持できるものであれば特に限定されず、後記集電体で説明した材料、有機材料および無機材料等のシート体(板状体)等が挙げられる。有機材料としては、各種ポリマー等が挙げられ、具体的には、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレンおよびセルロース等が挙げられる。無機材料としては、例えば、ガラスおよびセラミック等が挙げられる。
全固体二次電池用シートの固体電解質層の層厚は、上述の、本発明の全固体二次電池において説明した固体電解質層の層厚と同じである。
このシートは、本発明の固体電解質組成物のろ液を基材上(他の層を介していてもよい)に製膜(塗布乾燥)して、基材上に固体電解質層を形成することにより、得られる。
ここで、本発明の固体電解質組成物は、上記の方法によって、調製できる。
本発明の全固体二次電池用電極シート(単に「電極シート」ともいう。)は、本発明の全固体二次電池の活物質層を形成するための、集電体としての金属箔上に活物質層を有する電極シートである。この電極シートは、通常、集電体及び活物質層を有するシートであるが、集電体、活物質層及び固体電解質層をこの順に有する態様、並びに、集電体、活物質層、固体電解質層及び活物質層をこの順に有する態様も含まれる。
電極シートを構成する各層の層厚は、上述の、本発明の全固体二次電池において説明した各層の層厚と同じである。また、電極シートを構成する各層の構成は、後記、本発明の全固体二次電池において説明した各層の構成と同じである。
電極シートは、本発明の、活物質を含有する固体電解質組成物のろ液を金属箔上に製膜(塗布乾燥)して、金属箔上に活物質層を形成することにより、得られる。活物質を含有する固体電解質組成物を調製する方法は、活物質を用いること以外は、上記固体電解質組成物を調製する方法と同じである。
[全固体二次電池]
本発明の全固体二次電池は、正極と、この正極に対向する負極と、正極及び負極の間の固体電解質層とを有する。正極は、正極集電体上に正極活物質層を有する。負極は、負極集電体上に負極活物質層を有する。
負極活物質層、正極活物質層及び固体電解質層の少なくとも1つの層は、本発明の固体電解質組成物を用いて形成されることが好ましい。
固体電解質組成物を用いて形成された活物質層および/または固体電解質層は、好ましくは、含有する成分種及びその含有量比について、固体電解質組成物の固形分におけるものと基本的に同じである。ただし、本発明において、固体電解質組成物をろ過して各層の形成に用いるため、脱水剤がろ別される場合、固体電解質組成物と各層とで含有量が異なる場合がある。
以下に、図1を参照して、本発明の好ましい実施形態について説明するが、本発明はこれに限定されない。
〔正極活物質層、固体電解質層、負極活物質層〕
全固体二次電池10においては、正極活物質層、固体電解質層及び負極活物質層のいずれかが本発明の固体電解質含有シートで形成されている。
すなわち、固体電解質層3が本発明の、固体電解質含有シートで形成されている場合、固体電解質層3は、無機固体電解質と脱水剤とを含む。固体電解質層は、通常、正極活物質及び/又は負極活物質を含まない。固体電解質層3中では、無機固体電解質や隣接する活物質等中の固体粒子間に含まれる脱水剤が水と反応することにより、無機固体電解質の変質が抑制されるため、製造後、長期間保存後に使用しても全固体二次電池10は電池電圧に優れる。
正極活物質層4及び/又は負極活物質層2が、活物質を含有する本発明の固体電解質含有シート、すなわち電極シートで形成されている場合、正極活物質層4及び負極活物質層2は、それぞれ、正極活物質又は負極活物質を含み、さらに、無機固体電解質と脱水剤とを含む。活物質層が無機固体電解質を含有するとイオン伝導度を向上させることができる。活物質層中では、固体粒子間等に存在する脱水剤が水と反応することにより、無機固体電解質の変質が抑制されるため、製造後、長期間保存後に使用しても全固体二次電池10は電池電圧に優れる。
正極活物質層4、固体電解質層3及び負極活物質層2が含有する無機固体電解質及び脱水剤は、それぞれ、互いに同種であっても異種であってもよい。
本発明においては、全固体二次電池における負極活物質層、正極活物質層及び固体電解質層のいずれかの層が、上記脱水剤と、無機固体電解質等の固体粒子とを含有する固体電解質含有シートを用いて作製される。
〔集電体(金属箔)〕
正極集電体5及び負極集電体1は、電子伝導体が好ましい。
本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケルおよびチタンなどの他に、アルミニウムまたはステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウムおよびアルミニウム合金がより好ましい。
負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケルおよびチタンなどの他に、アルミニウム、銅、銅合金またはステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金およびステンレス鋼がより好ましい。
集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
集電体の厚みは、特に限定されないが、1〜500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
本発明において、負極集電体、負極活物質層、固体電解質層、正極活物質層及び正極集電体の各層の間又はその外側には、機能性の層や部材等を適宜介在ないし配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。
〔筐体〕
上記の各層を配置して全固体二次電池の基本構造を作製することができる。用途によってはこのまま全固体二次電池として使用してもよいが、乾電池の形態とするためにはさらに適当な筐体に封入して用いる。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金およびステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
[固体電解質含有シートの製造]
本発明の固体電解質含有シートは、周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質(A)と、脱水剤(B)とを含有し、電池性能への影響を最小限に抑えるため、脱水剤の含有量は好ましくは、5質量%以下である。下限に特に制限はないが、0.1%以上であることが好ましい。
脱水剤はスラリーの中に存在させ、固体電解質含有シートでは除去されていることが好ましいとも考えられる。無機系脱水剤の場合は、活物質と無機固体電解質の界面形成を阻害するおそれがあり、固体電解質含有シートに過剰に脱水剤が含有されると、電池性能への影響が懸念されるからである。また、有機系脱水剤の場合でも、水との反応で生成する副生成物が無機固体電解質とさらに反応することがあり、固体電解質含有シートに過剰に脱水剤が含有されると、電池性能を悪化させることが懸念される。
しかし、固体電解質含有シートに含有される脱水剤が所定量であれば、電池性能を低下させないだけでなく、向上させることができる。
本発明においては、固体電解質含有シートに有機系脱水剤が含有されることが好ましい。
例えば、水との反応で生成する副生成物が酸(カルボン酸、スルホン酸、りん酸等)である有機系脱水剤を用いる場合、酸は無機固体電解質に対して無害である。そのため、固体電解質含有シート中にこれらの有機系脱水剤が残存することで、スラリーのみならず固体電解質含有シートの耐水性を向上させることができ、電池性能を低下させずに全固体二次電池の電池電圧を向上させることができる。
なお、脱水剤を固体電解質含有シートに含有させないようにするには、例えば、シート製造工程における加熱乾燥時に揮発させる。
本発明の固体電解質含有シートは、無機固体電解質(A)と、脱水剤(B)と、分散媒体(C)とを含有する固体電解質組成物をろ過する工程と、上記工程で得たろ液を基材上に塗布する工程と、加熱乾燥する工程とを経ることにより製造することができる。
なお、固体電解質含有シートにおける、分散媒体に溶解しない脱水剤の含有量は、上記ろ過工程によって調整することができる。具体的には、例えば、ろ過に用いるフィルターの孔径によりろ取される脱水剤の量を調製することにより固体電解質含有シート中の無機系脱水剤の含有量を調製する。ここで、分散媒体に溶解しない脱水剤とは、分散媒中で固形を維持している脱水剤であり、具体的には無機系脱水剤が挙げられる。
上記態様により、基材と固体電解質層とを有するシートである全固体二次電池用シートを作製することができる。
その他、塗布等の工程については、下記全固体二次電池の製造に記載の方法を使用することができる。
なお、固体電解質含有シートは、電池性能に影響を与えない範囲内で分散媒体を含有してもよい。具体的には、全質量中1ppm以上10000ppm以下含有してもよい。
[全固体二次電池及び全固体二次電池用電極シートの製造]
全固体二次電池及び全固体二次電池用電極シートの製造は、常法によって行うことができる。具体的には、全固体二次電池及び全固体二次電池用電極シートは、本発明の固体電解質組成物等を例えば、テフロン(登録商標)メッシュでろ過して得たろ液(以下、固体電解質組成物のろ液とも称す。)を用いて、上記の各層を形成することにより、製造できる。以下詳述する。ここで、本発明の全固体二次電池における各層は、いずれか1層が本発明の固体電解質組成物で形成されていればよく、以下詳述記載において適宜、「固体電解質組成物のろ液」を「本発明の固体電解質組成物以外の固体電解質組成物」に読み替えることができる。
本発明の全固体二次電池は、本発明の固体電解質組成物のろ液を集電体となる金属箔上に塗布し、塗膜を形成(製膜)する工程を含む(介する)方法により、製造できる。
例えば、正極集電体である金属箔上に、正極用材料(正極用組成物)として、正極活物質を含有する固体電解質組成物のろ液を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、この正極活物質層の上に、固体電解質層を形成するための固体電解質組成物のろ液を塗布して、固体電解質層を形成する。さらに、固体電解質層の上に、負極用材料(負極用組成物)として、負極活物質を含有する固体電解質組成物のろ液を塗布して、負極活物質層を形成する。負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。必要によりこれを筐体に封入して所望の全固体二次電池とすることができる。
また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。
別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シートを作製する。また、負極集電体である金属箔上に、負極用材料(負極用組成物)として、負極活物質を含有する固体電解質組成物のろ液を塗布して負極活物質層を形成し、全固体二次電池用負極シートを作製する。次いで、これらシートのいずれか一方の活物質層の上に、上記のようにして、固体電解質層を形成する。さらに、固体電解質層の上に、全固体二次電池用正極シート及び全固体二次電池用負極シートの他方を、固体電解質層と活物質層とが接するように積層する。このようにして、全固体二次電池を製造することができる。
また別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シート及び全固体二次電池用負極シートを作製する。また、これとは別に、固体電解質組成物のろ液を基材上に塗布して、固体電解質層からなる全固体二次電池用固体電解質シートを作製する。さらに、全固体二次電池用正極シート及び全固体二次電池用負極シートで、基材から剥がした固体電解質層を挟むように積層する。このようにして、全固体二次電池を製造することができる。
上記の形成法の組み合わせによっても全固体二次電池を製造することができる。例えば、上記のようにして、全固体二次電池用正極シート、全固体二次電池用負極シート及び全固体二次電池用固体電解質シートをそれぞれ作製する。次いで、全固体二次電池用負極シート上に、基材から剥がした固体電解質層を積層した後に、上記全固体二次電池用正極シートと張り合わせることで全固体二次電池を製造することができる。この方法において、固体電解質層を全固体二次電池用正極シートに積層し、全固体二次電池用負極シートと張り合わせることもできる。
(各層の形成(成膜))
固体電解質組成物のろ液の塗布方法は、特に限定されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート、スリット塗布、ストライプ塗布およびバーコート塗布が挙げられる。
このとき、固体電解質組成物のろ液は、それぞれ塗布した後に乾燥処理を施してもよいし、重層塗布した後に乾燥処理をしてもよい。乾燥温度は特に限定されない。下限は30℃以上が好ましく、60℃以上がより好ましく、80℃以上がさらに好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下がさらに好ましい。このような温度範囲で加熱することで、分散媒体を除去し、固体状態にすることができる。また、温度を高くしすぎず、全固体二次電池の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性を得ることができる。
固体電解質組成物のろ液を塗布した後、又は、全固体二次電池を作製した後に、各層又は全固体二次電池を加圧することが好ましい。また、各層を積層した状態で加圧することも好ましい。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては、特に限定されず、一般的には50〜1500MPaの範囲であることが好ましい。
また、塗布した固体電解質組成物は、加圧と同時に加熱してもよい。加熱温度としては、特に限定されず、一般的には30〜300℃の範囲である。無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。
加圧は塗布溶媒又は分散媒体をあらかじめ乾燥させた状態で行ってもよいし、溶媒又は分散媒体が残存している状態で行ってもよい。
なお、各組成物は同時に塗布しても良いし、塗布乾燥プレスを同時および/または逐次行っても良い。別々の基材に塗布した後に、転写により積層してもよい。
加圧中の雰囲気としては、特に限定されず、大気下、乾燥空気下(露点−20℃以下)および不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。
プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。全固体二次電池用シート以外、例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
プレス圧は被圧部の面積や膜厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
プレス面は平滑であっても粗面化されていてもよい。
(初期化)
上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化は、特に限定されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を開放することにより、行うことができる。
[全固体二次電池の用途]
本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車(電気自動車等)、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
本発明の好ましい実施形態によれば、以下のような各応用形態が導かれる。
〔1〕正極活物質層、固体電解質層および負極活物質層の少なくとも1層がリチウム塩を含有する全固体二次電池。
〔2〕固体電解質層が、分散媒体によって、リチウム塩および硫化物系無機固体電解質が分散されたスラリーのろ液を湿式塗布し製膜される全固体二次電池の製造方法。
〔3〕上記全固体二次電池作製用の活物質を含有する固体電解質組成物。
〔4〕上記固体電解質組成物のろ液を金属箔上に適用し、製膜してなる電池用電極シート。
〔5〕上記固体電解質組成物のろ液を金属箔上に適用し、製膜する電池用電極シートの製造方法。
上記好ましい実施形態の〔2〕および〔5〕に記載するように、本発明の全固体二次電池および電池用電極シートの好ましい製造方法は、いずれも湿式プロセスである。これにより、正極活物質層および負極活物質層の少なくとも1層における無機固体電解質の含有量が10質量%以下の低い領域でも、活物質と無機固体電解質の密着性が高まり効率的なイオン伝導パスを維持することができ、電池質量あたりのエネルギー密度(Wh/kg)および出力密度(W/kg)が高い全固体二次電池を製造することができる。
全固体二次電池とは、正極、負極、電解質がともに固体で構成された二次電池を言う。換言すれば、電解質としてカーボネート系の溶媒を用いるような電解液型の二次電池とは区別される。このなかで、本発明は無機全固体二次電池を前提とする。全固体二次電池には、電解質としてポリエチレンオキサイド等の高分子化合物を用いる有機(高分子)全固体二次電池と、上記のLi−P−S系ガラス、LLTやLLZ等を用いる無機全固体二次電池とに区分される。なお、無機全固体二次電池に有機化合物を適用することは妨げられず、正極活物質、負極活物質、無機固体電解質のバインダーや添加剤として有機化合物を適用することができる。
無機固体電解質とは、上述した高分子化合物をイオン伝導媒体とする電解質(高分子電解質)とは区別されるものであり、無機化合物がイオン伝導媒体となるものである。具体例としては、上記のLi−P−S系ガラス、LLTやLLZが挙げられる。無機固体電解質は、それ自体が陽イオン(Liイオン)を放出するものではなく、イオンの輸送機能を示すものである。これに対して、電解液ないし固体電解質層に添加して陽イオン(Liイオン)を放出するイオンの供給源となる材料を電解質と呼ぶことがある。上記のイオン輸送材料としての電解質と区別する際には、これを「電解質塩」または「支持電解質」と呼ぶ。電解質塩としては、例えばLiTFSIが挙げられる。
本発明において「組成物」というときには、2種以上の成分が均一に混合された混合物を意味する。ただし、実質的に均一性が維持されていればよく、所望の効果を奏する範囲で、一部において凝集や偏在が生じていてもよい。
以下に、実施例に基づき本発明についてさらに詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。以下の実施例において組成を表す「部」及び「%」は、特に断らない限り質量基準である。また、「室温」は25℃を意味する。
<硫化物系無機固体電解質の合成>
−Li−P−S系ガラスの合成−
硫化物系無機固体電解質として、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.HamGa,K.Kawamoto,Journal of Power Sources,233,(2013),pp231−235およびA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872−873の非特許文献を参考にして、Li−P−S系ガラスを合成した。
具体的には、アルゴン雰囲気下(露点−70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g、五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳棒を用いて、5分間混合した。なお、LiSおよびPの混合比は、モル比でLiS:P=75:25とした。
ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66個投入し、上記硫化リチウムと五硫化二リンの混合物全量を投入し、アルゴン雰囲気下で容器を密閉した。フリッチュ社製の遊星ボールミルP−7(商品名)にこの容器をセットし、温度25℃、回転数510rpmで20時間メカニカルミリングを行い、黄色粉体の硫化物系無機固体電解質(Li−P−S系ガラス)6.20gを得た。イオン伝導度は0.28mS/cm、粒子径は20.3μmであった。
(実施例1)
<試験>
下記で調製した固体電解質組成物の経時前と経時後のイオン伝導度を測定し、経時前と経時後とでイオン伝導度がどの程度低下するかを評価した。以下、試験方法を記載する。また、評価を下記表1の「イオン伝導度の低下抑制効果」の列に記載する。
<イオン伝導度測定>
調製した固体電解質組成物のスラリーを50μmのテフロンメッシュでろ過した後、露点−60℃の乾燥空気下で、100℃に加熱したホットプレート上で2時間常圧(760mmHg)乾燥を行った。得られた乾燥粉末について、インピーダンス法によりイオン伝導度を測定した。これを経時前のイオン伝導度(Ia)とする。
固体電解質組成物のスラリーを開放系で露点−20℃の乾燥空気下で、25℃の恒温槽で2週間スターラー攪伴を行った。
2週間後のスラリーを50μmのテフロンメッシュでろ過した後、上記と同様の方法で乾燥し、乾燥粉末をインピーダンス法によりイオン伝導度を測定した。これを経時後のイオン伝導度(Ib)とする。
乾燥粉末を直径14.5mmの円筒に300mg詰め、コイン型冶具を作製した。コイン型冶具の外部より、電極間に500kgf/cmの圧力をかけることが可能なジグに挟み、イオン伝導度測定に用いた。
上記で得られたコイン型冶具を用いて、30℃の恒温槽中、交流インピーダンス法により、加圧下(500kgf/cm)でのイオン伝導度を求めた。このとき、コイン型冶具の加圧には図2に示した試験体を用いた。11が上部支持板、12が下部支持板、13がコイン型冶具、Sがネジである。
以下に評価基準を示す。B以上が合格レベルである。
A:0.9<(Ib/Ia)
B:0.7<(Ib/Ia)≦0.9
C:0.3<(Ib/Ia)≦0.7
D:0.1<(Ib/Ia)≦0.3
E:(Ib/Ia)≦0.1
<各組成物の調製>
−固体電解質組成物S−1の調製−
ジルコニア製45mL容器(フリッチュ社製)に、直径3mmのジルコニアビーズを50個投入し、酸化物系無機固体電解質LLZ(豊島製作所製)1.5g、バインダー(E−1)0.02gを加え、分散媒体として、1,4−ジオキサン5.3gを投入した。その後、フリッチュ社製遊星ボールミルP−7(商品名)に容器をセットし、温度25℃、回転数300rpmで2時間混合を続けた。その後、脱水剤として十分に乾燥させたモレキュラーシーブス4A 1.0gを加えて固体電解質組成物S−1を調製した。
(2)固体電解質組成物S−2の調製
ジルコニア製45mL容器(フリッチュ社製)に、直径3mmのジルコニアビーズを50個投入し、上記で合成した硫化物系無機固体電解質Li−P−S系ガラス0.8g、バインダー(E−1)0.04g、分散媒体として1,4−ジオキサン3.6gを投入した。その後、この容器を遊星ボールミルP−7(フリッチュ社製)にセットし、温度25℃、回転数300rpmで2時間攪拌を続けた。その後、脱水剤として十分に乾燥させたモレキュラーシーブス4A 1.0gを加えて固体電解質組成物S−2を調製した。
下記表1に、固体電解質組成物の組成をまとめて記載する。
ここで、固体電解質組成物S−1〜S−17が本発明の固体電解質組成物であり、固体電解質組成物T−1〜T−4が比較の固体電解質組成物である。
Figure 0006684901
E−1:PVdF−HFP(アルケマ社製)
E−2:SBR(JSR社製)
E−3:下記の方法で調製したアクリル酸-アクリル酸メチル共重合体(20/80モル比 Mw25000)
100mL3つ口フラスコにアクリル酸(和光純薬(株)製)1.2gとアクリル酸メチル4.2g(和光純薬(株)製)をMEK(メチルエチルケトン)30gに溶解し、75℃に加熱しながら窒素置換した。これにアゾイソブチロニトリル(V−60:商品名、和光純薬(株)製)0.15gを添加して、窒素雰囲気下75℃で6時間加熱した。得られたポリマー溶液を、ヘキサンを用いてポリマー沈殿させて白色粉末を得た。
E−4:アクリルラテックス、特開2015−88486記載のバインダー(B−1)
ラテックス平均粒子径:500nm(平均粒子径は上述の方法で測定した。)
E−5:ウレタンポリマー特開2015−88480記載の例示化合物(44)
LLZ:LiLaZr12(豊島製作所製)
Li/P/S:上記で合成したLi−P−S系ガラス
B−1〜B−4:脱水剤の例示化合物(B−1)〜(B−4)
沸点:760mmHgにおける沸点
表1から明らかなように、本発明の固体電解質組成物は、露点が高い状態で保管した加速試験において良好なイオン伝導度の低下抑制効果を示しており、水による無機固体電解質の劣化が少なく、イオン伝導度の保持率が高いことが分かった。
−正極用組成物の調製−
ジルコニア製45mL容器(フリッチュ社製)に、直径3mmのジルコニアビーズを50個投入し、固体電解質組成物S−1から脱水剤を除いた組成を有する組成物6.8gを加えた。これに正極活物質LCOを3.2g加え、その後、この容器を遊星ボールミルP−7(フリッチュ社製)にセットし、温度25℃、回転数100rpmで10分間攪拌を続けた。最後に脱水剤として十分に乾燥させたモレキュラーシーブス4A(対応する固体電解質組成物S−1で使用の脱水剤)1.0gを加えて正極用組成物P−1を調製した。
正極用組成物の組成は、固体電解質組成物S−1の組成に正極活物質を合わせたものであるので、下記表2では固体電解質組成物S−1と正極活物質により正極用組成物P−1の組成を示している。
下記表2に、固体電解質組成物の組成をまとめて記載する。
ここで、正極用組成物P−1〜P−17が本発明の固体電解質組成物であり、正極用組成物HP−1〜HP−4が比較の固体電解質組成物である。
Figure 0006684901
<表の注>
LCO:LiCoO
LMO:LiMn
NCA:LiNi0.85Co0.10Al0.05
NMC:LiNi1/3Co1/3Mn1/3
−負極用組成物の調製−
ジルコニア製45mL容器(フリッチュ社製)に、直径3mmのジルコニアビーズを50個投入し、固体電解質組成物(S−1)から脱水剤を除いた組成を有する組成物6.8gを加えた。これに負極活物質としてLTO(LiTi12)を3.2g加え、その後、この容器を遊星ボールミルP−7(フリッチュ社製)にセットし、温度25℃、回転数100rpmで10分間攪拌を続けた。最後に脱水剤として十分に乾燥させたモレキュラーシーブス4A(対応する固体電解質組成物(S−1)で使用の脱水剤)1.0gを加えて負極用組成物N−1を調製した。
負極用組成物の組成は、固体電解質組成物S−1の組成に負極活物質を合わせたものであるので、下記表3では固体電解質組成物S−1と負極活物質により負極用組成物N−1の組成を示している。
下記表3に、固体電解質組成物の組成をまとめて記載する。
ここで、負極用組成物N−1〜N−17が本発明の固体電解質組成物であり、負極用組成物HN−1〜HN−4が比較の固体電解質組成物である。
Figure 0006684901
<表の注>
LTO:LiTi12
<電極シートの作製>
表3に示す負極用組成物を50μmテフロンメッシュでろ過した後、集電体であるステンレス鋼(SUS)箔上に塗布し、80℃で20分間乾燥することにより負極層を形成した。さらにこの負極層上に表1に示す固体電解質組成物を50μmテフロンメッシュでろ過した後に塗布し、80℃で1時間乾燥することにより固体電解質層を形成した。
一方、表2に示す正極用組成物を50μmテフロンメッシュでろ過した後、集電体であるアルミニウム箔上に塗布し、80℃で1時間乾燥することにより正極層を形成した。
この2枚を張り合わせることにより、負極層−固体電解質層−正極層をこの順に含む電極シートを得た。
各層の構成の組み合わせを下記表4に示す。
−全固体二次電池の製造−
上記で製造した全固体二次電池用電極シート17を直径14.5mmの円板状に切り出し、図3に示すように、スペーサーとワッシャーを組み込んだステンレス製の2032型コインケース16に入れて、トルクレンチで8ニュートン(N)の力で締め付け、図1に示す層構成を有する全固体二次電池18を製造した。
<評価>
上記で作製した実施例及び比較例の全固体二次電池に対して以下の評価を行った。評価結果を下記表4に示す。
各層に残存する脱水剤の含有量はトルエンでシートの固形分を溶出し、ガスクロマトグラフィーを用いて定量することにより求めた。残存量はシートに占める全固形分あたりの質量%で示してある。
−電池電圧−
上記で作製した全固体二次電池の電池電圧を、東洋システム(株)製の充放電評価装置「TOSCAT−3000(商品名)」により測定した。
充電は、電流密度2A/mで電池電圧が4.2Vに達するまで行い、4.2Vに到達後は、電流密度が0.2A/m未満となるまで、4.2Vでの定電圧充電を実施した。放電は、電流密度2A/mで電池電圧が3.0Vに達するまで行った。これを1サイクルとして3サイクル繰り返して行い、3サイクル目の5mAh/g放電後の電池電圧を読み取った。
以下の評価基準で評価した。なお、ランクA〜Cが合格レベルである。
<評価基準>
A:フレッシュ品に対する2週間保存後の全固体二次電池の電圧の低下率が10%以下
B:フレッシュ品に対する2週間保存後の全固体二次電池の電圧の低下率が10%を超え30%以下
C:フレッシュ品に対する2週間保存後の全固体二次電池の電圧の低下率が30%を超え50%以下
D:フレッシュ品に対する2週間保存後の全固体二次電池の電圧の低下率が50%を超え70%以下
E:電池駆動せず。
フレッシュ品:上記各組成物を調製後、保存時間24時間以内に作製した全固体二次電池
組成物の保存条件:アルゴン雰囲気下で露点−60℃以下
全固体二次電池の保存条件:アルゴン雰囲気下で露点−60℃以下
Figure 0006684901
上記表4から明らかなように、本発明の規定を満たさない固体電解質組成物から作製した全固体二次電池は電池電圧がいずれも不合格であった。
これに対して、少なくとも1つの層を本発明の固体電解質組成物から作製した全固体二次電池は電池電圧に優れた。この結果から、本発明の固体電解質組成物から作製した全固体二次電池では、水分吸収による無機固体電解質の劣化が抑制されていることが分かる。
本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
本願は、2016年5月19日に日本国で特許出願された特願2016−100617に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
1 負極集電体
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
11 上部支持板
12 下部支持板
13 コイン型冶具
14 コインケース
15 固体電解質含有シート
S ネジ
16 2032型コインケース
17 全固体二次電池用電極シート
18 全固体二次電池

Claims (17)

  1. 周期律表第1族又は第2族に属する金属のイオンの伝導性を有する無機固体電解質(A)と、脱水剤(B)と、分散媒体(C)とを含有する全固体二次電池用固体電解質組成物であって、
    前記分散媒体(C)が、アルコール化合物溶媒、エーテル化合物溶媒、アミド化合物溶媒、アミノ化合物溶媒、ケトン化合物溶媒、エステル化合物溶媒、カーボネート化合物溶媒、芳香族化合物溶媒、脂肪族化合物溶媒およびニトリル化合物溶媒の少なくとも1種であり、
    前記無機固体電解質(A)の含有量が、前記全固体二次電池用固体電解質組成物の全固形分中、5質量%以上99質量%以下であり、
    前記脱水剤(B)の含有量が、前記全固体二次電池用固体電解質組成物の全固形分中、1質量%以上50質量%以下であり、
    前記分散媒体(C)の含有量が、前記全固体二次電池用固体電解質組成物中、20質量%以上80質量%以下である、全固体二次電池用固体電解質組成物
  2. 前記無機固体電解質(A)が、硫化物系無機固体電解質である請求項1に記載の全固体二次電池用固体電解質組成物。
  3. 前記脱水剤(B)が、同一炭素原子または同一硫黄原子に2つ以上酸素原子が結合した部分構造を有する有機化合物である請求項1または2に記載の全固体二次電池用固体電解質組成物。
  4. 前記脱水剤(B)が、水と反応して下記一般式(1)〜(3)のいずれかで表される部分構造を有する生成物を形成する有機化合物である請求項1〜3のいずれか1項に記載の全固体二次電池用固体電解質組成物。
    Figure 0006684901
    一般式(1)〜(3)中、R、R、R31およびR32は、ぞれぞれ独立に水素原子、アルキル基またはアリール基を示す。X、X、X31およびX32は、ぞれぞれ独立に単結合、酸素原子、硫黄原子、または−N(R)−を示す。Rは、水素原子、アルキル基またはアリール基を示す。Yは炭素原子または硫黄原子を示す。Yは硫黄原子を示す。Yはリン原子を示す。*は生成物中における連結部位を示す。
  5. 前記脱水剤(B)が、酸無水物、酸ハロゲン化物、アセタールおよびオルトエステルからなる群から選択される少なくとも1種である請求項1〜4のいずれか1項に記載の全固体二次電池用固体電解質組成物。
  6. 前記脱水剤(B)が、フッ素原子を有する有機化合物である請求項1〜5のいずれか1項に記載の全固体二次電池用固体電解質組成物。
  7. 前記分散媒体(C)が、エーテル化合物溶媒、芳香族化合物溶媒および脂肪族化合物溶媒の少なくとも1種である請求項1〜6のいずれか1項に記載の全固体二次電池用固体電解質組成物。
  8. 前記脱水剤(B)が、分子量300以下または760mmHgにおける沸点が300℃以下である請求項1〜7のいずれか1項に記載の全固体二次電池用固体電解質組成物。
  9. 前記脱水剤(B)が25℃で液体であり、分散媒体(C)に対する質量比(B)/(C)が、1/99〜99/1である請求項1〜8のいずれか1項に記載の全固体二次電池用固体電解質組成物。
  10. 活物質(D)を含有する請求項1〜9のいずれか1項に記載の全固体二次電池用固体電解質組成物。
  11. バインダー(E)を含有する請求項1〜10のいずれか1項に記載の全固体二次電池用固体電解質組成物。
  12. 前記バインダー(E)が、アクリル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリイミド樹脂、含フッ素樹脂および炭化水素系熱可塑性樹脂からなる群から選択される少なくとも1種である請求項11に記載の全固体二次電池用固体電解質組成物。
  13. 前記バインダー(E)が極性基を有する請求項11または12に記載の全固体二次電池用固体電解質組成物。
  14. 周期律表第1族又は第2族に属する金属のイオンの伝導性を有する、酸化物系無機固体電解質および硫化物系無機固体電解質の少なくとも1種と、脱水剤(B)と、分散媒体(C)とを含有する固体電解質組成物から形成された層を有する全固体二次電池用固体電解質含有シートであって、
    前記分散媒体(C)が、アルコール化合物溶媒、エーテル化合物溶媒、アミド化合物溶媒、アミノ化合物溶媒、ケトン化合物溶媒、エステル化合物溶媒、カーボネート化合物溶媒、芳香族化合物溶媒、脂肪族化合物溶媒およびニトリル化合物溶媒のうちの少なくとも1種であり、
    前記無機固体電解質の含有量が、前記固体電解質組成物の全固形分中、5質量%以上99質量%以下であり、
    前記脱水剤(B)の含有量が、前記固体電解質組成物の全固形分中、1質量%以上50質量%以下であり、
    前記分散媒体(C)の含有量が、前記固体電解質組成物中、20質量%以上80質量%以下であり、
    前記層に含まれる全固形分中の前記脱水剤(B)の含有量が5質量%以下である全固体二次電池用固体電解質含有シート。
  15. 請求項14に記載の全固体二次電池用固体電解質含有シートの製造方法であって、
    前記固体電解質組成物をろ過する工程と、
    前記工程で得たろ液を基材上に塗布する工程と、
    加熱乾燥する工程とを
    有する全固体二次電池用固体電解質含有シートの製造方法。
  16. 正極活物質層、負極活物質層および固体電解質層を具備する全固体二次電池であって、
    前記正極活物質層、前記負極活物質層および前記固体電解質層の少なくとも1つの層が請求項14に記載の全固体二次電池用固体電解質含有シートである全固体二次電池。
  17. 請求項15に記載の製造方法を介して、全固体二次電池を製造する全固体二次電池の製造方法。
JP2018518242A 2016-05-19 2017-05-10 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法 Active JP6684901B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016100617 2016-05-19
JP2016100617 2016-05-19
PCT/JP2017/017757 WO2017199821A1 (ja) 2016-05-19 2017-05-10 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法

Publications (2)

Publication Number Publication Date
JPWO2017199821A1 JPWO2017199821A1 (ja) 2019-03-07
JP6684901B2 true JP6684901B2 (ja) 2020-04-22

Family

ID=60325863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018518242A Active JP6684901B2 (ja) 2016-05-19 2017-05-10 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法

Country Status (2)

Country Link
JP (1) JP6684901B2 (ja)
WO (1) WO2017199821A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6904264B2 (ja) * 2018-01-16 2021-07-14 トヨタ自動車株式会社 リチウム電池用負極スラリー
US20210005925A1 (en) * 2018-03-26 2021-01-07 Toyota Motor Europe Solid electrolyte material for solid state batteries, solid electrolyte and solid state battery
JP7256609B2 (ja) * 2018-05-16 2023-04-12 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 不純物スカベンジャーを含む全固体電池
CN113597694A (zh) * 2019-06-26 2021-11-02 松下知识产权经营株式会社 离子导体材料及电池
US20240145765A1 (en) * 2019-10-15 2024-05-02 Attaccato Limited Liability Company Electrode for non-aqueous electrolyte power storage device, non-aqueous electrolyte power storage device, and method for producing same
EP4084147A1 (en) 2019-12-26 2022-11-02 Zeon Corporation Binder composition for secondary batteries, slurry composition for secondary batteries, solid electrolyte-containing layer, all-solid-state secondary battery, and method for producing all-solid-state secondary battery
US20230076834A1 (en) * 2020-03-02 2023-03-09 Navitas Systems, Llc Compositions and methods for electro-chemical cell component fabrication
JP7276264B2 (ja) * 2020-06-30 2023-05-18 トヨタ自動車株式会社 固体電解質含有層の製造方法、固体電池の製造方法および固体電池
KR20230061341A (ko) * 2020-08-31 2023-05-08 니폰 제온 가부시키가이샤 전고체 이차 전지용 바인더 조성물의 제조 방법, 전고체 이차 전지용 슬러리 조성물의 제조 방법, 고체 전해질 함유층의 제조 방법, 및 전고체 이차 전지의 제조 방법
CN117897849A (zh) * 2021-08-27 2024-04-16 松下知识产权经营株式会社 电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262807A (ja) * 2009-05-01 2010-11-18 Konica Minolta Holdings Inc 二次電池
JP5772747B2 (ja) * 2012-02-21 2015-09-02 トヨタ自動車株式会社 固体電解質の保管方法及び保管装置、並びに全固体電池の製造方法
JP6374650B2 (ja) * 2013-11-07 2018-08-15 旭化成株式会社 非水電解質二次電池
JP6310717B2 (ja) * 2014-02-10 2018-04-11 古河機械金属株式会社 固体電解質シートおよび全固体型リチウムイオン電池
JP6431707B2 (ja) * 2014-07-08 2018-11-28 三菱瓦斯化学株式会社 全固体電池用電極層および全固体電池

Also Published As

Publication number Publication date
WO2017199821A1 (ja) 2017-11-23
JPWO2017199821A1 (ja) 2019-03-07

Similar Documents

Publication Publication Date Title
JP6684901B2 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
JP6665284B2 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
JP6591687B2 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
KR20180093091A (ko) 고체 전해질 조성물, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지와, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지의 제조 방법
WO2018168505A1 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、並びに、固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法
JP6615337B2 (ja) 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP6621532B2 (ja) 固体電解質組成物、固体電解質含有シート、全固体二次電池用電極シートおよび全固体二次電池ならびに固体電解質含有シート、全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP6893258B2 (ja) 全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法
JP7035067B2 (ja) 固体電解質組成物、その製造方法、保存方法及びキット、固体電解質含有シート、その保存方法及びキット、並びに、全固体二次電池
JP6572063B2 (ja) 全固体二次電池、全固体二次電池用電極シート及びこれらの製造方法
WO2021060541A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP6709065B2 (ja) 固体電解質組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP6665343B2 (ja) 無機固体電解質材料、並びに、これを用いたスラリー、全固体二次電池用固体電解質膜、全固体二次電池用固体電解質シート、全固体二次電池用正極活物質膜、全固体二次電池用負極活物質膜、全固体二次電池用電極シート、全固体二次電池及び全固体二次電池の製造方法
JP6740350B2 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
WO2020067108A1 (ja) 全固体二次電池の負極用組成物、全固体二次電池用負極シート及び全固体二次電池、並びに、全固体二次電池用負極シート及び全固体二次電池の製造方法
JP6649856B2 (ja) 全固体二次電池用負極シートおよび全固体二次電池の製造方法
JP2022169698A (ja) 固体電解質組成物、固体電解質含有シート及び全固体二次電池並びに固体電解質含有シート及び全固体二次電池の製造方法
JP6623083B2 (ja) 固体電解質組成物、これを用いた全固体二次電池用シートおよび全固体二次電池ならびにこれらの製造方法
JP7245847B2 (ja) 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法
WO2021060542A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021261526A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021193826A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200330

R150 Certificate of patent or registration of utility model

Ref document number: 6684901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250