WO2014050527A1 - 光電変換素子および色素増感太陽電池 - Google Patents

光電変換素子および色素増感太陽電池 Download PDF

Info

Publication number
WO2014050527A1
WO2014050527A1 PCT/JP2013/074294 JP2013074294W WO2014050527A1 WO 2014050527 A1 WO2014050527 A1 WO 2014050527A1 JP 2013074294 W JP2013074294 W JP 2013074294W WO 2014050527 A1 WO2014050527 A1 WO 2014050527A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
bonded
metal ion
formula
carbon atom
Prior art date
Application number
PCT/JP2013/074294
Other languages
English (en)
French (fr)
Inventor
渡辺 康介
小林 克
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR20157003531A priority Critical patent/KR20150032893A/ko
Priority to EP13843009.5A priority patent/EP2903080A1/en
Publication of WO2014050527A1 publication Critical patent/WO2014050527A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L2031/0344Organic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a photoelectric conversion element and a dye-sensitized solar cell.
  • Photoelectric conversion elements are used in various optical sensors, copiers, solar cells and the like.
  • Various photoelectric conversion elements such as a photoelectric conversion element using a metal, a photoelectric conversion element using a semiconductor, a photoelectric conversion element using an organic pigment or a pigment, or a combination of these photoelectric conversion elements.
  • a solar cell using non-depleting solar energy does not require fuel, and full-scale practical use is highly expected as it uses inexhaustible clean energy.
  • silicon-based solar cells have been researched and developed for a long time, and are spreading due to the policy considerations of each country.
  • silicon is an inorganic material, there is a limit to improving throughput and cost.
  • dyes generally called N3, N719, Z907, and J2 have been developed as metal complex dyes used in photoelectric conversion elements.
  • conventional dye-sensitized solar cells generally have low photoelectric conversion efficiency and often have poor durability.
  • a ligand of a metal complex dye a combination of a bidentate ligand and a bidentate ligand, or a combination of a bidentate ligand and a tridentate ligand has been actively studied. Further studies were needed to improve durability.
  • metal complex dyes having two tridentate ligands for example, see Patent Documents 1 and 2 has been carried out. The improvement is in fact difficult.
  • solar cells are attracting attention and expectation as an energy source to replace nuclear power generation, and further performance improvements are demanded as dye-sensitized solar cells.
  • the level of performance required for dye-sensitized solar cells is increasing year by year, and the conventional techniques including the metal complex dyes disclosed in Patent Documents 1 and 2 have not always been satisfactory. Therefore, the subject of this invention is providing the photoelectric conversion element and dye-sensitized solar cell of the outstanding performance by using the metal complex pigment
  • the present inventors examined the relationship between a ligand having an acidic group such as a carboxyl group for adsorbing on the surface of the semiconductor fine particles and a ligand not having this. As a result, the durability is improved by increasing the adsorptive power, and the clue to solving the above problems is obtained by focusing on the interaction between ligands such as the electronic interaction between the ligands. To the present invention.
  • the object of the present invention has been achieved by the following means.
  • a photoelectric conversion element having a conductive support, a photoreceptor layer containing an electrolyte, a charge transfer layer containing an electrolyte, and a counter electrode, wherein the photoreceptor layer is a metal complex represented by the following formula (I)
  • a photoelectric conversion element having semiconductor fine particles carrying a dye.
  • M represents a metal ion.
  • LD represents a ligand represented by any of the following formulas (DL-1) to (DL-4).
  • LA represents a ligand represented by the following formula (AL-1) or (AL-2).
  • CI represents a counter ion necessary for neutralizing the electric charge.
  • ring A and ring C1 are each independently a pyrazole ring, a pyrrole ring bonded to the metal ion M by a nitrogen atom, an imidazole ring, an oxazole ring, a thiazole ring, an oxadiazole ring bonded to the metal ion M by a nitrogen atom.
  • Thiadiazole ring isoxazole ring, isothiazole ring, triazole ring, pyrimidine ring, pyrazine ring, pyridazine ring, triazine ring, pyridine ring bonded to metal ion M at a carbon atom, thiophene ring bonded to metal ion M at a carbon atom
  • pyrimidine ring pyrazine ring
  • pyridazine ring triazine ring
  • thiophene ring bonded to metal ion M at a carbon atom
  • Ring B1 is a pyrimidine ring, a triazine ring, an imidazole ring bonded to the metal ion M by a nitrogen atom, an imidazole ring bonded to the metal ion M by a carbon atom (carbene), an oxazole ring, a thiazole ring, an oxadiazole ring, a thiadiazole ring, It represents either a triazole ring or a pyrazole ring.
  • R A to R D each independently represents a substituent.
  • a1 to a3 each independently represents an integer of 0 or more, and a4 represents an integer of 0 to 4. When there are a plurality of R A to R D , these may be bonded to each other to form a ring.
  • ring B2 is a pyrimidine ring, a triazine ring, an imidazole ring bonded to the metal ion M by a nitrogen atom, an imidazole ring bonded to the metal ion M by a carbon atom (carbene), an oxazole ring, a thiazole ring, an oxadiazole ring, It represents either a thiadiazole ring, a triazole ring, a pyrazole ring, a pyrrole ring bonded to the metal ion M at a carbon atom, or a non-aromatic hetero ring.
  • R B , R D and R E each independently represent a substituent.
  • a2 represents an integer of 0 or more
  • a4 and a5 each independently represents an integer of 0 to 4.
  • ring C2 is a pyrimidine ring, a pyrazine ring, a pyridazine ring, a triazine ring, a pyridine ring bonded to the metal ion M by a carbon atom, a thiophene ring bonded to the metal ion M by a carbon atom, and a metal ion M bonded by a carbon atom.
  • R C , R D and R E each independently represent a substituent.
  • a3 represents an integer of 0 or more
  • a4 and a5 each independently represent an integer of 0 to 4.
  • Anc 1 to Anc 3 each independently represent —CO 2 H, —SO 3 H, —PO 3 H 2 , or a group in which these protons are dissociated.
  • RAL represents a substituent, and b1 represents an integer of 0 to 4.
  • the ring B1 is either a pyrimidine ring or a triazine ring. (1) or (2).
  • LD of formula (I) is formula (DL-3) and ring B2 is a triazole ring or a non-aromatic nitrogen-containing heterocycle element.
  • LD of formula (I) is formula (DL-4), and ring C2 is a pyrrole ring, a pyridine ring bonded to metal ion M by a carbon atom, and thiophene bonded to metal ion M by a carbon atom
  • the photoelectric conversion element according to (1) or (2) which is either a ring, a furan ring bonded to the metal ion M by a carbon atom, or a pyrazole ring bonded to the metal ion M by a carbon atom.
  • R A1 represents a substituent having an acidic group.
  • R A2 represents a substituent.
  • nA represents an integer of 0 or more.
  • the carbon-carbon double bond may be either E-type or Z-type in the molecule, or a mixture thereof.
  • substituents, etc. linking groups, ligands, etc.
  • substituents etc.
  • a special notice is given.
  • each substituent etc. may mutually be same or different. The same applies to the definition of the number of substituents and the like.
  • substituents and the like when a plurality of substituents and the like are close to each other (especially when they are adjacent to each other), they may be connected to each other to form a ring unless otherwise specified.
  • a ring such as an alicyclic ring, an aromatic ring, or a hetero ring may be further condensed to form a condensed ring.
  • each substituent may be further substituted with a substituent unless otherwise specified.
  • the photoelectric conversion element of the present invention is, for example, as shown in FIG. 1, a conductive support 1, a photoreceptor layer 2 containing semiconductor fine particles sensitized by a dye (metal complex dye) 21, and a hole transport layer.
  • the photoelectric conversion element 10 which consists of the charge transfer body layer 3 and the counter electrode 4 is mentioned.
  • the co-adsorbent is adsorbed on the semiconductor fine particles 22 together with the dye (metal complex dye) 21.
  • the conductive support 1 provided with the photoreceptor layer 2 functions as a working electrode in the photoelectric conversion element 10.
  • the photoelectric conversion element 10 is shown as a system 100 using a dye-sensitized solar cell that can be used for a battery for causing the operating means M to work with the external circuit 6.
  • the light-receiving electrode 5 includes a conductive support 1 and a photoreceptor layer 2 containing semiconductor fine particles adsorbed with a dye (metal complex dye) 21.
  • the photoreceptor layer 2 is designed according to the purpose, and may be a single layer structure or a multilayer structure.
  • the dye (metal complex dye) 21 in one photosensitive layer may be one kind or a mixture of various kinds, but at least one of them uses the above-mentioned metal complex dye.
  • the light incident on the photoreceptor layer 2 excites the dye (metal complex dye) 21.
  • the excited dye has high energy electrons, and the electrons are transferred from the dye (metal complex dye) 21 to the conduction band of the semiconductor fine particles 22 and reach the conductive support 1 by diffusion.
  • the dye (metal complex dye) 21 is an oxidant, but the electrons on the electrode work in the external circuit 6 and pass through the counter electrode 4 so that the oxidant of the dye (metal complex dye) 21 and By returning to the photoreceptor layer 2 where the electrolyte is present, it functions as a solar cell.
  • the material used for the photoelectric conversion element or the dye-sensitized solar cell and the method for creating each member may be a normal material related to the photoelectric conversion element or the dye-sensitized solar cell and the method for creating each member,
  • an outline of the main members will be described.
  • the photoreceptor layer is a layer containing semiconductor fine particles containing an electrolyte described later and carrying a sensitizing dye containing a metal complex dye used in the present invention described below.
  • metal complex dye used in the present invention is represented by the following general formula (I).
  • M represents a metal ion.
  • LD represents a ligand represented by any of the following formulas (DL-1) to (DL-4).
  • LA represents a ligand represented by the following formula (AL-1) or (AL-2).
  • CI represents a counter ion necessary for neutralizing the electric charge.
  • ring A and ring C1 are each independently a pyrazole ring, a pyrrole ring bonded to the metal ion M by a nitrogen atom, an imidazole ring, an oxazole ring, a thiazole ring, an oxadiazole ring bonded to the metal ion M by a nitrogen atom.
  • Thiadiazole ring isoxazole ring, isothiazole ring, triazole ring, pyrimidine ring, pyrazine ring, pyridazine ring, triazine ring, pyridine ring bonded to metal ion M at a carbon atom, thiophene ring bonded to metal ion M at a carbon atom
  • pyrimidine ring pyrazine ring
  • pyridazine ring triazine ring
  • thiophene ring bonded to metal ion M at a carbon atom
  • Ring B1 is a pyrimidine ring, a triazine ring, an imidazole ring, an imidazole ring, an oxazole ring, a thiazole ring, an oxadiazole ring, a thiadiazole ring, a triazole ring, or a pyrazole ring that is bonded to the metal ion M by a carbon atom (carbene).
  • R A to R D each independently represents a substituent.
  • a1 to a3 each independently represents an integer of 0 or more, and a4 represents an integer of 0 to 4. When there are a plurality of R A to R D , these may be bonded to each other to form a ring.
  • ring B2 is a pyrimidine ring, a triazine ring, an imidazole ring bonded to the metal ion M by a nitrogen atom, an imidazole ring bonded to the metal ion M by a carbon atom (carbene), an oxazole ring, a thiazole ring, an oxadiazole ring, It represents either a thiadiazole ring, a triazole ring, a pyrazole ring, a pyrrole ring bonded to the metal ion M at a carbon atom, or a non-aromatic hetero ring.
  • R B , R D and R E each independently represent a substituent.
  • a2 represents an integer of 0 or more
  • a4 and a5 each independently represents an integer of 0 to 4.
  • ring C2 is a pyrimidine ring, a pyrazine ring, a pyridazine ring, a triazine ring, a pyridine ring bonded to the metal ion M by a carbon atom, a thiophene ring bonded to the metal ion M by a carbon atom, and a metal ion M bonded by a carbon atom.
  • R C , R D and R E each independently represent a substituent.
  • a3 represents an integer of 0 or more
  • a4 and a5 each represents an integer of 0 to 4.
  • Anc 1 to Anc 3 each independently represent —CO 2 H, —SO 3 H, —PO 3 H 2 , or a group in which these protons are dissociated.
  • RAL represents a substituent, and b1 represents an integer of 0 to 4.
  • M-M is a central metal of the metal complex dye, and examples thereof include elements of groups 6 to 12 on the long periodic table. Examples of such elements include Ru, Fe, Os, Cu, W, Cr, Mo, Ni, Pd, Pt, Co, Ir, Rh, Re, Mn, and Zn.
  • M is preferably Fe 2+ , Ru 2+ or Os 2+ , and Ru 2+ is particularly preferable.
  • the valence of M may be changed by an oxidation-reduction reaction with surrounding materials.
  • a ligand represented by any of the formulas (DL-1) to (DL-4) is used as the ligand LD.
  • the ligand represented by the formula (DL-1), (DL-2) or (DL-4) is excellent in terms of durability, particularly heat resistance and heat cycleability.
  • the ligand represented by the formula (DL-1) is preferable, and from the viewpoint of heat cycle property, the ligand represented by the formula (DL-2) is preferable.
  • the metal complex dye used in the present invention is coordinated to the metal ion M by combining the ligand LD and the ligand LA so as to have a specific ligand structure.
  • the ligand LA is a ligand having an acidic group that is adsorbed on the surface of the semiconductor fine particles
  • the ligand LD is a ligand that is not assumed to be adsorbed on the surface of the semiconductor fine particles.
  • the electronic effect of the ligand LD that is, the acidic group of the ligand LA is arranged instead of the ligand LA.
  • Formulas (DL-1) to (DL-4) are useful for heterocycles that are effective for such purposes or are bi- to tridentate heterocycles, and the heterocycles used are those of formula (DL- 1) to the heterocycle incorporated in (DL-4), ring A, ring B1, ring B2, ring C1, and ring C2.
  • the ring is as follows.
  • Ring A and ring C1 are a pyrazole ring, a pyrrole ring bonded to the metal ion M by a nitrogen atom, an imidazole ring, an oxazole ring, a thiazole ring, an oxadiazole ring, a thiadiazole ring, an isoxazole bonded to the metal ion M by a nitrogen atom.
  • Ring isothiazole ring, triazole ring, pyrimidine ring, pyrazine ring, pyridazine ring, triazine ring, pyridine ring bonded to metal ion M with carbon atom, thiophene ring bonded to metal ion M with carbon atom, metal ion with carbon atom It represents either a furan ring bonded to M, a pyrazole ring bonded to the metal ion M at a carbon atom, or an imidazole ring bonded to the metal ion M at a carbon atom.
  • Ring A and ring C1 are, among the above, a pyrazole ring, a pyrrole ring bonded to the metal ion M by a nitrogen atom, a pyridine ring bonded to the metal ion M by a carbon atom, a thiophene ring bonded to the metal ion M by a carbon atom, A furan ring bonded to the metal ion M by a carbon atom or a pyrazole ring bonded to the metal ion M by a carbon atom is preferable, and a pyrazole ring, a pyrrole ring, or a carbon atom bonded to the metal ion M by a nitrogen atom is bonded to the metal ion M by a carbon atom.
  • a thiophene ring or a pyrazole ring bonded to the metal ion M at a carbon atom is more preferable.
  • the ring A and the ring C1 are preferably combined with a preferable ring in the following ring B1.
  • Ring B1 Ring B1 is any of a pyrimidine ring, a triazine ring, an imidazole ring, an imidazole ring, an oxazole ring, a thiazole ring, an oxadiazole ring, a thiadiazole ring, a triazole ring, or a pyrazole ring that is bonded to the metal ion M by a carbon atom (carbene). Represents.
  • carbene is a display of a metal complex dye, and is represented by two dots on a bond hand possessed by a carbon atom, such as ( ⁇ ) and (:).
  • ring B1 is preferably a pyrimidine ring or a triazine ring, and more preferably a triazine ring.
  • Ring B2 Ring B2 is a pyrimidine ring, a triazine ring, an imidazole ring bonded to the metal ion M by a nitrogen atom, an imidazole ring bonded to the metal ion M by a carbon atom (carbene), an oxazole ring, a thiazole ring, an oxadiazole ring, a thiadiazole ring , A triazole ring, a pyrazole ring, a pyrrole ring bonded to the metal ion M with a carbon atom, or a non-aromatic hetero ring.
  • the ring B2 is preferably a triazole ring or a non-aromatic nitrogen-containing heterocycle.
  • the non-aromatic nitrogen-containing heterocycle is a 5-membered or 6-membered ring, and other rings (eg, benzene ring, aromatic nitrogen-containing heterocycle) may be condensed, such as pyrrolidine ring, pyrroline ring Ring, imidazolidine ring, imidazoline ring, pyrazolidine ring, pyrroline ring, piperidine ring, piperazine ring, morpholine ring, indoline ring, isoindoline ring and the like, and a 1,2-dihydroquinoline ring is a preferred example.
  • Ring C2 is a pyrimidine ring, a pyrazine ring, a pyridazine ring, a triazine ring, a pyridine ring bonded to the metal ion M with a carbon atom, a thiophene ring bonded to the metal ion M with a carbon atom, or a furan ring bonded to the metal ion M with a carbon atom.
  • Ring C2 is a pyrrole ring, a pyridine ring bonded to the metal ion M by a carbon atom, a thiophene ring bonded to the metal ion M by a carbon atom, a furan ring or a carbon atom bonded to the metal ion M by a carbon atom, among the above. And a pyrazole ring bonded to the metal ion M is preferred.
  • Each of these rings may have a substituent, and are represented by R A to R E in the formulas (DL-1) to (DL-4).
  • substituents in R A to R E include the substituents exemplified for the substituent T described later.
  • a substituent a halogen atom, an alkyl group (a substituted alkyl group is also preferable, for example, a perfluoroalkyl group, preferably a trifluoromethyl group), an ethynyl group (preferably an aryl group or heteroaryl group at the 2-position ( Preferably a phenyl group, a monovalent thiophene ring group, especially a 2-thienyl group, an ethenyl group (preferably an aryl group or a heteroaryl group at the 2-position (preferably a phenyl group, a monovalent thiophene ring group, especially a 2- Thienyl group), alkoxy group, aryloxy group, alkyl
  • the aryl group is preferably a phenyl group which may have a substituent.
  • a thiophene ring and a furan ring are preferable, and a thiophene ring is more preferable.
  • the aryl group and the aromatic heterocyclic group may further have a substituent, and in this case, the ring group atom adjacent to the atom of the bond or the atom adjacent to this adjacent atom has a substituent. Is preferred.
  • a phenyl group it is an ortho position or a meta position of a bond, and the ortho position is particularly preferable.
  • the total number of carbon atoms constituting one substituent is preferably 6 to 26, more preferably 6 to 20, and still more preferably 8 to 20.
  • R A to R E may be a group represented by the following formula (U1) or (U2).
  • the ring X u represents a 5-membered or 6-membered cyclic group.
  • R u and R 1u each independently represent a substituent.
  • nu represents an integer of 0 to 4. However, R u and R 1u do not combine to form a ring.
  • broken lines listed in between the positions R u is attached from the atomic bonds of the base means that this portion may be also a double bond to a single bond.
  • Ring Xu is preferably a thiophene ring or a benzene ring.
  • L u is ethenylene group, ethynylene group, represents an arylene or heteroarylene group, wherein the arylene group is a divalent aromatic carbocyclic group, phenylene, naphthylene and the like, heteroaryl in heteroarylene group
  • examples of the ring-constituting hetero atom include an oxygen atom, a sulfur atom (—S—, —SO—, —SO 2 —), a nitrogen atom, a silicon atom, and a selenium atom.
  • the ring may be condensed with an alicyclic ring, an aromatic ring, or a heterocyclic ring, and examples of the ring include a thiophene ring, a benzothiophene ring, a furan ring, and a pyridine ring.
  • a linear or branched alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an alkylamino group, a cycloalkylamino group, and an arylamino group are more preferable, and a linear or branched alkyl group, alkoxy group, and alkylamino group.
  • a linear or branched alkyl group or an alkoxy group is particularly preferable.
  • pr-1 to pr-6, pz-1 to pz-6, im-1 to im-3, and tz-1 to tz-3 have a nitrogen atom having a proton dissociated bonded to M.
  • another nitrogen atom may be bonded or coordinated to the metal ion M in a tautomeric form.
  • hc-1 to hc-10 are carbon atoms that are bonded or coordinated to the metal ion M. Ring A and ring C1 may be the same or different.
  • ring B1 and ring B2 are shown below, but the present invention is not limited thereby.
  • the nitrogen atom from which the proton is dissociated is bonded to the metal ion M.
  • 5N-7 and 5N-8 are bonded to the metal ion M by a carbon atom (carbene).
  • a1 to a3 each represents 0 or an integer of 1 or more, preferably an integer of 0 to 2, and more preferably 0 or 1.
  • a4 and a5 are preferably integers of 0 to 2, and more preferably 0 or 1.
  • those having a substituent on any of the three rings are preferable.
  • those having one substituent in each of three rings, those having one substituent in each of two rings, those having a substituent in only one ring are preferable, Most preferred as a ring having a substituent is a case where a substituent is present in the center ring of the three rings.
  • the ligand LA is a ligand represented by the general formula (AL-1) or (AL-2), and is a ligand having at least one acidic group.
  • Anc 1 to Anc 3 represent —CO 2 H, —SO 3 H, —PO 3 H 2 , or a group in which these protons are dissociated.
  • the group in which the proton is dissociated is, for example, the above anion or a salt thereof, and an anion is preferable for coordination with the metal ion M.
  • —CO 2 ⁇ , —SO 3 ⁇ , —PO 3 H ⁇ , and —PO 3 2 ⁇ is preferable.
  • R AL represents a substituent, and examples of the substituent include the substituent T described later.
  • R AL is preferably an alkyl group, a cycloalkyl group, an ethynyl group, an ethenyl group, an aryl group, or an aromatic heterocyclic group.
  • the aromatic heterocyclic group a thienyl group and a furanyl group are preferable, and a thienyl group is more preferable.
  • b1 represents an integer of 0 to 4, preferably 0 or 1, and more preferably 1.
  • -Charge neutralization counter ion CI- CI represents a counter ion when a counter ion is required to neutralize the charge.
  • a dye is a cation or an anion or has a net ionic charge depends on the metal, ligand and substituent in the metal complex dye.
  • the metal complex dye may be dissociated and have a negative charge, for example, because the substituent has a dissociable group. In this case, the entire charge of the metal complex dye is electrically neutralized by CI.
  • the counter ion CI is a positive counter ion
  • the counter ion CI is an inorganic or organic ammonium ion (for example, tetraalkylammonium ion, pyridinium ion, etc.), phosphonium ion (for example, tetraalkylphosphonium ion, alkyltriphenylphosphonium ion). Etc.), alkali metal ions, metal complex ions or protons.
  • the positive counter ion is preferably an inorganic or organic ammonium ion (such as triethylammonium or tetrabutylammonium ion) or a proton.
  • the counter ion CI may be an inorganic anion or an organic anion.
  • hydroxide ion, halogen anion eg, fluoride ion, chloride ion, bromide ion, iodide ion, etc.
  • substituted or unsubstituted alkylcarboxylate ion acetate ion, trifluoroacetic acid etc.
  • substituted Or an unsubstituted aryl carboxylate ion eg, benzoate ion
  • a substituted or unsubstituted alkyl sulfonate ion eg, methane sulfonate, trifluoromethane sulfonate ion
  • a substituted or unsubstituted aryl sulfonate ion eg, p- Toluenesulfonic acid ion
  • an ionic polymer or another dye having a charge opposite to that of the dye may be used as the charge balance counter ion, and a metal complex ion (for example, bisbenzene-1,2-dithiolatonickel (III)) can also be used. is there.
  • Negative counter ions include halogen anions, substituted or unsubstituted alkyl carboxylate ions, substituted or unsubstituted alkyl sulfonate ions, substituted or unsubstituted aryl sulfonate ions, aryl disulfonate ions, perchlorate ions , Hexafluorophosphate ions are preferred, and halogen anions and hexafluorophosphate ions are more preferred.
  • CI in the formula (I) is marked as a proton, but may be tetrabutylammonium ion ( + NBu 4 ), sodium ion, or the like.
  • a metal complex dye in which at least one of Anc 1 to Anc 3 is described as —COO may have a negative counter ion in which —COO is —COOH. Examples of the negative counter ion include the negative counter ion described above.
  • the metal complex dyes used in the present invention are Chemistry-A European Journal, 17 (39), 10871-10878 (2011), Angelwandte Chemie, 84, 824-826 (1972), Dalton Transactions, 5, 770-772 (Japan). ), A method according to Japanese Patent Application Laid-Open No. 2001-291534 and a method cited in the publication, Angew. Chem. Int. Ed. , 50, 2054 to 2058 (2011), and can be easily synthesized.
  • the maximum absorption wavelength in the solution of the metal complex dye used in the present invention is preferably in the range of 300 to 1000 nm, more preferably in the range of 350 to 950 nm, and particularly preferably in the range of 370 to 900 nm.
  • the conductive support is preferably a support made of glass or plastic having a conductive film layer on the surface, such as a metal, which is conductive in itself.
  • the plastic support include a transparent polymer film described in paragraph No. 0153 of JP-A No. 2001-291534.
  • the support in addition to glass and plastic, ceramic (Japanese Patent Laid-Open No. 2005-135902) or conductive resin (Japanese Patent Laid-Open No. 2001-160425) may be used.
  • the surface may be provided with a light management function. For example, an antireflection film in which high refractive films and low refractive index oxide films described in JP-A-2003-123859 are alternately laminated Or a light guide function described in JP-A-2002-260746.
  • the thickness of the conductive film layer is preferably 0.01 to 30 ⁇ m, more preferably 0.03 to 25 ⁇ m, and particularly preferably 0.05 to 20 ⁇ m.
  • the conductive support is substantially transparent.
  • substantially transparent means that the light transmittance is 10% or more, preferably 50% or more, particularly preferably 80% or more.
  • a glass or plastic coated with a conductive metal oxide is preferable.
  • the metal oxide tin oxide is preferable, and indium-tin oxide and fluorine-doped oxide are particularly preferable.
  • the coating amount of the conductive metal oxide at this time is preferably 0.1 to 100 g per 1 m 2 of glass or plastic support. When a transparent conductive support is used, light is preferably incident from the support side.
  • the semiconductor fine particles are preferably metal chalcogenide (for example, oxide, sulfide, selenide, etc.) or perovskite fine particles.
  • metal chalcogenide for example, oxide, sulfide, selenide, etc.
  • perovskite fine particles Preferred examples of the metal chalcogenide include titanium, tin, zinc, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, tantalum oxide, cadmium sulfide, cadmium selenide, and the like.
  • Preferred perovskites include strontium titanate and calcium titanate. Of these, titanium oxide (titania), zinc oxide, tin oxide, and tungsten oxide are particularly preferable.
  • titania examples include anatase type, brookite type, and rutile type, and anatase type and brookite type are preferable. Titania nanotubes, nanowires, and nanorods may be mixed with titania fine particles or used as a semiconductor electrode.
  • the particle diameters of the semiconductor fine particles are 0.001 to 1 ⁇ m as primary particles and 0.01 to 100 ⁇ m as the average particle diameter of the dispersion as the average particle diameter using the diameter when the projected area is converted into a circle. preferable.
  • Examples of the method for coating the semiconductor fine particles on the conductive support include a wet method, a dry method, and other methods.
  • the semiconductor fine particles preferably have a large surface area so that many dyes can be adsorbed.
  • the surface area is preferably 10 times or more, more preferably 100 times or more the projected area.
  • the preferred thickness of the photoreceptor layer which is a semiconductor layer, varies depending on the use of the device, but is typically 0.1 to 100 ⁇ m. When used as a dye-sensitized solar cell, the thickness is preferably 1 to 50 ⁇ m, more preferably 3 to 30 ⁇ m.
  • the semiconductor fine particles may be fired at a temperature of 100 to 800 ° C. for 10 minutes to 10 hours in order to adhere the particles to each other after being applied to the support. When glass is used as the support, the film forming temperature is preferably 60 to 400 ° C.
  • the coating amount of semiconductor fine particles per 1 m 2 of support is preferably 0.5 to 500 g, more preferably 5 to 100 g.
  • the total amount of the dye used is preferably 0.01 to 100 mmol, more preferably 0.1 to 50 mmol, and particularly preferably 0.1 to 10 mmol per 1 m 2 of the support.
  • the amount of the metal complex dye used in the present invention is preferably 5 mol% or more.
  • the adsorption amount of the dye to the semiconductor fine particles is preferably 0.001 to 1 mmol, more preferably 0.1 to 0.5 mmol, with respect to 1 g of the semiconductor fine particles. By using such a dye amount, the sensitizing effect in the semiconductor fine particles can be sufficiently obtained.
  • the counter ion of the specific metal complex dye is not particularly limited, and examples thereof include alkali metal ions and quaternary ammonium ions.
  • the surface of the semiconductor fine particles may be treated with amines.
  • amines include pyridines (for example, 4-tert-butylpyridine, polyvinylpyridine) and the like. These may be used as they are in the case of a liquid, or may be used by dissolving in an organic solvent.
  • the photoelectric conversion element for example, the photoelectric conversion element 10
  • the dye-sensitized solar cell for example, the dye-sensitized solar cell 20
  • at least the metal complex dye of the present invention is used.
  • the metal complex dye used in the present invention may be used in combination with another dye.
  • the dye used in combination include Ru complex dyes described in JP-A-7-500630 (particularly the dyes synthesized in Examples 1 to 19 on page 5, lower left column, line 5 to page 7, upper right column, line 7). ), Ru complex dyes described in JP-T-2002-512729 (especially dyes synthesized in Examples 1 to 16 from the third line to the 29th page and the 23rd line from the bottom of page 20), JP-A-2001- Ru complex dyes described in Japanese Patent No. 59062 (particularly dyes described in paragraphs 0087 to 0104), Ru complex dyes described in Japanese Patent Application Laid-Open No.
  • Ru complex dyes described in JP2012-012570A particularly dyes described in paragraphs 0095 to 0103
  • Ru complex dyes described in JP2013-084594A particularly paragraph numbers
  • Dyes described in JP-A-11-214730 squarylium cyanine dyes described in JP-A-11-214730 (particularly dyes described in paragraphs 0036-0047)
  • squarylium-cyanine dyes described in JP2012-144688A In particular, in paragraph numbers 0039 to 0046 and paragraph numbers 0054 to 0060 Dyes
  • squarylium cyanine dyes described in JP 2012-84503 A particularly dyes described in paragraph Nos.
  • organic dyes described in JP 2004-063274 A are organic dyes described in JP 2004-063274 A (particularly paragraph No. 0017).
  • organic dyes described in JP-A-2005-123033 are particularly dyes described in paragraph Nos. 0021 to 0028
  • organic dyes described in JP-A-2007-287694 are organic dyes described in JP-A-2008-71648 (particularly, dyes described in paragraphs 0030 to 0034), organic dyes described in International Publication No. 2007/119525 pamphlet (In particular, the dye according to [0024]), Angew. Chem. Int. Ed. , 49, 1-5 (2010), etc., Angew. Chem. Int. Ed. , 46, 8358 (2007), and the like.
  • the dye used in combination is preferably a Ru complex dye, a squarylium cyanine dye, or an organic dye.
  • the ratio of the mass of the metal complex dye used in the present invention to the mass of the other dye is preferably 95/5 to 10/90, and 95/5 Is more preferable, 95/5 to 60/40 is more preferable, 95/5 to 65/35 is particularly preferable, and 95/5 to 70/30 is most preferable.
  • the charge transfer layer used in the photoelectric conversion element of the present invention is a layer having a function of replenishing electrons to the dye oxidant, and is provided between the light receiving electrode and the counter electrode (counter electrode).
  • the charge transfer layer includes an electrolyte.
  • the electrolyte include a liquid electrolyte obtained by dissolving a redox couple in an organic solvent, a so-called gel electrolyte obtained by impregnating a polymer matrix obtained by dissolving a redox couple in an organic solvent, and a molten salt containing the redox couple. .
  • a liquid electrolyte is preferable. Nitrile compounds, ether compounds, ester compounds and the like are used as the organic solvent for the liquid electrolyte, but nitrile compounds are preferred, and acetonitrile and methoxypropionitrile are particularly preferred.
  • iodine and iodide iodide salt, ionic liquid is preferable, lithium iodide, tetrabutylammonium iodide, tetrapropylammonium iodide, methylpropylimidazolium iodide are preferable
  • alkyl viologen for example, methyl viologen chloride, hexyl viologen bromide, benzyl viologen tetrafluoroborate
  • polyhydroxybenzenes for example, hydroquinone, naphthohydroquinone, etc.
  • divalent And trivalent iron complexes for example, red blood salt and yellow blood salt
  • divalent and trivalent cobalt complexes and the like.
  • the cobalt complex is preferably a complex represented by the following formula (CC).
  • LL represents a bidentate or tridentate ligand.
  • X represents a monodentate ligand.
  • ma represents an integer of 0 to 3.
  • mb represents an integer of 0-6.
  • CI represents a counter ion when a counter ion is required to neutralize the charge.
  • CI includes CI in the formula (I).
  • LL is preferably a ligand represented by the following formula (LC).
  • X LC1 and X LC3 each independently represent a carbon atom or a nitrogen atom.
  • X LC1 N
  • X LC3 N
  • X LC1 N
  • X LC3 N
  • Z LC1 , Z LC2 and Z LC3 each independently represent a nonmetallic atom group necessary for forming a 5-membered ring or a 6-membered ring.
  • Z LC1 , Z LC2 and Z LC3 may have a substituent and may be closed with an adjacent ring via the substituent.
  • q represents 0 or 1; Examples of the substituent include the substituent T described later.
  • the carbon atom at the position where X LC3 is bonded to the 5-membered ring or 6-membered ring formed by Z LC2 is a hydrogen atom or a substituent other than the heterocyclic group formed by Z LC3 Join.
  • X is preferably a halogen ion.
  • the ligand represented by the above formula (LC) is more preferably a ligand represented by the following formulas (LC-1) to (LC-4).
  • R LC1 to R LC11 each independently represents a substituent.
  • q1, q2, q6 and q7 each independently represents an integer of 0 to 4.
  • q3, q5, q10 and q11 each independently represents an integer of 0 to 3.
  • q4 represents an integer of 0-2.
  • examples of the substituent for R LC1 to R LC11 include an aliphatic group, an aromatic group, a heterocyclic group, and the like. Specific examples of the substituent include alkyl groups, alkoxy groups, alkylthio groups, aryl groups, aryloxy groups, arylthio groups, and heterocyclic rings.
  • Preferred examples include alkyl groups (eg methyl, ethyl, n-butyl, n-hexyl, isobutyl, sec-butyl, t-butyl, n-dodecyl, cyclohexyl, benzyl etc.), aryl groups (eg phenyl, tolyl, naphthyl).
  • alkyl groups eg methyl, ethyl, n-butyl, n-hexyl, isobutyl, sec-butyl, t-butyl, n-dodecyl, cyclohexyl, benzyl etc.
  • aryl groups eg phenyl, tolyl, naphthyl
  • alkoxy groups eg methoxy, ethoxy, isopropoxy, butoxy etc.
  • alkylthio groups eg methylthio, n-butylthio, n-hexylthio, 2-ethylhexylthio etc.
  • aryloxy groups eg phenoxy, naphthoxy etc.
  • arylthio groups eg, phenylthio, naphthylthio, etc.
  • heterocyclic groups eg, 2-thienyl, 2-furyl, etc.
  • cobalt complex having a ligand represented by the formula (LC) include the following complexes.
  • iodine and iodide When a combination of iodine and iodide is used as the electrolyte, it is preferable to further use an iodine salt of a 5-membered or 6-membered nitrogen-containing aromatic cation.
  • the organic solvent that dissolves the redox couple is preferably an aprotic polar solvent (eg acetonitrile, propylene carbonate, ethylene carbonate, dimethylformamide, dimethyl sulfoxide, sulfolane, 1,3-dimethylimidazolinone, 3-methyloxazolidinone, etc.).
  • aprotic polar solvent eg acetonitrile, propylene carbonate, ethylene carbonate, dimethylformamide, dimethyl sulfoxide, sulfolane, 1,3-dimethylimidazolinone, 3-methyloxazolidinone, etc.
  • the polymer used for the matrix of the gel electrolyte include polyacrylonitrile and polyvinylidene fluoride.
  • the molten salt include those imparted with fluidity at room temperature by mixing polyethylene oxide with lithium iodide and at least one other lithium salt (such as lithium acetate and lithium perchlorate). It is done. In this case,
  • aminopyridine compounds As an additive to the electrolyte, in addition to the aforementioned 4-tert-butylpyridine, aminopyridine compounds, benzimidazole compounds, aminotriazole compounds and aminothiazole compounds, imidazole compounds, aminotriazine compounds, urea derivatives, Amide compounds, pyrimidine compounds and nitrogen-free heterocycles can be added.
  • a method of controlling the moisture of the electrolytic solution may be taken.
  • Preferred methods for controlling moisture include a method for controlling the concentration and a method in which a dehydrating agent is allowed to coexist.
  • an inclusion compound of iodine and cyclodextrin may be used, or a method of constantly supplying water may be used.
  • Cyclic amidine may be used, and an antioxidant, hydrolysis inhibitor, decomposition inhibitor, and zinc iodide may be added.
  • a molten salt may be used as the electrolyte, and preferred molten salts include ionic liquids containing imidazolium or triazolium type cations, oxazolium-based, pyridinium-based, guanidinium-based, and combinations thereof. These cationic systems may be combined with specific anions. Additives may be added to these molten salts. You may have a liquid crystalline substituent. Further, a quaternary ammonium salt-based molten salt may be used.
  • molten salt other than these for example, flowability at room temperature was imparted by mixing polyethylene oxide with lithium iodide and at least one other lithium salt (for example, lithium acetate, lithium perchlorate, etc.). And the like.
  • the electrolyte may be quasi-solidified by adding a gelling agent to an electrolyte solution composed of an electrolyte and a solvent for gelation.
  • a gelling agent include organic compounds having a molecular weight of 1000 or less, Si-containing compounds having a molecular weight in the range of 500 to 5000, organic salts made of a specific acidic compound and a basic compound, sorbitol derivatives, and polyvinylpyridine.
  • the matrix polymer is preferably a polymer having a nitrogen-containing heterocyclic ring in the main chain or side chain repeating unit, a crosslinked product obtained by reacting these with an electrophilic compound, a polymer having a triazine structure, or a ureido structure.
  • polymers liquid crystal compounds, ether-bonded polymers, polyvinylidene fluoride, methacrylate / acrylate, thermosetting resins, crosslinked polysiloxane, polyvinyl alcohol (PVA), polyalkylene glycol and dextrin
  • PVA polyvinyl alcohol
  • Examples include compounds, systems to which oxygen-containing or sulfur-containing polymers are added, natural polymers, and the like.
  • An alkali swelling polymer, a polymer having a compound capable of forming a charge transfer complex between a cation moiety and iodine in one polymer may be added to these.
  • a system including a cross-linked polymer obtained by reacting a functional group such as a hydroxyl group, an amino group or a carboxyl group with one or more functional isocyanate as one component may be used.
  • a crosslinking method in which a crosslinked polymer composed of a hydrosilyl group and a double bond compound, polysulfonic acid, polycarboxylic acid, or the like is reacted with a divalent or higher valent metal ion compound may be used.
  • Examples of the solvent that can be preferably used in combination with the quasi-solid electrolyte include a specific phosphate ester, a mixed solvent containing ethylene carbonate, and a solvent having a specific dielectric constant.
  • the liquid electrolyte solution may be held in a solid electrolyte membrane or pores, and preferred methods thereof include conductive polymer membranes, fibrous solids, and cloth solids such as filters.
  • a solid charge transport layer such as a p-type semiconductor or a hole transport material, for example, CuI, CuNCS, or the like can be used. Also, Nature, vol. 486, p. The electrolyte described in 487 (2012) or the like may be used. An organic hole transport material may be used as the solid charge transport layer.
  • the hole transport layer is preferably a conductive polymer such as polythiophene, polyaniline, polypyrrole and polysilane, and a spiro compound in which two rings share a tetrahedral structure such as C or Si, an aromatic such as triarylamine Examples include amine derivatives, triphenylene derivatives, nitrogen-containing heterocyclic derivatives, and liquid crystalline cyano derivatives.
  • the total concentration is preferably 0.01 mol / L or more, more preferably 0.1 mol / L or more, and particularly preferably 0.3 mol / L or more.
  • the upper limit of the total concentration of the redox couple is not particularly limited, but is usually about 5 mol / L.
  • a coadsorbent In the photoelectric conversion element of this invention, it is preferable to use a coadsorbent with the metal complex dye used by this invention or the pigment
  • a co-adsorbent a co-adsorbent having at least one acidic group (preferably a carboxyl group or a salt group thereof) is preferable, and examples thereof include a compound having a fatty acid or a steroid skeleton.
  • the fatty acid may be a saturated fatty acid or an unsaturated fatty acid, and examples thereof include butanoic acid, hexanoic acid, octanoic acid, decanoic acid, hexadecanoic acid, dodecanoic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid.
  • Examples of the compound having a steroid skeleton include cholic acid, glycocholic acid, chenodeoxycholic acid, hyocholic acid, deoxycholic acid, lithocholic acid, ursodeoxycholic acid and the like. Preferred are cholic acid, deoxycholic acid and chenodeoxycholic acid, and more preferred are chenodeoxycholic acid.
  • a preferred co-adsorbent is a compound represented by the following formula (CA).
  • R A1 represents a substituent having an acidic group.
  • R A2 represents a substituent.
  • nA represents an integer of 0 or more.
  • R A1 represents a substituent having an acidic group
  • the acidic group in the substituent having an acidic group is a substituent having a dissociative proton and has a pKa of 11 or less.
  • an acid group that is an acid group such as a carboxy group, a phosphonyl group, a phosphoryl group, a sulfo group, and a boric acid group, or a salt thereof, preferably a carboxy group, a sulfo group, or a salt thereof, More preferred is a carboxy group or a salt thereof.
  • the acidic group is a salt
  • the counter ion when the salt is converted is not particularly limited.
  • the substituent having an acidic group is a group substituted by an acidic group, such as an alkyl group substituted by an acidic group, an alkenyl group substituted by an acidic group, an aryl group substituted by an acidic group, or a heterocyclic group substituted by an acidic group.
  • an alkyl group substituted with an acidic group and an alkenyl group substituted with an acidic group are preferred, and an alkyl group substituted with an acidic group is particularly preferred.
  • the alkyl group substituted with an acidic group preferably has 1 to 10 carbon atoms, and more preferably 2 to 6 carbon atoms other than the acidic group.
  • R A1 is preferably a carboxyl group or an alkyl group substituted with a sulfo group or a salt thereof, —CH (CH 3 ) CH 2 CH 2 CO 2 H, —CH (CH 3 ) CH 2 CH 2 CONHCH More preferred is 2 CH 2 SO 3 H.
  • R A2 examples include a substituent T described later, and among them, an alkyl group, a hydroxy group, an acyloxy group, an alkylaminocarbonyloxy group, and an arylaminocarbonyloxy group are preferable, and an alkyl group, a hydroxy group, and an acyloxy group are more preferable.
  • nA is preferably 2 to 4.
  • These specific compounds include the compounds exemplified as the compounds having the steroid skeleton described above.
  • the co-adsorbent used in the present invention has an effect of suppressing inefficient association of dyes by adsorbing to semiconductor fine particles and an effect of preventing reverse electron transfer from the surface of the semiconductor fine particles to the redox system in the electrolyte.
  • the amount of coadsorbent used is not particularly limited, but it is preferably 1 to 200 mol, more preferably 10 to 150 mol, and particularly preferably 20 to 50 mol with respect to 1 mol of the dye. It is preferable from the viewpoint of being effectively expressed.
  • ⁇ Substituent T> In this specification, about the display of a compound (a complex and a pigment
  • a substituent that does not specify substitution / non-substitution means that the group may have an arbitrary substituent. This is also synonymous for compounds that do not specify substitution / non-substitution.
  • Preferred substituents include the following substituent T. Further, in the present specification, what is described only as a substituent refers to the substituent T, and when each group, for example, an alkyl group is only described, Preferred ranges and specific examples of the corresponding group of the substituent T are applied.
  • substituent T examples include the following substituents.
  • An alkyl group preferably having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, trifluoromethyl, etc.
  • Alkenyl groups preferably having 2 to 20 carbon atoms, such as vinyl, allyl, oleyl, etc.
  • alkynyl groups preferably having 2 to 20 carbon atoms, such as ethynyl, butadiynyl, phenylethynyl, etc.
  • cycloalkyl groups preferably Has 3 to 20 carbon atoms, for example, cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc.
  • cycloalkenyl group preferably having
  • cycloalkyloxy Preferably having 3 to 20 carbon atoms, such as cyclopropyloxy, cyclopentyloxy, cyclohexyloxy, 4-methylcyclohexyloxy, etc.
  • aryloxy groups preferably having 6 to 26 carbon atoms, such as phenoxy, 1-naphthyl, etc. Oxy, 3-methylphenoxy, 4-methoxyphenoxy, etc.
  • a heterocyclic oxy group for example, imidazolyloxy, benzimidazolyloxy, thiazolyloxy, benzothiazolyloxy, triazinyloxy, purinyloxy
  • alkoxycarbonyl group preferably having 2 to 20 carbon atoms such as ethoxycarbonyl, 2-ethylhexyloxycarbonyl, etc.
  • a cycloalkoxycarbonyl group preferably having 4 to 20 carbon atoms such as cyclopropyloxycarbonyl, cyclopentyloxycarbonyl, etc.
  • Cyclohexyloxycarbonyl, etc. aryloxycarbonyl groups (preferably having 6 to 20 carbon atoms, such as phenyloxycarbonyl, naphthyloxycarbonyl, etc.)
  • amino groups preferably having 0 to 20 carbon atoms, alkylamino groups, alkenyls
  • An acyl group (preferably having 1 to 20 carbon atoms such as acetyl, cyclohexylcarbonyl, benzoyl, etc.), an acyloxy group (preferably having 1 to 20 carbon atoms such as acetyloxy, cyclohexylcarbonyl, etc.) Xy, benzoyloxy, etc.), carbamoyl groups (preferably having 1 to 20 carbon atoms, alkyl, cycloalkyl or aryl carbamoyl groups are preferred, such as N, N-dimethylcarbamoyl, N-cyclohexylcarbamoyl, N-phenylcarbamoyl, etc. ),
  • An acylamino group (preferably an acylamino group having 1 to 20 carbon atoms, such as acetylamino, cyclohexylcarbonylamino, benzoylamino, etc.), a sulfonamide group (preferably an alkyl, cycloalkyl or aryl sulfonamide having 0 to 20 carbon atoms) Groups such as methanesulfonamide, benzenesulfonamide, N-methylmethanesulfonamide, N-cyclohexylsulfonamide, N-ethylbenzenesulfonamide, etc., alkylthio groups (preferably having 1 to 20 carbon atoms, eg, methylthio , Ethylthio, isopropylthio, benzylthio, etc.), cycloalkylthio groups (preferably having 3 to 20 carbon atoms, such as cyclopropylthio, cyclopent
  • a silyl group (preferably a silyl group having 1 to 20 carbon atoms and substituted by alkyl, aryl, alkoxy and aryloxy, such as triethylsilyl, triphenylsilyl, diethylbenzylsilyl, dimethylphenylsilyl, etc.), silyloxy group ( Preferably, it is a silyloxy group having 1 to 20 carbon atoms and substituted with alkyl, aryl, alkoxy and aryloxy, such as triethylsilyloxy, triphenylsilyloxy, diethylbenzylsilyloxy, dimethylphenylsilyloxy, etc.), hydroxyl group Cyano group, nitro group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom), carboxyl group, sulfo group, phosphonyl group, phosphoryl group, boric acid group.
  • the compound or the substituent includes an alkyl group, an alkenyl group, etc.
  • these may be linear or branched, and may be substituted or unsubstituted.
  • an aryl group, a heterocyclic group, or the like may be monocyclic or condensed, and may be substituted or unsubstituted.
  • the counter electrode is preferably a positive electrode of a dye-sensitized solar cell (photoelectrochemical cell).
  • the counter electrode is usually synonymous with the conductive support described above, but the support is not necessarily required in a configuration in which the strength is sufficiently maintained.
  • As the structure of the counter electrode a structure having a high current collecting effect is preferable.
  • at least one of the conductive support and the counter electrode described above must be substantially transparent.
  • the conductive support is preferably transparent, and sunlight is preferably incident from the support side. In this case, it is more preferable that the counter electrode has a property of reflecting light.
  • a counter electrode of the dye-sensitized solar cell glass or plastic on which metal or conductive oxide is vapor-deposited is preferable, and glass on which platinum is vapor-deposited is particularly preferable.
  • the dye-sensitized solar cell it is preferable to seal the side surface of the battery with a polymer, an adhesive or the like in order to prevent the constituents from evaporating.
  • the present invention is disclosed in Japanese Patent No. 4260494, Japanese Patent Application Laid-Open No. 2004-146425, Japanese Patent Application Laid-Open No. 2000-340269, Japanese Patent Application Laid-Open No. 2002-289274, Japanese Patent Application Laid-Open No. 2004-152613, and Japanese Patent Application Laid-Open No. 9-27352. It can apply to the described photoelectric conversion element and a dye-sensitized solar cell.
  • the metal complex dye used in the present invention is dissolved in an organic solvent, and may contain a co-adsorbent and other components as necessary.
  • the solvent to be used include, but are not particularly limited to, the solvents described in JP-A No. 2001-291534.
  • an organic solvent is preferable, and alcohols, amides, nitriles, alcohols, hydrocarbons, and a mixed solvent of two or more of these are preferable.
  • a mixed solvent of an alcohol and a solvent selected from amides, nitriles or hydrocarbons is preferable.
  • alcohols and amides, mixed solvents of alcohols and hydrocarbons are particularly preferred.
  • methanol, ethanol, propanol, butanol, dimethylformamide, and dimethylacetamide are preferable.
  • the dye solution preferably contains a co-adsorbent.
  • the co-adsorbent the above-mentioned co-adsorbent is preferable, and among them, the compound represented by the formula (CA) is preferable.
  • the dye solution used in the present invention is one in which the concentration of the metal complex dye or coadsorbent is adjusted so that this solution can be used as it is when producing a photoelectric conversion element or a dye-sensitized solar cell. Is preferred.
  • the metal complex dye used in the present invention is preferably contained in an amount of 0.001 to 0.1% by mass.
  • the water content of the dye solution is particularly preferably adjusted. Therefore, in the present invention, the water content (content ratio) is preferably adjusted to 0 to 0.1% by mass. Similarly, adjustment of the water content of the electrolyte in the photoelectric conversion element and the dye-sensitized solar cell is also preferable in order to effectively achieve the effects of the present invention. For this reason, the water content (content) of the electrolyte is set to 0. It is preferable to adjust to ⁇ 0.1% by mass.
  • the adjustment of the electrolytic solution is particularly preferably performed using a dye solution.
  • a dye adsorption electrode which is a semiconductor electrode for a dye-sensitized solar cell in which a metal complex dye is supported on the surface of a semiconductor fine particle provided in a semiconductor electrode using the dye solution is preferable. That is, a dye-adsorbing electrode for a dye-sensitized solar cell is obtained by applying a composition obtained from the dye solution onto a conductive support provided with semiconductor fine particles, and curing the composition after application. What was made into the photoreceptor layer is preferable.
  • a dye-sensitized solar cell by using the dye-adsorbing electrode for the dye-sensitized solar cell, preparing an electrolyte and a counter electrode, and assembling them using these.
  • Example 1 Synthesis of metal complex dye According to the method of the following scheme, a ligand of a metal complex dye was synthesized, and a metal complex dye (TL13-1) was synthesized.
  • the obtained reaction liquid was returned to room temperature, purified by silica gel column chromatography using hexane / ethyl acetate as an eluent, treated with hydrochloric acid, and recrystallized to obtain 0.3 g of Compound 5.
  • 0.3 g of compound 5 and 0.35 g of compound 6, 5 ml of N, N-dimethylformamide, and 0.63 g of tributylamine were placed in a three-necked flask and heated to reflux at 100 ° C. for 8 hours. Thereafter, the obtained reaction solution was purified by silica gel column chromatography using methylene chloride / ethyl acetate as an eluent.
  • Example 2 Preparation of dye-sensitized solar cell
  • a photoelectrode having the same configuration as that of the photoelectrode 12 shown in FIG. 5 described in JP-A-2002-289274 is prepared by the following procedure, and further, using the photoelectrode, A 10 mm ⁇ 10 mm scale dye-sensitized solar cell 1 having the same configuration as that of the dye-sensitized solar cell 20 except for the photoelectrode shown in FIG. The specific configuration is shown in FIG. In FIG.
  • 41 is a transparent electrode
  • 42 is a semiconductor electrode
  • 43 is a transparent conductive film
  • 44 is a substrate
  • 45 is a semiconductor layer
  • 46 is a light scattering layer
  • 40 is a photoelectrode
  • 20 is a dye-sensitized solar cell
  • CE is The counter electrode
  • E is an electrolyte
  • S is a spacer.
  • Paste A A titania slurry was prepared by placing spherical TiO 2 particles (anatase, average particle size; 25 nm, hereinafter referred to as spherical TiO 2 particles A) in a nitric acid solution and stirring. Next, a cellulosic binder was added to the titania slurry as a thickener and kneaded to prepare paste A.
  • a titania slurry was prepared by stirring spherical TiO 2 particles A and spherical TiO 2 particles (anatase, average particle size: 200 nm, hereinafter referred to as spherical TiO 2 particles B) in a nitric acid solution. .
  • rod-like TiO 2 particles C anatase, diameter: 100 nm, aspect ratio: 5, hereinafter referred to as rod-like TiO 2 particles C
  • a transparent electrode in which a fluorine-doped SnO 2 conductive film (film thickness: 500 nm) was formed on a glass substrate was prepared. Then, the SnO 2 conductive film, a paste 1 of the above screen printing and then dried. Then, it baked on the conditions of 450 degreeC in the air. Further, by repeating this screen printing and baking using the paste 2, a semiconductor electrode having the same configuration as the semiconductor electrode 42 shown in FIG.
  • dye was made to adsorb
  • a 1: 1 (volume ratio) mixture of anhydrous t-butanol and dimethylformamide dehydrated with magnesium ethoxide is used as a solvent so that the metal complex dyes listed in Table 1 below are 3 ⁇ 10 ⁇ 4 mol / L. Dissolved in.
  • 20 moles of an equimolar mixture of chenodeoxycholic acid and cholic acid was added to 1 mole of the metal complex dye to prepare each dye solution.
  • the semiconductor electrode is immersed in each dye solution at 40 ° C. for 10 hours, and then pulled up and dried at 50 ° C., thereby completing the photoelectrode 40 in which the dye is adsorbed to the semiconductor electrode by about 2 ⁇ 10 ⁇ 7 mol / cm 2. I let you.
  • a platinum electrode (Pt thin film thickness: 100 nm) having the same shape and size as the above-mentioned photoelectrode as a counter electrode, and 0.1M iodine, 0.05M lithium iodide, 4-t-butyl as an electrolyte
  • An iodine redox acetonitrile solution containing pyridine 0.25M was prepared.
  • a DuPont spacer S (trade name: “Surlin”) having a shape matched to the size of the semiconductor electrode is prepared, and the photoelectrode 40 and the counter electrode CE are opposed to each other through the spacer S and thermocompression bonded.
  • ⁇ Heat cycle test> The produced dye-sensitized solar cell was alternately put into a ⁇ 10 ° C. freezer and a 20 ° C. thermostat every 2 hours, and cooling and heating were repeated to conduct a heat cycle test.
  • the current was evaluated for the dye-sensitized solar cell before the heat cycle test and the dye-sensitized solar cell 24 hours after the heat cycle test.
  • a value obtained by dividing the decrease in the current value after the heat cycle test by the current value before the heat cycle test was determined as the deterioration rate. Subsequently, the obtained deterioration rate was divided by the deterioration rate obtained using the following comparative compound (1), and the following criteria were evaluated.
  • TBA represents tetrabutylammonium.
  • the comparative compound used is as follows.
  • Comparative compound (1) Compound TF-1 described in US Patent Application Publication No. 2012/0073660 (reference compound for each evaluation) Comparative compound (2): Compound TF-6 described in the above specification Comparative compound (3): Compound T4 described in JP2009-67976A Comparative compound (4): Compound T5 described in the above publication Comparative compound (5): Compound T7 described in the above publication Comparative compound (6): Compound TF-11 described in Journal of the American Chemical Society, 134, 17, pp. 7488-7494 (2012)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

 光電変換素子は、導電性支持体、電解質を含む感光体層、電解質を含む電荷移動体層及び対極を有する光電変換素子であって、該感光体層が、下記式(I)で表される金属錯体色素が担持された半導体微粒子を有する。 色素増感太陽電池は、上記光電変換素子を含む。 M(LD)(LA)・(CI) 式(I) 式中、Mは金属イオンを表す。LDおよびLAは特定のヘテロ環の3座配位子を表し、CIは電荷を中和するのに必要な対イオンを表す。

Description

光電変換素子および色素増感太陽電池
 本発明は、光電変換素子および色素増感太陽電池に関する。
 光電変換素子は各種の光センサー、複写機、太陽電池等に用いられている。この光電変換素子には金属を用いた光電変換素子、半導体を用いた光電変換素子、有機顔料や色素を用いた光電変換素子、あるいはこれらを組み合わせた光電変換素子など、様々な方式の光電変換素子が実用化されている。特に、非枯渇性の太陽エネルギーを利用した太陽電池は、燃料が不要であり、無尽蔵のクリーンエネルギーを利用するものとして、その本格的な実用化が大いに期待されている。その中でも、シリコン系太陽電池は古くから研究開発が進められ、各国の政策的な配慮もあって普及が進んでいる。しかし、シリコンは無機材料であり、スループットおよびコスト等の改良には自ずと限界がある。
 そこで色素増感太陽電池の研究が精力的に行われている。特にその契機となったのは、スイス ローザンヌ工科大学のGraetzel等の研究成果である。彼らは、ポーラス酸化チタン薄膜の表面にルテニウム錯体からなる色素を固定した構造を採用し、アモルファスシリコン並の光電変換効率を実現した。これにより、高価な真空装置を使用しなくても製造できる色素増感太陽電池が一躍世界の研究者から注目を集めるようになった。
 現在までに、光電変換素子に使用される金属錯体色素として一般的にN3、N719、Z907、J2と呼ばれる色素等が開発されている。しかしながら、従来の色素増感太陽電池は、一般に光電変換効率が低く、耐久性が悪い場合が多かった。
 従来、金属錯体色素の配位子としては、2座配位子と2座配位子の組合せ、もしくは、2座配位子と3座配位子の組合せが盛んに検討されてきたが、耐久性を向上させるには、さらなる検討が必要とされた。
 一方、最近になって、2つの3座配位子を有する金属錯体色素の研究(例えば、特許文献1、2参照)も行われるようになり、幾つかの進展はあったものの、それでも耐久性の向上は、厳しいのが実情である。
 しかも、太陽電池は原子力発電に代わるエネルギー源としてその注目と期待が高まり、色素増感太陽電池としてもさらなる性能改良が求められている。
米国特許出願公開第2012/0073660号明細書 特開2009-67976号公報
 色素増感太陽電池に対する要求される性能レベルは年々高まる一方であり、特許文献1、2に開示された金属錯体色素を含めた従来の技術では、必ずしも満足できるものではなかった。
 従って、本発明の課題は、耐久性に優れた性能を示す金属錯体色素を使用することで優れた性能の光電変換素子および色素増感太陽電池を提供することにある。
 本発明者らは、半導体微粒子表面に吸着するためにカルボキシル基のような酸性基を有する配位子と、これを有さない配位子の関係を検討した。その結果、吸着力を高めることで耐久性の向上を図り、配位子間の電子的な相互作用などの配位子間の相互作用に着目することで、上記の課題解決への手掛りを得るに至り、本発明に至った。
 すなわち、本発明の課題は、以下の手段によって達成された。
(1)  導電性支持体、電解質を含む感光体層、電解質を含む電荷移動体層および対極を有する光電変換素子であって、該感光体層が、下記式(I)で表される金属錯体色素が担持された半導体微粒子を有する光電変換素子。
   M(LD)(LA)・(CI)     式(I)
 式中、Mは金属イオンを表す。
 LDは下記式(DL-1)~(DL-4)のいずれかで表される配位子を表す。
 LAは下記式(AL-1)または(AL-2)で表される配位子を表す。
 CIは電荷を中和するのに必要な対イオンを表す。
Figure JPOXMLDOC01-appb-C000006
 式中、環Aおよび環C1は各々独立に、窒素原子で金属イオンMに結合するピラゾール環、ピロール環、窒素原子で金属イオンMに結合するイミダゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、イソオキサゾール環、イソチアゾール環、トリアゾール環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、炭素原子で金属イオンMに結合するピリジン環、炭素原子で金属イオンMに結合するチオフェン環、炭素原子で金属イオンMに結合するフラン環、炭素原子で金属イオンMに結合するピラゾール環または炭素原子で金属イオンMに結合するイミダゾール環のいずれかを表す。環B1はピリミジン環、トリアジン環、窒素原子で金属イオンMに結合するイミダゾール環、炭素原子(カルベン)で金属イオンMに結合するイミダゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環またはピラゾール環のいずれかを表す。R~Rは各々独立に置換基を表す。a1~a3は各々独立に0以上の整数を表し、a4は0~4の整数を表す。R~Rが、それぞれ複数存在する場合、これらは互いに結合して環を形成してもよい。
Figure JPOXMLDOC01-appb-C000007
 式中、環B2はピリミジン環、トリアジン環、窒素原子で金属イオンMに結合するイミダゾール環、炭素原子(カルベン)で金属イオンMに結合するイミダゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、ピラゾール環、炭素原子で金属イオンMに結合するピロール環または非芳香族へテロ環のいずれかを表す。R、RおよびRは各々独立に置換基を表す。a2は0以上の整数を表し、a4およびa5は各々独立に0~4の整数を表す。R、RおよびRが、それぞれ複数存在する場合、これらは互いに結合して環を形成してもよい。
Figure JPOXMLDOC01-appb-C000008
 式中、環C2はピリミジン環、ピラジン環、ピリダジン環、トリアジン環、炭素原子で金属イオンMに結合するピリジン環、炭素原子で金属イオンMに結合するチオフェン環、炭素原子で金属イオンMに結合するフラン環、イミダゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、イソオキサゾール環、イソチアゾール環、トリアゾール環、ピラゾール環またはピロール環のいずれかを表す。R、RおよびRは各々独立に置換基を表す。a3は0以上の整数を表し、a4およびa5は各々独立に0~4の整数を表す。R、RおよびRが、それぞれ複数存在する場合、これらは互いに結合して環を形成してもよい。
Figure JPOXMLDOC01-appb-C000009
 式中、Anc~Ancは各々独立に、-COH、-SOH、-PO、またはこれらのプロトンが解離した基を表す。RALは置換基を表し、b1は0~4の整数を表す。
(2)  式(I)のMが、Fe2+、Ru2+またはOs2+である(1)に記載の光電変換素子。
(3)  式(I)のLDが、式(DL-1)または(DL-2)であって、かつ環Aおよび環C1が、各々独立に窒素原子で金属イオンMに結合するピラゾール環、ピロール環、炭素原子で金属イオンMに結合するピリジン環、炭素原子で金属イオンMに結合するチオフェン環、炭素原子で金属イオンMに結合するフラン環または炭素原子で金属イオンMに結合するピラゾール環のいずれかであり、かつ、環B1がピリミジン環またはトリアジン環のいずれかである(1)または(2)に記載の光電変換素子。
(4)  式(I)のLDが、式(DL-3)であって、かつ環B2がトリアゾール環または非芳香族含窒素へテロ環である(1)または(2)に記載の光電変換素子。
(5)  式(I)のLDが、式(DL-4)であって、かつ環C2がピロール環、炭素原子で金属イオンMに結合するピリジン環、炭素原子で金属イオンMに結合するチオフェン環、炭素原子で金属イオンMに結合するフラン環または炭素原子で金属イオンMに結合するピラゾール環のいずれかである(1)または(2)に記載の光電変換素子。
(6)  式(I)のLAが、式(AL-1)である(1)~(5)のいずれかに記載の光電変換素子。
(7)  式(I)のLAが、式(AL-2)である(1)~(5)のいずれかに記載の光電変換素子。
(8)  半導体微粒子に、さらに、酸性基を1つ以上有する共吸着剤が担持されている(1)~(7)のいずれかに記載の光電変換素子。
(9)  共吸着剤が下記式(CA)で表される(8)に記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000010
 式中、RA1は酸性基を有する置換基を表す。RA2は置換基を表す。nAは0以上の整数を表す。
(10)  (1)~(9)のいずれかに記載の光電変換素子を含む色素増感太陽電池。
 本明細書において、特に断りがない限り、炭素-炭素二重結合については、分子内にE型およびZ型が存在する場合、そのいずれであっても、またこれらの混合物であってもよい。特定の符号で表示された置換基や連結基、配位子等(以下、置換基等という)が複数あるとき、あるいは複数の置換基等を同時もしくは択一的に規定するときには、特段の断りがない限り、それぞれの置換基等は互いに同一でも異なっていてもよい。このことは、置換基等の数の規定についても同様である。また、複数の置換基等が近接するとき(特に、隣接するとき)には特段の断りがない限り、それらが互いに連結して環を形成してもよい。また、環、例えば脂環、芳香環、ヘテロ環、はさらに縮環して縮合環を形成していてもよい。
 本発明においては、各置換基は、特に断らない限り、さらに置換基で置換されていてもよい。
 本発明により、耐久性に優れた性能を示す金属錯体色素を使用することで優れた性能の光電変換素子および色素増感太陽電池を提供することができる。
本発明の光電変換素子の一実施態様について、層中の拡大図も含めて模式的に示した断面図である。 本発明の光電変換素子の第2の態様を含む色素増感太陽電池を模式的に示す断面図である。
<<光電変換素子および色素増感太陽電池>>
 本発明の光電変換素子は、例えば、図1に示すように、導電性支持体1、色素(金属錯体色素)21により増感された半導体微粒子を含む感光体層2、正孔輸送層である電荷移動体層3および対極4からなる光電変換素子10が挙げられる。
 ここで、本発明においては、半導体微粒子22に、色素(金属錯体色素)21とともに、共吸着剤が吸着されていることが好ましい。感光体層2を設置した導電性支持体1は光電変換素子10において作用電極として機能する。本実施形態においては、この光電変換素子10を外部回路6で動作手段Mに仕事をさせる電池用途に使用できるようにした色素増感太陽電池を利用したシステム100として示している。
 本実施形態において受光電極5は、導電性支持体1、および色素(金属錯体色素)21の吸着した半導体微粒子を含む感光体層2よりなる。感光体層2は目的に応じて設計され、単層構成でも多層構成でもよい。一層の感光体層中の色素(金属錯体色素)21は一種類でも多種の混合でもよいが、そのうちの少なくとも1種は、上述した金属錯体色素を用いる。感光体層2に入射した光は色素(金属錯体色素)21を励起する。励起された色素はエネルギーの高い電子を有しており、この電子が色素(金属錯体色素)21から半導体微粒子22の伝導帯に渡され、さらに拡散によって導電性支持体1に到達する。このとき色素(金属錯体色素)21は酸化体となっているが、電極上の電子が外部回路6で仕事をしながら、対極4を経由して、色素(金属錯体色素)21の酸化体および電解質が存在する感光体層2に戻ることで太陽電池として働く。
 本発明において光電変換素子もしくは色素増感太陽電池に用いられる材料および各部材の作成方法については、光電変換素子もしくは色素増感太陽電池に関する通常の材料および各部材の作成方法を採用すればよく、例えば米国特許第4,927,721号明細書、米国特許第4,684,537号明細書、米国特許第5,0843,65号明細書、米国特許第5,350,644号明細書、米国特許第5,463,057号明細書、米国特許第5,525,440号明細書、特開平7-249790号公報、特開2004-220974号公報、特開2008-135197号公報を参照することができる。以下、主たる部材について概略を説明する。
<感光体層>
 感光体層は後述する電解質を含み、下記本発明で用いられる金属錯体色素を含む増感色素が担持された半導体微粒子を含む層である。
<<金属錯体色素>>
 本発明で用いられる金属錯体色素は、下記一般式(I)で表される。
   M(LD)(LA)・(CI)     式(I)
 式中、Mは金属イオンを表す。
 LDは下記式(DL-1)~(DL-4)のいずれかで表される配位子を表す。
 LAは下記式(AL-1)または(AL-2)で表される配位子を表す。
 CIは電荷を中和するのに必要な対イオンを表す。
Figure JPOXMLDOC01-appb-C000011
 式中、環Aおよび環C1は各々独立に、窒素原子で金属イオンMに結合するピラゾール環、ピロール環、窒素原子で金属イオンMに結合するイミダゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、イソオキサゾール環、イソチアゾール環、トリアゾール環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、炭素原子で金属イオンMに結合するピリジン環、炭素原子で金属イオンMに結合するチオフェン環、炭素原子で金属イオンMに結合するフラン環、炭素原子で金属イオンMに結合するピラゾール環または炭素原子で金属イオンMに結合するイミダゾール環のいずれかを表す。環B1はピリミジン環、トリアジン環、イミダゾール環、炭素原子(カルベン)で金属イオンMに結合するイミダゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環またはピラゾール環のいずれかを表す。R~Rは各々独立に置換基を表す。a1~a3は0以上の各々独立に整数を表し、a4は0~4の整数を表す。R~Rが、それぞれ複数存在する場合、これらは互いに結合して環を形成してもよい。
Figure JPOXMLDOC01-appb-C000012
 式中、環B2はピリミジン環、トリアジン環、窒素原子で金属イオンMに結合するイミダゾール環、炭素原子(カルベン)で金属イオンMに結合するイミダゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、ピラゾール環、炭素原子で金属イオンMに結合するピロール環または非芳香族へテロ環のいずれかを表す。R、RおよびRは各々独立に置換基を表す。a2は0以上の整数を表し、a4およびa5は各々独立に0~4の整数を表す。R、RおよびRが、それぞれ複数存在する場合、これらは互いに結合して環を形成してもよい。
Figure JPOXMLDOC01-appb-C000013
 式中、環C2はピリミジン環、ピラジン環、ピリダジン環、トリアジン環、炭素原子で金属イオンMに結合するピリジン環、炭素原子で金属イオンMに結合するチオフェン環、炭素原子で金属イオンMに結合するフラン環、イミダゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、イソオキサゾール環、イソチアゾール環、トリアゾール環、ピラゾール環、ピロール環のいずれかを表す。R、RおよびRは各々独立に置換基を表す。a3は0以上の整数を表し、a4およびa5は0~4の整数を表す。R、RおよびRが、それぞれ複数存在する場合、これらは互いに結合して環を形成してもよい。
Figure JPOXMLDOC01-appb-C000014
 式中、Anc~Ancは各々独立に、-COH、-SOH、-PO、またはこれらのプロトンが解離した基を表す。RALは置換基を表し、b1は0~4の整数を表す。
- 金属イオンM -
 Mは金属錯体色素の中心金属であり、長周期律表上6~12族の元素が挙げられる。
 このような元素としては、Ru、Fe、Os、Cu、W、Cr、Mo、Ni、Pd、Pt、Co、Ir、Rh、Re、MnおよびZnが挙げられる。
 本発明においては、MはFe2+、Ru2+またはOs2+が好ましく、なかでもRu2+が好ましい。
 なお、光電変換素子中に組み込まれた状態においては、前記Mの価数は、周囲の材料との酸化還元反応により変化することがある。
- 配位子LD -
 本発明では、配位子LDとして、前記式(DL-1)~(DL-4)のいずれかで表される配位子を使用する。
 これらのうち、耐久性の観点、特に、耐熱性、ヒートサイクル性に対して、前記式(DL-1)、(DL-2)または(DL-4)で表される配位子が優れており、耐熱性の観点では、前記式(DL-1)で表される配位子が好ましく、ヒートサイクル性の観点では、前記式(DL-2)で表される配位子が好ましい。
 本発明で用いられる金属錯体色素は、一般式(I)から明らかなように、配位子LDと配位子LAを特定の配位子構造をもつように組合せて、金属イオンMに配位させるものである。ここで、配位子LAは、半導体微粒子表面に吸着する酸性基を有する配位子であり、配位子LDは、半導体微粒子表面に吸着することを想定しない配位子である。
 本発明においては、配位子LAの半導体微粒子表面への吸着力を高めるため、配位子LDの電子効果、すなわち、配位子LAの酸性基に対して、配位子LAではなく、配位子LDを介して吸着力を調整するものであり、従来のピリジン系配位子よりもπ電子受容性の高いヘテロ環を使用することが有効であると考えている。さらに、環の変更や置換基修飾による色素の会合抑制、配位力向上が有効であると考えている。
 このような目的のために有効なヘテロ環もしくは、2~3座のヘテロ環連結様式に、式(DL-1)~(DL-4)が有用で、使用するヘテロ環は、式(DL-1)~(DL-4)で組み込まれているヘテロ環、環A、環B1、環B2、環C1、環C2である。
 具体的には、以下の環である。
・環Aおよび環C1
 環Aおよび環C1は、窒素原子で金属イオンMに結合するピラゾール環、ピロール環、窒素原子で金属イオンMに結合するイミダゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、イソオキサゾール環、イソチアゾール環、トリアゾール環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、炭素原子で金属イオンMに結合するピリジン環、炭素原子で金属イオンMに結合するチオフェン環、炭素原子で金属イオンMに結合するフラン環、炭素原子で金属イオンMに結合するピラゾール環、炭素原子で金属イオンMに結合するイミダゾール環のいずれかを表す。
 環Aおよび環C1は、上記のうち、窒素原子で金属イオンMに結合するピラゾール環、ピロール環、炭素原子で金属イオンMに結合するピリジン環、炭素原子で金属イオンMに結合するチオフェン環、炭素原子で金属イオンMに結合するフラン環または炭素原子で金属イオンMに結合するピラゾール環が好ましく、窒素原子で金属イオンMに結合するピラゾール環、ピロール環、炭素原子で金属イオンMに結合するチオフェン環、または炭素原子で金属イオンMに結合するピラゾール環がより好ましい。なお、この場合、環Aおよび環C1は、以下の環B1における好ましい環との組合せが好ましい。
・環B1
 環B1は、ピリミジン環、トリアジン環、イミダゾール環、炭素原子(カルベン)で金属イオンMに結合するイミダゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、ピラゾール環のいずれかを表す。
 なお、カルベンは金属錯体色素の表示で、(÷)、(:)のように、炭素原子が有する結合手上に2つのドットで表している。
 環B1は、上記のうち、ピリミジン環またはトリアジン環が好ましく、トリアジン環がより好ましい。
・環B2
 環B2は、ピリミジン環、トリアジン環、窒素原子で金属イオンMに結合するイミダゾール環、炭素原子(カルベン)で金属イオンMに結合するイミダゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、ピラゾール環、炭素原子で金属イオンMに結合するピロール環、非芳香族へテロ環のいずれかを表す。
 環B2は、上記の中でも、トリアゾール環または非芳香族含窒素へテロ環が好ましい。
 なお、非芳香族含窒素へテロ環は、5員環または6員環で、他の環(例えば、ベンゼン環、芳香族含窒素ヘテロ環)が縮環していてもよく、ピロリジン環、ピロリン環、イミダゾリジン環、イミダゾリン環、ピラゾリジン環、ピロリン環、ピペリジン環、ピペラジン環、モルホリン環、インドリン環、イソインドリン環などが挙げられ、1,2-ジヒドロキノリン環が好ましい例として挙げられる。
・環C2
 環C2はピリミジン環、ピラジン環、ピリダジン環、トリアジン環、炭素原子で金属イオンMに結合するピリジン環、炭素原子で金属イオンMに結合するチオフェン環、炭素原子で金属イオンMに結合するフラン環、イミダゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、イソオキサゾール環、イソチアゾール環、トリアゾール環、ピラゾール環、ピロール環のいずれかを表す。
 環C2は、上記のなかでも、ピロール環、炭素原子で金属イオンMに結合するピリジン環、炭素原子で金属イオンMに結合するチオフェン環、炭素原子で金属イオンMに結合するフラン環または炭素原子で金属イオンMに結合するピラゾール環が好ましい。
 これらの各環は、置換基を有してもよく、式(DL-1)~(DL-4)では、R~Rで示されている。
 R~Rにおける置換基としては、後述の置換基Tで挙げた置換基が挙げられる。
 なお、置換基としては、ハロゲン原子、アルキル基(置換アルキル基も好ましく、例えば、パーフルオロアルキル基、好ましくはトリフルオロメチル基)、エチニル基(好ましくは、2位にアリール基、ヘテロアリール基(好ましくはフェニル基、1価のチオフェン環基、中でも2-チエニル基)、エテニル基(好ましくは、2位にアリール基、ヘテロアリール基(好ましくはフェニル基、1価のチオフェン環基、中でも2-チエニル基)、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アルキルアミノ基、アリールアミノ基、ヘテロ環アミノ基(例えば、ピペラジニル、インドリニル、1-モルホリニル、1-ピペリジニル)、アリール基、芳香族ヘテロ環基が好ましい。
 アリール基としては置換基を有してもよいフェニル基が好ましい。芳香族ヘテロ環基のヘテロ環としては、チオフェン環、フラン環が好ましく、チオフェン環がより好ましい。
 ここで、アリール基、芳香族ヘテロ環基は、さらに置換基を有してもよく、この場合、結合手の原子に隣接する環構成原子またはこの隣接原子に隣接する原子に置換基を有するのが好ましい。例えば、フェニル基であれば、結合手のオルト位またはメタ位であり、オルト位が特に好ましい。
 置換基は、1つの置換基を構成する炭素数の総和が6~26が好ましく、6~20がより好ましく、8~20がさらに好ましい。
 R~Rのいずれかが、下記式(U1)または(U2)で表される基であってもよい。
Figure JPOXMLDOC01-appb-C000015
 式中、環Xは5員環または6員環の環状の基を表す。RおよびR1uは各々独立に置換基を表す。nuは0~4の整数を表す。ただし、RおよびR1uが結合して環を形成することはない。ここで、上記基の結合手の原子からRが結合する位置の間に記載されている破線は、この部分が単結合であっても二重結合であってもよいことを意味する。環Xは、チオフェン環またはベンゼン環が好ましい。
 上記式(U1)、(U2)で表される基のうち、式(U1)で表される基が好ましい。
 Lは、エテニレン基、エチニレン基、アリーレン基またはヘテロアリーレン基を表すが、ここで、アリーレン基は2価の芳香族炭素環基であり、フェニレン、ナフチレンが挙げられ、ヘテロアリーレン基におけるヘテロアリール環は、環構成ヘテロ原子として、酸素原子、硫黄原子(-S-、-SO-、-SO-)、窒素原子、珪素原子、セレン原子が挙げられ、環員数は5~7員環が好ましく、脂環、芳香環、ヘテロ環で縮環していてもよく、該環としては、例えば、チオフェン環、ベンゾチオフェン環、フラン環、ピリジン環が挙げられる。
 置換基Rのうち、直鎖もしくは分岐のアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アルキルチオ基、シクロアルキルチオ基、アミノ基、アルキルアミノ基、シクロアルキルアミノ基、アリールアミノ基が好ましく、直鎖もしくは分岐のアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アルキルアミノ基、シクロアルキルアミノ基、アリールアミノ基がより好ましく、直鎖もしくは分岐のアルキル基、アルコキシ基、アルキルアミノ基がさらに好ましく、直鎖もしくは分岐のアルキル基、アルコキシ基が特に好ましい。
 以下に、環A、環C1および環C2の具体例を示すが、これによって本発明が限定されるものではない。
 なお、環に存在する「-」は結合手を表す。
Figure JPOXMLDOC01-appb-C000016
 これらのうち、pr-1~pr-6、pz-1~pz-6、im-1~im-3、tz-1~tz-3は、プロトンが解離した窒素原子がMに結合する。ただし、tz-1~tz-3は、互変異性の形で他の窒素原子が金属イオンMに結合もしくは配位してもよい。hc-1~hc-10は炭素原子で金属イオンMに結合もしくは配位する。環Aと環C1は同じであっても、異なっていても良い。
 以下に環B1および環B2の具体例を示すが、これによって本発明が限定されるものではない。
Figure JPOXMLDOC01-appb-C000017
 ここで、5N-6、5N-10は、プロトンが解離した窒素原子が金属イオンMに結合する。5N-7、5N-8は炭素原子(カルベン)で金属イオンMに結合する。
 式(DL-1)~(DL-4)において、a1~a3は、0または1以上の整数を表すが、0~2の整数が好ましく、0または1がより好ましい。
 a4およびa5は、0~2の整数が好ましく、0または1がより好ましい。
 また、式(DL-1)~(DL-4)において、3つの環のいずれかに置換基を有するものが好ましい。複数の環に置換基を有する場合は、3つの環にそれぞれ1つの置換基を有するもの、2つの環にそれぞれ1つの置換基を有するもの、1つの環のみに置換基を有するものが好ましく、置換基を有する環として最も好ましいのは、3つの環の中央の環に置換基を有する場合である。
- 配位子LA -
 本発明において、配位子LAは、一般式(AL-1)または(AL-2)で表される配位子であり、少なくとも1つの酸性基を有する配位子である。
 式(AL-1)、(AL-2)において、Anc~Ancは-COH、-SOH、-PO、またはこれらのプロトンが解離した基を表す。
 ここで、プロトンが解離した基とは、例えば、上記のアニオンもしくはその塩であり、金属イオンMとの配位のためにはアニオンが好ましい。例えば、-CO 、-SO 、-PO、-PO 2-である。
 本発明においては、-COHもしくはそのプロトンが解離した基が好ましい。
 式(AL-1)、(AL-2)において、RALは置換基を表すが、該置換基としては、後述の置換基Tが挙げられる。
 RALは、アルキル基、シクロアルキル基、エチニル基、エテニル基、アリール基、芳香族ヘテロ環基が好ましい。ここで、芳香族ヘテロ環基としてはチエニル基、フラニル基が好ましく、チエニル基がより好ましい。
 b1は0~4の整数を表すが、0または1が好ましく、1がより好ましい。
- 電荷中和対イオンCI -
 CIは電荷を中和させるのに対イオンが必要な場合の対イオンを表す。一般に、色素が陽イオンまたは陰イオンであるか、あるいは正味のイオン電荷を有するかどうかは、金属錯体色素中の金属、配位子および置換基に依存する。
 置換基が解離性基を有することなどにより、金属錯体色素は解離して負電荷を持ってもよい。この場合、金属錯体色素全体の電荷はCIにより電気的に中性とされる。
 対イオンCIが正の対イオンの場合、例えば、対イオンCIは、無機もしくは有機のアンモニウムイオン(例えばテトラアルキルアンモニウムイオン、ピリジニウムイオン等)、ホスホニウムイオン(例えばテトラアルキルホスホニウムイオン、アルキルトリフェニルホスホニウムイオン等)、アルカリ金属イオン、金属錯体イオンまたはプロトンである。正の対イオンとしては、無機もしくは有機のアンモニウムイオン(トリエチルアンモニウム、テトラブチルアンモニウムイオン等)、プロトンが好ましい。
 対イオンCIが負の対イオンの場合、例えば、対イオンCIは、無機陰イオンでも有機陰イオンでもよい。例えば、水酸化物イオン、ハロゲン陰イオン(例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等)、置換または無置換のアルキルカルボン酸イオン(酢酸イオン、トリフルオロ酢酸等)、置換または無置換のアリールカルボン酸イオン(安息香酸イオン等)、置換もしくは無置換のアルキルスルホン酸イオン(メタンスルホン酸、トリフルオロメタンスルホン酸イオン等)、置換もしくは無置換のアリールスルホン酸イオン(例えばp-トルエンスルホン酸イオン、p-クロロベンゼンスルホン酸イオン等)、アリールジスルホン酸イオン(例えば1,3-ベンゼンジスルホン酸イオン、1,5-ナフタレンジスルホン酸イオン、2,6-ナフタレンジスルホン酸イオン等)、アルキル硫酸イオン(例えばメチル硫酸イオン等)、硫酸イオン、チオシアン酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロホスフェートイオン、ピクリン酸イオン、が挙げられる。さらに電荷均衡対イオンとして、イオン性ポリマーあるいは色素と逆電荷を有する他の色素を用いてもよく、金属錯イオン(例えばビスベンゼン-1,2-ジチオラトニッケル(III)等)も使用可能である。負の対イオンとしては、ハロゲン陰イオン、置換もしくは無置換のアルキルカルボン酸イオン、置換もしくは無置換のアルキルスルホン酸イオン、置換もしくは無置換のアリールスルホン酸イオン、アリールジスルホン酸イオン、過塩素酸イオン、ヘキサフルオロホスフェートイオンが好ましく、ハロゲン陰イオン、ヘキサフルオロホスフェートイオンがより好ましい。
 本発明で用いられる金属錯体色素の具体例を以下に示すが、本発明はこれらに限定されるものではない。なお、下記構造において、式(I)におけるCIはプロトンとして標記したが、テトラブチルアンモニウムイオン(NBu)や、ナトリウムイオン等でもよい。
 また、下記構造において、Anc~Ancの少なくとも一つが-COOと記載されている金属錯体色素は、当該-COOが-COOHとなって負の対イオンを有していてもよい。負の対イオンとしては、前記の負の対イオンが挙げられる。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 本発明で用いられる金属錯体色素は、Chemistry - A European Journal,17(39),10871~10878(2011)、Angewandte Chemie,84,824~826(1972)、Dalton Transactions,5,770~772(2009)、特開2001-291534号公報や当該公報に引用された方法に準じた方法、Angew.Chem.Int.Ed.,50,2054~2058(2011)に記載の方法に準じた方法に準じて容易に合成することができる。
 本発明で用いられる金属錯体色素は、溶液における極大吸収波長が、好ましくは300~1000nmの範囲であり、より好ましくは350~950nmの範囲であり、特に好ましくは370~900nmの範囲である。
- 導電性支持体 -
 導電性支持体は、金属のように支持体そのものに導電性があるものか、または表面に導電膜層を有するガラスもしくはプラスチックの支持体であるのが好ましい。プラスチックの支持体としては、例えば、特開2001-291534号公報の段落番号0153に記載の透明ポリマーフィルムが挙げられる。支持体としては、ガラスおよびプラスチックの他、セラミック(特開2005-135902号公報)、導電性樹脂(特開2001-160425号公報)を用いてもよい。導電性支持体上には、表面に光マネージメント機能を施してもよく、例えば、特開2003-123859号公報に記載の高屈折膜および低屈折率の酸化物膜を交互に積層した反射防止膜を有してもよく、特開2002-260746号公報に記載のライトガイド機能を有してもよい。
 導電膜層の厚さは0.01~30μmであることが好ましく、0.03~25μmであることが更に好ましく、特に好ましくは0.05~20μmである。
 導電性支持体は実質的に透明であることが好ましい。実質的に透明であるとは光の透過率が10%以上であることを意味し、50%以上であることが好ましく、80%以上が特に好ましい。透明導電性支持体としては、ガラスもしくはプラスチックに導電性の金属酸化物を塗設したものが好ましい。金属酸化物としてはスズ酸化物が好ましく、インジウム-スズ酸化物、フッ素ドープド酸化物が特に好ましい。このときの導電性の金属酸化物の塗布量は、ガラスもしくはプラスチックの支持体1m当たりの0.1~100gが好ましい。透明導電性支持体を用いる場合、光は支持体側から入射させることが好ましい。
- 半導体微粒子 -
 半導体微粒子は、好ましくは金属のカルコゲニド(例えば酸化物、硫化物、セレン化物等)またはペロブスカイトの微粒子である。金属のカルコゲニドとしては、好ましくはチタン、スズ、亜鉛、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、もしくはタンタルの酸化物、硫化カドミウム、セレン化カドミウム等が挙げられる。ペロブスカイトとしては、好ましくはチタン酸ストロンチウム、チタン酸カルシウム等が挙げられる。これらのうち酸化チタン(チタニア)、酸化亜鉛、酸化スズ、酸化タングステンが特に好ましい。
 チタニアの結晶構造としては、アナターゼ型、ブルッカイト型、または、ルチル型があげられ、アナターゼ型、ブルッカイト型が好ましい。チタニアナノチューブ・ナノワイヤー・ナノロッドをチタニア微粒子に混合するか、または半導体電極として用いてもよい。
 半導体微粒子の粒径は、投影面積を円に換算したときの直径を用いた平均粒径で1次粒子として0.001~1μm、分散物の平均粒径として0.01~100μmであることが好ましい。半導体微粒子を導電性支持体上に塗設する方法として、湿式法、乾式法、その他の方法が挙げられる。
 透明導電膜と半導体層(感光体層)の間には、電解質と電極が直接接触することによる逆電流を防止するため、短絡防止層を形成することが好ましい。光電極と対極の接触を防ぐために、スペーサーやセパレータを用いることが好ましい。半導体微粒子は多くの色素を吸着することができるように表面積の大きいものが好ましい。例えば半導体微粒子を支持体上に塗設した状態で、その表面積が投影面積に対して10倍以上であることが好ましく、100倍以上であることがより好ましい。この上限には特に制限はないが、通常5000倍程度である。一般に、半導体微粒子を含む層の厚みが大きいほど単位面積当たりに担持できる色素の量が増えるため光の吸収効率が高くなるが、発生した電子の拡散距離が増すため電荷再結合によるロスも大きくなる。半導体層である感光体層の好ましい厚みは素子の用途によって異なるが、典型的には0.1~100μmである。色素増感太陽電池として用いる場合は1~50μmであることが好ましく、3~30μmであることがより好ましい。半導体微粒子は、支持体に塗布した後に粒子同士を密着させるために、100~800℃の温度で10分~10時間焼成してもよい。支持体としてガラスを用いる場合、製膜温度は60~400℃が好ましい。
 なお、半導体微粒子の支持体1m当たりの塗布量は0.5~500g、さらには5~100gが好ましい。色素の使用量は、全体で、支持体1m当たり0.01~100ミリモルが好ましく、より好ましくは0.1~50ミリモル、特に好ましくは0.1~10ミリモルである。この場合、本発明で用いられる金属錯体色素の使用量は5モル%以上とすることが好ましい。また、色素の半導体微粒子に対する吸着量は半導体微粒子1gに対して0.001~1ミリモルが好ましく、より好ましくは0.1~0.5ミリモルである。このような色素量とすることによって、半導体微粒子における増感効果が十分に得られる。
 前記色素が塩である場合、前記特定の金属錯体色素の対イオンは特に限定されず、例えばアルカリ金属イオンまたは4級アンモニウムイオン等が挙げられる。
 色素を吸着させた後に、アミン類を用いて半導体微粒子の表面を処理してもよい。好ましいアミン類としてピリジン類(例えば4-tert-ブチルピリジン、ポリビニルピリジン)等が挙げられる。これらは液体の場合はそのまま用いてもよいし有機溶媒に溶解して用いてもよい。
 本発明の光電変換素子(例えば光電変換素子10)および色素増感太陽電池(例えば色素増感太陽電池20)においては、少なくとも上記の本発明の金属錯体色素を使用する。
 本発明においては、本発明で用いられる金属錯体色素と他の色素を併用してもよい。
 併用する色素としては、特表平7-500630号公報に記載のRu錯体色素(特に第5頁左下欄5行目~第7頁右上欄7行目に例1~例19で合成された色素)、特表2002-512729号公報に記載のRu錯体色素(特に第20頁の下から3行目~第29頁23行目に例1~例16で合成された色素)、特開2001-59062号公報に記載のRu錯体色素(特に、段落番号0087~0104に記載の色素)、特開2001-6760号公報に記載のRu錯体色素(特に、段落番号0093~0102に記載の色素)、特開2001-253894号公報に記載のRu錯体色素(特に、段落番号0009~0010に記載の色素)、特開2003-212851号公報に記載のRu錯体色素(特に、段落番号0005に記載の色素)、国際公開第2007/91525号パンフレットに記載のRu錯体色素(特に、[0067]に記載の色素)、特開2001-291534号公報に記載のRu錯体色素(特に、段落番号0120~0144に記載の色素)、特開2012-012570号公報に記載のRu錯体色素(特に、段落番号0095~0103に記載の色素)、特開2013-084594号公報に記載のRu錯体色素(特に、段落番号0072~0081などに記載の色素)、特開平11-214730号公報に記載のスクアリリウムシアニン色素(特に、段落番号0036~0047に記載の色素)、特開2012-144688号公報に記載のスクアリリウムシアニン色素(特に、段落番号0039~0046および段落番号0054~0060に記載の色素)、特開2012-84503号公報に記載のスクアリリウムシアニン色素(特に、段落番号0066~0076などに記載の色素)、特開2004-063274号公報に記載の有機色素(特に、段落番号0017~0021に記載の色素)、特開2005-123033号公報に記載の有機色素(特に、段落番号0021~0028に記載の色素)、特開2007-287694号公報に記載の有機色素(特に、段落番号0091~0096に記載の色素)、特開2008-71648号公報に記載の有機色素(特に、段落番号0030~0034に記載の色素)、国際公開第2007/119525号パンフレットに記載の有機色素(特に、[0024]に記載の色素)、Angew.Chem.Int.Ed.,49,1~5(2010)などに記載のポルフィリン色素、Angew.Chem.Int.Ed.,46,8358(2007)などに記載のフタロシアニン色素が挙げられる。
 併用する色素として好ましくは、Ru錯体色素、スクアリリウムシアニン色素、または有機色素が挙げられる。
 本発明で用いられる金属錯体色素と他の色素を併用する場合、本発明で用いられる金属錯体色素の質量/他の色素の質量の比は、95/5~10/90が好ましく、95/5~50/50がより好ましく、95/5~60/40がさらに好ましく、95/5~65/35が特に好ましく、95/5~70/30が最も好ましい。
- 電荷移動体層 -
 本発明の光電変換素子に用いられる電荷移動体層は、色素の酸化体に電子を補充する機能を有する層であり、受光電極と対極(対向電極)との間に設けられる。電荷移動体層は電解質を含む。電解質の例としては、酸化還元対を有機溶媒に溶解した液体電解質、酸化還元対を有機溶媒に溶解した液体をポリマーマトリクスに含浸したいわゆるゲル電解質、酸化還元対を含有する溶融塩などが挙げられる。光電変換効率を高めるためには液体電解質が好ましい。液体電解質の有機溶媒はニトリル化合物、エーテル化合物、エステル化合物等が用いられるが、ニトリル化合物が好ましく、アセトニトリル、メトキシプロピオニトリルが特に好ましい。
 酸化還元対として、例えばヨウ素とヨウ化物(ヨウ化物塩、ヨウ化イオン性液体が好ましく、ヨウ化リチウム、ヨウ化テトラブチルアンモニウム、ヨウ化テトラプロピルアンモニウム、ヨウ化メチルプロピルイミダゾリウムが好ましい)との組み合わせ、アルキルビオローゲン(例えばメチルビオローゲンクロリド、ヘキシルビオローゲンブロミド、ベンジルビオローゲンテトラフルオロボレート)とその還元体との組み合わせ、ポリヒドロキシベンゼン類(例えばハイドロキノン、ナフトハイドロキノン等)とその酸化体との組み合わせ、2価と3価の鉄錯体の組み合せ(例えば赤血塩と黄血塩の組み合せ)、2価と3価のコバルト錯体の組み合わせ等が挙げられる。これらのうちヨウ素とヨウ化物との組み合わせ、2価と3価のコバルト錯体の組み合わせが好ましい。
 前記コバルト錯体は、なかでも下記式(CC)で表される錯体が好ましい。
  Co(LL)ma(X)mb・CI      式(CC)
 式(CC)において、LLは2座または3座の配位子を表す。Xは単座の配位子を表す。maは0~3の整数を表す。mbは0~6の整数を表す。CIは電荷を中和させるのに対イオンが必要な場合の対イオンを表す。
 CIは前記式(I)におけるCIが挙げられる。
 LLは下記式(LC)で表される配位子が好ましい。
Figure JPOXMLDOC01-appb-C000026
 式(LC)において、XLC1およびXLC3は各々独立に炭素原子または窒素原子を表す。ここで、XLC1が炭素原子の場合、XLC1とN原子の結合は二重結合(XLC1=N)を表し、XLC3が炭素原子の場合、XLC3とN原子の結合は二重結合(XLC3=N)を表し、XLC1が窒素原子の場合、XLC1とN原子の結合は単結合(XLC1-N)を表し、XLC3が窒素原子の場合、XLC3とN原子の結合は単結合(XLC3-N)を表す。
 ZLC1、ZLC2およびZLC3は各々独立に、5員環または6員環を形成するのに必要な非金属原子群を表す。ZLC1、ZLC2およびZLC3は置換基を有していてもよく、置換基を介して隣接する環と閉環していてもよい。qは0または1を表す。該置換基としては、後述の置換基Tが挙げられる。なお、qが0の場合、XLC3がZLC2で形成される5員環または6員環に結合する位置の炭素原子は、水素原子、またはZLC3で形成されるヘテロ環基以外の置換基が結合する。
 Xはハロゲンイオンであることが好ましい。
 上記式(LC)で表される配位子は、下記式(LC-1)~(LC-4)で表される配位子がより好ましい。
Figure JPOXMLDOC01-appb-C000027
 RLC1~RLC11は各々独立に置換基を表す。q1、q2、q6およびq7は各々独立に、0~4の整数を表す。q3、q5、q10およびq11は各々独立に、0~3の整数を表す。q4は0~2の整数を表す。
 式(LC-1)~(LC-4)において、RLC1~RLC11の置換基としては例えば、脂肪族基、芳香族基、複素環基等が挙げられる。置換基の具体的な例としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、ヘテロ環等を挙げることができる。好ましい例としては、アルキル基(例えばメチル、エチル、n-ブチル、n-ヘキシル、イソブチル、sec-ブチル、t-ブチル、n-ドデシル、シクロヘキシル、ベンジル等)、アリール基(例えばフェニル、トリル、ナフチル等)、アルコキシ基(例えば、メトキシ、エトキシ、イソプロポキシ、ブトキシ等)、アルキルチオ基(例えば、メチルチオ、n-ブチルチオ、n-ヘキシルチオ、2-エチルヘキシルチオ等)、アリールオキシ基(例えば、フェノキシ、ナフトキシ等)、アリールチオ基(例えば、フェニルチオ、ナフチルチオ等)、ヘテロ環基(例えば、2-チエニル、2-フリル等)を挙げることができる。
 式(LC)で表される配位子を有するコバルト錯体の具体例としては、例えば以下の錯体が挙げられる。
Figure JPOXMLDOC01-appb-C000028
 電解質として、ヨウ素とヨウ化物との組み合せを用いる場合、5員環または6員環の含窒素芳香族カチオンのヨウ素塩をさらに併用するのが好ましい。
 酸化還元対を溶かす有機溶媒としては、非プロトン性の極性溶媒(例えばアセトニトリル、炭酸プロピレン、炭酸エチレン、ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、1,3-ジメチルイミダゾリノン、3-メチルオキサゾリジノン等)が好ましい。ゲル電解質のマトリクスに使用されるポリマーとしては、例えばポリアクリロニトリル、ポリビニリデンフルオリド等が挙げられる。溶融塩としては、例えばヨウ化リチウムと他の少なくとも1種類のリチウム塩(例えば酢酸リチウム、過塩素酸リチウム等)にポリエチレンオキシドを混合することにより、室温での流動性を付与したもの等が挙げられる。この場合のポリマーの添加量は1~50質量%である。また、γ-ブチロラクトンを電解液に含んでいてもよく、これによりヨウ化物イオンの拡散効率が高くなり変換効率が向上する。
 電解質への添加物として、前述の4-tert-ブチルピリジンのほか、アミノピリジン系化合物、ベンズイミダゾール系化合物、アミノトリアゾール系化合物およびアミノチアゾール系化合物、イミダゾール系化合物、アミノトリアジン系化合物、尿素誘導体、アミド化合物、ピリミジン系化合物および窒素を含まない複素環を加えることができる。
 また、光電変換効率を向上するために、電解液の水分を制御する方法をとってもよい。水分を制御する好ましい方法としては、濃度を制御する方法や脱水剤を共存させる方法を挙げることができる。ヨウ素の毒性軽減のために、ヨウ素とシクロデキストリンの包摂化合物の使用をしてもよく、水分を常時補給する方法を用いてもよい。また環状アミジンを用いてもよく、酸化防止剤、加水分解防止剤、分解防止剤、ヨウ化亜鉛を加えてもよい。
 電解質として溶融塩を用いてもよく、好ましい溶融塩としては、イミダゾリウムまたはトリアゾリウム型陽イオンを含むイオン性液体、オキサゾリウム系、ピリジニウム系、グアニジウム系およびこれらの組み合わせが挙げられる。これらカチオン系に対して特定のアニオンと組み合わせてもよい。これらの溶融塩に対しては添加物を加えてもよい。液晶性の置換基を持っていてもよい。また、四級アンモニウム塩系の溶融塩を用いてもよい。
 これら以外の溶融塩としては、例えば、ヨウ化リチウムと他の少なくとも1種類のリチウム塩(例えば酢酸リチウム、過塩素酸リチウム等)にポリエチレンオキシドを混合することにより、室温での流動性を付与したもの等が挙げられる。
 電解質と溶媒からなる電解液にゲル化剤を添加してゲル化させることにより、電解質を擬固体化してもよい。ゲル化剤としては、分子量1000以下の有機化合物、分子量500~5000の範囲のSi含有化合物、特定の酸性化合物と塩基性化合物からできる有機塩、ソルビトール誘導体、ポリビニルピリジンが挙げられる。
 また、マトリックス高分子、架橋型高分子化合物またはモノマー、架橋剤、電解質および溶媒を高分子中に閉じ込める方法を用いても良い。
 マトリックス高分子として好ましくは、含窒素複素環を主鎖あるいは側鎖の繰り返し単位中に持つ高分子およびこれらを求電子性化合物と反応させた架橋体、トリアジン構造を持つ高分子、ウレイド構造をもつ高分子、液晶性化合物を含むもの、エーテル結合を有する高分子、ポリフッ化ビニリデン系、メタクリレート・アクリレート系、熱硬化性樹脂、架橋ポリシロキサン、ポリビニルアルコール(PVA)、ポリアルキレングリコールとデキストリンなどの包摂化合物、含酸素または含硫黄高分子を添加した系、天然高分子などが挙げられる。これらにアルカリ膨潤型高分子、一つの高分子内にカチオン部位とヨウ素との電荷移動錯体を形成できる化合物を持った高分子などを添加しても良い。
 マトリックスポリマーとして2官能以上のイソシアネートを一方の成分として、ヒドロキシル基、アミノ基、カルボキシル基などの官能基と反応させた架橋ポリマーを含む系を用いても良い。また、ヒドロシリル基と二重結合性化合物による架橋高分子、ポリスルホン酸またはポリカルボン酸などを2価以上の金属イオン化合物と反応させる架橋方法などを用いても良い。
 上記擬固体の電解質との組み合わせで好ましく用いることができる溶媒としては、特定のリン酸エステル、エチレンカーボネートを含む混合溶媒、特定の比誘電率を持つ溶媒などが挙げられる。固体電解質膜あるいは細孔に液体電解質溶液を保持させても良く、その方法として好ましくは、導電性高分子膜、繊維状固体、フィルタなどの布状固体が挙げられる。
 以上の液体電解質および擬固体電解質の代わりにp型半導体あるいはホール輸送材料などの固体電荷輸送層、例えば、CuI、CuNCSなどを用いることができる。また、Nature,vol.486,p.487(2012)等に記載の電解質を用いてもよい。固体電荷輸送層として有機ホール輸送材料を用いても良い。ホール輸送層として好ましくは、ポリチオフェン、ポリアニリン、ポリピロールおよびポリシランなどの導電性高分子および2個の環がC、Siなど四面体構造をとる中心元素を共有するスピロ化合物、トリアリールアミンなどの芳香族アミン誘導体、トリフェニレン誘導体、含窒素複素環誘導体、液晶性シアノ誘導体が挙げられる。
 酸化還元対は、電子のキャリアになるため、濃度は合計で0.01モル/L以上が好ましく、0.1モル/L以上がより好ましく、0.3モル/L以上が特に好ましい。酸化還元対の合計の濃度の上限は特に制限はないが、通常5モル/L程度である。
- 共吸着剤 -
 本発明の光電変換素子においては、本発明で用いられる金属錯体色素または必要により併用する色素とともに共吸着剤を使用することが好ましい。このような共吸着剤としては酸性基(好ましくは、カルボキシル基もしくはその塩の基)を1つ以上有する共吸着剤が好ましく、脂肪酸やステロイド骨格を有する化合物が挙げられる。脂肪酸は、飽和脂肪酸でも不飽和脂肪酸でもよく、例えばブタン酸、ヘキサン酸、オクタン酸、デカン酸、ヘキサデカン酸、ドデカン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸等が挙げられる。
 ステロイド骨格を有する化合物として、コール酸、グリココール酸、ケノデオキシコール酸、ヒオコール酸、デオキシコール酸、リトコール酸、ウルソデオキシコール酸等が挙げられる。好ましくはコール酸、デオキシコール酸、ケノデオキシコール酸であり、さらに好ましくはケノデオキシコール酸である。
 好ましい共吸着剤は、下記式(CA)で表される化合物である。
Figure JPOXMLDOC01-appb-C000029
 式中、RA1は酸性基を有する置換基を表す。RA2は置換基を表す。nAは0以上の整数を表す。
 RA1は酸性基を有する置換基を表すが、酸性基を有する置換基における酸性基とは、解離性のプロトンを有する置換基であり、pKaが11以下である。例えば、カルボキシ基、ホスホニル基、ホスホリル基、スルホ基、ホウ酸基等の酸性を示す基である酸基、またはこれらの塩が挙げられ、好ましくはカルボキシ基、スルホ基またはこれらの塩であり、より好ましくはカルボキシ基またはこの塩である。
 酸性基が塩の場合、その塩となるときの対イオンとしては特に限定されないが、例えば、前述の一般式(I)における対イオンCIで示す正のイオンの例が挙げられる。
 酸性基を有する置換基は、酸性基が置換した基であり、酸性基が置換したアルキル基、酸性基が置換したアルケニル基、酸性基が置換したアリール基、酸性基が置換したヘテロ環基が挙げられる。この中でも酸性基が置換したアルキル基、酸性基が置換したアルケニル基が好ましく、特に酸性基が置換したアルキル基が好ましい。
 なお、酸性基が置換したアルキル基の炭素数は、酸性基以外のアルキル基の炭素数が1~10が好ましく、2~6がより好ましい。
 RA1は、これらの中でも、カルボキシル基またはスルホ基もしくはそれらの塩が置換したアルキル基が好ましく、-CH(CH)CHCHCOH、-CH(CH)CHCHCONHCHCHSOHがさらに好ましい。
 RA2は、後述の置換基Tが挙げられるが、中でもアルキル基、ヒドロキシ基、アシルオキシ基、アルキルアミノカルボニルオキシ基、アリールアミノカルボニルオキシ基が好ましく、アルキル基、ヒドロキシ基、アシルオキシ基がより好ましい。
 nAは2~4であることが好ましい。
 これらの具体的化合物は、上述のステロイド骨格を有する化合物として例示した化合物が挙げられる。
 本発明で用いられる共吸着剤は、半導体微粒子に吸着させることにより、色素の非効率な会合を抑制する効果および半導体微粒子表面から電解質中のレドックス系への逆電子移動を防止する効果がある。共吸着剤の使用量は特に限定されないが、上記色素1モルに対して、好ましくは1~200モル、さらに好ましくは10~150モル、特に好ましくは20~50モルであることが上記の作用を効果的に発現させられる観点から好ましい。
<置換基T>
 本明細書において化合物(錯体、色素を含む)の表示については、当該化合物そのもののほか、その塩、錯体、そのイオンを含む意味に用いる。また、所望の効果を奏する範囲で、所定の一部を変化させた誘導体を含む意味である。また、本明細書において置換・無置換を明記していない置換基(連結基および配位子についても同様)については、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Tが挙げられる。
 また、本明細書において、単に置換基としてしか記載されていないは、この置換基Tを参照するものであり、また、各々の基、例えば、アルキル基、が記載されているのみの時は、この置換基Tの対応する基における好ましい範囲、具体例が適用される。
 置換基Tとしては、下記の置換基が挙げられる。
 アルキル基(好ましくは炭素数1~20で、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル、トリフルオロメチル等)、アルケニル基(好ましくは炭素数2~20で、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素数2~20で、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素数3~20で、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、シクロアルケニル基(好ましくは炭素数5~20での、例えばシクロペンテニル、シクロヘキセニル等)、アリール基(好ましくは炭素数6~26で、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素数2~20で、環構成原子に少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5員環または6員環のヘテロ環基がより好ましく、例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素数1~20で、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アルケニルオキシ基(好ましくは炭素数2~20で、例えば、ビニルオキシ、アリルオキシ等)、アルキニルオキシ基(好ましくは炭素数2~20で、例えば、2-プロピニルオキシ、4-ブチニルオキシ等)、シクロアルキルオキシ基(好ましくは炭素数3~20で、例えば、シクロプロピルオキシ、シクロペンチルオキシ、シクロヘキシルオキシ、4-メチルシクロヘキシルオキシ等)、アリールオキシ基(好ましくは炭素数6~26で、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、ヘテロ環オキシ基(例えば、イミダゾリルオキシ、ベンゾイミダゾリルオキシ、チアゾリルオキシ、ベンゾチアゾリルオキシ、トリアジニルオキシ、プリニルオキシ)、
アルコキシカルボニル基(好ましくは炭素数2~20ので、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、シクロアルコキシカルボニル基(好ましくは炭素数4~20ので、例えば、シクロプロピルオキシカルボニル、シクロペンチルオキシカルボニル、シクロヘキシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素数6~20で、例えば、フェニルオキシカルボニル、ナフチルオキシカルボニル等)、アミノ基(好ましくは炭素数0~20で、アルキルアミノ基、アルケニルアミノ基、アルキニルアミノ基、シクロアルキルアミノ基、シクロアルケニルアミノ基、アリールアミノ基、ヘテロ環アミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、N-アリルアミノ、N-(2-プロピニル)アミノ、N-シクロヘキシルアミノ、N-シクロヘキセニルアミノ、アニリノ、ピリジルアミノ、イミダゾリルアミノ、ベンゾイミダゾリルアミノ、チアゾリルアミノ、ベンゾチアゾリルアミノ、トリアジニルアミノ等)、スルファモイル基(好ましくは炭素数0~20で、アルキル、シクロアルキルもしくはアリールのスルファモイル基が好ましく、例えば、N,N-ジメチルスルファモイル、N-シクロヘキシルスルファモイル、N-フェニルスルファモイル等)、アシル基(好ましくは炭素数1~20で、例えば、アセチル、シクロヘキシルカルボニル、ベンゾイル等)、アシルオキシ基(好ましくは炭素数1~20で、例えば、アセチルオキシ、シクロヘキシルカルボニルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素数1~20で、アルキル、シクロアルキルもしくはアリールのカルバモイル基が好ましく、例えば、N,N-ジメチルカルバモイル、N-シクロヘキシルカルバモイル、N-フェニルカルバモイル等)、
アシルアミノ基(好ましくは炭素数1~20のアシルアミノ基、例えば、アセチルアミノ、シクロヘキシルカルボニルアミノ、ベンゾイルアミノ等)、スルホンアミド基(好ましくは炭素数0~20で、アルキル、シクロアルキルもしくはアリールのスルホンアミド基が好ましく、例えば、メタンスルホンアミド、ベンゼンスルホンアミド、N-メチルメタンスルホンアミド、N-シクロヘキシルスルホンアミド、N-エチルベンゼンスルホンアミド等)、アルキルチオ基(好ましくは炭素数1~20で、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、シクロアルキルチオ基(好ましくは炭素数3~20で、例えば、シクロプロピルチオ、シクロペンチルチオ、シクロヘキシルチオ、4-メチルシクロヘキシルチオ等)、アリールチオ基(好ましくは炭素数6~26で、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、アルキル、シクロアルキルもしくはアリールスルホニル基(好ましくは炭素数1~20で、例えば、メチルスルホニル、エチルスルホニル、シクロヘキシルスルホニル、ベンゼンスルホニル等)、
シリル基(好ましくは炭素数1~20で、アルキル、アリール、アルコキシおよびアリールオキシが置換したシリル基が好ましく、例えば、トリエチルシリル、トリフェニルシリル、ジエチルベンジルシリル、ジメチルフェニルシリル等)、シリルオキシ基(好ましくは炭素数1~20で、アルキル、アリール、アルコキシおよびアリールオキシが置換したシリルオキシ基が好ましく、例えば、トリエチルシリルオキシ、トリフェニルシリルオキシ、ジエチルベンジルシリルオキシ、ジメチルフェニルシリルオキシ等)、ヒドロキシル基、シアノ基、ニトロ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)、カルボキシル基、スルホ基、ホスホニル基、ホスホリル基、ホウ酸基である。
 化合物または置換基等がアルキル基、アルケニル基等を含むとき、これらは直鎖状でも分岐状でもよく、置換されていても無置換でもよい。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、置換されていても無置換でもよい。
<対極(対向電極)>
 対極は、色素増感太陽電池(光電気化学電池)の正極として働くものであることが好ましい。対極は、通常前述の導電性支持体と同義であるが、強度が十分に保たれるような構成では支持体は必ずしも必要でない。対極の構造としては、集電効果が高い構造が好ましい。感光体層に光が到達するためには、前述の導電性支持体と対極との少なくとも一方は実質的に透明でなければならない。本発明の色素増感太陽電池においては、導電性支持体が透明であって太陽光を支持体側から入射させるのが好ましい。この場合、対向電極は光を反射する性質を有することがさらに好ましい。色素増感太陽電池の対極としては、金属もしくは導電性の酸化物を蒸着したガラス、またはプラスチックが好ましく、白金を蒸着したガラスが特に好ましい。色素増感太陽電池では、構成物の蒸散を防止するために、電池の側面をポリマーや接着剤等で密封することが好ましい。
 本発明は、特許第4260494号公報、特開2004-146425号公報、特開2000-340269号公報、特開2002-289274号公報、特開2004-152613号公報、特開平9-27352号公報に記載の光電変換素子、色素増感太陽電池に適用することができる。また、特開2004-152613号公報、特開2000-90989号公報、特開2003-217688号公報、特開2002-367686号公報、特開2003-323818号公報、特開2001-43907号公報、特開2000-340269号公報、特開2005-85500号公報、特開2004-273272号公報、特開2000-323190号公報、特開2000-228234号公報、特開2001-266963号公報、特開2001-185244号公報、特表2001-525108号公報、特開2001-203377号公報、特開2000-100483号公報、特開2001-210390号公報、特開2002-280587号公報、特開2001-273937号公報、特開2000-285977号公報、特開2001-320068号公報等に記載の光電変換素子、色素増感太陽電池に適用することができる。
<<色素溶液、それを用いた色素吸着電極および色素増感太陽電池の製造方法>>
 本発明においては、本発明で用いられる金属錯体色素を含有する色素溶液を使用して色素吸着電極を製造することが好ましい。
 このような色素溶液には、本発明で用いられる金属錯体色素が有機溶媒に溶解されてなり、必要により共吸着剤や他の成分を含んでもよい。
 使用する溶媒としては、特開2001-291534号公報に記載の溶媒が挙げられるが特に限定されない。本発明においては有機溶媒が好ましく、さらにアルコール類、アミド類、ニトリル類、アルコール類、炭化水素類、および、これらの2種以上の混合溶媒が好ましい。混合溶媒としては、アルコール類と、アミド類、ニトリル類または炭化水素類から選択される溶媒との混合溶媒が好ましい。さらに好ましくはアルコール類とアミド類、アルコール類と炭化水素類の混合溶媒、特に好ましくはアルコール類とアミド類の混合溶媒である。具体的にはメタノール、エタノール、プロパノール、ブタノール、ジメチルホルムアミド、ジメチルアセトアミドが好ましい。
 色素溶液は共吸着剤を含有することが好ましく、共吸着剤としては、前述の共吸着剤が好ましく、なかでも前記式(CA)で表される化合物が好ましい。
 ここで、本発明で用いられる色素溶液は、光電変換素子や色素増感太陽電池を製造する際に、この溶液をこのまま使用できるように、金属錯体色素や共吸着剤が濃度調整されているものが好ましい。本発明では、本発明で用いられる金属錯体色素を0.001~0.1質量%含有することが好ましい。
 色素溶液は、水分含有量を調整することが特に好ましく、従って、本発明では水の含有量(含有率)を0~0.1質量%に調整することが好ましい。
 同様に、光電変換素子や色素増感太陽電池における電解質の水分含有量の調整も、本発明の効果を効果的に奏するために好ましく、このため、この電解質の水分含有量(含有率)を0~0.1質量%に調整することが好ましい。この電解液の調整は、色素溶液を用いて行うのが特に好ましい。
 本発明では、上記色素溶液を用いて、半導体電極が備える半導体微粒子表面に金属錯体色素を担持させてなる色素増感太陽電池用の半導体電極である色素吸着電極が好ましい。
 すなわち、色素増感太陽電池用の色素吸着電極は、上記色素溶液から得られてなる組成物を、半導体微粒子を付与した導電性支持体上に塗布し、塗布後の該組成物を硬化させて感光体層としたものが好ましい。
 本発明では、この色素増感太陽電池用の色素吸着電極を使用し、電解質、および対極を準備し、これらを用いて組み立てることで、色素増感太陽電池を製造することが好ましい。
 以下に実施例に基づき本発明について更に詳細に説明するが、本発明がこれに限定して解釈されるものではない。
(実施例1)
<金属錯体色素の合成>
 以下に、本発明で用いられる金属錯体色素の合成方法を詳しく説明するが、出発物質、色素中間体および合成ルートについてはこれにより限定されるものではない。
実施例1(金属錯体色素の合成)
 下記のスキームの方法に従って金属錯体色素の配位子を合成し、金属錯体色素(TL13-1)を合成した。
Figure JPOXMLDOC01-appb-C000030
 9gの化合物1 、4.81gの化合物2 、炭酸カリウム 9.04g、蒸留水30ml、およびトルエン30mlを三つ口フラスコに入れ、脱気、窒素置換を施した後、そこへテトラキス(トリフェニルホスフィンパラジウム0.945gを加え、窒素下で9時間加熱還流させた。得られた反応液を室温に戻し、ヘキサン/酢酸エチルを溶離液としたシリカゲルカラムクロマトグラフィーにより精製し、化合物3を3.4g得た。
 1gの化合物3 、2.7gの化合物4 、リン酸三カリウム2.7g、S-Phos(2-Dicyclohexylphosphino-2’,6’-dimethoxybiphenyl)0.3g、蒸留水10ml、およびテトラヒドロフラン(THF)10mlを三つ口フラスコに入れ、脱気、窒素置換を施した後、ここへ酢酸パラジウム71mgを加え、窒素下で9時間加熱還流させた。得られた反応液を室温に戻し、ヘキサン/酢酸エチルを溶離液としたシリカゲルカラムクロマトグラフィーにより精製し、塩酸で処理、再結晶を施すことにより、化合物5を0.3g得た。次いで0.3gの化合物5 と0.35gの化合物6 、N,N-ジメチルホルムアミド5ml、およびトリブチルアミン0.63gを三つ口フラスコに入れ、100℃にて8時間加熱還流させた。その後、得られた反応液を塩化メチレン/酢酸エチルを溶離液としたシリカゲルカラムクロマトグラフィーにより精製した。その後、精製物をDMF中、水酸化ナトリウムで加水分解させ、次いでそこへトリフルオロメタンスルホン酸水溶液および蒸留水を加えた。生成した沈殿物をろ過し、水洗、乾燥を施すことで金属錯体色素(TL13-1)60mgを得た。化合物の同定はESI-MSにより行った。
マススペクトルデータ(ESI-MS):[M-H]=981
同様にして、実施例で使用した金属錯体色素を合成した。
実施例2(色素増感太陽電池の作製)
 以下に示す手順により、特開2002-289274号公報に記載の図5に示されている光電極12と同様の構成を有する光電極を作製し、更に、光電極を用いて、同公報の図3に示されている光電極以外は色素増感型太陽電池20と同様の構成を有する10mm×10mmのスケールの色素増感太陽電池1を作製した。具体的な構成は図2に示した。図2では、41が透明電極、42が半導体電極、43が透明導電膜、44が基板、45が半導体層、46が光散乱層、40が光電極、20が色素増感太陽電池、CEが対極、Eが電解質、Sがスペーサーである。
(ペーストの調製)
(ペーストA)球形のTiO粒子(アナターゼ、平均粒径;25nm、以下、球形TiO粒子Aという)を硝酸溶液に入れて撹拌することによりチタニアスラリーを調製した。次に、チタニアスラリーに増粘剤としてセルロース系バインダーを加え、混練してペーストAを調製した。
(ペースト1)球形TiO粒子Aと、球形のTiO粒子(アナターゼ、平均粒径;200nm、以下、球形TiO粒子Bという)とを硝酸溶液に入れて撹拌することによりチタニアスラリーを調製した。次に、チタニアスラリーに増粘剤としてセルロース系バインダーを加え、混練してペースト1(TiO粒子Aの質量:TiO粒子Bの質量=30:70)を調製した。
(ペースト2)ペーストAに、棒状TiO粒子(アナターゼ、直径;100nm、アスペクト比;5、以下、棒状TiO粒子Cという)を混合し、棒状TiO粒子Cの質量:ペーストAの質量=30:70のペースト2を調製した。
(半導体電極の作成)
 ガラス基板上にフッ素ドープされたSnO導電膜(膜厚;500nm)を形成した透明電極を準備した。そして、このSnO導電膜上に、上述のペースト1をスクリーン印刷し、次いで乾燥させた。その後、空気中、450℃の条件のもとで焼成した。更に、ペースト2を用いてこのスクリーン印刷と焼成とを繰り返すことにより、SnO導電膜上に図2に示す半導体電極42と同様の構成の半導体電極(受光面の面積;10mm×10mm、層厚;10μm、半導体層の層厚;6μm、光散乱層の層厚;4μm、光散乱層に含有される棒状TiO粒子Cの含有率;30質量%)を形成し、色素を含有していない光電極を作製した。
(色素吸着)
 次に、半導体電極(色素吸着電極の前駆体)に色素を以下のようにして吸着させた。先ず、マグネシウムエトキシドで脱水した無水t-ブタノールとジメチルホルムアミドの1:1(体積比)の混合物を溶媒として、下記表1に記載の金属錯体色素を3×10-4モル/Lとなるように溶解した。さらにそこへ共吸着剤として、ケノデオキシコール酸とコール酸の等モル混合物を金属錯体色素1モルに対して20モル加え、各色素溶液を調製した。この色素溶液をカール・フィッシャー滴定により水分量を測定したところ、水は0.01質量%未満であった。次に、各色素溶液に半導体電極を40℃10時間浸漬し、引き上げ後50℃で乾燥させることにより、半導体電極に色素が約2×10-7mol/cm吸着した光電極40をそれぞれ完成させた。
(色素増感太陽電池の組み立て)
 次に、対極として上記の光電極と同様の形状と大きさを有する白金電極(Pt薄膜の厚さ;100nm)、電解質として、ヨウ素0.1M、ヨウ化リチウム0.05M、4-t-ブチルピリジン0.25Mを含むヨウ素系レドックスアセトニトリル溶液を調製した。更に、半導体電極の大きさに合わせた形状を有するデュポン社製のスペーサーS(商品名:「サーリン」)を準備し、光電極40と対極CEを、スペーサーSを介して対向、熱圧着させ、内部に上記の電解質を充填して、作成した電池の外周および電解液注入口を、ナガセケムテック製レジンXNR-5516を用いて封止、硬化し、各色素増感太陽電池(試料番号101~110、およびc11~c16)をそれぞれ完成させた。この色素増感太陽電池の性能を下記のようにして評価した。
<熱劣化(耐熱性)の評価>
 作製した色素増感太陽電池を40℃の恒温槽に入れて耐熱試験を行った。耐熱試験前の色素増感太陽電池および耐熱試験12時間後の色素増感太陽電池について、電流を評価した。耐熱試験後の電流値の減少分を耐熱試験前の電流値で除した値を熱劣化率として求めた。次いで、求められた熱劣化率を下記の比較化合物(1)を用いて得られた熱劣化率で除して、以下の基準で評価した。
 A:0.9倍未満である
 B:0.9倍以上1倍未満である
 C:1倍以上である
 下記表1には熱劣化として示す。
<ヒートサイクル試験>
 作製した色素増感太陽電池を-10℃の冷凍庫と20℃の恒温槽へ2時間毎に交互に入れて冷却と加温を繰り返し、ヒートサイクル試験を行った。ヒートサイクル試験前の色素増感太陽電池およびヒートサイクル試験24時間後の色素増感太陽電池について、電流を評価した。ヒートサイクル試験後の電流値の減少分をヒートサイクル試験前の電流値で除した値を劣化率として求めた。次いで、求められた劣化率を下記の比較化合物(1)を用いて得られた劣化率で除して、以下の基準で評価した。
 A:0.9倍未満である
 B:0.9倍以上1倍未満である
 C:1倍以上である
 下記表1にはヒートサイクルとして示す。
 これらの結果をまとめて、下記表1に示す。
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-C000032
 なお、TBAは、テトラブチルアンモニウムを表す。
 また、使用した比較化合物は、以下の通りである。
 比較化合物(1):米国特許出願公開第2012/0073660号明細書に記載の化合物TF-1(各評価の基準化合物)
 比較化合物(2):上記明細書に記載の化合物TF-6
 比較化合物(3):特開2009-67976号公報に記載の化合物T4
 比較化合物(4):上記公報に記載の化合物T5
 比較化合物(5):上記公報に記載の化合物T7
 比較化合物(6):Journal of the American Chemical Society,134号,17巻,7488頁~7496頁(2012年)に記載の化合物TF-11
 上記表1から明らかなように、本発明の光電変換素子および色素増感太陽電池は各種耐久性に優れるものであることがわかる。
1 導電性支持体
2 感光体層
 21 色素
 22 半導体微粒子
3 電荷移動体層
4 対極
5 受光電極
6 回路
10 光電変換素子
100 色素増感太陽電池を利用したシステム
M 電動モーター(扇風機)
20 色素増感太陽電池
40 光電極
41 透明電極
42 半導体電極
43 透明導電膜
44 基板
45 半導体層
46 光散乱層
CE 対極
E 電解質
S スペーサー

Claims (10)

  1.  導電性支持体、電解質を含む感光体層、電解質を含む電荷移動体層および対極を有する光電変換素子であって、該感光体層が、下記式(I)で表される金属錯体色素が担持された半導体微粒子を有する光電変換素子。
       M(LD)(LA)・(CI)     式(I)
     式中、Mは金属イオンを表す。
     LDは下記式(DL-1)~(DL-4)のいずれかで表される配位子を表す。
     LAは下記式(AL-1)または(AL-2)で表される配位子を表す。
     CIは電荷を中和するのに必要な対イオンを表す。
    Figure JPOXMLDOC01-appb-C000001
     式中、環Aおよび環C1は各々独立に、窒素原子で金属イオンMに結合するピラゾール環、ピロール環、窒素原子で金属イオンMに結合するイミダゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、イソオキサゾール環、イソチアゾール環、トリアゾール環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、炭素原子で金属イオンMに結合するピリジン環、炭素原子で金属イオンMに結合するチオフェン環、炭素原子で金属イオンMに結合するフラン環、炭素原子で金属イオンMに結合するピラゾール環または炭素原子で金属イオンMに結合するイミダゾール環のいずれかを表す。環B1はピリミジン環、トリアジン環、窒素原子で金属イオンMに結合するイミダゾール環、炭素原子(カルベン)で金属イオンMに結合するイミダゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環またはピラゾール環のいずれかを表す。R~Rは各々独立に置換基を表す。a1~a3は各々独立に0以上の整数を表し、a4は0~4の整数を表す。R~Rが、それぞれ複数存在する場合、これらは互いに結合して環を形成してもよい。
    Figure JPOXMLDOC01-appb-C000002
     式中、環B2はピリミジン環、トリアジン環、窒素原子で金属イオンMに結合するイミダゾール環、炭素原子(カルベン)で金属イオンMに結合するイミダゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、ピラゾール環、炭素原子で金属イオンMに結合するピロール環または非芳香族へテロ環のいずれかを表す。R、RおよびRは各々独立に置換基を表す。a2は0以上の整数を表し、a4およびa5は各々独立に0~4の整数を表す。R、RおよびRが、それぞれ複数存在する場合、これらは互いに結合して環を形成してもよい。
    Figure JPOXMLDOC01-appb-C000003
     式中、環C2はピリミジン環、ピラジン環、ピリダジン環、トリアジン環、炭素原子で金属イオンMに結合するピリジン環、炭素原子で金属イオンMに結合するチオフェン環、炭素原子で金属イオンMに結合するフラン環、イミダゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、イソオキサゾール環、イソチアゾール環、トリアゾール環、ピラゾール環またはピロール環のいずれかを表す。R、RおよびRは各々独立に置換基を表す。a3は0以上の整数を表し、a4およびa5は各々独立に0~4の整数を表す。R、RおよびRが、それぞれ複数存在する場合、これらは互いに結合して環を形成してもよい。
    Figure JPOXMLDOC01-appb-C000004
     式中、Anc~Ancは各々独立に、-COH、-SOH、-PO、またはこれらのプロトンが解離した基を表す。RALは置換基を表し、b1は0~4の整数を表す。
  2.  前記式(I)のMが、Fe2+、Ru2+またはOs2+である請求項1に記載の光電変換素子。
  3.  前記式(I)のLDが、前記式(DL-1)または(DL-2)であって、かつ前記環Aおよび環C1が、各々独立に窒素原子で金属イオンMに結合するピラゾール環、ピロール環、炭素原子で金属イオンMに結合するピリジン環、炭素原子で金属イオンMに結合するチオフェン環、炭素原子で金属イオンMに結合するフラン環または炭素原子で金属イオンMに結合するピラゾール環のいずれかであり、かつ、前記環B1がピリミジン環またはトリアジン環のいずれかである請求項1または2に記載の光電変換素子。
  4.  前記式(I)のLDが、前記式(DL-3)であって、かつ前記環B2がトリアゾール環または非芳香族含窒素へテロ環である請求項1または2に記載の光電変換素子。
  5.  前記式(I)のLDが、前記式(DL-4)であって、かつ前記環C2がピロール環、炭素原子で金属イオンMに結合するピリジン環、炭素原子で金属イオンMに結合するチオフェン環、炭素原子で金属イオンMに結合するフラン環または炭素原子で金属イオンMに結合するピラゾール環のいずれかである請求項1または2に記載の光電変換素子。
  6. 前記式(I)のLAが、前記式(AL-1)である請求項1~5のいずれか1項に記載の光電変換素子。
  7.  前記式(I)のLAが、前記式(AL-2)である請求項1~5のいずれか1項に記載の光電変換素子。
  8.  前記半導体微粒子に、さらに、酸性基を1つ以上有する共吸着剤が担持されている請求項1~7のいずれか1項に記載の光電変換素子。
  9.  前記共吸着剤が下記式(CA)で表される請求項8に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000005
     式中、RA1は酸性基を有する置換基を表す。RA2は置換基を表す。nAは0以上の整数を表す。
  10.  請求項1~9のいずれか1項に記載の光電変換素子を含む色素増感太陽電池。
PCT/JP2013/074294 2012-09-28 2013-09-10 光電変換素子および色素増感太陽電池 WO2014050527A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR20157003531A KR20150032893A (ko) 2012-09-28 2013-09-10 광전 변환 소자 및 색소 증감 태양 전지
EP13843009.5A EP2903080A1 (en) 2012-09-28 2013-09-10 Photoelectric conversion element and dye-sensitized solar cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-218750 2012-09-28
JP2012218750 2012-09-28
JP2013156799A JP2014082187A (ja) 2012-09-28 2013-07-29 光電変換素子および色素増感太陽電池
JP2013-156799 2013-07-29

Publications (1)

Publication Number Publication Date
WO2014050527A1 true WO2014050527A1 (ja) 2014-04-03

Family

ID=50387935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074294 WO2014050527A1 (ja) 2012-09-28 2013-09-10 光電変換素子および色素増感太陽電池

Country Status (5)

Country Link
EP (1) EP2903080A1 (ja)
JP (1) JP2014082187A (ja)
KR (1) KR20150032893A (ja)
TW (1) TW201412756A (ja)
WO (1) WO2014050527A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106233486A (zh) * 2014-04-25 2016-12-14 富士胶片株式会社 光电转换元件、使用该光电转换元件的太阳能电池以及光电转换元件的制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170033325A (ko) * 2014-07-30 2017-03-24 세키스이가가쿠 고교가부시키가이샤 태양 전지의 제조 방법
KR20190055138A (ko) 2016-09-29 2019-05-22 후지필름 가부시키가이샤 광전 변환 소자, 색소 증감 태양 전지, 금속 착체 색소, 색소 용액 및 산화물 반도체 전극
EP3584814A4 (en) 2017-02-17 2020-12-16 Fujifilm Corporation PHOTOELECTRIC CONVERSION ELEMENT, DYE-SENSITIZED SOLAR CELL, METAL COMPLEX DYE, DYE COMPOSITION AND OXIDE SEMICONDUCTOR ELECTRODE

Citations (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684537A (en) 1984-04-30 1987-08-04 R. E. Stiftung Process for the sensitization of an oxidation/reduction photocatalyst, and photocatalyst thus obtained
US4927721A (en) 1988-02-12 1990-05-22 Michael Gratzel Photo-electrochemical cell
US5350644A (en) 1990-04-17 1994-09-27 Ecole Polytechnique, Federale De Lausanne Photovoltaic cells
JPH07500630A (ja) 1992-08-21 1995-01-19 エコール ポリテクニーク フェデラル ドゥ ローザンヌ (エーペーエフエル) 有機化合物
JPH07249790A (ja) 1994-03-11 1995-09-26 Ishihara Sangyo Kaisha Ltd 光電変換材料用半導体
US5525440A (en) 1992-03-11 1996-06-11 Ecole Polytechnique Federale De Lausanne (Epfl) Method for the manufacture of a photo-electrochemical cell and a cell made by this method
JPH0927352A (ja) 1994-12-29 1997-01-28 Ishihara Sangyo Kaisha Ltd 多孔性物質−高分子固体電解質複合体およびその製造方法ならびにそれを用いた光電変換素子
JPH11214730A (ja) 1997-07-18 1999-08-06 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JP2000090989A (ja) 1998-09-16 2000-03-31 Toshiba Corp 色素増感型光化学電池
JP2000100483A (ja) 1998-09-22 2000-04-07 Sharp Corp 光電変換素子及びその製造方法及びこれを用いた太陽電池
JP2000228234A (ja) 1999-02-05 2000-08-15 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JP2000285977A (ja) 1999-03-31 2000-10-13 Fuji Photo Film Co Ltd 光電変換素子および光電池
JP2000323190A (ja) 1999-05-14 2000-11-24 Fuji Photo Film Co Ltd 電解質組成物、光電変換素子および光電気化学電池
JP2000340269A (ja) 1999-03-25 2000-12-08 Showa Denko Kk 色素増感型光電変換素子
JP2001006760A (ja) 1999-06-17 2001-01-12 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池ならびに金属錯体色素
JP2001043907A (ja) 1999-05-27 2001-02-16 Catalysts & Chem Ind Co Ltd 光電気セルおよび金属酸化物半導体膜形成用塗布液、光電気セル用金属酸化物半導体膜の製造方法
JP2001059062A (ja) 1999-06-14 2001-03-06 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池ならびに金属錯体色素
JP2001160425A (ja) 1999-12-02 2001-06-12 Japan Gore Tex Inc 光半導体電極及びその製造方法
JP2001185244A (ja) 1999-12-27 2001-07-06 Sharp Corp 色素増感型太陽電池及び色素増感型太陽電池の作製方法並びに太陽電池モジュール
JP2001203377A (ja) 2000-01-19 2001-07-27 Sharp Corp 光電変換素子及びそれを用いた太陽電池
JP2001210390A (ja) 2000-01-26 2001-08-03 Sharp Corp 高分子電解質を用いた色素増感型太陽電池およびその作製方法
JP2001253894A (ja) 2000-03-13 2001-09-18 Natl Inst Of Advanced Industrial Science & Technology Meti β−ジケトナートを有する金属錯体及びその製法、光電変換素子並びに、光化学電池
JP2001266963A (ja) 2000-03-24 2001-09-28 Fuji Photo Film Co Ltd 半導体微粒子、光電変換素子および光電池
JP2001273937A (ja) 2000-03-27 2001-10-05 Fuji Photo Film Co Ltd 光電変換素子および光電池
JP2001291534A (ja) 2000-01-31 2001-10-19 Fuji Photo Film Co Ltd 光電変換素子および光電池ならびに金属錯体色素
JP2001320068A (ja) 2000-05-01 2001-11-16 Fuji Photo Film Co Ltd 透明光電変換素子、及びこれを用いた光電池、光センサー並びに窓ガラス
JP2001525108A (ja) 1997-03-20 2001-12-04 アヴェンティス・リサーチ・ウント・テクノロジーズ・ゲーエムベーハー・ウント・コー・カーゲー 光電池
JP2002512729A (ja) 1997-05-07 2002-04-23 エコール ポリテクニーク フェデラル ドゥ ローザンヌ 金属複合体光増感剤および光起電力セル
JP2002260746A (ja) 2001-02-28 2002-09-13 Toyota Central Res & Dev Lab Inc 色素増感型太陽電池及び色素増感型太陽電池モジュール
JP2002280587A (ja) 2001-03-21 2002-09-27 Fuji Photo Film Co Ltd 光電変換素子の製造方法および光電変換素子、光電池
JP2002289274A (ja) 2001-03-27 2002-10-04 Toyota Central Res & Dev Lab Inc 光電極及びこれを備えた色素増感型太陽電池
JP2002367686A (ja) 2001-06-12 2002-12-20 Aisin Seiki Co Ltd 色素増感型太陽電池及びその製造方法
JP2003123859A (ja) 2001-10-19 2003-04-25 Bridgestone Corp 有機色素増感型金属酸化物半導体電極及びこの半導体電極を有する太陽電池
JP2003212851A (ja) 2002-01-22 2003-07-30 National Institute Of Advanced Industrial & Technology 増感剤として有用なルテニウム錯体、酸化物半導体電極及びそれを用いた太陽電池
JP2003217688A (ja) 2002-01-18 2003-07-31 Sharp Corp 色素増感型光電変換素子
JP2003323818A (ja) 2002-02-26 2003-11-14 Fujikura Ltd 透明電極用基材
JP2004063274A (ja) 2002-07-29 2004-02-26 Mitsubishi Paper Mills Ltd 光電変換材料、半導体電極、並びにそれを用いた光電変換素子
JP2004146425A (ja) 2002-10-22 2004-05-20 Fujikura Ltd 電極基板、光電変換素子、並びに色素増感太陽電池
JP2004152613A (ja) 2002-10-30 2004-05-27 Toyota Central Res & Dev Lab Inc 色素増感型太陽電池
JP2004220974A (ja) 2003-01-16 2004-08-05 Toyo Ink Mfg Co Ltd 光機能材料
JP2004273272A (ja) 2003-03-07 2004-09-30 National Institute Of Advanced Industrial & Technology ベンズイミダゾール系化合物を含む電解質溶液を用いた光電変換素子及びそれを用いた色素増感型太陽電池
JP2005085500A (ja) 2003-09-04 2005-03-31 Tsukasa Yoshida 色素増感型太陽電池の製造方法
JP2005123033A (ja) 2003-10-16 2005-05-12 Mitsubishi Paper Mills Ltd 光電変換材料、半導体電極並びにそれを用いた光電変換素子
JP2005135902A (ja) 2003-10-06 2005-05-26 Ngk Spark Plug Co Ltd 色素増感型太陽電池
WO2007091525A1 (ja) 2006-02-08 2007-08-16 Shimane Prefectural Government 光増感色素
WO2007119525A1 (ja) 2006-03-31 2007-10-25 National Institute Of Advanced Industrial Science And Technology 有機化合物及びそれを用いた半導体薄膜電極、光電変換素子、光電気化学太陽電池
JP2007287694A (ja) 2006-04-17 2007-11-01 Samsung Sdi Co Ltd 色素増感太陽電池用色素および色素増感太陽電池
JP2008071648A (ja) 2006-09-14 2008-03-27 Mitsubishi Paper Mills Ltd 光電変換材料、半導体電極並びにそれを用いた光電変換素子
JP2008135197A (ja) 2006-11-27 2008-06-12 Konica Minolta Business Technologies Inc 色素増感型光電変換素子及び色素増感型太陽電池
JP2009067976A (ja) 2007-09-17 2009-04-02 Jsr Corp 色素、色素増感太陽電池及びその製造方法
JP2012012570A (ja) 2010-06-02 2012-01-19 Fujifilm Corp 金属錯体色素、光電変換素子及び色素増感太陽電池
JP2012053983A (ja) * 2010-08-03 2012-03-15 Fujifilm Corp 光電変換素子及び光電気化学電池
US20120073660A1 (en) 2010-09-28 2012-03-29 Yun Chi Heteroleptic, dual tridentate ru(ii) complexes as sensitizers for dye-sensitized solar cells
JP2012084503A (ja) 2010-09-09 2012-04-26 Fujifilm Corp 光電変換素子、光電気化学電池及び色素
JP2012144688A (ja) 2010-05-31 2012-08-02 Fujifilm Corp 光電変換素子、光電気化学電池、光電変換素子用色素及び光電変換素子用色素溶液
JP2013084594A (ja) 2011-09-29 2013-05-09 Fujifilm Corp 光電変換素子、光電気化学電池およびこれに用いる金属錯体色素
WO2013088898A1 (ja) * 2011-12-15 2013-06-20 富士フイルム株式会社 金属錯体色素、光電変換素子、色素増感太陽電池、色素溶液および化合物
WO2013137221A1 (ja) * 2012-03-16 2013-09-19 富士フイルム株式会社 金属錯体色素、光電変換素子、色素増感太陽電池、色素増感太陽電池用色素吸着組成液、色素増感太陽電池用半導体電極および色素増感太陽電池の製造方法

Patent Citations (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684537A (en) 1984-04-30 1987-08-04 R. E. Stiftung Process for the sensitization of an oxidation/reduction photocatalyst, and photocatalyst thus obtained
US4927721A (en) 1988-02-12 1990-05-22 Michael Gratzel Photo-electrochemical cell
US5084365A (en) 1988-02-12 1992-01-28 Michael Gratzel Photo-electrochemical cell and process of making same
US5350644A (en) 1990-04-17 1994-09-27 Ecole Polytechnique, Federale De Lausanne Photovoltaic cells
US5525440A (en) 1992-03-11 1996-06-11 Ecole Polytechnique Federale De Lausanne (Epfl) Method for the manufacture of a photo-electrochemical cell and a cell made by this method
JPH07500630A (ja) 1992-08-21 1995-01-19 エコール ポリテクニーク フェデラル ドゥ ローザンヌ (エーペーエフエル) 有機化合物
US5463057A (en) 1992-08-21 1995-10-31 Ecole Polytechnique Federale De Lausanne, (Epfl) Bi-pyridyl-rumetal complexes
JPH07249790A (ja) 1994-03-11 1995-09-26 Ishihara Sangyo Kaisha Ltd 光電変換材料用半導体
JPH0927352A (ja) 1994-12-29 1997-01-28 Ishihara Sangyo Kaisha Ltd 多孔性物質−高分子固体電解質複合体およびその製造方法ならびにそれを用いた光電変換素子
JP2001525108A (ja) 1997-03-20 2001-12-04 アヴェンティス・リサーチ・ウント・テクノロジーズ・ゲーエムベーハー・ウント・コー・カーゲー 光電池
JP2002512729A (ja) 1997-05-07 2002-04-23 エコール ポリテクニーク フェデラル ドゥ ローザンヌ 金属複合体光増感剤および光起電力セル
JPH11214730A (ja) 1997-07-18 1999-08-06 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JP2000090989A (ja) 1998-09-16 2000-03-31 Toshiba Corp 色素増感型光化学電池
JP2000100483A (ja) 1998-09-22 2000-04-07 Sharp Corp 光電変換素子及びその製造方法及びこれを用いた太陽電池
JP2000228234A (ja) 1999-02-05 2000-08-15 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JP2000340269A (ja) 1999-03-25 2000-12-08 Showa Denko Kk 色素増感型光電変換素子
JP2000285977A (ja) 1999-03-31 2000-10-13 Fuji Photo Film Co Ltd 光電変換素子および光電池
JP2000323190A (ja) 1999-05-14 2000-11-24 Fuji Photo Film Co Ltd 電解質組成物、光電変換素子および光電気化学電池
JP2001043907A (ja) 1999-05-27 2001-02-16 Catalysts & Chem Ind Co Ltd 光電気セルおよび金属酸化物半導体膜形成用塗布液、光電気セル用金属酸化物半導体膜の製造方法
JP2001059062A (ja) 1999-06-14 2001-03-06 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池ならびに金属錯体色素
JP2001006760A (ja) 1999-06-17 2001-01-12 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池ならびに金属錯体色素
JP2001160425A (ja) 1999-12-02 2001-06-12 Japan Gore Tex Inc 光半導体電極及びその製造方法
JP2001185244A (ja) 1999-12-27 2001-07-06 Sharp Corp 色素増感型太陽電池及び色素増感型太陽電池の作製方法並びに太陽電池モジュール
JP2001203377A (ja) 2000-01-19 2001-07-27 Sharp Corp 光電変換素子及びそれを用いた太陽電池
JP2001210390A (ja) 2000-01-26 2001-08-03 Sharp Corp 高分子電解質を用いた色素増感型太陽電池およびその作製方法
JP2001291534A (ja) 2000-01-31 2001-10-19 Fuji Photo Film Co Ltd 光電変換素子および光電池ならびに金属錯体色素
JP2001253894A (ja) 2000-03-13 2001-09-18 Natl Inst Of Advanced Industrial Science & Technology Meti β−ジケトナートを有する金属錯体及びその製法、光電変換素子並びに、光化学電池
JP2001266963A (ja) 2000-03-24 2001-09-28 Fuji Photo Film Co Ltd 半導体微粒子、光電変換素子および光電池
JP2001273937A (ja) 2000-03-27 2001-10-05 Fuji Photo Film Co Ltd 光電変換素子および光電池
JP2001320068A (ja) 2000-05-01 2001-11-16 Fuji Photo Film Co Ltd 透明光電変換素子、及びこれを用いた光電池、光センサー並びに窓ガラス
JP2002260746A (ja) 2001-02-28 2002-09-13 Toyota Central Res & Dev Lab Inc 色素増感型太陽電池及び色素増感型太陽電池モジュール
JP2002280587A (ja) 2001-03-21 2002-09-27 Fuji Photo Film Co Ltd 光電変換素子の製造方法および光電変換素子、光電池
JP2002289274A (ja) 2001-03-27 2002-10-04 Toyota Central Res & Dev Lab Inc 光電極及びこれを備えた色素増感型太陽電池
JP2002367686A (ja) 2001-06-12 2002-12-20 Aisin Seiki Co Ltd 色素増感型太陽電池及びその製造方法
JP2003123859A (ja) 2001-10-19 2003-04-25 Bridgestone Corp 有機色素増感型金属酸化物半導体電極及びこの半導体電極を有する太陽電池
JP2003217688A (ja) 2002-01-18 2003-07-31 Sharp Corp 色素増感型光電変換素子
JP2003212851A (ja) 2002-01-22 2003-07-30 National Institute Of Advanced Industrial & Technology 増感剤として有用なルテニウム錯体、酸化物半導体電極及びそれを用いた太陽電池
JP4260494B2 (ja) 2002-02-26 2009-04-30 株式会社フジクラ 透明電極用基材の製法、光電変換素子の製法、及び色素増感太陽電池の製法
JP2003323818A (ja) 2002-02-26 2003-11-14 Fujikura Ltd 透明電極用基材
JP2004063274A (ja) 2002-07-29 2004-02-26 Mitsubishi Paper Mills Ltd 光電変換材料、半導体電極、並びにそれを用いた光電変換素子
JP2004146425A (ja) 2002-10-22 2004-05-20 Fujikura Ltd 電極基板、光電変換素子、並びに色素増感太陽電池
JP2004152613A (ja) 2002-10-30 2004-05-27 Toyota Central Res & Dev Lab Inc 色素増感型太陽電池
JP2004220974A (ja) 2003-01-16 2004-08-05 Toyo Ink Mfg Co Ltd 光機能材料
JP2004273272A (ja) 2003-03-07 2004-09-30 National Institute Of Advanced Industrial & Technology ベンズイミダゾール系化合物を含む電解質溶液を用いた光電変換素子及びそれを用いた色素増感型太陽電池
JP2005085500A (ja) 2003-09-04 2005-03-31 Tsukasa Yoshida 色素増感型太陽電池の製造方法
JP2005135902A (ja) 2003-10-06 2005-05-26 Ngk Spark Plug Co Ltd 色素増感型太陽電池
JP2005123033A (ja) 2003-10-16 2005-05-12 Mitsubishi Paper Mills Ltd 光電変換材料、半導体電極並びにそれを用いた光電変換素子
WO2007091525A1 (ja) 2006-02-08 2007-08-16 Shimane Prefectural Government 光増感色素
WO2007119525A1 (ja) 2006-03-31 2007-10-25 National Institute Of Advanced Industrial Science And Technology 有機化合物及びそれを用いた半導体薄膜電極、光電変換素子、光電気化学太陽電池
JP2007287694A (ja) 2006-04-17 2007-11-01 Samsung Sdi Co Ltd 色素増感太陽電池用色素および色素増感太陽電池
JP2008071648A (ja) 2006-09-14 2008-03-27 Mitsubishi Paper Mills Ltd 光電変換材料、半導体電極並びにそれを用いた光電変換素子
JP2008135197A (ja) 2006-11-27 2008-06-12 Konica Minolta Business Technologies Inc 色素増感型光電変換素子及び色素増感型太陽電池
JP2009067976A (ja) 2007-09-17 2009-04-02 Jsr Corp 色素、色素増感太陽電池及びその製造方法
JP2012144688A (ja) 2010-05-31 2012-08-02 Fujifilm Corp 光電変換素子、光電気化学電池、光電変換素子用色素及び光電変換素子用色素溶液
JP2012012570A (ja) 2010-06-02 2012-01-19 Fujifilm Corp 金属錯体色素、光電変換素子及び色素増感太陽電池
JP2012053983A (ja) * 2010-08-03 2012-03-15 Fujifilm Corp 光電変換素子及び光電気化学電池
JP2012084503A (ja) 2010-09-09 2012-04-26 Fujifilm Corp 光電変換素子、光電気化学電池及び色素
US20120073660A1 (en) 2010-09-28 2012-03-29 Yun Chi Heteroleptic, dual tridentate ru(ii) complexes as sensitizers for dye-sensitized solar cells
JP2013084594A (ja) 2011-09-29 2013-05-09 Fujifilm Corp 光電変換素子、光電気化学電池およびこれに用いる金属錯体色素
WO2013088898A1 (ja) * 2011-12-15 2013-06-20 富士フイルム株式会社 金属錯体色素、光電変換素子、色素増感太陽電池、色素溶液および化合物
WO2013137221A1 (ja) * 2012-03-16 2013-09-19 富士フイルム株式会社 金属錯体色素、光電変換素子、色素増感太陽電池、色素増感太陽電池用色素吸着組成液、色素増感太陽電池用半導体電極および色素増感太陽電池の製造方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
ANDERS HAGFELDT ET AL.: "Dye-Sensitized Solar Cells", CHEMICAL REVIEWS, vol. 110, 2010, pages 6595 - 6663, XP055029250 *
ANGEW. CHEM. INT. ED., vol. 46, 2007, pages 8358
ANGEW. CHEM. INT. ED., vol. 49, 2010, pages 1 - 5
ANGEW. CHEM. INT. ED., vol. 50, 2011, pages 2054 - 2058
ANGEWANDTE CHEMIE, vol. 84, pages 824 - 826
CHEMISTRY-A EUROPEAN JOURNAL, vol. 17, no. 39, 2011, pages 10871 - 10878
DALTON TRANSACTIONS, vol. 5, 2009, pages 770 - 772
JEN-FU YIN ET AL.: "Structure optimization of ruthenium photosensitizers for efficient dye- sensitized solar cells - A goal toward a ''bright'' future", COORDINATION CHEMISTRY REVIEWS, vol. 256, 13 July 2012 (2012-07-13), pages 3008 - 3035, XP028958947 *
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 17, no. 134, 2012, pages 7488 - 7496
NATURE, vol. 486, 2012, pages 487

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106233486A (zh) * 2014-04-25 2016-12-14 富士胶片株式会社 光电转换元件、使用该光电转换元件的太阳能电池以及光电转换元件的制造方法
EP3136461A1 (en) * 2014-04-25 2017-03-01 Fujifilm Corporation Photoelectric conversion element, solar cell in which same is used, and method for manufacturing photoelectric conversion element
EP3136461A4 (en) * 2014-04-25 2017-03-29 Fujifilm Corporation Photoelectric conversion element, solar cell in which same is used, and method for manufacturing photoelectric conversion element
CN106233486B (zh) * 2014-04-25 2019-06-14 富士胶片株式会社 光电转换元件、使用该光电转换元件的太阳能电池以及光电转换元件的制造方法

Also Published As

Publication number Publication date
EP2903080A1 (en) 2015-08-05
TW201412756A (zh) 2014-04-01
JP2014082187A (ja) 2014-05-08
KR20150032893A (ko) 2015-03-30

Similar Documents

Publication Publication Date Title
JP6047513B2 (ja) 金属錯体色素、光電変換素子、色素増感太陽電池および金属錯体色素を含有する色素溶液
JP6017491B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、色素吸着電極および色素増感太陽電池の製造方法
WO2016006512A1 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、およびターピリジン化合物またはそのエステル化物
WO2014077357A1 (ja) 金属錯体、金属錯体色素、光電変換素子、色素増感太陽電池、色素溶液、色素吸着電極および色素増感太陽電池の製造方法
WO2014050527A1 (ja) 光電変換素子および色素増感太陽電池
JP6005678B2 (ja) 金属錯体色素、光電変換素子、色素増感太陽電池および金属錯体色素を含有する色素溶液
JP2014209606A (ja) 光電変換素子、色素増感太陽電池、金属錯体色素を含有する色素吸着液および光電変換素子の製造方法
JP5944372B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、色素吸着電極および色素増感太陽電池の製造方法
JP5913222B2 (ja) 光電変換素子および色素増感太陽電池
JP6009484B2 (ja) 光電変換素子、色素増感太陽電池およびこれに用いる金属錯体色素
JP5913223B2 (ja) 金属錯体色素、光電変換素子、色素増感太陽電池、色素溶液および色素吸着電極
JP6026236B2 (ja) 金属錯体色素、光電変換素子、色素増感太陽電池、色素溶液、色素吸着電極及び色素増感太陽電池の製造方法
WO2014168163A1 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、色素吸着電極および色素増感太陽電池の製造方法
WO2014050578A1 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素および金属錯体色素を溶解してなる色素溶液
JP6144619B2 (ja) 光電変換素子、色素増感太陽電池およびこれに用いる金属錯体色素
WO2016047344A1 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液
WO2015002081A1 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、配位子、色素溶液、色素吸着電極および色素増感太陽電池の製造方法
WO2014168119A1 (ja) 光電変換素子、色素増感太陽電池およびこれに用いる金属錯体色素
JP6063361B2 (ja) 光電変換素子、色素増感太陽電池および光電変換素子用電子移動促進剤
JP2015053149A (ja) 光電変換素子、色素増感太陽電池および光電変換素子用逆電子移動防止剤
JP2015053150A (ja) 光電変換素子および色素増感太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157003531

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013843009

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013843009

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE