WO2016006512A1 - 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、およびターピリジン化合物またはそのエステル化物 - Google Patents

光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、およびターピリジン化合物またはそのエステル化物 Download PDF

Info

Publication number
WO2016006512A1
WO2016006512A1 PCT/JP2015/068977 JP2015068977W WO2016006512A1 WO 2016006512 A1 WO2016006512 A1 WO 2016006512A1 JP 2015068977 W JP2015068977 W JP 2015068977W WO 2016006512 A1 WO2016006512 A1 WO 2016006512A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
group
formula
dye
substituent
Prior art date
Application number
PCT/JP2015/068977
Other languages
English (en)
French (fr)
Inventor
和宏 綱
渡辺 康介
小林 克
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016532896A priority Critical patent/JP6204591B2/ja
Priority to CN201580032074.6A priority patent/CN106463274B/zh
Priority to KR1020177000236A priority patent/KR101982944B1/ko
Priority to EP15818813.6A priority patent/EP3168847B1/en
Publication of WO2016006512A1 publication Critical patent/WO2016006512A1/ja
Priority to US15/400,079 priority patent/US20170117099A1/en
Priority to US16/411,019 priority patent/US20190295778A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2009Solid electrolytes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a photoelectric conversion element, a dye-sensitized solar cell, a metal complex dye, a dye solution, and a terpyridine compound or an esterified product thereof.
  • Photoelectric conversion elements are used in various photosensors, photocopiers, photoelectrochemical cells such as solar cells, and the like.
  • Various methods such as a method using a metal, a method using a semiconductor, a method using an organic pigment or a dye, or a combination of these have been put to practical use for this photoelectric conversion element.
  • a solar cell using non-depleting solar energy does not require fuel, and full-scale practical use is highly expected as it uses inexhaustible clean energy.
  • silicon-based solar cells have been researched and developed for a long time, and are spreading due to national policy considerations.
  • silicon is an inorganic material, there is a limit to improving throughput and cost.
  • dyes called N3, N719, N749 also referred to as black dye
  • Z907, and J2 have been developed as metal complex dyes used in dye-sensitized solar cells.
  • photoelectric conversion elements and dye-sensitized solar cells using these dyes are not sufficient in terms of photoelectric conversion efficiency and durability (thermal stability).
  • Patent Document 1 discloses that a terpyridine ligand introduced by connecting a plurality of thiophene ring groups at the 3-position to a ring-constituting nitrogen atom coordinated to a metal ion of a terminal pyridine ring and three monodentate arrangements. Metal complex dyes having ligands are described. It is also described that the photoelectrochemical cell using this metal complex dye achieved high photoelectric conversion efficiency and was excellent in durability.
  • Patent Document 2 discloses a terpyridine ligand in which one thiophene ring group is bonded to the 3-position with respect to a ring-constituting nitrogen atom coordinated to a metal ion of a terminal pyridine ring, and a cyclic substituent substituted with a specific substituent.
  • Metal complex dyes having a donor ligand with a group are described. It is also described that the photoelectrochemical cell using this metal complex dye can achieve both reduction in performance variation and improvement in photoelectric conversion efficiency and durability.
  • Patent Document 3 has a terpyridine ligand introduced by connecting a plurality of thiophene ring groups to at least one of a terminal pyridine ring and a central pyridine ring, and three monodentate ligands or bipyridine ligands. Metal complex dyes are described. It is also described that a photoelectrochemical cell using this metal complex dye has high photoelectric conversion efficiency and excellent durability.
  • Patent Document 4 discloses a tridentate ligand in which one thiophene ring group is bonded to the 2-position or 3-position with respect to a ring-constituting nitrogen atom coordinated to a metal ion of a terminal pyridine ring, and the ligand And metal complexes with three thioisocyanate anions are described.
  • a layer formed of semiconductor fine particles and supporting a metal complex dye (also referred to as a semiconductor layer) is usually formed in a layer having a thickness of 10 to several hundred ⁇ m.
  • Such photoelectric conversion elements and dye-sensitized solar cells are also required to be thin (downsized) and lightweight.
  • the photoelectric conversion efficiency varies depending on the film thickness of the semiconductor layer, and tends to decrease as the film thickness decreases. Therefore, it is desired to exhibit excellent photoelectric conversion efficiency even when the thickness of the semiconductor layer is reduced.
  • the present invention is less influenced by the film thickness of a semiconductor layer, and particularly exhibits excellent photoelectric conversion efficiency even when the film thickness is reduced, and has high durability, a photoelectric conversion element and a dye-sensitized solar cell, and the use thereof It is an object of the present invention to provide a metal complex dye, a dye solution, and a terpyridine compound or an esterified product thereof.
  • the present inventors have introduced a nitrogen-containing fragrance introduced into a metal complex dye used in a photoelectric conversion element and a dye-sensitized solar cell by connecting a plurality of thiophene ring groups to a ring-constituting atom at the 4-position with respect to the coordination atom.
  • a tridentate ligand having a ring at the end and a bidentate or tridentate ligand coordinated to a metal ion with at least one nitrogen atom and an anion of at least one atom are used, It has been found that photoelectric conversion efficiency and durability can be further improved, and that even if the semiconductor layer is a thin film, high photoelectric conversion efficiency can be realized.
  • the present invention has been completed based on these findings.
  • a photoelectric conversion element having semiconductor fine particles carrying a metal complex dye is represented by the following formula (I):
  • M represents a metal ion.
  • LA represents a tridentate ligand represented by the following formula (AL-1).
  • LD represents a bidentate ligand or a tridentate ligand different from LA.
  • at least one of the coordination atoms bonded to the metal ion M is a nitrogen atom, and at least one is an anion.
  • LX represents a monodentate ligand.
  • mX represents 1 when LD is a bidentate ligand, and represents 0 when LD is a tridentate ligand.
  • CI represents a counter ion necessary for neutralizing the charge of the metal complex dye.
  • mY represents an integer of 0 to 3.
  • Za and Zb each independently represent a group of nonmetallic atoms necessary to form a 5-membered or 6-membered ring. However, at least one of the rings formed by Za and Zb has one or more acidic groups.
  • L W each independently represents a nitrogen atom or CR W, R W represents a hydrogen atom or a substituent.
  • G represents a cyclic group represented by any one of the following formulas (X-1) to (X-3). n represents an integer of 2 to 7.
  • T represents a hydrogen atom or a substituent.
  • The-(G) nT group does not have an acidic group or an amino group.
  • Zt2 and Zt3 each represent a nonmetallic atom group necessary for forming a condensed ring with a thiophene ring in the formula (X-2) or (X-3).
  • R T1 , R T2 and R T3 each independently represent a substituent.
  • PT1 represents an integer of 0-2.
  • PT2 and PT3 each independently represents an integer of 0 or more, and is equal to or less than the number of hydrogen atoms when the group represented by the formula (X-2) or (X-3) is unsubstituted. * Represents a bonding position of the ring, and other G or T containing L W.
  • R T1a to R T1c each independently represent a hydrogen atom or a substituent. ** represents a bonding position with a ring containing L W , other G or T.
  • X represents —O—, —S—, —NR X2c —, —C (R X2c ) 2 —, — (R X2c ) C ⁇ C (R X2c ) — or —Si (R X2c ) 2 —.
  • R X2c represents a hydrogen atom or a substituent.
  • R T2 and R TA each independently represent a substituent.
  • PT2a to PT2c each independently represents an integer of 0 to 2.
  • PTA represents an integer of 0 to 4, respectively.
  • *** represents a bonding position of the ring, and other G or T containing L W.
  • X3a to X3c each independently represent —O— or —S—.
  • R T3b represents an alkylene group.
  • R T3 represents a substituent.
  • PT3a represents an integer of 0-2. **** represents a bonding position of the ring, and other G or T containing L W.
  • the ring formed by Za is a pyridine ring, pyrimidine ring, pyrazine ring, pyridazine ring, triazine ring, tetrazine ring, quinoline ring, isoquinoline ring, imidazole ring, pyrazole ring, triazole ring, thiazole ring, oxazole ring, benzo At least one selected from the group consisting of an imidazole ring, a benzotriazole ring, a benzoxazole ring and a benzothiazole ring,
  • the ring formed by Zb is a pyridine ring, pyrimidine ring, pyrazine ring, pyridazine ring, triazine ring, tetrazine ring, quinoline ring, isoquinoline ring, imidazole ring, triazole ring, thiazole ring, oxazole ring,
  • LA is a tridentate ligand represented by the following formula (AL-2).
  • Anc represents an acidic group.
  • G, T and n have the same meanings as G, T and n in the formula (AL-1).
  • the photoelectric conversion device according to any one of ⁇ 1> to ⁇ 7>, wherein the acidic group is a carboxy group or a salt thereof.
  • the LD is a bidentate ligand represented by any one of formulas (2L-1) to (2L-4) shown below, and any one of ⁇ 1> to ⁇ 8> Photoelectric conversion element.
  • ring D 2L represents an aromatic ring.
  • a 111 to A 141 each independently represents an anion of a nitrogen atom or an anion of a carbon atom.
  • R 111 to R 143 each independently represents a hydrogen atom or a substituent having no acidic group. * Represents a coordination position to the metal ion M.
  • the LD is a tridentate ligand represented by any one of formulas (3L-1) to (3L-4) shown below, and any one of ⁇ 1> to ⁇ 8> Photoelectric conversion element.
  • ring D 2L represents an aromatic ring.
  • a 211 to A 242 each independently represents a nitrogen atom or a carbon atom. However, in each of A 211 and A 212 , A 221 and A 222 , A 231 and A 232 , and A 241 and A 242 , at least one is an anion.
  • R 211 to R 241 each independently represent a hydrogen atom or a substituent having no acidic group. * Represents a coordination position to the metal ion M.
  • M and LX have the same meanings as M and LX in formula (I).
  • G, T and n have the same meanings as G, T and n in the formula (AL-1).
  • Anc represents an acidic group.
  • Ring D and ring E each independently represent a 5-membered or 6-membered aromatic ring.
  • D 1 and D 2 each independently represents an anion of a carbon atom or an anion of a nitrogen atom.
  • the bond between D 1 and D 2 in ring D and ring E and the carbon atom bonded to the pyridine ring is a single bond or a double bond.
  • R a1 to R a4 each independently represents a substituent.
  • ma1, ma2 and ma4 each independently represents an integer of 0 to 3.
  • ma3 represents an integer of 0 to 4.
  • the plurality of R a1 to R a4 may be bonded to each other to form a ring.
  • ⁇ 12> The photoelectric conversion device according to ⁇ 11>, wherein the ring D and the ring E are each independently a pyrazole ring, a triazole ring, or a benzene ring.
  • ring D and the ring E are each independently a pyrazole ring, a triazole ring, or a benzene ring.
  • ⁇ 13> A dye-sensitized solar cell including the photoelectric conversion element according to any one of the above items ⁇ 1> to ⁇ 12>.
  • ⁇ 14> A metal complex dye represented by the following formula (I).
  • M represents a metal ion.
  • LA represents a tridentate ligand represented by the following formula (AL-1).
  • LD represents a bidentate ligand or a tridentate ligand different from LA.
  • at least one of the coordination atoms bonded to the metal ion M is a nitrogen atom, and at least one is an anion.
  • LX represents a monodentate ligand.
  • mX represents 1 when LD is a bidentate ligand, and represents 0 when LD is a tridentate ligand.
  • CI represents a counter ion necessary for neutralizing the charge of the metal complex dye.
  • mY represents an integer of 0 to 3.
  • Za and Zb each independently represent a group of nonmetallic atoms necessary to form a 5-membered or 6-membered ring. However, at least one of the rings formed by Za and Zb has one or more acidic groups.
  • L W each independently represents a nitrogen atom or CR W
  • R W represents a hydrogen atom or a substituent.
  • G represents a cyclic group represented by any one of the following formulas (X-1) to (X-3).
  • n represents an integer of 2 to 7.
  • T represents a hydrogen atom or a substituent.
  • -(G) nT does not have an acidic group or an amino group.
  • Zt2 and Zt3 each represent a nonmetallic atom group necessary for forming a condensed ring with a thiophene ring in the formula (X-2) or (X-3).
  • R T1 , R T2 and R T3 each independently represent a substituent.
  • PT1 represents an integer of 0-2.
  • PT2 and PT3 each independently represents an integer of 0 or more, and is equal to or less than the number of hydrogen atoms when the group represented by the formula (X-2) or (X-3) is unsubstituted. * Represents a bonding position of the ring, and other G or T containing L W.
  • a dye solution containing the metal complex dye according to ⁇ 14> and a solvent ⁇ 15> A dye solution containing the metal complex dye according to ⁇ 14> and a solvent.
  • Anc represents an acidic group.
  • G represents a cyclic group represented by any one of the following formulas (X-1) to (X-3).
  • n represents 2 or 3.
  • T represents a hydrogen atom or a substituent.
  • The-(G) nT group does not have an acidic group or an amino group.
  • Zt2 and Zt3 each represent a nonmetallic atom group necessary for forming a condensed ring with a thiophene ring in the formula (X-2) or (X-3).
  • R T1 , R T2 and R T3 each independently represent a substituent.
  • PT1 represents an integer of 0-2.
  • PT2 and PT3 each independently represents an integer of 0 or more, and is equal to or less than the number of hydrogen atoms when the group represented by the formula (X-2) or (X-3) is unsubstituted. * Represents a bonding position of the ring, and other G or T containing L W.
  • the double bond may be either E-type or Z-type in the molecule, or a mixture thereof.
  • substituents linking groups, ligands, etc.
  • the substituents and the like may be the same as or different from each other. The same applies to the definition of the number of substituents and the like.
  • substituents and the like when a plurality of substituents and the like are close to each other (especially when they are adjacent to each other), they may be connected to each other to form a ring unless otherwise specified.
  • a ring for example, an aromatic ring or an aliphatic ring may be further condensed to form a condensed ring.
  • the aromatic ring or aliphatic ring is preferably a 4- to 8-membered ring, more preferably a 5- or 6-membered ring.
  • the aromatic ring includes an aromatic hydrocarbon ring and an aromatic heterocycle.
  • the aromatic hydrocarbon ring refers to a hydrocarbon ring exhibiting aromaticity and is not particularly limited, and examples thereof include a benzene ring, a naphthalene ring, and a fluorene ring.
  • An aliphatic ring refers to a ring other than an aromatic ring, and includes an aliphatic hydrocarbon ring and an aliphatic heterocycle.
  • the aliphatic hydrocarbon ring include a saturated hydrocarbon ring and an unsaturated hydrocarbon ring that does not exhibit aromaticity, such as a saturated monocyclic hydrocarbon ring (cycloalkane), a saturated polycyclic hydrocarbon ring, Examples include unsaturated monocyclic hydrocarbon rings (cycloalkene, cycloalkyne) and unsaturated polycyclic hydrocarbon rings.
  • An aromatic heterocycle and an aliphatic heterocycle may be collectively referred to as a heterocycle.
  • a heterocycle refers to a ring having a ring atom composed of a carbon atom and a heteroatom (for example, a nitrogen atom, an oxygen atom, a sulfur atom, a silicon atom, a selenium atom, or a phosphorus atom).
  • An aromatic heterocycle refers to an aromatic ring containing a heteroatom
  • an aliphatic heterocycle refers to an aliphatic ring containing a heteroatom.
  • the display of a compound is used to mean not only the compound itself but also its salt and its ion.
  • a compound that does not clearly indicate substitution or non-substitution means that it may have an arbitrary substituent within a range that exhibits a desired effect. The same applies to substituents, linking groups and ligands.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the photoelectric conversion element and the dye-sensitized solar cell of the present invention are tridentate having a nitrogen-containing aromatic ring at an end portion introduced by connecting a plurality of thiophene ring groups to a ring-forming atom at the 4-position with respect to a coordination atom.
  • a metal complex dye used in combination with a bidentate or tridentate ligand coordinated to a metal ion with at least one nitrogen atom and an anion of at least one atom are used in combination with a bidentate or tridentate ligand coordinated to a metal ion with at least one nitrogen atom and an anion of at least one atom.
  • the photoelectric conversion element and the dye-sensitized solar cell exhibiting excellent photoelectric conversion efficiency and high durability, and these Metal complex dyes, dye solutions, and terpyridine compounds or esterified products thereof can be provided.
  • FIG. 1 is a cross-sectional view schematically showing an enlarged view of a circular portion in a layer in a system in which the photoelectric conversion element according to the first aspect of the present invention is applied to a battery.
  • FIG. 2 is a cross-sectional view schematically showing a dye-sensitized solar cell including the photoelectric conversion element according to the second aspect of the present invention.
  • FIG. 3 is a visible absorption spectrum diagram of the metal complex dyes D-1, D-16 to D-19 and D-24 of the present invention synthesized in Example 1 in a TBAOH methanol solvent.
  • 4 is a 1 H-NMR spectrum diagram of the terpyridine compound AC-1 synthesized in Example 1.
  • FIG. 5 is a 1 H-NMR spectrum diagram of the terpyridine compound AC-5 synthesized in Example 1.
  • FIG. 6 is a 1 H-NMR spectrum of terpyridine compound AC-6 synthesized in Example 1.
  • the photoelectric conversion element of the present invention has a conductive support, a photoreceptor layer containing an electrolyte, a charge transfer body layer containing an electrolyte, and a counter electrode (counter electrode).
  • the photosensitive layer, the charge transfer layer, and the counter electrode are provided on the conductive support in this order.
  • the semiconductor fine particles forming the photoreceptor layer carries a metal complex dye represented by the formula (I) described later as a sensitizing dye.
  • the aspect in which the metal complex dye is supported on the surface of the semiconductor fine particle includes an aspect in which the metal complex dye is adsorbed on the surface of the semiconductor fine particle, an aspect in which the metal complex dye is deposited on the surface of the semiconductor fine particle, and an aspect in which these are mixed.
  • the adsorption includes chemical adsorption and physical adsorption, and chemical adsorption is preferable.
  • the semiconductor fine particles may carry another metal complex dye together with the metal complex dye of the formula (I) described later. It is preferable that the semiconductor fine particles carry a co-adsorbent described later together with the metal complex dye.
  • the photoreceptor layer contains an electrolyte.
  • the electrolyte contained in the photoreceptor layer may be the same as or different from the electrolyte of the charge transfer layer, but is preferably the same.
  • “the same type of electrolyte” means that the component contained in the electrolyte of the photoreceptor layer and the component contained in the electrolyte of the charge transfer layer are the same, and the content of each component is the same, and The components included in the electrolyte of the photoreceptor layer and the components included in the electrolyte of the charge transfer layer are the same, but include the aspects in which the content of each component is different.
  • the photoelectric conversion element of the present invention is not particularly limited in structure other than the structure defined in the present invention, and a known structure relating to the photoelectric conversion element can be adopted.
  • Each of the layers constituting the photoelectric conversion element of the present invention is designed according to the purpose, and may be formed in a single layer or multiple layers, for example. Moreover, you may have layers other than said each layer if needed.
  • the dye-sensitized solar cell of the present invention uses the photoelectric conversion element of the present invention.
  • preferred embodiments of the photoelectric conversion element and the dye-sensitized solar cell of the present invention will be described.
  • a system 100 shown in FIG. 1 is an application of the photoelectric conversion element 10 according to the first aspect of the present invention to a battery application in which an operation means M (for example, an electric motor) is caused to work by an external circuit 6.
  • the photoelectric conversion element 10 includes a conductive support 1, semiconductor fine particles 22 sensitized by supporting a dye (metal complex dye) 21, and a photoreceptor layer 2 including an electrolyte between the semiconductor fine particles 22, It consists of a charge transfer layer 3 that is a hole transport layer and a counter electrode 4.
  • the light receiving electrode 5 includes the conductive support 1 and the photoreceptor layer 2, and functions as a working electrode.
  • the light incident on the photoreceptor layer 2 excites the metal complex dye 21.
  • the excited metal complex dye 21 has high energy electrons, and these electrons are transferred from the metal complex dye 21 to the conduction band of the semiconductor fine particles 22 and reach the conductive support 1 by diffusion.
  • the metal complex dye 21 is an oxidant (cation). Electrons that have reached the conductive support 1 work in the external circuit 6, reach the oxide of the metal complex dye 21 via the counter electrode 4 and the charge transfer layer 3, and reduce this oxide.
  • the system 100 functions as a solar cell.
  • the dye-sensitized solar cell 20 shown in FIG. 2 is configured by the photoelectric conversion element of the second aspect of the present invention.
  • the photoelectric conversion element used as the dye-sensitized solar cell 20 differs with respect to the photoelectric conversion element shown in FIG. 1 by the structure of the electroconductive support body 41 and the photoreceptor layer 42, and the point which has the spacer S, those photoelectric conversion elements are different.
  • the photoelectric conversion element 10 is configured in the same manner as the photoelectric conversion element 10 shown in FIG. That is, the conductive support 41 has a two-layer structure including a substrate 44 and a transparent conductive film 43 formed on the surface of the substrate 44.
  • the photoreceptor layer 42 has a two-layer structure including a semiconductor layer 45 and a light scattering layer 46 formed adjacent to the semiconductor layer 45.
  • a spacer S is provided between the conductive support 41 and the counter electrode 48.
  • reference numeral 40 denotes a light receiving electrode
  • 47 denotes a charge transfer body layer.
  • the dye-sensitized solar cell 20 functions as a solar cell when light enters the photoreceptor layer 42 as in the system 100 to which the photoelectric conversion element 10 is applied.
  • the photoelectric conversion element and the dye-sensitized solar cell of the present invention are not limited to the above-described preferred embodiments, and the configurations and the like of each embodiment can be appropriately combined between the respective embodiments without departing from the gist of the present invention.
  • materials and members used for the photoelectric conversion element or the dye-sensitized solar cell can be prepared by a conventional method.
  • the metal complex dye of the present invention is represented by the following formula (I). Since the metal complex dye of the present invention has the ligand LA represented by the following formula (AL-1), the photoelectric conversion element and the dye-sensitized solar cell are less affected by the change in the thickness of the semiconductor layer, High photoelectric conversion efficiency and excellent thermal stability can be imparted. Therefore, the metal complex dye of the present invention is preferably used as a sensitizing dye in a dye-sensitized solar cell.
  • M represents a metal ion.
  • LA represents a tridentate ligand represented by the following formula (AL-1).
  • Za and Zb each independently represent a group of nonmetallic atoms necessary to form a 5-membered or 6-membered ring. However, at least one of the rings formed by Za and Zb has one or more acidic groups.
  • L W each independently represents a nitrogen atom or CR W
  • R W represents a hydrogen atom or a substituent.
  • G represents a group represented by any one of the following formulas (X-1) to (X-3).
  • n represents an integer of 2 to 7.
  • T represents a hydrogen atom or a substituent.
  • -(G) nT does not have an acidic group or an amino group.
  • Zt2 and Zt3 each represent a nonmetallic atom group necessary for forming a condensed ring with a thiophene ring in the formula (X-2) or (X-3).
  • R T1 , R T2 and R T3 each independently represent a substituent.
  • PT1 represents an integer of 0-2.
  • PT2 and PT3 each independently represents an integer of 0 or more, and is equal to or less than the number of hydrogen atoms when the group represented by the formula (X-2) or (X-3) is unsubstituted. * Represents a bonding position of the ring, and other G or T containing L W.
  • LD represents a bidentate ligand or a tridentate ligand different from LA.
  • at least one of the coordination atoms bonded to the metal ion M is a nitrogen atom, and at least one is an anion.
  • LX represents a monodentate ligand.
  • mX represents 1 when LD is a bidentate ligand, and represents 0 when LD is a tridentate ligand.
  • CI represents a counter ion necessary for neutralizing the charge of the metal complex dye.
  • mY represents an integer of 0 to 3, preferably 0 or 1, and more preferably 0.
  • -Metal ion M- M is a central metal of the metal complex dye, and examples thereof include ions of each element of Groups 6 to 12 on the long periodic table.
  • metal ions include Ru, Fe, Os, Cu, W, Cr, Mo, Ni, Pd, Pt, Co, Ir, Rh, Re, Mn, and Zn ions.
  • the metal ion M may be one kind of ion or two or more kinds of ions.
  • the metal ion M is preferably Os 2+ , Ru 2+ or Fe 2+ , more preferably Os 2+ or Ru 2+ , and particularly preferably Ru 2+ .
  • the valence of M may change due to an oxidation-reduction reaction with surrounding materials.
  • the ligand LA is a tridentate ligand or compound represented by the formula (AL-1) and coordinated to the metal ion M by three nitrogen atoms in the formula (AL-1).
  • This ligand LA has one or more acidic groups (also referred to as adsorption groups) on at least one of a ring formed by Za and a ring formed by Zb described later.
  • the ligand LA is a ligand for supporting the metal complex dye of the present invention on semiconductor fine particles.
  • the ligand LA is 4 with respect to a ring-constituting nitrogen atom coordinated to a metal ion M of a ring formed by a nitrogen atom, a carbon atom, and L W (also referred to as a terminal nitrogen-containing ring or a heterocyclic ring containing L W ). It has a “— (G) nT” group at the ring-constituting carbon atom.
  • the 4-position ring-constituting carbon atom of the hetero ring containing L W - When "(G) n-T" groups are attached, the absorbance of a metal complex dye having the ligand LA Is expected to increase.
  • this ligand LA is preferably used as a ligand of a metal complex dye used in a dye-sensitized solar cell.
  • Za and Zb each independently represent a nonmetallic atom group necessary for forming a 5-membered ring or a 6-membered ring.
  • Za and Zb are preferably a nonmetallic atom group selected from a carbon atom and the above hetero atom, and more preferably a nonmetallic atom group selected from a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom and a phosphorus atom. preferable.
  • the ring formed by Za and Zb is preferably a 5-membered aromatic heterocycle or a 6-membered aromatic heterocycle.
  • These rings include a condensed ring in which at least one of an aromatic ring and an aliphatic ring is condensed in addition to a single ring. Further, the ring formed rings and Zb Za form preferably has a substituent selected from Substituent Group T R to be described later, they may form a fused ring attached to each other via the substituent . Examples of such a condensed ring include a 1,10-phenanthroline ring.
  • the 5-membered aromatic heterocycle may be a 5-membered ring containing the above heteroatoms as ring constituent atoms, and may be a pyrazole ring, an imidazole ring, a triazole ring, a thiazole ring, an oxazole ring, a benzimidazole ring, or a benzotriazole ring. At least one of a benzoxazole ring and a benzothiazole ring is preferable.
  • the 6-membered aromatic heterocycle may be a 6-membered ring containing the above heteroatom as a ring constituent atom, such as a pyridine ring, pyrimidine ring, pyrazine ring, pyridazine ring, triazine ring, tetrazine ring, quinoline ring and isoquinoline. At least one of the rings is preferred.
  • the rings formed by Za and Zb are each at least one selected from the group consisting of the group of the 5-membered aromatic heterocycle and the group of the 6-membered aromatic heterocycle, and are represented by the formula (AL-1 Aromatic heterocycles that are compatible with the structure of each ring represented by
  • the ring formed by Za is a pyridine ring, pyrimidine ring, pyrazine ring, pyridazine ring, triazine ring, tetrazine ring, quinoline ring, isoquinoline ring, imidazole ring, pyrazole ring, triazole ring, thiazole ring, oxazole ring, benzimidazole ring, It is preferably at least one selected from the group consisting of a benzotriazole ring, a benzoxazole ring and a benzothiazole ring.
  • the ring formed by Zb is a pyridine ring, pyrimidine ring, pyrazine ring, pyridazine ring, triazine ring, tetrazine ring, quinoline ring, isoquinoline ring, imidazole ring, triazole ring, thiazole ring, oxazole ring, benzoimidazole ring, benzotriazole ring And at least one selected from the group consisting of a benzoxazole ring and a benzothiazole ring.
  • the hetero ring formed by Za and Zb is more preferably an imidazole ring, a pyridine ring or a pyrimidine ring, and particularly preferably both are pyridine rings.
  • the heterocyclic ring formed by Za and Zb has at least one acidic group on at least one, and preferably has at least one acidic group on each heterocyclic ring.
  • the number of acidic groups each of the heterocycles formed by Za and Zb is preferably 1 to 3, more preferably 1 or 2, and further preferably 1. It is more preferable that the heterocycle formed by Za and Zb both have one acidic group.
  • the substitution position of the acidic group is not particularly limited. In each ring, it is preferably a ring constituent atom that is farthest from the nitrogen atom coordinated to the metal ion M. When the ring is a 6-membered ring, it is preferably the 4-position relative to the nitrogen atom.
  • an acidic group is a substituent having a dissociative proton, and a pKa of 11 or less.
  • the pKa of the acidic group is determined by J.M. Phys. Chem. A2011, 115, p. It can be determined according to the “SMD / M05-2X / 6-31G * ” method described in 6641-6645.
  • the acidic group include acid groups exhibiting acidity such as a carboxy group, a phosphonyl group, a phosphoryl group, a sulfo group, and a boric acid group, or groups having these acid groups.
  • Examples of the group having an acid group include a group having an acid group and a linking group.
  • the linking group is not particularly limited, and examples thereof include a divalent group, and preferable examples include an alkylene group, an alkenylene group, an alkynylene group, an arylene group, and a heteroarylene group.
  • the linking group may have as a substituent a group selected from Substituent Group T R to be described later.
  • the acidic group having an acid group and a linking group for example, carboxymethyl, carboxyvinylene, dicarboxyvinylene, cyanocarboxyvinylene, 2-carboxy-1-propenyl, 2-carboxy-1-butenyl, carboxyphenyl and the like are preferable.
  • the acidic group is preferably a carboxy group, a phosphonyl group, a sulfo group, or a group having a carboxy group, and more preferably a carboxy group.
  • the acidic group may be an anion dissociated by releasing a proton when incorporated into the metal complex dye represented by the formula (I), or may be a salt. Although it does not specifically limit as a counter ion when an acidic group turns into a salt, For example, the example of the positive ion in the following counter ion CI is mentioned.
  • the acidic group may be esterified as described later.
  • the heterocycle formed by Za and Zb may or may not have a substituent other than an acidic group.
  • These heterocycle substituents which may have, for example, include groups selected from Substituent Group T R to be described later.
  • the heterocyclic ring containing L W includes a monocyclic ring and a condensed ring, and in the case of a condensed ring, includes a condensed ring with a heterocyclic ring formed by Zb.
  • L W represents a nitrogen atom, or CR W.
  • R W represents a hydrogen atom or a substituent, preferably a hydrogen atom.
  • Substituents can take as R W is not particularly limited, a group selected from the later-described Substituent Group T R (preferably. Excluding thiophene ring group).
  • R W may be bonded to form a ring.
  • Hetero ring containing L W is from the group of aromatic ring of 6-membered rings described as heterocycle Za and Zb is formed, the formula (AL-1) an aromatic heterocyclic conforming to the ring structure in the preferred Selected.
  • a pyridine ring More preferably, it is at least one of a pyridine ring, a pyrimidine ring, a pyridazine ring, a triazine ring, a tetrazine ring, a quinoline ring and an isoquinoline ring, more preferably a pyridine ring or a pyrimidine ring, and particularly preferably a pyridine ring. preferable.
  • the ligand LA has a group represented by “— (G) nT” in a heterocycle containing L W.
  • This group is a group in which 2 to 7 thiophene rings or thiophene-containing condensed rings including a thiophene ring are bonded by a single bond.
  • G forming this group is a thiophene ring or a thiophene-containing condensed ring, and is represented by any one of the following formulas (X-1) to (X-3).
  • the thiophene ring group represented by the formula (X-1) may have a substituent R T1 .
  • substituent R T1 include groups selected from the substituent group T R described later (excluding an amino group). Preferred are an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an arylthio group, a cycloalkyl group, an aryl group, an alkenyloxy group, an alkynyloxy group, an aryloxy group, a cyano group, and a halogen atom.
  • an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an arylthio group, and an aryloxy group are more preferable
  • an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, and an alkylthio group are more preferable
  • an alkyl group is particularly preferable.
  • the alkyl group that can be used as R T1 preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and still more preferably 1 to 9 carbon atoms.
  • the substitution position is not particularly limited.
  • the number PT1 of the substituent R T1 is 0 to 2, preferably 0 or 1.
  • * Represents a bonding position of the ring, and other G or T containing L W.
  • the bonding position of the thiophene ring group represented by the formula (X-1) is not particularly limited and may be any ring carbon atom. Preferably, at least one bonding position is the 2-position with respect to the ring-constituting sulfur atom.
  • Zt2 represents a nonmetallic atom group necessary for forming a condensed ring with the thiophene ring in the formula (X-2).
  • the nonmetallic atom group is selected from a carbon atom, a hydrogen atom, and the heteroatom according to the thiophene-containing fused ring group represented by the formula (X-2).
  • the thiophene-containing fused ring group represented by the formula (X-2) is a thiophene ring in the formula (X-2) having at least one ring-constituting carbon atom at the 2nd and 3rd positions based on the ring-constituting sulfur atom.
  • the ring fused to the thiophene ring is not particularly limited, but is preferably an aromatic ring or an aliphatic heterocycle, and more preferably an aromatic heterocycle.
  • the ring to be condensed is not particularly limited, but a 5-membered ring or 6-membered ring is preferable, and a 5-membered ring is more preferable. Examples of such a ring include a pyrrole ring, a thiophene ring, a furan ring, a silole ring, a phosphole ring, and a selenophene ring.
  • a thiophene ring, a furan ring, and a silole ring are preferable, and a thiophene ring is more preferable.
  • the number of rings (including the thiophene ring in the formula) forming the thiophene-containing fused ring group represented by the formula (X-2) is not particularly limited, but is preferably 2 to 5, or 2 or More preferably, it is three.
  • the thiophene-containing fused ring group represented by the formula (X-2) may have a substituent R T2 .
  • the substituent R T2 is synonymous with the substituent R T1 , and preferred ones are also the same.
  • the substitution position is not particularly limited.
  • the substituent R T2 may be bonded to the ring carbon atom of the thiophene ring or may be bonded to the ring carbon atom of the condensed ring.
  • the number PT2 of substituents R T2 possessed by the thiophene-containing fused ring group is an integer of 0 or more.
  • the upper limit is not more than the number of hydrogen atoms that the condensed ring group has, assuming that the thiophene-containing condensed ring group represented by formula (X-2) is unsubstituted.
  • PT2 is not particularly limited as long as it is within the above range, but it is preferably 0 to 2, more preferably 0 or 1.
  • * Represents a bonding position of the ring, and other G or T containing L W.
  • the bonding position of the thiophene-containing fused ring group represented by the formula (X-2) is not particularly limited, and may be any ring carbon atom. Preferably, at least one bonding position is the 2-position with respect to the ring-constituting sulfur atom.
  • Zt3 represents a nonmetallic atom group necessary for forming a condensed ring with the thiophene ring in the formula (X-3).
  • the nonmetallic atom group is selected from a carbon atom, a hydrogen atom, and the heteroatom according to the thiophene-containing fused ring group represented by the formula (X-3).
  • the thiophene-containing fused ring group represented by the formula (X-3) is a thiophene ring in the formula (X-3) having at least one ring-constituting carbon atom at the 3- and 4-positions based on the ring-constituting sulfur atom.
  • the first embodiment of the ring condensed with the thiophene ring is synonymous with the ring condensed with the thiophene ring in formula (X-2), and preferred ones are also the same.
  • the second aspect is an aliphatic heterocycle in which an alkylenedioxy group or an alkylenedithio group is bonded to the ring-constituting carbon atoms at the 3-position and 4-position of the thiophene ring in formula (X-3).
  • an alkylenedioxy group is preferable, and examples thereof include ethylenedioxy and propylenedioxy.
  • the number of rings forming the thiophene-containing fused ring group represented by the formula (X-3) is not particularly limited, but is preferably 2 to 4, More preferably it is.
  • the thiophene-containing fused ring group represented by the formula (X-3) may have a substituent R T3 .
  • the substituent R T3 is synonymous with the substituent R T1 , and preferred ones are also the same.
  • the substitution position is not particularly limited. It may be bonded to the ring constituting carbon atom of the thiophene ring or may be bonded to the ring constituting carbon atom of the condensed ring.
  • the number PT3 of the substituents R T3 possessed by the thiophene-containing condensed ring group is an integer of 0 or more.
  • the upper limit is not more than the number of hydrogen atoms that the condensed ring group has, assuming that the thiophene-containing condensed ring group represented by formula (X-3) is unsubstituted.
  • PT3 is not particularly limited as long as it is in the above range, but it is preferably 0 to 2, more preferably 0 or 1. * Represents a bonding position of the ring, and other G or T containing L W.
  • the bonding position of the thiophene-containing fused ring group represented by the formula (X-3) is not particularly limited and may be any ring carbon atom. Preferably, at least one bonding position is the 2-position with respect to the ring-constituting sulfur atom.
  • the thiophene ring group represented by the above formula (X-1) is preferably a ring group represented by any one of the following formulas (X-1a) to (X-1c).
  • R T1a to R T1c each independently represent a hydrogen atom or a substituent.
  • the substituent has the same meaning as R T1 in formula (X-1), and preferred ones are also the same.
  • R T1a and R T1b , and R T1b and R T1c are not bonded to each other to form a ring. ** represents a bonding position with a ring containing L W , other G or T.
  • thiophene ring group represented by the formula (X-1a) ⁇ formula (X-1c) it is one of the two **, the G adjacent to the ring side including the ring or L W containing L W, bond May be.
  • the thiophene ring group represented by the formula (X-1a) is preferable.
  • the thiophene-containing fused ring group represented by the above formula (X-2) is preferably a ring group represented by any one of the following formulas (X-2a) to (X-2e).
  • R T2 and R TA represent a substituent.
  • the substituents R T2 and R TA have the same meaning as R T2 in formula (X-2), and preferred ones are also the same.
  • the numbers PT2a, PT2b and PT2c of the substituent R T2 are each an integer of 0 to 2, and more preferably 0 or 1.
  • R T2 may be bonded to any thiophene ring in the formula. In the present invention, even when having two substituents R T2, it is preferred that the two substituents R T2 is not bonded to each other to form a ring.
  • the number PTA of substituents R TA is an integer of 0 to 4, more preferably 0 to 2, and particularly preferably 2.
  • R TA may be bonded to any of a thiophene ring and a benzene ring in the following formula. In the present invention, even when having two substituents R TA, it is preferable that the two substituents R TA is not bonded to each other to form a ring.
  • ring group represented by each formula *** represents a bonding position of the ring, and other G or T containing L W. The bonding position of these ring groups is not particularly limited, and may be any ring carbon atom.
  • the bonding positions of the ring groups represented by each formula are preferably two ring-constituting carbon atoms adjacent to the ring-constituting sulfur atom in the thiophene ring in each formula.
  • X represents —O—, —S—, —NR X2c —, —C (R X2c ) 2 —, — (R X2c ) C ⁇ C (R X2c ) — or —Si ( R X2c ) 2 —.
  • X is preferably —O—, —S—, —C (R X2c ) 2 — or —Si (R X2c ) 2 —, and —C (R X2c ) 2 —, —O—, —S—.
  • R X2c represents a hydrogen atom or a substituent. This substituent has the same meaning as the above R T2 , but an alkyl group is preferable.
  • the thiophene ring group represented by the formula (X-2b), the formula (X-2c), the formula (X-2d), or the formula (X-2e) is more preferable, and the formula (X-2b) or the formula (X-2c) Particularly preferred is a thiophene ring group.
  • the thiophene-containing fused ring group represented by the formula (X-3) is preferably a ring group represented by the following formula (X-3a) or (X-3b), and is (X-3b) It is particularly preferred.
  • X3a to X3c each independently represent —O— or —S—.
  • X3a is preferably —S—, and both X3b and X3c are preferably —O—.
  • **** represents a bonding position of the ring, and other G or T containing L W.
  • the bonding position of the ring group represented by the formula (X-3a) is not particularly limited, and may be any ring carbon atom.
  • the bonding positions of the ring groups represented by the formulas (X-3a) and (X-3b) are preferably both the 2-position and 5-position of the thiophene ring.
  • R T3 represents a substituent. This substituent has the same meaning as R T3 in formula (X-3), and preferred ones are also the same.
  • the number PT3a of the substituent R T3 is an integer of 0 to 2, and more preferably 0 or 1. In the present invention, even when having two substituents R T3, it is preferable that the two substituents R T3 is not bonded to each other to form a ring.
  • R T3 may be bonded to a thiophene ring in the formula, or may be bonded to a ring having X3a as a ring constituent atom.
  • R T3b represents an alkylene group.
  • the —X3b—R T3b —X3c— group is preferably an alkylenedioxy group.
  • This alkylenedioxy group has the same meaning as the alkylenedioxy group of the above formula (X-3), and preferred ones are also the same.
  • the number n of bonds of G is an integer of 2 to 7, preferably 2 to 5, and more preferably 2 or 3.
  • the combination of G to be combined is not particularly limited.
  • the combined G may be the same kind of G or a different kind of G.
  • the same kind of G means G having the same thiophene ring structure or thiophene-containing condensed ring structure represented by the above formulas, and includes G having different substituents, different types, and bonding positions.
  • Preferred combinations of G include, for example, -formula (X-1a) -formula (X-1a)-, -formula (X-1a) -formula (X-2b)-, -formula (X-1a) -formula (X-2c)-, -formula (X-1a) -formula (X-2e)-, -formula (X-1a) -formula (X-3b)-, -formula (X-2b) -formula (X -B)-, -formula (X-2b) -formula (X-3b)-, -formula (X-2c) -formula (X-3b)-, -formula (X-3a) -formula (X-3b )-, -Formula (X-3b) -formula (X-3b)-and the like.
  • a more preferable combination of G includes a combination of G “— (G) n—” in specific examples of the ligand LA described later, and further, a metal complex dye D-1 synthesized in the examples described later. Also included is a combination “— (G) n—” of G which the ligand LA in .about.D-33 has.
  • the combination “— (G) n—” of G includes “— (G) n—” in specific examples of the ligand LA described later and coordination in the metal complex dyes D-1 to D-33.
  • "-(G) n-" possessed by the child LA is more preferred, and "-(G) n-" possessed by the ligand LA in the metal complex dyes D-1 to D-33 is particularly preferred.
  • T represents a hydrogen atom or a substituent.
  • Substituent is not particularly limited, has the same meaning as above R T1 is preferred also the same, among others alkyl group or an alkylthio group.
  • the alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and still more preferably 1 to 9 carbon atoms.
  • the thioalkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12, more preferably 1 to 9, and particularly preferably 1 to 6.
  • the combination of G “-(G) n-” is most preferably a combination of two of the above formulas (X-1a).
  • the group represented by “— (G) nT” including the most preferable G combination is preferably a group represented by the following formula (TF-1).
  • R 1TF to R 4TF each independently represent a hydrogen atom or an alkyl group.
  • R 1TF to R 4TF are each appropriately selected from a hydrogen atom or an alkyl group.
  • an embodiment in which R 1TF , R 2TF and R 4TF are each a hydrogen atom and R 3TF is an alkyl group, and R 1TF and R 3TF are each a hydrogen atom, and R 2TF and R 4TF are each Two embodiments of the embodiment that are alkyl groups are particularly preferred.
  • the plurality of alkyl groups may be the same or different.
  • the alkyl group that R 1TF to R 4TF can take is synonymous with the alkyl group of R T1 , and is selected from the alkyl groups of the substituent group T R described later, but having 3 to 12 carbon atoms. It is preferably 5-9.
  • T represents a hydrogen atom or a substituent, and is as described above. * Represents a bonding part of the ring containing L W.
  • the group represented by “— (G) nT” does not have the acidic group.
  • n-number of G each substituent and T may each have is selected from among the substituent group T R to be described later.
  • the group represented by “— (G) nT” does not have an amino group.
  • n-number of G each substituent and T may each have the substituent group having no amino group or an amino group is selected from among the substituent group T R to be described later.
  • the amino group includes an alkylamino group, an arylamino group and a heteroarylamino group in addition to the unsubstituted amino group (—NH 2 ).
  • the ligand LA is preferably a tridentate ligand (terpyridine compound) represented by the following formula (AL-2).
  • each of two Anc independently represents an acidic group.
  • the acidic group is synonymous with the acidic group of the formula (AL-1), and preferred ones are also the same.
  • G, T and n have the same meanings as G, T and n in the formula (AL-1).
  • the terpyridine compound is the ligand LA itself, but in the present invention, the ligand LA can be used as a precursor compound of the ligand LA as described later. Therefore, in the present invention, the ligand LA includes a precursor compound of the ligand LA in addition to the ligand LA itself (the terpyridine compound).
  • Preferable precursor compounds include ester bodies in which at least one acidic group A of the terpyridine compound is esterified (also referred to as an esterified product of a terpyridine compound). This esterified compound is a compound in which the acidic group is protected and can be regenerated to an acidic group by hydrolysis or the like, and is not particularly limited.
  • alkyl esterified products examples thereof include alkyl esterified products, aryl esterified products, and heteroaryl esterified products of the above acidic group.
  • alkyl esterified products are preferable.
  • the alkyl group forming the alkyl esterified product is not particularly limited, but is preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, and further preferably an alkyl group having 1 to 4 carbon atoms.
  • the aryl group forming the aryl esterified product and the heteroaryl group forming the heteroaryl esterified product are not particularly limited, and examples thereof include those exemplified in the substituent group T described later. These groups may have one or more substituents selected from the substituent group T described later.
  • Two acidic groups are preferably esterified. In this case, the two esters may be the same or different.
  • the ligand LA can be synthesized by a usual method.
  • the ligand LA represented by the formula (L1-4) includes a compound represented by the formula (L1-1) and a compound represented by the formula (L1-2) as shown in the following scheme. It can be synthesized by a coupling reaction and hydrolyzing the ester group of the precursor compound represented by the formula (L1-3).
  • an esterified product of a carboxy group is shown as a precursor compound.
  • the precursor compound is not limited to this and may be any precursor compound obtained by esterifying any of the acidic groups.
  • the coupling reaction at this time is, for example, “Suzuki coupling reaction” or “Still coupling reaction” described in “Chemical Chemistry Course 5th Edition” edited by The Chemical Society of Japan, Maruzen Co., Ltd., Volume 13, p92-117. Etc. or according to these.
  • Hydrolysis can be carried out according to the method described in, for example, the Chemical Society of Japan, “Experimental Chemistry Course 5th Edition”, Maruzen Co., Ltd., Volume 16, p10-15.
  • the method synthesized in Examples described later can be mentioned.
  • the metal complex dye of the present invention can be synthesized using the ligand LA synthesized by hydrolyzing the precursor compound.
  • an ester group is hydrolyzed according to the said method, and the metal complex dye of this invention can also be synthesize
  • L V above - is synonymous with the groups represented by "(G) n-T".
  • Y 1 represents a trialkyltin group, a boronic acid group, a boronic acid ester group, a halogen atom or a perfluoroalkylsulfonyloxy group.
  • Y 2 represents a halogen atom or a perfluoroalkylsulfonyloxy group when Y 1 in the formula (L1-1) is a trialkyltin group, a boronic acid group or a boronic ester group, When Y 1 in the formula (L1-1) is a halogen atom or a perfluoroalkylsulfonyloxy group, it represents a trialkyltin group, a boronic acid group or a boronic ester group.
  • R represents an alkyl group, an aryl group, or a heteroaryl group.
  • ligand LA Specific examples of the ligand LA are shown below. Moreover, the ligand LA in the metal complex dye mentioned later is also mentioned as the ligand LA. Further, compounds in which at least one of —COOH is a carboxy group salt with respect to the ligand LA in the following specific examples and specific examples of metal complex dyes are also included. In this compound, examples of a counter cation that forms a salt of a carboxy group include positive ions described in the following CI. Furthermore, examples of the esterified product of a terpyridine compound include compounds obtained by esterifying at least one acidic group with respect to the ligand LA in the following specific examples and specific examples of the metal complex dye. The present invention is not limited to these ligands LA, salts or esterified products thereof.
  • -Ligand LD- LD is a bidentate ligand or a tridentate ligand different from the ligand LA.
  • This ligand LD preferably does not have an acidic group adsorbed on the surface of the semiconductor fine particles. Even if the ligand LD contains a group corresponding to an acidic group, the ligand LD is preferably not adsorbed on the surface of the semiconductor fine particles.
  • At least one of the coordination atoms bonded to the metal ion M is a nitrogen atom.
  • This nitrogen atom is preferably coordinated to the metal ion M by a lone electron pair.
  • Such a nitrogen atom includes a nitrogen atom that is a ring-constituting atom and has no hydrogen atom.
  • the nitrogen atom of a pyridine ring is mentioned.
  • at least one of the coordination atoms is an anion. “Is an anion” means that a hydrogen atom bonded to any hydrogen atom or coordination atom in the molecule can be dissociated and bonded to the metal ion M.
  • the coordinating atom serving as the anion may be a nitrogen atom coordinated to the metal ion M, or another atom such as a carbon atom.
  • the nitrogen atom coordinated to the metal ion M is preferably different from the coordinate atom serving as the anion.
  • the ligand LD is preferably a ligand represented by the following formula (DL).
  • ring D DL , ring E DL and ring F each independently represent a 5-membered or 6-membered aromatic ring.
  • R a , R a1 and R a4 each independently represent a substituent having no acidic group.
  • mb represents 0 or 1.
  • ma1 and ma4 each independently represents an integer of 0 to 3.
  • ma represents an integer of 0 to 4 when mb is 0, and represents an integer of 0 to 3 when mb is 1.
  • the plurality of R a , the plurality of R a1, and the plurality of R a4 may be the same or different and are bonded to each other to form a ring. May be.
  • R a and R a1 , R a and R a4 may be linked to form a ring.
  • Examples of the 5-membered or 6-membered aromatic ring in ring D DL , ring E DL and ring F include aromatic hydrocarbon rings and aromatic hetero rings, and aromatic hetero rings are preferable.
  • aromatic hydrocarbon rings and aromatic hetero rings are preferable.
  • the ring E DL and the ring F at least one of an aromatic ring and an aliphatic hydrocarbon ring may be condensed.
  • Ring D DL , Ring E DL and Ring F are aromatic hydrocarbon rings, a benzene ring is preferred.
  • the aromatic heterocycle may be an aromatic ring containing the above heteroatoms as ring-constituting atoms.
  • a non-condensed 6-membered ring, a 5-membered condensed 6-membered ring, or a benzene ring condensed A 5-membered ring or a 6-membered ring condensed with a benzene ring is preferable, a 6-membered ring with non-condensed ring is more preferable, and a 6-membered ring with 5-membered ring condensed is more preferable, and a 6-membered ring with non-condensed ring is more preferable.
  • Examples of such an aromatic heterocycle include, for example, a 6-membered ring, a pyridine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, a quinoline ring, and a quinazoline ring.
  • Examples of the 5-membered ring include pyrrole ring, imidazole ring, pyrazole ring, oxazole ring, thiazole ring, benzimidazole ring, benzoxazole ring, benzothiazole ring, indole ring, indazole ring, triazole ring, thiophene ring, and furan ring.
  • Ring D DL and ring E DL are preferably a pyrrole ring, a pyrazole ring, an imidazole ring, a triazole ring, or a benzene ring, and more preferably a pyrazole ring, a triazole ring, or a benzene ring.
  • Ring F is preferably an aromatic heterocycle containing a nitrogen atom, more preferably a pyridine ring, pyrimidine ring, pyrazine ring or triazine ring, still more preferably a pyridine ring and a pyrimidine ring, and particularly preferably a pyridine ring.
  • the ring D DL , the ring E DL and the ring F include a coordination atom that is bonded to the metal ion M.
  • the coordination atom is not particularly limited, but is preferably a carbon atom, a nitrogen atom, a sulfur atom, an oxygen atom or an anion of these atoms.
  • R a, R a1 and R a4 include groups selected from substituent group T R to be described later.
  • R a is an aromatic heterocyclic group, aryl group, ethenyl group, ethynyl group, halogen atom, alkyl group, amino group (alkylamino group, dialkylamino group, arylamino group, diarylamino group, N-alkyl, among others.
  • alkoxy groups, aryloxy groups, alkylthio groups, arylthio groups, silyl groups are preferred, aromatic heterocyclic groups, aryl groups, ethenyl groups, ethynyl groups, alkyl groups, alkoxy groups or
  • An amino group (including alkylamino group, dialkylamino group, arylamino group, diarylamino group and the like) is more preferable.
  • a group formed by combining the above groups is also preferable.
  • the number of carbon atoms of each substituent that can be taken as R a is not particularly limited, but among the substituents that can be taken as R a , the same type of substituents that can be taken as R AA to be described later are described as R AA. It is preferable that it is the same as the carbon number of the substituent which can be taken. More preferably, the preferable range of the carbon number is the same.
  • the substituents which can be taken as a R a for the substituents not take get substituent as R AA, which will be described later, is the same as the number of carbon atoms of each substituent of substituent group T R to be described later, the preferred range is also the same It is. The same applies to each substituent that can be adopted as R a1 or R a4 .
  • R a1 and R a4 are each an alkyl group, a cycloalkyl group, an alkenyl group (preferably ethenyl group), an alkynyl group (preferably ethynyl group), an aryl group, or a heterocyclic group (preferably an aromatic heterocyclic group).
  • halogenated alkyl group Preferably a halogenated aryl group, more preferably a halogenated alkyl group, a halogenated aryl group, a halogen atom, a cyano group, an alkylsulfonyl group or an arylsulfonyl group, a halogenated alkyl group, a halogenated aryl group, a halogen atom, Roh group is more preferable.
  • a group formed by combining the above groups is also preferable. The halogenated alkyl group and the halogenated aryl group will be described later
  • R a , R a1 and R a4 each preferably have, as a substituent, a group R VU represented by the following formula (V U -1) or formula (V U -2), and in particular, R a It preferably has the following group R VU .
  • the position (substitution position) to which R a is bonded in the ring F is not particularly limited.
  • the ring F is a 5-membered ring
  • the 3-position with respect to the ring-constituting nitrogen atom coordinated to the metal atom M is preferable.
  • the ring F is a 6-membered ring
  • the 3-position or the 4-position is preferable with respect to the ring-constituting nitrogen atom coordinated to the metal atom M, and the 4-position is more preferable.
  • the ring D DL and ring E DL each have a R a1 or R a 4
  • a position R a1 or R a 4 are attached in each ring D DL and ring E DL is not particularly limited.
  • T represents an oxygen atom, a sulfur atom, -NR CA- , -C (R CA ) 2 -or -Si (R CA ) 2-
  • R CA represents a hydrogen atom or Represents a substituent.
  • R AA represents a substituent, and R AB and R AC each independently represent a hydrogen atom or a substituent.
  • R BA to R BE each independently represent a hydrogen atom or a substituent, and at least one of R BA , R BB , R BD and R BE represents a substituent.
  • the number of the groups R VU possessed by the ligand LD may be one or more, preferably 1 to 3, and more preferably 1 or 2.
  • T is an oxygen atom, a sulfur atom, —NR CA —, —C (R CA ) 2 — or —Si (R CA ) 2 —, and preferably a sulfur atom.
  • R CA represents a hydrogen atom or a substituent, and a hydrogen atom is preferable.
  • the substituents can take as R CA include groups selected from Substituent Group T R to be described later.
  • R AA represents a substituent.
  • the substituents can take as R AA, not particularly limited, for example, include groups selected from Substituent Group T R to be described later.
  • the substituent that can be taken as R AA is an alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, alkylthio group, cycloalkylthio group, amino group, alkylamino group, cycloalkylamino group, or aryl. It is more preferably an amino group, more preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an alkylamino group, a cycloalkylamino group or an arylamino group, and an alkyl group, an alkoxy group or an alkylamino group.
  • R AA is particularly preferably a group, and most preferably an alkyl group or an alkoxy group.
  • Any of the substituents that can be employed as the R AA is preferably bonded to a thiophene ring (when T is a sulfur atom) in terms of photoelectric conversion efficiency.
  • the substituent which may take as R AA may be substituted with a group selected from the further described below substituent group T R.
  • the alkyl group includes a linear alkyl group and a branched alkyl group.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 4 to 30, more preferably 5 to 26, and particularly preferably 6 to 20.
  • Examples of the alkyl group include methyl, ethyl, n-butyl, t-butyl, n-pentyl, n-hexyl, n-octyl, 2-ethylhexyl, n-decyl, 3,7-dimethyloctyl, isodecyl, s- Examples include decyl, n-dodecyl, 2-butyloctyl, n-hexadecyl, isohexadecyl, n-eicosyl, n-hexacosyl, isooctacosyl, trifluoromethyl or pentafluoroethyl.
  • the carbon number of the cycloalkyl group is preferably 3 to 30, more preferably 5 to 30, further preferably 6 to 26, and particularly preferably 6 to 20.
  • Examples of the cycloalkyl group include cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl.
  • the cycloalkyl group may be condensed with an alicyclic ring, an aromatic ring, or a heterocyclic ring.
  • the alkoxy group includes a straight-chain alkoxy group and a branched alkoxy group.
  • the alkyl part of the alkoxy group has the same meaning as the above alkyl group, and preferred ones are also the same.
  • Examples of the alkoxy group include methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, t-butoxy, n-pentoxy, n-hexyloxy, n-octyloxy, 2-ethylhexyloxy, 3,7- Dimethyloctyloxy, n-decyloxy, isodecyloxy, s-decyloxy, 2-butyloctyloxy, n-dodecyloxy, n-hexadecyloxy, isohexadecyloxy, n-eicosyloxy, n-hexacosyloxy or An example is isooctacosyloxy.
  • the cycloalkyl part of the cycloalkoxy group has the same meaning as the above cycloalkyl group, and preferred ones are also the same.
  • Examples of the cycloalkoxy group include cyclopropyloxy, cyclopentyloxy, cyclohexyloxy, cycloheptyloxy, and cyclooctyloxy.
  • the aryloxy group includes a carbocyclic aryloxy group whose aryl group is a carbon-based aromatic ring (aromatic hydrocarbon ring) group and a heteroaryloxy group which is a heteroaromatic ring (aromatic heterocycle) group. .
  • the aryloxy group preferably has 3 to 30 carbon atoms, more preferably 3 to 25 carbon atoms, still more preferably 3 to 20 carbon atoms, and particularly preferably 3 to 16 carbon atoms.
  • aryloxy group examples include phenoxy, naphthoxy, imidazolyloxy, benzoimidazolyloxy, pyridin-4-yloxy, pyrimidinyloxy, quinazolinyloxy, purinyloxy, thiophen-3-yloxy and the like.
  • a thiophene ring is preferred as the heterocycle of the heteroaryloxy group.
  • the alkylthio group includes a linear alkylthio group and a branched alkylthio group.
  • the alkyl part of the alkylthio group has the same meaning as the above alkyl group, and preferred ones are also the same.
  • Examples of the alkylthio group include methylthio, ethylthio, n-propylthio, i-propylthio, n-butylthio, t-butylthio, n-pentylthio, n-hexylthio, n-octylthio, 2-ethylhexylthio, 3,7-dimethyloctyl.
  • thio n-decylthio, isodecylthio, s-decylthio, n-dodecylthio, 2-butyloctylthio, n-hexadecylthio, isohexadecylthio, n-eicosylthio, n-hexacosylthio or isooctacosylthio.
  • the cycloalkyl part of the cycloalkylthio group has the same meaning as the above cycloalkyl group, and preferred ones are also the same.
  • Examples of the cycloalkylthio group include cyclopropylthio, cyclopentylthio, cyclohexylthio, cycloheptylthio, and cyclooctylthio.
  • the arylthio group includes a carbocyclic arylthio group whose aryl group is a carbon aromatic ring and a heteroarylthio group which is a heteroaromatic ring.
  • the arylthio group preferably has 3 to 30 carbon atoms, more preferably 3 to 25 carbon atoms, still more preferably 3 to 20 carbon atoms, and particularly preferably 3 to 16 carbon atoms.
  • arylthio group examples include phenylthio, naphthylthio, imidazolylthio, benzimidazolylthio, pyridin-4-ylthio, pyrimidinylthio, quinazolinylthio, purinylthio and thiophen-3-ylthio.
  • a thiophene ring is preferred as the heterocycle of the heteroarylthio group.
  • the alkylamino group includes an N-alkylamino group and an N, N-dialkylamino group, and the alkyl group preferably has 1 to 30 carbon atoms, and more preferably 2 to 30 carbon atoms.
  • Examples of the alkylamino group include ethylamino, diethylamino, 2-ethylhexylamino, bis (2-ethylhexyl) amino, n-octadecylamino and n-octadecylamino.
  • the cycloalkylamino group includes an N-cycloalkylamino group and an N, N-dicycloalkylamino group.
  • the cycloalkyl part of the cycloalkylamino group has the same meaning as the above cycloalkyl group, and the preferred ones are also the same.
  • cycloalkylamino group examples include cyclopropylamino, dicyclopropylamino, N-cyclopropyl-N-ethylamino, cyclopentylamino, dicyclopentylamino, N-cyclopentyl-N-methylamino, cyclohexylamino, dicyclohexylamino, And cycloheptylamino or cyclooctylamino.
  • the arylamino group includes a carbocyclic arylamino group whose aryl group is a carbonaceous aromatic ring and a heteroarylamino group which is a heteroaromatic ring.
  • the carbocyclic arylamino group includes an N-arylamino group, an N-alkyl-N-arylamino group, and an N, N-diarylamino group.
  • the heteroarylamino group includes an N-heteroarylamino group, an N-alkyl-N-heteroarylamino group, an N-aryl-N-heteroarylamino group and an N, N-diheteroarylamino group.
  • the number of carbon atoms of the arylamino group is preferably 3 to 30, more preferably 3 to 25, still more preferably 3 to 20, and particularly preferably 3 to 16.
  • the arylamino group for example, phenylamino, N-phenyl-N-ethylamino, naphthylamino, imidazolylamino, benzimidazolylamino, pyridin-4-ylamino, pyrimidinylamino, quinazolinylamino, purinylamino or thiophene- 3-ylamino and the like can be mentioned.
  • the heterocyclic amino group is a heterocyclic amino group (aliphatic heterocyclic amino group) other than a heteroarylamino group.
  • the carbon number is preferably 0 to 30, more preferably 1 to 25, still more preferably 2 to 20, and particularly preferably 2 to 16.
  • the heterocycle those in which the ring-forming heteroatom is selected from an oxygen atom, a sulfur atom, and a nitrogen atom are preferable, and the number of ring members is preferably a 5 to 7 membered ring, and more preferably a 5 or 6 membered ring.
  • heterocyclic amino group examples include pyrrolidin-3-ylamino, imidazolidinylamino, benzimidazolidinylamino, piperidin-4-ylamino, and tetrahydrothiophen-3-ylamino.
  • the silyl group includes an alkylsilyl group, a cycloalkylsilyl group, an arylsilyl group, an alkyloxysilyl group, a cycloalkyloxysilyl group, and an aryloxysilyl group.
  • Preferred silyl groups are alkylsilyl groups, cycloalkylsilyl groups, or arylsilyl groups.
  • the carbon number of the silyl group is preferably 3 to 30, more preferably 3 to 24, still more preferably 3 to 20, and particularly preferably 3 to 18.
  • silyl group examples include trimethylsilyl, triethylsilyl, t-butyldimethylsilyl, cyclohexyldimethylsilyl, triisopropylsilyl, t-butyldiphenylsilyl, methyldimethoxysilyl, phenyldimethoxysilyl, and phenoxydimethylsilyl.
  • the silyloxy group includes an alkylsilyloxy group, a cycloalkylsilyloxy group, and an arylsilyloxy group.
  • the carbon number of the silyloxy group is preferably 3 to 30, more preferably 3 to 24, still more preferably 3 to 20, and particularly preferably 3 to 18.
  • Examples of the silyloxy group include trimethylsilyloxy, triethylsilyloxy, t-butyldimethylsilyloxy, triisopropylsilyloxy, cyclohexyldimethylsilyloxy, and t-butyldiphenylsilyloxy.
  • R AB represents a hydrogen atom or a substituent, and is preferably a hydrogen atom.
  • R AC represents a hydrogen atom or a substituent.
  • the substituent which can be taken as R AB and R AC has the same meaning as R AA , and preferred ones are also the same.
  • R AB or R AC is a substituent, each substituent of R AA to R AC may be the same as or different from each other.
  • R BA to R BE each independently represents a hydrogen atom or a substituent.
  • the substituents that can be adopted by each of R BA to R BE are the same as R AA described above, and preferred ones are also the same. However, at least one of R BA , R BB , R BD and R BE is a substituent. At least one or both of R BA and R BE are substituents, and R BB , R BC and R BD are all hydrogen atoms, or at least one or both of R BB and R BD are substituents, and R BA , R BC and R BE are particularly preferably all hydrogen atoms. When two or more of R BA to R BE are substituents, the two or more substituents may be the same as or different from each other.
  • ma, ma1 and ma4 are preferably integers of 0 to 2, more preferably 1 or 2.
  • the ligand represented by the above formula (DL) is preferably represented by the following formula (DL-1) or (DL-2).
  • R a2 and R a3 each independently represent a substituent having no acidic group.
  • ma2 represents 0 or 1, and 1 is preferable.
  • ma3 represents an integer of 0 to 2, and 1 or 2 is more preferable.
  • X1 and X2 each independently represent CR a5 or a nitrogen atom.
  • R a5 represents a hydrogen atom or a substituent. This substituent is synonymous with Ra in Formula (DL), and its preferable range is also the same.
  • the ring containing X1 and X2 (also referred to as ring F) has the same meaning as ring F in formula (DL), and the preferred range is also the same.
  • R a1, R a4, ma1 and ma4 has the same meaning as R a1, R a4, ma1 and ma4 in the formula (DL), and the preferred range is also the same.
  • the substituent represented by R a2 and R a3 has the same meaning as R a in the above formula (DL), and the preferred range is also the same.
  • the plurality of R a1 , R a3 and R a4 may be the same or different, and may be bonded to each other to form a ring.
  • Ring D and ring E each independently represent a 5-membered or 6-membered aromatic ring.
  • aromatic ring examples include the rings mentioned in the ring DD L and ring E DL in the above formula (DL), and preferred aromatic rings are the same as those mentioned in the ring D DL and ring E DL.
  • the bond between D 1 and D 2 in ring D and ring E and the carbon atom bonded to the F ring may be a single bond or a double bond.
  • D 1 and D 2 each independently represents an anion of a carbon atom or an anion of a nitrogen atom.
  • Ring D and ring E are preferably a pyrrole ring, an imidazole ring, a pyrazole ring, a triazole ring or a benzene ring, and preferably a pyrazole ring, a triazole ring or a benzene ring.
  • a bidentate ligand represented by any one of the following formulas (2L-1) to (2L-4) is preferable.
  • * represents a coordination position (bonding position) with the metal ion M.
  • Ring D 2L represents an aromatic ring.
  • a 111 to A 141 each independently represents an anion of a nitrogen atom or an anion of a carbon atom.
  • R 111 to R 143 each independently represents a hydrogen atom or a substituent having no acidic group.
  • a 111 to A 141 are an anion of a carbon atom or an anion of a nitrogen atom in which a hydrogen atom bonded to a nitrogen atom or a carbon atom constituting the ring D 2L is dissociated.
  • the ring D 2L is an aromatic hydrocarbon ring, an aromatic heterocycle containing oxygen, an aromatic heterocycle containing sulfur, or an aromatic heterocycle containing nitrogen Is mentioned.
  • Examples of the aromatic hydrocarbon ring include a benzene ring and a naphthalene ring, and a benzene ring is preferable, and a benzene ring substituted with a halogen atom, a halogenated alkyl group, or a halogenated aryl group is more preferable.
  • the halogenated alkyl group is an alkyl group substituted with a halogen atom, and a fluorinated alkyl group (for example, a trifluoromethyl group) is preferable.
  • the halogenated aryl group is preferably a phenyl group substituted with 1 to 5 halogen atoms.
  • the aromatic heterocycle containing oxygen is preferably a furan ring
  • the aromatic heterocycle containing sulfur is preferably a thiophene ring.
  • the aromatic heterocycle containing nitrogen a pyrrole ring, a pyrazole ring, an imidazole ring and a triazole ring are preferable.
  • Ring D 2L is, for example, each ring in which one of the ring constituent atoms of a benzene ring, thiophene ring or furan ring is an anion, or the following formulas (a-1) to (a-5), (a-1a) , (A-2a), (a-1b) and each ring represented by (a-4a) are preferred.
  • Rd represents a substituent having no acidic group.
  • b1 represents an integer of 0 to 2
  • b2 represents an integer of 0 to 3
  • b3 represents 0 or 1.
  • a plurality of Rd may be the same or different.
  • a plurality of Rd's may be bonded to each other to form a ring.
  • the Rd for example, include groups selected from Substituent group T R to be described later.
  • Rd and b1 to b3 are synonymous with Rd and b1 to b3 in the above formulas (a-1) to (a-5), and preferred ranges are also the same.
  • b4 represents an integer of 0 to 4
  • b5 represents an integer of 0 to 5.
  • Rd represents not only a benzene ring but also a pyrrole ring.
  • Rd is preferably a linear or branched alkyl group, cycloalkyl group, alkenyl group, fluoroalkyl group, aryl group, halogen atom, alkoxycarbonyl group, cycloalkoxycarbonyl group, cyano group, alkylsulfonyl group, arylsulfonyl group and A group formed by combining these, more preferably a linear or branched alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, and a group formed by combining these, more preferably a linear or branched alkyl halide.
  • Group, a halogenated aryl group preferably a linear or branched alkyl group, cycloalkyl group, alkenyl group, fluoroalkyl group, aryl group, halogen atom, alkoxycarbonyl group, cycloalkoxycarbonyl group, cyano group,
  • the substituent represented by R 111 to R 143 has the same meaning as R a in the above formula (DL), and the preferred range is also the same. At least one of R 111 to R 114 , at least one of R 121 to R 123 , at least one of R 131 to R 133 , and at least one of R 141 to R 143 are preferably substituents, Or it is more preferable that two have a substituent.
  • a tridentate ligand represented by any one of the following formulas (3L-1) to (3L-4) is preferable.
  • * represents a coordination position (bonding position) with the metal ion M.
  • Ring D 2L represents an aromatic ring.
  • a 211 to A 242 each independently represents a nitrogen atom or a carbon atom. However, at least one of A 211 and A 212 , A 221 and A 222 , A 231 and A 232 , and A 241 and A 242 is an anion.
  • R 211 to R 241 each independently represents a hydrogen atom or a substituent having no acidic group.
  • an anion is synonymous with A 111 to A 141 in the above formulas (2L-1) to (2L-4).
  • a 211 to A 242 having no anion is a nitrogen atom having no hydrogen atom.
  • Ring D 2L in formulas (3L-1) to (3L-4) has the same meaning as ring D 2L in formulas (2L-1) to (2L-4), and the preferred range is also the same.
  • Ring D 2L is more preferably an aromatic ring containing any one of A 211 to A 242 and a carbon atom or two carbon atoms. At this time, in each formula, two rings D2L may be the same or different.
  • the substituents R 211 to R 241 each have the same meaning as R a in the above formula (DL), and preferred ones are also the same.
  • the atom coordinated to the metal ion M is a nitrogen anion or a carbon anion, and an arylamino group or diarylamino group is substituted on the substituent. It is preferable for the absorption to increase the wavelength.
  • the preferable ligand described above is a ligand in which at least one of the atoms coordinated to the metal ion M is a nitrogen anion or a carbon anion, and the partial structure has the following formula (SA): .
  • R DA1 represents an aryl group (aromatic hydrocarbon ring group) or a heteroaryl group (aromatic heterocyclic group), and R DA2 represents an alkyl group, an aryl group, or an aromatic heterocyclic group.
  • R DA1 and R DA2 may be bonded to each other to form a ring.
  • LL represents an ethenyl group, an ethynyl group, an arylene group, or a heteroarylene group.
  • a represents an integer of 0 to 5, and when a is 2 or more, a plurality of LLs may be the same or different.
  • the group represented by the formula (SA) is preferably substituted with an aromatic hydrocarbon ring coordinated to the metal ion M or an aromatic heterocycle containing nitrogen, and the aromatic heterocycle containing a nitrogen atom More preferably, it is substituted.
  • at least one of R DA1 and R DA2 is preferably an aryl group or a heteroaryl group, and more preferably an aryl group.
  • Aryl group, heteroaryl group may have a substituent, and examples of such substituents include groups selected from Substituent group T R to be described later. Although it does not specifically limit as an aryl group, A phenyl group, a naphthyl group, etc. are mentioned, A phenyl group is preferable. Although it does not specifically limit as a heteroaryl group, A furanyl group and a thienyl group are preferable.
  • LL may form a condensed ring structure together with an aromatic hydrocarbon ring or a nitrogen-containing aromatic heterocycle containing a ligand coordination atom.
  • LL may be an ethenyl group, and this ethenyl group may be bonded to a nitrogen-containing aromatic heterocycle containing a ligand coordination atom to form a quinoline ring.
  • the arylene group in LL include a phenylene group and a naphthylene group, and the heteroarylene group is preferably a divalent 5- or 6-membered ring containing an oxygen atom, a sulfur atom, or a nitrogen atom as a ring-constituting atom.
  • hetero ring of the heteroarylene group examples include a furan ring, a thiophene ring, a pyrrole ring, and a pyridine ring, and a furan ring and a thiophene ring are preferable.
  • Ethenyl group in LL, arylene group, heteroarylene group may have a substituent group, include groups selected from Substituent group T R to be described later as the substituent.
  • a is 0, or a is 1 and LL is an ethenyl group, ethynyl group, phenylene group or heteroarylene group, and a is 0 or a is 1 and phenylene.
  • a heteroarylene group more preferably a is 0, or a is 1, a phenylene group, a divalent furan ring group, or a divalent thiophene ring group, and a is 0. It is particularly preferred.
  • R DA1 and R DA2 are bonded to each other to form a ring.
  • the ring to be formed is preferably a 5- or 6-membered ring, and more preferably bonded when R DA1 and R DA2 are both aryl groups.
  • the ring formed by combining R DA1 and R DA2 with each other is preferably the following ring.
  • R DA3 and R DA4 each independently represents an alkyl group.
  • the ring may have a substituent group, include groups selected from Substituent group T R to be described later is as such a substituent.
  • the ligand represented by the above formula (DL) is disclosed in US Patent Application Publication No. 2010 / 0258175A1, Japanese Patent No. 4298799, Angew. Chem. Int. Ed. 2011, 50, p. It can be synthesized by the method described in 2054-2058, the method described in the references cited in this document, or a method according to these methods.
  • ligand represented by the above formula (DL) are shown below.
  • dye mentioned later as this ligand LD is also mentioned.
  • the present invention is not limited to these ligands LD.
  • Me represents methyl
  • * represents a bonding position at which the rings or the pyridine ring and the substituent R 201 are bonded to each other.
  • the ligand LX may be a monodentate ligand, and is an acyloxy group, acylthio group, thioacyloxy group, thioacylthio group, acylaminooxy group, thiocarbamate group, dithiocarbamate group, thiocarbonate group, dithiocarbonate.
  • a group selected from the group consisting of a group, trithiocarbonate group, acyl group, thiocyanate group, isothiocyanate group, cyanate group, isocyanate group, cyano group, alkylthio group, arylthio group, alkoxy group, aryloxy group and halogen atom, or Atoms or their anions are preferred.
  • the ligand LX contains an alkyl group, an alkenyl group, an alkynyl group, an alkylene group, etc., they may or may not have a substituent. Moreover, when an aryl group, a heterocyclic group, a cycloalkyl group, etc. are included, they may or may not have a substituent, and may be monocyclic or condensed.
  • the ligand LX is preferably a cyanate group, an isocyanate group, a thiocyanate group and an isothiocyanate group or anions thereof, more preferably an isocyanate group (isocyanate anion) or an isothiocyanate group (isothiocyanate anion), and an isothiocyanate group.
  • isocyanate anion is particularly preferred.
  • -Charge neutralization counter ion CI- CI represents a counter ion when a counter ion is required to neutralize the charge of the metal complex dye.
  • a metal complex dye is a cation or an anion or has a net ionic charge depends on the metal, ligand and substituent in the metal complex dye.
  • the metal complex dye may be dissociated and have a negative charge because the substituent has a dissociable group. In this case, the entire charge of the metal complex dye is electrically neutralized by CI.
  • the counter ion CI is a positive counter ion
  • the counter ion CI is an inorganic or organic ammonium ion (for example, tetraalkylammonium ion, pyridinium ion, etc.), phosphonium ion (for example, tetraalkylphosphonium ion, alkyltriphenylphosphonium ion). Etc.), alkali metal ions (Li ion, Na ion, K ion, etc.), alkaline earth metal ions, metal complex ions or protons.
  • inorganic or organic ammonium ions tetraethylammonium ion, tetrabutylammonium ion, tetrahexylammonium ion, tetraoctylammonium ion, tetradecylammonium ion, etc.
  • alkali metal ions alkali metal ions, and protons are preferable.
  • the counter ion CI may be an inorganic anion or an organic anion.
  • hydroxide ion, halogen anion for example, fluoride ion, chloride ion, bromide ion, iodide ion, etc.
  • substituted or unsubstituted alkylcarboxylate ion acetate ion, trifluoroacetate ion, etc.
  • Substituted or unsubstituted arylcarboxylate ions (benzoate ions, etc.), substituted or unsubstituted alkylsulfonate ions (methanesulfonate ions, trifluoromethanesulfonate ions, etc.), substituted or unsubstituted arylsulfonate ions (for example, p-toluenesulfonate ion, p-chlor
  • an ionic polymer or another dye having a charge opposite to that of the dye may be used as the charge balance counter ion, and a metal complex ion (for example, bisbenzene-1,2-dithiolatonickel (III)) can also be used. is there.
  • Negative counter ions include halogen anions, substituted or unsubstituted alkyl carboxylate ions, substituted or unsubstituted alkyl sulfonate ions, substituted or unsubstituted aryl sulfonate ions, aryl disulfonate ions, perchlorate ions , Hexafluorophosphate ions are preferred, and halogen anions and hexafluorophosphate ions are more preferred.
  • the metal complex dye of the present invention is represented by the following formula (I).
  • the ligand LA, the ligand LD, and the ligand LX are as described above, and the combination of these ligands is not particularly limited.
  • a preferred combination of ligands is a combination of a preferred ligand LA, a preferred ligand LD, and a preferred ligand LX.
  • the metal complex dye represented by the formula (I) is preferably a metal complex dye represented by the following formula (I-1) or (I-2).
  • M and LX have the same meanings as M and LX in the above formula (I).
  • G, T and n have the same meanings as G, T and n in the above formula (AL-1).
  • Anc represents an acidic group and is synonymous with the acidic group of the above formula (AL-1), and preferred ones are also the same.
  • Ring D and ring E each independently represent a 5-membered or 6-membered aromatic ring.
  • D 1 and D 2 each independently represents an anion of a carbon atom or an anion of a nitrogen atom.
  • the bond between D 1 and D 2 in ring D and ring E and the carbon atom bonded to the pyridine ring is a single bond or a double bond.
  • Ring D and ring E have the same meanings as ring D and ring E in the above formulas (DL-1) and (DL-2), and preferred ones are also the same.
  • R a1 to R a4 each independently represents a substituent.
  • R a1 ⁇ R a4 are each the same meaning as R a1 ⁇ R a4 in the formula (DL-1) and (DL-2), it is preferable also the same.
  • ma1, ma2 and ma4 each independently represents an integer of 0 to 3.
  • ma3 represents an integer of 0 to 4.
  • ma1 to ma4 are respectively synonymous with ma1 to ma4 in the above formulas (DL-1) and (DL-2), and preferred ones are also the same.
  • the plurality of R a1 to R a4 may be bonded to each other to form a ring.
  • Examples of the metal complex dye represented by the formula (I) include a method described in JP2013-084594A, a method described in Japanese Patent No. 4298799, US Patent Application Publication No. 2013 / 0018189A1, and US Patent Application Publication. No. 2012 / 0073660A1, U.S. Patent Application Publication No. 2012 / 0111410A1, and U.S. Patent Application Publication No. 2010 / 0258175A1, Angew. Chem. Int. Ed. 2011, 50, p. It can be synthesized by the method described in 2054-2058, the method described in the reference cited in this document, the above-mentioned patent document relating to solar cells, a known method, or a method analogous thereto.
  • the metal complex dye represented by the formula (I) has the ligand LA and has excellent absorption characteristics in a long wavelength region.
  • the maximum absorption wavelength in the solution of the metal complex dye is preferably in the range of 300 to 1000 nm, more preferably in the range of 350 to 950 nm, and particularly preferably in the range of 370 to 900 nm.
  • metal complex dyes represented by the formula (I) are shown.
  • metal complex dyes in which at least one of —COOH is a salt of a carboxy group are also exemplified.
  • examples of the counter cation that forms a salt of a carboxy group include positive ions described in the above CI.
  • the present invention is not limited to these metal complex dyes.
  • These metal complex dyes may be any of these isomers or a mixture of these isomers when optical isomers and geometric isomers are present.
  • the following specific examples show the specific examples of the ligands LA, LD, and LX independently of each other regardless of the specific combinations of the ligands LA, LD, and LX in each specific example. Me in the specific examples represents methyl.
  • substituents include groups selected from Substituent Group T R.
  • substituent group T R when simply not listed only as a substituent are those referring to the substituent group T R, also, each of the groups, for example, an alkyl group, the only have been described If, preferable range of the corresponding group of the substituent group T R, the embodiment is applied.
  • an alkyl group is stated separately and cycloalkyl groups (e.g., wherein the substituents can take as R AA), the alkyl groups are straight chain alkyl groups and branched alkyl groups Used in meaning.
  • an alkyl group is not described separately from a cycloalkyl group (when simply described as an alkyl group), and unless otherwise specified, an alkyl group is a linear alkyl group or a branched alkyl group And cycloalkyl group.
  • a group containing a group that can take a cyclic structure alkyl group, alkenyl group, alkynyl group, etc.
  • a group containing a group that can take a cyclic structure the above alkyl ester.
  • substituent group T R for example, as in the alkyl group and a cycloalkyl group, in order to clarify the group of linear or groups and cyclic structures branched structure, and are separately these Sometimes.
  • the group contained in the substituent group T R includes groups formed by combining a plurality of groups or the following groups shown below.
  • An alkyl group preferably having 1 to 20 carbon atoms such as methyl, ethyl, isopropyl, n-butyl, t-butyl, pentyl, hexyl, heptyl, octyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxyl.
  • alkenyl groups preferably having 2 to 20 carbon atoms, such as vinyl, allyl, butenyl or oleyl
  • alkynyl groups preferably having 2 to 20 carbon atoms, such as ethynyl, butynyl or phenylethynyl
  • a cycloalkyl group preferably having 3 to 20 carbon atoms such as cyclopropyl, cyclopentyl, cyclohexyl or 4-methylcyclohexyl
  • a cycloalkenyl group preferably having 5 to 20 carbon atoms such as cyclopentenyl or cyclohexenyl
  • Aryl groups An aromatic hydrocarbon ring group, preferably having 6 to 26 carbon atoms, such as phenyl, 1-naphthyl, 4-methoxyphenyl, 2-chlorophenyl, 3-methylphenyl, difluorophenyl or tetraflu
  • aromatic heterocyclic group examples include the following groups, for example, 2-pyridyl, 4-pyridyl, 2-imidazolyl, 2-benzimidazolyl, 2-thiazolyl or 2-oxazolyl), an alkoxy group ( Preferably it has 1 to 20 carbon atoms, for example methoxy, ethoxy, isopropyloxy or benzyloxy
  • An alkenyloxy group preferably having 2 to 20 carbon atoms such as vinyloxy or allyloxy
  • an alkynyloxy group preferably having 2 to 20 carbon atoms such as 2-propynyloxy or 4-butynyloxy
  • a cycloalkyloxy group Preferably having 3 to 20 carbon atoms such as cyclopropyloxy, cyclopentyloxy, cyclohexyloxy or 4-methylcyclohexyloxy
  • aryloxy group preferably having 6 to 26 carbon atoms such as phenoxy, 1-na
  • alkoxycarbonyl group preferably having 2 to 20 carbon atoms, such as ethoxycarbonyl or 2-ethylhexyloxycarbonyl
  • a cycloalkoxycarbonyl group preferably having 4 to 20 carbon atoms, such as cyclopropyloxycarbonyl, cyclopentyloxycarbonyl or Cyclohexyloxycarbonyl
  • aryloxycarbonyl group preferably having 6 to 20 carbon atoms, for example, phenyloxycarbonyl or naphthyloxycarbonyl
  • amino group preferably having 0 to 20 carbon atoms, alkylamino group, alkenylamino group, Including alkynylamino group, cycloalkylamino group, cycloalkenylamino group, arylamino group, heterocyclic amino group, such as amino, N, N-dimethylamino, N, N-diethylamino, N Ethylamino, N-
  • An acylamino group (preferably an acylamino group having 1 to 20 carbon atoms, such as acetylamino, cyclohexylcarbonylamino or benzoylamino), a sulfonamide group (preferably an alkyl, cycloalkyl or aryl sulfonamide group having 0 to 20 carbon atoms)
  • a sulfonamide group preferably an alkyl, cycloalkyl or aryl sulfonamide group having 0 to 20 carbon atoms
  • an alkylthio group preferably having 1 to 20 carbon atoms, for example, methylthio, ethylthio , Isopropylthio, pentylthio
  • a silyl group (preferably a silyl group having 1 to 20 carbon atoms and substituted with alkyl, aryl, alkoxy and aryloxy is preferable, for example, trimethylsilyl, triethylsilyl, triisopropylsilyl, triphenylsilyl, diethylbenzylsilyl or dimethylphenylsilyl.
  • a silyloxy group (preferably a silyloxy group having 1 to 20 carbon atoms and substituted with alkyl, aryl, alkoxy and aryloxy, such as triethylsilyloxy, triphenylsilyloxy, diethylbenzylsilyloxy or dimethylphenylsilyloxy ), A hydroxy group, a cyano group, a nitro group, and a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom or an iodine atom).
  • Group selected from Substituent Group T R is more preferably an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, a heterocyclic group, an alkoxy group, cycloalkoxy group, aryloxy group, alkoxycarbonyl group, cycloalkoxy carbonyl group Amino group, acylamino group, cyano group or halogen atom, particularly preferably an alkyl group, alkenyl group, heterocyclic group, alkoxy group, alkoxycarbonyl group, amino group, acylamino group or cyano group.
  • a compound or a substituent when a compound or a substituent includes an alkyl group, an alkenyl group, etc., these may be substituted or unsubstituted.
  • an aryl group, a heterocyclic group, or the like when included, they may be monocyclic or condensed, and may be substituted or unsubstituted.
  • the conductive support is not particularly limited as long as it has conductivity and can support the photoreceptor layer 2 and the like.
  • the conductive support includes the conductive support 1 made of a conductive material, for example, a metal, or a glass or plastic substrate 44 and a transparent conductive film 43 formed on the surface of the substrate 44.
  • a conductive support 41 is preferred.
  • the conductive support 41 in which a conductive metal oxide is coated on the surface of the substrate 44 to form a transparent conductive film 43 is more preferable.
  • the substrate 44 made of plastic include a transparent polymer film described in paragraph No. 0153 of JP-A-2001-291534.
  • ceramic Japanese Patent Laid-Open No. 2005-135902
  • conductive resin Japanese Patent Laid-Open No. 2001-160425
  • tin oxide As the metal oxide, tin oxide (TO) is preferable, and fluorine-doped tin oxide such as indium-tin oxide (tin-doped indium oxide; ITO) and fluorine-doped tin oxide (FTO) is particularly preferable.
  • the coating amount of the metal oxide at this time is preferably 0.1 to 100 g per 1 m 2 of the surface area of the substrate 44.
  • light is preferably incident from the substrate 44 side.
  • Conductive supports 1 and 41 are preferably substantially transparent. “Substantially transparent” means that the transmittance of light (wavelength 300 to 1200 nm) is 10% or more, preferably 50% or more, and particularly preferably 80% or more. .
  • the thickness of the conductive supports 1 and 41 is not particularly limited, but is preferably 0.05 ⁇ m to 10 mm, more preferably 0.1 ⁇ m to 5 mm, and particularly preferably 0.3 ⁇ m to 4 mm. .
  • the thickness of the transparent conductive film 43 is preferably 0.01 to 30 ⁇ m, more preferably 0.03 to 25 ⁇ m, and particularly preferably 0.05 to 20 ⁇ m. .
  • the conductive supports 1 and 41 may have a light management function on the surface.
  • a light management function on the surface.
  • an antireflection film in which high refractive films and low refractive index oxide films described in JP-A-2003-123859 are alternately laminated may be provided on the surface, as described in JP-A-2002-260746.
  • the light guide function may be provided.
  • Photoreceptor layer Other configurations are not particularly limited as long as the photoreceptor layer includes the semiconductor fine particles 22 on which the dye 21 is supported and an electrolyte.
  • the photoreceptor layer 2 and the photoreceptor layer 42 are used.
  • the semiconductor fine particles 22 are preferably fine particles of a metal chalcogenide (eg, oxide, sulfide, selenide, etc.) or a compound having a perovskite crystal structure.
  • a metal chalcogenide eg, oxide, sulfide, selenide, etc.
  • the metal chalcogenide include titanium, tin, zinc, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium or tantalum oxide, cadmium sulfide, and cadmium selenide.
  • Preferred examples of the compound having a perovskite crystal structure include strontium titanate and calcium titanate. Of these, titanium oxide (titania), zinc oxide, tin oxide, and tungsten oxide are particularly preferable.
  • titania examples include anatase type, brookite type, and rutile type, and anatase type and brookite type are preferable. Titania nanotubes, nanowires, and nanorods can be used alone or mixed with titania fine particles.
  • the particle diameters of the semiconductor fine particles 22 are 0.001 to 1 ⁇ m as primary particles and 0.01 to 100 ⁇ m as the average particle diameter of the dispersion in terms of the average particle diameter when the projected area is converted into a circle. Is preferred.
  • Examples of a method for coating the semiconductor fine particles 22 on the conductive support 1 or 41 include a wet method, a dry method, and other methods.
  • the semiconductor fine particles 22 preferably have a large surface area so that a large amount of the dye 21 can be adsorbed.
  • the surface area thereof is preferably 10 times or more, more preferably 100 times or more the projected area.
  • it is about 5000 times.
  • the diffusion distance of the generated electrons increases, the loss due to charge recombination also increases.
  • the photoelectric conversion element and the dye-sensitized solar cell As described above, in the photoelectric conversion element and the dye-sensitized solar cell, the shorter the diffusion distance of the excited electrons, the higher the electron transport efficiency can be expected. However, if the thickness of the semiconductor layer is reduced, the photoelectric conversion efficiency may be lowered.
  • the photoelectric conversion element and the dye-sensitized solar cell of the present invention have the metal complex dye of the present invention in which a ligand LA and a ligand LD are used in combination. Thereby, both when the semiconductor layer has the conventional thickness and when the semiconductor layer is thinner than the conventional thickness, excellent photoelectric conversion efficiency is exhibited. Thus, according to this invention, the influence of the film thickness of a semiconductor layer is small, and the outstanding photoelectric conversion efficiency is exhibited.
  • the preferred thickness of the semiconductor layer 45 is not unambiguous depending on the use of the photoelectric conversion element, but is typically 0.1 to 100 ⁇ m. When used as a dye-sensitized solar cell, the thickness is more preferably 1 to 50 ⁇ m, further preferably 3 to 30 ⁇ m. In the present invention, since the metal complex dye represented by the above formula (I) is used, the thickness of the semiconductor layer 45 can be reduced. For example, within the above preferable range, it can be 8 ⁇ m or less, and further 6 ⁇ m or less.
  • the semiconductor fine particles 22 are preferably applied to the conductive support 1 or 41 and then baked at a temperature of 100 to 800 ° C. for 10 minutes to 10 hours to bring the particles into close contact with each other.
  • the film forming temperature is preferably 60 to 600 ° C. when glass is used as the material of the conductive support 1 or the substrate 44.
  • the coating amount of the semiconductor fine particles 22 per 1 m 2 of the surface area of the conductive support 1 or 41 is preferably 0.5 to 500 g, more preferably 5 to 100 g.
  • a short-circuit prevention layer In order to prevent contact between the light receiving electrode 5 or 40 and the counter electrode 4 or 48, it is preferable to use a spacer S (see FIG. 2) or a separator.
  • At least one metal complex dye represented by the above formula (I) is used as a sensitizing dye.
  • the metal complex dye represented by the formula (I) is as described above.
  • examples of the dye that can be used in combination with the metal complex dye of the above formula (I) include a Ru complex dye, a squarylium cyanine dye, an organic dye, a porphyrin dye, and a phthalocyanine dye.
  • Ru complex dye examples include Ru complex dyes described in JP-A-7-500630 (especially synthesized in Examples 1 to 19 on page 5, lower left column, line 5 to page 7, upper right column, line 7). Dyes), Ru complex dyes described in JP-T-2002-512729 (especially dyes synthesized in Examples 1 to 16 on the third line to the 29th line from the bottom of page 20), JP, Ru complex dyes described in JP 2001-59062 (particularly dyes described in paragraphs 0087 to 0104), Ru complex dyes described in JP 2001-6760 A (particularly, dyes described in paragraphs 0093 to 0102) ), Ru complex dyes described in JP-A No. 2001-253894 (particularly dyes described in paragraph Nos.
  • Ru complex dyes described in JP-A No. 2003-212851 particularly paragraph No. 0005 Described
  • Ru complex dyes described in International Publication No. 2007/91525 especially dyes described in [0067]
  • Ru complex dyes described in Japanese Patent Application Laid-Open No. 2001-291534 particularly, paragraphs 0120 to 0144
  • Ru complex dyes described in JP2012-012570 especially dyes described in paragraphs 0095 to 0103
  • Ru metal complex dyes described in JP2013-084594A especially And dyes described in paragraphs 0072 to 0081
  • Ru complex dyes described in International Publication No. 2013/088888 particularly, dyes described in [0286] to [0293]
  • International Publication Nos. 2013/47615 Ru complex dyes described in the above (especially dyes described in [0078] to [0082]).
  • squarylium cyanine dyes described in JP-A No. 11-214730 particularly dyes described in paragraphs 0036 to 0047
  • squarylium cyanine dyes described in JP-A No. 2012-144688 in particular, And dyes described in paragraphs 0039 to 0046 and 0054 to 0060
  • squarylium cyanine dyes described in JP 2012-84503 A in particular, dyes described in paragraphs 0066 to 0076 and the like.
  • organic dyes described in JP-A No. 2004-063274 particularly dyes described in paragraph Nos. 0017 to 0021
  • organic dyes described in JP-A No. 2005-123033 particularly paragraph numbers.
  • porphyrin dyes examples include Angew. Chem. Int. Ed. 49, p. 1-5 (2010), and the like.
  • phthalocyanine dye examples include Angew. Chem. Int. Ed. 46, p. 8358 (2007) and the like.
  • the dye that can be used in combination is preferably a Ru complex dye, a squarylium cyanine dye, or an organic dye.
  • the total amount of the dye used is preferably 0.01 to 100 mmol, more preferably 0.1 to 50 mmol, particularly preferably 0.1 to 10 mmol per 1 m 2 of the surface area of the conductive support 1 or 41. is there.
  • the amount of the dye 21 adsorbed on the semiconductor fine particles 22 is preferably 0.001 to 1 mmol, more preferably 0.1 to 0.5 mmol, with respect to 1 g of the semiconductor fine particles 22. By using such a dye amount, the sensitizing effect in the semiconductor fine particles 22 can be sufficiently obtained.
  • the ratio of the mass of the metal complex dye represented by the formula (I) / the mass of the other dye is 95/5 to 10/90. Is preferred, 95/5 to 50/50 is more preferred, 95/5 to 60/40 is more preferred, 95/5 to 65/35 is particularly preferred, and 95/5 to 70/30 is most preferred.
  • the surface of the semiconductor fine particles 22 may be treated with an amine compound.
  • Preferable amine compounds include pyridine compounds (for example, 4-t-butylpyridine, polyvinylpyridine) and the like. In the case of a liquid, these may be used as they are, or may be used after being dissolved in an organic solvent.
  • a coadsorbent in the present invention, it is preferable to use a coadsorbent together with the metal complex dye represented by the formula (I) or a dye used in combination as necessary.
  • a co-adsorbent a co-adsorbent having at least one acidic group (preferably, a carboxy group or a salt thereof) is preferable, and examples thereof include a compound having a fatty acid or a steroid skeleton.
  • the fatty acid may be a saturated fatty acid or an unsaturated fatty acid, and examples thereof include butanoic acid, hexanoic acid, octanoic acid, decanoic acid, hexadecanoic acid, dodecanoic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid.
  • Examples of the compound having a steroid skeleton include cholic acid, glycocholic acid, chenodeoxycholic acid, hyocholic acid, deoxycholic acid, lithocholic acid, ursodeoxycholic acid and the like. Preferred are cholic acid, deoxycholic acid and chenodeoxycholic acid, and more preferred are chenodeoxycholic acid.
  • a preferred co-adsorbent is a compound represented by the following formula (CA).
  • R A1 represents a substituent having an acidic group.
  • R A2 represents a substituent.
  • nA represents an integer of 0 or more.
  • the acidic group is synonymous with the acidic group of the above formula (AL-1), and the preferred range is also the same.
  • R A1 is preferably a carboxy group, a sulfo group, or an alkyl group substituted by a salt thereof, —CH (CH 3 ) CH 2 CH 2 CO 2 H, —CH (CH 3 ) CH 2 CH 2. More preferred is CONHCH 2 CH 2 SO 3 H.
  • the R A2 include groups selected from the above substituent group T R. Of these, an alkyl group, a hydroxy group, an acyloxy group, an alkylaminocarbonyloxy group or an arylaminocarbonyloxy group is preferable, and an alkyl group, a hydroxy group or an acyloxy group is more preferable.
  • nA is preferably 2 to 4.
  • the co-adsorbent has an effect of suppressing inefficient association of the metal complex dye by adsorbing to the semiconductor fine particles 22 and an effect of preventing reverse electron transfer from the surface of the semiconductor fine particles to the redox system in the electrolyte.
  • the amount of the co-adsorbent used is not particularly limited, but from the viewpoint of effectively expressing the above action, it is preferably 1 to 200 mol, more preferably 10 to 150 mol, relative to 1 mol of the metal complex dye. Particularly preferred is 20 to 50 mol.
  • the light scattering layer is different from the semiconductor layer in that it has a function of scattering incident light.
  • the light scattering layer 46 preferably contains rod-like or plate-like metal oxide particles. Examples of the metal oxide particles used in the light scattering layer 46 include the metal chalcogenide (oxide) particles.
  • the thickness of the light scattering layer is preferably 10 to 50% of the thickness of the photoreceptor layer 42.
  • the light scattering layer 46 is preferably a light scattering layer described in JP-A No. 2002-289274, and the description of JP-A No. 2002-289274 is preferably incorporated in the present specification as it is.
  • the charge transfer body layers 3 and 47 used in the photoelectric conversion element of the present invention are layers having a function of replenishing electrons to the oxidant of the dye 21 and are provided between the light receiving electrode 5 or 40 and the counter electrode 4 or 48. It is done.
  • the charge transfer layer 3 and 47 contains an electrolyte.
  • “the charge transfer layer contains an electrolyte” means to include both modes of the mode in which the charge transfer layer is made of only an electrolyte and the mode containing an electrolyte and a substance other than the electrolyte.
  • the charge transfer body layers 3 and 47 may be solid, liquid, gel, or a mixed state thereof.
  • Electrolytes examples include a liquid electrolyte in which a redox couple is dissolved in an organic solvent, a molten salt containing a redox couple, and a so-called gel electrolyte in which a polymer matrix is impregnated with a liquid in which a redox couple is dissolved in an organic solvent. .
  • a liquid electrolyte is preferable at the point of photoelectric conversion efficiency.
  • iodine and iodide As an oxidation-reduction pair, for example, iodine and iodide (iodide salt, ionic liquid is preferable, lithium iodide, tetrabutylammonium iodide, tetrapropylammonium iodide, methylpropylimidazolium iodide are preferable)
  • iodine and iodide iodide salt, ionic liquid is preferable
  • lithium iodide, tetrabutylammonium iodide, tetrapropylammonium iodide, methylpropylimidazolium iodide are preferable
  • a combination of an alkyl viologen eg, methyl viologen chloride, hexyl viologen bromide, benzyl viologen tetrafluoroborate
  • polyhydroxybenzene e
  • the cobalt complex is preferably a complex represented by the formula (CC) described in paragraphs 0144 to 0156 of JP2014-82189A, and described in paragraphs 0144 to 0156 of JP2014-82189A. It is preferably incorporated in the present specification as it is.
  • iodine and iodide When a combination of iodine and iodide is used as the electrolyte, it is preferable to further use an iodine salt of a 5-membered or 6-membered nitrogen-containing aromatic cation.
  • the organic solvent used for the liquid electrolyte and the gel electrolyte is not particularly limited, but an aprotic polar solvent (for example, acetonitrile, propylene carbonate, ethylene carbonate, dimethylformamide, dimethyl sulfoxide, sulfolane, 1,3-dimethylimidazolinone, 3 -Methyloxazolidinone etc.) are preferred.
  • the organic solvent used for the liquid electrolyte is preferably a nitrile compound, an ether compound, an ester compound, more preferably a nitrile compound, and particularly preferably acetonitrile or methoxypropionitrile.
  • Molten salts include ionic liquids containing imidazolium or triazolium cations, ionic liquids containing oxazolium cations, ionic liquids containing pyridinium cations, ionic liquids containing guanidinium cations, and these A combination is preferred. Moreover, you may combine a specific anion with respect to these cations. Additives may be added to these molten salts.
  • the molten salt may have a liquid crystalline substituent.
  • the molten salt of a quaternary ammonium salt can also be used as the molten salt.
  • molten salts other than these for example, flowability at room temperature was imparted by mixing polyethylene oxide with lithium iodide and at least one other lithium salt (for example, lithium acetate, lithium perchlorate, etc.). And the like.
  • the amount of the polymer added is 1 to 50% by mass.
  • ⁇ -butyrolactone may be included in the electrolytic solution, thereby increasing the diffusion efficiency of iodide ions and improving the photoelectric conversion efficiency.
  • polymer (polymer matrix) used for the gel electrolyte matrix examples include polyacrylonitrile and polyvinylidene fluoride.
  • the electrolyte may be made pseudo-solid by adding a gelling agent to an electrolyte solution composed of an electrolyte and a solvent to cause gelation (the pseudo-solid electrolyte is also referred to as “pseudo-solid electrolyte” hereinafter).
  • the gelling agent include organic compounds having a molecular weight of 1000 or less, Si-containing compounds having a molecular weight in the range of 500 to 5000, organic salts made of a specific acidic compound and a basic compound, sorbitol derivatives, and polyvinylpyridine.
  • a method of confining a polymer matrix, a crosslinkable polymer compound or monomer, a crosslinking agent, an electrolyte, and a solvent in the polymer may be used.
  • the polymer matrix is preferably a polymer having a nitrogen-containing heterocycle in the main chain or side chain repeating unit, a cross-linked product obtained by reacting these with an electrophilic compound, a polymer having a triazine structure, or a polymer having a ureido structure.
  • Molecules compounds containing liquid crystal compounds, polymers having an ether bond, polyvinylidene fluoride, methacrylates, acrylates, thermosetting resins, crosslinked polysiloxanes, polyvinyl alcohol (PVA), inclusion compounds such as polyalkylene glycols and dextrins, Examples include systems to which oxygen-containing or sulfur-containing polymers are added, natural polymers, and the like.
  • An alkali swelling polymer, a polymer having a compound capable of forming a charge transfer complex of a cation moiety and iodine in one polymer, and the like may be added to these.
  • a system containing a crosslinked polymer obtained by reacting a bifunctional or higher functional isocyanate group with a functional group such as a hydroxy group, an amino group, or a carboxy group may be used.
  • a crosslinking method in which a crosslinked polymer composed of a hydrosilyl group and a double bond compound, polysulfonic acid, polycarboxylic acid, or the like is reacted with a divalent or higher valent metal ion compound may be used.
  • Examples of the solvent that can be preferably used in combination with the quasi-solid electrolyte include a specific phosphate ester, a mixed solvent containing ethylene carbonate, a solvent having a specific dielectric constant, and the like.
  • the liquid electrolyte solution may be held in the solid electrolyte membrane or the pores.
  • a preferred method for holding the liquid electrolyte solution is a method using a cloth-like solid such as a conductive polymer film, a fibrous solid, or a filter.
  • electrolytes include aminopyridine compounds, benzimidazole compounds, aminotriazole compounds and aminothiazole compounds, imidazole compounds, aminotriazine compounds, urea compounds, amide compounds, and pyrimidines. It may contain a compound or a nitrogen-free heterocycle.
  • Preferred methods for controlling moisture include a method for controlling the concentration and a method in which a dehydrating agent is allowed to coexist. It is preferable to adjust the water content (content ratio) of the electrolytic solution to 0 to 0.1% by mass.
  • Iodine can also be used as an inclusion compound of iodine and cyclodextrin. Cyclic amidine may be used, and an antioxidant, hydrolysis inhibitor, decomposition inhibitor, and zinc iodide may be added.
  • a solid charge transport layer such as a p-type semiconductor or a hole transport material, for example, CuI, CuNCS or the like can be used. Also, Nature, vol. 486, p. The electrolyte described in 487 (2012) or the like may be used.
  • An organic hole transport material may be used as the solid charge transport layer.
  • the organic hole transport material is preferably a conductive polymer such as polythiophene, polyaniline, polypyrrole and polysilane, and a spiro compound in which two rings share a central element having a tetrahedral structure such as C and Si, triarylamine, etc. And aromatic amine derivatives, triphenylene derivatives, nitrogen-containing heterocyclic derivatives, and liquid crystalline cyano derivatives.
  • the redox couple becomes an electron carrier, it is preferably contained at a certain concentration.
  • a preferable concentration is 0.01 mol / L or more in total, more preferably 0.1 mol / L or more, and particularly preferably 0.3 mol / L or more.
  • the upper limit in this case is not particularly limited, but is usually about 5 mol / L.
  • the counter electrodes 4 and 48 preferably function as positive electrodes of the dye-sensitized solar cell.
  • the counter electrodes 4 and 48 can usually have the same configuration as that of the conductive support 1 or 41, but the substrate 44 is not necessarily required in a configuration in which the strength is sufficiently maintained.
  • As the structure of the counter electrodes 4 and 48 a structure having a high current collecting effect is preferable.
  • At least one of the conductive support 1 or 41 and the counter electrode 4 or 48 must be substantially transparent.
  • the conductive support 1 or 41 is preferably transparent, and sunlight is preferably incident from the conductive support 1 or 41 side.
  • the counter electrodes 4 and 48 have a property of reflecting light.
  • a glass or plastic on which a metal or conductive oxide is vapor-deposited is preferable, and a glass on which platinum is vapor-deposited is particularly preferable.
  • the present invention includes, for example, Japanese Patent No. 4260494, Japanese Patent Application Laid-Open No. 2004-146425, Japanese Patent Application Laid-Open No. 2000-340269, Japanese Patent Application Laid-Open No. 2002-289274, Japanese Patent Application Laid-Open No. 2004-152613, and Japanese Patent Application Laid-Open No. 9-27352. It can be applied to the photoelectric conversion element and the dye-sensitized solar cell described in the publication.
  • the photoelectric conversion element and the dye-sensitized solar cell of the present invention are preferably produced using a dye solution (the dye solution of the present invention) containing the metal complex dye of the present invention and a solvent.
  • the metal complex dye of the present invention is dissolved in a solvent and may contain a co-adsorbent and other components as necessary.
  • the solvent to be used examples include, but are not limited to, the solvents described in JP-A No. 2001-291534.
  • an organic solvent is preferable, and an alcohol solvent, an amide solvent, a nitrile solvent, a hydrocarbon solvent, and a mixed solvent of two or more of these are more preferable.
  • a mixed solvent of an alcohol solvent and a solvent selected from an amide solvent, a nitrile solvent, or a hydrocarbon solvent is preferable. More preferably, alcohol solvent and amide solvent, mixed solvent of alcohol solvent and hydrocarbon solvent, mixed solvent of alcohol solvent and nitrile solvent, particularly preferable mixed solvent of alcohol solvent and amide solvent, mixed solvent of alcohol solvent and nitrile solvent It is.
  • a mixed solvent of at least one of methanol, ethanol, propanol and t-butanol and at least one of dimethylformamide and dimethylacetamide, at least one of methanol, ethanol, propanol and t-butanol, and acetonitrile is preferable.
  • the dye solution preferably contains a co-adsorbent.
  • the co-adsorbent the above-mentioned co-adsorbent is preferable, and among them, the compound represented by the above formula (CA) is preferable.
  • the dye solution of the present invention is a dye solution in which the concentration of the metal complex dye or coadsorbent is adjusted so that the solution can be used as it is when producing a photoelectric conversion element or a dye-sensitized solar cell. Is preferred.
  • the dye solution of the present invention preferably contains 0.001 to 0.1% by mass of the metal complex dye of the present invention. The amount of coadsorbent used is as described above.
  • the water content of the dye solution is preferably adjusted.
  • the water content is preferably adjusted to 0 to 0.1% by mass.
  • the photoreceptor layer is preferably prepared by supporting the metal complex dye represented by the formula (I) or a dye containing the same on the surface of the semiconductor fine particles using the dye solution. That is, the photoreceptor layer is preferably formed by applying the above dye solution (including a dip method) to semiconductor fine particles provided on a conductive support, and drying or curing.
  • the photoelectric conversion element or the dye-sensitized solar cell of the present invention can be obtained by further providing a charge transfer layer, a counter electrode, and the like on the light-receiving electrode provided with the photoreceptor layer thus prepared.
  • the dye-sensitized solar cell is manufactured by connecting the external circuit 6 to the conductive support 1 and the counter electrode 4 of the photoelectric conversion element manufactured as described above.
  • room temperature means 25 ° C.
  • Me represents methyl
  • Et represents ethyl
  • TBA represents tetrabutylammonium.
  • the metal complex dye and synthetic intermediate synthesized in Example 1 were identified by MS (mass spectrum) measurement and 1 H-NMR measurement. Since the synthesized TBA salt of the metal complex dye is protonated and has the same mass as the electrically neutral metal complex dye in the MS measurement, the result of the MS measurement is omitted for the TBA salt. Further, the synthesized terpyridine compound (ethyl ester of ligand LA) was identified by MS measurement and 1 H-NMR measurement.
  • Example 1 Synthesis of metal complex dye
  • the metal complex dyes D-1 to D-33 synthesized in this example are shown below.
  • the metal complex dyes (D-2) to (D-33) and the metal complex dye (D-1TBA) to ( D-33TBA) was synthesized respectively.
  • the synthesized metal complex dyes (D-2) to (D-33) were confirmed from the data shown in Table 1 below.
  • AC-1 to AC-6 which are diethyl esterified products of the synthesized terpyridine compound, were respectively confirmed from the data in Table 2 below. Further, terpyridine compounds AC-1, AC-5 and AC-6 were also confirmed from 1 H-NMR data shown in FIGS. 4 to 6, respectively.
  • the 1 H-NMR of AC-1 (FIG. 4), AC-5 (FIG. 5), and AC-6 (FIG. 6), which are diethyl esterified terpyridine compounds, were obtained by using tetramethylsilane with CDCl 3 solvent, respectively. Measurement was performed at a proton resonance frequency of 400 MHz using (TMS) as an internal standard substance.
  • TMS tetramethylsilane
  • AC-1 which is a diethyl esterified product of a terpyridine compound
  • the visible absorption spectrum of the synthesized metal complex dye (D-1) was measured.
  • the metal complex dye (D-1) was dissolved in a TBAOH methanol solution having a concentration of 340 mmol / L to prepare a TBAOH methanol solution having a metal complex dye (D-1) concentration of 17 ⁇ mol / L.
  • the absorption spectrum of the metal complex dye (D-1) was measured.
  • “UV-3600” manufactured by Shimadzu Corporation
  • the visible absorption spectra of the metal complex dyes (D-16) to (D-19) and (D-24) were measured. The obtained absorption spectrum is shown in FIG.
  • Example 2 (Production of dye-sensitized solar cell) Using the metal complex dyes (D-1) to (D-33) and (D-1TBA) to (D-33TBA) synthesized in Example 1 or the following comparative compounds (c-1) to (c-4), respectively.
  • the dye-sensitized solar cell 20 (5 mm ⁇ 5 mm scale) shown in FIG. 2 was manufactured. Manufacture was performed according to the following procedure. The following performance of each of the produced dye-sensitized solar cells 20 was evaluated. The results are shown in Table 3-1 and Table 3-2.
  • a fluorine-doped SnO 2 conductive film (transparent conductive film 43, film thickness: 500 nm) was formed on a glass substrate (substrate 44, thickness 4 mm) to produce a conductive support 41.
  • titania paste “18NR-T” (manufactured by DyeSol) was screen printed on the SnO 2 conductive film and dried at 120 ° C.
  • the titania paste “18NR-T” was screen-printed again and dried at 120 ° C. for 1 hour. Thereafter, the dried titania paste was baked in air at 500 ° C. to form a semiconductor layer 45 (layer thickness: 10 ⁇ m).
  • a titania paste “18NR-AO” manufactured by DyeSol was screen-printed on the semiconductor layer 45 and dried at 120 ° C. for 1 hour. Thereafter, the dried titania paste was baked at 500 ° C., and a light scattering layer 46 (layer thickness: 5 ⁇ m) was formed on the semiconductor layer 45. In this manner, the photoreceptor layer 42 (light receiving surface area: 5 mm ⁇ 5 mm, layer thickness: 15 ⁇ m, metal complex dye not supported) is formed on the SnO 2 conductive film, and the metal complex dye is not supported.
  • a light receiving electrode precursor [A] was prepared.
  • a fluorine-doped SnO 2 conductive film (transparent conductive film 43, film thickness: 500 nm) was formed on a glass substrate (substrate 44, thickness 4 mm) to produce a conductive support 41. Then, titania paste “18NR-T” (manufactured by DyeSol) was screen printed on the SnO 2 conductive film and dried at 120 ° C. Thereafter, the dried titania paste was baked in air at 500 ° C. to form a semiconductor layer 45 (light receiving surface area; 5 mm ⁇ 5 mm, layer thickness; 6 ⁇ m).
  • a photoreceptor layer 42 (light receiving surface area: 5 mm ⁇ 5 mm, layer thickness: 6 ⁇ m, metal complex dye not supported) without the light scattering layer 46 is formed, A light receiving electrode precursor [B] carrying no metal complex dye was prepared.
  • each of the metal complex dyes ((D-1) to (D-33) and (D-1TBA) to (D-33TBA) synthesized in Example 1 on the photoreceptor layer 42 that does not carry a metal complex dye. )
  • a 1: 1 (volume ratio) mixed solvent of t-butanol and acetonitrile so as to have a concentration of 2 ⁇ 10 ⁇ 4 mol / L, and the coadsorbent is further dissolved therein.
  • 30 mol of deoxycholic acid was added to 1 mol of the above metal complex dye to prepare each dye solution.
  • the light receiving electrode precursor [A] was immersed in each dye solution at 25 ° C. for 20 hours, pulled up from the dye solution, and then dried. In this way, each of the light receiving electrodes 40 in which each metal complex dye was supported on the light receiving electrode precursor [A] was produced.
  • each metal complex dye was supported on the light-receiving electrode precursor [B], and light-receiving electrodes 40 each having the metal complex dye supported on the light-receiving electrode precursor [B] were produced.
  • a platinum electrode (Pt thin film thickness: 100 nm) having the same shape and size as the conductive support 41 was prepared.
  • an electrolytic solution iodine 0.1M (mol / L), lithium iodide 0.1M, 4-t-butylpyridine 0.5M and 1,2-dimethyl-3-propylimidazolium iodide 0.6M were used.
  • a liquid electrolyte was prepared by dissolving in acetonitrile.
  • a spacer S “Surlin” (trade name, manufactured by DuPont) having a shape matched to the size of the photoreceptor layer 42 was prepared.
  • Each of the light-receiving electrodes 40 and the counter electrode 48 manufactured as described above are thermocompression-bonded so as to face each other via the spacer S, and then the electrolyte solution injection port is interposed between the photoreceptor layer 42 and the counter electrode 48.
  • the charge transfer layer 47 was formed by filling the liquid electrolyte.
  • the outer periphery of the battery thus produced and the electrolyte injection port were sealed and cured using Resin XNR-5516 (manufactured by Nagase Chemtech), and each dye-sensitized solar cell (sample numbers 1 to 33) was Manufactured.
  • the dye-sensitized solar cells of the respective sample numbers include those using electrically neutral metal complex dyes (D-1 to D-33) and TBA salt metal complex dyes (D-1TBA to D-33TBA). 2 types including those using.
  • the dye-sensitized solar cell using an electrically neutral metal complex dye is a dye-sensitized solar cell manufactured using the light-receiving electrode precursor [A] ( 2) including a sample number “A”) and a dye-sensitized solar cell manufactured using the light receiving electrode precursor [B] (a sample number “B” may be added).
  • a dye-sensitized solar cell using a metal complex dye of a TBA salt was manufactured using a dye-sensitized solar cell manufactured using a light-receiving electrode precursor [A] and a light-receiving electrode precursor [B]. Includes two types of dye-sensitized solar cells.
  • the metal complex dye (c-1) is the compound “Dye-604” described in Patent Document 1.
  • the metal complex dye (c-2) is a compound described in [0042] of Patent Document 3.
  • the metal complex dye (c-3) is the compound “D-9” described in Patent Document 2.
  • the metal complex dye (c-4) is the compound “Example 2 (A-2)” of Patent Document 4.
  • ⁇ Test of photoelectric conversion efficiency> A battery characteristic test was performed using each of the produced dye-sensitized solar cells. The battery characteristic test was performed by irradiating 1000 W / m 2 of simulated sunlight from a xenon lamp through an AM1.5 filter using a solar simulator (WXS-85H, manufactured by WACOM). The current-voltage characteristics were measured using an IV tester to determine the photoelectric conversion efficiency.
  • conversion efficiency (A) For each dye-sensitized solar cell of each sample number, each of the dye-sensitized solar cells (sample numbers 1A to 33A and c1A to c4A) manufactured using the light receiving electrode precursor [A] is subjected to photoelectric conversion as described above. Efficiency was measured (referred to as conversion efficiency (A)). The measured conversion efficiency (A) was evaluated. The evaluation was based on the conversion efficiency (S A ) of the dye-sensitized solar cell (sample number c1A) produced using the light receiving electrode precursor [A]. In the evaluation criteria for the conversion efficiency (A), “A” and “B” are acceptable levels of this test, and preferably “A”.
  • Conversion efficiency (A) is compared to conversion efficiency (S A )
  • conversion efficiency (B) As described above, the dye-sensitized solar cells (sample numbers 1B to 33B and c1B to c4B) manufactured using the light-receiving electrode precursor [B] among the dye-sensitized solar cells of the respective sample numbers are also subjected to photoelectric conversion as described above. Conversion efficiency was measured (referred to as conversion efficiency (B)). The measured conversion efficiency (B) was evaluated. The evaluation was based on the conversion efficiency (S A ) of the dye-sensitized solar cell (sample number c1A) produced using the light receiving electrode precursor [A]. In the evaluation criteria for the conversion efficiency (B), “A” and “B” are acceptable levels of this test, and preferably “A”.
  • Conversion efficiency (B) is compared to conversion efficiency (S A ) A: More than 1.1 times B: More than 1.0 times, 1.1 times or less C: More than 0.9 times, 1.0 times or less D: 0.9 times or less
  • Dye-sensitized solar cells (sample numbers 1A to 33A and c1A to c4A) manufactured using the light-receiving electrode precursor [A] among the dye-sensitized solar cells of the respective sample numbers are used for durability (thermal degradation).
  • a heat cycle test was performed as an evaluation. Each dye-sensitized solar cell was alternately placed in a ⁇ 10 ° C. freezer and a 50 ° C. thermostat every 12 hours, and cooling and heating were repeated (heat cycle test). The current was measured for each of the dye-sensitized solar cell before the heat cycle test and the dye-sensitized solar cell after 72 hours of the heat cycle test.
  • the current value (short-circuit current density) obtained from the current-voltage characteristic measurement in the dye-sensitized solar cell 72 hours after the heat cycle test is the current value (short-circuit current density) measured in the dye-sensitized solar cell before the heat cycle test. Divided by. This value was defined as the current retention rate. Durability was evaluated according to the following criteria based on the current retention ratio thus obtained. In the durability evaluation criteria, “A” and “B” are acceptable levels of this test, and preferably “A”. (Evaluation criteria for durability) A: 0.9 times or more B: Less than 0.9 times, 0.8 times or more C: Less than 0.8 times, 0.7 times or more D: Less than 0.7 times
  • the ligand is a metal represented by the ligand LA represented by the above formula (AL-1), one nitrogen atom, and an anion of at least one atom.
  • Metal complex dyes (D-1 to D-33) combined with a bidentate or tridentate ligand LD coordinated to the ion M were used.
  • the conversion efficiency (B) was high, and the current holding ratio was also high.
  • n in the formula (AL-1) is 2 or 3, excellent conversion efficiency (B) can be obtained.
  • the same result was obtained even if the metal complex dye of this invention was electrically neutral or TBA salt.
  • the metal complex dye of the present invention could be suitably used as a sensitizing dye of the photoelectric conversion element and dye-sensitized solar cell of the present invention.
  • the dye solution of the present invention containing the metal complex dye of the present invention and a solvent could be suitably used for the preparation of semiconductor fine particles carrying the metal complex dye of the present invention.
  • the terpyridine compound of the present invention was suitable as a ligand for the metal complex dye of the present invention, and particularly its esterified product was suitable as a ligand precursor for the metal complex dye of the present invention.
  • the photoelectric conversion element and the dye-sensitized solar cell of sample number c3 used a metal complex dye having a ligand in which one thiophene ring group was bonded to the coordinate atom at the 3-position.
  • none of the conversion efficiencies and current holding ratios reached acceptable levels.

Abstract

 導電性支持体と、電解質を含む感光体層と、電解質を含む電荷移動体層と、対極とを有する光電変換素子であって、感光体層が特定の式で表される金属錯体色素が担持された半導体微粒子を有する光電変換素子および色素増感太陽電池、ならびに、これらに用いられる金属錯体色素、色素溶液およびターピリジン化合物またはそのエステル化物。

Description

光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、およびターピリジン化合物またはそのエステル化物
 本発明は、光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、およびターピリジン化合物またはそのエステル化物に関する。
 光電変換素子は、各種の光センサー、複写機、太陽電池等の光電気化学電池等に用いられている。この光電変換素子には、金属を用いた方式、半導体を用いた方式、有機顔料や色素を用いた方式、または、これらを組み合わせた方式等の様々な方式が実用化されている。特に、非枯渇性の太陽エネルギーを利用した太陽電池は、燃料が不要であり、無尽蔵のクリーンエネルギーを利用するものとして、その本格的な実用化が大いに期待されている。そのなかでも、シリコン系太陽電池は古くから研究開発が進められ、各国の政策的な配慮もあって普及が進んでいる。しかし、シリコンは無機材料であり、スループットおよびコスト等の改良には自ずと限界がある。
 そこで、金属錯体色素を用いた光電気化学電池(色素増感太陽電池ともいう)の研究が精力的に行われている。特にその契機となったのは、スイス ローザンヌ工科大学のGraetzel等の研究成果である。彼らは、ポーラス酸化チタン膜の表面にルテニウム錯体からなる色素を固定した構造を採用し、アモルファスシリコン並の光電変換効率を実現した。これにより、高価な真空装置を使用しなくても製造できる色素増感太陽電池が一躍世界の研究者から注目を集めるようになった。
 現在までに、色素増感太陽電池に使用される金属錯体色素として、一般的に、N3、N719、N749(ブラックダイともいう)、Z907、J2と呼ばれる色素等が開発されている。しかし、これらの色素を用いた光電変換素子および色素増感太陽電池は、いずれも、光電変換効率および耐久性(熱安定性)の点で十分ではない。
 そこで、光電変換素子および色素増感太陽電池の光電変換効率または耐久性を向上させる金属錯体色素の開発が進められている。
 例えば、特許文献1には、末端ピリジン環の金属イオンに配位する環構成窒素原子に対して3位に複数のチオフェン環基を連結して導入したターピリジン配位子と3個の単座の配位子とを有する金属錯体色素が記載されている。また、この金属錯体色素を用いた光電気化学電池が、高光電変換効率を達成し、しかも耐久性に優れていたことも記載されている。
 特許文献2には、末端ピリジン環の金属イオンに配位する環構成窒素原子に対して3位に1つのチオフェン環基が結合したターピリジン配位子と、特定の置換基で置換された環状の基を持つドナー配位子とを有する金属錯体色素が記載されている。また、この金属錯体色素を用いた光電気化学電池が、性能のバラツキの低減と、光電変換効率および耐久性の向上とを両立できたことも記載されている。
 特許文献3には、末端ピリジン環および中央ピリジン環の少なくとも一方に複数のチオフェン環基を連結して導入したターピリジン配位子と、3個の単座の配位子またはビピリジン配位子とを持つ金属錯体色素が記載されている。また、この金属錯体色素を用いた光電気化学電池が、光電変換効率が高く、耐久性に優れていたことも記載されている。
 特許文献4には、末端ピリジン環の金属イオンに配位する環構成窒素原子に対して2位または3位に1つのチオフェン環基が結合した3座の配位子、および、この配位子と3個のチオイソシアネートアニオンを有する金属錯体が記載されている。
特開2013-67773号公報 特開2013-229285号公報 特開2012-36237号公報 米国特許出願公開第2012/0247561号明細書
 しかし、近年、光電変換素子および色素増感太陽電池の研究、開発が盛んに行われ、要求性能が高くなっている。特に光電変換効率および耐久性のさらなる改善、向上が望まれている。
 光電変換素子および色素増感太陽電池において、半導体微粒子で形成され、金属錯体色素を担持する層(半導体層ともいう)は、通常、十~数百μmの厚みを有する層に形成される。このような光電変換素子および色素増感太陽電池においても、薄型化(小型化)、軽量化が求められている。ところが、光電変換効率は、半導体層の膜厚によって変動し、膜厚が薄くなるほど低下する傾向がある。したがって、半導体層の膜厚を薄くした場合においても、優れた光電変換効率を発揮することが望まれている。
 本発明は、半導体層の膜厚の影響が小さく、特に膜厚を薄くしても優れた光電変換効率を発揮し、耐久性も高い光電変換素子および色素増感太陽電池、ならびに、これらに用いられる金属錯体色素、色素溶液、およびターピリジン化合物またはそのエステル化物を提供することを課題とする。
 本発明者らは、光電変換素子および色素増感太陽電池に用いられる金属錯体色素に、配位原子に対して4位の環構成原子に複数のチオフェン環基を連結させて導入した含窒素芳香族環を端部に持つ3座の配位子と、少なくとも1つの窒素原子および少なくとも1つの原子のアニオンで金属イオンに配位する2座もしくは3座の配位子とを組み合わせて用いると、光電変換効率および耐久性のさらなる向上、さらには半導体層が薄膜であっても高い光電変換効率を実現できることを見出した。本発明はこれらの知見に基づいて完成された。
 すなわち、本発明の課題は、以下の手段によって達成された。
<1>導電性支持体と、電解質を含む感光体層と、電解質を含む電荷移動体層と、対極とを有する光電変換素子であって、感光体層が、下記式(I)で表される金属錯体色素が担持された半導体微粒子を有する光電変換素子。
   式(I)   M(LA)(LD)(LX)mX・(CI)mY
 式中、Mは金属イオンを表す。
 LAは、下記式(AL-1)で表される3座の配位子を表す。
 LDは2座の配位子またはLAとは異なる3座の配位子を表す。LDの、金属イオンMと結合する配位原子のうちの少なくとも1つが窒素原子であり、少なくとも1つがアニオンである。
 LXは、単座の配位子を表す。mXはLDが2座の配位子のとき1を表し、LDが3座の配位子のとき0を表す。
 CIは金属錯体色素の電荷を中和させるために必要な対イオンを表す。mYは0~3の整数を表す。
Figure JPOXMLDOC01-appb-C000014
 式中、ZaおよびZbは各々独立に5員もしくは6員の環を形成するのに必要な非金属原子群を表す。ただし、ZaおよびZbがそれぞれ形成する環の少なくとも一方には1つ以上の酸性基を有する。Lは各々独立に窒素原子またはCRを表し、Rは水素原子または置換基を表す。
 Gは、下記式(X-1)~(X-3)のいずれかの式で表される環基を表す。nは2~7の整数を表す。Tは水素原子または置換基を表す。-(G)n-T基は酸性基およびアミノ基を有さない。
Figure JPOXMLDOC01-appb-C000015
 式中、Zt2およびZt3はそれぞれ式(X-2)または(X-3)中のチオフェン環と縮合環を形成するのに必要な非金属原子群を表す。
 RT1、RT2およびRT3は各々独立に置換基を表す。PT1は0~2の整数を表す。PT2およびPT3は各々独立に0以上の整数であり、式(X-2)または(X-3)で表される基が無置換であるときの水素原子数以下である。
 *は、Lを含む環、他のGまたはTとの結合位置を表す。
<2>式(X-1)で表される環基が、下記式(X-1a)~(X-1c)のいずれかの式で表される環基である<1>に記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000016
 式中、RT1a~RT1cは各々独立に水素原子または置換基を表す。**は、Lを含む環、他のGまたはTとの結合位置を表す。
<3>式(X-2)で表される環基が、下記式(X-2a)~(X-2e)のいずれかの式で表される環基である<1>に記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000017
 式中、Xは、-O-、-S-、-NRX2c-、-C(RX2c-、-(RX2c)C=C(RX2c)-または-Si(RX2c-を表す。RX2cは水素原子または置換基を表す。RT2およびRTAは各々独立に置換基を表す。PT2a~PT2cは各々独立に0~2の整数を表す。PTAはそれぞれ0~4の整数を表す。***は、Lを含む環、他のGまたはTとの結合位置を表す。
<4>式(X-3)で表される環基が、下記式(X-3a)または(X-3b)で表される環基である<1>に記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000018
 式中、X3a~X3cは、各々独立に、-O-または-S-を表す。RT3bはアルキレン基を表す。
 RT3は置換基を表す。PT3aは0~2の整数を表す。****は、Lを含む環、他のGまたはTとの結合位置を表す。
<5>Zaが形成する環が、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、テトラジン環、キノリン環、イソキノリン環、イミダゾール環、ピラゾール環、トリアゾール環、チアゾール環、オキサゾール環、ベンゾイミダゾール環、ベンゾトリアゾール環、ベンゾオキサゾール環およびベンゾチアゾール環からなる群より選ばれる少なくとも一種であり、
 Zbが形成する環が、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、テトラジン環、キノリン環、イソキノリン環、イミダゾール環、トリアゾール環、チアゾール環、オキサゾール環、ベンゾイミダゾール環、ベンゾトリアゾール環、ベンゾオキサゾール環およびベンゾチアゾール環からなる群より選ばれる少なくとも一種であり、
 Lを含むヘテロ環が、ピリジン環、ピリミジン環、ピリダジン環、トリアジン環、テトラジン環、キノリン環およびイソキノリン環からなる群より選ばれる少なくとも一種である<1>~<4>のいずれか1つに記載の光電変換素子。
<6>Mが、Ru2+またはOs2+である<1>~<5>のいずれか1つに記載の光電変換素子。
<7>LAが、下記式(AL-2)で表される3座の配位子である<1>~<6>のいずれか1つに記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000019
 式中、Ancは酸性基を表す。G、Tおよびnは式(AL-1)のG、Tおよびnと同義である。
<8>酸性基が、カルボキシ基またはその塩である<1>~<7>のいずれか1つに記載の光電変換素子。
<9>LDが、下記式(2L-1)~(2L-4)のいずれかの式で表される2座の配位子である<1>~<8>のいずれか1つに記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000020
 式中、環D2Lは芳香族環を表す。A111~A141は、各々独立に、窒素原子のアニオンまたは炭素原子のアニオンを表す。R111~R143は、各々独立に、水素原子、または、酸性基を有しない置換基を表す。*は金属イオンMへの配位位置を表す。
<10>LDが、下記式(3L-1)~(3L-4)のいずれかの式で表される3座の配位子である<1>~<8>のいずれか1つに記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000021
 式中、環D2Lは芳香族環を表す。A211~A242は、各々独立に、窒素原子または炭素原子を表す。ただし、A211とA212、A221とA222、A231とA232、A241とA242のそれぞれにおいて、少なくとも1つはアニオンである。R211~R241は、各々独立に、水素原子、または、酸性基を有しない置換基を表す。*は金属イオンMへの配位位置を表す。
<11>式(I)で表される金属錯体色素が、下記式(I-1)または(I-2)で表される<1>~<10>のいずれか1つに記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000022
 式中、MおよびLXは式(I)のMおよびLXと同義である。
 G、Tおよびnは式(AL-1)のG、Tおよびnと同義である。Ancは酸性基を表す。
 環Dおよび環Eは各々独立に5員もしくは6員の芳香族環を表す。DおよびDは各々独立に炭素原子のアニオンまたは窒素原子のアニオンを表す。ここで、環Dおよび環E中のDおよびDと、ピリジン環に結合する炭素原子との間の結合は単結合または二重結合である。
 Ra1~Ra4は各々独立に置換基を表す。ma1、ma2およびma4は各々独立に0~3の整数を表す。ma3は0~4の整数を表す。ma1~ma4の各々が2以上の整数を表すとき、複数のRa1~Ra4はそれぞれ互いに結合して環を形成してもよい。
<12>環Dおよび環Eが、各々独立に、ピラゾール環、トリアゾール環またはベンゼン環である<11>に記載の光電変換素子。
<13>上記<1>~<12>のいずれか1つに記載の光電変換素子を備えた色素増感太陽電池。
<14>下記式(I)で表される金属錯体色素。
   式(I)   M(LA)(LD)(LX)mX・(CI)mY
 式中、Mは金属イオンを表す。
 LAは、下記式(AL-1)で表される3座の配位子を表す。
 LDは2座の配位子またはLAとは異なる3座の配位子を表す。LDの、金属イオンMと結合する配位原子のうちの少なくとも1つが窒素原子であり、少なくとも1つがアニオンである。
 LXは、単座の配位子を表す。mXはLDが2座の配位子のとき1を表し、LDが3座の配位子のとき0を表す。
 CIは金属錯体色素の電荷を中和させるために必要な対イオンを表す。mYは0~3の整数を表す。
Figure JPOXMLDOC01-appb-C000023
 式中、ZaおよびZbは各々独立に5員もしくは6員の環を形成するのに必要な非金属原子群を表す。ただし、ZaおよびZbがそれぞれ形成する環の少なくとも一方には1つ以上の酸性基を有する。Lは各々独立に窒素原子またはCRを表し、Rは水素原子または置換基を表す。
 Gは、下記式(X-1)~(X-3)のいずれかの式で表される環基を表す。nは2~7の整数を表す。Tは水素原子または置換基を表す。-(G)n-Tは酸性基およびアミノ基を有さない。
Figure JPOXMLDOC01-appb-C000024
 式中、Zt2およびZt3はそれぞれ式(X-2)または(X-3)中のチオフェン環と縮合環を形成するのに必要な非金属原子群を表す。
 RT1、RT2およびRT3は各々独立に置換基を表す。PT1は0~2の整数を表す。PT2およびPT3は各々独立に0以上の整数であり、式(X-2)または(X-3)で表される基が無置換であるときの水素原子数以下である。
 *は、Lを含む環、他のGまたはTとの結合位置を表す。
<15>上記<14>に記載の金属錯体色素と溶媒とを含有する色素溶液。
<16>下記式(AL-2)で表されるターピリジン化合物またはそのエステル化物。
Figure JPOXMLDOC01-appb-C000025
 式中、Ancは酸性基を表す。Gは、下記式(X-1)~(X-3)のいずれかの式で表される環基を表す。nは2または3を表す。Tは水素原子または置換基を表す。-(G)n-T基は酸性基およびアミノ基を有さない。
Figure JPOXMLDOC01-appb-C000026
 式中、Zt2およびZt3はそれぞれ式(X-2)または(X-3)中のチオフェン環と縮合環を形成するのに必要な非金属原子群を表す。
 RT1、RT2およびRT3は各々独立に置換基を表す。PT1は0~2の整数を表す。PT2およびPT3は各々独立に0以上の整数であり、式(X-2)または(X-3)で表される基が無置換であるときの水素原子数以下である。
 *は、Lを含む環、他のGまたはTとの結合位置を表す。
 本明細書において、特段の断りがない限り、二重結合については、分子内にE型およびZ型が存在する場合、そのいずれであっても、またこれらの混合物であってもよい。
 特定の符号で表示された置換基や連結基、配位子等(以下、置換基等という)が複数あるとき、または複数の置換基等を同時に規定するときには、特段の断りがない限り、それぞれの置換基等は互いに同一でも異なっていてもよい。このことは、置換基等の数の規定についても同様である。また、複数の置換基等が近接するとき(特に、隣接するとき)には特段の断りがない限り、それらが互いに連結して環を形成してもよい。
 また、環、例えば、芳香族環または脂肪族環は、さらに縮環して縮合環を形成していてもよい。芳香族環または脂肪族環は、4~8員環が好ましく、5または6員環がより好ましい。
 本発明において、芳香族環は、芳香族炭化水素環および芳香族ヘテロ環を包含する。芳香族炭化水素環は、芳香族性を示す炭化水素環をいい、特に限定されないが、例えば、ベンゼン環、ナフタレン環、フルオレン環が挙げられる。脂肪族環は、芳香族環以外の環をいい、脂肪族炭化水素環および脂肪族ヘテロ環を包含する。脂肪族炭化水素環としては、飽和炭化水素環、および、芳香族性を示さない不飽和炭化水素環が挙げられ、例えば、飽和単環炭化水素環(シクロアルカン)、飽和多環炭化水素環、不飽和単環炭化水素環(シクロアルケン、シクロアルキン)および不飽和多環炭化水素環等が挙げられる。
 芳香族ヘテロ環および脂肪族ヘテロ環を合わせてヘテロ環ということがある。ヘテロ環は、炭素原子とヘテロ原子(例えば、窒素原子、酸素原子、硫黄原子、ケイ素原子、セレン原子またはリン原子)とを環構成原子とする環をいう。芳香族ヘテロ環はヘテロ原子を含む芳香族環をいい、脂肪族ヘテロ環はヘテロ原子を含む脂肪族環をいう。
 本明細書において、化合物(錯体、色素を含む)の表示については、化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、目的の効果を奏する範囲で、構造の一部を変化させたものを含む意味である。さらに、置換または無置換を明記していない化合物については、所望の効果を奏する範囲で、任意の置換基を有していてもよい意味である。このことは、置換基、連結基および配位子についても同様である。
 また、本明細書において「~」を用いて表される数値範囲は、「~」前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本発明の光電変換素子および色素増感太陽電池は、配位原子に対して4位の環構成原子に複数のチオフェン環基を連結させて導入した含窒素芳香族環を端部に持つ3座の配位子と、少なくとも1つ窒素原子および少なくとも1つの原子のアニオンで金属イオンに配位する2座もしくは3座の配位子とを組み合わせて用いた金属錯体色素を有する。これにより、半導体層の膜厚を薄くしても優れた光電変換効率と高い耐久性とを発揮する。よって、本発明により、半導体層の膜厚の影響が小さく、特に膜厚を薄くしても優れた光電変換効率を発揮し、耐久性も高い光電変換素子および色素増感太陽電池、ならびに、これらに用いられる金属錯体色素、色素溶液、およびターピリジン化合物またはそのエステル化物を提供できる。
 本発明の上記および他の特徴および利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は、本発明の第1態様の光電変換素子を、電池用途に応用したシステムにおいて、層中の円部分の拡大図も含めて、模式的に示した断面図である。 図2は、本発明の第2態様の光電変換素子からなる色素増感太陽電池を模式的に示した断面図である。 図3は、実施例1で合成した本発明の金属錯体色素D-1、D-16~D-19およびD-24のTBAOHメタノール溶媒中での可視吸収スペクトル図である。 図4は、実施例1で合成したターピリジン化合物AC-1のH-NMRスペクトル図である。 図5は、実施例1で合成したターピリジン化合物AC-5のH-NMRスペクトル図である。 図6は、実施例1で合成したターピリジン化合物AC-6のH-NMRスペクトル図である。
[光電変換素子および色素増感太陽電池]
 本発明の光電変換素子は、導電性支持体と、電解質を含む感光体層と、電解質を含む電荷移動体層と、対極(対向電極)とを有する。感光体層と電荷移動体層と対極とがこの順で導電性支持体上に設けられている。
 本発明の光電変換素子において、その感光体層を形成する半導体微粒子の少なくとも一部は、増感色素として後述する式(I)で表される金属錯体色素を担持している。ここで、金属錯体色素が半導体微粒子の表面に担持される態様は、半導体微粒子の表面に吸着する態様、半導体微粒子の表面に堆積する態様、および、これらが混在した態様等を包含する。吸着は、化学吸着と物理吸着とを含み、化学吸着が好ましい。
 半導体微粒子は、後述する式(I)の金属錯体色素と併せて、他の金属錯体色素を担持していてもよい。
 半導体微粒子は、上記金属錯体色素とともに後述する共吸着剤を担持していることが好ましい。
 また、感光体層は電解質を含む。感光体層に含まれる電解質は、電荷移動体層が有する電解質と同種でも異種であってもよいが、同種であることが好ましい。ここで、「電解質が同種」とは、感光体層の電解質に含まれる成分と電荷移動体層の電解質に含まれる成分が同じであり、且つ、各成分の含有量も同じである態様、および、感光体層の電解質に含まれる成分と電荷移動体層の電解質に含まれる成分が同じであるが、各成分の含有量が異なる態様、の両態様を含む意味である。
 本発明の光電変換素子は、本発明で規定する構成以外の構成は特に限定されず、光電変換素子に関する公知の構成を採用できる。本発明の光電変換素子を構成する上記各層は、目的に応じて設計され、例えば、単層に形成されても、複層に形成されてもよい。また、必要により上記各層以外の層を有してもよい。
 本発明の色素増感太陽電池は、本発明の光電変換素子を用いてなる。
 以下、本発明の光電変換素子および色素増感太陽電池の好ましい実施形態について説明する。
 図1に示されるシステム100は、本発明の第1態様の光電変換素子10を、外部回路6で動作手段M(例えば電動モーター)に仕事をさせる電池用途に応用したものである。
 光電変換素子10は、導電性支持体1と、色素(金属錯体色素)21が担持されることにより増感された半導体微粒子22、および、半導体微粒子22間に電解質を含む感光体層2と、正孔輸送層である電荷移動体層3と、対極4とからなる。
 光電変換素子10において、受光電極5は、導電性支持体1および感光体層2を有し、作用電極として機能する。
 光電変換素子10を応用したシステム100において、感光体層2に入射した光は、金属錯体色素21を励起する。励起された金属錯体色素21はエネルギーの高い電子を有しており、この電子が金属錯体色素21から半導体微粒子22の伝導帯に渡され、さらに拡散によって導電性支持体1に到達する。このとき金属錯体色素21は酸化体(カチオン)となっている。導電性支持体1に到達した電子が外部回路6で仕事をしながら、対極4、電荷移動体層3を経由して金属錯体色素21の酸化体に到達し、この酸化体を還元することで、システム100が太陽電池として機能する。
 図2に示される色素増感太陽電池20は、本発明の第2態様の光電変換素子により構成されている。
 色素増感太陽電池20となる光電変換素子は、図1に示す光電変換素子に対して、導電性支持体41および感光体層42の構成、および、スペーサーSを有する点で異なるが、それらの点以外は図1に示す光電変換素子10と同様に構成されている。すなわち、導電性支持体41は、基板44と、基板44の表面に成膜された透明導電膜43とからなる2層構造を有している。また、感光体層42は、半導体層45と、半導体層45に隣接して成膜された光散乱層46とからなる2層構造を有している。導電性支持体41と対極48との間にはスペーサーSが設けられている。色素増感太陽電池20において、40は受光電極であり、47は電荷移動体層である。
 色素増感太陽電池20は、光電変換素子10を応用したシステム100と同様に、感光体層42に光が入射することにより、太陽電池として機能する。
 本発明の光電変換素子および色素増感太陽電池は、上記の好ましい態様に限定されず、各態様の構成等は、本発明の趣旨を逸脱しない範囲で、各態様間で適宜組み合わせることができる。
 本発明において、光電変換素子または色素増感太陽電池に用いられる材料および各部材は常法により調製することができる。例えば、米国特許第4,927,721号明細書、米国特許第4,684,537号明細書、米国特許第5,084,365号明細書、米国特許第5,350,644号明細書、米国特許第5,463,057号明細書、米国特許第5,525,440号明細書、特開平7-249790号公報、特開2001-185244号公報、特開2001-210390号公報、特開2003-217688号公報、特開2004-220974号公報、特開2008-135197号公報を参照することができる。
<式(I)で表される金属錯体色素>
 本発明の金属錯体色素は、下記式(I)で表される。本発明の金属錯体色素は、下記式(AL-1)で表される配位子LAを有することにより、光電変換素子および色素増感太陽電池に、半導体層の膜厚変化の影響が小さく、高い光電変換効率と、優れた熱安定性とを付与できる。したがって、本発明の金属錯体色素は増感色素として色素増感太陽電池に好ましく用いられる。
   式(I)   M(LA)(LD)(LX)mX・(CI)mY
 式(I)において、Mは金属イオンを表す。
 LAは、下記式(AL-1)で表される3座の配位子を表す。
Figure JPOXMLDOC01-appb-C000027
 式中、ZaおよびZbは各々独立に5員もしくは6員の環を形成するのに必要な非金属原子群を表す。ただし、ZaおよびZbがそれぞれ形成する環の少なくとも一方には1つ以上の酸性基を有する。Lは各々独立に窒素原子またはCRを表し、Rは水素原子または置換基を表す。
 Gは、下記式(X-1)~(X-3)のいずれかの式で表される基を表す。nは2~7の整数を表す。Tは水素原子または置換基を表す。-(G)n-Tは、酸性基およびアミノ基を有さない。
Figure JPOXMLDOC01-appb-C000028
 式中、Zt2およびZt3はそれぞれ式(X-2)または(X-3)中のチオフェン環と縮合環を形成するのに必要な非金属原子群を表す。
 RT1、RT2およびRT3は各々独立に置換基を表す。PT1は0~2の整数を表す。PT2およびPT3は各々独立に0以上の整数であり、式(X-2)または(X-3)で表される基が無置換であるときの水素原子数以下である。
 *は、Lを含む環、他のGまたはTとの結合位置を表す。
 LDは2座の配位子またはLAとは異なる3座の配位子を表す。LDの、金属イオンMと結合する配位原子のうちの少なくとも1つが窒素原子であり、少なくとも1つがアニオンである。
 LXは、単座の配位子を表す。mXはLDが2座の配位子のとき1を表し、LDが3座の配位子のとき0を表す。
 CIは金属錯体色素の電荷を中和させるために必要な対イオンを表す。mYは0~3の整数を表し、0または1が好ましく、0がより好ましい。
- 金属イオンM -
 Mは、金属錯体色素の中心金属であり、長周期律表上6~12族の各元素のイオンが挙げられる。このような金属イオンとしては、例えば、Ru、Fe、Os、Cu、W、Cr、Mo、Ni、Pd、Pt、Co、Ir、Rh、Re、MnおよびZnの各イオンが挙げられる。金属イオンMは、1種のイオンであっても2種以上のイオンであってもよい。
 本発明においては、金属イオンMは、Os2+、Ru2+またはFe2+が好ましく、Os2+またはRu2+がより好ましく、なかでもRu2+が特に好ましい。
 光電変換素子中に組み込まれた状態においては、Mの価数は、周囲の材料との酸化還元反応により変化することがある。
- 配位子LA -
 配位子LAは、式(AL-1)で表され、式(AL-1)中の3つの窒素原子で金属イオンMに配位する3座の配位子または化合物である。
 この配位子LAは、1つ以上の酸性基(吸着基ともいう)を、後述するZaが形成する環およびZbが形成する環の少なくとも一方に有する。配位子LAは、本発明の金属錯体色素を半導体微粒子に担持させる配位子である。
 配位子LAは、窒素原子、炭素原子およびLにより形成される環(末端含窒素環またはLを含むヘテロ環ともいう)の金属イオンMに配位する環構成窒素原子に対して4位の環構成炭素原子に「-(G)n-T」基を有している。配位子LAにおいて、Lを含むヘテロ環の4位の環構成炭素原子に「-(G)n-T」基が結合していると、この配位子LAを有する金属錯体色素の吸光度が大きくなると考えられる。これにより、吸光度が増大した金属錯体色素を感光体層に含有する光電変換素子および色素増感太陽電池は光電変換効率が向上する。また、感光体層を設ける半導体層の膜厚を薄くしても優れた光電変換効率を発揮する。さらには、光電変換素子および色素増感太陽電池の耐久性も向上する。したがって、この配位子LAは色素増感太陽電池に用いられる金属錯体色素の配位子として好ましく用いられる。
 式(AL-1)において、ZaおよびZbは、各々独立に、5員環または6員環を形成するのに必要な非金属原子群を表す。ZaおよびZbは、炭素原子および上記ヘテロ原子から選ばれる非金属原子群であることが好ましく、炭素原子、窒素原子、酸素原子、硫黄原子およびリン原子から選ばれる非金属原子群であることがより好ましい。
 ZaおよびZbが形成する環は、5員環の芳香族ヘテロ環および6員環の芳香族ヘテロ環が好ましい。これらの環は、単環に加えて、芳香族環および脂肪族環の少なくとも1つが縮環した縮合環を包含する。また、Zaが形成する環およびZbが形成する環は、好ましくは後述する置換基群Tから選ばれる置換基を有し、この置換基を介して互いに結合した縮合環を形成してもよい。このような縮合環としては、例えば、1,10-フェナントロリン環が挙げられる。
 5員環の芳香族ヘテロ環としては、環構成原子として上記ヘテロ原子を含む5員環であればよく、ピラゾール環、イミダゾール環、トリアゾール環、チアゾール環、オキサゾール環、ベンゾイミダゾール環、ベンゾトリアゾール環、ベンゾオキサゾール環およびベンゾチアゾール環の少なくとも1種が好ましい。6員環の芳香族ヘテロ環としては、環構成原子として上記ヘテロ原子を含む6員環であればよく、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、テトラジン環、キノリン環およびイソキノリン環の少なくとも1種が好ましい。
 ZaおよびZbが形成する環は、それぞれ、上記5員環の芳香族ヘテロ環の群および6員環の芳香族ヘテロ環の群からなる群より選ばれる少なくとも1種であり、式(AL-1)で示される各環の構造に適合する芳香族ヘテロ環が好ましく選択される。
 Zaが形成する環は、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、テトラジン環、キノリン環、イソキノリン環、イミダゾール環、ピラゾール環、トリアゾール環、チアゾール環、オキサゾール環、ベンゾイミダゾール環、ベンゾトリアゾール環、ベンゾオキサゾール環およびベンゾチアゾール環からなる群より選ばれる少なくとも一種であることが好ましい。
 Zbが形成する環が、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、テトラジン環、キノリン環、イソキノリン環、イミダゾール環、トリアゾール環、チアゾール環、オキサゾール環、ベンゾイミダゾール環、ベンゾトリアゾール環、ベンゾオキサゾール環およびベンゾチアゾール環からなる群より選ばれる少なくとも一種であることが好ましい。
 なかでも、ZaおよびZbが形成するヘテロ環は、イミダゾール環、ピリジン環またはピリミジン環であることがより好ましく、ともにピリジン環であることが特に好ましい。
 ZaおよびZbが形成するヘテロ環は、少なくとも一方に1つ以上の酸性基を有しており、好ましくは、それぞれのヘテロ環に1つ以上の酸性基を有している。ZaおよびZbが形成するヘテロ環それぞれが有する酸性基の数は、好ましくは1~3個であり、より好ましくは1個または2個であり、さらに好ましくは1個である。ZaおよびZbが形成するヘテロ環は、ともに、酸性基を1つずつ有することがより好ましい。
 酸性基の置換位置は、特に限定されない。各環において、金属イオンMに配位する窒素原子から最も離れた環構成原子であることが好ましく、環が6員環の場合は上記窒素原子に対して4位であることが好ましい。
 本発明において、酸性基とは、解離性のプロトンを有する置換基であり、pKaが11以下の置換基である。酸性基のpKaは、J.Phys.Chem.A2011,115,p.6641-6645に記載の「SMD/M05-2X/6-31G」方法に従って求めることができる。酸性基としては、例えば、カルボキシ基、ホスホニル基、ホスホリル基、スルホ基、ホウ酸基等の酸性を示す酸基、または、これらの酸基を有する基が挙げられる。酸基を有する基は、酸基と連結基とを有する基が挙げられる。連結基は、特に限定されないが、2価の基が挙げられ、好ましくは、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、ヘテロアリーレン基等が挙げられる。この連結基は後述する置換基群Tから選ばれる基を置換基として有していてもよい。酸基と連結基とを有する酸性基としては、例えば、カルボキシメチル、カルボキシビニレン、ジカルボキシビニレン、シアノカルボキシビニレン、2-カルボキシ-1-プロペニル、2-カルボキシ-1-ブテニル、カルボキシフェニル等を好ましく挙げることができる。
 酸性基としては、好ましくは、カルボキシ基、ホスホニル基、スルホ基、またはカルボキシ基を有する基であり、より好ましくはカルボキシ基である。
 酸性基は、式(I)で表される金属錯体色素に組み込まれたときに、プロトンを放出して解離したアニオンとなっていてもよく、塩となっていてもよい。酸性基が塩となるときの対イオンとしては、特に限定されないが、例えば、下記対イオンCIにおける正のイオンの例が挙げられる。また、酸性基は、後述するようにエステル化されていてもよい。
 ZaおよびZbが形成するヘテロ環は、それぞれ、酸性基以外の置換基を有していてもいなくてもよい。これらのヘテロ環が有していてもよい置換基としては、例えば、後述する置換基群Tから選ばれる基が挙げられる。
 式(AL-1)において、Lを含むヘテロ環は、単環および縮合環を包含し、縮合環である場合はZbが形成するヘテロ環との縮合環をも含む。
 Lは窒素原子またはCRを表す。Rは水素原子または置換基を表し、水素原子が好ましい。Rとして採りうる置換基は、特に限定されず、後述する置換基群Tから選ばれる基(好ましくはチオフェン環基を除く。)が挙げられる。Lを含むヘテロ環が複数のRを有する場合、R同士が結合して環を形成してもよい。
 Lを含むヘテロ環は、ZaおよびZbが形成するヘテロ環として説明した6員環の芳香族環の群より、式(AL-1)中の上記環構造に適合する芳香族ヘテロ環が好ましく選択される。より好ましくは、ピリジン環、ピリミジン環、ピリダジン環、トリアジン環、テトラジン環、キノリン環およびイソキノリン環の少なくとも1種であり、ピリジン環またはピリミジン環であることがさらに好ましく、ピリジン環であることが特に好ましい。
 配位子LAは、Lを含むヘテロ環に「-(G)n-T」で表される基を有する。この基は、チオフェン環またはチオフェン環を含むチオフェン含有縮合環が単結合により2~7個結合してなる基である。
 この基を形成するGは、チオフェン環、または、チオフェン含有縮合環であり、下記式(X-1)~(X-3)のいずれかの式で表される。
Figure JPOXMLDOC01-appb-C000029
 式(X-1)で表されるチオフェン環基は、置換基RT1を有していてもよい。置換基RT1としては、後述する置換基群Tから選ばれる基(アミノ基を除く。)が挙げられる。好ましくは、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールチオ基、シクロアルキル基、アリール基、アルケニルオキシ基、アルキニルオキシ基、アリールオキシ基、シアノ基、ハロゲン原子である。なかでも、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールチオ基、アリールオキシ基がより好ましく、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アルキルチオ基がさらに好ましく、アルキル基が特に好ましい。RT1として採りうるアルキル基は、炭素数1~20が好ましく、1~12がより好ましく、1~9がさらに好ましい。
 式(X-1)で表されるチオフェン環基が置換基RT1を有する場合、置換位置は、特に限定されない。置換基RT1の数PT1は0~2個であり、0または1個が好ましい。*は、Lを含む環、他のGまたはTとの結合位置を表す。式(X-1)で表されるチオフェン環基の結合位置は、特に限定されず、いずれの環構成炭素原子であってもよい。好ましくは、少なくとも1つの結合位置が環構成硫黄原子に対して2位である。
 式(X-2)中、Zt2は、式(X-2)中のチオフェン環と縮合環を形成するのに必要な非金属原子群を表す。非金属原子群は、炭素原子、水素原子および上記ヘテロ原子から式(X-2)で表されるチオフェン含有縮合環基に応じて選択される。
 式(X-2)で表されるチオフェン含有縮合環基は、式(X-2)中のチオフェン環において環構成硫黄原子を基準にして2位および3位の環構成炭素原子に少なくとも1つの芳香族環または脂肪族環が縮合してなる縮合環基である。チオフェン環に縮合する環は、特に限定されないが、芳香族環、脂肪族ヘテロ環が好ましく、芳香族ヘテロ環がより好ましい。また、縮合する環は、特に限定されないが、5員環または6員環が好ましく、5員環がより好ましい。このような環としては、例えば、ピロール環、チオフェン環、フラン環、シロール環、ホスホール環、セレノフェン環が挙げられる。なかでも、チオフェン環、フラン環、シロール環が好ましく、チオフェン環がより好ましい。
 式(X-2)で表されるチオフェン含有縮合環基を形成する環の数(式中のチオフェン環を含む)は、特に限定されないが、2~5個であることが好ましく、2個または3個であることがさらに好ましい。
 式(X-2)で表されるチオフェン含有縮合環基は、置換基RT2を有していてもよい。置換基RT2は置換基RT1と同義であり、好ましいものも同じである。式(X-2)で表されるチオフェン含有縮合環基が置換基RT2を有する場合、置換位置は特に限定されない。置換基RT2はチオフェン環の環構成炭素原子に結合していても、縮合する環の環構成炭素原子に結合していてもよい。
 チオフェン含有縮合環基が有する置換基RT2の数PT2は、0以上の整数である。上限は、式(X-2)で表されるチオフェン含有縮合環基が無置換であるとしたときに、この縮合環基が有する水素原子の数以下である。PT2は、上記範囲であれば特に限定されないが、0~2個であることが好ましく、0個または1個であることがより好ましい。
 *は、Lを含む環、他のGまたはTとの結合位置を表す。式(X-2)で表されるチオフェン含有縮合環基の結合位置は、特に限定されず、いずれの環構成炭素原子であってもよい。好ましくは、少なくとも1つの結合位置が環構成硫黄原子に対して2位である。
 式(X-3)中、Zt3は、式(X-3)中のチオフェン環と縮合環を形成するのに必要な非金属原子群を表す。非金属原子群は、炭素原子、水素原子および上記ヘテロ原子から式(X-3)で表されるチオフェン含有縮合環基に応じて選択される。
 式(X-3)で表されるチオフェン含有縮合環基は、式(X-3)中のチオフェン環において環構成硫黄原子を基準にして3位および4位の環構成炭素原子に少なくとも1つの芳香族環または脂肪族環が縮合してなる縮合環基である。チオフェン環に縮合する環の第1態様は、式(X-2)中のチオフェン環に縮合する環と同義であり、好ましいものも同じである。第2態様は、式(X-3)中のチオフェン環の3位および4位の環構成炭素原子にアルキレンジオキシ基またはアルキレンジチオ基が結合してなる脂肪族ヘテロ環である。第2態様においては、アルキレンジオキシ基が好ましく、例えば、エチレンジオキシ、プロピレンジオキシが挙げられる。
 式(X-3)で表されるチオフェン含有縮合環基を形成する環の数(式中のチオフェン環を含む)は、特に限定されないが、2~4個であることが好ましく、2個であることがさらに好ましい。
 式(X-3)で表されるチオフェン含有縮合環基は、置換基RT3を有していてもよい。置換基RT3は置換基RT1と同義であり、好ましいものも同じである。式(X-3)で表されるチオフェン含有縮合環基が置換基RT3を有する場合、置換位置は特に限定されない。チオフェン環の環構成炭素原子に結合していても、縮合する環の環構成炭素原子に結合していてもよい。
 チオフェン含有縮合環基が有する置換基RT3の数PT3は、0以上の整数である。上限は、式(X-3)で表されるチオフェン含有縮合環基が無置換であるとしたときに、この縮合環基が有する水素原子の数以下である。PT3は、上記範囲であれば特に限定されないが、0~2個であることが好ましく、0個または1個であることがより好ましい。
 *は、Lを含む環、他のGまたはTとの結合位置を表す。式(X-3)で表されるチオフェン含有縮合環基の結合位置は、特に限定されず、いずれの環構成炭素原子であってもよい。好ましくは、少なくとも1つの結合位置が環構成硫黄原子に対して2位である。
 上記式(X-1)で表されるチオフェン環基は、下記式(X-1a)~(X-1c)のいずれかの式で表される環基であることが好ましい。
Figure JPOXMLDOC01-appb-C000030
 式中、RT1a~RT1cは、各々独立に、水素原子または置換基を表す。置換基は式(X-1)のRT1と同義であり、好ましいものも同じである。本発明においては、RT1aとRT1b、および、RT1bとRT1cは、それぞれ、互いに結合して環を形成することはない。**は、Lを含む環、他のGまたはTとの結合位置を表す。式(X-1a)~式(X-1c)で表されるチオフェン環基において、2つの**のうちいずれが、Lを含む環またはLを含む環側に隣接するGに、結合してもよい。
 上記各式で表されるチオフェン環基のなかでも、式(X-1a)で表されるチオフェン環基が好ましい。
 上記式(X-2)で表されるチオフェン含有縮合環基は、下記式(X-2a)~(X-2e)のいずれかの式で表される環基であることが好ましい。
Figure JPOXMLDOC01-appb-C000031
 式中、RT2およびRTAは置換基を表す。置換基RT2およびRTAは、式(X-2)のRT2と同義であり、好ましいものも同じである。置換基RT2の数PT2a、PT2bおよびPT2cは、それぞれ、0~2の整数個であり、0個または1個であることがより好ましい。RT2は、式中のいずれのチオフェン環に結合してもよい。本発明においては、置換基RT2を2個有する場合であっても、2個の置換基RT2が互いに結合して環を形成しないことが好ましい。
 置換基RTAの数PTAは、それぞれ、0~4の整数個であり、0個~2個であることがより好ましく、2個であることが特に好ましい。RTAは、下記式中のチオフェン環およびベンゼン環のうちいずれの環に結合してもよい。本発明においては、置換基RTAを2個有する場合であっても、2個の置換基RTAが互いに結合して環を形成しないことが好ましい。
 各式で表される環基において、***は、Lを含む環、他のGまたはTとの結合位置を表す。これらの環基の結合位置は、特に限定されず、いずれの環構成炭素原子であってもよい。各式で表される環基の結合位置は、いずれも、各式中のチオフェン環において環構成硫黄原子に隣接する2つの環構成炭素原子であることが好ましい。
 式(X-2c)において、Xは、-O-、-S-、-NRX2c-、-C(RX2c-、-(RX2c)C=C(RX2c)-または-Si(RX2c-を表す。なかでも、Xは、-O-、-S-、-C(RX2c-または-Si(RX2c-が好ましく、-C(RX2c-、-O-、-S-がさらに好ましい。ここで、RX2cは水素原子または置換基を表す。この置換基は上記RT2と同義であるが、アルキル基が好ましい。
 上記各式で表されるチオフェン含有縮合環基のなかでも、式(X-2b)、式(X-2c)、式(X-2d)または式(X-2e)で表されるチオフェン環基が好ましく、式(X-2b)、式(X-2c)または式(X-2d)で表されるチオフェン環基がさらに好ましく、式(X-2b)または式(X-2c)で表されるチオフェン環基が特に好ましい。
 上記式(X-3)で表されるチオフェン含有縮合環基は、下記式(X-3a)または(X-3b)で表される環基であることが好ましく、(X-3b)であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000032
 式中、X3a~X3cは、各々独立に、-O-または-S-を表す。X3aは-S-であることが好ましく、X3bおよびX3cはともに-O-であることが好ましい。
 各式で表される環基において、****は、Lを含む環、他のGまたはTとの結合位置を表す。式(X-3a)で表される環基の結合位置は、特に限定されず、いずれの環構成炭素原子であってもよい。式(X-3a)および(X-3b)で表される環基の結合位置は、いずれも、チオフェン環の2位および5位が好ましい。
 式(X-3a)で表される環基において、RT3は置換基を表す。この置換基は式(X-3)のRT3と同義であり、好ましいものも同じである。置換基RT3の数PT3aは、0~2の整数個であり、0個または1個であることがより好ましい。本発明においては、置換基RT3を2個有する場合であっても、2個の置換基RT3が互いに結合して環を形成しないことが好ましい。RT3は、式中のチオフェン環に結合してもよく、X3aを環構成原子とする環に結合してもよい。
 式(X-3b)で表される環基において、RT3bはアルキレン基を表す。RT3bがアルキレン基である場合、-X3b-RT3b-X3c-基はアルキレンジオキシ基が好ましい。このアルキレンジオキシ基は上記式(X-3)のアルキレンジオキシ基と同義であり、好ましいものも同じである。
 「-(G)n-T」で表される基において、Gの結合数nは、2~7の整数個であり、2~5の整数個が好ましく、2個または3個がさらに好ましい。
 このとき、結合されるGの組み合わせは、特に限定されない。組み合わされるGは、同種のGであってもよく、異種のGであってもよい。ここで、同種のGとは、上記各式で表されるチオフェン環構造またはチオフェン含有縮合環構造が同じGをいい、置換基の有無、種類および結合位置が相違するGも包含する。
 好ましいGの組み合わせとしては、例えば、-式(X-1a)-式(X-1a)-、-式(X-1a)-式(X-2b)-、-式(X-1a)-式(X-2c)-、-式(X-1a)-式(X-2e)-、-式(X-1a)-式(X-3b)-、-式(X-2b)-式(X-2b)-、-式(X-2b)-式(X-3b)-、-式(X-2c)-式(X-3b)-、-式(X-3a)-式(X-3b)-、-式(X-3b)-式(X-3b)-等が挙げられる。
 より好ましいGの組み合わせを以下に具体的に示す。下記具体例は、いずれも置換基を有していないが、各例は当然に置換基を有していてもよい。置換基としては上記の通りである。また、下記例において、波線はLを含む環、他のGまたはTとの結合位置を表す。
Figure JPOXMLDOC01-appb-C000033
 また、より好ましいGの組み合わせとして、後述する配位子LAの具体例におけるGの組み合わせ「-(G)n-」も挙げられ、さらには、後述する実施例で合成した金属錯体色素D-1~D-33における配位子LAが有するGの組み合わせ「-(G)n-」も挙げられる。
 本発明において、Gの組み合わせ「-(G)n-」としては、後述する配位子LAの具体例における「-(G)n-」および金属錯体色素D-1~D-33における配位子LAが有する「-(G)n-」がさらに好ましく、金属錯体色素D-1~D-33における配位子LAが有する「-(G)n-」が特に好ましい。
 「-(G)n-T」で表される基において、Tは、水素原子または置換基を表す。置換基は、特に限定されないが、上記RT1と同義であり、好ましいものも同じであり、なかでもアルキル基またはアルキルチオ基が好ましい。アルキル基は、炭素数1~20が好ましく、1~12がより好ましく、1~9がさらに好ましい。チオアルキル基は、炭素数1~20が好ましく、1~12がより好ましく、1~9がさらに好ましく、1~6が特に好ましい。
 Gの組み合わせ「-(G)n-」としては、上記式(X-1a)を2つ組み合わせたものが最も好ましい。最も好ましいGの組み合わせを含む「-(G)n-T」で表される基としては、下記式(TF-1)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000034
 式中、R1TF~R4TFは、各々独立に、水素原子またはアルキル基を表す。R1TF~R4TFは、それぞれ、水素原子またはアルキル基が適宜に選択される。なかでも、R1TF、R2TFおよびR4TFがそれぞれ水素原子であり、かつR3TFがアルキル基である態様、および、R1TFおよびR3TFがそれぞれ水素原子であり、かつR2TFおよびR4TFがそれぞれアルキル基である態様の2態様が、特に好ましい。R1TF~R4TFがそれぞれアルキル基である場合、複数のアルキル基は同一でも異なっていてもよい。
 R1TF~R4TFが取り得るアルキル基は、RT1のアルキル基と同義であり、後述する置換基群Tのアルキル基のなかから選択されるが、その炭素数が3~12であることが好ましく、5~9であることがより好ましい。
 Tは、水素原子または置換基を表し、上記した通りである。
 *はLを含む環との結合部を表す。
 「-(G)n-T」で表される基は、上記酸性基を有していない。この場合、n個のGそれぞれが有していてもよい各置換基およびTは、後述する置換基群Tのなかから選ばれる。
 また、「-(G)n-T」で表される基は、アミノ基を有していない。この場合、n個のGそれぞれが有していてもよい各置換基およびTは、アミノ基またはアミノ基を有しない置換基が、後述する置換基群Tのなかから選ばれる。
 本発明において、アミノ基は、無置換のアミノ基(-NH)の他に、アルキルアミノ基、アリールアミノ基およびヘテロアリールアミノ基を含む。
 配位子LAは、下記式(AL-2)で表される3座の配位子(ターピリジン化合物)であることが好ましい。
Figure JPOXMLDOC01-appb-C000035
 式中、2つのAncは各々独立に酸性基を表す。酸性基は、式(AL-1)の酸性基と同義であり、好ましいものも同じである。
 G、Tおよびnは式(AL-1)のG、Tおよびnと同義である。
 上記ターピリジン化合物は配位子LAそのものであるが、本発明においては、配位子LAを、後述するように配位子LAの前駆体化合物として用いることもできる。したがって、本発明において、配位子LAというときは、配位子LAそのもの(上記ターピリジン化合物)に加えて、配位子LAの前駆体化合物をも包含する。好ましい前駆体化合物としては、上記ターピリジン化合物の酸性基Aの少なくとも1つがエステル化されたエステル体(ターピリジン化合物のエステル化物ともいう)が挙げられる。
 このエステル化物は、上記酸性基が保護された化合物であって、加水分解等により酸性基に再生できるエステルであり、特に限定されない。例えば、上記酸性基のアルキルエステル化物、アリールエステル化物、ヘテロアリールエステル化物等が挙げられる。これらのなかでも、アルキルエステル化物が好ましい。アルキルエステル化物を形成するアルキル基は、特に限定されないが、炭素数1~10のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましく、炭素数1~4のアルキル基がさらに好ましい。アリールエステル化物を形成するアリール基およびヘテロアリールエステル化物を形成するヘテロアリール基は、それぞれ、特に限定されず、後述する置換基群Tで例示したものが挙げられる。これらの基は、後述する置換基群Tより選択される1種以上の置換基を有していてもよい。
 エステル化される酸性基は、2つが好ましい。この場合、2つのエステルは同じでも異なっていてもよい。
 配位子LAは、通常の方法によって合成することができる。例えば、式(L1-4)で表される配位子LAは、下記スキームに示すように、式(L1-1)で表される化合物と式(L1-2)で表される化合物とをカップリング反応させ、式(L1-3)で表される前駆体化合物のエステル基を加水分解することにより、合成することができる。この合成方法においては、前駆体化合物としてカルボキシ基のエステル化物を示しているが、本発明においては、これに限定されず、上記酸性基のいずれかをエステル化した前駆体化合物であればよい。
 このときのカップリング反応は、例えば、日本化学会編、「実験化学講座 第5版」、丸善株式会社、13巻、p92-117に記載の「鈴木カップリング反応」や「Stilleカップリング反応」等またはこれらに準じて、行うことができる。また、加水分解は、例えば、日本化学会編、「実験化学講座 第5版」、丸善株式会社、16巻、p10-15に記載の方法に準じて、行うことができる。例えば、後述する実施例で合成した方法が挙げられる。
 本発明においては、前駆体化合物を加水分解して合成した配位子LAを用いて、本発明の金属錯体色素を合成することができる。また、後述する実施例1のように、前駆体化合物を用いて金属錯体色素化した後に、上記方法に準じてエステル基を加水分解して、本発明の金属錯体色素を合成することもできる。
Figure JPOXMLDOC01-appb-C000036
 式中、Lは上記「-(G)n-T」で表される基と同義である。Yは、トリアルキルスズ基、ボロン酸基、ボロン酸エステル基、ハロゲン原子またはパーフルオロアルキルスルホニルオキシ基を表す。
 式(L1-2)において、Yは、式(L1-1)のYがトリアルキルスズ基、ボロン酸基またはボロン酸エステル基の場合、ハロゲン原子またはパーフルオロアルキルスルホニルオキシ基を表し、式(L1-1)のYがハロゲン原子またはパーフルオロアルキルスルホニルオキシ基の場合、トリアルキルスズ基、ボロン酸基またはボロン酸エステル基を示す。
 式(L1-2)および式(L1-3)において、Rはアルキル基、アリール基、またはヘテロアリール基を示す。
 配位子LAの具体例を以下に示す。また、配位子LAとして、後述する金属錯体色素における配位子LAも挙げられる。また、下記具体例および金属錯体色素の具体例の配位子LAに対して、-COOHの少なくとも1つをカルボキシ基の塩とした化合物も挙げられる。この化合物において、カルボキシ基の塩を形成する対カチオンとしては、下記CIで説明する正のイオンが挙げられる。さらに、ターピリジン化合物のエステル化物の例として、下記具体例および金属錯体色素の具体例中の配位子LAに対して、酸性基の少なくとも1つをエステル化した化合物を挙げることができる。本発明はこれら配位子LA、その塩またはエステル化物に限定されない。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
- 配位子LD -
 LDは、2座の配位子、または上記配位子LAとは異なる3座の配位子である。
 この配位子LDは、半導体微粒子の表面に吸着する酸性基を有しないことが好ましい。配位子LD中に、酸性基に相当する基を含んだとしても、半導体微粒子表面に吸着しないものが好ましい。
 配位子LDは、金属イオンMと結合する配位原子の少なくとも1つが窒素原子である。この窒素原子は孤立電子対で金属イオンMに配位することが好ましい。このような窒素原子は、環構成原子であって水素原子を持たない窒素原子が挙げられる。例えば、ピリジン環の窒素原子が挙げられる。
 配位子LDにおいて、配位原子の少なくとも1つがアニオンである。「アニオンである」とは、分子内のいずれかの水素原子または配位原子に結合する水素原子が解離して金属イオンMと結合しうることを意味する。
 ここで、アニオンとなる配位原子は、金属イオンMに配位する窒素原子でもよく、他の原子、例えば炭素原子でもよい。本発明においては、金属イオンMに配位する窒素原子と、アニオンとなる配位原子は異なる原子であることが好ましい。
 金属錯体色素が、窒素原子と配位原子のアニオンとで金属イオンMに配位する配位子LDを上記配位子LAとともに有していると、光電変換素子または色素増感太陽電池の熱安定性が改善し、高い光電変換効率に加え、特に高い耐久性を発揮する。
 配位子LDは、下記式(DL)で表される配位子が好ましい。
Figure JPOXMLDOC01-appb-C000042
 式中、環DDL、環EDLおよび環Fは、各々独立に、5員環もしくは6員環の芳香族環を表す。R、Ra1およびRa4は、各々独立に、酸性基を有しない置換基を表す。mbは0または1を表す。
 ma1およびma4は各々独立に0~3の整数を表す。maはmbが0のとき、0~4の整数を表し、mbが1のとき、0~3の整数を表す。
 ここで、ma、ma1およびma4の各々が2以上の整数であるとき、複数のR、複数のRa1および複数のRa4は同一でも異なっていてもよく、互いに結合して環を形成してもよい。また、RとRa1、RとRa4が連結して環を形成してもよい。
 環DDL、環EDLおよび環Fにおける5員環もしくは6員環の芳香族環は、芳香族炭化水素環および芳香族ヘテロ環が挙げられ、芳香族ヘテロ環が好ましい。環DDL、環EDLおよび環Fの各環は、芳香族環および脂肪族炭化水素環の少なくとも1つが縮環していてもよい。
 環DDL、環EDLおよび環Fが芳香族炭化水素環である場合、ベンゼン環が好ましい。
 芳香族ヘテロ環は、環構成原子として上記ヘテロ原子を含む芳香族環であればよく、例えば、非縮環の6員環、5員環が縮環した6員環、ベンゼン環が縮環した5員環またはベンゼン環が縮環した6員環が好ましく、非縮環の6員環、5員環が縮環した6員環がより好ましく、非縮環の6員環がさらに好ましい。
 このような芳香族ヘテロ環としては、例えば、6員環では、ピリジン環、ピリミジン環、ピラジン環、トリアジン環、キノリン環、キナゾリン環が挙げられる。5員環では、ピロール環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、インドール環、インダゾール環、トリアゾール環、チオフェン環、フラン環が挙げられる。
 環DDLおよび環EDLは、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、またはベンゼン環が好ましく、ピラゾール環、トリアゾール環、またはベンゼン環がより好ましい。
 環Fは、窒素原子を含む芳香族ヘテロ環が好ましく、ピリジン環、ピリミジン環、ピラジン環またはトリアジン環がより好ましく、ピリジン環およびピリミジン環がさらに好ましく、ピリジン環が特に好ましい。
 ここで、環DDL、環EDLおよび環Fは、金属イオンMと結合する配位原子を含む。この配位原子としては、特に限定されないが、炭素原子、窒素原子、硫黄原子、酸素原子またはこれら原子のアニオンが好ましい。
 金属イオンMと結合するアニオンとしては、特に限定されないが、=C-イオンのような炭素アニオン、>Nイオンのような窒素アニオンが好ましく挙げられる。
 R、Ra1およびRa4の置換基は、後述する置換基群Tより選ばれる基が挙げられる。
 Rは、なかでも、芳香族ヘテロ環基、アリール基、エテニル基、エチニル基、ハロゲン原子、アルキル基、アミノ基(アルキルアミノ基、ジアルキルアミノ基、アリールアミノ基、ジアリールアミノ基、N-アルキル-N-アリールアミノ基等を含む)、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、シリル基が好ましく、芳香族ヘテロ環基、アリール基、エテニル基、エチニル基、アルキル基、アルコキシ基もしくはアミノ基(アルキルアミノ基、ジアルキルアミノ基、アリールアミノ基、ジアリールアミノ基等を含む)がより好ましい。また、上記各基を組み合わせてなる基も好ましい。
 Rとして採り得る各置換基の炭素数は、特に限定されないが、Rとして採り得る各置換基のうち、後述するRAAとして採り得る置換基と同じ種類の置換基については、RAAとして採り得る置換基の炭素数と同じであることが好ましい。炭素数の好ましい範囲も同じであることがさらに好ましい。Rとして採り得る各置換基のうち、後述するRAAとして採り得る置換基ではない置換基については、後述する置換基群Tの各置換基の炭素数と同じであり、好ましい範囲も同じである。この点については、Ra1またはRa4として採りうる各置換基についても同様である。
 Ra1およびRa4としては、それぞれ、アルキル基、シクロアルキル基、アルケニル基(好ましくはエテニル基)、アルキニル基(好ましくはエチニル基)、アリール基、ヘテロ環基(好ましくは芳香族ヘテロ環基)、ハロゲン原子、アルコキシ基、アルコキシカルボニル基、シクロアルコキシカルボニル基、アリールオキシ基、アルキルチオ基、アリールチオ基、アミノ基、シアノ基、アルキルスルホニル基、アリールスルホニル基、ハロゲン化アルキル基(例えば、フルオロアルキル基)、ハロゲン化アリール基が好ましく、ハロゲン化アルキル基、ハロゲン化アリール基、ハロゲン原子、シアノ基、アルキルスルホニル基、アリールスルホニル基がより好ましく、ハロゲン化アルキル基、ハロゲン化アリール基、ハロゲン原子、シアノ基がさらに好ましい。また、上記各基を組み合わせてなる基も好ましい。ハロゲン化アルキル基およびハロゲン化アリール基は後述する。
 R、Ra1およびRa4は、それぞれ、置換基として、下記式(V-1)または式(V-2)で表される基RVUを有することが好ましく、特に、Rが下記基RVUを有することが好ましい。
 環FがRを有する場合、環FにおいてRが結合する位置(置換位置)は特に限定されない。環Fが5員環である場合、金属原子Mに配位する環構成窒素原子に対して3位が好ましい。環Fが6員環である場合、金属原子Mに配位する環構成窒素原子に対して、3位または4位が好ましく、4位がより好ましい。
 また、環DDLおよび環EDLがそれぞれRa1またはR4を有する場合、環DDLおよび環EDLそれぞれにおいてRa1またはR4が結合する位置は特に限定されない。
Figure JPOXMLDOC01-appb-C000043
 式(V-1)中、Tは、酸素原子、硫黄原子、-NRCA-、-C(RCA-または-Si(RCA-を表し、RCAはそれぞれ水素原子または置換基を表す。RAAは置換基を表し、RABおよびRACは各々独立に水素原子または置換基を表す。
 式(V-2)中、RBA~RBEは各々独立に水素原子または置換基を表し、RBA、RBB、RBDおよびRBEの少なくとも一つは置換基を表す。
 配位子LDが有する基RVUの数は、1個以上であればよく、好ましくは1~3個であり、より好ましくは1または2個である。
 式(V-1)において、Tは、酸素原子、硫黄原子、-NRCA-、-C(RCA-または-Si(RCA-であり、硫黄原子が好ましい。ここで、RCAは、それぞれ、水素原子または置換基を表し、水素原子が好ましい。RCAとして採りうる置換基としては後述する置換基群Tから選ばれる基が挙げられる。
 RAAは置換基を表す。RAAとして採りうる置換基としては、特に限定されず、例えば、後述する置換基群Tから選ばれる基が挙げられる。好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アルキルチオ基、シクロアルキルチオ基、アリールチオ基、アミノ基、アルキルアミノ基、シクロアルキルアミノ基、アリールアミノ基、ヘテロ環アミノ基、シリル基またはシリルオキシ基である。
 RAAとして採りうる置換基は、上記各基のなかでも、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アルキルチオ基、シクロアルキルチオ基、アミノ基、アルキルアミノ基、シクロアルキルアミノ基またはアリールアミノ基であることがより好ましく、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アルキルアミノ基、シクロアルキルアミノ基またはアリールアミノ基であることがさらに好ましく、アルキル基、アルコキシ基またはアルキルアミノ基であることが特に好ましく、アルキル基またはアルコキシ基であることが最も好ましい。
 上記RAAとして採りうる置換基は、いずれも、光電変換効率の点で、チオフェン環(Tが硫黄原子である場合)に結合するのが好ましい。
 RAAとして採りうる上記置換基はさらに後述する置換基群Tから選ばれる基で置換されていてもよい。
 アルキル基は、直鎖アルキル基および分岐アルキル基を含む。アルキル基の炭素数は、1~30が好ましく、4~30がより好ましく、5~26がさらに好ましく、6~20が特に好ましい。アルキル基としては、例えば、メチル、エチル、n-ブチル、t-ブチル、n-ペンチル、n-ヘキシル、n-オクチル、2-エチルヘキシル、n-デシル、3,7-ジメチルオクチル、イソデシル、s-デシル、n-ドデシル、2-ブチルオクチル、n-ヘキサデシル、イソへキサデシル、n-エイコシル、n-ヘキサコシル、イソオクタコシル、トリフルオロメチルまたはペンタフルオロエチルが挙げられる。
 シクロアルキル基の炭素数は、3~30が好ましく、5~30がより好ましく、6~26がさらに好ましく、6~20が特に好ましい。シクロアルキル基としては、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、シクロヘプチルまたはシクロオクチルが挙げられる。シクロアルキル基は、脂環、芳香族環、ヘテロ環で縮環されていてもよい。
 アルコキシ基は、直鎖アルコキシ基および分岐アルコキシ基を含む。アルコキシ基のアルキル部分は上記アルキル基と同義であり、好ましいものも同じである。アルコキシ基としては、例えば、メトキシ、エトキシ、n-プロポキシ、i―プロポキシ、n-ブトキシ、t-ブトキシ、n-ペントキシ、n-ヘキシルオキシ、n-オクチルオキシ、2-エチルヘキシルオキシ、3,7-ジメチルオクチルオキシ、n-デシルオキシ、イソデシルオキシ、s-デシルオキシ、2-ブチルオクチルオキシ、n-ドデシルオキシ、n-ヘキサデシルオキシ、イソへキサデシルオキシ、n-エイコシルオキシ、n-ヘキサコシルオキシまたはイソオクタコシルオキシが挙げられる。
 シクロアルコキシ基のシクロアルキル部分は上記シクロアルキル基と同義であり、好ましいものも同じである。シクロアルコキシ基としては、例えば、シクロプロピルオキシ、シクロペンチルオキシ、シクロヘキシルオキシ、シクロヘプチルオキシまたはシクロオクチルオキシが挙げられる。
 アリールオキシ基は、そのアリール基が炭素系芳香環(芳香族炭化水素環)基である炭素環系アリールオキシ基と、ヘテロ芳香環(芳香族ヘテロ環)基であるヘテロアリールオキシ基とを含む。アリールオキシ基の炭素数は3~30が好ましく、3~25がより好ましく、3~20がさらに好ましく、3~16が特に好ましい。アリールオキシ基としては、例えば、フェノキシ、ナフトキシ、イミダゾイルオキシ、ベンゾイミダゾイルオキシ、ピリジン-4-イルオキシ、ピリミジニルオキシ、キナゾリニルオキシ、プリニルオキシまたはチオフェン-3-イルオキシ等が挙げられる。ヘテロアリールオキシ基のヘテロ環としてはチオフェン環が好ましい。
 アルキルチオ基は、直鎖アルキルチオ基および分岐アルキルチオ基を含む。アルキルチオ基のアルキル部分は上記アルキル基と同義であり、好ましいものも同じである。アルキルチオ基としては、例えば、メチルチオ、エチルチオ、n-プロピルチオ、i-プロピルチオ、n-ブチルチオ、t-ブチルチオ、n-ペンチルチオ、n-ヘキシルチオ、n-オクチルチオ、2-エチルヘキシルチオ、3,7-ジメチルオクチルチオ、n-デシルチオ、イソデシルチオ、s-デシルチオ、n-ドデシルチオ、2-ブチルオクチルチオ、n-ヘキサデシルチオ、イソへキサデシルチオ、n-エイコシルチオ、n-ヘキサコシルチオまたはイソオクタコシルチオが挙げられる。
 シクロアルキルチオ基のシクロアルキル部分は上記シクロアルキル基と同義であり、好ましいものも同じである。シクロアルキルチオ基としては、例えば、シクロプロピルチオ、シクロペンチルチオ、シクロヘキシルチオ、シクロヘプチルチオまたはシクロオクチルチオが挙げられる。
 アリールチオ基は、そのアリール基が炭素系芳香環である炭素環系アリールチオ基と、ヘテロ芳香環であるヘテロアリールチオ基とを含む。アリールチオ基の炭素数は3~30が好ましく、3~25がより好ましく、3~20がさらに好ましく、3~16が特に好ましい。アリールチオ基としては、例えば、フェニルチオ、ナフチルチオ、イミダゾイルチオ、ベンズイミダゾイルチオ、ピリジン-4-イルチオ、ピリミジニルチオ、キナゾリニルチオ、プリニルチオまたはチオフェン-3-イルチオ等が挙げられる。ヘテロアリールチオ基のヘテロ環としてはチオフェン環が好ましい。
 アルキルアミノ基は、N-アルキルアミノ基およびN,N-ジアルキルアミノ基を含み、アルキル基の炭素数は、1~30が好ましく、2~30がより好ましい。アルキルアミノ基としては、例えば、エチルアミノ、ジエチルアミノ、2-エチルヘキシルアミノ、ビス(2-エチルヘキシル)アミノ、n-オクタデシルアミノまたはn-オクタデシルアミノが挙げられる。
 シクロアルキルアミノ基は、N-シクロアルキルアミノ基およびN,N-ジシクロアルキルアミノ基を含む。シクロアルキルアミノ基のシクロアルキル部分は上記シクロアルキル基と同義であり、好ましいものも同じである。シクロアルキルアミノ基としては、例えば、シクロプロピルアミノ、ジシクロプロピルアミノ、N-シクロプロピル-N-エチルアミノ、シクロペンチルアミノ、ジシクロペンチルアミノ、N-シクロペンチル-N-メチルアミノ、シクロヘキシルアミノ、ジシクロヘキシルアミノ、シクロヘプチルアミノまたはシクロオクチルアミノが挙げられる。
 アリールアミノ基は、そのアリール基が炭素系芳香環である炭素環系アリールアミノ基と、ヘテロ芳香環であるヘテロアリールアミノ基とを含む。また、炭素環系アリールアミノ基は、N-アリールアミノ基、N-アルキル-N-アリールアミノ基およびN,N-ジアリールアミノ基を含む。ヘテロアリールアミノ基は、N-ヘテロアリールアミノ基、N-アルキル-N-ヘテロアリールアミノ基、N-アリール-N-ヘテロアリールアミノ基およびN,N-ジヘテロアリールアミノ基を含む。
 アリールアミノ基の炭素数は、3~30が好ましく、3~25がより好ましく、3~20がさらに好ましく、3~16が特に好ましい。アリールアミノ基としては、例えば、フェニルアミノ、N-フェニル-N-エチルアミノ、ナフチルアミノ、イミダゾイルアミノ、ベンズイミダゾイルアミノ、ピリジン-4-イルアミノ、ピリミジニルアミノ、キナゾリニルアミノ、プリニルアミノまたはチオフェン-3-イルアミノ等が挙げられる。
 ヘテロ環アミノ基は、ヘテロアリールアミノ基以外のヘテロ環アミノ基(脂肪族ヘテロ環アミノ基)である。炭素数は、0~30が好ましく、1~25がより好ましく、2~20がさらに好ましく、2~16が特に好ましい。また、ヘテロ環としては、環構成ヘテロ原子が酸素原子、硫黄原子、窒素原子から選ばれるものが好ましく、環員数は5~7員環が好ましく、5員または6員環がより好ましい。ヘテロ環アミノ基としては、例えば、ピロリジン-3-イルアミノ、イミダゾリジニルアミノ、ベンズイミダゾリジニルアミノ、ピペリジン-4-イルアミノまたはテトラヒドロチオフェン-3-イルアミノ等が挙げられる。
 シリル基は、アルキルシリル基、シクロアルキルシリル基、アリールシリル基、アルキルオキシシリル基、シクロアルキルオキシシリル基およびアリールオキシシリル基を含む。好ましいシリル基は、アルキルシリル基、シクロアルキルシリル基またはアリールシリル基である。シリル基の炭素数は、3~30が好ましく、3~24がより好ましく、3~20がさらに好ましく、3~18が特に好ましい。シリル基としては、例えば、トリメチルシリル、トリエチルシリル、t-ブチルジメチルシリル、シクロヘキシルジメチルシリル、トリイソプロピルシリル、t-ブチルジフェニルシリル、メチルジメトキシシリル、フェニルジメトキシシリルまたはフェノキシジメチルシリルが挙げられる。
 シリルオキシ基は、アルキルシリルオキシ基、シクロアルキルシリルオキシ基およびアリールシリルオキシ基を含む。シリルオキシ基の炭素数は、3~30が好ましく、3~24がより好ましく、3~20がさらに好ましく、3~18が特に好ましい。シリルオキシ基としては、例えば、トリメチルシリルオキシ、トリエチルシリルオキシ、t-ブチルジメチルシリルオキシ、トリイソプロピルシリルオキシ、シクロヘキシルジメチルシリルオキシまたはt-ブチルジフェニルシリルオキシが挙げられる。
 RABは、水素原子または置換基を表し、水素原子であることが好ましい。
 RACは、水素原子または置換基を表す。
 RABおよびRACとして採りうる置換基は、上記RAAと同義であり、好ましいものも同じである。RABまたはRACが置換基である場合、RAA~RACの各置換基は互いに同一でも異なってもよい。
 式(V-2)で表される基RVUにおいて、RBA~RBEは、各々独立に、水素原子または置換基を表す。RBA~RBEそれぞれが採りうる置換基としては、上記RAAと同義であり、好ましいものも同じである。
 ただし、RBA、RBB、RBDおよびRBEの少なくとも一つは置換基である。RBAおよびRBEの少なくとも一方または両方が置換基であり、RBB、RBCおよびRBDはいずれも水素原子であるか、RBBおよびRBDの少なくとも一方または両方が置換基であり、RBA、RBCおよびRBEはいずれも水素原子であることが特に好ましい。
 RBA~RBEのうちの2つ以上が置換基である場合、2つ以上の置換基は互いに同一でも異なってもよい。
 式(DL)において、ma、ma1およびma4は0~2の整数が好ましく、1または2がより好ましい。
 上記式(DL)で表される配位子は、下記式(DL-1)または(DL-2)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000044
 Ra2およびRa3は各々独立に酸性基を有さない置換基を表す。ma2は0または1を表し、1が好ましい。ma3は0~2の整数を表し、1または2がより好ましい。
 X1およびX2は、各々独立に、CRa5または窒素原子を表す。Ra5は水素原子または置換基を表す。この置換基は式(DL)におけるRと同義であり、好ましい範囲も同じである。X1およびX2を含む環(環Fともいう)としては、上記式(DL)における環Fと同義であり、好ましい範囲も同じである。
 Ra1、Ra4、ma1およびma4は、上記式(DL)におけるRa1、Ra4、ma1およびma4と同義であり、好ましい範囲も同じである。
 Ra2およびRa3で表される置換基は、上記式(DL)におけるRと同義であり、好ましい範囲も同じである。
 ma1、ma3およびma4の各々が2以上の整数であるとき、複数のRa1、Ra3およびRa4は、それぞれ、同一でも異なっていてもよく、互いに結合して環を形成してもよい。
 環Dおよび環Eは、各々独立に、5員環または6員環の芳香族環を表す。このような芳香族環としては、上記式(DL)における環DDLおよび環EDLで挙げた環が挙げられ、好ましい芳香族環も環DDLおよび環EDLに挙げた環と同じである。
 環Dおよび環E中のDおよびDと、F環に結合する炭素原子との間の結合は、単結合でも二重結合でもよい。
 DおよびDは、各々独立に、炭素原子のアニオンまたは窒素原子のアニオンを表す。
 環Dおよび環Eは、ピロール環、イミダゾール環、ピラゾール環、トリアゾール環またはベンゼン環が好ましく、ピラゾール環、トリアゾール環またはベンゼン環が好ましい。
 配位子LDが2座の配位子の場合、下記式(2L-1)~(2L-4)のいずれかの式で表される2座の配位子が好ましい。
Figure JPOXMLDOC01-appb-C000045
 式中、*は金属イオンMとの配位位置(結合位置)を表す。環D2Lは芳香族環を表す。A111~A141は各々独立に、窒素原子のアニオンまたは炭素原子のアニオンを表す。R111~R143は各々独立に、水素原子、または、酸性基を有しない置換基を表す。
 ここで、A111~A141は、環D2Lを構成する窒素原子または炭素原子に結合した水素原子が解離した炭素原子のアニオンまたは窒素原子のアニオンである。式(2L-1)~(2L-4)において、環D2Lは、芳香族炭化水素環、酸素を含む芳香族へテロ環、硫黄を含む芳香族へテロ環、窒素を含む芳香族ヘテロ環が挙げられる。
 芳香族炭化水素環としては、ベンゼン環、ナフタレン環等が挙げられ、ベンゼン環が好ましく、ハロゲン原子、ハロゲン化アルキル基、もしくはハロゲン化アリール基で置換されたベンゼン環がより好ましい。ハロゲン化アルキル基は、ハロゲン原子が置換したアルキル基であり、フッ化アルキル基(例えば、トリフルオロメチル基)が好ましい。ハロゲン化アリール基としては、1~5個のハロゲン原子が置換したフェニル基が好ましい。
 酸素を含む芳香族へテロ環としてはフラン環が好ましく、硫黄を含む芳香族へテロ環としてはチオフェン環が好ましい。窒素を含む芳香族ヘテロ環としては、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環が好ましい。
 環D2Lは、例えば、ベンゼン環、チオフェン環もしくはフラン環の環構成原子の1つがアニオンとなった各環、または、下記式(a-1)~(a-5)、(a-1a)、(a-2a)、(a-1b)および(a-4a)で表される各環等が好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000046
 式中、Rdは酸性基を有さない置換基を表す。b1は0~2の整数、b2は0~3の整数、b3は0または1をそれぞれ表す。b1が2のとき、またはb2が2以上のとき、複数のRdは同一でも異なってもよい。また複数のRd同士が互いに結合して環を形成してもよい。Rdとしては、例えば、後述する置換基群Tより選ばれる基が挙げられる。
Figure JPOXMLDOC01-appb-C000047
 式中、Rd、b1~b3は、上記式(a-1)~(a-5)中のRd、b1~b3と同義であり、好ましい範囲も同じである。b4は0~4、b5は0~5の各整数を表す。式(a-1a)、(a-1b)において、Rdはベンゼン環だけでなく、ピロール環にも有してもよいことを示すものである。
 Rdとして好ましくは、直鎖または分岐のアルキル基、シクロアルキル基、アルケニル基、フルオロアルキル基、アリール基、ハロゲン原子、アルコキシカルボニル基、シクロアルコキシカルボニル基、シアノ基、アルキルスルホニル基、アリールスルホニル基およびこれらを組み合わせてなる基であり、より好ましくは直鎖または分岐のアルキル基、シクロアルキル基、アルケニル基、アリール基およびこれらを組み合わせてなる基であり、さらに好ましくは直鎖または分岐のハロゲン化アルキル基、ハロゲン化アリール基である。
 R111~R143で表される置換基としては、上記式(DL)におけるRと同義であり、好ましい範囲も同じである。
 R111~R114の少なくとも一つ、R121~R123の少なくとも一つ、R131~R133の少なくとも一つ、R141~R143の少なくとも一つは置換基であることが好ましく、一つまたは二つが置換基あることがより好ましい。
 配位子LDが3座の配位子の場合、下記式(3L-1)~(3L-4)のいずれかの式で表される3座の配位子が好ましい。
Figure JPOXMLDOC01-appb-C000048
 式中、*は金属イオンMとの配位位置(結合位置)を表す。環D2Lは芳香族環を表す。A211~A242は各々独立に、窒素原子または炭素原子を表す。ただし、A211とA212、A221とA222、A231とA232、A241とA242のそれぞれ少なくとも1つはアニオンである。R211~R241は各々独立に、水素原子、または、酸性基を有しない置換基を表す。
 A211~A242のうちアニオンであるものは、上記式(2L-1)~(2L-4)のA111~A141と同義である。A211~A242のうちアニオンを有しないものは、水素原子を有しない窒素原子である。
 式(3L-1)~(3L-4)における環D2Lは、上記式(2L―1)~(2L-4)の環D2Lと同義であり、好ましい範囲も同じである。環D2Lは、A211~A242のいずれか1つと炭素原子または2つの炭素原子を含む芳香族環がより好ましい。このとき、各式において2つの環D2Lは同一でも異なってもよい。
 置換基R211~R241は、それぞれ、上記式(DL)におけるRと同義であり、好ましいものも同じである。
 本発明では、配位子LDにおける2座もしくは3座の配位子のうち、金属イオンMに配位する原子が窒素アニオンまたは炭素アニオンであって、置換基にアリールアミノ基もしくはジアリールアミノ基を有するものが、特に吸収が長波長化するために好ましい。
 具体的には、上記の好ましい配位子は、金属イオンMに配位する原子の少なくとも1つが窒素アニオンまたは炭素アニオンであって、かつ下記式(SA)を部分構造に有する配位子である。
Figure JPOXMLDOC01-appb-C000049
 式中、RDA1はアリール基(芳香族炭化水素環基)またはヘテロアリール基(芳香族ヘテロ環基)を表し、RDA2はアルキル基、アリール基または芳香族ヘテロ環基を表す。RDA1とRDA2は互いに結合して環を形成してもよい。LLは、エテニル基、エチニル基、アリーレン基またはヘテロアリーレン基を表す。aは0~5の整数を表し、aが2以上のとき、複数存在するLLは同一であっても異なっていてもよい。
 上記式(SA)で表される基は、金属イオンMに配位する芳香族炭化水素環または窒素を含む芳香族ヘテロ環に置換していることが好ましく、窒素原子を含む芳香族ヘテロ環に置換していることがより好ましい。
 上記式(SA)で表される基のうち、RDA1およびRDA2の少なくとも一方がアリール基またはヘテロアリール基であることが好ましく、ともにアリール基であることがさらに好ましい。アリール基、ヘテロアリール基は置換基を有してもよく、このような置換基としては、後述する置換基群Tより選ばれる基が挙げられる。
 アリール基としては特に限定されないが、フェニル基、ナフチル基等が挙げられ、フェニル基が好ましい。ヘテロアリール基としては、特に限定されないが、フラニル基、チエニル基が好ましい。
 LLは、配位子の配位原子を含む芳香族炭化水素環または含窒素芳香族ヘテロ環と一緒になって縮環構造を形成してもよい。例えば、LLがエテニル基で、このエテニル基が配位子の配位原子を含む含窒素芳香族ヘテロ環と結合してキノリン環を形成してもよい。
 LLにおけるアリーレン基としてはフェニレン基、ナフチレン基等が挙げられ、ヘテロアリーレン基としては、2価の5または6員環で、環構成原子として、酸素原子、硫黄原子、窒素原子を含むものが好ましく、ベンゼン環やヘテロ環で縮環していてもよい。
 ヘテロアリーレン基のヘテロ環としては、例えば、フラン環、チオフェン環、ピロール環、ピリジン環が挙げられ、フラン環、チオフェン環が好ましい。
 LLにおけるエテニル基、アリーレン基、ヘテロアリーレン基は置換基を有してもよく、置換基としては後述する置換基群Tより選ばれる基が挙げられる。
 上記式(SA)において、aが0であるか、aが1でLLがエテニル基、エチニル基、フェニレン基またはヘテロアリーレン基であることが好ましく、aが0であるか、aが1でフェニレン基またはヘテロアリーレン基であることがより好ましく、aが0であるか、aが1でフェニレン基、2価のフラン環基、2価のチオフェン環基であることがさらに好ましく、aが0であることが特に好ましい。
 本発明では、RDA1とRDA2が互いに結合して環を形成したものも好ましい。
 形成する環としては、5または6員環が好ましく、RDA1とRDA2がともにアリール基である場合に結合したものが、より好ましい。
 RDA1とRDA2が互いに結合して形成された環としては、以下の環が好ましい。
Figure JPOXMLDOC01-appb-C000050
 ここで、RDA3およびRDA4は各々独立にアルキル基を表す。
 上記環は、置換基を有してもよく、このような置換基としては後述する置換基群Tより選ばれる基が挙げられる。
 上記式(DL)で表される配位子は、米国特許出願公開第2010/0258175A1明細書、特許第4298799号公報、Angew.Chem.Int.Ed.,2011,50,p.2054-2058に記載の方法、この文献で挙げられている参照文献に記載されている方法、もしくはこれらの方法に準じた方法で合成することができる。
 以下に、上記式(DL)で表される配位子の具体例を示す。また、この配位子LDとして後述する金属錯体色素における配位子LDも挙げられる。本発明はこれらの配位子LDに限定されるものではない。下記具体例において、Meはメチルを表し、*は環同士またはピリジン環と置換基R201が互いに結合する結合位置を表す。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
- 配位子LX -
 配位子LXは、単座の配位子であればよく、アシルオキシ基、アシルチオ基、チオアシルオキシ基、チオアシルチオ基、アシルアミノオキシ基、チオカルバメート基、ジチオカルバメート基、チオカルボネート基、ジチオカルボネート基、トリチオカルボネート基、アシル基、チオシアネート基、イソチオシアネート基、シアネート基、イソシアネート基、シアノ基、アルキルチオ基、アリールチオ基、アルコキシ基、アリールオキシ基およびハロゲン原子からなる群より選ばれる基もしくは原子またはこれらのアニオンが好ましい。
 配位子LXがアルキル基、アルケニル基、アルキニル基、アルキレン基等を含む場合、それらは置換基を有していてもいなくてもよい。また、アリール基、ヘテロ環基、シクロアルキル基等を含む場合、それらは置換基を有していてもいなくてもよく、単環でも縮環していてもよい。
 なかでも、配位子LXは、シアネート基、イソシアネート基、チオシアネート基およびイソチオシアネート基またはこれらのアニオンが好ましく、イソシアネート基(イソシアネートアニオン)またはイソチオシアネート基(イソチオシアネートアニオン)がより好ましく、イソチオシアネート基(イソチオシアネートアニオン)が特に好ましい。
- 電荷中和対イオンCI -
 CIは金属錯体色素の電荷を中和させるのに対イオンが必要なときの対イオンを表す。一般に、金属錯体色素が陽イオンもしくは陰イオンであるか、または、正味のイオン電荷を有するかどうかは、金属錯体色素中の金属、配位子および置換基に依存する。
 置換基が解離性基を有すること等により、金属錯体色素は解離して負電荷を持ってもよい。この場合、金属錯体色素全体の電荷はCIにより電気的に中性とされる。
 対イオンCIが正の対イオンの場合、例えば、対イオンCIは、無機もしくは有機のアンモニウムイオン(例えばテトラアルキルアンモニウムイオン、ピリジニウムイオン等)、ホスホニウムイオン(例えばテトラアルキルホスホニウムイオン、アルキルトリフェニルホスホニウムイオン等)、アルカリ金属イオン(Liイオン、Naイオン、Kイオン等)、アルカリ土類金属イオン、金属錯体イオンまたはプロトンである。正の対イオンとしては、無機もしくは有機のアンモニウムイオン(テトラエチルアンモニウムイオン、テトラブチルアンモニウムイオン、テトラヘキシルアンモニウムイオン、テトラオクチルアンモニウムイオン、テトラデシルアンモニウムイオン等)、アルカリ金属イオン、プロトンが好ましい。
 対イオンCIが負の対イオンの場合、例えば、対イオンCIは、無機陰イオンでも有機陰イオンでもよい。例えば、水酸化物イオン、ハロゲン陰イオン(例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等)、置換もしくは無置換のアルキルカルボン酸イオン(酢酸イオン、トリフルオロ酢酸イオン等)、置換もしくは無置換のアリールカルボン酸イオン(安息香酸イオン等)、置換もしくは無置換のアルキルスルホン酸イオン(メタンスルホン酸イオン、トリフルオロメタンスルホン酸イオン等)、置換もしくは無置換のアリールスルホン酸イオン(例えばp-トルエンスルホン酸イオン、p-クロロベンゼンスルホン酸イオン等)、アリールジスルホン酸イオン(例えば1,3-ベンゼンジスルホン酸イオン、1,5-ナフタレンジスルホン酸イオン、2,6-ナフタレンジスルホン酸イオン等)、アルキル硫酸イオン(例えばメチル硫酸イオン等)、硫酸イオン、チオシアン酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロホスフェートイオン、ピクリン酸イオンが挙げられる。さらに電荷均衡対イオンとして、イオン性ポリマーあるいは色素と逆電荷を有する他の色素を用いてもよく、金属錯イオン(例えばビスベンゼン-1,2-ジチオラトニッケル(III)等)も使用可能である。負の対イオンとしては、ハロゲン陰イオン、置換もしくは無置換のアルキルカルボン酸イオン、置換もしくは無置換のアルキルスルホン酸イオン、置換もしくは無置換のアリールスルホン酸イオン、アリールジスルホン酸イオン、過塩素酸イオン、ヘキサフルオロホスフェートイオンが好ましく、ハロゲン陰イオン、ヘキサフルオロホスフェートイオンがより好ましい。
- 金属錯体色素 -
 本発明の金属錯体色素は、下記式(I)で表される。
 式(1)で表される金属錯体色素において、配位子LA、配位子LDおよび配位子LXは上記の通りであり、これら配位子の組み合わせは特に限定されない。好ましい配位子の組み合わせは、配位子LAの好ましいものと、配位子LDの好ましいものと、配位子LXの好ましいものとの組み合わせである。
   式(I)   M(LA)(LD)(LX)mX・(CI)mY
 式中、M、LA、LD、LX、mX、CIおよびmYは、上記した通りであり、好ましいものも同じである。
 式(I)で表される金属錯体色素は、下記式(I-1)または(I-2)で表される金属錯体色素であることが好ましい。
Figure JPOXMLDOC01-appb-C000069
 式中、MおよびLXは上記式(I)のMおよびLXと同義である。
 G、Tおよびnは上記式(AL-1)のG、Tおよびnと同義である。Ancは酸性基を表し、上記式(AL-1)の上記酸性基と同義であり、好ましいものも同じである。
 環Dおよび環Eは各々独立に5員もしくは6員の芳香族環を表す。DおよびDは各々独立に炭素原子のアニオンまたは窒素原子のアニオンを表す。ここで、環Dおよび環E中のDおよびDと、ピリジン環に結合する炭素原子との間の結合は単結合または二重結合である。環Dおよび環Eは、上記式(DL-1)および(DL-2)の環Dおよび環Eと同義であり、好ましいものも同じである。
 Ra1~Ra4は各々独立に置換基を表す。Ra1~Ra4は、それぞれ、上記式(DL-1)および(DL-2)のRa1~Ra4と同義であり、好ましいものも同じである。
 ma1、ma2およびma4は各々独立に0~3の整数を表す。ma3は0~4の整数を表す。ma1~ma4は、それぞれ、上記式(DL-1)および(DL-2)のma1~ma4と同義であり、好ましいものも同じである。ma1~ma4の各々が2以上の整数を表すとき、複数のRa1~Ra4はそれぞれ互いに結合して環を形成してもよい。
 式(I)で表される金属錯体色素は、例えば、特開2013-084594号公報に記載の方法、特許第4298799号公報に記載の方法、米国特許出願公開第2013/0018189A1、米国特許出願公開第2012/0073660A1、米国特許出願公開第2012/0111410A1および米国特許出願公開第2010/0258175A1の各明細書に記載の方法、Angew.Chem.Int.Ed.,2011,50,p.2054-2058に記載の方法、この文献で挙げられている参照文献に記載の方法、太陽電池に関する上記特許文献、公知の方法、または、これらに準じた方法で合成することができる。
 式(I)で表される金属錯体色素は、上記配位子LAを有しており、長波長領域の吸収特性が優れる。金属錯体色素は、溶液における極大吸収波長が、好ましくは300~1000nmの範囲であり、より好ましくは350~950nmの範囲であり、特に好ましくは370~900nmの範囲である。
 以下の記載(実施例を含む)において、式(I)で表される金属錯体色素の具体例を示す。また、下記具体例および実施例の具体例に対して、-COOHの少なくとも1つをカルボキシ基の塩とした金属錯体色素も挙げられる。この金属錯体色素において、カルボキシ基の塩を形成する対カチオンとしては、上記CIで説明する正のイオンが挙げられる。本発明はこれらの金属錯体色素に限定されない。これらの金属錯体色素は光学異性体、幾何異性体が存在する場合、これらの異性体のいずれであってもよく、またこれらの異性体の混合物であってもよい。
 下記具体例は、各具体例における配位子LA、LDおよびLXの具体的な組み合わせに関わらず、配位子LA、LDおよびLXそれぞれの具体例をも各々独立に示すものである。具体例中のMeはメチルを表す。
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
<置換基群T
 本発明において、好ましい置換基としては、下記置換基群Tから選ばれる基が挙げられる。
 また、本明細書において、単に置換基としてしか記載されていない場合は、この置換基群Tを参照するものであり、また、各々の基、例えば、アルキル基、が記載されているのみの場合は、この置換基群Tの対応する基における好ましい範囲、具体例が適用される。
 さらに、本明細書において、アルキル基をシクロアルキル基と区別して記載している場合(例えば、RAAとして採りうる置換基の記載)、アルキル基は、直鎖アルキル基および分岐アルキル基を包含する意味で用いる。一方、アルキル基をシクロアルキル基と区別して記載していない場合(単に、アルキル基と記載されている場合)、および、特段の断りがない場合、アルキル基は、直鎖アルキル基、分岐アルキル基およびシクロアルキル基を包含する意味で用いる。このことは、環状構造を採りうる基(アルキル基、アルケニル基、アルキニル基等)を含む基(アルコキシ基、アルキルチオ基、アルケニルオキシ基等)、環状構造を採りうる基を含む化合物(上記アルキルエステル化物等)についても同様である。下記置換基群Tの説明においては、例えば、アルキル基とシクロアルキル基のように、直鎖または分岐構造の基と環状構造の基とを明確にするため、これらを分けて記載していることもある。
 置換基群Tに含まれる基としては、下記の基または下記の基を複数組み合わせてなる基を含む。
 アルキル基(好ましくは炭素数1~20で、例えばメチル、エチル、イソプロピル、n-ブチル、t-ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチルまたはトリフルオロメチル)、アルケニル基(好ましくは炭素数2~20で、例えば、ビニル、アリル、ブテニルまたはオレイル)、アルキニル基(好ましくは炭素数2~20で、例えば、エチニル、ブチニルまたはフェニルエチニル)、シクロアルキル基(好ましくは炭素数3~20で、例えば、シクロプロピル、シクロペンチル、シクロヘキシルまたは4-メチルシクロヘキシル)、シクロアルケニル基(好ましくは炭素数5~20で、例えばシクロペンテニルまたはシクロヘキセニル)、アリール基(芳香族炭化水素環基、好ましくは炭素数6~26で、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル、ジフルオロフェニルまたはテトラフルオロフェニル)、ヘテロ環基(好ましくは炭素数2~20で、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5員環または6員環のヘテロ環基がより好ましい。ヘテロ環には芳香族環および脂肪族環を含む。芳香族ヘテロ環基(例えばヘテロアリール基)として次の基が挙げられる。例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリルまたは2-オキサゾリル)、アルコキシ基(好ましくは炭素数1~20で、例えば、メトキシ、エトキシ、イソプロピルオキシまたはベンジルオキシ)、アルケニルオキシ基(好ましくは炭素数2~20で、例えば、ビニルオキシまたはアリルオキシ)、アルキニルオキシ基(好ましくは炭素数2~20で、例えば、2-プロピニルオキシまたは4-ブチニルオキシ)、シクロアルキルオキシ基(好ましくは炭素数3~20で、例えば、シクロプロピルオキシ、シクロペンチルオキシ、シクロヘキシルオキシまたは4-メチルシクロヘキシルオキシ)、アリールオキシ基(好ましくは炭素数6~26で、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシまたは4-メトキシフェノキシ)、ヘテロ環オキシ基(例えば、イミダゾリルオキシ、ベンゾイミダゾリルオキシ、チアゾリルオキシ、ベンゾチアゾリルオキシ、トリアジニルオキシまたはプリニルオキシ)、
アルコキシカルボニル基(好ましくは炭素数2~20で、例えば、エトキシカルボニルまたは2-エチルヘキシルオキシカルボニル)、シクロアルコキシカルボニル基(好ましくは炭素数4~20で、例えば、シクロプロピルオキシカルボニル、シクロペンチルオキシカルボニルまたはシクロヘキシルオキシカルボニル)、アリールオキシカルボニル基(好ましくは炭素数6~20で、例えば、フェニルオキシカルボニルまたはナフチルオキシカルボニル)、アミノ基(好ましくは炭素数0~20で、アルキルアミノ基、アルケニルアミノ基、アルキニルアミノ基、シクロアルキルアミノ基、シクロアルケニルアミノ基、アリールアミノ基、ヘテロ環アミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、N-アリルアミノ、N-(2-プロピニル)アミノ、N-シクロヘキシルアミノ、N-シクロヘキセニルアミノ、アニリノ、ピリジルアミノ、イミダゾリルアミノ、ベンゾイミダゾリルアミノ、チアゾリルアミノ、ベンゾチアゾリルアミノまたはトリアジニルアミノ)、スルファモイル基(好ましくは炭素数0~20で、アルキル、シクロアルキルもしくはアリールのスルファモイル基が好ましく、例えば、N,N-ジメチルスルファモイル、N-シクロヘキシルスルファモイルまたはN-フェニルスルファモイル)、アシル基(好ましくは炭素数1~20で、例えば、アセチル、シクロヘキシルカルボニルまたはベンゾイル)、アシルオキシ基(好ましくは炭素数1~20で、例えば、アセチルオキシ、シクロヘキシルカルボニルオキシまたはベンゾイルオキシ)、カルバモイル基(好ましくは炭素数1~20で、アルキル、シクロアルキルもしくはアリールのカルバモイル基が好ましく、例えば、N,N-ジメチルカルバモイル、N-シクロヘキシルカルバモイルまたはN-フェニルカルバモイル)、
アシルアミノ基(好ましくは炭素数1~20のアシルアミノ基、例えば、アセチルアミノ、シクロヘキシルカルボニルアミノまたはベンゾイルアミノ)、スルホンアミド基(好ましくは炭素数0~20で、アルキル、シクロアルキルもしくはアリールのスルホンアミド基が好ましく、例えば、メタンスルホンアミド、ベンゼンスルホンアミド、N-メチルメタンスルホンアミド、N-シクロヘキシルスルホンアミドまたはN-エチルベンゼンスルホンアミド)、アルキルチオ基(好ましくは炭素数1~20で、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ペンチルチオまたはベンジルチオ)、シクロアルキルチオ基(好ましくは炭素数3~20で、例えば、シクロプロピルチオ、シクロペンチルチオ、シクロヘキシルチオまたは4-メチルシクロヘキシルチオ)、アリールチオ基(好ましくは炭素数6~26で、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオまたは4-メトキシフェニルチオ)、アルキル、シクロアルキルもしくはアリールスルホニル基(好ましくは炭素数1~20で、例えば、メチルスルホニル、エチルスルホニル、シクロヘキシルスルホニルまたはベンゼンスルホニル)、
シリル基(好ましくは炭素数1~20で、アルキル、アリール、アルコキシおよびアリールオキシが置換したシリル基が好ましく、例えば、トリメチルシリル、トリエチルシリル、トリイソプロピルシリル、トリフェニルシリル、ジエチルベンジルシリルまたはジメチルフェニルシリル)、シリルオキシ基(好ましくは炭素数1~20で、アルキル、アリール、アルコキシおよびアリールオキシが置換したシリルオキシ基が好ましく、例えば、トリエチルシリルオキシ、トリフェニルシリルオキシ、ジエチルベンジルシリルオキシまたはジメチルフェニルシリルオキシ)、ヒドロキシ基、シアノ基、ニトロ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子またはヨウ素原子)が挙げられる。
 置換基群Tから選ばれる基は、より好ましくはアルキル基、アルケニル基、シクロアルキル基、アリール基、ヘテロ環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アルコキシカルボニル基、シクロアルコキシカルボニル基、アミノ基、アシルアミノ基、シアノ基またはハロゲン原子であり、特に好ましくはアルキル基、アルケニル基、ヘテロ環基、アルコキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基またはシアノ基が挙げられる。
 化合物ないし置換基等がアルキル基、アルケニル基等を含むとき、これらは置換されていても無置換でもよい。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、置換されていても無置換でもよい。
 次に、光電変換素子および色素増感太陽電池の主たる部材の好ましい態様について、図1および図2を参照して、説明する。
<導電性支持体>
 導電性支持体は、導電性を有し、感光体層2等を支持できるものであれば特に限定されない。導電性支持体は、導電性を有する材料、例えば金属で形成された導電性支持体1、または、ガラスもしくはプラスチックの基板44とこの基板44の表面に成膜された透明導電膜43とを有する導電性支持体41が好ましい。
 なかでも、基板44の表面に導電性の金属酸化物を塗設して透明導電膜43を成膜した導電性支持体41がさらに好ましい。プラスチックで形成された基板44としては、例えば、特開2001-291534号公報の段落番号0153に記載の透明ポリマーフィルムが挙げられる。また、基板44を形成する材料は、ガラスおよびプラスチックの他にも、セラミック(特開2005-135902号公報)、導電性樹脂(特開2001-160425号公報)を用いることができる。金属酸化物としては、スズ酸化物(TO)が好ましく、インジウム-スズ酸化物(スズドープ酸化インジウム;ITO)、フッ素をドープした酸化スズ(FTO)等のフッ素ドープスズ酸化物が特に好ましい。このときの金属酸化物の塗布量は、基板44の表面積1m当たり0.1~100gが好ましい。導電性支持体41を用いる場合、光は基板44側から入射させることが好ましい。
 導電性支持体1および41は、実質的に透明であることが好ましい。「実質的に透明である」とは、光(波長300~1200nm)の透過率が10%以上であることを意味し、50%以上であることが好ましく、80%以上であることが特に好ましい。
 導電性支持体1および41の厚みは、特に限定されないが、0.05μm~10mmであることが好ましく、0.1μm~5mmであることがさらに好ましく、0.3μm~4mmであることが特に好ましい。
 透明導電膜43を設ける場合、透明導電膜43の厚みは、0.01~30μmであることが好ましく、0.03~25μmであることがさらに好ましく、0.05~20μmであることが特に好ましい。
 導電性支持体1および41は、表面に光マネージメント機能を有してもよい。例えば、表面に、特開2003-123859号公報に記載の高屈折膜および低屈折率の酸化物膜を交互に積層した反射防止膜を有してもよく、特開2002-260746号公報に記載のライトガイド機能を有してもよい。
<感光体層>
 感光体層は、上記色素21が担持された半導体微粒子22および電解質を有していれば、その他の構成は特に限定されない。好ましくは、上記感光体層2および上記感光体層42が挙げられる。
- 半導体微粒子(半導体微粒子が形成する層) -
 半導体微粒子22は、好ましくは金属のカルコゲニド(例えば酸化物、硫化物、セレン化物等)またはペロブスカイト型結晶構造を有する化合物の微粒子である。金属のカルコゲニドとしては、好ましくはチタン、スズ、亜鉛、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブもしくはタンタルの酸化物、硫化カドミウム、セレン化カドミウム等が挙げられる。ペロブスカイト型結晶構造を有する化合物としては、好ましくはチタン酸ストロンチウム、チタン酸カルシウム等が挙げられる。これらのうち酸化チタン(チタニア)、酸化亜鉛、酸化スズ、酸化タングステンが特に好ましい。
 チタニアの結晶構造としては、アナターゼ型、ブルッカイト型、またはルチル型が挙げられ、アナターゼ型、ブルッカイト型が好ましい。チタニアナノチューブ・ナノワイヤー・ナノロッドは、単独で、または、チタニア微粒子に混合して、用いることができる。
 半導体微粒子22の粒径は、投影面積を円に換算したときの直径を用いた平均粒径で1次粒子として0.001~1μm、分散物の平均粒径として0.01~100μmであることが好ましい。半導体微粒子22を導電性支持体1または41上に塗設する方法として、湿式法、乾式法、その他の方法が挙げられる。
 半導体微粒子22は多くの色素21を吸着することができるように表面積の大きいものが好ましい。例えば半導体微粒子22を導電性支持体1または41上に塗設した状態で、その表面積が投影面積に対して10倍以上であることが好ましく、100倍以上であることがより好ましい。この上限には特に制限はないが、通常5000倍程度である。一般に、半導体微粒子22が形成する半導体層45(光電変換素子10においては感光体層2と同義)の厚みが大きいほど単位面積当たりに担持できる色素21の量が増えるため光の吸収効率が高くなるが、発生した電子の拡散距離が増すため電荷再結合によるロスも大きくなる。
 上記のように光電変換素子および色素増感太陽電池において、励起電子の拡散距離が短いほど、電子輸送効率の向上が期待できる。しかし、半導体層の厚みを薄くすると、かえって光電変換効率が低下することがある。本発明の光電変換素子および色素増感太陽電池は、配位子LAと配位子LDとを併用した本発明の金属錯体色素を有する。これにより、半導体層が上記従来の厚みを有する場合も、また従来の厚みよりも薄くした場合も、優れた光電変換効率を発揮する。このように、本発明によれば、半導体層の膜厚の影響が小さく、優れた光電変換効率を発揮する。
 半導体層45(光電変換素子10においては感光体層2)の好ましい厚みは、光電変換素子の用途によって一義的なものではないが、典型的には0.1~100μmである。色素増感太陽電池として用いる場合は、1~50μmがより好ましく、3~30μmがさらに好ましい。
 本発明においては、上記式(I)で表される金属錯体色素を用いることから、半導体層45の厚みを薄くすることができる。例えば、上記好ましい範囲のなかでも、8μm以下、さらには6μm以下とすることができる。
 半導体微粒子22は、導電性支持体1または41に塗布した後に、100~800℃の温度で10分~10時間焼成して、粒子同士を密着させることが好ましい。成膜温度は、導電性支持体1または基板44の材料としてガラスを用いる場合、60~600℃が好ましい。
 半導体微粒子22の、導電性支持体1または41の表面積1m当たりの塗布量は0.5~500g、さらには5~100gが好ましい。
 導電性支持体1または41と感光体層2または42との間には、感光体層2または42が含む電解質と導電性支持体1または41が直接接触することによる逆電流を防止するため、短絡防止層を形成することが好ましい。
 また、受光電極5または40と対極4または48の接触を防ぐために、スペーサーS(図2参照)やセパレータを用いることが好ましい。
 - 色素 -
 光電変換素子10および色素増感太陽電池20においては、増感色素として少なくとも1種の上記式(I)で表される金属錯体色素を使用する。式(I)で表される金属錯体色素は上記の通りである。
 本発明において、上記式(I)の金属錯体色素と併用できる色素としては、Ru錯体色素、スクアリリウムシアニン色素、有機色素、ポルフィリン色素、フタロシアニン色素等が挙げられる。
 Ru錯体色素としては、例えば、特表平7-500630号公報に記載のRu錯体色素(特に第5頁左下欄5行目~第7頁右上欄7行目の例1~例19で合成された色素)、特表2002-512729号公報に記載のRu錯体色素(特に第20頁の下から3行目~第29頁23行目の例1~例16で合成された色素)、特開2001-59062号公報に記載のRu錯体色素(特に、段落番号0087~0104に記載の色素)、特開2001-6760号公報に記載のRu錯体色素(特に、段落番号0093~0102に記載の色素)、特開2001-253894号公報に記載のRu錯体色素(特に、段落番号0009~0010に記載の色素)、特開2003-212851号公報に記載のRu錯体色素(特に、段落番号0005に記載の色素)、国際公開第2007/91525号に記載のRu錯体色素(特に、[0067]に記載の色素)、特開2001-291534号公報に記載のRu錯体色素(特に、段落番号0120~0144に記載の色素)、特開2012-012570号公報に記載のRu錯体色素(特に、段落番号0095~0103に記載の色素)、特開2013-084594号公報に記載のRu金属錯体色素(特に、段落番号0072~0081等に記載の色素)、国際公開第2013/088898号に記載のRu錯体色素(特に、[0286]~[0293]に記載の色素)、または、国際公開第2013/47615号に記載のRu錯体色素(特に、[0078]~[0082]に記載の色素)が挙げられる。
 スクアリリウムシアニン色素としては、例えば、特開平11-214730号公報に記載のスクアリリウムシアニン色素(特に、段落番号0036~0047に記載の色素)、特開2012-144688号公報に記載のスクアリリウムシアニン色素(特に、段落番号0039~0046および段落番号0054~0060に記載の色素)、または、特開2012-84503号公報に記載のスクアリリウムシアニン色素(特に、段落番号0066~0076等に記載の色素)が挙げられる。
 有機色素としては、例えば、特開2004-063274号公報に記載の有機色素(特に、段落番号0017~0021に記載の色素)、特開2005-123033号公報に記載の有機色素(特に、段落番号0021~0028に記載の色素)、特開2007-287694号公報に記載の有機色素(特に、段落番号0091~0096に記載の色素)、特開2008-71648号公報に記載の有機色素(特に、段落番号0030~0034に記載の色素)、または、国際公開第2007/119525号に記載の有機色素(特に、[0024]に記載の色素)が挙げられる。
 ポルフィリン色素としては、例えば、Angew.Chem.Int.Ed.,49,p.1~5(2010)等に記載のポルフィリン色素が挙げられ、フタロシアニン色素としては、例えば、Angew.Chem.Int.Ed.,46,p.8358(2007)等に記載のフタロシアニン色素が挙げられる。
 併用できる色素としては、Ru錯体色素、スクアリリウムシアニン色素、または有機色素が好ましい。
 色素の使用量は、全体で、導電性支持体1または41の表面積1m当たり0.01~100ミリモルが好ましく、より好ましくは0.1~50ミリモル、特に好ましくは0.1~10ミリモルである。また、色素21の半導体微粒子22に対する吸着量は1gの半導体微粒子22に対して0.001~1ミリモルが好ましく、より好ましくは0.1~0.5ミリモルである。このような色素量とすることによって、半導体微粒子22における増感効果が十分に得られる。
 式(I)で表される金属錯体色素と他の色素を併用する場合、式(I)で表される金属錯体色素の質量/他の色素の質量の比は、95/5~10/90が好ましく、95/5~50/50がより好ましく、95/5~60/40がさらに好ましく、95/5~65/35が特に好ましく、95/5~70/30が最も好ましい。
 色素を半導体微粒子22に担持させた後に、アミン化合物を用いて半導体微粒子22の表面を処理してもよい。好ましいアミン化合物としてピリジン化合物(例えば4-t-ブチルピリジン、ポリビニルピリジン)等が挙げられる。これらは液体の場合はそのまま用いてもよいし、有機溶媒に溶解して用いてもよい。
 - 共吸着剤 -
 本発明においては、式(I)で表される金属錯体色素または必要により併用する色素とともに共吸着剤を使用することが好ましい。このような共吸着剤としては酸性基(好ましくは、カルボキシ基またはその塩)を1つ以上有する共吸着剤が好ましく、脂肪酸やステロイド骨格を有する化合物が挙げられる。
 脂肪酸は、飽和脂肪酸でも不飽和脂肪酸でもよく、例えば、ブタン酸、ヘキサン酸、オクタン酸、デカン酸、ヘキサデカン酸、ドデカン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸等が挙げられる。
 ステロイド骨格を有する化合物として、コール酸、グリココール酸、ケノデオキシコール酸、ヒオコール酸、デオキシコール酸、リトコール酸、ウルソデオキシコール酸等が挙げられる。好ましくはコール酸、デオキシコール酸、ケノデオキシコール酸であり、さらに好ましくはケノデオキシコール酸である。
 好ましい共吸着剤は、下記式(CA)で表される化合物である。
Figure JPOXMLDOC01-appb-C000080
 式中、RA1は酸性基を有する置換基を表す。RA2は置換基を表す。nAは0以上の整数を表す。
 酸性基は、上記式(AL-1)の酸性基と同義であり、好ましい範囲も同じである。
 RA1は、これらのなかでも、カルボキシ基もしくはスルホ基またはこれらの塩が置換したアルキル基が好ましく、-CH(CH)CHCHCOH、-CH(CH)CHCHCONHCHCHSOHがさらに好ましい。
 RA2としては、上記の置換基群Tから選ばれる基が挙げられる。なかでも、アルキル基、ヒドロキシ基、アシルオキシ基、アルキルアミノカルボニルオキシ基またはアリールアミノカルボニルオキシ基が好ましく、アルキル基、ヒドロキシ基またはアシルオキシ基がより好ましい。
 nAは2~4が好ましい。
 上記共吸着剤は、半導体微粒子22に吸着させることにより、金属錯体色素の非効率な会合を抑制する効果および半導体微粒子表面から電解質中のレドックス系への逆電子移動を防止する効果がある。共吸着剤の使用量は、特に限定されないが、上記の作用を効果的に発現させる観点から、上記金属錯体色素1モルに対して、好ましくは1~200モル、さらに好ましくは10~150モル、特に好ましくは20~50モルである。
 - 光散乱層 -
 本発明において、光散乱層は、入射光を散乱させる機能を有する点で、半導体層と異なる。
 色素増感太陽電池20において、光散乱層46は、好ましくは、棒状または板状の金属酸化物粒子を含有する。光散乱層46に用いられる金属酸化物粒子は、例えば、上記金属のカルコゲニド(酸化物)の粒子が挙げられる。光散乱層46を設ける場合、光散乱層の厚みは感光体層42の厚みの10~50%とすることが好ましい。
 光散乱層46は、特開2002-289274号公報に記載されている光散乱層が好ましく、特開2002-289274号公報の記載が、そのまま本明細書に好ましく取り込まれる。
<電荷移動体層>
 本発明の光電変換素子に用いられる電荷移動体層3および47は、色素21の酸化体に電子を補充する機能を有する層であり、受光電極5または40と対極4または48との間に設けられる。
 電荷移動体層3および47は電解質を含む。ここで、「電荷移動体層が電解質を含む」とは、電荷移動体層が電解質のみからなる態様、および、電解質と電解質以外の物質を含有する態様の、両態様を含む意味である。
 電荷移動体層3および47は、固体状、液体状、ゲル状またはこれら混合状態のいずれであってもよい。
 - 電解質 -
 電解質の例としては、酸化還元対を有機溶媒に溶解した液体電解質、酸化還元対を含有する溶融塩および酸化還元対を有機溶媒に溶解した液体をポリマーマトリクスに含浸したいわゆるゲル電解質等が挙げられる。なかでも、液体電解質が光電変換効率の点で好ましい。
 酸化還元対として、例えばヨウ素とヨウ化物(ヨウ化物塩、ヨウ化イオン性液体が好ましく、ヨウ化リチウム、ヨウ化テトラブチルアンモニウム、ヨウ化テトラプロピルアンモニウム、ヨウ化メチルプロピルイミダゾリウムが好ましい)との組み合わせ、アルキルビオローゲン(例えばメチルビオローゲンクロリド、ヘキシルビオローゲンブロミド、ベンジルビオローゲンテトラフルオロボレート)とその還元体との組み合わせ、ポリヒドロキシベンゼン(例えばハイドロキノン、ナフトハイドロキノン等)とその酸化体との組み合わせ、2価と3価の鉄錯体の組み合わせ(例えば赤血塩と黄血塩の組み合わせ)、2価と3価のコバルト錯体の組み合わせ等が挙げられる。これらのうち、ヨウ素とヨウ化物との組み合わせ、または2価と3価のコバルト錯体の組み合わせが好ましく、ヨウ素とヨウ化物との組み合わせが特に好ましい。
 上記コバルト錯体は、特開2014-82189号公報の段落番号0144~0156に記載の式(CC)で表される錯体が好ましく、特開2014-82189号公報の段落番号0144~0156の記載が、そのまま本明細書に好ましく取り込まれる。
 電解質として、ヨウ素とヨウ化物との組み合わせを用いる場合、5員環または6員環の含窒素芳香族カチオンのヨウ素塩をさらに併用するのが好ましい。
 液体電解質およびゲル電解質に用いる有機溶媒としては、特に限定されないが、非プロトン性の極性溶媒(例えばアセトニトリル、炭酸プロピレン、炭酸エチレン、ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、1,3-ジメチルイミダゾリノン、3-メチルオキサゾリジノン等)が好ましい。
 特に、液体電解質に用いる有機溶媒としては、ニトリル化合物、エーテル化合物、エステル化合物等が好ましく、ニトリル化合物がより好ましく、アセトニトリル、メトキシプロピオニトリルが特に好ましい。
 溶融塩としては、イミダゾリウムまたはトリアゾリウム型陽イオンを含むイオン性液体、オキサゾリウム型陽イオンを含むイオン性液体、ピリジニウム型陽イオンを含むイオン性液体、グアニジウム型陽イオンを含むイオン性液体およびこれらの組み合わせが好ましい。また、これら陽イオンに対して特定のアニオンを組み合わせてもよい。これらの溶融塩に対しては添加物を加えてもよい。溶融塩は液晶性の置換基を持っていてもよい。また、溶融塩として、四級アンモニウム塩の溶融塩を用いることもできる。
 これら以外の溶融塩としては、例えば、ヨウ化リチウムと他の少なくとも1種類のリチウム塩(例えば酢酸リチウム、過塩素酸リチウム等)にポリエチレンオキシドを混合することにより、室温での流動性を付与したもの等が挙げられる。この場合のポリマーの添加量は1~50質量%である。また、γ-ブチロラクトンを電解液に含んでいてもよく、これによりヨウ化物イオンの拡散効率が高くなり光電変換効率が向上する。
 ゲル電解質のマトリクスに使用されるポリマー(ポリマーマトリクス)としては、例えばポリアクリロニトリル、ポリビニリデンフルオリド等が挙げられる。
 電解質と溶媒からなる電解液にゲル化剤を添加してゲル化させることにより、電解質を擬固体化してもよい(擬固体化された電解質を、以下、「擬固体電解質」ともいう。)。ゲル化剤としては、分子量1000以下の有機化合物、分子量500~5000の範囲のSi含有化合物、特定の酸性化合物と塩基性化合物からできる有機塩、ソルビトール誘導体、ポリビニルピリジンが挙げられる。
 また、ポリマーマトリクス、架橋型高分子化合物またはモノマー、架橋剤、電解質および溶媒を高分子中に閉じ込める方法を用いてもよい。
 ポリマーマトリクスとして好ましくは、含窒素複素環を主鎖または側鎖の繰り返し単位中に持つ高分子およびこれらを求電子性化合物と反応させた架橋体、トリアジン構造を持つ高分子、ウレイド構造を持つ高分子、液晶性化合物を含むもの、エーテル結合を有する高分子、ポリフッ化ビニリデン、メタクリレート、アクリレート、熱硬化性樹脂、架橋ポリシロキサン、ポリビニルアルコール(PVA)、ポリアルキレングリコールとデキストリン等の包接化合物、含酸素または含硫黄高分子を添加した系、天然高分子等が挙げられる。これらにアルカリ膨潤型高分子、一つの高分子内にカチオン部位とヨウ素との電荷移動錯体を形成できる化合物を持った高分子等を添加してもよい。
 ポリマーマトリクスとして、2官能以上のイソシアネート基と、ヒドロキシ基、アミノ基、カルボキシ基等の官能基とを反応させた架橋ポリマーを含む系を用いてもよい。また、ヒドロシリル基と二重結合性化合物による架橋高分子、ポリスルホン酸またはポリカルボン酸等を2価以上の金属イオン化合物と反応させる架橋方法等を用いてもよい。
 上記擬固体電解質との組み合わせで好ましく用いることができる溶媒としては、特定のリン酸エステル、エチレンカーボネートを含む混合溶媒、特定の比誘電率を持つ溶媒等が挙げられる。固体電解質膜あるいは細孔に液体電解質溶液を保持させてもよい。液体電解質溶液を保持させる方法として好ましくは、導電性高分子膜、繊維状固体、フィルタ等の布状固体を使用する方法が挙げられる。
 電解質は、添加物として、4-t-ブチルピリジン等のピリジン化合物のほか、アミノピリジン化合物、ベンズイミダゾール化合物、アミノトリアゾール化合物およびアミノチアゾール化合物、イミダゾール化合物、アミノトリアジン化合物、尿素化合物、アミド化合物、ピリミジン化合物または窒素を含まない複素環を含有していてもよい。
 また、光電変換効率を向上させるために、電解液の水分を制御する方法をとってもよい。水分を制御する好ましい方法としては、濃度を制御する方法や脱水剤を共存させる方法を挙げることができる。電解液の水分含有量(含有率)を0~0.1質量%に調整することが好ましい。
 ヨウ素は、ヨウ素とシクロデキストリンとの包摂化合物として使用することもできる。また環状アミジンを用いてもよく、酸化防止剤、加水分解防止剤、分解防止剤、ヨウ化亜鉛を加えてもよい。
 以上の液体電解質および擬固体電解質の代わりに、p型半導体あるいはホール輸送材料等の固体電荷輸送層、例えば、CuI、CuNCS等を用いることができる。また、Nature,vol.486,p.487(2012)等に記載の電解質を用いてもよい。固体電荷輸送層として有機ホール輸送材料を用いてもよい。有機ホール輸送材料としては、好ましくは、ポリチオフェン、ポリアニリン、ポリピロールおよびポリシラン等の導電性高分子および2個の環がC、Siなど四面体構造をとる中心元素を共有するスピロ化合物、トリアリールアミン等の芳香族アミン誘導体、トリフェニレン誘導体、含窒素複素環誘導体、液晶性シアノ誘導体が挙げられる。
 酸化還元対は、電子のキャリアになるので、ある程度の濃度で含有するのが好ましい。好ましい濃度としては合計で0.01モル/L以上であり、より好ましくは0.1モル/L以上であり、特に好ましくは0.3モル/L以上である。この場合の上限は特に制限はないが、通常5モル/L程度である。
<対極>
 対極4および48は、色素増感太陽電池の正極として働くものであることが好ましい。対極4および48は、通常、上記導電性支持体1または41と同じ構成とすることもできるが、強度が十分に保たれるような構成では基板44は必ずしも必要でない。対極4および48の構造としては、集電効果が高い構造が好ましい。感光体層2および42に光が到達するためには、上記導電性支持体1または41と対極4または48との少なくとも一方は実質的に透明でなければならない。本発明の色素増感太陽電池においては、導電性支持体1または41が透明であって太陽光を導電性支持体1または41側から入射させるのが好ましい。この場合、対極4および48は光を反射する性質を有することがさらに好ましい。色素増感太陽電池の対極4および48としては、金属もしくは導電性の酸化物を蒸着したガラスまたはプラスチックが好ましく、白金を蒸着したガラスが特に好ましい。色素増感太陽電池では、構成物の蒸散を防止するために、電池の側面をポリマーや接着剤等で密封することが好ましい。
 本発明は、例えば、特許第4260494号公報、特開2004-146425号公報、特開2000-340269号公報、特開2002-289274号公報、特開2004-152613号公報、特開平9-27352号公報に記載の光電変換素子、色素増感太陽電池に適用することができる。また、特開2004-152613号公報、特開2000-90989号公報、特開2003-217688号公報、特開2002-367686号公報、特開2003-323818号公報、特開2001-43907号公報、特開2000-340269号公報、特開2005-85500号公報、特開2004-273272号公報、特開2000-323190号公報、特開2000-228234号公報、特開2001-266963号公報、特開2001-185244号公報、特表2001-525108号公報、特開2001-203377号公報、特開2000-100483号公報、特開2001-210390号公報、特開2002-280587号公報、特開2001-273937号公報、特開2000-285977号公報、特開2001-320068号公報に記載の光電変換素子、色素増感太陽電池に適用することができる。
[光電変換素子および色素増感太陽電池の製造方法]
 本発明の光電変換素子および色素増感太陽電池は、本発明の金属錯体色素および溶媒を含有する色素溶液(本発明の色素溶液)を用いて、製造することが好ましい。
 このような色素溶液には、本発明の金属錯体色素が溶媒に溶解されてなり、必要により共吸着剤や他の成分を含んでもよい。
 使用する溶媒としては、特開2001-291534号公報に記載の溶媒を挙げることができるが、特にこれに限定されない。本発明においては有機溶媒が好ましく、さらにアルコール溶媒、アミド溶媒、ニトリル溶媒、炭化水素溶媒、および、これらの2種以上の混合溶媒がより好ましい。混合溶媒としては、アルコール溶媒と、アミド溶媒、ニトリル溶媒または炭化水素溶媒から選ばれる溶媒との混合溶媒が好ましい。さらに好ましくはアルコール溶媒とアミド溶媒、アルコール溶媒と炭化水素溶媒の混合溶媒、アルコール溶媒とニトリル溶媒の混合溶媒であり、特に好ましくはアルコール溶媒とアミド溶媒の混合溶媒、アルコール溶媒とニトリル溶媒の混合溶媒である。具体的にはメタノール、エタノール、プロパノールおよびt-ブタノールの少なくとも1種と、ジメチルホルムアミドおよびジメチルアセトアミドの少なくとも1種との混合溶媒、メタノール、エタノール、プロパノールおよびt-ブタノールの少なくとも1種と、アセトニトリルとの混合溶媒が好ましい。
 色素溶液は共吸着剤を含有することが好ましく、共吸着剤としては、上記の共吸着剤が好ましく、なかでも上記式(CA)で表される化合物が好ましい。
 ここで、本発明の色素溶液は、光電変換素子や色素増感太陽電池を製造する際に、この溶液をこのまま使用できるように、金属錯体色素や共吸着剤の濃度が調整されている色素溶液が好ましい。本発明においては、本発明の色素溶液は、本発明の金属錯体色素を0.001~0.1質量%含有することが好ましい。共吸着剤の使用量は上記した通りである。
 色素溶液は、水分含有量を調整することが好ましく、本発明では水分含有量を0~0.1質量%に調整することが好ましい。
 本発明においては、上記色素溶液を用いて、半導体微粒子表面に式(I)で表される金属錯体色素またはこれを含む色素を担持させることにより、感光体層を作製することが好ましい。すなわち、感光体層は、導電性支持体上に設けた半導体微粒子に上記色素溶液を塗布(ディップ法を含む)し、乾燥または硬化させて、形成することが好ましい。
 このようにして作製した感光体層を備えた受光電極に、さらに電荷移動体層や対極等を設けることで、本発明の光電変換素子または色素増感太陽電池を得ることができる。
 色素増感太陽電池は、上記のようにして作製した光電変換素子の導電性支持体1および対極4に外部回路6を接続して、製造される。
 以下に実施例に基づき、本発明についてさらに詳細に説明するが、本発明はこれに限定されない。
 以下に、本発明の金属錯体色素の合成方法を詳しく説明するが、出発物質、色素中間体および合成ルートについてはこれにより限定されるものではない。
 本発明において、室温とは25℃を意味する。また、Meはメチルを表し、Etはエチルを表し、TBAはテトラブチルアンモニウムを示す。
 実施例1において合成した金属錯体色素および合成中間体を、MS(マススペクトル)測定、H-NMR測定により、同定した。合成した金属錯体色素のTBA塩は、MS測定において、プロトン化されて電気的に中性な金属錯体色素と同じ質量になるので、TBA塩についてはMS測定の結果を省略する。
 また、合成したターピリジン化合物(配位子LAのエチルエステル体)をMS測定、H-NMR測定により、同定した。
 実施例1(金属錯体色素の合成)
 本実施例で、合成した金属錯体色素D-1~D-33を以下に示す。
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
(金属錯体色素(D-1)および金属錯体色素(D-1TBA)の合成)
 以下のスキームに従って、金属錯体色素(D-1)および金属錯体色素(D-1TBA)を合成した。
Figure JPOXMLDOC01-appb-C000084
(i)化合物(1-2)の合成
 500mLの3つ口フラスコに、THF(テトラヒドロフラン、250mL)、化合物(1-1)(10g)を入れ、窒素雰囲気下で-78℃に冷やした。そこにn-BuLi(1.6Mヘキサン溶液、76mL)を加え、混合液を-78℃で30分攪拌した。その後、iPrO-BPin(イソプロポキシ(ピナコール)ボラン、45mL)を加え、さらに室温で攪拌した。得られた溶液を塩化アンモニウムで中和し、酢酸エチルで反応生成物を抽出した。有機相を濃縮して、化合物(1-2)を得た。
(ii)化合物(1-4)の合成
 300mLの3つ口フラスコに、THF(100mL)、化合物(1-2)(7.6g)、化合物(1-3)(5g)、XPhosPdG3((2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピル-1,1’-ビフェニル[(2-2’-アミノ-1,1’-ビフェニル)]パラジウム(II) メタンスルホネート、30.78g)およびKPO(48.5g)を入れ、混合物を窒素雰囲気下にて加熱還流した。得られた溶液を室温に戻し、HOを20mL入れ、セライト濾過し、酢酸エチルで反応生成物を抽出した。有機相を濃縮し、濃縮残渣をシリカゲルカラムクロマトグラフィーで精製して、化合物(1-4)を3g得た。
(iii)化合物(1-7)の合成
 100mLの3つ口フラスコに、化合物(1-4)(2g)およびTHF(40mL)を入れ、窒素雰囲気下で-78℃に冷却した。そこにn-BuLi(1.6Mヘキサン溶液、8mL)を加え、混合液を-78℃で30分攪拌した。その後、混合液にBuSnCl(4.17g)を加えて、室温にて攪拌した。得られた溶液を塩化アンモニウムで中和し、酢酸エチルで反応生成物を抽出した。有機相を濃縮して、化合物(1-5)を得た。
 得られた化合物(1-5)、化合物(1-6)(1.95g)、Pd(PPh(0.673g)およびトルエン(40mL)を、100mLのナスフラスコに入れ、混合物を窒素雰囲気下90℃で攪拌した。得られた溶液を室温に戻し、濃縮し、濃縮残渣をシリカゲルカラムクロマトグラフィーで精製して、化合物(1-7)を700mg得た。
(iv)化合物(1-9)の合成
 100mLの3つ口フラスコに、化合物(1-7)(600mg)、トルエン(20mL)、Pd(PPh(0.5g)およびMeSnSnMe(0.53mL)を入れ、混合物を窒素雰囲気下で3時間加熱還流した。得られた溶液を室温に戻し、HOを30mL加えて、セライト濾過した。反応生成物をトルエンで抽出した。有機相を濃縮し、濃縮残渣を50℃にて乾燥した。得られたSn体を100mLの3つ口フラスコに入れ、さらに、トルエン(20mL)、Pd(PPh(0.25g)および化合物(1-8)(0.82g)を入れ、混合物を窒素雰囲気下で4時間加熱還流した。得られた溶液を室温に戻し、濃縮して粗体を得た。この粗体を塩化メチレンおよびイソプロパノールから再結晶して、ターピリジン化合物のジエチルエステル化物である化合物(1-9)を600mg得た。
 化合物(1-9)は以下のデータから確認された。
 H-NMR(400MHz、溶媒:CDCl、内部基準物質:テトラメチルシラン(TMS))による化学シフトσ(ppm)=9.20(1H,m),9.03(2H,s),8.91(1H,m),8.85(1H,m),8.72(1H,m),7.96(1H,m),7.59(1H,m),7.53(1H,m),7.15(1H,m),7.08(1H,m),6.72(1H,m),4.50(4H,m),2.52(3H,s),1.48(6H,m)
 MS(ESI)m/z:556.5([M+H]
(v)化合物(1-10)の合成
 50mLのナスフラスコに、化合物(1-9)(0.5g)、塩化ルテニウム(0.24g)およびエタノール(10mL)を入れ、混合物を窒素雰囲気下で3時間加熱還流した。沈殿物をろ取し、エタノールで洗浄して、化合物(1-10)を0.6g得た。
(vi)化合物(1-12)の合成
 50mLのナスフラスコに、化合物(1-10)(0.6g)、化合物(1-11)(0.32g)、DMF(N,N-ジメチルホルムアミド、10mL)、トリブチルアミン(1mL)を入れ、混合物を窒素雰囲気下、140℃で3時間加熱した。反応混合物を室温に戻した後に濃縮し、濃縮残渣をシリカゲルカラムクロマトグラフィーで精製して、化合物(1-12)を0.6g得た。
(vii)化合物(1-13)の合成
 50mLのナスフラスコに、化合物(1-12)(0.6g)、チオシアン酸アンモニウム(0.42g)、DMF(40mL)およびHO(4mL)を入れ、混合物を100℃で3時間加熱した。反応混合物を室温に戻した後、濃縮し、濃縮残渣をシリカゲルカラムクロマトグラフィーで精製して、化合物(1-13)を0.3g得た。
(viii)金属錯体色素(D-1)の合成
 100mLのナスフラスコに、化合物(1-13)(250mg)、DMF(50mL)および1NのNaOH水溶液(1.7mL)を入れ、混合物を室温で反応させた。得られた溶液にTfOH(トリフルオロメタンスルホン酸)を加え、pHを2.9に調整した。析出物をろ取し、超純水で洗浄して、金属錯体色素(D-1)を200mg得た。
 金属錯体色素(D-1)は以下のデータから確認された。
MS(ESI+)m/z:1038.5([M+H]+)
(ix)金属錯体色素(D-1TBA)の合成
 10mLのナスフラスコに、金属錯体色素(D-1)(100mg)と、10%TBAOH(テトラブチルアンモニウムヒドロキシド)メタノール溶液(0.25g)とを投入し、室温で反応させた。得られた溶液を濃縮し、金属錯体色素(D-1TBA)を100mg得た。
 金属錯体色素(D-1)および金属錯体色素(D-1TBA)の合成と同様にして、上記金属錯体色素(D-2)~(D-33)および金属錯体色素(D-1TBA)~(D-33TBA)をそれぞれ合成した。
 合成した金属錯体色素(D-2)~(D-33)は下記表1のデータから確認された。
Figure JPOXMLDOC01-appb-T000085
 上記金属錯体色素の合成において、合成したターピリジン化合物のジエチルエステル化物であるAC-1~AC-6は、それぞれ、下記表2のデータから、確認された。また、ターピリジン化合物AC-1、AC-5およびAC-6は、それぞれ、さらに図4~図6に示すH-NMRデータからも、確認された。ターピリジン化合物のジエチルエステル化物であるAC-1(図4)、AC-5(図5)およびAC-6(図6)のH-NMRは、それぞれ、CDCl溶媒を用いて、テトラメチルシラン(TMS)を内部標準物質として、プロトン共鳴周波数400MHzで、測定した。
 例えば、ターピリジン化合物のジエチルエステル化物であるAC-1は、上記化合物(1-9)であり、金属錯体色素(D-1)等の合成に用いた。
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-T000087
(可視吸収スペクトルの測定)
 合成した金属錯体色素(D-1)の可視吸収スペクトルを測定した。
 濃度が340mmol/LのTBAOHメタノール溶液に金属錯体色素(D-1)を溶解して、金属錯体色素(D-1)の濃度が17μモル/LのTBAOHメタノール溶液を調製した。この測定溶液を用いて、金属錯体色素(D-1)の吸光スペクトルを測定した。測定装置は「UV-3600」(株式会社島津製作所製)を用いた。
 また、同様にして、金属錯体色素(D-16)~(D-19)および(D-24)の可視吸収スペクトルを測定した。
 得られた吸収スペクトルを図3に示す。図3の吸収スペクトルにおいて、縦軸はモル吸光係数ε(L/mol・cm)である。
 図3に示されるように、金属錯体色素(D-1)、(D-16)~(D-19)および(D-24)は、いずれも、700nmの波長を超えた長波長領域まで吸収ピークの裾が広がっていることが確認できた。このように、得られた可視吸収スペクトルにより、上記金属錯体色素は、いずれも、特許文献4のExample2(A-2:Fig.3)に対して、吸光度が大きくなっていることが分かった。
実施例2(色素増感太陽電池の製造)
 実施例1で合成した金属錯体色素(D-1)~(D-33)および(D-1TBA)~(D-33TBA)または下記比較化合物(c-1)~(c-4)それぞれを用いて、図2に示す色素増感太陽電池20(5mm×5mmのスケール)を製造した。製造は、以下に示す手順により、行った。製造した色素増感太陽電池20それぞれの下記性能を評価した。その結果を表3-1および表3-2に示した。
(受光電極前駆体[A]の作製)
 ガラス基板(基板44、厚み4mm)上にフッ素ドープされたSnO導電膜(透明導電膜43、膜厚;500nm)を形成し、導電性支持体41を作製した。そして、このSnO導電膜上に、チタニアペースト「18NR-T」(DyeSol社製)をスクリーン印刷し、120℃で乾燥させた。次いで、チタニアペースト「18NR-T」を再度スクリーン印刷し、120℃で1時間乾燥させた。その後、乾燥させたチタニアペーストを、空気中、500℃で焼成し、半導体層45(層厚;10μm)を成膜した。さらに、この半導体層45上に、チタニアペースト「18NR-AO」(DyeSol社製)をスクリーン印刷し、120℃で1時間乾燥させた。その後、乾燥させたチタニアペーストを500℃で焼成し、半導体層45上に光散乱層46(層厚;5μm)を成膜した。
 このようにして、SnO導電膜上に、感光体層42(受光面の面積;5mm×5mm、層厚;15μm、金属錯体色素は未担持)を形成し、金属錯体色素を担持していない受光電極前駆体[A]を作製した。
(受光電極前駆体[B]の作製)
 ガラス基板(基板44、厚み4mm)上にフッ素ドープされたSnO導電膜(透明導電膜43、膜厚;500nm)を形成し、導電性支持体41を作製した。そして、このSnO導電膜上に、チタニアペースト「18NR-T」(DyeSol社製)をスクリーン印刷し、120℃で乾燥させた。その後、乾燥させたチタニアペーストを、空気中、500℃で焼成し、半導体層45(受光面の面積;5mm×5mm、層厚;6μm)を成膜した。
 このようにして、SnO導電膜上に、光散乱層46を設けていない感光体層42(受光面の面積;5mm×5mm、層厚;6μm、金属錯体色素は未担持)を形成し、金属錯体色素を担持していない受光電極前駆体[B]を作製した。
(色素吸着)
 次に、金属錯体色素を担持していない感光体層42に実施例1で合成した各金属錯体色素((D-1)~(D-33)および(D-1TBA)~(D-33TBA))を以下のようにして担持させた。先ず、t-ブタノールとアセトニトリルとの1:1(体積比)の混合溶媒に、上記金属錯体色素それぞれを濃度が2×10-4モル/Lとなるように溶解し、さらにそこへ共吸着剤としてデオキシコール酸を上記金属錯体色素1モルに対して30モル加え、各色素溶液を調製した。次に、各色素溶液に受光電極前駆体[A]を25℃で20時間浸漬し、色素溶液から引き上げた後に乾燥させた。
 このようにして、受光電極前駆体[A]に各金属錯体色素が担持した受光電極40をそれぞれ作製した。
 受光電極前駆体[B]についても同様にして各金属錯体色素を担持させて、受光電極前駆体[B]に各金属錯体色素が担持した受光電極40をそれぞれ作製した。
(色素増感太陽電池の組み立て)
 対極48として、上記の導電性支持体41と同様の形状と大きさを有する白金電極(Pt薄膜の厚み;100nm)を作製した。また、電解液として、ヨウ素0.1M(モル/L)、ヨウ化リチウム0.1M、4-t-ブチルピリジン0.5Mおよび1,2-ジメチル-3-プロピルイミダゾリウムヨージド0.6Mをアセトニトリルに溶解して、液体電解質を調製した。さらに、感光体層42の大きさに合わせた形状を有するスペーサーS「サーリン」(商品名、デュポン社製)を準備した。
 上記のようにして作製した受光電極40それぞれと対極48とを、上記スペーサーSを介して、対向させて熱圧着させた後に、感光体層42と対極48との間に電解液注入口から上記液体電解質を充填して電荷移動体層47を形成した。このようにして作製した電池の外周および電解液注入口を、レジンXNR-5516(ナガセケムテック製)を用いて、封止、硬化し、各色素増感太陽電池(試料番号1~33)を製造した。
 各試料番号の色素増感太陽電池は、電気的に中性な金属錯体色素(D-1~D-33)を用いたものと、TBA塩の金属錯体色素(D-1TBA~D-33TBA)を用いたものとの2種を含む。
 また、各試料番号の色素増感太陽電池において、電気的に中性な金属錯体色素を用いた色素増感太陽電池は、受光電極前駆体[A]を用いて製造した色素増感太陽電池(試料番号に「A」を付すことがある)と、受光電極前駆体[B]を用いて製造した色素増感太陽電池(試料番号に「B」を付すことがある)との2種類を含む。同様に、TBA塩の金属錯体色素を用いた色素増感太陽電池は、受光電極前駆体[A]を用いて製造した色素増感太陽電池と、受光電極前駆体[B]を用いて製造した色素増感太陽電池との2種類を含む。
 比較のため、上記色素増感太陽電池の製造において、実施例1で合成した金属錯体色素に代えて下記金属錯体色素(c-1)~(c-4)をそれぞれ用いた以外は、上記色素増感太陽電池の製造と同様にして、色素増感太陽電池(試料番号c1~c4)を製造した。
 金属錯体色素(c-1)は特許文献1に記載の化合物「Dye-604」である。金属錯体色素(c-2)は特許文献3の[0042]に記載の化合物である。金属錯体色素(c-3)は特許文献2に記載の化合物「D-9」である。金属錯体色素(c-4)は特許文献4の化合物「Example2(A-2)」である。
Figure JPOXMLDOC01-appb-C000088
<光電変換効率の試験>
 製造した色素増感太陽電池それぞれを用いて電池特性試験を行った。電池特性試験は、ソーラーシミュレーター(WXS-85H、WACOM社製)を用い、AM1.5フィルタを通したキセノンランプから1000W/mの擬似太陽光を照射することにより行った。I-Vテスターを用いて電流-電圧特性を測定し、光電変換効率を求めた。
 (変換効率(A))
 各試料番号の色素増感太陽電池のうち受光電極前駆体[A]を用いて製造した色素増感太陽電池(試料番号1A~33Aおよびc1A~c4A)それぞれについて、上記のようにして、光電変換効率を測定した(変換効率(A)という)。測定した変換効率(A)を評価した。評価は、受光電極前駆体[A]を用いて製造した色素増感太陽電池(試料番号c1A)の変換効率(S)を、基準とした。
 変換効率(A)の評価基準において、「A」および「B」が本試験の合格レベルであり、好ましくは「A」である。
(変換効率(A)の評価基準)
 変換効率(A)が変換効率(S)に対して、
 A:1.2倍より大きいもの
 B:1.1倍より大きく、1.2倍以下のもの
 C:1.0倍より大きく、1.1倍以下のもの
 D:1.0倍以下のもの
 (変換効率(B))
 各試料番号の色素増感太陽電池のうち受光電極前駆体[B]を用いて製造した色素増感太陽電池(試料番号1B~33Bおよびc1B~c4B)それぞれについても、上記のようにして、光電変換効率を測定した(変換効率(B)という)。測定した変換効率(B)を評価した。評価は、受光電極前駆体[A]を用いて製造した色素増感太陽電池(試料番号c1A)の変換効率(S)を、基準とした。
 変換効率(B)の評価基準において、「A」および「B」が本試験の合格レベルであり、好ましくは「A」である。
(変換効率(B)の評価基準)
 変換効率(B)が変換効率(S)に対して、
 A:1.1倍より大きいもの
 B:1.0倍より大きく、1.1倍以下のもの
 C:0.9倍より大きく、1.0倍以下のもの
 D:0.9倍以下のもの
<耐久性の評価>
 各試料番号の色素増感太陽電池のうち受光電極前駆体[A]を用いて製造した色素増感太陽電池(試料番号1A~33Aおよびc1A~c4A)それぞれを用いて、耐久性(熱劣化)評価としてヒートサイクル試験を行った。
 各色素増感太陽電池を-10℃の冷凍庫と50℃の恒温槽とに12時間毎に交互に入れて、冷却と加温を繰り返した(ヒートサイクル試験)。ヒートサイクル試験前の色素増感太陽電池およびヒートサイクル試験72時間後の色素増感太陽電池それぞれについて、電流を測定した。ヒートサイクル試験72時間後の色素増感太陽電池において電流-電圧特性測定から求めた電流値(短絡電流密度)をヒートサイクル試験前の色素増感太陽電池において測定された電流値(短絡電流密度)で除算した。この値を電流保持率とした。このようにして得られた電流保持率により、以下の基準で耐久性を評価した。
 耐久性の評価基準において、「A」および「B」が本試験の合格レベルであり、好ましくは「A」である。
(耐久性の評価基準)
 A:0.9倍以上のもの
 B:0.9倍未満、0.8倍以上のもの
 C:0.8倍未満、0.7倍以上のもの
 D:0.7倍未満のもの
Figure JPOXMLDOC01-appb-T000089
Figure JPOXMLDOC01-appb-T000090
 表3-1および表3-2の結果から、以下のことが分かる。
 試料番号1~33(本発明)においては、いずれも、配位子として、上記式(AL-1)で表される配位子LAと、1つの窒素原子および少なくとも1つの原子のアニオンで金属イオンMに配位する2座もしくは3座の配位子LDとを組み合わせた金属錯体色素(D-1~D-33)を用いた。これらの金属錯体色素(D-1~D-33)が半導体微粒子に担持された本発明の光電変換素子および色素増感太陽電池(試料番号1~33)は、いずれも、変換効率(A)および変換効率(B)がともに高く、しかも電流保持率も高かった。特に、式(AL-1)のnが2または3であると、優れた変換効率(B)が得られることが分かった。また、本発明の金属錯体色素は、電気的に中性であってもTBA塩であっても、同様の結果が得られた。
 さらに、本発明の金属錯体色素は、本発明の光電変換素子および色素増感太陽電池の増感色素として好適に用いることができた。本発明の金属錯体色素と溶媒とを含有する本発明の色素溶液は、本発明の金属錯体色素を担持した半導体微粒子の調製に好適に用いることができた。また、本発明のターピリジン化合物は、本発明の金属錯体色素の配位子として好適であり、特にそのエステル化物は本発明の金属錯体色素の配位子前駆体として好適であった。
 これに対して、上記式(AL-1)で表される配位子LAを有さない金属錯体色素を用いた場合には、変換効率および耐久性の点で、十分ではなかった。
 すなわち、試料番号c1およびc4の光電変換素子および色素増感太陽電池は、上記式(AL-1)で表される配位子LAも、配位子LDも有しない金属錯体色素を用いた。また、試料番号c2の光電変換素子および色素増感太陽電池は、1つのチオフェン環基を持つ配位子とビピリジンとを有する金属錯体色素を用いた。さらに、試料番号c3の光電変換素子および色素増感太陽電池は、1つのチオフェン環基が配位原子に対して3位に結合した配位子を有する金属錯体色素を用いた。しかし、いずれも、変換効率および電流保持率が合格レベルに到達しなかった。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2014年7月7日に日本国で特許出願された特願2014-140079、および、2015年2月27日に日本国で特許出願された特願2015-039390に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。
1、41 導電性支持体
2、42 感光体層
 21 色素
 22 半導体微粒子
3、47 電荷移動体層
4、48 対極
5、40 受光電極
6 外部回路
10 光電変換素子
100 光電変換素子を電池用途に応用したシステム
M 動作手段(例えば電動モーター)
20 色素増感太陽電池
43 透明導電膜
44 基板
45 半導体層
46 光散乱層
S スペーサー

Claims (16)

  1.  導電性支持体と、電解質を含む感光体層と、電解質を含む電荷移動体層と、対極とを有する光電変換素子であって、該感光体層が、下記式(I)で表される金属錯体色素が担持された半導体微粒子を有する光電変換素子。
       式(I)   M(LA)(LD)(LX)mX・(CI)mY
     式中、Mは金属イオンを表す。
     LAは、下記式(AL-1)で表される3座の配位子を表す。
     LDは2座の配位子または前記LAとは異なる3座の配位子を表す。LDの、前記金属イオンMと結合する配位原子のうちの少なくとも1つが窒素原子であり、少なくとも1つがアニオンである。
     LXは、単座の配位子を表す。mXは前記LDが2座の配位子のとき1を表し、前記LDが3座の配位子のとき0を表す。
     CIは金属錯体色素の電荷を中和させるために必要な対イオンを表す。mYは0~3の整数を表す。
    Figure JPOXMLDOC01-appb-C000001
     式中、ZaおよびZbは各々独立に5員もしくは6員の環を形成するのに必要な非金属原子群を表す。ただし、ZaおよびZbがそれぞれ形成する環の少なくとも一方には1つ以上の酸性基を有する。Lは各々独立に窒素原子またはCRを表し、Rは水素原子または置換基を表す。
     Gは、下記式(X-1)~(X-3)のいずれかの式で表される環基を表す。nは2~7の整数を表す。Tは水素原子または置換基を表す。-(G)n-T基は前記酸性基およびアミノ基を有さない。
    Figure JPOXMLDOC01-appb-C000002
     式中、Zt2およびZt3はそれぞれ前記式(X-2)または(X-3)中のチオフェン環と縮合環を形成するのに必要な非金属原子群を表す。
     RT1、RT2およびRT3は各々独立に置換基を表す。PT1は0~2の整数を表す。PT2およびPT3は各々独立に0以上の整数であり、前記式(X-2)または(X-3)で表される基が無置換であるときの水素原子数以下である。
     *は、Lを含む環、他のGまたはTとの結合位置を表す。
  2.  前記式(X-1)で表される環基が、下記式(X-1a)~(X-1c)のいずれかの式で表される環基である請求項1に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000003
     式中、RT1a~RT1cは各々独立に水素原子または置換基を表す。**は、Lを含む環、他のGまたはTとの結合位置を表す。
  3.  前記式(X-2)で表される環基が、下記式(X-2a)~(X-2e)のいずれかの式で表される環基である請求項1に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000004
     式中、Xは、-O-、-S-、-NRX2c-、-C(RX2c-、-(RX2c)C=C(RX2c)-または-Si(RX2c-を表す。RX2cは水素原子または置換基を表す。RT2およびRTAは各々独立に置換基を表す。PT2a~PT2cは各々独立に0~2の整数を表す。PTAはそれぞれ0~4の整数を表す。***は、Lを含む環、他のGまたはTとの結合位置を表す。
  4.  前記式(X-3)で表される環基が、下記式(X-3a)または(X-3b)で表される環基である請求項1に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000005
     式中、X3a~X3cは、各々独立に、-O-または-S-を表す。RT3bはアルキレン基を表す。
     RT3は置換基を表す。PT3aは0~2の整数を表す。****は、Lを含む環、他のGまたはTとの結合位置を表す。
  5.  前記Zaが形成する環が、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、テトラジン環、キノリン環、イソキノリン環、イミダゾール環、ピラゾール環、トリアゾール環、チアゾール環、オキサゾール環、ベンゾイミダゾール環、ベンゾトリアゾール環、ベンゾオキサゾール環およびベンゾチアゾール環からなる群より選ばれる少なくとも一種であり、
     前記Zbが形成する環が、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、テトラジン環、キノリン環、イソキノリン環、イミダゾール環、トリアゾール環、チアゾール環、オキサゾール環、ベンゾイミダゾール環、ベンゾトリアゾール環、ベンゾオキサゾール環およびベンゾチアゾール環からなる群より選ばれる少なくとも一種であり、
     前記Lを含むヘテロ環が、ピリジン環、ピリミジン環、ピリダジン環、トリアジン環、テトラジン環、キノリン環およびイソキノリン環からなる群より選ばれる少なくとも一種である請求項1~4のいずれか1項に記載の光電変換素子。
  6.  前記Mが、Ru2+またはOs2+である請求項1~5のいずれか1項に記載の光電変換素子。
  7.  前記LAが、下記式(AL-2)で表される3座の配位子である請求項1~6のいずれか1項に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000006
     式中、Ancは酸性基を表す。G、Tおよびnは前記式(AL-1)のG、Tおよびnと同義である。
  8.  前記酸性基が、カルボキシ基またはその塩である請求項1~7のいずれか1項に記載の光電変換素子。
  9.  前記LDが、下記式(2L-1)~(2L-4)のいずれかの式で表される2座の配位子である請求項1~8のいずれか1項に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000007
     式中、環D2Lは芳香族環を表す。A111~A141は、各々独立に、窒素原子のアニオンまたは炭素原子のアニオンを表す。R111~R143は、各々独立に、水素原子、または、前記酸性基を有しない置換基を表す。*は前記金属イオンMへの配位位置を表す。
  10.  前記LDが、下記式(3L-1)~(3L-4)のいずれかの式で表される3座の配位子である請求項1~8のいずれか1項に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000008
     式中、環D2Lは芳香族環を表す。A211~A242は、各々独立に、窒素原子または炭素原子を表す。ただし、A211とA212、A221とA222、A231とA232、A241とA242のそれぞれにおいて、少なくとも1つはアニオンである。R211~R241は、各々独立に、水素原子、または、前記酸性基を有しない置換基を表す。*は前記金属イオンMへの配位位置を表す。
  11.  前記式(I)で表される金属錯体色素が、下記式(I-1)または(I-2)で表される請求項1~10のいずれか1項に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000009
     式中、MおよびLXは前記式(I)のMおよびLXと同義である。
     G、Tおよびnは前記式(AL-1)のG、Tおよびnと同義である。Ancは酸性基を表す。
     環Dおよび環Eは各々独立に5員もしくは6員の芳香族環を表す。DおよびDは各々独立に炭素原子のアニオンまたは窒素原子のアニオンを表す。ここで、環Dおよび環E中のDおよびDと、ピリジン環に結合する炭素原子との間の結合は単結合または二重結合である。
     Ra1~Ra4は各々独立に置換基を表す。ma1、ma2およびma4は各々独立に0~3の整数を表す。ma3は0~4の整数を表す。ma1~ma4の各々が2以上の整数を表すとき、複数のRa1~Ra4はそれぞれ互いに結合して環を形成してもよい。
  12.  前記環Dおよび前記環Eが、各々独立に、ピラゾール環、トリアゾール環またはベンゼン環である請求項11に記載の光電変換素子。
  13.  請求項1~12のいずれか1項に記載の光電変換素子を備えた色素増感太陽電池。
  14.  下記式(I)で表される金属錯体色素。
       式(I)   M(LA)(LD)(LX)mX・(CI)mY
     式中、Mは金属イオンを表す。
     LAは、下記式(AL-1)で表される3座の配位子を表す。
     LDは2座の配位子または前記LAとは異なる3座の配位子を表す。LDの、前記金属イオンMと結合する配位原子のうちの少なくとも1つが窒素原子であり、少なくとも1つがアニオンである。
     LXは、単座の配位子を表す。mXは前記LDが2座の配位子のとき1を表し、前記LDが3座の配位子のとき0を表す。
     CIは金属錯体色素の電荷を中和させるために必要な対イオンを表す。mYは0~3の整数を表す。
    Figure JPOXMLDOC01-appb-C000010
     式中、ZaおよびZbは各々独立に5員もしくは6員の環を形成するのに必要な非金属原子群を表す。ただし、ZaおよびZbがそれぞれ形成する環の少なくとも一方には1つ以上の酸性基を有する。Lは各々独立に窒素原子またはCRを表し、Rは水素原子または置換基を表す。
     Gは、下記式(X-1)~(X-3)のいずれかの式で表される環基を表す。nは2~7の整数を表す。Tは水素原子または置換基を表す。-(G)n-Tは前記酸性基およびアミノ基を有さない。
    Figure JPOXMLDOC01-appb-C000011
     式中、Zt2およびZt3はそれぞれ前記式(X-2)または(X-3)中のチオフェン環と縮合環を形成するのに必要な非金属原子群を表す。
     RT1、RT2およびRT3は各々独立に置換基を表す。PT1は0~2の整数を表す。PT2およびPT3は各々独立に0以上の整数であり、前記式(X-2)または(X-3)で表される基が無置換であるときの水素原子数以下である。
     *は、Lを含む環、他のGまたはTとの結合位置を表す。
  15.  請求項14に記載の金属錯体色素と溶媒とを含有する色素溶液。
  16.  下記式(AL-2)で表されるターピリジン化合物またはそのエステル化物。
    Figure JPOXMLDOC01-appb-C000012
     式中、Ancは酸性基を表す。Gは、下記式(X-1)~(X-3)のいずれかの式で表される環基を表す。nは2または3を表す。Tは水素原子または置換基を表す。-(G)n-T基は前記酸性基およびアミノ基を有さない。
    Figure JPOXMLDOC01-appb-C000013
     式中、Zt2およびZt3はそれぞれ前記式(X-2)または(X-3)中のチオフェン環と縮合環を形成するのに必要な非金属原子群を表す。
     RT1、RT2およびRT3は各々独立に置換基を表す。PT1は0~2の整数を表す。PT2およびPT3は各々独立に0以上の整数であり、前記式(X-2)または(X-3)で表される基が無置換であるときの水素原子数以下である。
     *は、Lを含む環、他のGまたはTとの結合位置を表す。
PCT/JP2015/068977 2014-07-07 2015-07-01 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、およびターピリジン化合物またはそのエステル化物 WO2016006512A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016532896A JP6204591B2 (ja) 2014-07-07 2015-07-01 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、およびターピリジン化合物またはそのエステル化物
CN201580032074.6A CN106463274B (zh) 2014-07-07 2015-07-01 光电转换元件、色素增感太阳能电池、金属络合物色素、色素溶液、以及三联吡啶化合物或其酯化物
KR1020177000236A KR101982944B1 (ko) 2014-07-07 2015-07-01 광전 변환 소자, 색소 증감 태양 전지, 금속 착체 색소, 색소 용액, 및 터피리딘 화합물 또는 그 에스터화물
EP15818813.6A EP3168847B1 (en) 2014-07-07 2015-07-01 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, and terpyridine compound or esterification product thereof
US15/400,079 US20170117099A1 (en) 2014-07-07 2017-01-06 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, and terpyridine compound or esterified product thereof
US16/411,019 US20190295778A1 (en) 2014-07-07 2019-05-13 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, and terpyridine compound or esterified product thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014140079 2014-07-07
JP2014-140079 2014-07-07
JP2015039390 2015-02-27
JP2015-039390 2015-02-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/400,079 Continuation US20170117099A1 (en) 2014-07-07 2017-01-06 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, and terpyridine compound or esterified product thereof

Publications (1)

Publication Number Publication Date
WO2016006512A1 true WO2016006512A1 (ja) 2016-01-14

Family

ID=55064148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068977 WO2016006512A1 (ja) 2014-07-07 2015-07-01 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、およびターピリジン化合物またはそのエステル化物

Country Status (7)

Country Link
US (2) US20170117099A1 (ja)
EP (1) EP3168847B1 (ja)
JP (1) JP6204591B2 (ja)
KR (1) KR101982944B1 (ja)
CN (1) CN106463274B (ja)
TW (1) TW201609704A (ja)
WO (1) WO2016006512A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150120A1 (ja) * 2016-03-04 2017-09-08 富士フイルム株式会社 光電変換素子および光電変換モジュール
WO2018037230A1 (en) * 2016-08-24 2018-03-01 University Of Strathclyde Pyridyl-ethylenedioxy-thiophene derivatives as transparent conductive material
US11046658B2 (en) 2018-07-02 2021-06-29 Incyte Corporation Aminopyrazine derivatives as PI3K-γ inhibitors
US11926616B2 (en) 2018-03-08 2024-03-12 Incyte Corporation Aminopyrazine diol compounds as PI3K-γ inhibitors

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6351118B2 (ja) * 2015-06-26 2018-07-04 富士フイルム株式会社 光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液
RU2641443C2 (ru) * 2016-07-01 2018-01-17 Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) Способ резки заготовки, выполненной из магния или магниевого сплава

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017872A1 (ja) * 2010-08-03 2012-02-09 富士フイルム株式会社 金属錯体色素、光電変換素子及び光電気化学電池
JP2012036237A (ja) * 2010-08-03 2012-02-23 Fujifilm Corp 金属錯体色素、光電変換素子及び光電気化学電池
JP2012146632A (ja) * 2010-12-21 2012-08-02 Sony Corp 色素、色素増感光電変換素子、電子機器および建築物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100377421C (zh) * 2003-03-14 2008-03-26 日本化药株式会社 色素增感的光电转换器件
CN100590931C (zh) * 2005-06-14 2010-02-17 日本化药株式会社 色素增感的光电变换元件
TWI429637B (zh) 2011-04-01 2014-03-11 Nat Univ Tsing Hua 衍生自4,4’-二酸-2,2’-雙吡啶之三牙配位子、金屬錯合物及其應用
JP5706846B2 (ja) 2011-09-08 2015-04-22 国立大学法人信州大学 色素、これを用いた光電変換素子及び光電気化学電池
JP5689861B2 (ja) * 2011-09-26 2015-03-25 富士フイルム株式会社 光電変換素子、光電気化学電池およびこれに用いられる金属錯体色素
JP5881578B2 (ja) 2011-12-15 2016-03-09 富士フイルム株式会社 金属錯体色素、光電変換素子、色素増感太陽電池および色素溶液

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017872A1 (ja) * 2010-08-03 2012-02-09 富士フイルム株式会社 金属錯体色素、光電変換素子及び光電気化学電池
JP2012036237A (ja) * 2010-08-03 2012-02-23 Fujifilm Corp 金属錯体色素、光電変換素子及び光電気化学電池
JP2012146632A (ja) * 2010-12-21 2012-08-02 Sony Corp 色素、色素増感光電変換素子、電子機器および建築物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3168847A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150120A1 (ja) * 2016-03-04 2017-09-08 富士フイルム株式会社 光電変換素子および光電変換モジュール
WO2018037230A1 (en) * 2016-08-24 2018-03-01 University Of Strathclyde Pyridyl-ethylenedioxy-thiophene derivatives as transparent conductive material
US11926616B2 (en) 2018-03-08 2024-03-12 Incyte Corporation Aminopyrazine diol compounds as PI3K-γ inhibitors
US11046658B2 (en) 2018-07-02 2021-06-29 Incyte Corporation Aminopyrazine derivatives as PI3K-γ inhibitors

Also Published As

Publication number Publication date
KR20170016441A (ko) 2017-02-13
CN106463274A (zh) 2017-02-22
US20170117099A1 (en) 2017-04-27
US20190295778A1 (en) 2019-09-26
TW201609704A (zh) 2016-03-16
JP6204591B2 (ja) 2017-09-27
CN106463274B (zh) 2018-09-07
JPWO2016006512A1 (ja) 2017-06-01
EP3168847A1 (en) 2017-05-17
EP3168847B1 (en) 2018-05-16
EP3168847A4 (en) 2017-05-31
KR101982944B1 (ko) 2019-05-27

Similar Documents

Publication Publication Date Title
JP6204591B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、およびターピリジン化合物またはそのエステル化物
WO2014157005A1 (ja) 金属錯体色素、光電変換素子、色素増感太陽電池および金属錯体色素を含有する色素溶液
JP6311204B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、およびターピリジン化合物またはそのエステル化物
JP6310558B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、およびターピリジン化合物またはそのエステル化物
JP6175564B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液
JP6300334B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液
JP6300333B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、およびターピリジン化合物またはそのエステル化物
JP6379274B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液
JP6304612B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液
WO2016047344A1 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液
JP6300332B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液
WO2016052196A1 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、およびターピリジン化合物またはそのエステル化物
JP2016072394A (ja) 光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液
JP2016072395A (ja) 光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818813

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016532896

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015818813

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015818813

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177000236

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE