WO2013171167A1 - A xanthine derivative as dpp -4 inhibitor for use in the treatment of podocytes related disorders and/or nephrotic syndrome - Google Patents

A xanthine derivative as dpp -4 inhibitor for use in the treatment of podocytes related disorders and/or nephrotic syndrome Download PDF

Info

Publication number
WO2013171167A1
WO2013171167A1 PCT/EP2013/059831 EP2013059831W WO2013171167A1 WO 2013171167 A1 WO2013171167 A1 WO 2013171167A1 EP 2013059831 W EP2013059831 W EP 2013059831W WO 2013171167 A1 WO2013171167 A1 WO 2013171167A1
Authority
WO
WIPO (PCT)
Prior art keywords
inhibitor
dpp
nephropathy
diabetes
minimal change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2013/059831
Other languages
English (en)
French (fr)
Inventor
Thomas Klein
Maximilian VON EYNATTEN
Berthold Hocher
Michael Mark
Yuliya SHARKOVSKA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehringer Ingelheim International GmbH
Original Assignee
Boehringer Ingelheim International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Ingelheim International GmbH filed Critical Boehringer Ingelheim International GmbH
Priority to JP2015512016A priority Critical patent/JP6224084B2/ja
Priority to EP20158414.1A priority patent/EP3685839A1/en
Priority to EP13722419.2A priority patent/EP2849755A1/en
Publication of WO2013171167A1 publication Critical patent/WO2013171167A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • A61K31/522Purines, e.g. adenine having oxo groups directly attached to the heterocyclic ring, e.g. hypoxanthine, guanine, acyclovir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/155Amidines (), e.g. guanidine (H2N—C(=NH)—NH2), isourea (N=C(OH)—NH2), isothiourea (—N=C(SH)—NH2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/18Sulfonamides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/401Proline; Derivatives thereof, e.g. captopril
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41841,3-Diazoles condensed with carbocyclic rings, e.g. benzimidazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/28Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/12Ophthalmic agents for cataracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/10Antioedematous agents; Diuretics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/02Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6
    • C07D473/04Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two oxygen atoms
    • C07D473/06Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two oxygen atoms with radicals containing only hydrogen and carbon atoms, attached in position 1 or 3

Definitions

  • the present invention relates to a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating, preventing and/or reducing the risk or likelihood of podocyte related disorders, disturbance of podocyte function, podocyte loss or injury, podocytopathy, glomerulopathy, nephrotic syndrome, minimal change disease (MCD, e.g. minimal change nephropathy), membranous nephropathy (MN, e.g. membranous glomerulonephritis) and/or focal segmental
  • DPP-4 inhibitor preferably linagliptin, optionally in combination with one or more other active agents
  • FGS glomerulosclerosis
  • compositions and combinations comprising such active components, and to certain therapeutic uses thereof.
  • the present invention relates a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating, preventing and/or reducing the risk of disturbance of podocyte function, podocyte loss or injury, and/or for use in protecting, preserving, improving, repairing or regenerating podocytes and/or their function.
  • a certain DPP-4 inhibitor preferably linagliptin, optionally in combination with one or more other active agents
  • the present invention relates a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating, preventing and/or reducing the risk of nephrotic syndrome either of primary or secondary cause (e.g. including steroid-resistant or steroid-refractory nephrotic syndrome), including minimal change disease (MCD, e.g. minimal change nephropathy, such as steroid hormone refractory minimal change nephropathy), membranous nephropathy (MN, e.g. membranous glomerulonephritis) and/or focal segmental glomerulosclerosis (FSGS).
  • MCD minimal change disease
  • MN membranous nephropathy
  • FSGS focal segmental glomerulosclerosis
  • the present invention relates a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating, preventing and/or reducing the risk of nephrotic syndrome (e.g. including steroid-resistant or steroid- refractory nephrotic syndrome), minimal change disease (MCD, e.g. minimal change nephropathy, such as steroid hormone refractory minimal change nephropathy),
  • nephrotic syndrome e.g. including steroid-resistant or steroid- refractory nephrotic syndrome
  • MCD minimal change disease
  • minimal change nephropathy such as steroid hormone refractory minimal change nephropathy
  • membranous nephropathy e.g. membranous glomerulonephritis
  • FSGS focal segmental glomerulosclerosis
  • MCD minimal change disease
  • MN membranous nephropathy
  • FSGS focal segmental glomerulosclerosis
  • the present invention relates a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating and/or preventing metabolic diseases, particularly diabetes, especially type 2 diabetes mellitus, and/or conditions related thereto (e.g. diabetic complications), in a patient (particularly human patient) with or at risk of podocyte related disorders, disturbance of podocyte function, podocyte loss or injury, glomerulopathy, nephrotic syndrome, minimal change disease (MCD, e.g. minimal change nephropathy, such as steroid hormone refractory minimal change nephropathy), membranous nephropathy (MN, e.g. membranous DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating and/or preventing metabolic diseases, particularly diabetes, especially type 2 diabetes mellitus, and/or conditions related thereto (e.g. diabetic complications), in a patient (particularly human patient) with or at risk
  • glomerulonephritis and/or focal segmental glomerulosclerosis (FSGS).
  • FSGS focal segmental glomerulosclerosis
  • the present invention relates a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating and/or preventing metabolic diseases, particularly diabetes, especially type 2 diabetes mellitus, and/or conditions related thereto (e.g. diabetic complications), in a patient (particularly human patient) with or at risk of nephrotic syndrome (e.g. including steroid-resistant or steroid-refractory nephrotic syndrome), minimal change disease (MCD, e.g. minimal change nephropathy, such as steroid hormone refractory minimal change nephropathy),
  • nephrotic syndrome e.g. including steroid-resistant or steroid-refractory nephrotic syndrome
  • MCD minimal change disease
  • minimal change nephropathy such as steroid hormone refractory minimal change nephropathy
  • MN membranous nephropathy
  • FSGS focal segmental glomerulosclerosis
  • the present invention relates a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating and/or preventing metabolic diseases, particularly diabetes, especially type 2 diabetes mellitus, and/or conditions related thereto (e.g. diabetic complications), in a patient (particularly human patient) with or at risk of minimal change disease (MCD, e.g. minimal change nephropathy, such as steroid hormone refractory minimal change nephropathy).
  • MCD minimal change disease
  • the present invention relates a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating and/or preventing metabolic diseases, particularly diabetes, especially type 2 diabetes mellitus, and/or conditions related thereto (e.g. diabetic complications), in a patient (particularly human patient) with or at risk of membranous nephropathy (MN, e.g. membranous glomerulonephritis).
  • metabolic diseases particularly diabetes, especially type 2 diabetes mellitus, and/or conditions related thereto (e.g. diabetic complications)
  • MN membranous nephropathy
  • the present invention relates a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating and/or preventing metabolic diseases, particularly diabetes, especially type 2 diabetes mellitus, and/or conditions related thereto (e.g. diabetic complications), in a patient (particularly human patient) with or at risk of focal segmental glomerulosclerosis (FSGS).
  • DPP-4 inhibitor preferably linagliptin, optionally in combination with one or more other active agents
  • metabolic diseases particularly diabetes, especially type 2 diabetes mellitus, and/or conditions related thereto (e.g. diabetic complications)
  • FSGS focal segmental glomerulosclerosis
  • the present invention relates to a method of treating, preventing and/or reducing the likelihood or risk of nephrotic syndrome (e.g. including steroid-resistant or steroid-refractory nephrotic syndrome), minimal change disease (MCD, e.g. minimal change nephropathy, such as steroid hormone refractory minimal change nephropathy), membranous nephropathy (MN, e.g.
  • MCD minimal change disease
  • MN membranous nephropathy
  • membranous glomerulonephritis and/or focal segmental glomerulosclerosis (FSGS) in a patient (particularly human patient) in need thereof, comprising administering an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents, to the patient.
  • a certain DPP-4 inhibitor preferably linagliptin
  • the present invention relates to a method of treating, preventing and/or reducing the likelihood or risk of minimal change disease (MCD, e.g. minimal change nephropathy, such as steroid hormone refractory minimal change nephropathy), membranous nephropathy (MN, e.g. membranous glomerulonephritis) and/or focal segmental glomerulosclerosis (FSGS) in a patient (particularly human patient) in need thereof, comprising administering an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents, to the patient.
  • MCD minimal change disease
  • MN membranous nephropathy
  • FSGS focal segmental glomerulosclerosis
  • the present invention further relates to a certain DPP-4 inhibitor (preferably linagliptin, and/or optionally in combination with one or more other active agents, such as e.g. one or more antidiabetics, optionally in combination with an ACE inhibitor and/or an ARB) for use in renoprotection and/or in treating, preventing and/or delaying the progress of albuminuria, in a patient (particularly human patient with diabetes, especially type 2 diabetes mellitus) suffering from nephropathy (diabetic nephropathy).
  • a certain DPP-4 inhibitor preferably linagliptin, and/or optionally in combination with one or more other active agents, such as e.g. one or more antidiabetics, optionally in combination with an ACE inhibitor and/or an ARB
  • the present invention further relates a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents, such as e.g. one or more antidiabetics, and/or optionally in combination with an ACE inhibitor and/or an ARB) for use in renoprotection and/or in treating, preventing, reducing the risk and/or delaying the onset of podocyte related disorders, disturbance of podocyte function, podocyte loss or injury, podocytopathy, glomerulopathy, nephrotic syndrome, minimal change disease (MCD, e.g. minimal change nephropathy such as steroid hormone refractory minimal change nephropathy), membranous nephropathy (MN, e.g. membranous glomerulonephritis) and/or focal segmental glomerulosclerosis (FSGS), in a patient (particularly human patient with diabetes, especially type 2 diabetes mellitus) suffering from nephropathy (diabetic
  • nephropathy nephropathy
  • albuminuria nephropathy
  • the present invention further relates a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents, such as e.g. one or more antidiabetics, and/or optionally in combination with an ACE inhibitor and/or an ARB) for use in renoprotection and/or in treating, preventing and/or delaying the progress of albuminuria, in a patient (particularly human patient with diabetes, especially type 2 diabetes mellitus suffering from diabetic nephropathy) with or at risk of risk of podocyte related disorders, disturbance of podocyte function, podocyte loss or injury, podocytopathy, glomerulopathy, nephrotic syndrome, minimal change disease (MCD, e.g. minimal change nephropathy such as steroid hormone refractory minimal change nephropathy), membranous nephropathy (MN, e.g. membranous glomerulonephritis) and/or focal segmental
  • a certain DPP-4 inhibitor preferably
  • FSGS glomerulosclerosis
  • nephrotic syndrome which is characterized by proteinuria (typically > 3 g/day, or > 3.5 g per 1 .73 m 2 per 24 hours), edema (which may be associated with weight gain),
  • hypoalbuminemia typically albumin level ⁇ 2.5 g/dL
  • hyperlipidemia e.g.
  • hypercholesterolemia hypertriglyceridemia, or both in combined hyperlipidemia, particularly hypercholesterolemia, mainly elevated LDL, usually with concomitantly elevated VLDL) and optionally (sometimes) hypertension.
  • hypercholesterolemia mainly elevated LDL, usually with concomitantly elevated VLDL
  • optionally (sometimes) hypertension Lipiduria may also occur, but is not essential for the diagnosis of nephrotic syndrome. Hyponatremia may also occur with a low fractional sodium excretion.
  • steroid hormone refractory minimal change nephropathy and focal segmental glomerulosclerosis FSGS.
  • the "normal" (steroid sensitive) minimal change nephropathy usually responds well to treatment with steroids.
  • FSGS glomerulosclerosis
  • Nephrotic syndrome has many causes and may either be the result of a disease limited to the kidney, called primary nephrotic syndrome, or a condition that affects the kidney and other parts of the body, called secondary nephrotic syndrome.
  • MCD minimal change disease
  • FSGS focal segmental glomerulosclerosis
  • MN membraneous nephropathy
  • Secondary causes of nephrotic syndrome have the same histologic patterns as the primary causes, though may exhibit some differences suggesting a secondary cause, such as inclusion bodies. They are usually described by the underlying cause.
  • MN Membranous nephropathy
  • Drugs such as corticosteroids, gold, intravenous heroin
  • Protozoal infections e.g. malaria
  • FSGS Focal segmental glomerulosclerosis
  • MCD minimal change disease
  • nephrotic syndrome within the meaning of this invention includes, is caused by or is associated with minimal change disease (MCD, e.g. minimal change nephropathy, such as steroid hormone refractory minimal change nephropathy), membranous nephropathy (MN, e.g. membranous glomerulonephritis) and/or focal segmental glomerulosclerosis (FSGS).
  • MCD minimal change disease
  • MN membranous nephropathy
  • FSGS focal segmental glomerulosclerosis
  • the present invention relates to a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating, preventing and/or reducing the risk or likelihood of podocyte related disorders, disturbance of podocyte function, podocyte loss or injury, podocytopathy, glomerulopathy, nephrotic syndrome, minimal change disease (MCD, e.g. minimal change nephropathy), membranous nephropathy (MN, e.g. membranous glomerulonephritis) and/or focal segmental
  • DPP-4 inhibitor preferably linagliptin, optionally in combination with one or more other active agents
  • FGS glomerulosclerosis
  • compositions and combinations comprising such active components, and to certain therapeutic uses thereof.
  • the present invention relates a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating, preventing and/or reducing the risk of disturbance of podocyte function, podocyte loss or injury, and/or for use in protecting, preserving, improving, repairing or regenerating podocytes and/or their function.
  • the present invention relates a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating, preventing and/or reducing the risk of nephrotic syndrome either of primary or secondary cause (e.g. including steroid-resistant or steroid-refractory nephrotic syndrome), including minimal change disease (MCD, e.g.
  • minimal change nephropathy such as steroid hormone refractory minimal change nephropathy
  • MN membranous nephropathy
  • FSGS focal segmental glomerulosclerosis
  • the present invention relates a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating, preventing and/or reducing the risk of nephrotic syndrome (e.g. including steroid-resistant or steroid- refractory nephrotic syndrome), minimal change disease (MCD, e.g. minimal change nephropathy, such as steroid hormone refractory minimal change nephropathy),
  • nephrotic syndrome e.g. including steroid-resistant or steroid- refractory nephrotic syndrome
  • MCD minimal change disease
  • minimal change nephropathy such as steroid hormone refractory minimal change nephropathy
  • membranous nephropathy e.g. membranous glomerulonephritis
  • FSGS focal segmental glomerulosclerosis
  • MCD minimal change disease
  • MN membranous nephropathy
  • FSGS focal segmental glomerulosclerosis
  • the present invention relates a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating and/or preventing metabolic diseases, particularly diabetes, especially type 2 diabetes mellitus, and/or conditions related thereto (e.g. diabetic complications), in a patient (particularly human patient) with or at risk of podocyte related disorders, disturbance of podocyte function, podocyte loss or injury, glomerulopathy, nephrotic syndrome, minimal change disease (MCD, e.g. minimal change nephropathy, such as steroid hormone refractory minimal change nephropathy), membranous nephropathy (MN, e.g. membranous DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating and/or preventing metabolic diseases, particularly diabetes, especially type 2 diabetes mellitus, and/or conditions related thereto (e.g. diabetic complications), in a patient (particularly human patient) with or at risk
  • glomerulonephritis and/or focal segmental glomerulosclerosis (FSGS).
  • FSGS focal segmental glomerulosclerosis
  • the present invention relates a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating and/or preventing metabolic diseases, particularly diabetes, especially type 2 diabetes mellitus, and/or conditions related thereto (e.g. diabetic complications), in a patient (particularly human patient) with or at risk of nephrotic syndrome (e.g. including steroid-resistant or steroid-refractory nephrotic syndrome), minimal change disease (MCD, e.g. minimal change nephropathy, such as steroid hormone refractory minimal change nephropathy),
  • nephrotic syndrome e.g. including steroid-resistant or steroid-refractory nephrotic syndrome
  • MCD minimal change disease
  • minimal change nephropathy such as steroid hormone refractory minimal change nephropathy
  • MN membranous nephropathy
  • FSGS focal segmental glomerulosclerosis
  • the present invention relates a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating and/or preventing metabolic diseases, particularly diabetes, especially type 2 diabetes mellitus, and/or conditions related thereto (e.g. diabetic complications), in a patient (particularly human patient) with or at risk of minimal change disease (MCD, e.g. minimal change nephropathy, such as steroid hormone refractory minimal change nephropathy).
  • MCD minimal change disease
  • the present invention relates a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating and/or preventing metabolic diseases, particularly diabetes, especially type 2 diabetes mellitus, and/or conditions related thereto (e.g. diabetic complications), in a patient (particularly human patient) with or at risk of membranous nephropathy (MN, e.g. membranous glomerulonephritis).
  • metabolic diseases particularly diabetes, especially type 2 diabetes mellitus, and/or conditions related thereto (e.g. diabetic complications)
  • MN membranous nephropathy
  • the present invention relates a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating and/or preventing metabolic diseases, particularly diabetes, especially type 2 diabetes mellitus, and/or conditions related thereto (e.g. diabetic complications), in a patient (particularly human patient) with or at risk of focal segmental glomerulosclerosis (FSGS).
  • DPP-4 inhibitor preferably linagliptin, optionally in combination with one or more other active agents
  • metabolic diseases particularly diabetes, especially type 2 diabetes mellitus, and/or conditions related thereto (e.g. diabetic complications)
  • FSGS focal segmental glomerulosclerosis
  • the present invention relates to a method of treating, preventing and/or reducing the likelihood or risk of nephrotic syndrome (e.g. including steroid-resistant or steroid-refractory nephrotic syndrome), minimal change disease (MCD, e.g. minimal change nephropathy, such as steroid hormone refractory minimal change nephropathy), membranous nephropathy (MN, e.g.
  • MCD minimal change disease
  • MN membranous nephropathy
  • membranous glomerulonephritis and/or focal segmental glomerulosclerosis (FSGS) in a patient (particularly human patient) in need thereof, comprising administering an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents, to the patient.
  • a certain DPP-4 inhibitor preferably linagliptin
  • the present invention relates to a method of treating, preventing and/or reducing the likelihood or risk of minimal change disease (MCD, e.g. minimal change nephropathy, such as steroid hormone refractory minimal change nephropathy), membranous nephropathy (MN, e.g. membranous glomerulonephritis) and/or focal segmental glomerulosclerosis (FSGS) in a patient (particularly human patient) in need thereof, comprising administering an effective amount of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents, to the patient.
  • MCD minimal change disease
  • MN membranous nephropathy
  • FSGS focal segmental glomerulosclerosis
  • the present invention further relates to a certain DPP-4 inhibitor (preferably linagliptin, and/or optionally in combination with one or more other active agents, such as e.g. one or more antidiabetics, optionally in combination with an ACE inhibitor and/or an ARB) for use in renoprotection and/or in treating, preventing, delaying the onset of and/or delaying the progress of albuminuria, in a patient (particularly human patient with diabetes, especially type 2 diabetes mellitus) suffering from nephropathy (diabetic nephropathy).
  • a certain DPP-4 inhibitor preferably linagliptin, and/or optionally in combination with one or more other active agents, such as e.g. one or more antidiabetics, optionally in combination with an ACE inhibitor and/or an ARB
  • the present invention further relates a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents, such as e.g. one or more antidiabetics, and/or optionally in combination with an ACE inhibitor and/or an ARB) for use in renoprotection and/or in treating, preventing, reducing the risk and/or delaying the onset of podocyte related disorders, disturbance of podocyte function, podocyte loss or injury, podocytopathy, glomerulopathy, nephrotic syndrome, minimal change disease (MCD, e.g. minimal change nephropathy such as steroid hormone refractory minimal change nephropathy), membranous nephropathy (MN, e.g. membranous glomerulonephritis) and/or focal segmental glomerulosclerosis (FSGS), in a patient (particularly human patient with diabetes, especially type 2 diabetes mellitus) suffering from nephropathy (diabetic
  • nephropathy nephropathy
  • albuminuria nephropathy
  • the present invention further relates a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents, such as e.g. one or more antidiabetics, and/or optionally in combination with an ACE inhibitor and/or an ARB) for use in renoprotection and/or in treating, preventing, delaying the onset of and/or delaying the progress of albuminuria, in a patient (particularly human patient with diabetes, especially type 2 diabetes mellitus suffering from diabetic nephropathy) with or at risk of risk of podocyte related disorders, disturbance of podocyte function, podocyte loss or injury, podocytopathy, glomerulopathy, nephrotic syndrome, minimal change disease (MCD, e.g. minimal change nephropathy such as steroid hormone refractory minimal change nephropathy), membranous nephropathy (MN, e.g. membranous glomerulonephritis) and/or focal segmental
  • FSGS glomerulosclerosis
  • the present invention relates to a certain DPP-4 inhibitor, preferably linagliptin (optionally in combination with one or more other active agents) for use in the treatment of diabetic nephropathy, particularly diabetic nephropathy with an elevated serum creatinine and proteinuria (>300 mg/day) in patients with type 2 diabetes.
  • a certain DPP-4 inhibitor preferably linagliptin (optionally in combination with one or more other active agents) for use in the treatment of diabetic nephropathy, particularly diabetic nephropathy with an elevated serum creatinine and proteinuria (>300 mg/day) in patients with type 2 diabetes.
  • the present invention relates to a certain DPP-4 inhibitor, preferably linagliptin (optionally in combination with one or more other active agents) for use in treating or lowering albuminuria or diabetic nephropathy on top of angiotensin-converting enzyme (ACE) inhibitor therapy and/or angiotensin II receptor blockade (ARB) therapy in type 2 diabetes patients, particularly with diabetic nephropathy (e.g. early diabetic nephropathy).
  • ACE angiotensin-converting enzyme
  • ARB angiotensin II receptor blockade
  • the present invention relates to a certain DPP-4 inhibitor, preferably linagliptin (optionally in combination with one or more other active agents) for use in a method of treating, preventing, reducing the risk of, delaying the onset or slowing the progression of albuminuria (micro- or macro-albuminuria) or diabetic nephropathy, preferably in type 2 diabetes patients, such as e.g. type 2 diabetes patients with early diabetic nephropathy, especially in those patients on (e.g. previous or ongoing) therapy with an angiotensin- converting enzyme (ACE) inhibitor and/or an angiotensin II receptor blocker (ARB), e.g.
  • ACE angiotensin- converting enzyme
  • ARB angiotensin II receptor blocker
  • angiotensin-converting enzyme (ACE) inhibitor and/or an angiotensin II receptor blocker (ARB) particularly said method comprising administering the DPP-4 inhibitor in combination with the angiotensin-converting enzyme (ACE) inhibitor and/or the angiotensin II receptor blocker (ARB) to the patient.
  • ACE angiotensin-converting enzyme
  • ARB angiotensin II receptor blocker
  • the present invention relates to a certain DPP-4 inhibitor, preferably linagliptin (optionally in combination with one or more other active agents, such as e.g. including an ARB or ACE inhibitor, such as e.g. with or without additional standard background therapy such as e.g. with an ACEi or ARB) for use in preventing, reducing the risk or likelihood of or delaying the onset or slowing the progression of renal morbidity and/or mortality, preferably in type 2 diabetes patients.
  • active agents such as e.g. including an ARB or ACE inhibitor, such as e.g. with or without additional standard background therapy such as e.g. with an ACEi or ARB
  • the present invention relates to a certain DPP-4 inhibitor, preferably linagliptin (optionally in combination with one or more other active agents) for use in preventing, reducing the risk of or delaying the onset or progression of micro- or macro-albuminuria, chronic kidney disease (CKD), worsening of CKD, and/or acute renal failure, preferably in type 2 diabetes patients.
  • a certain DPP-4 inhibitor preferably linagliptin
  • CKD chronic kidney disease
  • the present invention relates to a certain DPP-4 inhibitor, preferably linagliptin (optionally in combination with one or more other active agents) for use in a method of preventing, reducing the risk of or delaying the onset or progression of micro- or macro- albuminuria, chronic kidney disease (CKD), worsening of CKD, and/or acute renal failure, preferably in type 2 diabetes patients, particularly type 2 diabetes patients with early diabetic nephropathy, especially in those patients on (e.g. previous or ongoing) therapy with an angiotensin-converting enzyme (ACE) inhibitor and/or an angiotensin II receptor blocker (ARB), such as e.g.
  • ACE angiotensin-converting enzyme
  • ARB angiotensin II receptor blocker
  • angiotensin-converting enzyme (ACE) inhibitor and/or an angiotensin II receptor blocker (ARB) particularly said method comprising administering the DPP-4 inhibitor in combination with the angiotensin-converting enzyme (ACE) inhibitor and/or the angiotensin II receptor blocker (ARB) to the patient.
  • ACE angiotensin-converting enzyme
  • ARB angiotensin II receptor blocker
  • the present invention relates to a certain DPP-4 inhibitor, preferably linagliptin (optionly in combination with one or more other active agents, such as e.g. one or more antidiabetics, and/or optionally in combination with one or more further active agents, such as e.g.
  • cardiovascular- history and/or medications such as diabetic nephropathy, macrovascular disease (e.g. coronary artery disease, periperal artery disease, cerebrovascular disease, hypertension), microvascular disease (e.g. diabetic nephropathy, neuropathy, retinopathy), coronary artery disease, cerebrovascular disease, peripheral artery disease, hypertension, ex-smoker or current smoker, and/or on acetylsalicylic acid, antihypertensive and/or lipid lowering medication, such as e.g.
  • the present invention relates to a certain DPP-4 inhibitor, preferably linagliptin (optionly in combination with one or more other active agents, such as e.g. one or more antidiabetics, and/or optionally in combination with one or more further active agents, such as e.g.
  • albuminuria micro- or macro-albuminuria
  • diabetic nephropathy particularly in a human patient having diabetes, especially type 2 diabetes mellitus
  • a patient with diabetic nephropathy with or without additional standard background therapy such as e.g. with an ACEi or ARB
  • a vulnerable diabetic nephropathy patient such as who are aged ⁇ 65 years typically having longer diabetes duration (> 5 years)
  • renal impairment such as mild (60 to ⁇ 90 eGFR ml/min/1.73 m 2 ) or moderate (30 to ⁇ 60 eGFR ml/min/1 .73 m 2 ) renal impairment
  • higher baseline UACR such as advanced stages of micro- or macroalbuminuria
  • Figure 1 shows the expression of podocalyxin as a marker for podocyte integrity in linagliptin- , enalapril- or vehicle-treated diabetic db/db mice and in healthy control mice.
  • compositions, uses or methods according to this invention of that DPP-4 inhibitor preferably linagliptin
  • DPP-4 inhibitor optionally in combination with one or more other active agents as defined herein have properties, which make them suitable for the purpose of this invention and/or for fulfilling one or more of the needs mentioned herein.
  • DPP-4 is analogous to CD26 a T-cell antigene which plays a role in T-cell activation and immuno-modulation. Furthermore, linagliptin, a selective DPP-4 inhibitor further qualifies for the instant purposes with certain anti-oxidative and/or anti-inflammatory features. Further, samples from human kidneys indicate that proteinuric human diseases (such as e.g. diabetic nephropathy or nephrotic syndrome) seem to be characterized by an upregulation of glomerular DPP-4. Linagliptin has a positive effect on podocytes (which is a kidney specific cell population which is essential for the filtration integrity of the kidney). Linagliptin compensates or delays the loss of podocalyxin (a podocytic extracellular contact protein). Typically, diabetic nephropathy or nephrotic syndrome
  • nephropathy as well as nephrotic syndrome is characterized by a decrease of integral podocytic proteins. Therefore, linagliptin is useful in the therapy and/or prophylaxis, such as e.g. treatment, prevention, protection, reducing the risk, delaying the onset and/or slowing the progression, of such conditions and/or related diseases, in (human) patients in need thereof (who may be with or without diabetes (e.g. type 2 diabetes), such as e.g.
  • the present invention provides a certain DPP-4 inhibitor as defined herein (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating, preventing and/or reducing the risk of podocyte related disorders, disturbance of podocyte function, podocyte loss or injury, podocytopathy, glomerulopathy, nephrotic syndrome, minimal change disease (MCD, e.g. minimal change nephropathy, such as steroid hormone refractory minimal change nephropathy), membranous nephropathy (MN, e.g. membranous glomerulonephritis) and/or focal segmental glomerulosclerosis (FSGS), and/or diseases related or associated therewith.
  • MCD minimal change disease
  • MN membranous nephropathy
  • FSGS focal segmental glomerulosclerosis
  • the present invention relates to a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating, preventing and/or reducing the risk of podocyte related disorders, disturbance of podocyte function, podocyte loss or injury, and/or podocytopathy, and/or diseases related or associated therewith. Further, the present invention relates to a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating, preventing or reducing the likelihood or risk of nephrotic syndrome.
  • a certain DPP-4 inhibitor preferably linagliptin, optionally in combination with one or more other active agents
  • the present invention relates to a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating, preventing or reducing the likelihood or risk of minimal change disease (MCD, e.g. minimal change nephropathy, such as steroid hormone refractory minimal change nephropathy).
  • MCD minimal change disease
  • the present invention relates to a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating, preventing or reducing the likelihood or risk of membranous nephropathy (MN, e.g. membranous glomerulonephritis).
  • DPP-4 inhibitor preferably linagliptin, optionally in combination with one or more other active agents
  • MN membranous nephropathy
  • the present invention relates to a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in treating, preventing or reducing the likelihood or risk of focal segmental glomerulosclerosis (FSGS).
  • DPP-4 inhibitor preferably linagliptin, optionally in combination with one or more other active agents
  • the present invention relates to a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in reducing mortality, morbidity, duration or frequency of hospitalization, in a patient with or at risk of podocyte related disorders and/or nephrotic syndrome, including minimal change disease (MCD, e.g. minimal change nephropathy, such as steroid hormone refractory minimal change
  • DPP-4 inhibitor preferably linagliptin, optionally in combination with one or more other active agents
  • nephropathy membranous nephropathy
  • MN membranous nephropathy
  • FSGS focal segmental glomerulosclerosis
  • the present invention relates to a certain DPP-4 inhibitor, preferably linagliptin (optionally in combination with one or more other active agents) for use in the treatment of diabetic nephropathy, particularly diabetic nephropathy with an elevated serum creatinine and proteinuria (>300 mg/day) in patients with type 2 diabetes.
  • a certain DPP-4 inhibitor preferably linagliptin (optionally in combination with one or more other active agents) for use in the treatment of diabetic nephropathy, particularly diabetic nephropathy with an elevated serum creatinine and proteinuria (>300 mg/day) in patients with type 2 diabetes.
  • the present invention relates to a certain DPP-4 inhibitor, preferably linagliptin (optionally in combination with one or more other active agents) for use in treating or lowering albuminuria or diabetic nephropathy on top of angiotensin-converting enzyme (ACE) inhibitor therapy and/or angiotensin II receptor blockade (ARB) therapy in type 2 diabetes patients, particularly with early diabetic nephropathy.
  • DPP-4 inhibitor preferably linagliptin (optionally in combination with one or more other active agents) for use in treating or lowering albuminuria or diabetic nephropathy on top of angiotensin-converting enzyme (ACE) inhibitor therapy and/or angiotensin II receptor blockade (ARB) therapy in type 2 diabetes patients, particularly with early diabetic nephropathy.
  • ACE angiotensin-converting enzyme
  • ARB angiotensin II receptor blockade
  • the present invention relates to a certain DPP-4 inhibitor, preferably linagliptin (optionally in combination with one or more other active agents) for use in a method of treating, preventing, reducing the risk of, delaying the onset or slowing the progression of albuminuria (micro- or macro-albuminuria) or diabetic nephropathy, preferably in type 2 diabetes patients, particularly type 2 diabetes patients with early diabetic nephropathy, especially in those patients with inadequate control of albuminuria despite therapy with an angiotensin-converting enzyme (ACE) inhibitor and/or an angiotensin II receptor blocker (ARB), particularly said method comprising administering the DPP-4 inhibitor in combination with the angiotensin-converting enzyme (ACE) inhibitor and/or the angiotensin II receptor blocker (ARB) to the patient.
  • ACE angiotensin-converting enzyme
  • ARB angiotensin II receptor blocker
  • the present invention relates to a certain DPP-4 inhibitor, preferably linagliptin (optionally in combination with one or more other active agents, such as e.g. including an ARB or ACE inhibitor) for use in preventing, reducing the risk of or delaying the onset or slowing the progression of renal morbidity and/or mortality, preferably in type 2 diabetes patients.
  • a certain DPP-4 inhibitor preferably linagliptin (optionally in combination with one or more other active agents, such as e.g. including an ARB or ACE inhibitor) for use in preventing, reducing the risk of or delaying the onset or slowing the progression of renal morbidity and/or mortality, preferably in type 2 diabetes patients.
  • the present invention relates to a certain DPP-4 inhibitor, preferably linagliptin (optionally in combination with one or more other active agents) for use in preventing, reducing the risk of or delaying the onset or progression of micro- or macro-albuminuria, chronic kidney disease (CKD), worsening of CKD, and/or acute renal failure, preferably in type 2 diabetes patients.
  • a certain DPP-4 inhibitor preferably linagliptin
  • CKD chronic kidney disease
  • the present invention relates to a certain DPP-4 inhibitor, preferably linagliptin (optionally in combination with one or more other active agents) for use in a method of preventing, reducing the risk of or delaying the onset or progression of micro- or macro- albuminuria, chronic kidney disease (CKD), worsening of CKD, and/or acute renal failure, preferably in type 2 diabetes patients, particularly type 2 diabetes patients with early diabetic nephropathy, especially in those patients with inadequate control of albuminuria despite therapy with an angiotensin-converting enzyme (ACE) inhibitor and/or an angiotensin II receptor blocker (ARB), particularly said method comprising administering the DPP-4 inhibitor in combination with the angiotensin-converting enzyme (ACE) inhibitor and/or the angiotensin II receptor blocker (ARB) to the patient.
  • ACE angiotensin-converting enzyme
  • ARB angiotensin II receptor blocker
  • the present invention relates to a certain DPP-4 inhibitor, preferably linagliptin (optionly in combination with one or more other active agents, such as e.g. one or more antidiabetics, and/or optionally in combination with one or more further active agents, such as e.g.
  • cardiovascular- history and/or medications such as diabetic nephropathy, macrovascular disease (e.g. coronary artery disease, periperal artery disease, cerebrovascular disease, hypertension), microvascular disease (e.g. diabetic nephropathy, neuropathy, retinopathy), coronary artery disease, cerebrovascular disease, peripheral artery disease, hypertension, ex-smoker or current smoker, and/or on acetylsalicylic acid, antihypertensive and/or lipid lowering medication, such as e.g.
  • the present invention further provides a certain DPP-4 inhibitor as defined herein (preferably linagliptin, optionally in combination with one or more other active agents) for use in for treating and/or preventing metabolic diseases, particularly diabetes, especially type 2 diabetes mellitus, and/or conditions related thereto (e.g. diabetic complications), in a patient (particularly human patient) with or at risk of podocyte related disorders and/or nephrotic syndrome, including minimal change disease (MCD, e.g. minimal change nephropathy, such as steroid hormone refractory minimal change nephropathy), membranous nephropathy (MN, e.g. membranous glomerulonephritis) and/or focal segmental glomerulosclerosis (FSGS).
  • MCD minimal change disease
  • MN membranous nephropathy
  • FSGS focal segmental glomerulosclerosis
  • Examples of metabolic disorders or diseases amenable by the therapy of this invention may include, without being limited to, type 1 diabetes, type 2 diabetes, impaired glucose tolerance (IGT), impaired fasting blood glucose (IFG), hyperglycemia, postprandial hyperglycemia, postabsorptive hyperglycemia, latent autoimmune diabetes in adults (LADA), overweight, obesity, dyslipidemia, hyperlipidemia, hypercholesterolemia, hypertriglyceridemia, hyperNEFA-emia, postprandial lipemia, hypertension, atherosclerosis, endothelial dysfunction, osteoporosis, chronic systemic inflammation, non alcoholic fatty liver disease (NAFLD), retinopathy, neuropathy, nephropathy, nephrotic syndrome, polycystic ovarian syndrome, and/or metabolic syndrome.
  • the present invention further relates to a certain DPP-4 inhibitor (preferably linagliptin, optionally in combination with one or more other active agents) for use in at least one of the following methods:
  • a metabolic disorder or disease such as e.g. type 1 diabetes mellitus, type 2 diabetes mellitus, impaired glucose tolerance (IGT), impaired fasting blood glucose (IFG), hyperglycemia, postprandial hyperglycemia, postabsorptive hyperglycemia, latent autoimmune diabetes in adults (LADA), overweight, obesity, dyslipidemia, hyperlipidemia, hypercholesterolemia, hypertriglyceridemia, hyperNEFA-emia, postprandial lipemia, hypertension,
  • a metabolic disorder or disease such as e.g. type 1 diabetes mellitus, type 2 diabetes mellitus, impaired glucose tolerance (IGT), impaired fasting blood glucose (IFG), hyperglycemia, postprandial hyperglycemia, postabsorptive hyperglycemia, latent autoimmune diabetes in adults (LADA), overweight, obesity, dyslipidemia, hyperlipidemia, hypercholesterolemia, hypertriglyceridemia, hyperNEFA-emia, postprandial lipemia, hypertension,
  • Atherosclerosis endothelial dysfunction, osteoporosis, chronic systemic inflammation, non alcoholic fatty liver disease (NAFLD), retinopathy, neuropathy, nephropathy, nephrotic syndrome, polycystic ovarian syndrome, and/or metabolic syndrome;
  • NAFLD non alcoholic fatty liver disease
  • retinopathy neuropathy, nephropathy, nephrotic syndrome, polycystic ovarian syndrome, and/or metabolic syndrome
  • ITT impaired glucose tolerance
  • IGF impaired fasting blood glucose
  • diabetes mellitus such as micro- and macrovascular diseases, such as nephropathy, micro- or macroalbuminuria, proteinuria, nephrotic syndrome, retinopathy, cataracts, neuropathy, learning or memory impairment, neurodegenerative or cognitive disorders, cardio- or cerebrovascular diseases, tissue ischaemia, diabetic foot or ulcus, atherosclerosis, hypertension, endothelial dysfunction, myocardial infarction, acute coronary syndrome, unstable angina pectoris, stable angina pectoris, peripheral arterial occlusive disease, cardiomyopathy, heart failure, heart rhythm disorders, vascular restenosis, and/or stroke;
  • micro- and macrovascular diseases such as nephropathy, micro- or macroalbuminuria, proteinuria, nephrotic syndrome, retinopathy, cataracts, neuropathy, learning or memory impairment, neurodegenerative or cognitive disorders, cardio- or cerebrovascular diseases, tissue ischaemia, diabetic foot or ulcus, atherosclerosis, hypertension, endothelial dysfunction
  • pancreatic beta cells - preventing, slowing, delaying the onset of or treating the degeneration of pancreatic beta cells and/or the decline of the functionality of pancreatic beta cells and/or for improving, preserving and/or restoring the functionality of pancreatic beta cells and/or stimulating and/or restoring or protecting the functionality of pancreatic insulin secretion;
  • NAFLD non-alcoholic steatohepatitis
  • liver fibrosis such as e.g. preventing, slowing the progression, delaying the onset of, attenuating, treating or reversing hepatic steatosis, (hepatic) inflammation and/or an abnormal accumulation of liver fat
  • a patient in need thereof such as e.g. a patient as described herein, for example a human patient having diabetes
  • a patient in need thereof such as e.g. a patient as described herein, for example a human patient having diabetes
  • MCD minimal change disease
  • MN membranous nephropathy
  • FSGS focal segmental glomerulosclerosis
  • MCD minimal change disease
  • MN membranous nephropathy
  • FGS focal segmental glomerulosclerosis
  • the patient with or at risk of podocyte related disorders is non-diabetic.
  • MCD minimal change disease
  • MN membranous nephropathy
  • FGS focal segmental glomerulosclerosis
  • the patient described herein is a subject having diabetes (e.g. type 1 or type 2 diabetes or LADA, particularly type 2 diabetes).
  • diabetes e.g. type 1 or type 2 diabetes or LADA, particularly type 2 diabetes.
  • the subject within this invention may be a human, e.g. human child, a human adolescent or, particularly, a human adult.
  • a preferred DPP-4 inhibitor within the meaning of this invention is linagliptin.
  • compositions or combinations for use in these therapies comprising a certain DPP-4 inhibitor (preferably linagliptin) as defined herein optionally together with one or more other active agents are also contemplated.
  • a certain DPP-4 inhibitor preferably linagliptin
  • the present invention relates to a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one, two or more further active agents, each as defined herein, for use in the therapies (treatments or preventions) as described herein. Further, the present invention relates to the use of a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one, two or more further active agents, each as defined herein, for preparing a pharmaceutical composition which is suitable for the treatment and/or prevention purposes of this invention.
  • a certain DPP-4 inhibitor preferably linagliptin
  • further active agents each as defined herein
  • the present invention relates to a therapeutic (treatment or prevention) method as described herein, said method comprising administering an effective amount of a certain DPP-4 inhibitor (preferably linagliptin) and, optionally, one or more other active or therapeutic agents to the patient in need thereof, each as described herein.
  • a certain DPP-4 inhibitor preferably linagliptin
  • other active or therapeutic agents preferably linagliptin
  • the aspects of the present invention in particular the pharmaceutical compounds, compositions, combinations, methods and uses, refer to a certain DPP-4 inhibitor (preferably linagliptin), optionally in combination with one or more other active agents, as defined hereinbefore and hereinafter.
  • DPP-4 inhibitor preferably linagliptin
  • Type 2 diabetes mellitus is a common chronic and progressive disease arising from a complex pathophysiology involving the dual endocrine effects of insulin resistance and impaired insulin secretion with the consequence not meeting the required demands to maintain plasma glucose levels in the normal range.
  • the vascular disease component plays a significant role, but is not the only factor in the spectrum of diabetes associated disorders. The high frequency of complications leads to a significant reduction of life expectancy. Diabetes is currently the most frequent cause of adult-onset loss of vision, renal failure, and amputation in the
  • diabetes is often coexistent and interrelated with obesity and these two conditions together impose a particularly complex therapeutic challenge.
  • weight loss and its maintenance is an important therapeutic objective in overweight or obese individuals with prediabetes, metabolic syndrome or diabetes.
  • Studies have been demonstrated that weight reduction in subjects with type 2 diabetes is associated with decreased insulin resistance, improved measures of glycemia and lipemia, and reduced blood pressure. Maintenance of weight reduction over longer term is considered to improve glycemic control and prevent diabetic complications (e.g. reduction of risk for cardiovascular diseases or events).
  • diabetic complications e.g. reduction of risk for cardiovascular diseases or events.
  • Overweight may be defined as the condition wherein the individual has a body mass index (BMI) greater than or 25 kg/m 2 and less than 30 kg/m 2 .
  • BMI body mass index
  • overweight and pre- obese are used interchangeably.
  • Obesity may be also defined as the condition wherein the individual has a BMI equal to or greater than 30 kg/m 2 .
  • the term obesity may be categorized as follows: class I obesity is the condition wherein the BMI is equal to or greater than 30 kg/m 2 but lower than 35 kg/m 2 ; class II obesity is the condition wherein the BMI is equal to or greater than 35 kg/m 2 but lower than 40 kg/m 2 ; class III obesity (extreme obesity) is the condition wherein the BMI is equal to or greater than 40 kg/m 2 .
  • Obesity may include e.g. visceral or abdominal obesity.
  • Visceral obesity may be defined as the condition wherein a waist-to-hip ratio of greater than or equal to 1 .0 in men and 0.8 in women is measured. It defines the risk for insulin resistance and the development of pre-diabetes.
  • Abdominal obesity may usually be defined as the condition wherein the waist circumference is > 40 inches or 102 cm in men, and is > 35 inches or 94 cm in women. With regard to a Japanese ethnicity or Japanese patients abdominal obesity may be defined as waist circumference ⁇ 85 cm in men and ⁇ 90 cm in women (see e.g. investigating committee for the diagnosis of metabolic syndrome in Japan).
  • type 2 diabetes typically begins with diet and exercise, followed by oral antidiabetic monotherapy, and although conventional monotherapy may initially control blood glucose in some patients, it is however associated with a high secondary failure rate.
  • monotherapy may initially control blood glucose in some patients, it is however associated with a high secondary failure rate.
  • single-agent therapy for maintaining glycemic control may be overcome, at least in some patients, and for a limited period of time by combining multiple drugs to achieve reductions in blood glucose that cannot be sustained during long-term therapy with single agents. Available data support the conclusion that in most patients with type 2 diabetes current monotherapy will fail and treatment with multiple drugs will be required.
  • diabetes obesity, overweight or weight gain (e.g. as side or adverse effect of some conventional antidiabetic medications) further complicates the treatment of diabetes and its microvascular or macrovascular complications.
  • This high incidence of therapeutic failure is a major contributor to the high rate of long-term hyperglycemia-associated complications or chronic damages (including micro- and makrovascular complications such as e.g. diabetic nephrophathy, retinopathy or neuropathy, or cerebro- or cardiovascular complications such as e.g. myocardial infarction, stroke or vascular mortality or morbidity) in patients with diabetes.
  • micro- and makrovascular complications such as e.g. diabetic nephrophathy, retinopathy or neuropathy, or cerebro- or cardiovascular complications such as e.g. myocardial infarction, stroke or vascular mortality or morbidity
  • Oral antidiabetic drugs conventionally used in therapy include, without being restricted thereto, metformin, sulphonylureas, thiazolidinediones, glinides and oglucosidase inhibitors.
  • Non-oral (typically injected) antidiabetic drugs conventionally used in therapy include, without being restricted thereto, GLP-1 or GLP-1 analogues, and insulin or insulin analogues.
  • metformin can be associated with lactic acidosis or gastrointestinal side effects
  • sulfonylureas, glinides and insulin or insulin analogues can be associated with hypoglycemia and weight gain
  • thiazolidinediones can be associated with edema, bone fracture, weight gain and heart failure/cardiac effects
  • alpha-glucosidase blockers and GLP-1 or GLP-1 analogues can be associated with gastrointestinal adverse effects (e.g. dyspepsia, flatulence or diarrhea, or nausea or vomiting).
  • DPP-4 dipeptidyl peptidase IV
  • CD26 The enzyme DPP-4 (dipeptidyl peptidase IV) also known as CD26 is a serine protease known to lead to the cleavage of a dipeptide from the N-terminal end of a number of proteins having at their N-terminal end a prolin or alanin residue. Due to this property DPP-4 inhibitors interfere with the plasma level of bioactive peptides including the peptide GLP-1 and are considered to be promising drugs for the treatment of diabetes mellitus.
  • DPP-4 inhibitors and their uses are disclosed in WO 2002/068420, WO
  • the HbA1 c value the product of a non- enzymatic glycation of the haemoglobin B chain, is of exceptional importance. As its formation depends essentially on the blood sugar level and the life time of the erythrocytes the HbA1 c in the sense of a "blood sugar memory" reflects the average blood sugar level of the preceding 4-12 weeks. Diabetic patients whose HbA1 c level has been well controlled over a long time by more intensive diabetes treatment (i.e.
  • ⁇ 6.5 % of the total haemoglobin in the sample are significantly better protected from diabetic microangiopathy.
  • the available treatments for diabetes can give the diabetic an average improvement in their HbA1 c level of the order of 1 .0 - 1.5 %. This reduction in the HbA1 C level is not sufficient in all diabetics to bring them into the desired target range of ⁇ 7.0 %, preferably ⁇ 6.5 % and more preferably ⁇ 6 % HbA1 c.
  • inadequate or insufficient glycemic control means in particular a condition wherein patients show HbA1 c values above 6.5%, in particular above 7.0%, even more preferably above 7.5%, especially above 8%.
  • An embodiment of patients with inadequate or insufficient glycemic control include, without being limited to, patients having a HbA1 c value from 7.5 to 10% (or, in another embodiment, from 7.5 to 1 1 %).
  • a special sub-embodiment of inadequately controlled patients refers to patients with poor glycemic control including, without being limited, patients having a HbA1 c value ⁇ 9%.
  • FPG fasting plasma glucose
  • PPG postprandial plasma glucose
  • diabetes patients within the meaning of this invention may include patients who have not previously been treated with an antidiabetic drug (drug-na ' i ' ve patients).
  • the therapies described herein may be used in naive patients.
  • diabetes patients within the meaning of this invention may include patients with advanced or late stage type 2 diabetes mellitus (including patients with failure to conventional antidiabetic therapy), such as e.g. patients with inadequate glycemic control on one, two or more conventional oral and/or non-oral antidiabetic drugs as defined herein, such as e.g.
  • metformin/insulin pioglitazone/insulin or sulphonylurea/insulin.
  • the therapies described herein may be used in patients experienced with therapy, e.g. with conventional oral and/or non-oral antidiabetic mono- or dual or triple combination medication as mentioned herein.
  • a further embodiment of diabetic patients within the meaning of this invention refers to patients ineligible for metformin therapy including
  • metformin therapy e.g. patients having one or more contraindications against metformin therapy according to label, such as for example patients with at least one contraindication selected from:
  • renal disease renal impairment or renal dysfunction (e.g., as specified by product information of locally approved metformin),
  • gastrointestinal side effects associated with metformin such as for example patients suffering from at least one gastrointestinal side effect selected from:
  • a further embodiment of the diabetes patients which may be amenable to the therapies of this invention may include, without being limited, those diabetes patients for whom normal metformin therapy is not appropriate, such as e.g. those diabetes patients who need reduced dose metformin therapy due to reduced tolerability, intolerability or contraindication against metformin or due to (mildly) impaired/reduced renal function (including elderly patients, such as e.g. ⁇ 60-65 years).
  • a further embodiment of patients within the meaning of this invention refers to patients having renal disease, renal dysfunction, or insufficiency or impairment of renal function (including mild, moderate and severe renal impairment), e.g. as suggested by elevated serum creatinine levels (e.g. serum creatinine levels above the upper limit of normal for their age, e.g. ⁇ 130 - 150 ⁇ / ⁇ , or ⁇ 1.5 mg/dl ( ⁇ 136 ⁇ / ⁇ ) in men and ⁇ 1.4 mg/dl ( ⁇ 124 ⁇ / ⁇ ) in women) or abnormal creatinine clearance (e.g. glomerular filtration rate (GFR) ⁇ 30 - 60 ml/min).
  • GFR glomerular filtration rate
  • mild renal impairment may be e.g. suggested by a creatinine clearance of 50-80 ml/min (approximately corresponding to serum creatine levels of ⁇ 1 .7 mg/dL in men and ⁇ 1 .5 mg/dL in women); moderate renal impairment may be e.g. suggested by a creatinine clearance of 30-50 ml/min (approximately corresponding to serum creatinine levels of >1 .7 to ⁇ 3.0 mg/dL in men and >1.5 to ⁇ 2.5 mg/dL in women); and severe renal impairment may be e.g. suggested by a creatinine clearance of ⁇ 30 ml/min
  • patients with renal disease, renal dysfunction or renal impairment include patients with chronic renal insufficiency or impairment, which can be stratified according to glomerular filtration rate (GFR, ml/min/1.73m 2 ) into 5 disease stages: stage 1 characterized by normal GFR ⁇ 90 plus either persistent albuminuria or known structural or hereditary renal disease; stage 2 characterized by mild reduction of GFR (GFR 60-89) describing mild renal impairment; stage 3 characterized by moderate reduction of GFR (GFR 30-59) describing moderate renal impairment; stage 4 characterized by severe reduction of GFR (GFR 15-29) describing severe renal impairment; and terminal stage 5 characterized by requiring dialysis or GFR ⁇ 15 describing established kidney failure (end- stage renal disease, ESRD).
  • GFR glomerular filtration rate
  • a further embodiment of patients within the meaning of this invention refers to diabetes patients with or at risk of developing renal complications, such as diabetic nephropathy (including chronic and progressive renal insufficiency, albuminuria, proteinuria, fluid retention in the body (edema) and/or
  • the patients which may be amenable to the therapies of this invention may have or are at-risk of one or more of the following diseases, disorders or conditions: type 1 diabetes, type 2 diabetes, impaired glucose tolerance (IGT), impaired fasting blood glucose (IFG), hyperglycemia, postprandial hyperglycemia, postabsorptive hyperglycemia, latent autoimmune diabetes in adults (LADA), overweight, obesity, dyslipidemia (including e.g.
  • Atherogenic dyslipidemia hyperlipidemia, hypercholesterolemia, hypertriglyceridemia, hyperNEFA-emia, postprandial lipemia, hypertension, atherosclerosis, endothelial dysfunction, osteoporosis, chronic systemic inflammation, non alcoholic fatty liver disease (NAFLD), polycystic ovarian syndrome, hyperuricemia, metabolic syndrome, nephropathy, micro- or macroalbuminuria, proteinuria, nephrotic syndrome, retinopathy, cataracts, neuropathy, learning or memory impairment, neurodegenerative or cognitive disorders, cardio- or cerebrovascular diseases, tissue ischaemia, diabetic foot or ulcus, atherosclerosis, hypertension, endothelial dysfunction, myocardial infarction, acute coronary syndrome, unstable angina pectoris, stable angina pectoris, peripheral arterial occlusive disease, cardiomyopathy (including e.g.
  • uremic cardiomyopathy heart failure, cardiac hypertrophy, heart rhythm disorders, vascular restenosis, stroke, (renal, cardiac, cerebral or hepatic) ischemia/reperfusion injuries, (renal, cardiac, cerebral or hepatic) fibrosis, (renal, cardiac, cerebral or hepatic) vascular remodelling; a diabetic disease, e.g. type 2 diabetes mellitus being (with or without obesity) being particularly to be noted (e.g. as an underlying disease).
  • the patients with or at-risk of SIRS /sepsis which may be amenable to the therapies of this invention have a diabetic disease, such as e.g. type 2 diabetes mellitus, and, optionally, may have or are at-risk of one or more other diseases, disorders or conditions, such as e.g. selected from those mentioned immediately above.
  • the present invention thus relates to a certain DPP-4 inhibitor as defined herein, preferably linagliptin (Bl 1356), for use in the therapies (treatments and/or preventions) described herein.
  • the present invention further relates to a certain DPP-4 inhibitor as defined herein, preferably linagliptin (Bl 1356), in combination with metformin, for use in the therapies (treatments and/or preventions) described herein.
  • the present invention further relates to a certain DPP-4 inhibitor as defined herein, preferably linagliptin (Bl 1356), in combination with pioglitazone, for use in the therapies (treatments and/or preventions) described herein.
  • the present invention further relates to a certain DPP-4 inhibitor as defined herein, preferably linagliptin (Bl 1356), in combination with telmisartan, for use in the therapies (treatments and/or preventions) described herein.
  • a certain DPP-4 inhibitor as defined herein, preferably linagliptin (Bl 1356), in combination with telmisartan, for use in the therapies (treatments and/or preventions) described herein.
  • the present invention further relates to a certain DPP-4 inhibitor as defined herein, preferably linagliptin (Bl 1356), in combination with a GLP-1 receptor agonist (such as e.g. exenatide, exenatide LAR, liraglutide, taspoglutide, semaglutide, albiglutide, lixisenatide, dulaglutide, or native GLP-1 ) for use in the therapies (treatments and/or preventions) described herein.
  • a GLP-1 receptor agonist such as e.g. exenatide, exenatide LAR, liraglutide, taspoglutide, semaglutide, albiglutide, lixisenatide, dulaglutide, or native GLP-1
  • the present invention further relates to a certain DPP-4 inhibitor as defined herein, preferably linagliptin (Bl 1356), in combination with an insulin or insulin analogue (e.g. basal insulin, such as e.g. insulin glargin, insulin detemir or insulin degludec, or NPH insulin) for use in the therapies (treatments and/or preventions) described herein.
  • a certain DPP-4 inhibitor as defined herein, preferably linagliptin (Bl 1356)
  • an insulin or insulin analogue e.g. basal insulin, such as e.g. insulin glargin, insulin detemir or insulin degludec, or NPH insulin
  • the present invention further relates to a certain DPP-4 inhibitor as defined herein, preferably linagliptin (Bl 1356), in combination with a diuretic, an ARB and/or an ACE inhibitor for use in the therapies (treatments and/or preventions) described herein.
  • a certain DPP-4 inhibitor as defined herein, preferably linagliptin (Bl 1356), in combination with a diuretic, an ARB and/or an ACE inhibitor for use in the therapies (treatments and/or preventions) described herein.
  • the present invention further relates to a certain DPP-4 inhibitor as defined herein, preferably linagliptin (Bl 1356), in combination with a corticosteroid for use in the therapies (treatments and/or preventions) described herein.
  • a certain DPP-4 inhibitor as defined herein, preferably linagliptin (Bl 1356)
  • a corticosteroid for use in the therapies (treatments and/or preventions) described herein.
  • the present invention further relates to a certain DPP-4 inhibitor as defined herein, preferably linagliptin (Bl 1356), in combination with one or more other active agents, e.g. selected from other antidiabetic substances, active substances that lower the blood sugar level, active substances that lower the lipid level in the blood, active substances that raise the HDL level in the blood, active substances that lower blood pressure, and active substances that are indicated in the treatment of atherosclerosis or obesity, for use in the therapies (treatments and/or preventions) described herein.
  • active agents e.g. selected from other antidiabetic substances, active substances that lower the blood sugar level, active substances that lower the lipid level in the blood, active substances that raise the HDL level in the blood, active substances that lower blood pressure, and active substances that are indicated in the treatment of atherosclerosis or obesity, for use in the therapies (treatments and/or preventions) described herein.
  • the present invention further relates to a certain DPP-4 inhibitor as defined herein, preferably linagliptin (Bl 1356), in combination with one or more other antidiabetics selected from the group consisting of metformin, a sulphonylurea, nateglinide, repaglinide, a thiazolidinedione, a PPAR-gamma-agonist, an alpha-glucosidase inhibitor, insulin or an insulin analogue, and GLP-1 or a GLP-1 analogue, optionally in combination with one or more further active agents (e.g. selected from a diuretic, ACE inhibitor and/or ARB, such as e.g. telmisartan), for use in the therapies (treatments and/or preventions) described herein.
  • a certain DPP-4 inhibitor as defined herein, preferably linagliptin (Bl 1356), in combination with one or more other antidiabetics selected from the group consisting of metformin,
  • the present invention further relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a certain DPP-4 inhibitor as defined herein, preferably linagliptin (Bl 1356), for use in the therapies described herein.
  • the present invention further relates to a pharmaceutical composition comprising a certain DPP-4 inhibitor as defined herein, preferably linagliptin (Bl 1356), and metformin, for use in the therapies described herein.
  • the present invention further relates to a pharmaceutical composition comprising a certain DPP-4 inhibitor as defined herein, preferably linagliptin (Bl 1356), and pioglitazone, for use in the therapies described herein.
  • the present invention further relates to a combination comprising a certain DPP-4 inhibitor (particularly linagliptin) and one or more other active agents selected from those mentioned herein, e.g. selected from other antidiabetic substances, active substances that lower the blood sugar level, active substances that lower the lipid level in the blood, active substances that raise the HDL level in the blood, active substances that lower blood pressure, active substances that are indicated in the treatment of atherosclerosis or obesity, e.g. each as described herein; particularly for simultaneous, separate or sequential use in the therapies described herein.
  • a certain DPP-4 inhibitor particularly linagliptin
  • active agents selected from those mentioned herein, e.g. selected from other antidiabetic substances, active substances that lower the blood sugar level, active substances that lower the lipid level in the blood, active substances that raise the HDL level in the blood, active substances that lower blood pressure, active substances that are indicated in the treatment of atherosclerosis or obesity, e.g. each as described herein; particularly for simultaneous, separate or
  • the present invention further relates to a combination comprising a certain DPP-4 inhibitor (particularly linagliptin) and one or more other antidiabetics selected from the group consisting of metformin, a sulphonylurea, nateglinide, repaglinide, a thiazolidinedione, a PPAR-gamma-agonist, an alpha-glucosidase inhibitor, insulin or an insulin analogue, and GLP-1 or a GLP-1 analogue, particularly for simultaneous, separate or sequential use in the therapies described herein, optionally in combination with a diuretic, ACE inhibitor and/or ARB, such as e.g. telmisartan.
  • a certain DPP-4 inhibitor particularly linagliptin
  • one or more other antidiabetics selected from the group consisting of metformin, a sulphonylurea, nateglinide, repaglinide, a thiazolidinedione, a
  • the present invention further relates to therapies or therapeutic or preventive methods or uses as described herein, such as e.g. to a method for treating and/or preventing a metabolic disease, such as e.g. type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications) comprising administering (e.g. simultaneously, separately or sequentially) an effective amount of a certain DPP-4 inhibitor (particularly linagliptin) as defined herein and, optionally, one or more other active agents, such as e.g.
  • a metabolic disease such as e.g. type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications)
  • administering e.g. simultaneously, separately or sequentially
  • an effective amount of a certain DPP-4 inhibitor particularly linagliptin
  • one or more other active agents such as e.g.
  • one or more other antidiabetics selected from the group consisting of metformin, a sulphonylurea, nateglinide, repaglinide, a thiazolidinedione, a PPAR-gamma-agonist, an alpha-glucosidase inhibitor, insulin or an insulin analogue, and GLP-1 or a GLP-1 analogue,
  • a further active agents e.g. a diuretic, ACE inhibitor and/or ARB, such as e.g. telmisartan
  • a further active agent e.g. a diuretic, ACE inhibitor and/or ARB, such as e.g. telmisartan
  • MCD minimal change disease
  • MN membranous nephropathy
  • FSGS focal segmental glomerulosclerosis
  • the present invention further relates to therapies or therapeutic or preventive methods or uses as described herein, such as e.g. a method for treating and/or preventing a metabolic disease, such as e.g. type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), comprising administering an effective amount of linagliptin (Bl 1356) and metformin, and optionally one or more further active agents, to the patient (particularly human patient) in need thereof, such as e.g. a patient as described herein, including a patient with or at risk of podocyte related disorders, disturbance of podocyte function, podocyte loss or injury, podocytopathy, glomerulopathy, nephrotic syndrome, minimal change disease (MCD, e.g.
  • a metabolic disease such as e.g. type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications)
  • linagliptin Bl 1356
  • metformin linagliptin
  • MCD minimal
  • minimal change nephropathy such as steroid hormone refractory minimal change nephropathy
  • membranous nephropathy MN, e.g. membranous glomerulonephritis
  • FSGS focal segmental glomerulosclerosis
  • the present invention further relates to therapies or therapeutic or preventive methods or uses as described herein, such as e.g. a method for treating and/or preventing a metabolic disease, such as e.g. type 2 diabetes mellitus and/or conditions related thereto (e.g.
  • linagliptin Bl 1356
  • pioglitazone optionally one or more further active agents
  • MCD minimal change disease
  • MN membranous nephropathy
  • FGS focal segmental glomerulosclerosis
  • the present invention further relates to therapies or therapeutic or preventive methods or uses as described herein, such as e.g. a method for treating and/or preventing a metabolic disease, such as e.g. type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications), comprising administering an effective amount of linagliptin (Bl 1356) and telmisartan, and optionally one or more further active agents, to the patient (particularly human patient) in need thereof, such as e.g.
  • a metabolic disease such as e.g. type 2 diabetes mellitus and/or conditions related thereto (e.g. diabetic complications)
  • linagliptin Bl 1356
  • telmisartan e.g. telmisartan
  • a patient as described herein including a patient with or at risk of podocyte related disorders, disturbance of podocyte function, podocyte loss or injury, podocytopathy, glomerulopathy, nephrotic syndrome, minimal change disease (MCD, e.g. minimal change nephropathy, such as steroid hormone refractory minimal change nephropathy), membranous nephropathy (MN, e.g. membranous glomerulonephritis) and/or focal segmental glomerulosclerosis (FSGS).
  • MCD minimal change disease
  • MN membranous nephropathy
  • FSGS focal segmental glomerulosclerosis
  • the present invention further relates to therapies or therapeutic or preventive methods or uses as described herein, such as e.g. a method for treating and/or preventing a metabolic disease, such as e.g.
  • type 2 diabetes mellitus and/or conditions related thereto comprising administering an effective amount of linagliptin (Bl 1356) and an insulin or insulin analogue (such as e.g. a basal insulin), and optionally one or more further active agents, to the patient (particularly human patient) in need thereof, such as e.g. a patient as described herein, including a patient with or at risk of podocyte related disorders, disturbance of podocyte function, podocyte loss or injury, podocytopathy, glomerulopathy, nephrotic syndrome, minimal change disease (MCD, e.g.
  • MCD minimal change disease
  • minimal change nephropathy such as steroid hormone refractory minimal change nephropathy
  • membranous nephropathy MN, e.g. membranous glomerulonephritis
  • FSGS focal segmental glomerulosclerosis
  • MCD minimal change disease
  • MN membranous nephropathy
  • a patient comprising administering an effective amount of linagliptin, optionally in combination with one or more other active agents
  • nephrotic syndrome including active substances which are indicated in the treatment of nephrotic syndrome, such as e.g. selected from corticosteroids (e.g. prednisone or prednisolone), diuretics, ACE inhibitors, ARBs such as e.g. telmisartan, cyclophosphamide, cyclosporine, and/or anticoagulants), to the patient.
  • corticosteroids e.g. prednisone or prednisolone
  • diuretics e.g. ACE inhibitors
  • ARBs such as e.g. telmisartan, cyclophosphamide, cyclosporine, and/or anticoagulants
  • the present invention relates to a method of treating, preventing and/or reducing the risk of podocyte related disorders, disturbance of podocyte function, podocyte loss or injury, podocytopathy, glomerulopathy, nephrotic syndrome, minimal change disease (MCD, e.g. minimal change nephropathy, such as steroid hormone refractory minimal change nephropathy), membranous nephropathy (MN, e.g. membranous glomerulonephritis) and/or focal segmental glomerulosclerosis (FSGS) in a patient (particularly a human patient, who may suffer from diabetes, e.g.
  • MCD minimal change disease
  • MN membranous nephropathy
  • FSGS focal segmental glomerulosclerosis
  • type 1 or type 2 diabetes or LADA particularly type 2 diabetes, or who may be non-diabetic
  • administering an effective amount of linagliptin, optionally in combination with one or more other active agents, e.g. selected from other antidiabetic substances, active substances that lower the blood sugar level, active substances that lower the lipid level in the blood, active substances that raise the HDL level in the blood, active substances that lower blood pressure, active substances that are indicated in the treatment of atherosclerosis or obesity, and/or active substances which are indicated in the treatment of nephrotic syndrome, to the patient.
  • active agents e.g. selected from other antidiabetic substances, active substances that lower the blood sugar level, active substances that lower the lipid level in the blood, active substances that raise the HDL level in the blood, active substances that lower blood pressure, active substances that are indicated in the treatment of atherosclerosis or obesity, and/or active substances which are indicated in the treatment of nephrotic syndrome, to the patient.
  • the present invention relates to a method of treating, preventing and/or reducing the risk of podocyte related disorders, disturbance of podocyte function, podocyte loss or injury, podocytopathy, glomerulopathy, nephrotic syndrome, minimal change disease (MCD, e.g. minimal change nephropathy, such as steroid hormone refractory minimal change nephropathy), membranous nephropathy (MN, e.g. membranous glomerulonephritis) and/or focal segmental glomerulosclerosis (FSGS) in a patient (particularly a human patient, who may suffer from diabetes, e.g.
  • MCD minimal change disease
  • MN membranous nephropathy
  • FSGS focal segmental glomerulosclerosis
  • type 1 or type 2 diabetes or LADA particularly type 2 diabetes, or who may be non-diabetic
  • administering an effective amount of linagliptin and one or more other antidiabetics selected from the group consisting of metformin, a sulphonylurea, nateglinide, repaglinide, a thiazolidinedione, a PPAR-gamma- agonist, an alpha-glucosidase inhibitor, insulin or an insulin analogue, and GLP-1 or a GLP-1 analogue, optionally in combination with one or more further active agents (e.g.
  • an active substance which is indicated in the treatment of nephrotic syndrome such as a corticosteroid (e.g. prednisone or prednisolone), a diuretic, ACE inhibitor, ARB such as e.g. telmisartan, cyclophosphamide, cyclosporine, and/or an anticoagulant), to the patient.
  • a corticosteroid e.g. prednisone or prednisolone
  • ARB such as e.g. telmisartan, cyclophosphamide, cyclosporine, and/or an anticoagulant
  • a DPP-4 inhibitor within the meaning of the present invention includes, without being limited to, any of those DPP-4 inhibitors mentioned hereinabove and hereinbelow, preferably orally and/or subcutaneously active DPP-4 inhibitors.
  • a DPP-4 inhibitor in the context of the present invention is any DPP-4 inhibitor of
  • R1 denotes ([1 ,5]naphthyridin-2-yl)methyl, (quinazolin-2-yl)methyl, (quinoxalin-6- yl)methyl, (4-methyl-quinazolin-2-yl)methyl, 2-cyano-benzyl, (3-cyano-quinolin-2-yl)methyl, (3-cyano-pyridin-2-yl)methyl, (4-methyl-pyrimidin-2-yl)methyl, or (4,6-dimethyl-pyrimidin-2- yl)methyl and R2 denotes 3-(R)-amino-piperidin-1 -yl, (2-amino-2-methyl-propyl)-methylamino or (2-(S)-amino-propyl)-methylamino,
  • preferred DPP-4 inhibitors are any or all of the following compounds and their pharmaceutically acceptable salts:
  • DPP-4 inhibitors are distinguished from structurally comparable DPP-4 inhibitors, as they combine exceptional potency and a long-lasting effect with favourable pharmacological properties, receptor selectivity and a favourable side-effect profile or bring about unexpected therapeutic advantages or improvements when combined with other pharmaceutical active substances.
  • Their preparation is disclosed in the publications mentioned.
  • a DPP-4 inhibitor in the context of the present invention is a DPP-4 inhibitor selected from the group consisting of
  • sitagliptin sitagliptin, vildagliptin, saxagliptin, alogliptin, gemigliptin, (2S)-1 - ⁇ [2-(5-Methyl-2-phenyl-oxazol-4-yl)-ethylamino]-acetyl ⁇ -pyrrolidine-2-carb ⁇
  • embodiment A of this invention is 1 -[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1 - yl)-8-(3-(R)-amino-piperidin-1 -yl)-xanthine, particularly the free base thereof (which is also known as linagliptin or Bl 1356).
  • the DPP-4 inhibitor of this invention is selected from the group consisting of linagliptin, sitagliptin, vildagliptin, alogliptin, saxagliptin, teneligliptin, anagliptin, gemigliptin and dutogliptin, or a pharmaceutically acceptable salt of one of the herein mentioned DPP-4 inhibitors, or a prodrug thereof.
  • a particularly preferred DPP-4 inhibitor to be emphasized within the present invention is linagliptin.
  • the term "linagliptin” as employed herein refers to linagliptin or a pharmaceutically acceptable salt thereof, including hydrates and solvates thereof, and crystalline forms thereof, preferably linagliptin refers to 1 -[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2- butyn-1 -yl)-8-(3-(R)-amino-piperidin-1 -yl)-xanthine. Crystalline forms are described in WO 2007/128721.
  • Linagliptin is distinguished from structurally comparable DPP-4 inhibitors, as it combines exceptional potency and a long-lasting effect with favourable pharmacological properties, receptor selectivity and a favourable side-effect profile or bring about unexpected therapeutic advantages or improvements in mono- or dual or triple combination therapy.
  • An embodiment of this invention refers to a DPP-4 inhibitor suitable for use in the treatment and/or prevention of metabolic diseases (particularly type 2 diabetes mellitus) in patients, wherein said patients further suffering from renal disease, renal dysfunction or renal impairment, particularly characterized in that said DPP-4 inhibitor is administered to said patients in the same dose levels as to patients with normal renal function, thus e.g. said DPP-4 inhibitor does not require downward dosing adjustment for impaired renal function.
  • metabolic diseases particularly type 2 diabetes mellitus
  • a DPP-4 inhibitor according to this invention may be such an oral DPP-4 inhibitor, which and whose active metabolites have preferably a relatively wide (e.g. about > 100 fold) therapeutic window and/or, especially, that are primarily eliminated via hepatic metabolism or biliary excretion (preferably without adding additional burden to the kidney).
  • a DPP-4 inhibitor according to this invention may be such an orally administered DPP-4 inhibitor, which has a relatively wide (e.g. > 100 fold) therapeutic window (preferably a safety profile comparable to placebo) and/or which fulfils one or more of the following pharmacokinetic properties (preferably at its therapeutic oral dose levels):
  • the DPP-4 inhibitor is substantially or mainly excreted via the liver (e.g. > 80 % or even > 90 % of the administered oral dose), and/or for which renal excretion represents no substantial or only a minor elimination pathway (e.g. ⁇ 10 %, preferably ⁇ 7 %, of the administered oral dose measured, for example, by following elimination of a radiolabeled carbon ( 14 C) substance oral dose);
  • the DPP-4 inhibitor is excreted mainly unchanged as parent drug (e.g. with a mean of > 70%, or > 80%, or, preferably, 90% of excreted radioactivity in urine and faeces after oral dosing of radiolabeled carbon ( 14 C) substance), and/or which is eliminated to a non- substantial or only to a minor extent via metabolism (e.g. ⁇ 30%, or ⁇ 20%, or, preferably, 10%);
  • the (main) metabolite(s) of the DPP-4 inhibitor is/are pharmacologically inactive.
  • the main metabolite does not bind to the target enzyme DPP-4 and, optionally, it is rapidly eliminated compared to the parent compound (e.g. with a terminal half-life of the metabolite of ⁇ 20 h, or, preferably, ⁇ about 16 h, such as e.g. 15.9 h).
  • the (main) metabolite in plasma (which may be pharmacologically inactive) of a DPP-4 inhibitor having a 3-amino-piperidin-1 -yl substituent is such a derivative where the amino group of the 3-amino-piperidin-1 -yl moiety is replaced by a hydroxyl group to form the 3-hydroxy-piperidin-1 -yl moiety (e.g. the 3-(S)-hydroxy-piperidin-1 -yl moiety, which is formed by inversion of the configuration of the chiral center).
  • Further properties of a DPP-4 inhibitor according to this invention may be one or more of the following: Rapid attainment of steady state (e.g.
  • steady state plasma levels > 90% of the steady state plasma concentration
  • little accumulation e.g. with a mean accumulation ratio RA , AUC ⁇ 1 .4 with therapeutic oral dose levels
  • preserving a long-lasting effect on DPP-4 inhibition preferably when used once-daily (e.g.
  • a DPP-4 inhibitor according to this invention may be characterized in that said DPP-4 inhibitor has a primarily non-renal route of excretion, i.e. said DPP-4 inhibitor is excreted to a non-substantial or only to a minor extent (e.g. ⁇ 10 %, preferably ⁇ 7 %, e.g. about 5 %, of administered oral dose, preferably of oral therapeutic dose) via the kidney (measured, for example, by following elimination of a radiolabeled carbon ( 14 C) substance oral dose).
  • a radiolabeled carbon ( 14 C) substance oral dose e.g. a radiolabeled carbon ( 14 C) substance oral dose
  • a DPP-4 inhibitor according to this invention may be characterized in that said DPP- 4 inhibitor is excreted substantially or mainly via the liver, bile or faeces (measured, for example, by following elimination of a radiolabeled carbon ( 14 C) substance oral dose). Further, a DPP-4 inhibitor according to this invention may be characterized in that said DPP-4 inhibitor is excreted mainly unchanged as parent drug (e.g. with a mean of > 70%, or > 80%, or, preferably, 90 % of excreted radioactivity in urine and faeces after oral dosing of radiolabeled carbon ( 14 C) substance),
  • said DPP-4 inhibitor is eliminated to a non-substantial or only to a minor extent via metabolism, and/or
  • the main metabolite of said DPP-4 inhibitor is pharmacologically inactive or has a relatively wide therapeutic window.
  • a DPP-4 inhibitor according to this invention may be characterized in that said DPP-4 inhibitor does not significantly impair glomerular and/or tubular function of a type 2 diabetes patient with chronic renal insufficiency (e.g. mild, moderate or severe renal impairment or end stage renal disease), and/or
  • said DPP-4 inhibitor trough levels in the blood plasma of type 2 diabetes patients with mild or moderate renal impairment are comparable to the levels in patients with normal renal function, and/or
  • a DPP-4 inhibitor according to this invention may be characterized in that said DPP-4 inhibitor provides its minimally effective dose at that dose that results in >50% inhibition of DPP-4 activity at trough (24 h after last dose) in >80% of patients, and/or said DPP-4 inhibitor provides its fully therapeutic dose at that dose that results in >80% inhibition of DPP-4 activity at trough (24 h after last dose) in >80% of patients.
  • a DPP-4 inhibitor according to this invention may be characterized in that being suitable for use in type 2 diabetes patients who are with diagnosed renal impairment or complication and/or who are at risk of developing renal complications, e.g. patients with or at risk of diabetic nephropathy (including chronic and progressive renal insufficiency, albuminuria, proteinuria, fluid retention in the body (edema) and/or hypertension).
  • diabetic nephropathy including chronic and progressive renal insufficiency, albuminuria, proteinuria, fluid retention in the body (edema) and/or hypertension.
  • GLP-1 receptor agonists include, without being limited, exogenous GLP-1 (natural or synthetic), GLP-1 mimetics or analogues (including longer acting analogues which are resistant to or have reduced susceptibility to enzymatic degradation by DPP-4 and NEP 24.1 1 ) and other substances (whether peptidic or non-peptidic, e.g. small molecules) which promote signalling through the GLP-1 receptor.
  • GLP-1 analogues may include (group G2): exenatide (synthetic exendin-4, e.g. formulated as Byetta); exenatide LAR (long acting release formulation of exenatide, e.g. formulated as Bydureon); liraglutide (e.g. formulated as Victoza); taspoglutide; semaglutide; albiglutide (e.g.
  • Xaa 8 is Val
  • Xaa 2 2 is Glu
  • Xaa 33 is lie
  • Xaa 46 is Cys-NH 2
  • one PEG molecule is covalently attached to Cys 45 and one PEG molecule is covelently attached to Cys 46 -NH 2
  • each of the PEG molecules used for PEGylation reaction is a 20,000 dalton linear methoxy PEG maleimide (preferably the GLP-1 derivative consists of the amino acid sequence of Val 8 -Glu 22 -lle 33 -Cys-NH 2 46 -GLP-1 (cf. SEQ ID NO:21 of WO
  • GLP-1 receptor agonists are exenatide, exenatide LAR, liraglutide, taspoglutide, semaglutide, albiglutide, lixisenatide and dulaglutide.
  • GLP-1 analogues have typically significant sequence identity to GLP-1 (e.g. greater than 50%, 75%, 90% or 95%) and may be derivatised, e.g. by conjunction to other proteins (e.g. albumin or IgG-Fc fusion protein) or through chemical modification.
  • the GLP-1 receptor agonist is preferably administered by injection (preferably subcutaneously).
  • the definitions of the active agents may also contemplate their pharmaceutically acceptable salts, and prodrugs, hydrates, solvates and polymorphic forms thereof.
  • the terms of the therapeutic agents given herein refer to the respective active drugs.
  • salts, hydrates and polymorphic forms thereof particular reference is made to those which are referred to herein.
  • an effective amount of a compound as used herein means an amount sufficient to cure, alleviate or partially arrest the clinical manifestations of a given state or condition, such as a disease or disorder, and its complications. An amount adequate to accomplish this is defined as "effective amount”. Effective amounts for each purpose will depend on the severity of the condition, disease or injury as well as the weight and general state of the subject and mode of administration, or the like. It will be understood that determining an appropriate dosage may be achieved using routine experimentation, e.g. by constructing a matrix of values and testing different points in the matrix, which is all within the ordinary skills of a trained physician or veterinary.
  • treatment or treating mean the management and care of a patient or subject for the purpose of combating a condition, a disease or a disorder.
  • the term is intended to include the full spectrum of treatments for a given condition from which the patient or subject is suffering, such as administration of the active compound to alleviate the symptoms or complications, to delay the progression of the disease, disorder or condition, to alleviate or relief the symptoms and complications, to improve patient's status or outcome, and/or to cure or eliminate the disease, disorder or condition as well as to prevent the condition, wherein prevention is to be understood as the management and care of a patient for the purpose of combating the disease, condition, or disorder and includes the administration of the active compounds to prevent or delay the onset of the symptoms or complications.
  • “combination” or “combined” within the meaning of this invention may include, without being limited, fixed and non-fixed (e.g. free) forms (including kits) and uses, such as e.g. the simultaneous, sequential or separate use of the components or ingredients.
  • the combined administration of this invention may take place by administering the active components or ingredients together, such as e.g. by administering them simultaneously in one single or in two separate formulations or dosage forms.
  • the administration may take place by administering the active components or ingredients sequentially, such as e.g. successively in two separate formulations or dosage forms.
  • combination therapy may refer to first line, second line or third line therapy, or initial or add-on combination therapy or replacement therapy.
  • the methods of synthesis for the DPP-4 inhibitors according to embodiment A of this invention are known to the skilled person.
  • the DPP- 4 inhibitors according to embodiment A of this invention can be prepared using synthetic methods as described in the literature.
  • purine derivatives of formula (I) can be obtained as described in WO 2002/068420, WO 2004/018468, WO 2005/085246, WO 2006/029769 or WO 2006/048427, the disclosures of which are incorporated herein.
  • Purine derivatives of formula (II) can be obtained as described, for example, in WO
  • Typical dosage strengths of the dual fixed combination (tablet) of linagliptin / metformin IR (immediate release) are 2.5/500 mg, 2.5/850 mg and 2.5/1000 mg, which may be
  • Typical dosage strengths of the dual fixed combination (tablet) of linagliptin / metformin XR (extended release) are 5/500 mg, 5/1000 mg and 5/1500 mg (each one tablet) or 2.5/500 mg, 2.5/750 mg and 2.5/1000 mg (each two tablets), which may be administered 1 -2 times a day, particularly once a day, preferably to be taken in the evening with meal.
  • the present invention further provides a DPP-4 inhibitor as defined herein for use in (add-on or initial) combination therapy with metformin (e.g. in a total daily amount from 500 to 2000 mg metformin hydrochloride, such as e.g. 500 mg, 850 mg or 1000 mg once or twice daily).
  • the elements of the combination of this invention may be administered by various ways, for example by oral, buccal, sublingual, enterical, parenteral (e.g., transdermal, intramuscular or subcutaneous), inhalative (e.g., liquid or powder inhalation, aerosol), pulmonary, intranasal (e.g. spray), intraperitoneal, vaginal, rectal, or topical routes of administration and may be formulated, alone or together, in suitable dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles appropriate for each route of administration.
  • the DPP-4 inhibitor according to the invention is preferably administered orally.
  • Suitable doses and dosage forms of the DPP-4 inhibitors may be determined by a person skilled in the art and may include those described herein or in the relevant references.
  • the compounds of this invention are usually used in dosages from 0.001 to 100 mg/kg body weight, preferably at 0.01 -15 mg/kg or 0.1 -15 mg/kg, in each case 1 to 4 times a day.
  • the compounds optionally combined with other active substances, may be incorporated together with one or more inert conventional carriers and/or diluents, e.g. with corn starch, lactose, glucose, microcrystalline cellulose, magnesium stearate,
  • polyvinylpyrrolidone citric acid, tartaric acid, water, water/ethanol, water/glycerol, water/sorbitol, water/polyethylene glycol, propylene glycol, cetylstearyl alcohol,
  • carboxymethylcellulose or fatty substances such as hard fat or suitable mixtures thereof into conventional galenic preparations such as plain or coated tablets, capsules, powders, suspensions or suppositories.
  • compositions according to this invention comprising the DPP-4 inhibitors as defined herein are thus prepared by the skilled person using pharmaceutically acceptable formulation excipients as described in the art and appropriate for the desired route of administration.
  • excipients include, without being restricted to diluents, binders, carriers, fillers, lubricants, flow promoters, crystallisation retardants, disintegrants, solubilizers, colorants, pH regulators, surfactants and emulsifiers.
  • Oral formulations or dosage forms of the DPP-4 inhibitor of this invention may be prepared according to known techniques.
  • a pharmaceutical composition or dosage form (e.g. oral tablet) of a DPP-4 inhibitor according to embodiment A of the invention may typically contain as excipients (in addition to an active ingredient), for example: one or more diluents, a binder, a disintegrant, and a lubricant, preferably each as disclosed herein-below.
  • the disintegrant may be optional.
  • suitable diluents for compounds according to embodiment A include cellulose powder, calcium hydrogen phosphate, erythritol, low substituted hydroxypropyl cellulose, mannitol, pregelatinized starch or xylitol.
  • suitable lubricants for compounds according to embodiment A include talc, polyethyleneglycol, calcium behenate, calcium stearate, hydrogenated castor oil or magnesium stearate.
  • Suitable binders for compounds according to embodiment A include copovidone (copolymerisates of vinylpyrrolidon with other vinylderivates), hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose (HPC), polyvinylpyrrolidon (povidone), pregelatinized starch, or low-substituted hydroxypropylcellulose (L-HPC).
  • Suitable disintegrants for compounds according to embodiment A include corn starch or crospovidone.
  • An exemplary composition (e.g. tablet core) of a DPP-4 inhibitor according to embodiment A of the invention comprises the first diluent mannitol, pregelatinized starch as a second diluent with additional binder properties, the binder copovidone, the disintegrant corn starch, and magnesium stearate as lubricant; wherein copovidone and/or corn starch may be optional.
  • a tablet of a DPP-4 inhibitor according to embodiment A of the invention may be film coated, preferably the film coat comprises hydroxypropylmethylcellulose (HPMC), polyethylene glycol (PEG), talc, titanium dioxide and iron oxide (e.g. red and/or yellow).
  • the DPP-4 inhibitor according to the invention may be administered by injection (preferably subcutaneously).
  • the GLP-1 receptor agonist is preferably administered by injection (preferably subcutaneously) as well.
  • injectable formulations of the GLP-1 receptor agonist and/or the DPP-4 inhibitor of this invention may be prepared according to known formulation techniques, e.g. using suitable liquid carriers, which usually comprise sterile water, and, optionally, further additives such as e.g. preservatives, pH adjusting agents, buffering agents, isotoning agents, solubility aids and/or tensides or the like, to obtain injectable solutions or suspensions.
  • injectable formulations may comprise further additives, for example salts, solubility modifying agents or precipitating agents which retard release of the drug(s).
  • injectable GLP-1 formulations may comprise GLP-1 stabilizing agents (e.g. a surfactant).
  • GLP-1 stabilizing agents e.g. a surfactant.
  • an injectable formulation (particularly for subcutaneous use) containing the GLP-1 receptor agonist (e.g. exenatide), optionally together with the DPP-4 inhibitor of this invention may further comprise the following additives: a tonicity-adjusting agent (such as e.g. mannitol), an antimicrobial preservative (such as e.g. metacresol), a buffer or pH adjusting agent (such as e.g. glacial acetic acid and sodium acetate trihydrate in water for injection as a buffering solution at pH 4.5), and optionally a solubilizing and/or stabilizing agent (such as e.g. a surfactant or detergent).
  • the DPP-4 inhibitor according to the invention may be administered by a transdermal delivery system.
  • the GLP-1 receptor agonist is preferably administered by a transdermal delivery system as well.
  • Transdermal formulations (e.g. for transdermal patches or gels) of the GLP-1 receptor agonist and/or the DPP-4 inhibitor of this invention may be prepared according to known formulation techniques, e.g. using suitable carriers and, optionally, further additives.
  • suitable carriers e.g., ethylene glycol, ethylene glycol, ethylene glycol, ethylene glycol, ethylene glycol, ethylene glycol, ethylene glycol, ethylene glycol, g., g., iontophoresis (based on low-level electrical current), sonophoresis (based on low-frequency ultrasound) or microneedling, or the use of drug-carrier agents (e.g. elastic or lipid vesicles such as transfersomes) or permeation enhancers.
  • drug-carrier agents e.g. elastic or lipid vesicles such as transfersomes
  • compositions may be packaged in a variety of ways.
  • an article for distribution includes one or more containers that contain the one or more pharmaceutical compositions in an appropriate form. Tablets are typically packed in an appropriate primary package for easy handling, distribution and storage and for assurance of proper stability of the composition at prolonged contact with the environment during storage.
  • Primary containers for tablets may be bottles or blister packs.
  • a suitable bottle e.g. for a pharmaceutical composition or combination (tablet) comprising a DPP-4 inhibitor according to embodiment A of the invention, may be made from glass or polymer (preferably polypropylene (PP) or high density polyethylene (HD-PE)) and sealed with a screw cap.
  • the screw cap may be provided with a child resistant safety closure (e.g. press-and-twist closure) for preventing or hampering access to the contents by children.
  • a desiccant such as e.g. bentonite clay, molecular sieves, or, preferably, silica gel
  • the shelf life of the packaged composition can be prolonged.
  • a suitable blister pack e.g. for a pharmaceutical composition or combination (tablet) comprising a DPP-4 inhibitor according to embodiment A of the invention, comprises or is formed of a top foil (which is breachable by the tablets) and a bottom part (which contains pockets for the tablets).
  • the top foil may contain a metallic foil, particularly aluminium or aluminium alloy foil (e.g. having a thickness of 20 ⁇ to 45 ⁇ " ⁇ , preferably 20 ⁇ to 25 ⁇ " ⁇ ) that is coated with a heat-sealing polymer layer on its inner side (sealing side).
  • the bottom part may contain a multi-layer polymer foil (such as e.g.
  • PVC polyvinyl chloride
  • PVDC poly(vinylidene choride)
  • PCTFE poly(chlorotriflouroethylene)
  • multi-layer polymer-metal-polymer foil such as e.g. a cold-formable laminated PVC/aluminium/polyamide composition.
  • blister packs may include alu/alu, alu/PVC/polyvinylacetate copolymer-acrylate or alu/PVC/PCTFE/PVC blisters.
  • an additional overwrap or pouch made of a multi-layer polymer-metal-polymer foil may be used for the blister packs.
  • Supplementary desiccant such as e.g. bentonite clay, molecular sieves, or, preferably, silica gel
  • Solutions for injection may be available in typical suitable presentation forms such as vials, cartridges or prefilled (disposable) pens, which may be further packaged.
  • the article may further comprise a label or package insert, which refer to instructions customarily included in commercial packages of therapeutic products, that may contain information about the indications, usage, dosage, administration, contraindications and/or warnings concerning the use of such therapeutic products.
  • the label or package inserts indicates that the composition can be used for any of the purposes described herein.
  • the dosage typically required of the DPP-4 inhibitors mentioned herein in embodiment A when administered intravenously is 0.1 mg to 10 mg, preferably 0.25 mg to 5 mg, and when administered orally is 0.5 mg to 100 mg, preferably 2.5 mg to 50 mg or 0.5 mg to 10 mg, more preferably 2.5 mg to 10 mg or 1 mg to 5 mg, in each case 1 to 4 times a day.
  • the dosage of 1 -[(4-methyl- quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1 -yl)-8-(3-(R)-amino-piperidin-1 -yl)-xanthine when administered orally is 0.5 mg to 10 mg per patient per day, preferably 2.5 mg to 10 mg or 1 mg to 5 mg per patient per day.
  • doses of linagliptin when administered subcutaneously or i.v. for human patients are in the range of 0.3-10 mg, preferably from 1 to 5 mg, particularly 2.5 mg, per patient per day.
  • doses of linagliptin when administered subcutaneously for human patients are in the range of 0.1 -30 mg, preferably from 1 to 10 mg, particularly 5 mg, per patient per day.
  • a dosage form prepared with a pharmaceutical composition comprising a DPP-4 inhibitor mentioned herein in embodiment A contain the active ingredient in a dosage range of 0.1 - 100 mg.
  • particular oral dosage strengths of 1 -[(4-methyl-quinazolin-2-yl)methyl]-3- methyl-7-(2-butyn-1 -yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine are 0.5 mg, 1 mg, 2.5 mg, 5 mg and 10 mg.
  • the doses of DPP-4 inhibitors mentioned herein in embodiment B to be administered to mammals may be generally from about 0.5 mg to about 350 mg, for example from about 10 mg to about 250 mg, preferably 20-200 mg, more preferably 20-100 mg, of the active moiety per person per day, or from about 0.5 mg to about 20 mg, preferably 2.5-10 mg, per person per day, divided preferably into 1 to 4 single doses which may, for example, be of the same size.
  • Single oral dosage strengths comprise, for example, 10, 25, 40, 50, 75, 100, 150 and 200 mg of the DPP-4 inhibitor active moiety.
  • An oral dosage strength of the DPP-4 inhibitor sitagliptin is usually between 25 and 200 mg of the active moiety.
  • a recommended dose of sitagliptin is 100 mg calculated for the active moiety (free base anhydrate) once daily.
  • Unit dosage strengths of sitagliptin free base anhydrate (active moiety) are 25, 50, 75, 100, 150 and 200 mg.
  • Particular unit dosage strengths of sitagliptin (e.g. per tablet) are 25, 50 and 100 mg.
  • An equivalent amount of sitagliptin phosphate monohydrate to the sitagliptin free base anhydrate is used in the pharmaceutical compositions, namely, 32.13, 64.25, 96.38, 128.5, 192.75, and 257 mg, respectively. Adjusted dosages of 25 and 50 mg sitagliptin are used for patients with renal failure.
  • Typical dosage strengths of the dual combination of sitagliptin / metformin are 50/500 mg and 50/1000 mg.
  • An oral dosage range of the DPP-4 inhibitor vildagliptin is usually between 10 and 150 mg daily, in particular between 25 and 150 mg, 25 and 100 mg or 25 and 50 mg or 50 and 100 mg daily.
  • Particular examples of daily oral dosage are 25, 30, 35, 45, 50, 55, 60, 80, 100 or 150 mg.
  • the daily administration of vildagliptin may be between 25 and 150 mg or between 50 and 100 mg.
  • the daily administration of vildagliptin may be 50 or 100 mg.
  • the application of the active ingredient may occur up to three times a day, preferably one or two times a day.
  • Particular dosage strengths are 50 mg or 100 mg vildagliptin.
  • Typical dosage strengths of the dual combination of vildagliptin / metformin are 50/850 mg and 50/1000 mg.
  • Alogliptin may be administered to a patient at an oral daily dose of between 5 mg/day and 250 mg/day, optionally between 10 mg and 200 mg, optionally between 10 mg and 150 mg, and optionally between 10 mg and 100 mg of alogliptin (in each instance based on the molecular weight of the free base form of alogliptin).
  • specific oral dosage amounts that may be used include, but are not limited to 10 mg, 12.5 mg, 20 mg, 25 mg, 50 mg, 75 mg and 100 mg of alogliptin per day.
  • Alogliptin may be administered in its free base form or as a pharmaceutically acceptable salt.
  • Saxagliptin may be administered to a patient at an oral daily dose of between 2.5 mg/day and 100 mg/day, optionally between 2.5 mg and 50 mg.
  • Specific oral dosage amounts that may be used include, but are not limited to 2.5 mg, 5 mg, 10 mg, 15 mg, 20 mg, 30 mg , 40 mg, 50 mg and 1 00 mg of saxagliptin per day.
  • Typical dosage strengths of the d ual combination of saxagliptin / metformin are 2.5/500 mg and 2.5/1000 mg.
  • DPP-4 inhibitors of this invention refers to those orally administered DPP-4 inhibitors which are therapeutically efficacious at low dose levels, e.g. at oral dose levels ⁇ 100 mg or ⁇ 70 mg per patient per day, preferably ⁇ 50 mg, more preferably ⁇ 30 mg or ⁇ 20 mg, even more preferably from 1 mg to 10 mg, particularly from 1 mg to 5 mg (more particularly 5 mg), per patient per day (if required, divided into 1 to 4 single doses, particularly 1 or 2 single doses, which may be of the same size, preferentially, administered orally once- or twice daily (more preferentially once-daily), advantageously, administered at any time of day, with or without food.
  • the daily oral amount 5 mg Bl 1356 can be given in an once daily dosing regimen (i.e. 5 mg Bl 1356 once daily) or in a twice daily dosing regimen (i.e. 2.5 mg Bl 1356 twice daily), at any time of day, with or without food.
  • the dosage of the active ingredients in the combinations and compositions in accordance with the present invention may be varied, although the amount of the active ingredients shall be such that a suitable dosage form is obtained.
  • the selected dosage and the selected dosage form shall depend on the desired therapeutic effect, the route of
  • a particularly preferred DPP-4 inhibitor to be emphasized within the meaning of this invention is 1 -[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1 -yl)-8-(3-(R)-amino-piperidin-1 - yl)-xanthine (also known as Bl 1356 or linagliptin).
  • Bl 1356 exhibits high potency, 24h duration of action, and a wide therapeutic window.
  • Bl 1356 shows favourable pharmacodynamic and pharmacokinetic profile (see e.g. Table 3 below) with rapid attainment of steady state (e.g. reaching steady state plasma levels (> 90% of the pre-dose plasma concentration on Day 13) between second and fifth day of treatment in all dose groups), little accumulation (e.g. with a mean accumulation ratio RA , AUC ⁇ 1 -4 with doses above 1 mg) and preserving a long-lasting effect on DPP-4 inhibition (e.g. with almost complete (> 90%) DPP-4 inhibition at the 5 mg and 10 mg dose levels, i.e.
  • Bl 1356 acts as a true once-daily oral drug with a full 24 h duration of DPP-4 inhibition.
  • Bl 1356 is mainly excreted via the liver and only to a minor extent (about ⁇ 7% of the administered oral dose) via the kidney.
  • Bl 1356 is primarily excreted unchanged via the bile.
  • the fraction of Bl 1356 eliminated via the kidneys increases only very slightly over time and with increasing dose, so that there will likely be no need to modify the dose of Bl 1356 based on the patients' renal function.
  • a DPP-4 inhibitor is combined with one or more active substances customary for the respective disorders, such as e.g. one or more active substances selected from among the other antidiabetic substances, especially active substances that lower the blood sugar level or the lipid level in the blood, raise the HDL level in the blood, lower blood pressure or are indicated in the treatment of atherosclerosis or obesity.
  • active substances customary for the respective disorders, such as e.g. one or more active substances selected from among the other antidiabetic substances, especially active substances that lower the blood sugar level or the lipid level in the blood, raise the HDL level in the blood, lower blood pressure or are indicated in the treatment of atherosclerosis or obesity.
  • the DPP-4 inhibitors mentioned above - besides their use in mono-therapy - may also be used in conjunction with other active substances, by means of which improved treatment results can be obtained.
  • Such a combined treatment may be given as a free combination of the substances or in the form of a fixed combination, for example in a tablet or capsule.
  • compositions of the combination partner needed for this may either be obtained commercially as pharmaceutical compositions or may be formulated by the skilled man using conventional methods.
  • the active substances which may be obtained may be obtained commercially as pharmaceutical compositions or may be formulated by the skilled man using conventional methods.
  • Examples of antidiabetic combination partners are metformin; sulphonylureas such as glibenclamide, tolbutamide, glimepiride, glipizide, gliquidon, glibornuride and gliclazide;
  • nateglinide nateglinide
  • repaglinide mitiglinide
  • mitiglinide mitiglinide
  • thiazolidinediones such as rosiglitazone
  • PPAR gamma modulators such as metaglidases; PPAR-gamma agonists such as e.g. rivoglitazone, mitoglitazone, INT-131 and balaglitazone; PPAR-gamma antagonists; PPAR-gamma/alpha modulators such as tesaglitazar, muraglitazar, aleglitazar, indeglitazar and KRP297; PPAR-gamma/alpha/delta modulators such as e.g. lobeglitazone; AMPK- activators such as AICAR; acetyl-CoA carboxylase (ACC1 and ACC2) inhibitors;
  • DGAT diacylglycerol-acetyltransferase
  • pancreatic beta cell GCRP agonists such as GPR1 19 agonists (SMT3-receptor-agonists), such as the GPR1 19 agonists 5-ethyl-2- ⁇ 4- [4-(4-tetrazol-1 -yl-phenoxymethyl)-thiazol-2-yl]-piperidin-1 -yl ⁇ -pyrimidine or 5-[1 -(3-isopropyl- [1 ,2,4]oxadiazol-5-yl)-piperidin-4-ylmethoxy]-2-(4-methanesulfonyl-phenyl)-pyridine; 1 1 ⁇ - HSD-inhibitors; FGF19 agonists or analogues; alpha-glucosidase blockers such as acarbose, voglibose and miglitol; alpha2-antagonists; insulin and insulin ana
  • taspoglutide lixisenatide
  • LY-2428757 a PEGylated version of GLP-1
  • dulaglutide LY-2189265
  • semaglutide or albiglutide SGLT2-inhibitors such as e.g.
  • dapagliflozin sergliflozin (KGT-1251 ), atigliflozin, canagliflozin, ipragliflozin, luseogliflozin or tofogliflozin; inhibitors of protein tyrosine-phosphatase (e.g.
  • trodusquemine inhibitors of glucose-6-phosphatase; fructose-1 ,6-bisphosphatase modulators; glycogen phosphorylase modulators; glucagon receptor antagonists; phosphoenolpyruvatecarboxykinase (PEPCK) inhibitors; pyruvate dehydrogenasekinase (PDK) inhibitors; inhibitors of tyrosine-kinases (50 mg to 600 mg) such as PDGF-receptor-kinase (cf. EP-A-564409, WO 98/35958, US 5093330, WO 2004/005281 , and WO 2006/041976) or of serine/threonine kinases;
  • PPCK phosphoenolpyruvatecarboxykinase
  • PDK pyruvate dehydrogenasekinase
  • inhibitors of tyrosine-kinases 50 mg to 600 mg
  • glucokinase/regulatory protein modulators incl glucokinase activators; glycogen synthase kinase inhibitors; inhibitors of the SH2-domain-containing inositol 5-phosphatase type 2 (SHIP2) ; IKK inhibitors such as high-dose salicylate; JNK1 inhibitors; protein kinase C-theta inhibitors; beta 3 agonists such as ritobegron, YM 178, solabegron, talibegron, N-5984,
  • GRC-1087, rafabegron, FMP825 aldosereductase inhibitors such as AS 3201 , zenarestat, fidarestat, epalrestat, ranirestat, NZ-314, CP-744809, and CT-1 12; SGLT-1 or SGLT-2 inhibitors; KV 1 .3 channel inhibitors; GPR40 modulators such as e.g.
  • Metformin is usually given in doses varying from about 500 mg to 2000 mg up to 2500 mg per day using various dosing regimens from about 100 mg to 500 mg or 200 mg to 850 mg (1 -3 times a day), or about 300 mg to 1000 mg once or twice a day, or delayed-release metformin in doses of about 100 mg to 1000 mg or preferably 500 mg to 1000 mg once or twice a day or about 500 mg to 2000 mg once a day.
  • Particular dosage strengths may be 250, 500, 625, 750, 850 and 1000 mg of metformin hydrochloride.
  • metformin For children 10 to 16 years of age, the recommended starting dose of metformin is 500 mg given once daily. If this dose fails to produce adequate results, the dose may be increased to 500 mg twice daily. Further increases may be made in increments of 500 mg weekly to a maximum daily dose of 2000 mg, given in divided doses (e.g. 2 or 3 divided doses).
  • Metformin may be administered with food to decrease nausea.
  • a dosage of pioglitazone is usually of about 1 -10 mg, 15 mg, 30 mg, or 45 mg once a day.
  • Rosiglitazone is usually given in doses from 4 to 8 mg once (or divided twice) a day (typical dosage strengths are 2, 4 and 8 mg).
  • Glibenclamide (glyburide) is usually given in doses from 2.5-5 to 20 mg once (or divided twice) a day (typical dosage strengths are 1 .25, 2.5 and 5 mg), or micronized glibenclamide in doses from 0.75-3 to 12 mg once (or divided twice) a day (typical dosage strengths are 1 .5, 3, 4.5 and 6 mg).
  • Glipizide is usually given in doses from 2.5 to 10-20 mg once (or up to 40 mg divided twice) a day (typical dosage strengths are 5 and 10 mg), or extended-release glibenclamide in doses from 5 to 10 mg (up to 20 mg) once a day (typical dosage strengths are 2.5, 5 and 10 mg).
  • Glimepiride is usually given in doses from 1 -2 to 4 mg (up to 8 mg) once a day (typical dosage strengths are 1 , 2 and 4 mg).
  • a dual combination of glibenclamide/metformin is usually given in doses from 1 .25/250 once daily to 10/1000 mg twice daily, (typical dosage strengths are 1.25/250, 2.5/500 and 5/500 mg).
  • a dual combination of glipizide/metformin is usually given in doses from 2.5/250 to 10/1000 mg twice daily (typical dosage strengths are 2.5/250, 2.5/500 and 5/500 mg).
  • a dual combination of glimepiride/metformin is usually given in doses from 1/250 to 4/1000 mg twice daily.
  • a dual combination of rosiglitazone/glimepiride is usually given in doses from 4/1 once or twice daily to 4/2 mg twice daily (typical dosage strengths are 4/1 , 4/2, 4/4, 8/2 and 8/4 mg).
  • a dual combination of pioglitazone/glimepiride is usually given in doses from 30/2 to 30/4 mg once daily (typical dosage strengths are 30/4 and 45/4 mg).
  • a dual combination of rosiglitazone/metformin is usually given in doses from 1/500 to 4/1000 mg twice daily (typical dosage strengths are 1/500, 2/500, 4/500, 2/1000 and 4/1000 mg).
  • a dual combination of pioglitazone/metformin is usually given in doses from 15/500 once or twice daily to 15/850 mg thrice daily (typical dosage strengths are 15/500 and 15/850 mg).
  • the non-sulphonylurea insulin secretagogue nateglinide is usually given in doses from 60 to 120 mg with meals (up to 360 mg/day, typical dosage strengths are 60 and 120 mg);
  • repaglinide is usually given in doses from 0.5 to 4 mg with meals (up to 16 mg/day, typical dosage strengths are 0.5, 1 and 2 mg).
  • a dual combination of repaglinide/metformin is available in dosage strengths of 1/500 and 2/850 mg.
  • Acarbose is usually given in doses from 25 to 100 mg with meals.
  • Miglitol is usually given in doses from 25 to 100 mg with meals.
  • HMG-CoA- reductase inhibitors such as simvastatin, atorvastatin, lovastatin, fluvastatin, pravastatin, pitavastatin and rosuvastatin; fibrates such as bezafibrate, fenofibrate, clofibrate, gemfibrozil, etofibrate and etofyllinclofibrate; nicotinic acid and the derivatives thereof such as acipimox; PPAR-alpha agonists; PPAR-delta agonists such as e.g.
  • cholestyramine, colestipol and colesevelam include inhibitors of bile acid transport; HDL modulating active substances such as D4F, reverse D4F, LXR modulating active substances and FXR modulating active substances; CETP inhibitors such as torcetrapib, JTT-705 (dalcetrapib) or compound 12 from WO 2007/005572 (anacetrapib); LDL receptor modulators; MTP inhibitors (e.g. lomitapide); and ApoB100 antisense RNA.
  • HDL modulating active substances such as D4F, reverse D4F, LXR modulating active substances and FXR modulating active substances
  • CETP inhibitors such as torcetrapib, JTT-705 (dalcetrapib) or compound 12 from WO 2007/005572 (anacetrapib)
  • LDL receptor modulators include LDL receptor modulators; MTP inhibitors (e.g. lomitapide); and ApoB100 antisense RNA.
  • a dosage of atorvastatin is usually from 1 mg to 40 mg or 10 mg to 80 mg once a day.
  • combination partners that lower blood pressure are beta-blockers such as atenolol, bisoprolol, celiprolol, metoprolol and carvedilol; diuretics such as
  • hydrochlorothiazide chlortalidon, xipamide, furosemide, piretanide, torasemide,
  • calcium channel blockers such as amlodipine, nifedipine, nitrendipine, nisoldipine, nicardipine, felodipine, lacidipine, lercanipidine, manidipine, isradipine, nilvadipine, verapamil, gallopamil and diltiazem; ACE inhibitors such as ramipril, lisinopril, cilazapril, quinapril, captopril, enalapril, benazepril, perindopril, fosinopril and trandolapril; as well as angiotensin II receptor blockers (ARBs) such as telmisartan, candesartan, valsartan, losartan, irbesartan, olmesartan, azilsartan and
  • ARBs angiotensin II receptor blockers
  • a dosage of telmisartan is usually from 20 mg to 320 mg or 40 mg to 160 mg per day.
  • combination partners which increase the HDL level in the blood are Cholesteryl Ester Transfer Protein (CETP) inhibitors; inhibitors of endothelial lipase; regulators of ABC1 ; LXRalpha antagonists; LXRbeta agonists; PPAR-delta agonists; LXRalpha/beta regulators, and substances that increase the expression and/or plasma concentration of apolipoprotein A-l.
  • CETP Cholesteryl Ester Transfer Protein
  • combination partners for the treatment of obesity are sibutramine;
  • tetrahydrolipstatin orlistat
  • alizyme cetilistat
  • dexfenfluramine axokine
  • cannabinoid receptor 1 antagonists such as the CB1 antagonist rimonobant
  • MCH-1 receptor antagonists MCH-1 receptor antagonists
  • MC4 receptor agonists NPY5 as well as NPY2 antagonists
  • beta3-AR agonists such as SB-418790 and AD-9677
  • 5HT2c receptor agonists such as APD 356 (lorcaserin); myostatin inhibitors; Acrp30 and adiponectin; steroyl CoA desaturase (SCD1 ) inhibitors; fatty acid synthase (FAS) inhibitors; CCK receptor agonists; Ghrelin receptor modulators; Pyy 3-36; orexin receptor antagonists; and tesofensine; as well as the dual combinations bupropion/naltrexone, bupropion/zonisamide, topiramate/phentermine and pramlintide/metreleptin.
  • combination partners for the treatment of atherosclerosis are phospholipase A2 inhibitors; inhibitors of tyrosine-kinases (50 mg to 600 mg) such as PDGF-receptor-kinase (cf. EP-A-564409, WO 98/35958, US 5093330, WO 2004/005281 , and WO 2006/041976); oxLDL antibodies and oxLDL vaccines; apoA-1 Milano; ASA; and VCAM-1 inhibitors.
  • phospholipase A2 inhibitors inhibitors of tyrosine-kinases (50 mg to 600 mg) such as PDGF-receptor-kinase (cf. EP-A-564409, WO 98/35958, US 5093330, WO 2004/005281 , and WO 2006/041976); oxLDL antibodies and oxLDL vaccines; apoA-1 Milano; ASA; and VCAM-1 inhibitors.
  • DPP-4 inhibitor of this invention may be used in combination with a substrate of DPP-4 (particularly with an anti-inflammatory substrate of DPP-4), which may be other than GLP-1 , for the purposes according to the present invention, such substrates of DPP-4 include, for example - without being limited to, one or more of the following:
  • GLP Glucagon-like peptide
  • GIP Glucose-dependent insulinotropic peptide
  • Neuropeptide Y (NPY)
  • GHRF Growth hormone releasing factor
  • IGF-1 Insulin-like growth factor
  • nephrotic syndrome such as selected from corticosteroids (e.g. prednisone or prednisolone), diuretics, ACE inhibitors, ARBs such as e.g. telmisartan, cyclophosphamide, cyclosporine, and/or anticoagulants.
  • corticosteroids e.g. prednisone or prednisolone
  • ACE inhibitors e.g. telmisartan
  • cyclophosphamide e.g. telmisartan
  • cyclosporine cyclosporine
  • anticoagulants e.g. (low-dose) aspirin
  • acetylsalicylic acid a selective COX-2 or nonselective COX-1/COX-2 inhibitor, or a ADP receptor inhibitor, such as a thienopyridine (e.g. clopidogrel or prasugrel), elinogrel or ticagrelor, or a thrombin receptor antagonist such as vorapaxar.
  • a thienopyridine e.g. clopidogrel or prasugrel
  • elinogrel or ticagrelor elinogrel or ticagrelor
  • a thrombin receptor antagonist such as vorapaxar.
  • the certain DPP-4 inhibitor of this invention may be used in combination with one or more anticoagulant agents, such as e.g. heparin, warfarin, or a direct thrombin inhibitor (such as e.g. dabigatran), or a Faktor Xa inhibitor (such as e.g.
  • the certain DPP-4 inhibitor of this invention may be used in combination with one or more agents for the treatment of heart failure.
  • the predefined scoring gradient is 0, 1 , 2, and 3. 0 means no expression, whearas 3 is given when expression is highest. Group means are compared with a non-parametric test. P values less than 0.05 are considered significant.
  • Figure 1 shows the expression of podocalyxin as a marker for podocyte integrity in linagliptin- , enalapril- or vehicle-treated diabetic db/db mice and in healthy control mice.
  • This prove of concept study in db/db mice indicates that DPP-4 inhibition might offer an new therapeutic approach for the treatment of proteinuric diseases associated with podocyte loss.
  • Podocalyxin a sialoglycoprotein
  • It is thought to be the major constituent of the glycocalyx of podocytes. It is a member of the CD34 family of transmembrane sialomucin. It coats the secondary foot processes of the podocytes. It is negatively charged and thus functions to keep adjacent foot processes separated, thereby keeping the urinary filtration barrier open. This function is further supported by knockout studies in mice which reveal an essential role in podocyte morphogenesis.
  • Diabetic nephropathy is the main cause of end-stage renal disease.
  • This study investigated the effects of linagliptin on diabetic nephropathy in severe insulin-resistant and old db/db mice as a model for diabetic nephropathy.
  • linagliptin 3 mg/kg/day linagliptin 3 mg/kg/day
  • ACE angiotensin converting enzyme
  • Levels of glucose, triglycerides, insulin, cystatin C and creatinine were analyzed in serum and urine samples at baseline and monthly thereafter. Body weight, urinary albumin excretion and OGTT were monitored periodically.
  • Renal histology glomerulosclerosis, tubulointerstitial fibrosis
  • expression of the sialoglycoprotein podocalyxin a marker of podocyte integrity in the glomeruli, marker for glomerular damage
  • GLP-1 R glucagon-like peptide 1 receptor
  • alpha-smooth muscle actin alpha-smooth muscle actin and type I collagen were evaluated at the end of the study.
  • db/db mice showed significantly (p ⁇ 0.01 ) higher levels of fasting plasma glucose, insulin, and triglycerides, and increased body weight compared with healthy db/+ mice.
  • Linagliptin and enalapril had limited effects on fasted or post-prandial glucose levels.
  • histology analysis showed that tubulointerstitial fibrosis and glomerular mesangial matrix expansion were reduced almost to control levels in both treatment groups compared with diabetic vehicle (p ⁇ 0.05 for both).
  • Urinary albumin excretion rates and tubulointerstitial fibrosis were significantly decreased in db/db mice treated with linagliptin compared with those treated with enalapril (both p ⁇ 0.05).
  • mice treated with linagliptin and enalapril had significantly higher podocalyxin expression compared with diabetic mice (2.3 ⁇ 0.2 and 2.4 ⁇ 0.2, respectively; p ⁇ 0.05 for both).
  • osmooth muscle actin was also determined in kidneys as a marker of mesangial cell damage. Linagliptin treatment normalized the expression of o smooth muscle actin-positive myofibroblasts in the interstitium and glomeruli of diabetic db/db mice. Similar results were obtained for type I collagen deposition.
  • linagliptin protects podocytes from injury and may therefore be efficacious in the treatment, prevention or delay in progression of diabetic nephropathy independent of its effect on glucose homeostasis. Further, this study suggests that linagliptin is useful for treating, preventing or delaying progression of glomerulosclerosis and/or tubulointerstitial fibrosis, or glomerular and/or tubulointerstitial injury. Further, this study suggests that linagliptin is useful for renoprotection through inhibition of podocyte damage and myofibroblast transformation (reduction of a-SMA expression).
  • renoprotective effect of linagliptin in this model seems to be as effective as treatment with an ACE inhibitor, the current gold standard for treatment of diabetic nephropathy.
  • Linagliptin is as efficacious as telmisartan in preventing renal disease progression in a rat model of chronic kidney disease (rats with 5/6 nephrectomy)
  • DPP-4 inhibitors may have kidney-protective properties independent of glucose control.
  • linagliptin LIN
  • an angiotensin II receptor antagonist currently clinical gold standard - on preventing renal disease progression in a nondiabetic rat model of chronic renal failure.
  • Glomerular size increases by 28% in PBO-treated 5/6 NX rats vs SHAM rats (p ⁇ 0.01 ), and decreases by 18% (p ⁇ 0.001 ) with LIN but not significantly with TEL vs PBO-treated 5/6 NX rats.
  • the glomerulosclerosic index is significantly increased in 5/6 NX rats vs SHAM rats.
  • Analysis of collagen type I and III mRNA and protein concentrations confirms histopathologic findings.
  • the urinary albumin/creatinine ratio increases 14-fold in 5/6 NX rats vs SHAM rats (p ⁇ 0.001 ), and decreases by 66% (p ⁇ 0.05) with LIN and 92% (p ⁇ 0.01 ) with TEL vs PBO-treated 5/6 NX rats. Blood pressure is lowered by TEL (31 mmHg; p ⁇ 0.05) and unaffected by LIN. TIMP-1 , calbindin, osteopontin and beta 2 microglobulin (B2M) are significantly increased in the PBO-treated 5/6 NX rats vs SHAM rats.
  • LIN decreases plasma concentrations of TIMP-1 , calbindin, osteopontin and B2M vs PBO-treated 5/6 NX rats (all p ⁇ 0.05), whereas TEL significantly decreases osteopontin and TGF- ⁇ expression.
  • LIN is as effective as TEL, in preventing renal disease progression in a model of chronic and progressive renal failure (rats with 5/6 nephrectomy).
  • the underlying molecular mechanisms appear to be different.
  • Linagliptin may be useful for treating, preventing, protecting against, reducing the risk of, slowing the progression of or delaying the onset of such conditions, e.g.
  • (micro- or macro-) albuminuria or proteinuria and/or renal function impairment or deterioration of renal filtration rate such as e.g. in (diabetes or non-diabetes) patients suffering therefrom or being at risk thereof.
  • Linagliptin for use in lowering albuminuria on top of recommended standard treatment for diabetic nephropathy Linagliptin for use in lowering albuminuria on top of recommended standard treatment for diabetic nephropathy:
  • T2D type 2 diabetes
  • RAAS renin-angiotensin-aldosterone systeme
  • T2DM type 2 diabetes mellitus
  • Linagliptin, a DPP-4 inhibitor has previously shown evidence of albumin lowering on top of telmisartan in mice.
  • UCR urinary albumin-to-creatinine ratio
  • Participants were included in this analysis if they had: i) 30 ⁇ UACR ⁇ 3000 mg/g creatinine; ii) stable treatment with ACE/ARBs ⁇ 4 weeks prior and during the trial; and iii) eGFR >30 ml/min/1 .73 m 2 .
  • the endpoint was the percentage change in geometric mean UACR.
  • Mean baseline A1 C and median UACR were 8.2% vs 8.5% and 76 vs 78 mg/g creatinine for the linagliptin and placebo groups, respectively.
  • Linagliptin may be useful for treating or lowering albuminuria on top of standard of care of angiotensin-converting enzyme (ACE) inhibition or angiotensin II receptor blockade (ARB) in T2DM patients with early diabetic nephropathy.
  • ACE angiotensin-converting enzyme
  • ARB angiotensin II receptor blockade
  • Linagliptin for use in treatment of albuminuria in patients with type 2 diabetes and diabetic nephropathy Linagliptin for use in treatment of albuminuria in patients with type 2 diabetes and diabetic nephropathy:
  • T2D type 2 diabetes
  • linagliptin monotherapy participants from four 24- week pivotal phase III trials if they had persistent albuminuria, defined as 30 ⁇ UACR ⁇ 3000 mg/g (eGFR >30 ml/min/1.73 m 2 ) and stable treatment with an angiotensin-converting enzyme inhibitor (ACEi) or angiotensin II receptor blocker (ARB) at baseline (ongoing tretament with ACEi or ARB); 2) Diabetic nephropathy in elderly patients (various glucose- lowering background therapies including insulin, such as e.g.
  • ACEi angiotensin-converting enzyme inhibitor
  • ARB angiotensin II receptor blocker
  • linagliptin monotherapy patients from all seven trials, fulfilling UACR criteria 30 ⁇ UACR ⁇ 3000 mg/g (eGFR >30 ml/min/1 .73 m 2 ) and aged ⁇ 65 years (with or without ongoing treatment with ACEi or ARB).
  • UACR criteria 30 ⁇ UACR ⁇ 3000 mg/g (eGFR >30 ml/min/1 .73 m 2 ) and aged ⁇ 65 years (with or without ongoing treatment with ACEi or ARB).
  • the endpoint in both sets was the percentage change in geometric mean UACR after 24 weeks.
  • linagliptin lowers (micro)albuminuria in vulnerable diabetic nephropathy patients (with or without additional standard background therapy such as e.g. with an ACEi or ARB) such as who are aged ⁇ 65 years typically having longer diabetes duration (> 5 years), renal impairment (such as mild (60 to ⁇ 90 eGFR ml/min/1 .73 m 2 ) or moderate (30 to ⁇ 60 eGFR ml/min/1.73 m 2 ) renal impairment) and/or higher baseline UACR (such as advanced stages of micro- or macroalbuminuria).
  • ACEi ACEi or ARB
  • renal impairment such as mild (60 to ⁇ 90 eGFR ml/min/1 .73 m 2 ) or moderate (30 to ⁇ 60 eGFR ml/min/1.73 m 2 ) renal impairment
  • higher baseline UACR such as advanced stages of micro- or macroalbuminuria
  • the diabetic nephropathy patients amenable to the therapy of this invention may be on hypertension and/or lipid lowering medication at baseline, such as e.g. on (ongoing) therapy with an ACE inhibitor, ARB, beta-blocker, Calcium-anatgonist or diuretic, or combination thereof, and/or on (ongoing) therapy with a fibrate, niacin or statin, or combination thereof.
  • Linagliptin has shown nephroprotective effects in animal models and significantly reduced albuminuria in type 2 diabetes (T2D) associated nephropathy. As these effects were independent of short-term glycemic improvements, it was speculated that linagliptin may have nephroprotective effects.
  • the aim of this study was to evaluate renal safety/outcomes with linagliptin in phase 3, randomized, double-blind, placebo-controlled trials ( ⁇ 12 wks).
  • Predefined events from 13 trials were analyzed using a composite primary endpoint: new onset of a) micro- (first documented UACR ⁇ 30 mg/g) or b) macro- (first documented UACR ⁇ 300 mg/g) albuminuria, c) CKD (serum creatinine increase ⁇ 250 ⁇ " ⁇ / ⁇ _), d) worsening of CKD (loss in eGFR >50% vs baseline), e) acute renal failure (ARF, standardized MedDRA query) and f) death (any cause).
  • Linagliptin may be useful for preventing, reducing or delaying the onset or progression of micro- or macro-albuminuria, the onset of chronic kidney disease (CKD), the worsening of CKD, the onset of acute renal failure and/or of death.
  • linagliptin may be useful for preventing, reducing the risk of or delaying the onset or slowing the progression of renal morbidity and/or mortality, preferably in T2DM patients.
  • the (at-risk) patients amenable to the renoprotection or risk-reduction of this invention may have renal/cardiovascular history and/or medications, such as diabetic nephropathy, macrovascular disease (e.g. coronary artery diasease, periperal artery disease, cerebrovascular disease, hypertension), microvascular disease (e.g.
  • diabetic nephropathy, neuropathy, retinopathy diabetic nephropathy, neuropathy, retinopathy
  • coronary artery disease cerebrovascular disease, peripheral artery disease, hypertension, ex-smoker or current smoker
  • acetylsalicylic acid antihypertensive and/or lipid lowering medication, such as e.g. on (ongoing) therapy with acetylsalicylic acid, an ACE inhibitor, ARB, beta- blocker, Calcium-anatgonist or diuretic, or combination thereof, and/or on (ongoing) therapy with a fibrate, niacin or statin, or combination thereof.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Endocrinology (AREA)
  • Cardiology (AREA)
  • Obesity (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Ophthalmology & Optometry (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Emergency Medicine (AREA)
  • Rheumatology (AREA)
  • Hospice & Palliative Care (AREA)
  • Pain & Pain Management (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Reproductive Health (AREA)
  • Child & Adolescent Psychology (AREA)
  • Psychiatry (AREA)
PCT/EP2013/059831 2012-05-14 2013-05-13 A xanthine derivative as dpp -4 inhibitor for use in the treatment of podocytes related disorders and/or nephrotic syndrome Ceased WO2013171167A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015512016A JP6224084B2 (ja) 2012-05-14 2013-05-13 糸球体上皮細胞関連障害及び/又はネフローゼ症候群の治療に用いるdpp−4阻害薬としてのキサンチン誘導体
EP20158414.1A EP3685839A1 (en) 2012-05-14 2013-05-13 Linagliptin for use in the treatment of albuminuria and kidney related diseases
EP13722419.2A EP2849755A1 (en) 2012-05-14 2013-05-13 A xanthine derivative as dpp -4 inhibitor for use in the treatment of podocytes related disorders and/or nephrotic syndrome

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
EP12167953.4 2012-05-14
EP12167953 2012-05-14
EP12170888 2012-06-05
EP12170888.7 2012-06-05
EP12006812.7 2012-09-28
EP12006812 2012-09-28
EP12190447 2012-10-29
EP12190447.8 2012-10-29

Publications (1)

Publication Number Publication Date
WO2013171167A1 true WO2013171167A1 (en) 2013-11-21

Family

ID=48430775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/059831 Ceased WO2013171167A1 (en) 2012-05-14 2013-05-13 A xanthine derivative as dpp -4 inhibitor for use in the treatment of podocytes related disorders and/or nephrotic syndrome

Country Status (4)

Country Link
US (6) US20130303462A1 (enExample)
EP (2) EP2849755A1 (enExample)
JP (3) JP6224084B2 (enExample)
WO (1) WO2013171167A1 (enExample)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014140284A1 (en) * 2013-03-15 2014-09-18 Boehringer Ingelheim International Gmbh Use of linagliptin in cardio- and renoprotective antidiabetic therapy
US8962636B2 (en) 2011-07-15 2015-02-24 Boehringer Ingelheim International Gmbh Substituted quinazolines, the preparation thereof and the use thereof in pharmaceutical compositions
US9034883B2 (en) 2010-11-15 2015-05-19 Boehringer Ingelheim International Gmbh Vasoprotective and cardioprotective antidiabetic therapy
US9108964B2 (en) 2002-08-21 2015-08-18 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
US9149478B2 (en) 2010-06-24 2015-10-06 Boehringer Ingelheim International Gmbh Diabetes therapy
US9155705B2 (en) 2008-04-03 2015-10-13 Boehringer Ingelheim International Gmbh DPP-IV inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation
US9173859B2 (en) 2006-05-04 2015-11-03 Boehringer Ingelheim International Gmbh Uses of DPP IV inhibitors
US9186392B2 (en) 2010-05-05 2015-11-17 Boehringer Ingelheim International Gmbh Combination therapy
US9212183B2 (en) 2008-12-23 2015-12-15 Boehringer Ingelheim International Gmbh Salt forms of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine
US9266888B2 (en) 2006-05-04 2016-02-23 Boehringer Ingelheim International Gmbh Polymorphs
US9457029B2 (en) 2009-11-27 2016-10-04 Boehringer Ingelheim International Gmbh Treatment of genotyped diabetic patients with DPP-IV inhibitors such as linagliptin
US9486526B2 (en) 2008-08-06 2016-11-08 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients inappropriate for metformin therapy
US9499546B2 (en) 2004-11-05 2016-11-22 Boehringer Ingelheim International Gmbh Process for the preparation of chiral 8-(3-aminopiperidin-1-yl)-xanthines
US9526728B2 (en) 2014-02-28 2016-12-27 Boehringer Ingelheim International Gmbh Medical use of a DPP-4 inhibitor
US9526730B2 (en) 2012-05-14 2016-12-27 Boehringer Ingelheim International Gmbh Use of a DPP-4 inhibitor in podocytes related disorders and/or nephrotic syndrome
US9555001B2 (en) 2012-03-07 2017-01-31 Boehringer Ingelheim International Gmbh Pharmaceutical composition and uses thereof
US9713618B2 (en) 2012-05-24 2017-07-25 Boehringer Ingelheim International Gmbh Method for modifying food intake and regulating food preference with a DPP-4 inhibitor
US9968659B2 (en) 2016-03-04 2018-05-15 Novo Nordisk A/S Liraglutide in cardiovascular conditions
CN108358925A (zh) * 2018-02-24 2018-08-03 中山大学 一种7,8-取代-3-甲基黄嘌呤类化合物及其制备方法和应用
US10155000B2 (en) 2016-06-10 2018-12-18 Boehringer Ingelheim International Gmbh Medical use of pharmaceutical combination or composition
US11033552B2 (en) 2006-05-04 2021-06-15 Boehringer Ingelheim International Gmbh DPP IV inhibitor formulations
US11911388B2 (en) 2008-10-16 2024-02-27 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients with insufficient glycemic control despite therapy with an oral or non-oral antidiabetic drug
US12312352B2 (en) 2012-05-14 2025-05-27 Boehringer Ingelheim International Gmbh Use of a DPP-4 inhibitor in SIRS and/or sepsis

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9561145B2 (en) 2012-02-07 2017-02-07 Roger P. Jackson Fail-safe release mechanism for use with patient positioning support apparati
WO2016016853A1 (en) * 2014-07-31 2016-02-04 Sun Pharmaceutical Industries Limited Method of controlling carbamoyl impurity in pharmaceutical compositions of dabigatran
AU2018351059B2 (en) 2017-10-19 2022-05-12 Teijin Pharma Limited Benzimidazole derivatives and their uses
JP7055429B2 (ja) * 2017-10-27 2022-04-18 学校法人北里研究所 慢性腎臓病の予防又は治療剤
US10828310B2 (en) * 2018-02-02 2020-11-10 Bayer Pharma Aktiengesellschaft Reducing the risk of cardiovascular events
KR20210035227A (ko) * 2018-07-17 2021-03-31 베링거 인겔하임 인터내셔날 게엠베하 심장 안전성 및 신장 안전성 항당뇨 치료법
AU2019304485C1 (en) * 2018-07-17 2025-05-01 Boehringer Ingelheim International Gmbh Cardiosafe antidiabetic therapy
WO2022244846A1 (ja) * 2021-05-19 2022-11-24 Kagami株式会社 細胞増殖の調整のための組成物及び細胞増殖の調整方法
CN115137785B (zh) * 2022-07-21 2023-06-20 湖北省中医院 用于治疗特发性膜性肾病的膜肾方

Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093330A (en) 1987-06-15 1992-03-03 Ciba-Geigy Corporation Staurosporine derivatives substituted at methylamino nitrogen
EP0564409A1 (de) 1992-04-03 1993-10-06 Ciba-Geigy Ag Pyrimidinderivate und Verfahren zu ihrer Herstellung
WO1998035958A1 (en) 1997-02-13 1998-08-20 Novartis Ag Phthalazines with angiogenesis inhibiting activity
WO2002068420A1 (de) 2001-02-24 2002-09-06 Boehringer Ingelheim Pharma Gmbh & Co. Kg Xanthinderivate, deren herstellung und deren verwendung als arzneimittel
WO2004005281A1 (en) 2002-07-05 2004-01-15 Novartis Ag Inhibitors of tyrosine kinases
WO2004018467A2 (de) 2002-08-22 2004-03-04 Boehringer Ingelheim Pharma Gmbh & Co. Kg Phenacylxanthinderivate als dpp-iv-hemmer
WO2004018468A2 (de) 2002-08-21 2004-03-04 Boehringer Ingelheim Pharma Gmbh & Co. Kg 8-[3-amino-piperidin-1-yl]-xanthine, deren herstellung und deren verwendung als arzneimittel
WO2004018469A1 (de) 2002-08-22 2004-03-04 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue purinderivate, deren herstelllung und deren verwendung als arzneimittel
WO2004041820A1 (de) 2002-11-08 2004-05-21 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue xanthinderivate, deren herstellung und deren verwendung als arzneimittel
WO2004046148A1 (de) 2002-11-21 2004-06-03 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue xanthinderivate, deren herstellung und deren verwendung als arzneimittel
WO2004050658A1 (de) 2002-12-03 2004-06-17 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue substituierte imidazo-pyridinone und imidazo-pyridazinone, ihre herstellung und ihre verwendung als arzneimittel
WO2004111051A1 (de) 2003-06-18 2004-12-23 Boehringer Ingelheim International Gmbh Imidazopyridazinon- und imidazopyridonderivate, deren herstellung und deren verwendung als arzneimittel
WO2005051950A1 (de) 2003-11-27 2005-06-09 Boehringer Ingelheim International Gmbh Neue 8-(piperazin-1-yl)- und 8-([1,4]diazepan-1-yl)-xanthine, deren herstellung und deren verwendung als arzneimittel
WO2005058901A1 (de) 2003-12-17 2005-06-30 Boehringer Ingelheim International Gmbh Neue 2-(piperazin-1-yl)- und 2-([1,4]diazepan-1-yl)- imidazo[4,5-d]pyridazin-4-one, deren herstellung und deren verwendung als arzneimittel zur bekämpfung von diabetes mellitus
WO2005063750A1 (de) 2003-12-23 2005-07-14 Boehringer Ingelheim International Gmbh Bicyclische imidazolverbindungen, deren herstellung und deren verwendung als arzneimittel
WO2005082906A1 (de) 2004-02-23 2005-09-09 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthine, deren herstellung und deren verwendung als arzneimittel
WO2005085246A1 (de) 2004-02-18 2005-09-15 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthine, deren herstellung und deren verwendung als dpp-iv hemmer
WO2005097798A1 (de) 2004-04-10 2005-10-20 Boehringer Ingelheim International Gmbh Neue 2-amino-imidazo[4,5-d]pyridazin-4-one und 2-amino-imidazo[4,5-c]pyridin-4-one, deren herstellung und deren verwendung als arzneimittel
WO2005110999A1 (de) 2004-05-10 2005-11-24 Boehringer Ingelheim International Gmbh Neue imidazolderivate, deren herstellung und deren verwendung als intermediate zur herstellung von arzneimitteln und pestiziden
WO2006027204A1 (de) 2004-09-11 2006-03-16 Boehringer Ingelheim International Gmbh 8-(3-amino-piperidin-1-yl)-7-(but-2-inyl)-xanthine, deren herstellung und deren verwendung als arzneimittel
WO2006029769A1 (de) 2004-09-14 2006-03-23 Boehringer Ingelheim International Gmbh Neue 3-methyl-7-butinyl-xanthine, deren herstellung und deren verwendung als arzneimittel
WO2006041976A1 (en) 2004-10-08 2006-04-20 Novartis Ag Combination of organic compounds
WO2006048427A1 (de) 2004-11-05 2006-05-11 Boehringer Ingelheim International Gmbh Verfahren zur herstellung chiraler 8-(3-amino-piperidin-1-yl)-xanthine
WO2006068163A1 (ja) 2004-12-24 2006-06-29 Dainippon Sumitomo Pharma Co., Ltd. 二環性ピロール誘導体
WO2006124529A1 (en) 2005-05-13 2006-11-23 Eli Lilly And Company Glp-1 pegylated compounds
WO2007005572A1 (en) 2005-07-01 2007-01-11 Merck & Co., Inc. Process for synthesizing a cetp inhibitor
WO2007014886A1 (de) 2005-07-30 2007-02-08 Boehringer Ingelheim International Gmbh Hydrochloride und hydrate von 1-[(3-cyano-pyridin-2-yl) methyl]-3-methyl-7-(2-butin-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin, deren herstellung und deren verwendung als arzneimittel
WO2007071738A1 (en) 2005-12-23 2007-06-28 Novartis Ag Condensed heterocyclic compounds useful as dpp-iv inhibitors
WO2007128761A2 (de) 2006-05-04 2007-11-15 Boehringer Ingelheim International Gmbh Verwendungen von dpp iv inhibitoren
WO2007128724A1 (en) 2006-05-04 2007-11-15 Boehringer Ingelheim International Gmbh Dpp iv inhibitor formulations
WO2007128721A1 (de) 2006-05-04 2007-11-15 Boehringer Ingelheim Internationalgmbh Polymorphe
WO2008017670A1 (en) 2006-08-08 2008-02-14 Boehringer Ingelheim International Gmbh Pyrrolo [3, 2 -d] pyrimidines as dpp-iv inhibitors for the treatment of diabetes mellitus
WO2009020802A2 (en) 2007-08-03 2009-02-12 Eli Lilly And Company Treatment for obesity
WO2009121945A2 (en) 2008-04-03 2009-10-08 Boehringer Ingelheim International Gmbh New formulations, tablets comprising such formulations, their use and process for their preparation
WO2009147125A1 (en) * 2008-06-03 2009-12-10 Boehringer Ingelheim International Gmbh Dpp-iv inhibitors for use in the treatment of nafld
WO2010015664A1 (en) * 2008-08-06 2010-02-11 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients inappropriate for metformin therapy
WO2011064352A1 (en) * 2009-11-27 2011-06-03 Boehringer Ingelheim International Gmbh Treatment of genotyped diabetic patients with dpp-iv inhibitors such as linagliptin
WO2012065993A1 (en) * 2010-11-15 2012-05-24 Boehringer Ingelheim International Gmbh Vasoprotective and cardioprotective antidiabetic therapy

Family Cites Families (428)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2056046A (en) 1933-05-19 1936-09-29 Rhone Poulenc Sa Manufacture of bases derived from benz-dioxane
US2375138A (en) 1942-05-01 1945-05-01 American Cyanamid Co Alkamine esters of aryloxymethyl benzoic acid
US2629736A (en) 1951-02-24 1953-02-24 Searle & Co Basically substituted n-alkyl derivatives of alpha, beta, beta-triarylpropionamides
US2730544A (en) 1952-07-23 1956-01-10 Sahyun Lab Alkylaminoalkyl esters of hydroxycyclohexylbenzoic acid
US2750387A (en) 1953-11-25 1956-06-12 Searle & Co Basically substituted derivatives of diarylaminobenzamides
DE1211359B (de) 1955-11-29 1966-02-24 Oreal Oxydationsmittelfreies Kaltfaerbemittel fuer menschliches Haar
US2928833A (en) 1959-03-03 1960-03-15 S E Massengill Company Theophylline derivatives
US3174901A (en) 1963-01-31 1965-03-23 Jan Marcel Didier Aron Samuel Process for the oral treatment of diabetes
US3454635A (en) 1965-07-27 1969-07-08 Hoechst Ag Benzenesulfonyl-ureas and process for their manufacture
US3673241A (en) 1968-04-04 1972-06-27 Ciba Geigy Corp Substituted benzaldehyde guanylhydrazones
ES385302A1 (es) 1970-10-22 1973-04-16 Miquel S A Lab Procedimiento para la obtencion de derivados trisubstitui- dos de etilendiamina.
DE2205815A1 (de) 1972-02-08 1973-08-16 Hoechst Ag Piperazinderivate und verfahren zu ihrer herstellung
JPS5512435B2 (enExample) 1972-07-01 1980-04-02
US4005208A (en) 1975-05-16 1977-01-25 Smithkline Corporation N-Heterocyclic-9-xanthenylamines
US4061753A (en) 1976-02-06 1977-12-06 Interx Research Corporation Treating psoriasis with transient pro-drug forms of xanthine derivatives
DE2758025A1 (de) 1977-12-24 1979-07-12 Bayer Ag Neue derivate von 3,4,5-trihydroxypiperidin, verfahren zu ihrer herstellung und ihre verwendung
NO154918C (no) 1977-08-27 1987-01-14 Bayer Ag Analogifremgangsmaate til fremstilling av terapeutisk aktive derivater av 3,4,5-trihydroksypiperidin.
DE2929596A1 (de) 1979-07-21 1981-02-05 Hoechst Ag Verfahren zur herstellung von oxoalkyl-xanthinen
CY1306A (en) 1980-10-01 1985-12-06 Glaxo Group Ltd Aminoalkyl furan derivative
US4382091A (en) 1981-04-30 1983-05-03 Syntex (U.S.A.) Inc. Stabilization of 1-substituted imidazole derivatives in talc
FR2558162B1 (fr) 1984-01-17 1986-04-25 Adir Nouveaux derives de la xanthine, leurs procedes de preparation et les compositions pharmaceutiques les renfermant
FI79107C (fi) 1984-06-25 1989-11-10 Orion Yhtymae Oy Foerfarande foer framstaellning av stabil -form av prazosinhydroklorid.
JPS6130567A (ja) 1984-07-23 1986-02-12 Shiseido Co Ltd 尿素の安定化法
JPS61124383A (ja) 1984-11-16 1986-06-12 Unitika Ltd 固定化線維素溶解活性酵素の安定化法
AR240698A1 (es) 1985-01-19 1990-09-28 Takeda Chemical Industries Ltd Procedimiento para preparar compuestos de 5-(4-(2-(5-etil-2-piridil)-etoxi)benzil)-2,4-tiazolidindiona y sus sales
CA1242699A (en) 1985-02-01 1988-10-04 Bristol-Myers Company Cefbuperazone and derivatives thereof
US4741898A (en) 1985-04-01 1988-05-03 Fisher Scientific Company Stabilized stain composition
GB8515934D0 (en) 1985-06-24 1985-07-24 Janssen Pharmaceutica Nv (4-piperidinomethyl and-hetero)purines
US5258380A (en) 1985-06-24 1993-11-02 Janssen Pharmaceutica N.V. (4-piperidinylmethyl and -hetero)purines
ES2058061T3 (es) 1985-10-25 1994-11-01 Beecham Group Plc Derivado de piperidina, su preparacion y su uso como medicamento.
US5034225A (en) 1985-12-17 1991-07-23 Genentech Inc. Stabilized human tissue plasminogen activator compositions
US5433959A (en) 1986-02-13 1995-07-18 Takeda Chemical Industries, Ltd. Stabilized pharmaceutical composition
ATE72244T1 (de) 1986-03-21 1992-02-15 Heumann Pharma Gmbh & Co Kristalline, wasserfreie sigma -form von 2-(4-(2furoyl-(2-piperazin)-1-yl>-4-amino-6,7- dimethoxychinazolinhydrochlorid und verfahren zu ihrer herstellung.
US5120712A (en) 1986-05-05 1992-06-09 The General Hospital Corporation Insulinotropic hormone
EP0305387B2 (en) 1986-05-05 1996-08-28 The General Hospital Corporation Insulinotropic hormone
AU619444B2 (en) 1986-06-02 1992-01-30 Nippon Chemiphar Co. Ltd. 2-(2-aminobenzylsulfinyl)- benzimidazole derivatives
US4968672A (en) 1987-01-02 1990-11-06 The United States Of America As Represented By The Department Of Health And Human Services Adenosine receptor prodrugs
US4743450A (en) 1987-02-24 1988-05-10 Warner-Lambert Company Stabilized compositions
JPS6440433A (en) 1987-08-05 1989-02-10 Green Cross Corp Aqueous liquid composition of thrombin
CA1340285C (en) 1988-05-19 1998-12-22 Hiroyuki Nagano Novel quinolonecarboxylic acid derivatives having at 7-position a piperidin-1-yl substituent
US5329025A (en) 1988-09-21 1994-07-12 G. D. Searle & Co. 3-azido compound
DE3926119A1 (de) 1989-08-08 1991-02-14 Bayer Ag 3-amino-5-aminocarbonyl-1,2,4-triazol-derivate
US5234897A (en) 1989-03-15 1993-08-10 Bayer Aktiengesellschaft Herbicidal 3-amino-5-aminocarbonyl-1,2,4-triazoles
GB8906792D0 (en) 1989-03-23 1989-05-10 Beecham Wuelfing Gmbh & Co Kg Treatment and compounds
DE3916430A1 (de) 1989-05-20 1990-11-22 Bayer Ag Verfahren zur herstellung von 3-amino-5-aminocarbonyl-1,2,4-triazol-derivaten
US5332744A (en) 1989-05-30 1994-07-26 Merck & Co., Inc. Substituted imidazo-fused 6-membered heterocycles as angiotensin II antagonists
IL94390A (en) 1989-05-30 1996-03-31 Merck & Co Inc The 6-membered trans-nitrogen-containing heterocycles are compressed with imidazo and pharmaceutical preparations containing them
US5223499A (en) 1989-05-30 1993-06-29 Merck & Co., Inc. 6-amino substituted imidazo[4,5-bipyridines as angiotensin II antagonists
FI94339C (fi) 1989-07-21 1995-08-25 Warner Lambert Co Menetelmä farmaseuttisesti käyttökelpoisen /R-(R*,R*)/-2-(4-fluorifenyyli)- , -dihydroksi-5-(1-metyylietyyli)-3-fenyyli-4-/(fenyyliamino)karbonyyli/-1H-pyrroli-1-heptaanihapon ja sen farmaseuttisesti hyväksyttävien suolojen valmistamiseksi
HU208115B (en) 1989-10-03 1993-08-30 Biochemie Gmbh New process for producting pleuromutilin derivatives
FR2654935B1 (fr) 1989-11-28 1994-07-01 Lvmh Rech Utilisation de xanthines, eventuellement incorporees dans des liposomes, pour favoriser la pigmentation de la peau ou des cheveux.
DE122010000024I1 (de) 1990-02-19 2010-07-08 Novartis Ag Acylverbindungen
KR930000861B1 (ko) 1990-02-27 1993-02-08 한미약품공업 주식회사 오메프라졸 직장투여 조성물
ES2064887T3 (es) 1990-09-13 1995-02-01 Akzo Nobel Nv Composiciones quimicas solidas estabilizadas.
GB9020959D0 (en) 1990-09-26 1990-11-07 Beecham Group Plc Novel compounds
US5084460A (en) 1990-12-24 1992-01-28 A. H. Robins Company, Incorporated Methods of therapeutic treatment with N-(3-ouinuclidinyl)-2-hydroxybenzamides and thiobenzamides
US5594003A (en) 1991-02-06 1997-01-14 Dr. Karl Thomae Gmbh Tetrahydroimidazo[1,2-a]pyridin-2-yl-(benzimidazol-1-yl)-methyl-biphenyls useful as angiotensin-II antagonists
US5602127A (en) 1991-02-06 1997-02-11 Karl Thomae Gmbh (Alkanesultam-1-yl)-benzimidazol-1-yl)-1yl)-methyl-biphenyls useful as angiotensin-II antagonists
US5614519A (en) 1991-02-06 1997-03-25 Karl Thomae Gmbh (1-(2,3 or 4-N-morpholinoalkyl)-imidazol-4-yl)-benizimidazol-1-yl-methyl]-biphenyls useful as angiotensin-II antagonists
GB9109862D0 (en) 1991-05-08 1991-07-03 Beecham Lab Sa Pharmaceutical formulations
DE4124150A1 (de) 1991-07-20 1993-01-21 Bayer Ag Substituierte triazole
US5300298A (en) 1992-05-06 1994-04-05 The Pennsylvania Research Corporation Methods of treating obesity with purine related compounds
GB9215633D0 (en) 1992-07-23 1992-09-09 Smithkline Beecham Plc Novel treatment
EP0581552B1 (en) 1992-07-31 1998-04-22 Shionogi & Co., Ltd. Triazolylthiomethylthio cephalosporin hyrochloride, its crystalline hydrate and the production of the same
TW252044B (enExample) 1992-08-10 1995-07-21 Boehringer Ingelheim Kg
DE4242459A1 (de) 1992-12-16 1994-06-23 Merck Patent Gmbh Imidazopyridine
WO1994019342A1 (fr) 1993-02-18 1994-09-01 Kyowa Hakko Kogyo Co., Ltd. Inhibiteur de l'incorporation d'adenosine
JP3726291B2 (ja) 1993-07-05 2005-12-14 三菱ウェルファーマ株式会社 安定な結晶構造を有するベンゾオキサジン化合物およびその製造法
FR2707641B1 (fr) 1993-07-16 1995-08-25 Fournier Ind & Sante Composés de l'imidazol-5-carboxamide, leur procédé de préparation leurs intermédiaires et leur utilisation en thérapeutique.
DE4339868A1 (de) 1993-11-23 1995-05-24 Merck Patent Gmbh Imidazopyridazine
DE4404183A1 (de) 1994-02-10 1995-08-17 Merck Patent Gmbh 4-Amino-1-piperidylbenzoylguanidine
US5545745A (en) 1994-05-23 1996-08-13 Sepracor, Inc. Enantioselective preparation of optically pure albuterol
CO4410190A1 (es) 1994-09-19 1997-01-09 Lilly Co Eli 3-[4-(2-AMINOETOXI)-BENZOIL]-2-ARIL-6-HIDROXIBENZO [b] TIOFENO CRISTALINO
ATE248153T1 (de) 1994-10-12 2003-09-15 Euro Celtique Sa Neue benzoxazole
GB9501178D0 (en) 1995-01-20 1995-03-08 Wellcome Found Guanine derivative
WO1996036638A1 (en) 1995-05-19 1996-11-21 Chiroscience Limited Xanthines and their therapeutic use
JPH08333339A (ja) 1995-06-08 1996-12-17 Fujisawa Pharmaceut Co Ltd 光学活性なピペリジン酢酸誘導体の製造法
GB9523752D0 (en) 1995-11-21 1996-01-24 Pfizer Ltd Pharmaceutical formulations
DE19543478A1 (de) 1995-11-22 1997-05-28 Bayer Ag Kristallines Hydrochlorid von {(R)-(-)-2- N-[4-(1,1-Dioxido-3-oxo-2,3-dihydrobenzisothiazol-2-yl)-buytl]-aminomethyl}-chroman
FR2742751B1 (fr) 1995-12-22 1998-01-30 Rhone Poulenc Rorer Sa Nouveaux taxoides, leur preparation et les compositions pharmaceutiques qui les contiennent
WO1997023447A1 (en) 1995-12-26 1997-07-03 Alteon Inc. N-acylaminoalkylhydrazinecarboximidamides
US5891855A (en) 1996-02-12 1999-04-06 The Scripps Research Institute Inhibitors of leaderless protein export
DE122010000020I1 (de) 1996-04-25 2010-07-08 Prosidion Ltd Verfahren zur Senkung des Blutglukosespiegels in Säugern
TWI240627B (en) 1996-04-26 2005-10-01 Chugai Pharmaceutical Co Ltd Erythropoietin solution preparation
AU1153097A (en) 1996-06-07 1998-01-05 Eisai Co. Ltd. Stable polymorphs of donepezil (1-benzyl-4-{(5,6-dimethoxy-1-indanon)-2-yl}methylpiperidine ) hydrochloride and process for production
US5965555A (en) 1996-06-07 1999-10-12 Hoechst Aktiengesellschaft Xanthine compounds having terminally animated alkynol side chains
US5958951A (en) 1996-06-14 1999-09-28 Novo Nordiskials Modified form of the R(-)-N-(4,4-di(3-methylthien-2-yl)but-3-enyl)-nipecotic acid hydrochloride
US5753635A (en) 1996-08-16 1998-05-19 Berlex Laboratories, Inc. Purine derivatives and their use as anti-coagulants
TR199900639T2 (xx) 1996-09-23 1999-06-21 Eli Lilly And Company Olanzapin dihidrat D.
JP2001502703A (ja) 1996-10-28 2001-02-27 ノボ ノルディスク アクティーゼルスカブ (−)―3,4―トランス―ジアリールクロマンの調製方法
UA65549C2 (uk) 1996-11-05 2004-04-15 Елі Ліллі Енд Компані Спосіб регулювання ожиріння шляхом периферійного введення аналогів та похідних glp-1 (варіанти) та фармацевтична композиція
EP0941114B1 (en) 1996-11-12 2005-02-23 Novo Nordisk A/S Use of glp-1 peptides
GB9623859D0 (en) 1996-11-15 1997-01-08 Chiroscience Ltd Novel compounds
NZ336548A (en) 1996-12-24 2001-09-28 Biogen Inc Stable liquid interferon formulations comprising an amino acid as the stabilising agent
DE19705233A1 (de) 1997-02-12 1998-08-13 Froelich Juergen C Verfahren zur Herstellung einer Formulierung enthaltend Arginin
US6011049A (en) 1997-02-19 2000-01-04 Warner-Lambert Company Combinations for diabetes
NZ337592A (en) 1997-03-13 2001-01-26 Hexal Ag Stabilization of acid sensitive benzimidazoles with amino/cyclodextrin combinations
US5972332A (en) 1997-04-16 1999-10-26 The Regents Of The University Of Michigan Wound treatment with keratinocytes on a solid support enclosed in a porous material
CO4750643A1 (es) 1997-06-13 1999-03-31 Lilly Co Eli Formulacion estable de la insulina que contiene l-arginina y protamina
US6174548B1 (en) 1998-08-28 2001-01-16 Andrx Pharmaceuticals, Inc. Omeprazole formulation
DE69807741T2 (de) 1997-12-05 2004-07-15 Astrazeneca Uk Ltd. Neuartige verbindungen
ID21411A (id) 1997-12-10 1999-06-10 Takeda Chemical Industries Ltd Agen untuk mengobati daya tahan glukosa yang berisiko tinggi rusak
JPH11193270A (ja) 1997-12-26 1999-07-21 Koei Chem Co Ltd 光学活性1−メチル−3−ピペリジンメタノールの製造方法
CA2315736A1 (en) 1998-01-05 1999-07-15 Eisai Co., Ltd. Purine compounds and adenosine a2 receptor antagonist as preventive or therapeutic for diabetes mellitus
DE04029691T1 (de) 1998-02-02 2007-11-08 Trustees Of Tufts College, Medford Verwendung von Dipetidylpeptidasehemmer zur Regulierung des Glukosemetabolismus
US6310065B1 (en) 1998-03-31 2001-10-30 Nissan Chemical Industries, Ltd. Pyridazinone hydrochloride compound and method for producing the same
CA2268621A1 (en) 1998-04-13 1999-10-13 Takeda Chemical Industries, Ltd. 2-pipirazinone-1-acetic acid derivative, production and use thereof
US6207207B1 (en) 1998-05-01 2001-03-27 Mars, Incorporated Coated confectionery having a crispy starch based center and method of preparation
DE19823831A1 (de) 1998-05-28 1999-12-02 Probiodrug Ges Fuer Arzneim Neue pharmazeutische Verwendung von Isoleucyl Thiazolidid und seinen Salzen
DE19828114A1 (de) 1998-06-24 2000-01-27 Probiodrug Ges Fuer Arzneim Produgs instabiler Inhibitoren der Dipeptidyl Peptidase IV
WO2000003735A1 (fr) 1998-07-15 2000-01-27 Asahi Kasei Kogyo Kabushiki Kaisha Excipient
CO5150173A1 (es) 1998-12-10 2002-04-29 Novartis Ag Compuestos n-(glicilo sustituido)-2-cianopirrolidinas inhibidores de peptidasa de dipeptidilo-iv (dpp-iv) los cuales son efectivos en el tratamiento de condiciones mediadas por la inhibicion de dpp-iv
IT1312018B1 (it) 1999-03-19 2002-04-04 Fassi Aldo Procedimento migliorato per la produzione di sali non igroscopicidella l(-)-carnitina.
AU4431000A (en) 1999-05-12 2000-12-05 Fujisawa Pharmaceutical Co., Ltd. Novel use
US20040152659A1 (en) 1999-05-12 2004-08-05 Fujisawa Pharmaceutical Co. Ltd. Method for the treatment of parkinson's disease comprising administering an A1A2a receptor dual antagonist
AU5294100A (en) 1999-05-27 2000-12-18 University Of Virginia Patent Foundation Method and compositions for treating the inflammatory response
KR100767473B1 (ko) 1999-05-31 2007-10-17 미쯔비시 가가꾸 가부시끼가이샤 간실질세포 증식인자 동결건조 제제
AU5300000A (en) 1999-06-01 2000-12-18 Elan Pharma International Limited Small-scale mill and method thereof
US6545002B1 (en) 1999-06-01 2003-04-08 University Of Virginia Patent Foundation Substituted 8-phenylxanthines useful as antagonists of A2B adenosine receptors
CA2375259C (en) 1999-06-21 2009-04-28 Boehringer Ingelheim Pharma Kg Bicyclic heterocycles, pharmaceutical compositions containing these compounds, their use and processes for preparing them
US6448323B1 (en) 1999-07-09 2002-09-10 Bpsi Holdings, Inc. Film coatings and film coating compositions based on polyvinyl alcohol
ES2166270B1 (es) 1999-07-27 2003-04-01 Almirall Prodesfarma Sa Derivados de 8-fenil-6,9-dihidro-(1,2,4,)triazolo(3,4-i)purin-5-ona.
US6515117B2 (en) 1999-10-12 2003-02-04 Bristol-Myers Squibb Company C-aryl glucoside SGLT2 inhibitors and method
US6586438B2 (en) 1999-11-03 2003-07-01 Bristol-Myers Squibb Co. Antidiabetic formulation and method
GB9928330D0 (en) 1999-11-30 2000-01-26 Ferring Bv Novel antidiabetic agents
HUP0600522A2 (en) 1999-12-23 2006-11-28 Novartis Ag Use of hypoglycemic agent for treating impaired glucose metabolism
AU2930501A (en) 2000-01-07 2001-07-24 Transform Pharmaceuticals, Inc. High-throughput formation, identification, and analysis of diverse solid-forms
US6362172B2 (en) 2000-01-20 2002-03-26 Bristol-Myers Squibb Company Water soluble prodrugs of azole compounds
ES2275654T5 (es) 2000-01-21 2012-06-07 Novartis Ag Combinaciones que contienen inhibidores de la dipeptidilpeptidasa-IV y agentes antidiabéticos
JP4621326B2 (ja) 2000-02-01 2011-01-26 エーザイ・アール・アンド・ディー・マネジメント株式会社 テプレノンの安定化組成物
WO2001056993A2 (en) 2000-02-05 2001-08-09 Vertex Pharmaceuticals Incorporated Pyrazole compositions useful as inhibitors of erk
AU2001234114A1 (en) 2000-02-24 2001-09-03 Takeda Chemical Industries Ltd. Drugs containing combined active ingredients
EP1132389A1 (en) 2000-03-06 2001-09-12 Vernalis Research Limited New aza-indolyl derivatives for the treatment of obesity
US6395767B2 (en) 2000-03-10 2002-05-28 Bristol-Myers Squibb Company Cyclopropyl-fused pyrrolidine-based inhibitors of dipeptidyl peptidase IV and method
GB0006133D0 (en) 2000-03-14 2000-05-03 Smithkline Beecham Plc Novel pharmaceutical
JP2001278812A (ja) 2000-03-27 2001-10-10 Kyoto Pharmaceutical Industries Ltd 錠剤用崩壊剤及びこれを用いた錠剤
US6399101B1 (en) 2000-03-30 2002-06-04 Mova Pharmaceutical Corp. Stable thyroid hormone preparations and method of making same
CZ20023234A3 (cs) 2000-03-31 2003-01-15 Probiodrug Ag Léčivo proti diabetu
MXPA02009485A (es) 2000-03-31 2003-03-10 Kirin Brewery Preparacion en polvo para administracion a traves de la mucosa, que comprende un farmaco de alto peso molecular y que muestra una estabilidad mejorada en almacenamiento.
JP2001292388A (ja) 2000-04-05 2001-10-19 Sharp Corp 再生装置
GB0008694D0 (en) 2000-04-07 2000-05-31 Novartis Ag Organic compounds
US6962998B2 (en) 2000-06-14 2005-11-08 Toray Industries, Inc. Processes for producing racemic piperidine derivative and for producing optically active piperidine derivative
GB0014969D0 (en) 2000-06-19 2000-08-09 Smithkline Beecham Plc Novel method of treatment
US7078397B2 (en) 2000-06-19 2006-07-18 Smithkline Beecham Corporation Combinations of dipeptidyl peptidase IV inhibitors and other antidiabetic agents for the treatment of diabetes mellitus
US6689353B1 (en) 2000-06-28 2004-02-10 Bayer Pharmaceuticals Corporation Stabilized interleukin 2
MXPA02012272A (es) 2000-07-04 2003-04-25 Novo Nordisk As Compuestos heterociclicos que son inhibidores de la enzima dipeptidilpeptidasa-iv.
CA2418656C (en) 2000-08-10 2011-02-01 Mitsubishi Pharma Corporation Proline derivatives and use thereof as drugs
US6821978B2 (en) 2000-09-19 2004-11-23 Schering Corporation Xanthine phosphodiesterase V inhibitors
WO2004081006A1 (en) 2003-03-12 2004-09-23 Arizona Board Of Regents On Behalf Of The University Of Arizona Weak base salts
US20060034922A1 (en) 2000-11-03 2006-02-16 Andrx Labs, Llc Controlled release metformin compositions
JPWO2002051836A1 (ja) 2000-12-27 2004-04-22 協和醗酵工業株式会社 ジペプチジルペプチダーゼ−iv阻害剤
FR2818906B1 (fr) 2000-12-29 2004-04-02 Dospharma Association medicamenteuse d'une biguanine et d'un transporteur, par exemple de metformine et d'arginine
FR2819254B1 (fr) 2001-01-08 2003-04-18 Fournier Lab Sa Nouveaux composes de la n-(phenylsulfonyl) glycine, leur procede de preparation et leur utilisation pour obtenir des compostions pharmaceutiques
DE10117803A1 (de) 2001-04-10 2002-10-24 Boehringer Ingelheim Pharma Xanthinderivate, deren Herstellung und deren Verwendung als Arzneimittel
DE10109021A1 (de) 2001-02-24 2002-09-05 Boehringer Ingelheim Pharma Xanthinderivate, deren Herstellung und deren Verwendung als Arzneimittel
SK10802003A3 (sk) 2001-02-02 2004-05-04 Takeda Chemical Industries, Ltd. Kondenzovaná heterocyklická zlúčenina, jej použitie a jej farmaceutický prípravok
US6649187B2 (en) 2001-02-16 2003-11-18 Bristol-Myers Squibb Pharma Company Use of polyalkylamine polymers in controlled release devices
US6610326B2 (en) 2001-02-16 2003-08-26 Andrx Corporation Divalproex sodium tablets
US6936590B2 (en) 2001-03-13 2005-08-30 Bristol Myers Squibb Company C-aryl glucoside SGLT2 inhibitors and method
US6693094B2 (en) 2001-03-22 2004-02-17 Chrono Rx Llc Biguanide and sulfonylurea formulations for the prevention and treatment of insulin resistance and type 2 diabetes mellitus
JP2002348279A (ja) 2001-05-25 2002-12-04 Nippon Kayaku Co Ltd 光学活性ピリジルケトン誘導体の製造方法並びに光学活性ピリジルケトン誘導体
DE10130371A1 (de) 2001-06-23 2003-01-02 Boehringer Ingelheim Pharma Neue Arzneimittelkompositionen auf der Basis von Anticholinergika, Corticosteroiden und Betamimetika
GB0115517D0 (en) 2001-06-25 2001-08-15 Ferring Bv Novel antidiabetic agents
ES2296979T3 (es) 2001-06-27 2008-05-01 Smithkline Beecham Corporation Fluoropirrolidinas como inhibidores de dipeptidil peptidasa.
US7183290B2 (en) 2001-06-27 2007-02-27 Smithkline Beecham Corporation Fluoropyrrolidines as dipeptidyl peptidase inhibitors
US6869947B2 (en) 2001-07-03 2005-03-22 Novo Nordisk A/S Heterocyclic compounds that are inhibitors of the enzyme DPP-IV
DE60225556D1 (de) 2001-07-03 2008-04-24 Novo Nordisk As Dpp-iv-inhibierende purin-derivative zur behandlung von diabetes
UA74912C2 (en) 2001-07-06 2006-02-15 Merck & Co Inc Beta-aminotetrahydroimidazo-(1,2-a)-pyrazines and tetratriazolo-(4,3-a)-pyrazines as inhibitors of dipeptylpeptidase for the treatment or prevention of diabetes
WO2003006424A1 (en) 2001-07-10 2003-01-23 4Sc Ag Novel compounds as anti-inflammatory, immunomodulatory and anti-proliferatory agents
US7638522B2 (en) 2001-08-13 2009-12-29 Janssen Pharmaceutica N.V. Salt of 4-[[4-[[4-(2-cyanoethenyl)-2,6-dimethylphenyl]amino]-2-pyrimidinyl]amino] benzonitrile
WO2003024965A2 (en) 2001-09-19 2003-03-27 Novo Nordisk A/S Heterocyclic compounds that are inhibitors of the enzyme dpp-iv
US20050015820A1 (en) 2001-09-24 2005-01-20 Michael Cowley Assessment of neurons in the arcuate nucleus to screen for agents that modify feeding behavior
DE50213462D1 (de) 2001-10-15 2009-05-28 Hemoteq Ag Beschichtung von stents zur verhinderung von restenose
DE10151296A1 (de) 2001-10-17 2003-04-30 Boehringer Ingelheim Pharma Keratinozyten verwendbar als biologisch aktive Substanz bei der Behandlung von Wunden
US6723340B2 (en) 2001-10-25 2004-04-20 Depomed, Inc. Optimal polymer mixtures for gastric retentive tablets
US6861440B2 (en) 2001-10-26 2005-03-01 Hoffmann-La Roche Inc. DPP IV inhibitors
US20030083354A1 (en) 2001-10-26 2003-05-01 Pediamed Pharmaceuticals, Inc. Phenylephrine tannate and pyrilamine tannate salts in pharmaceutical compositions
CA2363053C (en) 2001-11-09 2011-01-25 Bernard Charles Sherman Clopidogrel bisulfate tablet formulation
JP2005511636A (ja) 2001-11-26 2005-04-28 トラスティーズ オブ タフツ カレッジ 自己免疫疾患の治療方法及びそれに関する試薬
KR20040064687A (ko) 2001-12-21 2004-07-19 도오레 화인케미칼 가부시키가이샤 광학 활성 시스 피페리딘 유도체의 제조법
US6727261B2 (en) 2001-12-27 2004-04-27 Hoffman-La Roche Inc. Pyrido[2,1-A]Isoquinoline derivatives
JP3668241B2 (ja) 2001-12-28 2005-07-06 株式会社Nrlファーマ 脂質代謝改善用組成物
EP1474163A2 (en) 2002-01-10 2004-11-10 Imperial College Innovations Limited Modification of feeding behavior
US20070197552A1 (en) 2002-01-11 2007-08-23 Novo Nordisk A/S Method and composition for treatment of diabetes, hypertension, chronic heart failure and fluid retentive states
AU2003201274A1 (en) 2002-01-11 2003-07-24 Novo Nordisk A/S Compositions comprising inhibitors of dpp-iv and nep enzymes for the treatment of diabetes
AU2002242676B2 (en) 2002-01-16 2008-05-29 Boehringer Ingelheim Pharma Gmbh & Co. Kg Bilayer pharmaceutical tablet comprising telmisartan and a diuretic and preparation thereof
JP3806427B2 (ja) 2002-01-21 2006-08-09 株式会社Nrlファーマ 新規鎮痛剤
EP1333033A1 (en) 2002-01-30 2003-08-06 Boehringer Ingelheim Pharma GmbH & Co.KG FAP-activated anti-tumor compounds
JP2005517690A (ja) 2002-02-01 2005-06-16 ファイザー・プロダクツ・インク 固体薬物分散物を含有する即時放出剤形
US7610153B2 (en) 2002-02-13 2009-10-27 Virginia Commonwealth University Multi-drug titration and evaluation
AU2003211146B2 (en) 2002-02-21 2007-07-19 Valeant International (Barbados) Srl Controlled release dosage forms
DE60304911D1 (de) 2002-02-25 2006-06-08 Eisai Co Ltd Xanthin-Derivate als DPP-IV-Inhibitoren
HUP0200849A2 (hu) 2002-03-06 2004-08-30 Sanofi-Synthelabo N-aminoacetil-2-ciano-pirrolidin-származékok, e vegyületeket tartalmazó gyógyszerkészítmények és eljárás előállításukra
JP4298212B2 (ja) 2002-03-29 2009-07-15 大日本印刷株式会社 塩酸エピナスチン高融点型結晶の製造法
JP2003300977A (ja) 2002-04-10 2003-10-21 Sumitomo Pharmaceut Co Ltd キサンチン誘導体
AU2003226051A1 (en) 2002-04-16 2003-11-03 Banyu Pharmaceutical Co., Ltd. Solid forms of salts with tyrosine kinase activity
AU2003231517A1 (en) 2002-04-26 2003-11-10 Ajinomoto Co., Inc. Preventive/remedy for diabetes
AU2003231252A1 (en) 2002-05-09 2003-11-11 Enos Pharmaceuticals, Inc. Methods and compositions for the treatment and prevention of intermittent claudication or alzheimer's disease
GB0212412D0 (en) 2002-05-29 2002-07-10 Novartis Ag Combination of organic compounds
WO2003101992A1 (en) 2002-05-31 2003-12-11 Schering Corporation Process for preparing xanthine phosphodiesterase v inhibitors and precursors thereof
CA2485641C (en) 2002-06-06 2010-12-14 Eisai Co., Ltd. Novel condensed imidazole derivatives
FR2840897B1 (fr) 2002-06-14 2004-09-10 Fournier Lab Sa Nouveaux derives d'arylsulfonamides et leur utilisation en therapeutique
US20040002615A1 (en) 2002-06-28 2004-01-01 Allen David Robert Preparation of chiral amino-nitriles
US20040023981A1 (en) 2002-07-24 2004-02-05 Yu Ren Salt forms with tyrosine kinase activity
AR040661A1 (es) 2002-07-26 2005-04-13 Theravance Inc Diclorhidrato cristalino de n-{2-[-((r)-2-hidroxi-2-feniletilamino)fenil]etil}-(r)-2hidroxi-2-(3-formamido-4-hidroxifenil)etilamina, agonista del receptor adrenergico beta 2
TW200404796A (en) 2002-08-19 2004-04-01 Ono Pharmaceutical Co Nitrogen-containing compound
US7407955B2 (en) 2002-08-21 2008-08-05 Boehringer Ingelheim Pharma Gmbh & Co., Kg 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
DE10238243A1 (de) 2002-08-21 2004-03-04 Boehringer Ingelheim Pharma Gmbh & Co. Kg 8-[3-Amino-piperidin-1-yl]-xanthine, deren Herstellung und deren Verwendung als Arzneimittel
US7569574B2 (en) 2002-08-22 2009-08-04 Boehringer Ingelheim Pharma Gmbh & Co. Kg Purine derivatives, the preparation thereof and their use as pharmaceutical compositions
US7495005B2 (en) 2002-08-22 2009-02-24 Boehringer Ingelheim Pharma Gmbh & Co. Kg Xanthine derivatives, their preparation and their use in pharmaceutical compositions
DE10238723A1 (de) 2002-08-23 2004-03-11 Bayer Ag Phenyl-substituierte Pyrazolyprimidine
DE10238724A1 (de) 2002-08-23 2004-03-04 Bayer Ag Alkyl-substituierte Pyrazolpyrimidine
WO2004024184A1 (ja) 2002-09-11 2004-03-25 Takeda Pharmaceutical Company Limited 徐放性製剤
BR0314356A (pt) 2002-09-16 2005-07-19 Wyeth Corp Formulações de liberação retardada para administração oral de um agente terapêutico polipetìdeo e métodos utilizando as mesmas
AU2003266559B2 (en) 2002-09-26 2008-01-24 Eisai R&D Management Co., Ltd. Combination drug
AU2003269850A1 (en) 2002-10-08 2004-05-04 Novo Nordisk A/S Hemisuccinate salts of heterocyclic dpp-iv inhibitors
US20060039968A1 (en) 2002-10-08 2006-02-23 Ramalingam Manikandan Gabapentin tablets and method for their preparation
US20040122048A1 (en) 2002-10-11 2004-06-24 Wyeth Holdings Corporation Stabilized pharmaceutical composition containing basic excipients
US6861526B2 (en) 2002-10-16 2005-03-01 Pfizer Inc. Process for the preparation of (S,S)-cis-2-benzhydryl-3-benzylaminoquinuclidine
PL216527B1 (pl) 2002-10-18 2014-04-30 Merck & Co Inc Związki ß-aminoheterocykliczne i kompozycja farmaceutyczna
JP2004161749A (ja) 2002-10-24 2004-06-10 Toray Fine Chemicals Co Ltd 光学活性含窒素化合物の製造方法
WO2004048379A1 (ja) 2002-11-01 2004-06-10 Sumitomo Pharmaceuticals Co., Ltd. キサンチン化合物
EP1562925B1 (en) 2002-11-07 2007-01-03 Merck & Co., Inc. Phenylalanine derivatives as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
US7482337B2 (en) 2002-11-08 2009-01-27 Boehringer Ingelheim Pharma Gmbh & Co. Kg Xanthine derivatives, the preparation thereof and their use as pharmaceutical compositions
US7109192B2 (en) 2002-12-03 2006-09-19 Boehringer Ingelheim Pharma Gmbh & Co Kg Substituted imidazo-pyridinones and imidazo-pyridazinones, the preparation thereof and their use as pharmaceutical compositions
CN100348189C (zh) 2002-12-10 2007-11-14 诺瓦提斯公司 DPP-IV抑制剂与PPAR-α化合物的组合
US20040152720A1 (en) 2002-12-20 2004-08-05 Boehringer Ingelheim Pharma Gmbh & Co. Kg Powdered medicaments containing a tiotropium salt and salmeterol xinafoate
UA83813C2 (ru) 2002-12-20 2008-08-26 Бёрингер Ингельхайм Фарма Гмбх & Ко. Кг Порошковое лекарственное средство, которое содержит соль тиотропия и ксинафоат салметерола
JP2006515882A (ja) 2003-01-08 2006-06-08 カイロン コーポレイション 組織因子経路インヒビター(tfpi)または組織因子経路インヒビター改変体を含有する安定化水性組成物
DE602004009295T2 (de) 2003-01-14 2008-07-03 Arena Pharmaceuticals, Inc., San Diego 1,2,3-trisubstituierte aryl- und heteroarylderivate als modulatoren des metabolismus zur vorbeugung und behandlung von metabolismus-bedingten krankheiten wie diabetes oder hyperglykämie
DE10335027A1 (de) 2003-07-31 2005-02-17 Boehringer Ingelheim Pharma Gmbh & Co. Kg Verwendung von Angiotensin II Rezeptor Antagonisten
PE20040950A1 (es) 2003-02-14 2005-01-01 Theravance Inc DERIVADOS DE BIFENILO COMO AGONISTAS DE LOS RECEPTORES ADRENERGICOS ß2 Y COMO ANTAGONISTAS DE LOS RECEPTORES MUSCARINICOS
JP2004250336A (ja) 2003-02-18 2004-09-09 Kao Corp コーティング錠及び糖衣錠の製造法
US7135575B2 (en) 2003-03-03 2006-11-14 Array Biopharma, Inc. P38 inhibitors and methods of use thereof
US7442387B2 (en) 2003-03-06 2008-10-28 Astellas Pharma Inc. Pharmaceutical composition for controlled release of active substances and manufacturing method thereof
RU2356247C2 (ru) 2003-03-18 2009-05-27 Новартис Аг Комбинации и композиции, содержащие жирные кислоты и аминокислоты, их применение для предупреждения, замедления прогрессирования или лечения диабета и связанных с диабетом заболеваний и состояний, способ снижения веса тела млекопитающего, набор
ES2528631T3 (es) 2003-04-08 2015-02-11 Progenics Pharmaceuticals, Inc. Formulaciones farmacéuticas que contienen metilnaltrexona
JPWO2004096806A1 (ja) 2003-04-30 2006-07-13 大日本住友製薬株式会社 縮合イミダゾール誘導体
US20040220186A1 (en) 2003-04-30 2004-11-04 Pfizer Inc. PDE9 inhibitors for treating type 2 diabetes,metabolic syndrome, and cardiovascular disease
TW200510277A (en) 2003-05-27 2005-03-16 Theravance Inc Crystalline form of β2-adrenergic receptor agonist
AU2003902828A0 (en) 2003-06-05 2003-06-26 Fujisawa Pharmaceutical Co., Ltd. Dpp-iv inhibitor
US7566707B2 (en) 2003-06-18 2009-07-28 Boehringer Ingelheim International Gmbh Imidazopyridazinone and imidazopyridone derivatives, the preparation thereof and their use as pharmaceutical compositions
DK1638970T3 (da) 2003-06-20 2011-01-03 Hoffmann La Roche Pyrid (2, 1-A)-isoquinolinderivater som DPP-IV-inhibitorer
AU2004251829B2 (en) 2003-06-20 2009-12-17 F. Hoffmann-La Roche Ag Hexahydropyridoisoqinolines as DPP-IV inhibitors
JO2625B1 (en) 2003-06-24 2011-11-01 ميرك شارب اند دوم كوربوريشن Phosphoric acid salts of dipeptidyl betidase inhibitor 4
AR045047A1 (es) 2003-07-11 2005-10-12 Arena Pharm Inc Derivados arilo y heteroarilo trisustituidos como moduladores del metabolismo y de la profilaxis y tratamiento de desordenes relacionados con los mismos
EP2292620A3 (en) 2003-07-14 2011-06-22 Arena Pharmaceuticals, Inc. Fused-aryl and heteroaryl derivatives as modulators of metabolism and the prohylaxis and treatment of disorders related thereto
US20050027012A1 (en) 2003-07-16 2005-02-03 Boehringer Ingelheim International Gmbh Tablets containing ambroxol
PT1558220E (pt) 2003-07-24 2010-03-12 Rasendrakumar Jha Composições orais para tratamento da diabetes
TW200517381A (en) 2003-08-01 2005-06-01 Genelabs Tech Inc Bicyclic heteroaryl derivatives
US6995183B2 (en) 2003-08-01 2006-02-07 Bristol Myers Squibb Company Adamantylglycine-based inhibitors of dipeptidyl peptidase IV and methods
CN102872451A (zh) 2003-08-14 2013-01-16 诺和诺德医疗保健公司 因子vii多肽类的含水液体药物组合物
JP2007504131A (ja) 2003-08-29 2007-03-01 エートン ファーマ インコーポレーティッド 癌の組み合わせ処置法
US7790734B2 (en) 2003-09-08 2010-09-07 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
ATE534404T1 (de) 2003-10-03 2011-12-15 Takeda Pharmaceutical Dipeptidylpeptidase-iv-inhibitoren zur behandlung von diabetes-patienten mit sekundärversagen durch sulfonylharnstoffe
US7284625B2 (en) 2003-10-22 2007-10-23 Kirk Jones Quick connect assembly for ATV implements
BR0304443B1 (pt) 2003-10-28 2012-08-21 processo para obtenção de concentrados de titánio com elevado teor de tio2 e baixo teor de radionuclìdeos a partir de concentrados mecánicos de anatásio.
US7107714B2 (en) 2003-11-10 2006-09-19 Marketing Displays, Inc. Portable snap-fit sign stand
KR20140089408A (ko) 2003-11-17 2014-07-14 노파르티스 아게 디펩티딜 펩티다제 ⅳ 억제제의 용도
WO2005053695A1 (ja) 2003-12-04 2005-06-16 Eisai Co., Ltd. 多発性硬化症予防剤または治療剤
US7217711B2 (en) 2003-12-17 2007-05-15 Boehringer Ingelheim International Gmbh Piperazin-1-yl and 2-([1,4]diazepan-1-yl)-imidazo[4,5-d]-pyridazin-4-ones, the preparation thereof and their use as pharmaceutical compositions
ATE501135T1 (de) 2003-12-18 2011-03-15 Tibotec Pharm Ltd Piperidinamino-benzimidazol-derivate al respiratorisches syncytialvirus replikation inhibitoren
CN1898235A (zh) 2003-12-24 2007-01-17 普罗西迪恩有限公司 作为gpcr受体激动剂的杂环衍生物
EP1708680A2 (en) 2004-01-21 2006-10-11 Janssen Pharmaceutica N.V. Mitratapide oral solution
SE0400234D0 (sv) 2004-02-06 2004-02-06 Active Biotech Ab New compounds, methods for their preparation and use thereof
US7501426B2 (en) 2004-02-18 2009-03-10 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, their preparation and their use as pharmaceutical compositions
DE102004019540A1 (de) 2004-04-22 2005-11-10 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue Arzneimittelkombinationen zur Behandlung von Atemwegserkrankungen
EP1593671A1 (en) 2004-03-05 2005-11-09 Graffinity Pharmaceuticals AG DPP-IV inhibitors
US7393847B2 (en) 2004-03-13 2008-07-01 Boehringer Ingleheim International Gmbh Imidazopyridazinediones, their preparation and their use as pharmaceutical compositions
EA013427B1 (ru) 2004-03-15 2010-04-30 Такеда Фармасьютикал Компани Лимитед Ингибиторы дипептидилпептидазы
CN103030617A (zh) 2004-03-16 2013-04-10 贝林格尔.英格海姆国际有限公司 吡喃葡萄糖基取代的苯基衍生物、含该化合物的药物、其用途及其制造方法
EP1577306A1 (de) 2004-03-17 2005-09-21 Boehringer Ingelheim Pharma GmbH & Co.KG Neue Benzoxazinonderivate als langwirksame Betamimetika zur Behandlung von Atemwegserkrankungen
US7179809B2 (en) 2004-04-10 2007-02-20 Boehringer Ingelheim International Gmbh 2-Amino-imidazo[4,5-d]pyridazin-4-ones, their preparation and their use as pharmaceutical compositions
US20050239778A1 (en) 2004-04-22 2005-10-27 Boehringer Ingelheim International Gmbh Novel medicament combinations for the treatment of respiratory diseases
US20050244502A1 (en) 2004-04-28 2005-11-03 Mathias Neil R Composition for enhancing absorption of a drug and method
JP4976281B2 (ja) 2004-05-03 2012-07-18 オメガ バイオ‐ファーマ(アイ.ピー.3)リミテッド 代謝を調節するための材料および方法
US7439370B2 (en) 2004-05-10 2008-10-21 Boehringer Ingelheim International Gmbh Imidazole derivatives, their preparation and their use as intermediates for the preparation of pharmaceutical compositions and pesticides
HRP20090471T1 (hr) 2004-05-12 2009-10-31 Pfizer Products Inc. Derivati prolina i njihova upotreba kao inhibitori dipeptidil-peptidaze iv
DE102004024454A1 (de) 2004-05-14 2005-12-08 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue Enantiomerenreine Betaagonisten, Verfahren zu deren Herstellung und deren Verwendung als Arzneimittel
PE20060315A1 (es) 2004-05-24 2006-05-15 Irm Llc Compuestos de tiazol como moduladores de ppar
TWI415635B (zh) 2004-05-28 2013-11-21 必治妥施貴寶公司 加衣錠片調製物及製備彼之方法
US7858082B2 (en) 2004-06-01 2010-12-28 Ares Trading S.A. Method of stabilizing proteins
US7935723B2 (en) 2004-06-04 2011-05-03 Novartis Pharma Ag Use of organic compounds
EP1753459A2 (en) 2004-06-09 2007-02-21 Yasoo Health Composition and method for improving pancreatic islet cell survival
DE102004030502A1 (de) 2004-06-24 2006-01-12 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue Imidazole und Triazole, deren Herstellung und Verwendung als Arzneimittel
CA2511269A1 (en) 2004-07-07 2006-01-07 F. Hoffmann-La Roche Ag Multimarker panel based on p1gf for diabetes type 1 and 2
US20080269311A1 (en) 2004-07-14 2008-10-30 Edwin Bernard Villhauer Combination of Dpp-Iv Inhibitors and Compounds Modulating 5-Ht3 and/or 5-Ht4 Receptors
JP2006045156A (ja) 2004-08-06 2006-02-16 Sumitomo Pharmaceut Co Ltd 縮合ピラゾール誘導体
TW200613275A (en) 2004-08-24 2006-05-01 Recordati Ireland Ltd Lercanidipine salts
WO2006022428A1 (ja) 2004-08-26 2006-03-02 Takeda Pharmaceutical Company Limited 糖尿病治療剤
CN1759834B (zh) 2004-09-17 2010-06-23 中国医学科学院医药生物技术研究所 黄连素或其与辛伐他汀联合在制备用于预防或治疗与血脂有关疾病或症状的产品中用途
CA2580461A1 (en) 2004-09-23 2006-04-06 Amgen Inc. Substituted sulfonamidopropionamides and methods of use
AP2007003973A0 (en) 2004-10-12 2007-07-30 Glenmark Pharmaceuticals Sa Novel dideptidyl peptidase IV inhibitors, pharmaceutical compositions containing them, and proces for their preparation
CA2581298A1 (en) 2004-10-25 2006-05-04 Novartis Ag Combination of dpp-iv inhibitor, ppar antidiabetic and metformin
DE102005013967A1 (de) 2004-11-05 2006-10-05 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue Bradykinin-B1-Antagonisten, Verfahren zu deren Herstellung sowie deren Verwendung als Arzneimittel
JP2006137678A (ja) 2004-11-10 2006-06-01 Shionogi & Co Ltd インターロイキン−2組成物
KR100760430B1 (ko) 2004-12-31 2007-10-04 한미약품 주식회사 당뇨병 치료제의 경구 투여용 서방성 복합 제제 및 이의제조 방법
DOP2006000008A (es) 2005-01-10 2006-08-31 Arena Pharm Inc Terapia combinada para el tratamiento de la diabetes y afecciones relacionadas y para el tratamiento de afecciones que mejoran mediante un incremento de la concentración sanguínea de glp-1
MY148521A (en) 2005-01-10 2013-04-30 Arena Pharm Inc Substituted pyridinyl and pyrimidinyl derivatives as modulators of metabolism and the treatment of disorders related thereto
GT200600008A (es) 2005-01-18 2006-08-09 Formulacion de compresion directa y proceso
JP2008536881A (ja) 2005-04-21 2008-09-11 ガストロテック・ファルマ・アクティーゼルスカブ Glp−1分子と制吐剤との医薬製剤
JP4568361B2 (ja) 2005-04-22 2010-10-27 アラントス・ファーマシューティカルズ・ホールディング・インコーポレーテッド ジペプチジルペプチダーゼ−iv阻害剤
CN100539942C (zh) 2005-04-25 2009-09-16 株式会社日立制作所 利用磁共振的检查装置及核磁共振信号接收用线圈
UA91546C2 (uk) 2005-05-03 2010-08-10 Бьорінгер Інгельхайм Інтернаціональ Гмбх КРИСТАЛІЧНА ФОРМА 1-ХЛОР-4-(β-D-ГЛЮКОПІРАНОЗ-1-ИЛ)-2-[4-((S)-ТЕТРАГІДРОФУРАН-3-ІЛОКСИ)-БЕНЗИЛ]-БЕНЗОЛУ, СПОСІБ ЇЇ ОДЕРЖАННЯ ТА ЇЇ ЗАСТОСУВАННЯ ПРИ ПРИГОТУВАННІ ЛІКАРСЬКИХ ЗАСОБІВ
CA2609186A1 (en) 2005-05-25 2006-11-30 Wyeth Methods of synthesizing substituted 3-cyanoquinolines and intermediates thereof
GT200600218A (es) 2005-06-10 2007-03-28 Formulación y proceso de compresión directa
JP5301987B2 (ja) 2005-06-20 2013-09-25 デコード・ジェネティクス・イーエイチエフ 2型糖尿病のリスクの診断マーカーとしてのtcf7l2遺伝子中の遺伝子変異体
PE20070374A1 (es) 2005-07-08 2007-05-12 Pfizer Ltd ANTICUERPOS ANTI-MAdCAM
UY29694A1 (es) 2005-07-28 2007-02-28 Boehringer Ingelheim Int Metodos para prevenir y tratar trastornos metabolicos y nuevos derivados de pirazol-o-glucosido
CA2617715A1 (en) 2005-08-11 2007-02-15 F. Hoffmann-La Roche Ag Pharmaceutical composition comprising a dpp-iv inhibitor
EP1760076A1 (en) 2005-09-02 2007-03-07 Ferring B.V. FAP Inhibitors
GEP20135791B (en) 2005-09-14 2013-03-25 Takeda Pharmaceutical Use of dipeptidyl peptidase inhibitors
PT1942898E (pt) 2005-09-14 2011-12-20 Takeda Pharmaceutical Inibidores da dipeptidilpeptidase para o tratamento da diabetes
DE602006006461D1 (de) 2005-09-16 2009-06-04 Arena Pharm Inc Stoffwechselmodulatoren und behandlung damit verbundener erkrankungen
JP5072848B2 (ja) 2005-09-20 2012-11-14 ノバルティス アーゲー 低血糖イベントを低減するためのdpp−iv阻害剤の使用
EP1945190A1 (en) 2005-09-22 2008-07-23 Swissco Devcelopment AG Effervescent metformin composition and tablets and granules made therefrom
JOP20180109A1 (ar) 2005-09-29 2019-01-30 Novartis Ag تركيبة جديدة
WO2007050485A2 (en) 2005-10-25 2007-05-03 Merck & Co., Inc. Combination of a dipeptidyl peptidase-4 inhibitor and an anti-hypertensive agent for the treatment of diabetes and hypertension
KR100945632B1 (ko) 2005-11-04 2010-03-04 엘에스전선 주식회사 수산화마그네슘 폴리머 하이브리드 입자의 제조방법
CA2633167A1 (en) 2005-12-16 2007-07-12 Merck & Co., Inc. Pharmaceutical compositions of combinations of dipeptidyl peptidase-4 inhibitors with metformin
GB0526291D0 (en) 2005-12-23 2006-02-01 Prosidion Ltd Therapeutic method
AU2007238522A1 (en) 2006-01-06 2007-10-25 Novartis Ag Use of vildagliptin for the treatment of diabetes
US7745414B2 (en) 2006-02-15 2010-06-29 Boehringer Ingelheim International Gmbh Glucopyranosyl-substituted benzonitrile derivatives, pharmaceutical compositions containing such compounds, their use and process for their manufacture
WO2007099345A1 (en) 2006-03-02 2007-09-07 Betagenon Ab Medical use of bmp-2 and/ or bmp-4
PE20071221A1 (es) 2006-04-11 2007-12-14 Arena Pharm Inc Agonistas del receptor gpr119 en metodos para aumentar la masa osea y para tratar la osteoporosis y otras afecciones caracterizadas por masa osea baja, y la terapia combinada relacionada a estos agonistas
US8455435B2 (en) 2006-04-19 2013-06-04 Ludwig-Maximilians-Universitat Munchen Remedies for ischemia
ES2377467T3 (es) 2006-05-16 2012-03-27 Gilead Sciences, Inc. Procedimiento y composiciones para tratar enfermedades hematológicas malignas
KR20070111099A (ko) 2006-05-16 2007-11-21 영진약품공업주식회사 시타글립틴 염산염의 신규 결정형, 이의 제조 방법과 이를포함하는 약학적 조성물
WO2007137107A2 (en) 2006-05-19 2007-11-29 Abbott Laboratories Inhibitors of diacylglycerol o-acyltransferase type 1 enzyme
KR100858848B1 (ko) 2006-05-23 2008-09-17 한올제약주식회사 메트포르민 서방정
WO2007149797A2 (en) 2006-06-19 2007-12-27 Novartis Ag Use of organic compounds
WO2007148185A2 (en) 2006-06-21 2007-12-27 Pfizer Products Inc. Substituted 3 -amino- pyrrolidino-4 -lactams as dpp inhibitors
AT503443B1 (de) 2006-06-23 2007-10-15 Leopold Franzens Uni Innsbruck Verfahren zur herstellung einer eisfläche für eissportbahnen
TW200811147A (en) 2006-07-06 2008-03-01 Arena Pharm Inc Modulators of metabolism and the treatment of disorders related thereto
TW200811140A (en) 2006-07-06 2008-03-01 Arena Pharm Inc Modulators of metabolism and the treatment of disorders related thereto
CA2656847A1 (en) 2006-08-15 2008-02-21 Boehringer Ingelheim International Gmbh Glucopyranosyl-substituted cyclopropylbenzene derivatives, pharmaceutical compositions containing such compounds, their use as sglt inhibitors and process for their manufacture
MX2009001763A (es) 2006-08-17 2009-02-25 Wellstat Therapeutics Corp Tratamiento combinado para trastornos metabolicos.
DE102006042586B4 (de) 2006-09-11 2014-01-16 Betanie B.V. International Trading Verfahren zum mikropartikulären Beladen von hochpolymeren Kohlenhydraten mit hydrophoben Wirkflüssigkeiten
US7956201B2 (en) 2006-11-06 2011-06-07 Hoffman-La Roche Inc. Process for the preparation of (S)-4-fluoromethyl-dihydro-furan-2-one
US7879806B2 (en) 2006-11-06 2011-02-01 Boehringer Ingelheim International Gmbh Glucopyranosyl-substituted benzyl-benzonitrile derivates, medicaments containing such compounds, their use and process for their manufacture
WO2008055940A2 (en) 2006-11-09 2008-05-15 Boehringer Ingelheim International Gmbh Combination therapy with sglt-2 inhibitors and their pharmaceutical compositions
WO2008070692A2 (en) 2006-12-06 2008-06-12 Smithkline Beecham Corporation Bicyclic compounds and use as antidiabetics
ES2319596B1 (es) 2006-12-22 2010-02-08 Laboratorios Almirall S.A. Nuevos derivados de los acidos amino-nicotinico y amino-isonicotinico.
US7638541B2 (en) 2006-12-28 2009-12-29 Metabolex Inc. 5-ethyl-2-{4-[4-(4-tetrazol-1-yl-phenoxymethyl)-thiazol-2-yl]-piperidin-1-yl}-pyrimidine
AR064736A1 (es) 2007-01-04 2009-04-22 Prosidion Ltd Agonistas de gpcr
CL2008000133A1 (es) 2007-01-19 2008-05-23 Boehringer Ingelheim Int Composicion farmaceutica que comprende un compuesto derivado de pirazol-o-glucosido combinado con al menos un segundo agente terapeutico; y uso de la composicion para el tratamiento de diabetes mellitus, cataratas, neuropatia, infarto de miocardio, e
AR065097A1 (es) 2007-02-01 2009-05-13 Takeda Pharmaceutical Preparacion solida
CA2677193C (en) 2007-02-01 2015-06-30 Takeda Pharmaceutical Company Limited Tablet preparation without causing a tableting trouble
CA2677457A1 (en) 2007-02-06 2008-08-14 Helen Tuvesson Andersson New compounds, methods for their preparation and use thereof
WO2008113000A1 (en) 2007-03-15 2008-09-18 Nectid, Inc. Anti-diabetic combinations comprising a slow release biguanide composition and an immediate release dipeptidyl peptidase iv inhibitor composition
CN101652147B (zh) 2007-04-03 2013-07-24 田边三菱制药株式会社 二肽基肽酶iv抑制化合物和甜味剂的并用
JP5756289B2 (ja) 2007-04-16 2015-07-29 スミス アンド ネフュー インコーポレーテッドSmith & Nephew,Inc. 電動外科用システム
PE20090696A1 (es) 2007-04-20 2009-06-20 Bristol Myers Squibb Co Formas cristalinas de saxagliptina y procesos para preparar las mismas
PE20090222A1 (es) 2007-05-04 2009-03-27 Bristol Myers Squibb Co Compuestos [6,6] y [6,7]-biciclicos como agonistas del receptor acoplado a la proteina g gpr119
BRPI0721862B1 (pt) 2007-07-09 2016-03-15 Symrise Ag preparação compreendendo sais solúveis estáveis de ácido fenilbenzimidazol sulfônico, e uso de aminoácidos básicos
JO3272B1 (ar) 2007-07-19 2018-09-16 Takeda Pharmaceuticals Co مستحضر صلب يشمل ألوجليبتين وميتفورمين هيدروكلوريد
UY31291A1 (es) 2007-08-16 2009-03-31 Composicion farmacéutica que comprende un derivado de pirazol-0-glucosido
PE20090938A1 (es) 2007-08-16 2009-08-08 Boehringer Ingelheim Int Composicion farmaceutica que comprende un derivado de benceno sustituido con glucopiranosilo
PE20090603A1 (es) 2007-08-16 2009-06-11 Boehringer Ingelheim Int Composicion farmaceutica que comprende un inhibidor de sglt2 y un inhibidor de dpp iv
CL2008002424A1 (es) 2007-08-16 2009-09-11 Boehringer Ingelheim Int Composicion farmaceutica que comprende un compuesto derivado de pirazol-o-glucosido; y uso de la composicion farmaceutica para el tratamiento de la diabetes mellitus, tolerancia anormal a la glucosa e hiperglucemia, trastornos metabolicos, entre otras.
CA2696579C (en) 2007-08-17 2017-01-24 Boehringer Ingelheim International Gmbh Purine derivatives for use in the treatment of fab-related diseases
GB2465132B (en) 2007-09-21 2012-06-06 Lupin Ltd Compounds as dipeptidyl peptidase IV (DPP IV) inhibitors
DK2597103T3 (en) 2007-11-16 2017-02-13 Novo Nordisk As Stable pharmaceutical compositions comprising liraglutide and degludec
CN101234105A (zh) 2008-01-09 2008-08-06 北京润德康医药技术有限公司 一种含有二甲双胍和维格列汀的药用组合物及其制备方法
CL2008003653A1 (es) 2008-01-17 2010-03-05 Mitsubishi Tanabe Pharma Corp Uso de un inhibidor de sglt derivado de glucopiranosilo y un inhibidor de dppiv seleccionado para tratar la diabetes; y composicion farmaceutica.
US20090186086A1 (en) 2008-01-17 2009-07-23 Par Pharmaceutical, Inc. Solid multilayer oral dosage forms
TW200936136A (en) 2008-01-28 2009-09-01 Sanofi Aventis Tetrahydroquinoxaline urea derivatives, their preparation and their therapeutic application
US20100330177A1 (en) 2008-02-05 2010-12-30 Merck Sharp & Dohme Corp. Pharmaceutical compositions of a combination of metformin and a dipeptidyl peptidase-iv inhibitor
JP2011513408A (ja) 2008-03-04 2011-04-28 メルク・シャープ・エンド・ドーム・コーポレイション メトホルミン及びジペプチジルペプチダーゼ−iv阻害剤の併用医薬組成物
KR101616140B1 (ko) 2008-03-05 2016-04-27 다케다 야쿠힌 고교 가부시키가이샤 복소환 화합물
US8551524B2 (en) 2008-03-14 2013-10-08 Iycus, Llc Anti-diabetic combinations
DK2280704T3 (en) 2008-03-31 2015-06-29 Cymabay Therapeutics Inc Oxymethylenarylforbindelser and uses thereof
BRPI0916997A2 (pt) 2008-08-06 2020-12-15 Boehringer Ingelheim International Gmbh Inibidor de dpp-4 e seu uso
MY164581A (en) 2008-08-15 2018-01-15 Boehringer Ingelheim Int Purin derivatives for use in the treatment of fab-related diseases
JP2010053576A (ja) 2008-08-27 2010-03-11 Sumitomo Forestry Co Ltd 舗装用マット
MX2011002558A (es) 2008-09-10 2011-04-26 Boehringer Ingelheim Int Terapia de combinacion para el tratamiento de diabetes y estados relacionados.
UY32177A (es) * 2008-10-16 2010-05-31 Boehringer Ingelheim Int Tratamiento de diabetes en pacientes con control glucémico insuficiente a pesar de la terapia con fármaco, oral o no, antidiabético
WO2010045656A2 (en) 2008-10-17 2010-04-22 Nectid, Inc. Novel sglt2 inhibitor dosage forms
EP2382216A1 (en) 2008-12-23 2011-11-02 Boehringer Ingelheim International GmbH Salt forms of organic compound
TW201036975A (en) 2009-01-07 2010-10-16 Boehringer Ingelheim Int Treatment for diabetes in patients with inadequate glycemic control despite metformin therapy
TWI466672B (zh) 2009-01-29 2015-01-01 Boehringer Ingelheim Int 小兒科病人糖尿病之治療
EA029759B1 (ru) 2009-02-13 2018-05-31 Бёрингер Ингельхайм Интернациональ Гмбх Антидиабетические лекарственные средства, содержащие ингибитор dpp-4 (линаглиптин) необязательно в комбинации с другими антидиабетическими средствами
EP2395983B1 (en) 2009-02-13 2020-04-08 Boehringer Ingelheim International GmbH Pharmaceutical composition comprisng a sglt2 inhibitor, a dpp-iv inhibitor and optionally a further antidiabetic agent and uses thereof
UY32427A (es) 2009-02-13 2010-09-30 Boheringer Ingelheim Internat Gmbh Composicion farmaceutica, forma farmaceutica, procedimiento para su preparacion, metodos de tratamiento y usos de la misma
TW201031661A (en) 2009-02-17 2010-09-01 Targacept Inc Fused benzazepines as neuronal nicotinic acetylcholine receptor ligands
US20120095028A1 (en) 2009-03-20 2012-04-19 Pfizer Inc. 3-oxa-7-azabicyclo[3.3.1]nonanes
US8815292B2 (en) 2009-04-27 2014-08-26 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
WO2010140111A1 (en) 2009-06-02 2010-12-09 Ranbaxy Laboratories Limited Pharmaceutical compositions containing a combination of an antihistamine and a decongestant
EP2442806A1 (en) 2009-06-15 2012-04-25 Merck Sharp & Dohme Corp. Pharmaceutical compositions of combinations of dipeptidyl peptidase-4 inhibitors with pioglitazone
RU2563819C2 (ru) 2009-07-21 2015-09-20 Керикс Байофармасьютикалз, Инк. Лекарственные формы цитрата железа (iii)
PT2482812T (pt) 2009-10-02 2023-01-24 Boehringer Ingelheim Int Composições farmacêuticas compreendendo bi-1356 e metformina
US10610489B2 (en) 2009-10-02 2020-04-07 Boehringer Ingelheim International Gmbh Pharmaceutical composition, pharmaceutical dosage form, process for their preparation, methods for treating and uses thereof
JP5446716B2 (ja) 2009-10-21 2014-03-19 大正製薬株式会社 アルギニン及びカルニチン含有錠剤の製造方法
WO2011064349A1 (de) * 2009-11-27 2011-06-03 Micado Cad-Solutions Gmbh Modulare haltevorrichtung
JP2010070576A (ja) 2009-12-28 2010-04-02 Sato Pharmaceutical Co Ltd 速溶解性錠剤
TWI562775B (en) 2010-03-02 2016-12-21 Lexicon Pharmaceuticals Inc Methods of using inhibitors of sodium-glucose cotransporters 1 and 2
US20130109703A1 (en) 2010-03-18 2013-05-02 Boehringer Ingelheim International Gmbh Combination of a GPR119 Agonist and the DPP-IV Inhibitor Linagliptin for Use in the Treatment of Diabetes and Related Conditions
AU2011249722B2 (en) 2010-05-05 2015-09-17 Boehringer Ingelheim International Gmbh Combination therapy
US20120107398A1 (en) 2010-05-05 2012-05-03 Boehringer Ingelheim International Gmbh Pharmaceutical compositions
WO2011154496A1 (en) 2010-06-09 2011-12-15 Poxel Treatment of type 1 diabetes
BR112012032816A2 (pt) 2010-06-22 2016-11-08 Twi Pharmaceuticals composição farmacêutica de liberação controlada, e, métodos para reduzir o efeito alimentar de uma composição de liberação controlada, reduzir o período de tempo necessário para que seja alcançado um estado estável para a metformina, para aperfeiçoar a biodisponibilidade de uma forma de dosagem de liberação controlada de matriz
CN106975074A (zh) 2010-06-24 2017-07-25 勃林格殷格翰国际有限公司 糖尿病治疗
AU2011295837B2 (en) 2010-09-03 2015-06-18 Astrazeneca Uk Limited Drug formulations using water soluble antioxidants
WO2012088682A1 (en) 2010-12-29 2012-07-05 Shanghai Fochon Pharmaceutical Co Ltd. 2-(3-aminopiperidin-1-yl)-[1,2,4]triazolo[1,5-c]pyrimidine-5,7(3h,6h)-dione derivates as dipeptidyl peptidase iv(dpp-iv) inhibitors
ES2801725T3 (es) 2011-02-01 2021-01-12 Bristol Myers Squibb Co Formulaciones farmacéuticas que incluyen un compuesto de amina
AR085689A1 (es) 2011-03-07 2013-10-23 Boehringer Ingelheim Int Composiciones farmaceuticas de metformina, linagliptina y un inhibidor de sglt-2
EP2707368B1 (en) 2011-05-10 2016-02-03 Sandoz AG Polymorph of linagliptin benzoate
PH12014500137A1 (en) 2011-07-15 2017-08-18 Boehringer Ingelheim Int Substituted quinazolines, the preparation thereof and the use thereof in pharmaceutical compositions
US8849828B2 (en) 2011-09-30 2014-09-30 International Business Machines Corporation Refinement and calibration mechanism for improving classification of information assets
US20130172244A1 (en) 2011-12-29 2013-07-04 Thomas Klein Subcutaneous therapeutic use of dpp-4 inhibitor
MX368218B (es) 2012-01-04 2019-09-24 Procter & Gamble Estructuras fibrosas que contienen activos con multiples regiones.
US9555001B2 (en) 2012-03-07 2017-01-31 Boehringer Ingelheim International Gmbh Pharmaceutical composition and uses thereof
US20130303554A1 (en) 2012-05-14 2013-11-14 Boehringer Ingelheim International Gmbh Use of a dpp-4 inhibitor in sirs and/or sepsis
WO2013171167A1 (en) 2012-05-14 2013-11-21 Boehringer Ingelheim International Gmbh A xanthine derivative as dpp -4 inhibitor for use in the treatment of podocytes related disorders and/or nephrotic syndrome
EP2854812A1 (en) * 2012-05-24 2015-04-08 Boehringer Ingelheim International GmbH A xanthine derivative as dpp -4 inhibitor for use in the treatment of autoimmune diabetes, particularly lada
WO2013174767A1 (en) 2012-05-24 2013-11-28 Boehringer Ingelheim International Gmbh A xanthine derivative as dpp -4 inhibitor for use in modifying food intake and regulating food preference
WO2013174769A1 (en) 2012-05-25 2013-11-28 Boehringer Ingelheim International Gmbh Use of keratinocytes as a biologically active substance in the treatment of wounds, such as diabetic wounds, optionally in combination with a dpp-4 inhibitor
WO2013179307A2 (en) 2012-05-29 2013-12-05 Mylan Laboratories Limited Stabilized pharmaceutical compositions of saxagliptin
US20140100236A1 (en) 2012-10-09 2014-04-10 Boehringer Ingelheim International Gmbh Use of selectively moisture-adjusted tabletting material in the production of mechanically stable tablets which contain at least one hydrate-forming active substance and/or adjuvant relevant to the mechanical stability of the tablets, particularly arginine-containing tablets
JP2015533133A (ja) 2012-10-09 2015-11-19 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 錠剤製造における水分調節崩壊剤の使用
US9050302B2 (en) 2013-03-01 2015-06-09 Jazz Pharmaceuticals Ireland Limited Method of administration of gamma hydroxybutyrate with monocarboxylate transporters
CN105188706A (zh) 2013-03-15 2015-12-23 勃林格殷格翰国际有限公司 利格列汀在心脏和肾脏保护性抗糖尿病治疗中的用途
CN113181161A (zh) 2013-04-18 2021-07-30 勃林格殷格翰国际有限公司 药物组合物、治疗方法及其用途
US20140343014A1 (en) 2013-05-17 2014-11-20 Boehringer Ingelheim International Gmbh Combination of a certain dpp-4 inhibitor and voglibose
KR102238860B1 (ko) 2013-06-14 2021-04-12 베링거 인겔하임 인터내셔날 게엠베하 당뇨병 및 이의 합병증의 치료를 위한 dpp-4 억제제
EP3110449B1 (en) 2014-02-28 2023-06-28 Boehringer Ingelheim International GmbH Medical use of a dpp-4 inhibitor
WO2016059219A1 (en) 2014-10-17 2016-04-21 Boehringer Ingelheim International Gmbh Pharmaceutical composition and uses thereof
WO2017211979A1 (en) 2016-06-10 2017-12-14 Boehringer Ingelheim International Gmbh Combinations of linagliptin and metformin

Patent Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093330A (en) 1987-06-15 1992-03-03 Ciba-Geigy Corporation Staurosporine derivatives substituted at methylamino nitrogen
EP0564409A1 (de) 1992-04-03 1993-10-06 Ciba-Geigy Ag Pyrimidinderivate und Verfahren zu ihrer Herstellung
WO1998035958A1 (en) 1997-02-13 1998-08-20 Novartis Ag Phthalazines with angiogenesis inhibiting activity
WO2002068420A1 (de) 2001-02-24 2002-09-06 Boehringer Ingelheim Pharma Gmbh & Co. Kg Xanthinderivate, deren herstellung und deren verwendung als arzneimittel
WO2004005281A1 (en) 2002-07-05 2004-01-15 Novartis Ag Inhibitors of tyrosine kinases
WO2004018468A2 (de) 2002-08-21 2004-03-04 Boehringer Ingelheim Pharma Gmbh & Co. Kg 8-[3-amino-piperidin-1-yl]-xanthine, deren herstellung und deren verwendung als arzneimittel
WO2004018467A2 (de) 2002-08-22 2004-03-04 Boehringer Ingelheim Pharma Gmbh & Co. Kg Phenacylxanthinderivate als dpp-iv-hemmer
WO2004018469A1 (de) 2002-08-22 2004-03-04 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue purinderivate, deren herstelllung und deren verwendung als arzneimittel
WO2004041820A1 (de) 2002-11-08 2004-05-21 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue xanthinderivate, deren herstellung und deren verwendung als arzneimittel
WO2004046148A1 (de) 2002-11-21 2004-06-03 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue xanthinderivate, deren herstellung und deren verwendung als arzneimittel
WO2004050658A1 (de) 2002-12-03 2004-06-17 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue substituierte imidazo-pyridinone und imidazo-pyridazinone, ihre herstellung und ihre verwendung als arzneimittel
WO2004111051A1 (de) 2003-06-18 2004-12-23 Boehringer Ingelheim International Gmbh Imidazopyridazinon- und imidazopyridonderivate, deren herstellung und deren verwendung als arzneimittel
WO2005051950A1 (de) 2003-11-27 2005-06-09 Boehringer Ingelheim International Gmbh Neue 8-(piperazin-1-yl)- und 8-([1,4]diazepan-1-yl)-xanthine, deren herstellung und deren verwendung als arzneimittel
WO2005058901A1 (de) 2003-12-17 2005-06-30 Boehringer Ingelheim International Gmbh Neue 2-(piperazin-1-yl)- und 2-([1,4]diazepan-1-yl)- imidazo[4,5-d]pyridazin-4-one, deren herstellung und deren verwendung als arzneimittel zur bekämpfung von diabetes mellitus
WO2005063750A1 (de) 2003-12-23 2005-07-14 Boehringer Ingelheim International Gmbh Bicyclische imidazolverbindungen, deren herstellung und deren verwendung als arzneimittel
WO2005085246A1 (de) 2004-02-18 2005-09-15 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthine, deren herstellung und deren verwendung als dpp-iv hemmer
WO2005082906A1 (de) 2004-02-23 2005-09-09 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthine, deren herstellung und deren verwendung als arzneimittel
WO2005097798A1 (de) 2004-04-10 2005-10-20 Boehringer Ingelheim International Gmbh Neue 2-amino-imidazo[4,5-d]pyridazin-4-one und 2-amino-imidazo[4,5-c]pyridin-4-one, deren herstellung und deren verwendung als arzneimittel
WO2005110999A1 (de) 2004-05-10 2005-11-24 Boehringer Ingelheim International Gmbh Neue imidazolderivate, deren herstellung und deren verwendung als intermediate zur herstellung von arzneimitteln und pestiziden
WO2006027204A1 (de) 2004-09-11 2006-03-16 Boehringer Ingelheim International Gmbh 8-(3-amino-piperidin-1-yl)-7-(but-2-inyl)-xanthine, deren herstellung und deren verwendung als arzneimittel
WO2006029769A1 (de) 2004-09-14 2006-03-23 Boehringer Ingelheim International Gmbh Neue 3-methyl-7-butinyl-xanthine, deren herstellung und deren verwendung als arzneimittel
WO2006041976A1 (en) 2004-10-08 2006-04-20 Novartis Ag Combination of organic compounds
WO2006048427A1 (de) 2004-11-05 2006-05-11 Boehringer Ingelheim International Gmbh Verfahren zur herstellung chiraler 8-(3-amino-piperidin-1-yl)-xanthine
WO2006068163A1 (ja) 2004-12-24 2006-06-29 Dainippon Sumitomo Pharma Co., Ltd. 二環性ピロール誘導体
WO2006124529A1 (en) 2005-05-13 2006-11-23 Eli Lilly And Company Glp-1 pegylated compounds
WO2007005572A1 (en) 2005-07-01 2007-01-11 Merck & Co., Inc. Process for synthesizing a cetp inhibitor
WO2007014886A1 (de) 2005-07-30 2007-02-08 Boehringer Ingelheim International Gmbh Hydrochloride und hydrate von 1-[(3-cyano-pyridin-2-yl) methyl]-3-methyl-7-(2-butin-1-yl)-8-(3-amino-piperidin-1-yl)-xanthin, deren herstellung und deren verwendung als arzneimittel
WO2007071738A1 (en) 2005-12-23 2007-06-28 Novartis Ag Condensed heterocyclic compounds useful as dpp-iv inhibitors
WO2007128761A2 (de) 2006-05-04 2007-11-15 Boehringer Ingelheim International Gmbh Verwendungen von dpp iv inhibitoren
WO2007128724A1 (en) 2006-05-04 2007-11-15 Boehringer Ingelheim International Gmbh Dpp iv inhibitor formulations
WO2007128721A1 (de) 2006-05-04 2007-11-15 Boehringer Ingelheim Internationalgmbh Polymorphe
WO2008017670A1 (en) 2006-08-08 2008-02-14 Boehringer Ingelheim International Gmbh Pyrrolo [3, 2 -d] pyrimidines as dpp-iv inhibitors for the treatment of diabetes mellitus
WO2009020802A2 (en) 2007-08-03 2009-02-12 Eli Lilly And Company Treatment for obesity
WO2009121945A2 (en) 2008-04-03 2009-10-08 Boehringer Ingelheim International Gmbh New formulations, tablets comprising such formulations, their use and process for their preparation
WO2009147125A1 (en) * 2008-06-03 2009-12-10 Boehringer Ingelheim International Gmbh Dpp-iv inhibitors for use in the treatment of nafld
WO2010015664A1 (en) * 2008-08-06 2010-02-11 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients inappropriate for metformin therapy
WO2011064352A1 (en) * 2009-11-27 2011-06-03 Boehringer Ingelheim International Gmbh Treatment of genotyped diabetic patients with dpp-iv inhibitors such as linagliptin
WO2012065993A1 (en) * 2010-11-15 2012-05-24 Boehringer Ingelheim International Gmbh Vasoprotective and cardioprotective antidiabetic therapy

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
LYUBOV CHAYKOVSKA ET AL: "Effects of DPP-4 Inhibitors on the Heart in a Rat Model of Uremic Cardiomyopathy", PLOS ONE, vol. 6, no. 11, 18 November 2011 (2011-11-18), pages e27861, XP055073329, DOI: 10.1371/journal.pone.0027861 *
MARKUS L. ALTER ET AL: "DPP-4 Inhibition on Top of Angiotensin Receptor Blockade Offers a New Therapeutic Approach for Diabetic Nephropathy", KIDNEY AND BLOOD PRESSURE RESEARCH, vol. 36, no. 1, 15 October 2012 (2012-10-15), pages 119 - 130, XP055073273, ISSN: 1420-4096, DOI: 10.1159/000341487 *
OLEG TSUPRYKOV ET AL.: "Linagliptin is as Efficacious as Telmisartan in Preventing Renal Disease Progression in Rats with 5/6 Nephrectomy", 73RD ANNU MEET SCI SESS AM DIABETES ASSOC, CHICAGO, 1200-P, 21 June 2013 (2013-06-21), XP002707737, Retrieved from the Internet <URL:http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=e68ac573-fe45-4c2f-9485-6270854fc10b&cKey=3c387569-04de-4f8c-b025-b358df91ca64&mKey={89918D6D-3018-4EA9-9D4F-711F98A7AE5D}> [retrieved on 20130729] *
P.-H. GROOP, M. COOPER, V. PERKOVIC, A. EMSER, T. SECK, M. VON EYNATTEN, H.-J. WOERLE;: "Effects of the DPP-4 inhibitor linagliptin on albuminuria in patients with type 2 diabetes and diabetic nephropathy", 48TH EASD ANNUAL MEETING, BERLIN, ABST. 36, 1 October 2012 (2012-10-01), XP002707736, Retrieved from the Internet <URL:http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=0b0017b9-9e90-4695-b9af-b6870e96a921&cKey=421edb9c-b940-40f0-b282-8e61245561d5&mKey={2DBFCAF7-1539-42D5-8DDA-0A94ABB089E8}> [retrieved on 20130729] *
See also references of EP2849755A1
U GRAEFE-MODY ET AL: "Effect of renal impairment on the pharmacokinetics of the dipeptidyl peptidase-4 inhibitor linagliptin", DIABETES OBESITY AND METABOLISM, 1 January 2011 (2011-01-01), pages 939 - 946, XP055073511, Retrieved from the Internet <URL:http://onlinelibrary.wiley.com/store/10.1111/j.1463-1326.2011.01458.x/asset/j.1463-1326.2011.01458.x.pdf?v=1&t=hjr3phra&s=9e578ad493ce742e5da776c6749ec2220065c1bb> [retrieved on 20130730] *
Y. SHARKOVSKA, M. ALTER, C. REICHETZEDER, O. TSUPRYKOV, T. KLEIN, B. HOCHER;: "DPP-4 inhibition with linagliptin delays the progression of diabetic nephropathy in db/db mice", 48TH EASD ANNUAL MEETING, BERLIN, ABST. 35, 1 October 2012 (2012-10-01), XP002707735, Retrieved from the Internet <URL:http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=0b0017b9-9e90-4695-b9af-b6870e96a921&cKey=8eff47ae-db49-4c36-a142-848ac068c405&mKey={2DBFCAF7-1539-42D5-8DDA-0A94ABB089E8}> [retrieved on 20130709] *

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10023574B2 (en) 2002-08-21 2018-07-17 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
US10202383B2 (en) 2002-08-21 2019-02-12 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
US9556175B2 (en) 2002-08-21 2017-01-31 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and thier use as pharmaceutical compositions
US9108964B2 (en) 2002-08-21 2015-08-18 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
US9321791B2 (en) 2002-08-21 2016-04-26 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
US9499546B2 (en) 2004-11-05 2016-11-22 Boehringer Ingelheim International Gmbh Process for the preparation of chiral 8-(3-aminopiperidin-1-yl)-xanthines
US9751855B2 (en) 2004-11-05 2017-09-05 Boehringer Ingelheim International Gmbh Process for the preparation of chiral 8-(3-aminopiperidin-1-yl)-xanthines
US9493462B2 (en) 2006-05-04 2016-11-15 Boehringer Ingelheim International Gmbh Polymorphs
US9815837B2 (en) 2006-05-04 2017-11-14 Boehringer Ingelheim International Gmbh Polymorphs
US12178819B2 (en) 2006-05-04 2024-12-31 Boehringer Ingelheim International Gmbh DPP IV inhibitor formulations
US9266888B2 (en) 2006-05-04 2016-02-23 Boehringer Ingelheim International Gmbh Polymorphs
US9173859B2 (en) 2006-05-04 2015-11-03 Boehringer Ingelheim International Gmbh Uses of DPP IV inhibitors
US10301313B2 (en) 2006-05-04 2019-05-28 Boehringer Ingelheim International Gmbh Polymorphs
US10080754B2 (en) 2006-05-04 2018-09-25 Boehringer Ingelheim International Gmbh Uses of DPP IV inhibitors
US11291668B2 (en) 2006-05-04 2022-04-05 Boehringer Ingelheim International Gmbh Uses of DPP IV inhibitors
US12171767B2 (en) 2006-05-04 2024-12-24 Boehringer Ingelheim International Gmbh Uses of DPP IV inhibitors
US11919903B2 (en) 2006-05-04 2024-03-05 Boehringer Ingelheim International Gmbh Polymorphs
US11084819B2 (en) 2006-05-04 2021-08-10 Boehringer Ingelheim International Gmbh Polymorphs
US11033552B2 (en) 2006-05-04 2021-06-15 Boehringer Ingelheim International Gmbh DPP IV inhibitor formulations
US9155705B2 (en) 2008-04-03 2015-10-13 Boehringer Ingelheim International Gmbh DPP-IV inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation
US10973827B2 (en) 2008-04-03 2021-04-13 Boehringer Ingelheim International Gmbh DPP-IV inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation
US9415016B2 (en) 2008-04-03 2016-08-16 Boehringer Ingelheim International Gmbh DPP-IV inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation
US10022379B2 (en) 2008-04-03 2018-07-17 Boehringer Ingelheim International Gmbh DPP-IV inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation
US9486526B2 (en) 2008-08-06 2016-11-08 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients inappropriate for metformin therapy
US10034877B2 (en) 2008-08-06 2018-07-31 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients inappropriate for metformin therapy
US11911388B2 (en) 2008-10-16 2024-02-27 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients with insufficient glycemic control despite therapy with an oral or non-oral antidiabetic drug
US9212183B2 (en) 2008-12-23 2015-12-15 Boehringer Ingelheim International Gmbh Salt forms of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine
US10092571B2 (en) 2009-11-27 2018-10-09 Boehringer Ingelheim International Gmbh Treatment of genotyped diabetic patients with DPP-IV inhibitors such as linagliptin
US9457029B2 (en) 2009-11-27 2016-10-04 Boehringer Ingelheim International Gmbh Treatment of genotyped diabetic patients with DPP-IV inhibitors such as linagliptin
US10004747B2 (en) 2010-05-05 2018-06-26 Boehringer Ingelheim International Gmbh Combination therapy
US9603851B2 (en) 2010-05-05 2017-03-28 Boehringer Ingelheim International Gmbh Combination therapy
US9186392B2 (en) 2010-05-05 2015-11-17 Boehringer Ingelheim International Gmbh Combination therapy
US9149478B2 (en) 2010-06-24 2015-10-06 Boehringer Ingelheim International Gmbh Diabetes therapy
US9034883B2 (en) 2010-11-15 2015-05-19 Boehringer Ingelheim International Gmbh Vasoprotective and cardioprotective antidiabetic therapy
US11911387B2 (en) 2010-11-15 2024-02-27 Boehringer Ingelheim International Gmbh Vasoprotective and cardioprotective antidiabetic therapy
US8962636B2 (en) 2011-07-15 2015-02-24 Boehringer Ingelheim International Gmbh Substituted quinazolines, the preparation thereof and the use thereof in pharmaceutical compositions
US9199998B2 (en) 2011-07-15 2015-12-01 Boehringer Ingelheim Internatioal Gmbh Substituted quinazolines, the preparation thereof and the use thereof in pharmaceutical compositions
US9555001B2 (en) 2012-03-07 2017-01-31 Boehringer Ingelheim International Gmbh Pharmaceutical composition and uses thereof
US9526730B2 (en) 2012-05-14 2016-12-27 Boehringer Ingelheim International Gmbh Use of a DPP-4 inhibitor in podocytes related disorders and/or nephrotic syndrome
US12312352B2 (en) 2012-05-14 2025-05-27 Boehringer Ingelheim International Gmbh Use of a DPP-4 inhibitor in SIRS and/or sepsis
US10195203B2 (en) 2012-05-14 2019-02-05 Boehringr Ingelheim International GmbH Use of a DPP-4 inhibitor in podocytes related disorders and/or nephrotic syndrome
US9713618B2 (en) 2012-05-24 2017-07-25 Boehringer Ingelheim International Gmbh Method for modifying food intake and regulating food preference with a DPP-4 inhibitor
EP4364796A3 (en) * 2013-03-15 2024-07-24 Boehringer Ingelheim International GmbH Use of linagliptin in cardio- and renoprotective antidiabetic therapy
EA037712B1 (ru) * 2013-03-15 2021-05-13 Бёрингер Ингельхайм Интернациональ Гмбх Кардио- и нефропротективная противодиабетическая терапия
EP3744327A1 (en) * 2013-03-15 2020-12-02 Boehringer Ingelheim International GmbH Use of linagliptin in cardio- and renoprotective antidiabetic therapy
EP3409279A1 (en) * 2013-03-15 2018-12-05 Boehringer Ingelheim International GmbH Use of linagliptin in cardio- and renoprotective antidiabetic therapy
AU2014230096B2 (en) * 2013-03-15 2019-02-21 Boehringer Ingelheim International Gmbh Use of linagliptin in cardio- and renoprotective antidiabetic therapy
WO2014140284A1 (en) * 2013-03-15 2014-09-18 Boehringer Ingelheim International Gmbh Use of linagliptin in cardio- and renoprotective antidiabetic therapy
AU2014230096C1 (en) * 2013-03-15 2019-08-29 Boehringer Ingelheim International Gmbh Use of linagliptin in cardio- and renoprotective antidiabetic therapy
US9526728B2 (en) 2014-02-28 2016-12-27 Boehringer Ingelheim International Gmbh Medical use of a DPP-4 inhibitor
US9968659B2 (en) 2016-03-04 2018-05-15 Novo Nordisk A/S Liraglutide in cardiovascular conditions
US10155000B2 (en) 2016-06-10 2018-12-18 Boehringer Ingelheim International Gmbh Medical use of pharmaceutical combination or composition
US12364700B2 (en) 2016-06-10 2025-07-22 Boehringer Ingelheim International Gmbh Medical use of pharmaceutical combination or composition
CN108358925A (zh) * 2018-02-24 2018-08-03 中山大学 一种7,8-取代-3-甲基黄嘌呤类化合物及其制备方法和应用
CN108358925B (zh) * 2018-02-24 2021-04-06 中山大学 一种7,8-取代-3-甲基黄嘌呤类化合物及其制备方法和应用

Also Published As

Publication number Publication date
US9526730B2 (en) 2016-12-27
US20130303462A1 (en) 2013-11-14
JP2019089797A (ja) 2019-06-13
JP6473208B2 (ja) 2019-02-20
US20210379073A1 (en) 2021-12-09
US20190099427A1 (en) 2019-04-04
US10195203B2 (en) 2019-02-05
JP2015516456A (ja) 2015-06-11
JP6759373B2 (ja) 2020-09-23
EP2849755A1 (en) 2015-03-25
JP2018030872A (ja) 2018-03-01
US20160082011A1 (en) 2016-03-24
US20240299399A1 (en) 2024-09-12
US20170065595A1 (en) 2017-03-09
EP3685839A1 (en) 2020-07-29
JP6224084B2 (ja) 2017-11-01

Similar Documents

Publication Publication Date Title
US20240299399A1 (en) Use of a dpp-4 inhibitor in podocytes related disorders and/or nephrotic syndrome
US20250025470A1 (en) Cardio- and renoprotective antidiabetic therapy
JP6374862B2 (ja) 自己免疫性糖尿病、特に、ladaの治療に使用するためのdpp−4阻害剤としてのキサンチン誘導体
AU2011268940B2 (en) Diabetes therapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13722419

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015512016

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013722419

Country of ref document: EP