US20040002615A1 - Preparation of chiral amino-nitriles - Google Patents

Preparation of chiral amino-nitriles Download PDF

Info

Publication number
US20040002615A1
US20040002615A1 US10/185,092 US18509202A US2004002615A1 US 20040002615 A1 US20040002615 A1 US 20040002615A1 US 18509202 A US18509202 A US 18509202A US 2004002615 A1 US2004002615 A1 US 2004002615A1
Authority
US
United States
Prior art keywords
salt
process
aminopentanenitrile
acid
chiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/185,092
Inventor
David Allen
Crystal Achenbach-McCarthy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfizer Inc
Original Assignee
PCBU Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PCBU Services Inc filed Critical PCBU Services Inc
Priority to US10/185,092 priority Critical patent/US20040002615A1/en
Assigned to PCBU SERVICES, INC. reassignment PCBU SERVICES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ACHENBACH-MCCARTHY, CRYSTAL, ALLEN, DAVID ROBERT
Publication of US20040002615A1 publication Critical patent/US20040002615A1/en
Assigned to PFIZER INC. reassignment PFIZER INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PCBU SERVICES, INC.
Application status is Abandoned legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/24Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the same saturated acyclic carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Abstract

A process and intermediates for producing 3-amino nitrites. The process involves resolving an enantiomeric mixture of chiral 3-amino nitrites in the presence of a chiral acid in a solvent system to produce a chiral 3-amino nitrile salt. The process may further comprise a recrystalizing step, wherein an enantiomerically enriched 3-amino nitrile salt is produced. The process may further comprise a salt exchanging step, wherein another acid is added to the chiral 3-amino nitrile salt or the enantiomerically enriched 3-amino nitrile salt to produce another 3-amino nitrile salt.

Description

    FIELD OF INVENTION
  • The present invention relates to the production of chiral amino-nitrile compounds. [0001]
  • BACKGROUND OF THE INVENTION
  • Amino nitrites are organic compounds that have at least one amino group and at least one nitrile group. Amino nitrites have been found to be useful starting materials and intermediates for the production of fine chemicals. [0002]
  • One route for the production of amino nitrites is disclosed in Caputo et al, “Synthesis of Enantiopure N— and C—Protected homo-β-Amino Acids by Direct Homologation of the α-Amino Acids”, Tetrahedron Letters, Vol. 51, No. 45, pp. 123337-12350, 1995. Caputo discloses the use of a triarylphosphine-iodine polymer bound complex in the presence of imidazole to replace the hydroxyl group with the iodo group and the subsequent displacement of the iodo group with a cyanide. The introduction of polymer bound reactants makes this methodology costly and undesirable. Moreover, Caputo utilized tetraethylammonium cyanide as a nucleophilic reagent and experienced significant deprotection of the amino group. [0003]
  • Another reaction scheme disclosed in Toujas, et al., Synthesis of homochiral N-Boc-β-aminoaldehydes from N-Boc-β-aminonitriles, Bull. Soc. Chim. Fr. (1997), 134(7), 713-717 utilizes costly solvents and results in low yields. Toujas, et al., discloses the N-Boc protection of the amino group and mesylation of the hydroxyl with methanesulfonyl chloride in the presence of triethylamine at room temperature. According to Toujas, et al., nucleophilic substitution with sodium cyanide in DMSO gives a relatively low yield of 56%. [0004]
  • The existing processes for producing useful amino nitrites have proven to be inefficient as multi steps are required and low yields are normally obtained. [0005]
  • SUMMARY OF THE INVENTION
  • The present invention provides a process for producing chiral amino nitrile compounds. Specifically, the process involves resolving an enantiomeric mixture of chiral 3-amino nitrites with a chiral acid in a suitable solvent system to produce a chiral 3-amino nitrile salt. The process may further involve a recrystalizing step to produce an enantiomerically enriched 3-amino nitrile salt from the chiral 3-amino nitrile salt. The process may further involve the step of exchanging the salt, wherein the chiral 3-amino nitrile salt or the enantiomerically enriched 3-amino nitrile salt is reacted with another acid to form another enantiomerically enriched 3-amino nitrile salt. [0006]
  • In one embodiment of the present invention, the enantiomeric mixture may include a racemic mixture of chiral 3-amino nitrites. In a specific embodiment, the racemic mixture of chiral 3-amino nitrites includes a racemic mixture of 3-aminopentanenitrile, which contains (R)-3-aminopentanenitrile and (S)-3-aminopentanenitrile. The solvent system may contain at least one solvent selected from ethyl acetate, toluene, and acetonitrile. The chiral acid may include a dibenzoyl-(L)-tartaric acid, which may be in monohydrate or anhydrous form. [0007]
  • The process of the present invention may yield a chiral 3-amino nitrile salt including (R)-3-aminopentanenitrile dibenzoyl-(L)-tartrate salt. This salt may be used as an intermediate for further modification. [0008]
  • In another embodiment, the process may further comprise the step of recrystalizing the chiral 3-amino nitrile salt in a recrystalizing solvent to form an enantiomerically enriched 3-amino nitrile salt. The recrystalizing solvent may be chosen from ethyl acetate, methyl ethyl ketone, isopropyl alcohol/water, acetonitrile, ethyl alcohol, methyl tert-butyl ether, dichloromethane/water, and tetrahydrofuran. [0009]
  • The recrystalizing step may yield an enantiomerically enriched 3-amino nitrile salt including (R)-3-aminopentanenitrile dibenzoyl-(L)-tartrate salt. [0010]
  • In another embodiment of the invention, the process further comprises a step of salt exchange, wherein another acid is added to the enantiomerically enriched 3-amino nitrile salt to produce another 3-amino nitrile salt. The other acid may include at least one of methanesulfonic acid and hydrochloric acid. The other 3-amino nitrile salt may include at least one of (R)-3-aminopentanenitrile methanesulfonic acid salt and (R)-3-aminopentanenitrile hydrochloric acid salt. [0011]
  • In an alternative embodiment, the recrystalizing step may be omitted, and the salt exchange step may be performed immediately after the resolving step. [0012]
  • Further, the present invention provides the compounds, namely, (R)-3-aminopentanenitrile dibenzoyl-(L)-tartrate salt and (R)-3-aminopentanenitrile dibenzoyl-(D)-tartrate salt. These compounds may be used as intermediates in the production of pharmaceutically active molecules. [0013]
  • In another embodiment of the invention, the process for preparing chiral 3-amino nitrites comprises the step of providing a compound, namely, (R)-3-aminopentanenitrile dibenzoyl-(L)-tartrate salt or (R)-3-aminopentanenitrile dibenzoyl-(D)-tartrate salt, and the step of exchanging the salt, wherein another acid is added thereto to produce another (R)-3-aminopentanenitrile salt. The other acid may include at least one of methanesulfonic acid and hydrochloric acid. The other (R)-3-aminopentanenitrile salt may include at least one of (R)-3-aminopentanenitrile methanesulfonic acid salt and (R)-3-aminopentanenitrile hydrochloric acid salt. [0014]
  • Other objects and further benefits of the present invention will become apparent to persons having ordinary skill in the art from the following written description and accompanying figures. [0015]
  • DETAILED DESCRIPTION OF THE INVENTION
  • For the purposes of promoting an understanding of the principles of the invention, specific language will be used to describe exemplary embodiments of the present invention. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. The invention includes any alterations and further modifications in the illustrated devices and described methods and further applications of the principles of the invention which would normally occur to one skilled in the art to which the invention relates. [0016]
  • The present invention provides a process and intermediates for preparing useful 3-amino nitrile compounds. It has been known that only one enantiomer of certain chiral 3-amino nitrile compounds is particularly useful. For example, (R)-3-aminopentanenitrile, not (S)-3-aminopentanenitrile, is useful in the synthesis of pharmaceutically active molecules. [0017]
  • Enantiomeric mixtures as discussed herein contain two enantiomers. Further, enantiomeric mixtures that have equal amounts of two enantiomers are called racemic mixtures. [0018]
  • When enantiomers are separated, they cause the plane of polarized light to rotate by opposite but equal amounts. Optically active samples are those having an excess of one enantiomer over the other and thus showing a net rotation. [0019]
  • The present invention provides a process for preparing 3-amino nitrile compounds from an enantiomeric mixture containing two enantiomers, (R) and (S), of chiral 3-amino nitrile compounds. The enantiomeric mixture may be a racemic mixture, which contains approximately equal amounts of the (R) and the (S) enantiomers of chiral 3-amino nitrites. [0020]
  • The process of the present invention involves resolving the enantiomeric mixture in a solvent system in the presence of a chiral acid to produce a chiral 3-amino nitrile salt. During the resolving process, one particular enantiomer, preferably the (R) enantiomer, selectively reacts with the chiral acid to form an (R)-3-amino nitrile salt. The (S) enantiomer may occasionally react with the chiral acid to form an (S)-3-amino nitrile salt. [0021]
  • In order to determine the relative amounts of the (R)- and the (S)-3-amino nitrile salts, the product of the resolving step is analyzed using standard chiral and achiral liquid chromatography techniques. A high performance liquid chromatograph (HPLC) may be used to determine the relative proportions of each enantiomer. The result of the HPLC analysis may be used to determine the optical purity in terms of enantiomer excess (%ee), using the following calculation: [0022] % ee = ( [ area % major enantiomer - area % minor enantiomer ] [ area % major enantiomer + area % minor enantiomer ] ) × 100
    Figure US20040002615A1-20040101-M00001
  • A further identification of the product may be performed using a nuclear magnetic resonance (NMR) technique. The resolving step may yield a 3-amino nitrile salt having an optical purity of at least about 45%ee. In some experimental conditions, the optical purity of a desired 3-amino nitrile salt may reach between about 65%ee and about 95%ee. [0023]
  • The optical purity of the chiral 3-amino nitrile salt may be increased by means of a recrystalizing step. During the recrystalizing step, the chiral 3-amino nitrile salt is dissolved and recrystalized in a recrystalizing solvent. The recrystalizing solvent may be any suitable solvent that allows the chiral 3-amino nitrile salt to dissolve, and then crystalize at a lower temperature. The product of the recrystalizing step contains enantiomerically enriched 3-amino nitrile salt having an optical purity of at least about 89% ee. [0024]
  • The process of the present invention may further include a salt exchanging step, wherein the enantiomerically enriched 3-amino nitrile salt produced in the recrystalizing step is reacted with an acid to form a second 3-amino nitrile salt. The acid may be any strong acid that is capable of replacing the dibenzoyl tartrate group. For example, if the acid used is methanesulfonic acid, the salt produced is 3-amino nitrile methanesulfonic acid salt. [0025]
  • The salt exchanging step may be performed after the resolving step, without the recrystalizing step. An acid may be added to the 3-chiral amino nitrile salt, the product of the resolving step, to form a second 3-amino nitrile salt, such as a 3-amino nitrile methanesulfonic acid salt. [0026]
  • Specifically, the present invention provides a process for preparing the (R)-3-aminopentanenitrile dibenzoyl-(L)-tartrate salt ((R)-3-APN-DB-(L)-TA salt). The process may further involve a production of (R)-3-aminopentanenitrile methanesulfonic acid salt ((R)-3-APN-MSA salt) from the (R)-3-APN-DB-(L)-TA salt. The (R)-3-APN-MSA salt may be used in the production of pharmaceutically active molecules. [0027]
  • To initiate a process of the present invention, a racemic mixture of 3-aminopentanenitrile (3-APN), containing (R)-3-aminopentanenitrile ((R)-3-APN) and (S)-3-aminopentanenitrile ((S)-3-APN), is provided. Then 3-APN is resolved in a suitable solvent system in the presence of a chiral acid. The chiral acid may be a homochiral acid which contains only one enantiomer. In the process of the present invention, the chiral acid may include dibenzoyl-(L)-tartaric acid (DB-(L)-TA) and dibenzoyl-(D)-tartaric acid DB-(D)-TA). [0028]
  • It has been found that DB-(L)-TA is particularly reactive to (R)-3-APN, and DB-(D)-TA is particularly reactive to (S)-3-APN. Therefore, using DB-(L)-TA for resolving 3-APN results in (R)-3-aminopentanenitrile dibenzoyl-(L)-tartrate salt ((R)-3-APN-DB-(L)-TA salt) as a predominant product, while a small amount of (S)-3-aminopentanenitrile dibenzoyl-(L)-tartrate ((S)-3-APN-DB-(L)-TA salt) may be co-produced. Since one molecule of DB-(L)-TA binds to two molecules of 3-APN, the resulting (R)-3-APN-DB-(L)-TA salt is a di-salt. [0029]
  • Likewise, using DB-(D)-TA for resolving 3-APN will result in the (S)-3-APN-DB-(D)-TA salt as a predominant product, while a small amount of the (R)-3-APN-DB-(D)-TA salt may be co-produced. [0030]
  • Another chiral acid that may be used in resolving the enantiomers of 3-APN is di-p-toluoyl-(D)-tartaric acid. Like DB-(D)-TA, di-p-toluoyl-(D)-tartaric acid is particularly reactive to (S)-3-APN. Therefore, when di-p-toluoyl-(D)-tartaric acid is used in the resolving step, the predominant product is the (S)-3-aminopentanenitrile di-p-toluoyl-(D)-tartrate salt. [0031]
  • However, not all chiral acids are effective in resolving the enantiomers of 3-APN. For example, D-(−)-tartaric acid, (S)-(−)-malic acid, (R)-(−)-mandelic acid, and Z-L-Phenylalanine show very little selectivity towards either (R)-3-APN or (S)-3-APN. Therefore, when any of these particular chiral acid is used to resolve 3-APN, the resulting product contains approximately equivalent amounts of the (R) and the (S)-3-APN salts. [0032]
  • In addition, the solvent system may comprise at least one of ethyl acetate, water, toluene, and acetonitrile. Any combination and any proportion of the solvents may be effective in resolving 3-APN. Any other organic or aqueous solvent may also be used, however, the optical purity of the product may be enhanced with the use of an acetonitrile/water/ethyl acetate combination. [0033]
  • Further, the resolving step may require heating to allow 3-APN or the chiral acid to dissolve into solution. A temperature of between about 30° C. and about 80° C., may be suitable. However, an optimal temperature may be about 60° C. to about 65° C. After a specific time period, the reaction mixture may be cooled down to room temperature to allow salt formation. [0034]
  • The process of the present invention may further comprise recrystalizing the (R)-3-APN-DB-(L)-TA salt to produce an enantiomerically enriched (R)-3-APN-DB-(L)-TA salt. In the recrystalizing step, a recrystalizing solvent is added to the product of the resolving step, with stirring. The resulting mixture is heated to a temperature that allows the salt to completely dissolve. The solution is then cooled down to allow complete crystalization. The solids that are formed are collected, washed, dried and analyzed. The recrystalization process may yield a substantially pure product that contains at least about 89% ee of (R)-3-APN-DB-(L)-TA salt. [0035]
  • Further, the recrystalizing solvent may comprise at least one of ethyl acetate, methyl ethyl ketone, isopropyl alcohol/water, ethanol, methyl tert-butyl ether, dichloromethane/water, and tetrahydrofuran. Any suitable ratio of solvent to water may be used, however, a ratio of 5.6 solvent to 1 water has been shown to be effective in many cases. [0036]
  • Another step of the process involves exchanging the salt. During this step, the (R)-3-APN-DB-(L)-TA salt from the resolving step or the recrystalizing step is reacted with a strong acid such as methanesulfonic acid (MSA) to produce the (R)-3-APN-MSA salt, or hydrochloric acid to produce (R)-3-APN-HCl salt. The salt exchange step may be performed at room temperature. The reaction mixture may also be heated to an elevated temperature. Upon reaction completion, the reaction mixture can be cooled to room temperature. Solids formed upon cooling to room temperature can be recovered by filtration. The solids can be characterized by NMR and/or HPLC techniques. [0037]
  • The following non-limiting examples further demonstrate the present invention:[0038]
  • EXAMPLE 1 Resolving a Racemic Mixture of 3-APN With DB-(D)-TA
  • [0039]
    Figure US20040002615A1-20040101-C00001
  • A resolving step was initiated by charging 5 g (0.051 mol) of a racemic mixture of 3-APN to a round bottom flask. The mixture was diluted with a solution made of 20 mL of toluene and 10 mL of water. The diluted racemic mixture was heated to a temperature of 50° C. with stirring. Then, a solvent system made of 24 mL of toluene, 5 mL of water, and 11 mL of ethyl acetate, and containing 4.8 g (0.013 mol) of DB-(D)-TA monohydrate was slowly added to the diluted racemic mixture at a temperature of about 50° C. to form a reaction mixture. The maximum temperature reached about 65° C. [0040]
  • The reaction mixture was then cooled slowly to room temperature. After cooling the reaction mixture separated into an organic phase, an interface containing solids, and an aqueous phase. The solids from the interface were collected by filtration and allowed to air dry. A total of 3.46 grams of the dried solid was recovered. The aqueous phase was collected and concentrated to yield second solids, while the organic phase produced an oil product. [0041]
  • The results of the HPLC analysis showed that the solids from the interface layer were enriched with the (S)-3-APN-DB-(D)-TA salt, with an optical purity of 79.6% ee. The second solids from the aqueous phase, and the oil product from the organic phase were enriched with the (R)-3-APN-DB-(D)-TA salt, having an optical purity of 27.4% ee, and 26.4% ee, respectively. [0042]
  • EXAMPLE 2 Resolving a Racemic Mixture of 3-APN With DB-(L)-TA
  • [0043]
    Figure US20040002615A1-20040101-C00002
  • An experiment was performed following the same experimental procedure described in EXAMPLE 1, except that DB-(L)-TA monohydrate was used instead of DB-(D)-TA monohydrate. The solids isolated from the interface layer in this experiment was determined to be enriched with the (R)-3-APN-DB-(L)-TA salt, having an optical purity of 79.3%ee. The yield of the solids was 3.43 grams. The identity of the (R)-3-APN-DB-(L)-TA salt was also confirmed by NMR. ([0044] 1H NMR (400 MHz), D20 δ=0.945 (t, 6H), 1.742 (m, 4H), 2.913 (d, 4H), 3.503 (m, 2H), 5.644 (s, 2H), 7.502 (t, 4H), 7.647 (t, 2H), 8.050 (d, 4H).)
  • Another experiment was conducted in order to improve the yield and the purity of the salt. In this experiment, 250 mL (227 g) of a racemic mixture of 3-APN was charged into a reaction vessel and diluted with 1230 mL of water. The solution was heated to a temperature of 65° C. Then, a solution, made of 680 mL of ethyl acetate, 128 mL of water, and 207 g of DB-(L)-TA, was added slowly over about 5-10 minutes to the diluted racemic mixture. The reaction mixture was immediately allowed to begin cooling slowly over approximately 3 hours until the mixture reached room temperature. The mixture was stirred for 4-5 hours at room temperature to allow for complete crystallization. Solids were collected by filtration, then washed twice with 100 mL of ethyl acetate and dried in vacuo at a temperature of about 45° C. The reaction yielded 118 g (36.7%) of the (R)-3-APN-DB-(L)-TA salt with an optical purity of 91.6% ee. [0045]
  • EXAMPLE 3 Resolving a Racemic Mixture of 3-APN With di-p-toluoyl-(D)-tartaric Acid
  • A racemic mixture of 3-APN (0.55 mL, 0.5 g, 0.0051 mol) was diluted with water (2.7 mL) and heated to 60° C. A solution of di-p-toluoyl-(D)-tartaric acid (0.5 g, 0.0013 mol, 0.25 mole equivalents) in ethyl acetate (1.5 mL) and water (0.3 mL) was added. The reaction mixture was then cooled slowly to room temperature. The solids were isolated and dried. The yield of the solids was 0.42 g. As expected, the solids contained a higher proportion of the (S) enantiomer than the (R) enantiomer of the aminopentane nitrile di-p-toluoyl-(D)-tartrate salt. The area % ratio of R/S was 44.66/55.34. [0046]
  • EXAMPLE 4 DB-(L)-TA Experimentation
  • A racemic mixture of 3-APN was prepared as described in EXAMPLE 2. Two solvent systems were prepared, one containing an anhydrous form of DB-(L)-TA, and the other containing a monohydrate form of DB-(L)-TA. The racemic mixture was resolved in each case and the solids were collected and analyzed. The results (TABLE I) indicate that both the anhydrous form and monohydrate form of DB-(L)-TA worked to resolve the racemic mixture of 3-APN. The resulting (R)-3-APN-DB-(L)-TA salt had an optical purity of 89. 14%ee (anhydrous form) and 92.00%ee (monohydrate). [0047] TABLE I Results of resolving step using different forms of DB-(L)-TA 3-APN-DB-(L)-TA salt area % ratio % ee Form of DB-(L)-TA R/S R Anhydrous 94.57/5.43 89.14 Monohydrate 96.00/4.00 92.00
  • EXAMPLE 5 Optimization of Solvent System
  • Experiments were initiated by preparing a racemic mixture of 3-APN by charging 0.5 g of 3-APN into a reaction vessel, followed by the addition of a solution of toluene and water. The reaction vessel was heated to a temperature of 60° C. Then solvent systems were prepared by mixing at least one of ethyl acetate (EtOAc), water, toluene and acetonitrile (ACN) with about 0.27 mole equivalents of DB-(L)-TA. Each solvent system containing DB-(L)-TA was slowly added to the racemic mixture of 3-APN with stirring at the raised temperature and allowed to cool slowly to room temperature. The mixture may be chilled at 4° C. overnight to obtain a solid product. The solid product was collected by filtration, vacuum dried at a temperature about 40°-45° C., and analyzed by chiral HPLC. The results in TABLE II show that all the solvent systems tested yielded the products predominantly containing the (R)-3-APN-DB-(L)-TA salt. The optical purity of the (R)-3-APN-DB-(L)-TA salt ranged from 66.42%ee to 94.26%ee. [0048] TABLE II Products of resolving step using different solvent system 3-APN-DB-(L)-TA salt Yield ratio area % % ee Solvent System (wt. %) R/S R Toluene/water/ethyl acetate 56.4 84.21/17.79 66.42 (2.6:1:1) Toluene/water/ethyl acetate/acetonitrile 32.1 91.03/8.97 82.06 (6.8:4.6:1:2) Acetonitrile/water/ethyl acetate 1.3 97.13/2.87 94.26 (2:11.4:1) water/ethyl acetate 24.4 94.51/5.49 89.02 (3.8:1)
  • EXAMPLE 6 Recrystalizing of (R)-3-APN-DB-(L)-TA Salt
  • About 50 g of a crude product from the resolving step described herein above was slurried in 500 mL of ethyl acetate. The mixture was heated to 65-70° C. Then 90 mL of water was added and the diluted mixture was stirred at a temperature of about 65-70° C. until all solids dissolved (approximately 5-10 minutes). The heated mixture was cooled slowly to room temperature. Solids began forming when the temperature reached about 40-45° C. The cooled mixture was stirred at room temperature for 3-4 hours to allow for complete crystallization. The solids were collected by filtration, washed three times with 75 mL of ethyl acetate, and dried in vacuo at 45° C. This recrystalization process yielded 42 g (84.2% recovery) of substantially pure product containing the (R)-3-APN-DB-(L)-TA salt with an optical purity of 97.2% ee. [0049]
  • EXAMPLE 7 Experiments Using Alternative Recrystalizing Solvents
  • A 0.5 grams of the starting material containing 94.83% (R)-3-APN-DB-(L)-TA salt and 5.17% (S)-3-APN-DB-(L)-TA salt was stirred into 5.0 mL of an organic solvent and heated to 60° C. before being cooled to room temperature. In some cases, cooling to 4° C. was necessary before solids formed. The product from recrystalizing step was analyzed by chiral HPLC. The results (TABLE III) show that the optical purity of the (R)-3-APN-DB-(L)-TA salt could reach up to 100%ee, after the recrystalizing step. [0050] TABLE III Products of recrystalizing step using alternative recrystalizing solvent 3-APN-DB-(L)-TA salt area % ratio Recrystalizing Solvent R/S EtOAc 94.93/5.07 MEK 96.73/3.27 MEK/water (5.6:1) 99.18/0.82 IPA 94.41/5.59 IPA/water (5.6:1) 99.30/0.70 ACN 95.82/4.18 ACN/water (5.6:1) 100.00/0    EtOH 95.91/4.09 EtOH/water (5.6:1) 99.86/0.14 MTBE 94.85/5.15 MTBE/water (5.6:1) 98.36/1.64 DCM 94.46/5.54 DCM/water(5.6:1) 96.51/3.49 THF 95.69/4.31 THF/water (5.6:1) 99.45/0.55 DMF no solids obtained DMF/water no solids obtained
  • EXAMPLE 8 Production of (R)-3-APN-MSA Salt in a Salt Exchanging Step
  • [0051]
    Figure US20040002615A1-20040101-C00003
  • The enantiomerically enriched (R)-3-APN-DB-(L)-TA salt (from recrystalizing step) (20 g) was slurried in 155 mL of ethyl acetate and heated to a temperature of about 65-70° C. About 4.7 mL of methanesulfonic acid (MSA) was added and the mixture was stirred at a temperature of about 65-70° C. until all solids dissolved. The solution was cooled to room temperature. Solids were collected by filtration, washed twice, each with 75 mL of ethyl acetate, and dried in vacuo at 45° C. The salt exchanging reaction yielded 13.78 g (98.5 wt. %) of (R)-3-APN-MSA salt with an optical purity of 97.3% ee. [0052]
  • Another experiment was performed to determine whether the salt exchanging step could be performed at room temperature. In this experiment, about 3 g (0.054 mol) of (R)-3-APN-DB-(L)-TA salt was slurried in 30 mL of ethyl acetate at room temperature. Then, about 0.71 mL (1.045 g, 0.0109 mol, 2.01 mole equivalents) of MSA was added to the slurry. The mixture was stirred at room temperature for 30-45 minutes. Solids were collected by filtration, washed twice with 20 mL of ethyl acetate, and dried in vacuo at 50° C. The yield of the salt was 1.99 g (94.8 wt. %). [0053]
  • While the invention has been illustrated and described in detail in the foregoing description, the same is to be considered as illustrative and not restrictive in character. It should be understood that only the exemplary embodiments have been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected. [0054]

Claims (36)

What is claimed is:
1. A process for producing 3-amino nitrile compounds comprising the steps of:
providing an enantiomeric mixture of chiral 3-amino nitrites; and
resolving said enantiomeric mixture of chiral 3-amino nitrites in the presence of a chiral acid in a solvent system to produce a chiral 3-amino nitrile salt.
2. The process of claim 1 wherein said enantiomeric mixture comprises a racemic mixture.
3. The process of claim 2 wherein said racemic mixture comprises (R)-3-aminopentanenitrile and (S)-3-aminopentanenitrile.
4. The process of claim 1 wherein said chiral acid comprises at least one of dibenzoyl-(L)-tartaric acid, dibenzoyl-(D)-tartaric acid, and di-p-toluoyl-(D)-tartaric acid.
5. The process of claim 4 wherein said dibenzoyl-(L)-tartaric acid comprises at least one of dibenzoyl-(L)-tartaric acid monohydrate, and dibenzoyl-(L)-tartaric acid anhydrous.
6. The process of claim 1 wherein said chiral acid comprises dibenzoyl-(L)-tartaric acid and said chiral 3-amino nitrile salt comprises (R)-3-aminopentanenitrile dibenzoyl-(L)-tartrate salt of the structure:
Figure US20040002615A1-20040101-C00004
7. The process of claim 1 wherein said solvent system comprises at least one of ethyl acetate, toluene, acetonitrile, and water.
8. The process of claim 1 wherein said chiral 3-amino nitrile salt has an optical purity of at least about 45% ee.
9. The process of claim 8 wherein said chiral 3-amino nitrile salt has an optical purity of between about 65% ee and about 95% ee.
10. The process of claim 1 further comprising the step of:
recovering said chiral 3-amino nitrile salt.
11. The process of claim 10 further comprising the step of:
recrystalizing said recovered chiral 3-amino nitrile salt in a recrystalizing solvent to form an enantiomerically enriched 3-amino nitrile salt having an optical purity of at least about 89% ee.
12. The process of claim 11 wherein said enantiomerically enriched 3-amino nitrile salt comprises (R)-3-aminopentanenitrile dibenzoyl-(L)-tartrate salt of the structure:
Figure US20040002615A1-20040101-C00005
13. The process of claim 11 wherein said recrystalizing solvent comprises at least one of ethyl acetate, methyl ethyl ketone, isopropyl alcohol/water, acetonitrile, ethyl alcohol, methyl tert-butyl ether, dichloromethane/water, and tetrahydrofuran.
14. The process of claim 11 further comprising the step of:
recovering said enantiomerically enriched 3-amino nitrite salt.
15. The process of claim 14 further comprising the step of:
adding another acid to said enantiomerically enriched 3-amino nitrite salt to form another 3-amino nitrite salt.
16. The process of claim 15 further comprising the step of:
recovering said other 3-amino nitrite salt.
17. The process of claim 15 wherein said other acid comprises at least one of methanesulfonic acid and hydrochloric acid.
18. The process of claim 15 wherein said other 3-amino nitrile salt icomprises at least one of (R)-3-aminopentanenitrile methanesulfonic acid salt of the structure:
Figure US20040002615A1-20040101-C00006
and (R)-3-aminopentanenitrile hydrochloric acid salt of the structure:
Figure US20040002615A1-20040101-C00007
19. The process of claim 10 further comprising the step of:
adding another acid to said chiral 3-amino nitrile salt to form another 3-amino nitrile salt.
20. The process of claim 19 further comprising the step of:
recovering said other 3-amino nitrile salt.
21. The process of claim 19 wherein said other acid comprises at least one of methanesulfonic acid and hydrochloric acid.
22. The process of claim 19 wherein said other 3-amino nitrile salt comprises at least one of (R)-3-aminopentanenitrile methanesulfonic acid salt of the structure:
Figure US20040002615A1-20040101-C00008
and (R)-3-aminopentanenitrile hydrochloric acid salt of the structure:
Figure US20040002615A1-20040101-C00009
23. The chiral 3-amino nitrile salt produced by the process of claim 10.
24. The enantiomerically enriched 3-amino nitrile salt produced by the process of claim 11.
25. The (R)-3-aminopentanenitrile methanesulfonic acid salt produced by the process of claim 18.
26. The (R)-3-aminopentanenitrile methanesulfonic acid salt produced by the process of claim 22.
27. The (R)-3-aminopentanenitrile hydrochloric acid salt produced by the process of claim 18.
28. The (R)-3-aminopentanenitrile hydrochloric acid salt produced by the process of claim 22.
29. An (R)-3-aminopentanenitrile dibenzoyl-(L)-tartrate salt having the following general structure:
Figure US20040002615A1-20040101-C00010
30. An (R)-3-aminopentanenitrile-dibenzoyl-(D)-tartrate salt having the following general structure:
Figure US20040002615A1-20040101-C00011
31. A process for producing 3-amino nitrile compounds comprising the steps of:
providing an (R)-3-aminopentanenitrile dibenzoyl-(L)-tartrate salt having the following general structure:
Figure US20040002615A1-20040101-C00012
 ; and
adding another acid thereto to form another (R)-3-aminopentanenitrile salt.
32. The process of claim 31 wherein said another acid comprises at least one of methanesulfonic acid and hydrochloric acid.
33. The process of claim 31 wherein said (R)-3-aminopentanenitrile salt comprises at least one of (R)-3-aminopentanenitrile methanesulfonic acid salt of the structure:
Figure US20040002615A1-20040101-C00013
and (R)-3-aminopentanenitrile hydrochloric acid salt of the structure:
Figure US20040002615A1-20040101-C00014
34. A process for producing 3-amino nitrile compounds comprising the steps of:
providing an (R)-3-aminopentanenitrile dibenzoyl-(D)-tartrate salt having the following general structure:
Figure US20040002615A1-20040101-C00015
 ; and
adding another acid thereto to form another (R)-3-aminopentanenitrile salt.
35. The process of claim 34 wherein said other acid comprises at least one of methanesulfonic acid and hydrochloric acid.
36. The process of claim 34 wherein (R)-3-aminopentanenitrile salt comprises at least one of (R)-3-aminopentanenitrile methanesulfonic acid salt of the structure:
Figure US20040002615A1-20040101-C00016
and (R)-3-aminopentanenitrile hydrochloric acid salt of the structure:
Figure US20040002615A1-20040101-C00017
US10/185,092 2002-06-28 2002-06-28 Preparation of chiral amino-nitriles Abandoned US20040002615A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/185,092 US20040002615A1 (en) 2002-06-28 2002-06-28 Preparation of chiral amino-nitriles

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US10/185,092 US20040002615A1 (en) 2002-06-28 2002-06-28 Preparation of chiral amino-nitriles
PCT/US2003/019271 WO2004002924A1 (en) 2002-06-28 2003-06-19 Preparation of chiral amino-nitriles
EP20030739199 EP1517877A1 (en) 2002-06-28 2003-06-19 Preparation of chiral amino-nitriles
AU2003245572A AU2003245572A1 (en) 2002-06-28 2003-06-19 Preparation of chiral amino-nitriles
JP2004517679A JP2005531633A (en) 2002-06-28 2003-06-19 Preparation of Chiral aminonitrile
CN 03815398 CN1665760A (en) 2002-06-28 2003-06-19 Preparation of chiral amino-nitriles
US10/946,167 US7301044B2 (en) 2002-06-28 2004-09-21 Preparation of chiral amino-nitriles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/946,167 Continuation US7301044B2 (en) 2002-06-28 2004-09-21 Preparation of chiral amino-nitriles

Publications (1)

Publication Number Publication Date
US20040002615A1 true US20040002615A1 (en) 2004-01-01

Family

ID=29779521

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/185,092 Abandoned US20040002615A1 (en) 2002-06-28 2002-06-28 Preparation of chiral amino-nitriles
US10/946,167 Expired - Fee Related US7301044B2 (en) 2002-06-28 2004-09-21 Preparation of chiral amino-nitriles

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/946,167 Expired - Fee Related US7301044B2 (en) 2002-06-28 2004-09-21 Preparation of chiral amino-nitriles

Country Status (6)

Country Link
US (2) US20040002615A1 (en)
EP (1) EP1517877A1 (en)
JP (1) JP2005531633A (en)
CN (1) CN1665760A (en)
AU (1) AU2003245572A1 (en)
WO (1) WO2004002924A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040087811A1 (en) * 2002-10-22 2004-05-06 Claus Dreisbach Process for the racemate resolution of 3-aminopentanenitrile
US20050107453A1 (en) * 2003-10-28 2005-05-19 Pfizer Inc. Resolution of 3-amino alkylnitriles

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7407955B2 (en) 2002-08-21 2008-08-05 Boehringer Ingelheim Pharma Gmbh & Co., Kg 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
DE102004054054A1 (en) 2004-11-05 2006-05-11 Boehringer Ingelheim Pharma Gmbh & Co. Kg A process for preparing chiral 8- (3-amino-piperidin-1-yl) -xanthines
PE02512008A1 (en) 2006-05-04 2008-04-25 Boehringer Ingelheim Int Uses DPP IV inhibitors
CA2651089C (en) 2006-05-04 2018-02-20 Peter Sieger A polymeric form of 1-((4-methyl-quinazolin-2-yl)methyl)-3-7-(2-butyn-1-yl)-8-(3-(r)-aminopiperidin-1-yl)xanthine
BRPI0712393A2 (en) * 2006-06-19 2012-10-16 Merck Patent Gmbh polymorphic forms and processes
PE09602014A1 (en) 2008-04-03 2014-08-15 Boehringer Ingelheim Int Formulations comprising a DPP4 inhibitor
KR20190016601A (en) 2008-08-06 2019-02-18 베링거 인겔하임 인터내셔날 게엠베하 Treatment for diabetes in patients inappropriate for metformin therapy
UY32030A (en) 2008-08-06 2010-03-26 Boehringer Ingelheim Int "Treatment for diabetes in patients unsuitable for therapy with metformin"
KR20110103968A (en) 2008-12-23 2011-09-21 베링거 인겔하임 인터내셔날 게엠베하 Salt forms of organic compound
AR074990A1 (en) 2009-01-07 2011-03-02 Boehringer Ingelheim Int Treatment of diabetes in patients with inadequate glycemic control despite metformin therapy
CN107115530A (en) 2009-11-27 2017-09-01 勃林格殷格翰国际有限公司 Treatment of genotyped diabetic patients with DPP-IV inhibitors such as linagliptin
KR101927068B1 (en) 2010-05-05 2018-12-10 베링거 인겔하임 인터내셔날 게엠베하 Sequential Combination Therapy by the Weight Reducing Treatment Followed by the DPP-4 Inhibitor
EP2585101A1 (en) 2010-06-24 2013-05-01 Boehringer Ingelheim International GmbH Diabetes therapy
AR083878A1 (en) 2010-11-15 2013-03-27 Boehringer Ingelheim Int Vasoprotectives and cardioprotective anti-diabetic therapy, linagliptin, treatment method
HUE043540T2 (en) 2011-07-15 2019-08-28 Boehringer Ingelheim Int Substituted dimeric quinazoline derivative, its preparation and its use in pharmaceutical compositions for the treatment of type i and ii diabetes
US9555001B2 (en) 2012-03-07 2017-01-31 Boehringer Ingelheim International Gmbh Pharmaceutical composition and uses thereof
US20130303462A1 (en) 2012-05-14 2013-11-14 Boehringer Ingelheim International Gmbh Use of a dpp-4 inhibitor in podocytes related disorders and/or nephrotic syndrome
WO2013174767A1 (en) 2012-05-24 2013-11-28 Boehringer Ingelheim International Gmbh A xanthine derivative as dpp -4 inhibitor for use in modifying food intake and regulating food preference
JP2017507956A (en) 2014-02-28 2017-03-23 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Medical use of DPP-4 inhibitors
BR112018072401A2 (en) 2016-06-10 2019-02-19 Boehringer Ingelheim Int linagliptin and metformin combination

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4183865A (en) * 1977-04-08 1980-01-15 Krka, Farmacevtika, Kemija, Kozmetika, Zdravilisca In Gostinstvo, Novo Mesto, N.Sol.O. Process for the resolution of racemic α-aminonitriles
US4187244A (en) * 1977-04-08 1980-02-05 KRKA, Farmaceutika, Kemija, Kozmetika, zdravilisca in gostinstuo, Novo mesto, n.sd.o. Process for the resolution of racemic alpha-aminonitriles
US4211725A (en) * 1977-11-10 1980-07-08 Milliken Research Corporation Nitrogen containing compositions
US4286098A (en) * 1980-03-28 1981-08-25 Pfizer Inc. Process for the preparation of chiral hydantoins
US4348526A (en) * 1980-03-28 1982-09-07 Pfizer Inc. Intermediates in the preparation of chiral hydantoins
US4683324A (en) * 1982-05-25 1987-07-28 American Cyanamid Company Process for the resolution of certain racemic amino nitriles
US4937241A (en) * 1988-01-14 1990-06-26 Cassella Aktiengesellschaft N-substituted N-nitrosoaminoacetonitriles, process for their preparation and their use
US4962223A (en) * 1988-07-12 1990-10-09 Ministero dell'Universita e delle Ricerca Scientifica e Tecnologica Process for the synthesis of the levodopa
US5041637A (en) * 1988-07-12 1991-08-20 Presidenza Del Consiglio Del Ministri-Ufficio Del Ministro Per Il Coordinamento Delle Iniziatjvo Per La Ricerca Scientifica E. Technologica Process for the synthesis of optically active aminoacids
US5349079A (en) * 1992-12-14 1994-09-20 Akzo Nobel Nv Process for forming α-aminonitriles from carbonyl compound and fatty amine hydrohalide
US6339159B1 (en) * 1999-09-14 2002-01-15 Japan Science And Technology Corporation Optically active α-aminonitrile and process for producing α-amino acid
US6610874B2 (en) * 2001-09-28 2003-08-26 Pcbu Services, Inc. Processes and compositions for the production of chiral amino-nitriles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ20032898A3 (en) * 2001-04-30 2004-07-14 Pfizer Products Inc. Process for preparing CETP inhibitors

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4183865A (en) * 1977-04-08 1980-01-15 Krka, Farmacevtika, Kemija, Kozmetika, Zdravilisca In Gostinstvo, Novo Mesto, N.Sol.O. Process for the resolution of racemic α-aminonitriles
US4187244A (en) * 1977-04-08 1980-02-05 KRKA, Farmaceutika, Kemija, Kozmetika, zdravilisca in gostinstuo, Novo mesto, n.sd.o. Process for the resolution of racemic alpha-aminonitriles
US4211725A (en) * 1977-11-10 1980-07-08 Milliken Research Corporation Nitrogen containing compositions
US4286098A (en) * 1980-03-28 1981-08-25 Pfizer Inc. Process for the preparation of chiral hydantoins
US4348526A (en) * 1980-03-28 1982-09-07 Pfizer Inc. Intermediates in the preparation of chiral hydantoins
US4683324A (en) * 1982-05-25 1987-07-28 American Cyanamid Company Process for the resolution of certain racemic amino nitriles
US4937241A (en) * 1988-01-14 1990-06-26 Cassella Aktiengesellschaft N-substituted N-nitrosoaminoacetonitriles, process for their preparation and their use
US4962223A (en) * 1988-07-12 1990-10-09 Ministero dell'Universita e delle Ricerca Scientifica e Tecnologica Process for the synthesis of the levodopa
US5041637A (en) * 1988-07-12 1991-08-20 Presidenza Del Consiglio Del Ministri-Ufficio Del Ministro Per Il Coordinamento Delle Iniziatjvo Per La Ricerca Scientifica E. Technologica Process for the synthesis of optically active aminoacids
US5349079A (en) * 1992-12-14 1994-09-20 Akzo Nobel Nv Process for forming α-aminonitriles from carbonyl compound and fatty amine hydrohalide
US6339159B1 (en) * 1999-09-14 2002-01-15 Japan Science And Technology Corporation Optically active α-aminonitrile and process for producing α-amino acid
US6610874B2 (en) * 2001-09-28 2003-08-26 Pcbu Services, Inc. Processes and compositions for the production of chiral amino-nitriles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040087811A1 (en) * 2002-10-22 2004-05-06 Claus Dreisbach Process for the racemate resolution of 3-aminopentanenitrile
US7193102B2 (en) 2002-10-22 2007-03-20 Bayer Aktiengesellschaft Process for the racemate resolution of 3-aminopentanenitrile
US20050107453A1 (en) * 2003-10-28 2005-05-19 Pfizer Inc. Resolution of 3-amino alkylnitriles
US7026345B2 (en) 2003-10-28 2006-04-11 Pfizer Inc. Resolution of 3-amino alkylnitriles

Also Published As

Publication number Publication date
US20050038281A1 (en) 2005-02-17
AU2003245572A1 (en) 2004-01-19
JP2005531633A (en) 2005-10-20
WO2004002924A1 (en) 2004-01-08
CN1665760A (en) 2005-09-07
US7301044B2 (en) 2007-11-27
EP1517877A1 (en) 2005-03-30

Similar Documents

Publication Publication Date Title
US6900313B2 (en) Chiral ionic liquids
US8309724B2 (en) Processes for the preparation of sitagliptin and pharmaceutically acceptable salts thereof
US6891059B2 (en) Asymmetric synthesis of pregabalin
KR100769381B1 (en) Catalytic asymmetric desymmetrization of meso compounds
US5110987A (en) Method of preparing sphingosine derivatives
US7550479B2 (en) Modified Pictet-Spengler reaction and products prepared therefrom
US20130012712A1 (en) Method for preparing disubstituted piperidine and intermediates
US6605732B1 (en) Clean, high-yield preparation of S,S and R,S amino acid isosteres
JP5687205B2 (en) Process for the preparation and resolution of 2-acylamino-3-diphenylpropanoic acid
WO2003101917A2 (en) A process for the preparation of phenylcarbamates
US6232478B1 (en) Process for the preparation of chiral 3,4-epoxybutyric acid and the salt thereof
CN1665760A (en) Preparation of chiral amino-nitriles
WO1999018947A1 (en) Process to make chiral compounds
US20060020140A1 (en) Process for the preparation of racemic citalopram diol and/or s-or r-citalopram diols and the use of such diols for the preparation o racemic citalopram, r-citalopram and/or s-citalopram
CN103080078B (en) Process for preparation of optically active diamine derivative salt
US7960582B2 (en) Process for the preparation and resolution of mandelic acid derivatives
KR100255039B1 (en) Process for the preparation of l-carnitine
EP0499376A1 (en) Precipitation-induced asymmetric transformation of chiral alpha-amino acids and salts thereof
JP4573223B2 (en) The process for producing an optically active trans-4- amino-1-benzyl-3-pyrrolidinol
HU213256B (en) Process for producing optically active amines
AU611235B2 (en) Process for preparing bis(3,5-dioxpiperazinyl) alkanes or alkenes
ES2462065T3 (en) Improved process for the preparation of Ambrisentan and novel intermediates of this
EP0845455B1 (en) Addition salts of N-acyl aspartic acid and alpha-arylalkylamines and process for the optical resolution of alpha-arylalkylamines
EP1201647B1 (en) Process for producing 4-cyano-4oxobutanoate and 4-cyano-3-hydroxybutanoate
AU2006209453B2 (en) Process for producing (Z)-1-phenyl-1-(N,N-diethylaminocarbonyl)-2-phthalimidomethylcyclopropane

Legal Events

Date Code Title Description
AS Assignment

Owner name: PCBU SERVICES, INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALLEN, DAVID ROBERT;ACHENBACH-MCCARTHY, CRYSTAL;REEL/FRAME:013072/0795

Effective date: 20020627

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING PUBLICATION PROCESS

AS Assignment

Owner name: PFIZER INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PCBU SERVICES, INC.;REEL/FRAME:016918/0269

Effective date: 20051012