WO2013128559A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2013128559A1
WO2013128559A1 PCT/JP2012/054867 JP2012054867W WO2013128559A1 WO 2013128559 A1 WO2013128559 A1 WO 2013128559A1 JP 2012054867 W JP2012054867 W JP 2012054867W WO 2013128559 A1 WO2013128559 A1 WO 2013128559A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium ion
ion secondary
secondary battery
sio
Prior art date
Application number
PCT/JP2012/054867
Other languages
English (en)
French (fr)
Inventor
児島映理
古谷隆博
岸見光浩
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to KR1020127031168A priority Critical patent/KR101498222B1/ko
Priority to CN201280001515.2A priority patent/CN103403943B/zh
Priority to JP2012524006A priority patent/JP5121035B1/ja
Priority to US13/701,118 priority patent/US9673446B2/en
Priority to PCT/JP2012/054867 priority patent/WO2013128559A1/ja
Publication of WO2013128559A1 publication Critical patent/WO2013128559A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery excellent in charge / discharge cycle characteristics while using a material containing Si and O as constituent elements as a negative electrode active material.
  • Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are widely used as power sources for various portable devices because of their high voltage and high capacity.
  • medium- and large-sized power tools such as electric tools, electric vehicles, and electric bicycles has been spreading.
  • lithium ion secondary batteries Under such circumstances, further increase in capacity is demanded for lithium ion secondary batteries, and research and development of electrode active materials exhibiting high charge / discharge capacity are progressing as means for this.
  • the active material material of the negative electrode more lithium (ion) such as silicon (Si) and tin (Sn) can be used instead of carbonaceous materials such as graphite, which are used in conventional lithium ion secondary batteries.
  • SiO x having a structure in which ultrafine particles of Si are dispersed in SiO 2 also has characteristics such as excellent load characteristics.
  • the battery characteristics may be rapidly deteriorated by repeated charging / discharging in the battery using this.
  • Patent Document 1 a negative electrode using graphite together with SiO x and a positive electrode using a Li-containing transition metal oxide having a specific composition are combined, and the potential of the negative electrode when discharging to 2.5 V is controlled.
  • a non-aqueous secondary battery that has a high capacity and can secure high battery characteristics has been proposed.
  • Patent Documents a technology for improving the battery characteristics of a lithium ion secondary battery by adjusting the configuration of a non-aqueous electrolyte used in the lithium ion secondary battery is also known (for example, Patent Documents). 2-4).
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a lithium ion secondary battery excellent in charge / discharge cycle characteristics while using a material containing Si and O as constituent elements as a negative electrode active material. There is to do.
  • the lithium ion secondary battery of the present invention that can achieve the above object has a positive electrode having a positive electrode mixture layer, a negative electrode, a separator, and a non-aqueous electrolyte containing at least an electrolyte salt and an organic solvent.
  • the negative electrode is a material containing Si and O as constituent elements (provided that the atomic ratio x of O to Si is 0.5 ⁇ x ⁇ 1.5.
  • the material is referred to as SiO x .
  • the non-aqueous electrolyte has a concentration of an electrolyte salt having a conductivity in the non-aqueous electrolyte containing the electrolyte salt and the organic solvent. It is characterized in that a concentration exceeding the maximum value and having a conductivity at 25 ° C. of 6.5 to 16 mS / cm 2 is used.
  • the present invention it is possible to provide a lithium ion secondary battery having excellent charge / discharge cycle characteristics while using a material containing Si and O as constituent elements as a negative electrode active material.
  • FIG. 4 It is a figure which shows typically an example of the lithium ion secondary battery of this invention, (a) is the top view, (b) is the fragmentary longitudinal cross-sectional view. It is a perspective view of the lithium ion secondary battery shown in FIG. 4 is a graph showing the relationship between the electrolyte salt concentration and the conductivity of the non-aqueous electrolyte used in the lithium ion secondary batteries of Examples 1 to 3, 7 and Comparative Example 1.
  • FIG. 4 shows typically an example of the lithium ion secondary battery of this invention, (a) is the top view, (b) is the fragmentary longitudinal cross-sectional view. It is a perspective view of the lithium ion secondary battery shown in FIG. 4 is a graph showing the relationship between the electrolyte salt concentration and the conductivity of the non-aqueous electrolyte used in the lithium ion secondary batteries of Examples 1 to 3, 7 and Comparative Example 1.
  • SiO x particles are pulverized and a new surface is formed by expansion and contraction of SiO x accompanying the charging and discharging.
  • highly active Si contained in SiO x is exposed, and this Si causes decomposition of the non-aqueous electrolyte so that lithium ions derived from the electrolyte salt in the non-aqueous electrolyte can be obtained.
  • SEI Solid Electrolyte Interface
  • This SEI film contributes to suppression of the decomposition reaction of the non-aqueous electrolyte on the new surface by preventing direct contact between the new surface of the SiO x and the non-aqueous electrolyte.
  • the x particles become more fine, new surfaces are generated one after another, so the formation of the SEI film covering the new surfaces is repeated, and as a result, the consumption of electrolyte salt in the non-aqueous electrolyte proceeds and the amount decreases. (That is, the concentration of the electrolyte salt in the non-aqueous electrolyte decreases).
  • the present inventors have found that in a lithium ion secondary battery having a negative electrode containing SiO x , the non-aqueous electrolyte solution is reduced due to a decrease in the amount of electrolyte salt in the non-aqueous electrolyte solution that accompanies charge / discharge. It was found that the decrease in conductivity is one factor that impairs the charge / discharge cycle characteristics.
  • charging and discharging are performed by combining a negative electrode containing SiO x and a nonaqueous electrolytic solution in which the concentration of the electrolyte salt exceeds the concentration at which the conductivity reaches a maximum value. Even if the consumption of the electrolyte salt progresses by repeating, the reduction in the conductivity of the non-aqueous electrolyte can be suppressed as much as possible to enhance the charge / discharge cycle characteristics.
  • the negative electrode according to the lithium ion secondary battery of the present invention has, for example, a negative electrode active material, a binder, and, if necessary, a negative electrode mixture layer containing a conductive auxiliary agent on one side or both sides of the current collector. Structured ones can be used.
  • SiO x is used for the negative electrode active material.
  • the SiO x may contain Si microcrystal or amorphous phase.
  • the atomic ratio of Si and O is a ratio including Si microcrystal or amorphous phase Si. That is, SiO x includes a structure in which Si (for example, microcrystalline Si) is dispersed in an amorphous SiO 2 matrix, and this amorphous SiO 2 is dispersed in the SiO 2 matrix. It is sufficient that the atomic ratio x satisfies 0.5 ⁇ x ⁇ 1.5 in combination with Si.
  • x 1, so that the structural formula is represented by SiO.
  • a material having such a structure for example, in X-ray diffraction analysis, a peak due to the presence of Si (microcrystalline Si) may not be observed, but when observed with a transmission electron microscope, the presence of fine Si Can be confirmed.
  • SiO x is preferably a complex complexed with carbon materials, for example, it is desirable that the surface of the SiO x is coated with a carbon material. Since SiO x has poor conductivity, when it is used as a negative electrode active material, from the viewpoint of securing good battery characteristics, a conductive material (conductive aid) is used, and SiO x and conductive material in the negative electrode are used. Therefore, it is necessary to form a good conductive network by mixing and dispersing with each other. If complexes complexed with carbon material SiO x, for example, simply than with a material obtained by mixing a conductive material such as SiO x and the carbon material, good conductive network in the negative electrode Formed.
  • a conductive material such as SiO x and the carbon material
  • the composite in which the surface of SiO x is coated with a carbon material is further combined with a conductive material (carbon material or the like), a better conductive network can be formed in the negative electrode. Therefore, it is possible to realize a lithium ion secondary battery with higher capacity and more excellent battery characteristics (for example, charge / discharge cycle characteristics).
  • the complex of the SiO x and the carbon material coated with a carbon material for example, like granules the mixture was further granulated with SiO x and the carbon material coated with a carbon material.
  • SiO x whose surface is coated with a carbon material
  • the surface of a composite (for example, a granulated body) of SiO x and a carbon material having a smaller specific resistance value is further coated with a carbon material.
  • a carbon material for example, a granulated body
  • Those can also be preferably used.
  • a better conductive network can be formed. Therefore, in a lithium ion secondary battery having a negative electrode containing SiO x as a negative electrode active material, Battery characteristics such as load discharge characteristics can be further improved.
  • Preferred examples of the carbon material that can be used to form a composite with SiO x include carbon materials such as low crystalline carbon, carbon nanotubes, and vapor grown carbon fibers.
  • the details of the carbon material include at least one selected from the group consisting of fibrous or coiled carbon materials, carbon black (including acetylene black and ketjen black), artificial graphite, graphitizable carbon, and non-graphitizable carbon.
  • a seed material is preferred.
  • Fibrous or coil-like carbon materials are preferable in that they easily form a conductive network and have a large surface area.
  • Carbon black (including acetylene black and ketjen black), graphitizable carbon, and non-graphitizable carbon have high electrical conductivity and high liquid retention, and even if SiO x particles expand and contract. This is preferable in that it has a property of easily maintaining contact with the particles.
  • graphite is also preferably used for the negative electrode active material, but this graphite can also be used as a carbon material related to a composite of SiO x and a carbon material.
  • Graphite like carbon black, has high electrical conductivity and high liquid retention. Furthermore, even if SiO x particles expand and contract, they have the property of easily maintaining contact with the particles. Therefore, it can be preferably used for forming a complex with SiO x .
  • a fibrous carbon material is particularly preferable for use when the composite with SiO x is a granulated body. Fibrous carbon material can follow the expansion and contraction of SiO x with the charging and discharging of the battery due to the high shape is thin threadlike flexibility, also because bulk density is large, many and SiO x particles It is because it can have a junction.
  • the fibrous carbon include polyacrylonitrile (PAN) -based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, and carbon nanotube, and any of these may be used.
  • the fibrous carbon material can also be formed on the surface of the SiO x particles by, for example, a vapor phase method.
  • the specific resistance value of SiO x is usually 10 3 to 10 7 k ⁇ cm, whereas the specific resistance value of the above-described carbon material is usually 10 ⁇ 5 to 10 k ⁇ cm.
  • the composite of SiO x and the carbon material may further have a material layer (a material layer containing non-graphitizable carbon) that covers the carbon material coating layer on the particle surface.
  • the ratio of SiO x and the carbon material is based on SiO x : 100 parts by mass from the viewpoint of satisfactorily exerting the effect of the composite with the carbon material.
  • the carbon material is preferably 5 parts by mass or more, and more preferably 10 parts by mass or more. Further, in the composite, if the ratio of the carbon material to be combined with SiO x is too large, it may lead to a decrease in the amount of SiO x in the negative electrode mixture layer, and the effect of increasing the capacity may be reduced.
  • SiO x relative to 100 parts by weight, the carbon material, and more preferably preferably not more than 50 parts by weight, more than 40 parts by weight.
  • the composite of the SiO x and the carbon material can be obtained, for example, by the following method.
  • a dispersion liquid in which SiO x is dispersed in a dispersion medium is prepared, and sprayed and dried to produce composite particles including a plurality of particles.
  • a dispersion medium for example, ethanol or the like can be used as the dispersion medium. It is appropriate to spray the dispersion liquid in an atmosphere of 50 to 300 ° C.
  • similar composite particles can be produced also by a granulation method by a mechanical method using a vibration type or planetary type ball mill or rod mill.
  • the SiO x in the case of manufacturing a granulated body with small carbon material resistivity value than SiO x is adding the carbon material in the dispersion liquid of SiO x are dispersed in a dispersion medium, the dispersion by using a liquid, by a similar method to the case of composite of SiO x may be a composite particle (granule). Further, by granulation process according to the similar mechanical method, it is possible to produce a granular material of the SiO x and the carbon material.
  • SiO x particles SiO x composite particles or a granulated body of SiO x and a carbon material
  • a carbon material for example, the SiO x particles and the hydrocarbon-based material
  • the gas is heated in the gas phase, and carbon generated by pyrolysis of the hydrocarbon-based gas is deposited on the surface of the particles.
  • the hydrocarbon-based gas spreads to every corner of the composite particle, and the surface of the particle and the pores in the surface are thin and contain a conductive carbon material. Since a uniform film (carbon material coating layer) can be formed, the SiO x particles can be imparted with good conductivity with a small amount of carbon material.
  • the processing temperature (atmosphere temperature) of the vapor deposition (CVD) method varies depending on the type of hydrocarbon gas, but usually 600 to 1200 ° C. is appropriate. Among these, the temperature is preferably 700 ° C. or higher, and more preferably 800 ° C. or higher. This is because the higher the treatment temperature, the less the remaining impurities, and the formation of a coating layer containing carbon having high conductivity.
  • toluene As the liquid source of the hydrocarbon-based gas, toluene, benzene, xylene, mesitylene and the like can be used, but toluene that is easy to handle is particularly preferable.
  • a hydrocarbon-based gas can be obtained by vaporizing them (for example, bubbling with nitrogen gas).
  • methane gas, acetylene gas, etc. can also be used.
  • SiO x particles SiO x composite particles or a granulated body of SiO x and a carbon material
  • a carbon material by a vapor deposition (CVD) method
  • a petroleum-based pitch or a coal-based pitch is used.
  • At least one organic compound selected from the group consisting of a thermosetting resin and a condensate of naphthalene sulfonate and aldehydes is attached to a coating layer containing a carbon material, and then the organic compound is attached.
  • the obtained particles may be fired.
  • a dispersion liquid in which a SiO x particle (SiO x composite particle or a granulated body of SiO x and a carbon material) coated with a carbon material and the organic compound are dispersed in a dispersion medium is prepared, The dispersion is sprayed and dried to form particles coated with the organic compound, and the particles coated with the organic compound are fired.
  • Isotropic pitch can be used as the pitch, and phenol resin, furan resin, furfural resin, or the like can be used as the thermosetting resin.
  • phenol resin, furan resin, furfural resin, or the like can be used as the thermosetting resin.
  • condensate of naphthalene sulfonate and aldehydes naphthalene sulfonic acid formaldehyde condensate can be used.
  • a dispersion medium for dispersing the SiO x particles coated with the carbon material and the organic compound for example, water or alcohols (ethanol or the like) can be used. It is appropriate to spray the dispersion liquid in an atmosphere of 50 to 300 ° C.
  • the firing temperature is usually 600 to 1200 ° C., preferably 700 ° C. or higher, and more preferably 800 ° C. or higher. This is because the higher the processing temperature, the less the remaining impurities, and the formation of a coating layer containing a high-quality carbon material with high conductivity. However, the processing temperature needs to be lower than the melting point of SiO x .
  • the negative electrode active material it is preferable to use graphite together with SiO x (preferably a composite of SiO x and a carbon material).
  • SiO x while a high capacity as compared with carbon materials, which is widely used as a negative electrode active material of a lithium ion secondary battery, as described above, since the volume change due to charging and discharging of the battery is large, the SiO x In a lithium ion secondary battery using a negative electrode having a negative electrode mixture layer with a high content rate, when charging and discharging are repeated, in addition to the deterioration in battery characteristics due to the decrease in conductivity of the non-aqueous electrolyte described above, the negative electrode ( The negative electrode mixture layer) may be deteriorated by a large volume change, and the battery characteristics may be deteriorated.
  • Graphite is widely used as a negative electrode active material for lithium ion secondary batteries, and has a relatively large capacity, while its volume change accompanying charging / discharging of the battery is smaller than that of SiO x . Therefore, by using SiO x and graphite in combination with the negative electrode active material, it is possible to repeatedly charge and discharge while suppressing as much as possible the effect of improving the capacity of the battery as the amount of SiO x used decreases. Therefore, it is possible to satisfactorily suppress the deterioration of the battery characteristics due to the deterioration of the negative electrode, which makes it possible to obtain a lithium ion secondary battery with more excellent charge / discharge cycle characteristics.
  • graphite used as the negative electrode active material together with the SiO x examples include natural graphite such as scaly graphite; graphitizable carbon such as pyrolytic carbons, mesophase carbon microbeads (MCMB), and carbon fibers at 2800 ° C. or higher.
  • Natural graphite such as scaly graphite
  • graphitizable carbon such as pyrolytic carbons, mesophase carbon microbeads (MCMB), and carbon fibers at 2800 ° C. or higher.
  • MCMB mesophase carbon microbeads
  • the content of the composite of carbon and the carbon material is preferably 0.01% by mass or more, more preferably 1% by mass or more, and more preferably 3% by mass or more. Further, from the viewpoint of better avoiding the problem due to the volume change of SiO x due to charge / discharge, the content of the composite of SiO x and the carbon material in the entire negative electrode active material is 20% by mass or less. Preferably, it is 15 mass% or less.
  • the content of the negative electrode active material in the negative electrode mixture layer (the total content of all negative electrode active materials) is preferably 80 to 99% by mass.
  • binder used for the negative electrode mixture layer examples include starch, polyvinyl alcohol, polyacrylic acid, carboxymethylcellulose (CMC), hydroxypropylcellulose, regenerated cellulose, diacetylcellulose, and other polysaccharides and modified products thereof; polyvinylchloride, Thermoplastic resins such as polyvinylpyrrolidone, polytetrafluoroethylene, polyvinylidene fluoride (PVDF), polyethylene, polypropylene, polyamideimide, polyamide, and their modified products; polyimide; ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM , Styrene-butadiene rubber (SBR), butadiene rubber, polybutadiene, fluororubber, polyethylene oxide and other polymers having rubber-like elasticity and their modified products; The recited, may be used alone or two or more thereof.
  • CMC carboxymethylcellulose
  • PVDF polyvinylidene fluoride
  • the binder content (total content of all binders) in the negative electrode mixture layer is preferably 1 to 20% by mass.
  • a conductive material may be further added to the negative electrode mixture layer as a conductive aid.
  • a conductive material is not particularly limited as long as it does not cause a chemical change in the lithium ion secondary battery.
  • carbon black thermal black, furnace black, channel black, ketjen black, acetylene black
  • carbon fiber carbon fiber
  • metal powder copper, nickel, aluminum, silver, etc.
  • metal fiber polyphenylene derivative (as described in JP-A-59-20971), etc. be able to.
  • carbon black is preferably used, and ketjen black and acetylene black are more preferable.
  • the particle size of the carbon material used as the conductive aid is, for example, the average particle size measured by the same method as the method for obtaining the average fiber length described above, or a laser scattering particle size distribution meter (for example, “LA- 920 "), the average particle diameter (D 50% ) measured by dispersing these fine particles in a medium is preferably 0.01 ⁇ m or more, more preferably 0.02 ⁇ m or more, It is preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the negative electrode mixture layer contains a conductive material as a conductive additive, it is preferable to use the negative electrode active material and the binder in a range that satisfies the above preferred values.
  • the negative electrode is, for example, a paste or slurry in which the above-described negative electrode active material and binder, and further a conductive auxiliary agent used as necessary are dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) or water.
  • NMP N-methyl-2-pyrrolidone
  • the binder may be dissolved in a solvent, and this is applied to one or both sides of the current collector, dried, and then subjected to calendering as necessary. It is manufactured through a process.
  • the manufacturing method of the negative electrode is not limited to the above method, and may be manufactured by other manufacturing methods.
  • the thickness of the negative electrode mixture layer is preferably, for example, 10 to 140 ⁇ m per side of the current collector.
  • the negative electrode current collector a copper or nickel foil, a punching metal, a net, an expanded metal, or the like can be used, but a copper foil is usually used.
  • the upper limit of the thickness is preferably 30 ⁇ m, and the lower limit is 5 ⁇ m in order to ensure mechanical strength. Is desirable.
  • the non-aqueous electrolyte according to the present invention contains at least an electrolyte salt and an organic solvent, and is a solution in which the electrolyte salt is dissolved in the organic solvent.
  • the organic solvent used in the non-aqueous electrolyte is not particularly limited as long as it dissolves an electrolyte salt and does not cause a side reaction such as decomposition in a voltage range used as a battery.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, chain carbonates such as dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate
  • chain esters such as methyl propionate Cyclic esters such as ⁇ -butyrolactone
  • chain ethers such as dimethoxyethane, diethyl ether, 1,3-dioxolane, diglyme, triglyme and tetraglyme
  • cyclic ethers such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran
  • acetonitrile and propio Nitriles such as nitrile and methoxypro
  • the electrolyte salt used for the non-aqueous electrolyte is not particularly limited as long as it dissociates in a solvent to form lithium ions and does not easily cause a side reaction such as decomposition in a voltage range used as a battery.
  • inorganic lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ⁇ 2), imide salts [lithium imide salts such as LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 ; LiN (RfOSO 2 ) 2 [
  • Rf is a fluorine-containing lithium imide salt such as a fluoroalkyl group
  • the electrolyte salt those exemplified
  • the concentration of the electrolyte salt is a conductivity (electric conductivity) in the non-aqueous electrolyte solution containing the electrolyte salt and an organic solvent that dissolves the electrolyte salt.
  • a conductivity electric conductivity
  • organic solvent that dissolves the electrolyte salt.
  • a lithium ion secondary battery as one method for increasing the capacity, it is also known to increase the amount of active material introduced into the battery by increasing the thickness of the positive electrode mixture layer and the negative electrode mixture layer.
  • the concentration gradient of lithium ions in the electrode mixture layer increases, and the lithium ion concentration decreases in the deep layer portion (near the current collector) of the electrode mixture layer.
  • the active material present in such a region cannot sufficiently absorb and release lithium ions, and the effect of increasing the capacity by increasing the thickness of the electrode mixture layer may not be sufficiently exhibited.
  • non-aqueous electrolyte used for the lithium secondary battery of the present invention has a conductivity that is too low, there is a possibility of causing a decrease in battery characteristics. Therefore, non-aqueous electrolyte used in the lithium secondary battery of the present invention, the conductivity at 25 ° C., and a 6.5 ms / cm 2 or more, preferably 8.5 mS / cm 2 or more, 16 mS / cm 2 or less, and preferably 15 mS / cm 2 or less.
  • the conductivity of the non-aqueous electrolyte varies depending on the type of electrolyte salt and organic solvent used, but the concentration of the electrolyte salt in the non-aqueous electrolyte used when assembling the lithium ion secondary battery is the same as that of the electrolyte salt. What is necessary is just to set so that the conductivity in the non-aqueous electrolyte containing the organic solvent which dissolves it exceeds the concentration at which the maximum value is obtained, and for example, the conductivity at 25 ° C. is used as a guide.
  • the concentration of the electrolyte salt in the nonaqueous electrolytic solution is preferably higher than 1.0 mol / L (liter), more preferably 1.2 mol / L or more, It is preferable to make it lower than 30 mol / L, and it is more preferable to set it as 5 mol / L or less.
  • the concentration of the electrolyte salt in the nonaqueous electrolytic solution means the total concentration of the electrolyte salts when two or more electrolyte salts are used in combination. That is, for example, in the case of a nonaqueous electrolytic solution containing electrolyte salt A at a concentration of amol / L and electrolyte salt B at a concentration of bmol / L, the concentration of the electrolyte salt is “(a + b) mol / L”.
  • the concentration at which the conductivity in the nonaqueous electrolytic solution containing the electrolyte salt and the organic solvent for dissolving the electrolyte salt is a maximum value
  • the conductivity is a maximum value
  • concentration exceeding the concentration means that the conductivity is the maximum value when the molar ratio of two or more electrolyte salts used in combination is constant and the concentration of these electrolyte salts in the non-aqueous electrolyte is changed. Means a concentration that exceeds and exceeds that concentration.
  • the nonaqueous electrolytic solution preferably contains a halogen-substituted cyclic carbonate.
  • the halogen-substituted cyclic carbonate in the non-aqueous electrolyte contributes to the formation of the SEI film on the surface of the negative electrode active material, and improves the properties of the SEI film. Therefore, when a non-aqueous electrolyte containing a halogen-substituted cyclic carbonate is used, the charge / discharge cycle characteristics of the lithium ion secondary battery can be further improved.
  • halogen-substituted cyclic carbonate a compound represented by the following general formula (1) can be used.
  • R 1 , R 2 , R 3 and R 4 represent hydrogen, a halogen element or an alkyl group having 1 to 10 carbon atoms, and a part or all of the hydrogen in the alkyl group is halogen. may be substituted with an element, at least one of R 1, R 2, R 3 and R 4 are halogen, R 1, R 2, R 3 and R 4 have different respective Two or more may be the same.
  • R 1 , R 2 , R 3 and R 4 are alkyl groups, the smaller the number of carbon atoms, the better.
  • the halogen element fluorine is particularly preferable.
  • FEC 4-fluoro-1,3-dioxolan-2-one
  • the content of the halogen-substituted cyclic carbonate in the non-aqueous electrolyte used for the lithium ion secondary battery is preferably 0.1% by mass or more from the viewpoint of better ensuring the effect of its use. More preferably, it is 5% by mass or more. However, if the content of the halogen-substituted cyclic carbonate in the non-aqueous electrolyte is too large, the battery may be liable to swell. Therefore, the content of the halogen-substituted cyclic carbonate in the nonaqueous electrolytic solution used for the lithium ion secondary battery is preferably 10% by mass or less, and more preferably 5% by mass or less.
  • the non-aqueous electrolyte contains vinylene carbonate (VC).
  • VC in the non-aqueous electrolyte also contributes to the formation of the SEI film on the surface of the negative electrode active material and improves the properties of the SEI film, but particularly in the case of a battery having a negative electrode containing graphite in the negative electrode active material. The effect becomes more remarkable. Therefore, when graphite is used together with SiO x as the negative electrode active material and a non-aqueous electrolyte containing VC is used, the charge / discharge cycle characteristics of the lithium ion secondary battery can be further improved.
  • the content of VC in the non-aqueous electrolyte used for the lithium ion secondary battery is preferably 1% by mass or more, and more preferably 1.5% by mass or more.
  • the content ratio of VC in the nonaqueous electrolytic solution used for the lithium ion secondary battery is preferably 10% by mass or less, and more preferably 5% by mass or less.
  • phosphonoacetates such as triethylphosphonoacetate (TEPA) and 1,3-propane sultone are used for the purpose of further improving the safety, charge / discharge cycleability, and high-temperature storage properties of these non-aqueous electrolytes.
  • Additives such as diphenyl disulfide, cyclohexylbenzene, biphenyl, fluorobenzene, and t-butylbenzene can be appropriately added.
  • the lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, and the negative electrode is the above-described negative electrode and uses the non-aqueous electrolyte.
  • the structure and structure are not particularly limited, and various structures and structures employed in conventionally known lithium ion secondary batteries can be applied.
  • the positive electrode for example, one having a structure in which a positive electrode mixture layer containing a positive electrode active material, a binder, a conductive additive and the like is provided on one side or both sides of a current collector can be used.
  • the positive electrode active material is not particularly limited as long as it is, for example, a material used in a conventionally known lithium ion secondary battery, that is, an active material capable of occluding and releasing Li ions.
  • lithium-containing transition metal oxide having a layered structure examples include LiCoO 2 and LiNi 1-a Co ab Al b O 2 (0.1 ⁇ a ⁇ 0.3, 0.01 ⁇ b ⁇ 0. 2) and other oxides containing at least Co, Ni and Mn (LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiMn 5/12 Ni 5/12 Co 1/6 O 2 , LiMn 3 / 5 Ni 1/5 Co 1/5 O 2 etc.).
  • the conductive auxiliary agent for the positive electrode only needs to be chemically stable in the lithium ion secondary battery.
  • graphite such as natural graphite (flaky graphite), artificial graphite; carbon black such as acetylene black, ketjen black (trade name), channel black, furnace black, lamp black, thermal black; carbon fiber, metal fiber, etc.
  • highly conductive graphite and carbon black excellent in liquid absorption are preferable.
  • the form of the conductive auxiliary agent is not limited to primary particles, and secondary aggregates and aggregated forms such as chain structures can also be used. Such an assembly is easier to handle and has better productivity.
  • the same binders as those exemplified above as the binder that can be used for the negative electrode can be used.
  • the positive electrode for example, a paste-like or slurry-like positive electrode mixture-containing composition in which the above-described positive electrode active material, binder and conductive additive are dispersed in a solvent such as NMP is prepared (however, the binder is dissolved in the solvent). It may be manufactured through a step of applying a calender treatment as necessary after applying it to one or both sides of the current collector and drying it.
  • the manufacturing method of the positive electrode is not limited to the above method, and may be manufactured by other manufacturing methods.
  • the positive electrode current collector As the positive electrode current collector, the same ones used for positive electrodes of conventionally known lithium ion secondary batteries can be used.
  • an aluminum foil having a thickness of 10 to 30 ⁇ m is preferable.
  • the composition of the positive electrode mixture layer is, for example, 80.0 to 99.8% by mass of the positive electrode active material, 0.1 to 10% by mass of the conductive auxiliary agent, and 0.1 to 10% by mass of the binder. It is preferable.
  • the thickness of the positive electrode mixture layer is preferably 10 to 120 ⁇ m per side of the current collector.
  • the separator according to the lithium ion secondary battery has a property of closing the pores (that is, a shutdown function) at 80 ° C. or higher (more preferably 100 ° C. or higher) and 170 ° C. or lower (more preferably 150 ° C. or lower).
  • a separator used in a normal lithium ion secondary battery for example, a microporous film made of polyolefin such as polyethylene (PE) or polypropylene (PP) can be used.
  • the microporous film constituting the separator may be, for example, one using only PE or one using PP, or a laminate of a PE microporous film and a PP microporous film. There may be.
  • the thickness of the separator is preferably 10 to 30 ⁇ m, for example.
  • the positive electrode, the negative electrode, and the separator are formed in the form of a laminated electrode body in which a separator is interposed between the positive electrode and the negative electrode, or a wound electrode body in which the separator is wound in a spiral shape. It can be used for the lithium ion secondary battery of the invention.
  • Examples of the form of the lithium ion secondary battery of the present invention include a cylindrical shape (such as a rectangular tube shape or a cylindrical shape) using a steel can or an aluminum can as an exterior body. Moreover, it can also be set as the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.
  • the lithium ion secondary battery of the present invention preferably has a high capacity and good high-output discharge characteristics.
  • the current value that can discharge the battery capacity (design capacity) in one hour is A ( mA)
  • the area of the positive electrode mixture layer and the negative electrode mixture layer facing each other is B (cm 2 )
  • a / B ⁇ 4 it is preferable that the relationship of A / B ⁇ 4 is satisfied.
  • a capacity density of 170 Wh / kg or more can be secured.
  • the present invention can be preferably applied to applications that require a high capacity and high output discharge characteristics, such as power supply applications and various backup power supply applications.
  • a negative electrode containing SiO x and a higher capacity positive electrode active material for example, a lithium-containing transition metal containing Ni
  • the active material introduced into the battery can be increased by using a positive electrode containing an oxide), increasing the density of the positive / negative electrode mixture layer, or increasing the thickness of the positive / negative electrode mixture layer.
  • the concentration gradient of lithium ions in the mixture layer is increased, so that the active material present in the deep layer portion
  • the concentration gradient of lithium ions in the mixture layer can be reduced by using the non-aqueous electrolyte described above. Therefore, the capacity that the battery originally has can be effectively extracted.
  • lithium ion secondary batteries applied to the above-mentioned applications may be charged again without using up all of the capacity during discharge. Often used in. Therefore, particularly in a lithium ion secondary battery applied to such a use, it is required that the charge / discharge cycle characteristics in a region where the SOC (State of charge) is relatively high be good. In such lithium ion secondary batteries, such charge / discharge cycle characteristics are also excellent.
  • the conductivity at 25 ° C. of the non-aqueous electrolyte shown in this example is a value measured using an electric conductivity meter “CM-31P” and an electric conductivity cell “CT27112B” manufactured by Toa DKK Corporation.
  • Example 1 Preparation of positive electrode> Li 1.02 Ni 0.94 Mn 0.03 Mg 0.03 O 2 as a positive electrode active material: 94 parts by mass, acetylene black as a conductive additive: 6 parts by mass, and PVDF as a binder: 2 parts by mass , NMP was mixed in a uniform manner as a solvent to prepare a positive electrode mixture-containing paste.
  • This paste was intermittently applied to both sides of a 15 ⁇ m thick aluminum foil serving as a current collector so that the coating amount on one side was 23 mg / cm 2 , the coating length was 280 mm on the front side, and 210 mm on the back side.
  • the thickness of the positive electrode mixture layer was adjusted to 87 ⁇ m per one side of the current collector, and cut to a width of 43 mm to produce a positive electrode. Then, tab attachment was performed to the exposed part of the aluminum foil in a positive electrode.
  • ⁇ Production of negative electrode> A composite in which the surface of SiO having an average particle diameter of 8 ⁇ m is coated with a carbon material (the amount of the carbon material in the composite is 10 mass%, hereinafter referred to as “SiO / carbon material composite”), and the average particle diameter is Negative electrode active material obtained by mixing graphite having a size of 16 ⁇ m in an amount such that the amount of the SiO / carbon material composite is 3.7% by mass: 98 parts by mass and PVDF: 5 parts by mass are uniform using water as a solvent. Thus, a negative electrode mixture-containing paste was prepared.
  • This paste was intermittently applied to both sides of a 10 ⁇ m thick collector made of copper foil so that the coating amount on one side was 9.8 mg / cm 2 , the coating length was 290 mm, and the back side was 230 mm, and dried, Calendar treatment was performed so that the thickness of the negative electrode mixture layer was adjusted to 59 ⁇ m per one side of the current collector, and the negative electrode was produced by cutting to a width of 45 mm. Then, tab attachment was performed to the exposed part of the copper foil in a negative electrode.
  • a separator a microporous film made of PE-PP for a lithium secondary battery in which a microporous film made of PE and a microporous film made of PP were laminated.
  • This is a membrane separator, with a thickness of 16 ⁇ m, a porosity of 40%, an average pore diameter of 0.08 ⁇ m, a PE melting point of 135 ° C., and a PP melting point of 165 ° C. did.
  • the obtained wound body electrode group was crushed into a flat shape, placed in an aluminum outer can having a thickness of 4 mm, a height of 50 mm, and a width of 34 mm, and an electrolytic solution (EC and DMC dimethyl carbonate were mixed at a volume ratio of 2 to 8).
  • a lithium ion secondary battery having the appearance shown in FIG. In this lithium ion secondary battery, the relationship A / B between the current value A (mA) that can discharge the battery capacity in one hour and the facing area B (cm 2 ) between the positive electrode mixture layer and the negative electrode mixture layer is 4.
  • the positive electrode 1 and the negative electrode 2 are formed in a rectangular outer can 4 as a wound electrode body 6 wound in a spiral shape through the separator 3 as described above. Contained with electrolyte. However, in FIG. 1, in order to avoid complication, a metal foil, a non-aqueous electrolyte, or the like as a current collector used for manufacturing the positive electrode 1 and the negative electrode 2 is not illustrated.
  • the outer can 4 constitutes the outer packaging material of the battery, and the outer can 4 also serves as a positive electrode terminal.
  • the insulator 5 which consists of PE sheets is arrange
  • a stainless steel terminal 11 is attached to an aluminum alloy lid plate 9 for sealing the opening of the outer can 4 via a PP insulating packing 10 via an insulator 12.
  • a stainless steel lead plate 13 is attached.
  • the cover plate 9 is inserted into the opening of the outer can 4 and welded to join the opening of the outer can 4 so that the inside of the battery is sealed.
  • the lid plate 9 is provided with a liquid injection hole (14 in the figure). When the battery is assembled, a nonaqueous electrolyte is injected into the battery from the liquid injection hole, and then the liquid injection hole. Is sealed.
  • the cover plate 9 is provided with an explosion-proof safety valve 15.
  • the outer can 4 and the lid plate 9 function as positive terminals by directly welding the positive electrode current collector plate 7 to the lid plate 9, and the negative electrode current collector plate 8 is welded to the lead plate 13.
  • the terminal 11 functions as a negative electrode terminal by connecting the negative electrode current collector plate 8 and the terminal 11 through the lead plate 13.
  • the sign may be reversed. Sometimes it becomes.
  • FIG. 2 is a perspective view schematically showing the external appearance of the battery shown in FIG. 1.
  • FIG. 2 is shown for the purpose of showing that the battery is a square battery.
  • FIG. 1 schematically shows a battery, and only specific ones of the constituent members of the battery are shown. Also in FIG. 1, the inner peripheral portion of the electrode body is not cross-sectional.
  • Example 2 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the concentration of LiPF 6 was changed to 1.6 mol / L, and the lithium ion solution was prepared in the same manner as in Example 1 except that this nonaqueous electrolytic solution was used. A secondary battery was produced. The conductivity of this nonaqueous electrolytic solution at 25 ° C. was 11.8 mS / cm 2 .
  • Example 3 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the concentration of LiPF 6 was changed to 1.4 mol / L, and the lithium ion solution was prepared in the same manner as in Example 1 except that this nonaqueous electrolytic solution was used. A secondary battery was produced. The conductivity of this non-aqueous electrolyte at 25 ° C. was 12.2 mS / cm 2 .
  • Example 4 A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that DEC was used instead of DMC, and a lithium ion secondary battery was prepared in the same manner as in Example 1 except that this non-aqueous electrolyte was used. .
  • the conductivity of this nonaqueous electrolytic solution at 25 ° C. was 6.9 mS / cm 2 .
  • Example 5 LiPF 6 and LiBF 4 are used together in an electrolyte salt at a molar ratio of 3: 1, and the total concentration of these is 1.6 mol / L (concentration of LiPF 6 : 1.2 mol / L, concentration of LiBF 4 : 0.4 mol) / L), a non-aqueous electrolyte was prepared in the same manner as in Example 1, and a lithium ion secondary battery was produced in the same manner as in Example 1 except that this non-aqueous electrolyte was used.
  • the conductivity of this nonaqueous electrolytic solution at 25 ° C. was 6.5 mS / cm 2 .
  • Example 6 LiPF 6 and LiN (CF 3 SO 2 ) 2 were used in combination at a molar ratio of 3: 1 to the electrolyte salt, and the total concentration of these was 1.6 mol / L [LiPF 6 concentration: 1.2 mol / L, LiN ( Except that the concentration of CF 3 SO 2 ) 2 was 0.4 mol / L], a non-aqueous electrolyte was prepared in the same manner as in Example 1, and the same as Example 1 except that this non-aqueous electrolyte was used. Thus, a lithium ion secondary battery was produced. The conductivity of this nonaqueous electrolytic solution at 25 ° C. was 7.6 mS / cm 2 .
  • Example 7 A positive electrode was produced in the same manner as in Example 1 except that the coating amount of the positive electrode mixture-containing paste was changed to 15 mg / cm 2 per side of the current collector. Further, a negative electrode was produced in the same manner as in Example 1 except that the coating amount of the negative electrode mixture-containing paste was changed to 9.5 mg / cm 2 per side of the current collector. And the lithium ion secondary battery was produced like Example 1 except having used these positive electrodes and negative electrodes. In this lithium ion secondary battery, the relationship A / B between the current value A (mA) that can discharge the battery capacity in one hour and the facing area B (cm 2 ) between the positive electrode mixture layer and the negative electrode mixture layer is 2.6.
  • Comparative Example 1 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the concentration of LiPF 6 was changed to 1.0 mol / L, and the lithium ion solution was prepared in the same manner as in Example 1 except that this nonaqueous electrolytic solution was used. A secondary battery was produced. The conductivity of this nonaqueous electrolytic solution at 25 ° C. was 11.8 mS / cm 2 .
  • Comparative Example 2 Using only PC as a solvent, LiPF 6 was dissolved at a concentration of 1.0 mol / L to prepare a non-aqueous electrolyte. And the lithium ion secondary battery was produced like Example 1 except having used this non-aqueous electrolyte. The conductivity of this nonaqueous electrolytic solution at 25 ° C. was 5.8 mS / cm 2 .
  • concentration of the electrolyte salt from which the conductivity of the nonaqueous electrolyte solution used for each lithium ion secondary battery of an Example and a comparative example becomes the maximum is as follows.
  • Example 5 (electrolyte salt: LiPF 6 and LiBF 4 are used in a molar ratio of 3: 1, organic solvent: EC / DMC mixed solvent of volume ratio 2: 8): 1.2 mol / L
  • electrolyte salt: LiPF 6 and LiN (CF 3 SO 2 ) 2 are
  • FIG. 3 shows a graph showing the relationship between the electrolyte salt concentration and conductivity of each non-aqueous electrolyte used in the lithium ion secondary batteries of Examples 1 to 3, 7 and Comparative Example 1.
  • the lithium ion secondary batteries of Examples 1 to 7 using a non-aqueous electrolyte whose electrolyte salt concentration exceeds the maximum concentration of conductivity are shown in FIGS.
  • the initial capacity The number of cycles in which 40% of discharge was possible was large, and high charge / discharge cycle characteristics could be secured while including a negative electrode containing SiO x .
  • the A / B value was set to 4 to increase the capacity, but in these batteries, the A / B value was set to 2
  • the lithium ion secondary battery of Example 7 set to .6 a large capacity density can be secured, and even if the positive and negative electrode mixture layers are thick, the active material existing in the deep layer portion can be used well. It is thought that.
  • the lithium ion secondary batteries of Examples 1 to 7 have high retention capacity and recovery capacity after the storage test, and excellent storage characteristics.
  • the lithium ion secondary battery of the present invention is preferably used for the same applications as those to which conventionally known lithium ion secondary batteries are applied, including applications such as industrial machine power supplies and various backup power supplies. Can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】 SiとOとを構成元素に含む材料を負極活物質としつつ、充放電サイクル特性に優れたリチウムイオン二次電池を提供する。 【解決手段】 正極合剤層を有する正極、負極、セパレータ、および電解質塩と有機溶媒とを少なくとも含有する非水電解液を有するリチウムイオン二次電池であって、前記負極は、SiとOとを構成元素に含む材料(ただし、Siに対するOの原子比xは、0.5≦x≦1.5である)を負極活物質として含有する負極合剤層を有しており、前記非水電解液に、電解質塩の濃度が、前記電解質塩と前記有機溶媒とを含む非水電解液における伝導度が極大値となる濃度を超えており、かつ25℃の伝導度が6.5~16mS/cmのものを使用したことを特徴とするリチウムイオン二次電池により、前記課題を解決する。

Description

リチウムイオン二次電池
 本発明は、SiとOとを構成元素に含む材料を負極活物質としつつ、充放電サイクル特性に優れたリチウムイオン二次電池に関するものである。
 リチウムイオン二次電池をはじめとする非水電解質二次電池は、高電圧・高容量であることから、各種携帯機器の電源として広く採用されている。また、近年では電動工具などのパワーツールや、電気自動車・電動式自転車など、中型・大型サイズでの用途も広がりを見せている。
 こうした事情の下、リチウムイオン二次電池には更なる高容量化が求められており、その手段として、高い充放電容量を示す電極活物質の研究・開発が進んでいる。なかでも、負極の活物質材料としては、従来のリチウムイオン二次電池に採用されている黒鉛などの炭素質材料に代えて、シリコン(Si)、スズ(Sn)など、より多くのリチウム(イオン)を吸蔵・放出可能な材料が注目されている、とりわけ、Siの超微粒子がSiO中に分散した構造を持つSiOは、負荷特性に優れるなどの特徴も併せ持つことが知られている。
 ところが、SiOは電池の充放電に伴う体積変化が大きいため、これを用いた電池では、充放電の繰り返しによって電池特性が急激に低下する虞がある。
 また、こうした問題の解決を図る技術の検討もなされている。例えば、特許文献1には、SiOと共に黒鉛を用いた負極と、特定組成のLi含有遷移金属酸化物を用いた正極とを組み合わせ、更に2.5Vまで放電した際の負極の電位を制御することで、高容量であり、かつ高い電池特性を確保し得た非水二次電池が提案されている。
 一方、こうした技術とは別に、リチウムイオン二次電池に使用する非水電解液の構成を調整することで、リチウムイオン二次電池の電池特性を改善する技術も知られている(例えば、特許文献2~4)。
特開2011-113863号公報 特開2003-173821号公報 特開2003-243029号公報 特開2011-192561号公報
 本発明は、前記事情に鑑みてなされたものであり、その目的は、SiとOとを構成元素に含む材料を負極活物質としつつ、充放電サイクル特性に優れたリチウムイオン二次電池を提供することにある。
 前記目的を達成し得た本発明のリチウムイオン二次電池は、正極合剤層を有する正極、負極、セパレータ、および電解質塩と有機溶媒とを少なくとも含有する非水電解液を有するものであって、前記負極は、SiとOとを構成元素に含む材料(ただし、Siに対するOの原子比xは、0.5≦x≦1.5である。以下、当該材料をSiOと記載する。)を負極活物質として含有する負極合剤層を有しており、前記非水電解液に、電解質塩の濃度が、前記電解質塩と前記有機溶媒とを含有する非水電解液における伝導度が極大値となる濃度を超えており、かつ25℃の伝導度が6.5~16mS/cmのものを使用したことを特徴とするものである。
 本発明によれば、SiとOとを構成元素に含む材料を負極活物質としつつ、充放電サイクル特性に優れたリチウムイオン二次電池を提供することができる。
本発明のリチウムイオン二次電池の一例を模式的に示す図で、(a)はその平面図、(b)はその部分縦断面図である。 図1に示すリチウムイオン二次電池の斜視図である。 実施例1~3、7および比較例1のリチウムイオン二次電池に使用した非水電解液の電解質塩の濃度と伝導度との関係を表すグラフである。
 SiOを含む負極を有するリチウムイオン二次電池において、充放電を繰り返すと、その充放電に伴うSiOの膨張収縮によって、SiO粒子が微粉化して新生面が形成される。この新生面では、SiO中に含まれる高活性のSi(詳しくは後述する)が露出し、このSiが非水電解液の分解を引き起こすことで、非水電解液中の電解質塩由来のリチウムイオンと非水電解液成分の分解反応生成物とを含むSEI(Solid Electrolyte Interface)皮膜が形成される。
 このSEI皮膜は、SiO新生面と非水電解液との直接の接触を防止することで、この新生面での非水電解液の分解反応の抑制に寄与するが、電池の充放電に伴ってSiO粒子の微粉化が進むことで新生面が次々と生じるため、その新生面を被覆するSEI皮膜の形成も繰り返され、その結果、非水電解液中の電解質塩の消費が進んで、その量が減少する(すなわち、非水電解液中の電解質塩の濃度が低下する)。
 本発明者らは、鋭意検討を重ねた結果、SiOを含む負極を有するリチウムイオン二次電池において、充放電に伴って生じる非水電解液中の電解質塩量の減少による非水電解液の伝導度の低下が、充放電サイクル特性を損なう一要因であることを突き止めた。
 そこで、本発明のリチウムイオン二次電池では、SiOを含む負極と、電解質塩の濃度が、伝導度が極大値となる濃度を超えている非水電解液とを組み合わせることで、充放電を繰り返すことで電解質塩の消費が進んでも、非水電解液の伝導度の低下を可及的に抑制できるようにして、その充放電サイクル特性を高めている。
 本発明のリチウムイオン二次電池に係る負極には、例えば、負極活物質やバインダ、更には必要に応じて導電助剤などを含有する負極合剤層を、集電体の片面または両面に有する構造のものを使用することができる。
 負極活物質には、SiOを使用する。SiOは、Siの微結晶または非晶質相を含んでいてもよく、この場合、SiとOの原子比は、Siの微結晶または非晶質相のSiを含めた比率となる。すなわち、SiOには、非晶質のSiOマトリックス中に、Si(例えば、微結晶Si)が分散した構造のものが含まれ、この非晶質のSiOと、その中に分散しているSiを合わせて、前記の原子比xが0.5≦x≦1.5を満足していればよい。例えば、非晶質のSiOマトリックス中に、Siが分散した構造で、SiOとSiのモル比が1:1の材料の場合、x=1であるので、構造式としてはSiOで表記される。このような構造の材料の場合、例えば、X線回折分析では、Si(微結晶Si)の存在に起因するピークが観察されない場合もあるが、透過型電子顕微鏡で観察すると、微細なSiの存在が確認できる。
 そして、SiOは、炭素材料と複合化した複合体であることが好ましく、例えば、SiOの表面が炭素材料で被覆されていることが望ましい。SiOは導電性が乏しいため、これを負極活物質として用いる際には、良好な電池特性確保の観点から、導電性材料(導電助剤)を使用し、負極内におけるSiOと導電性材料との混合・分散を良好にして、優れた導電ネットワークを形成する必要がある。SiOを炭素材料と複合化した複合体であれば、例えば、単にSiOと炭素材料などの導電性材料とを混合して得られた材料を用いた場合よりも、負極における導電ネットワークが良好に形成される。
 SiOと炭素材料との複合体としては、前記のように、SiOの表面を炭素材料で被覆したものの他、SiOと炭素材料との造粒体などが挙げられる。
 また、前記の、SiOの表面を炭素材料で被覆した複合体を、更に導電性材料(炭素材料など)と複合化して用いることで、負極において更に良好な導電ネットワークの形成が可能となるため、より高容量で、より電池特性(例えば、充放電サイクル特性)に優れたリチウムイオン二次電池の実現が可能となる。炭素材料で被覆されたSiOと炭素材料との複合体としては、例えば、炭素材料で被覆されたSiOと炭素材料との混合物を更に造粒した造粒体などが挙げられる。
 また、表面が炭素材料で被覆されたSiOとしては、SiOとそれよりも比抵抗値が小さい炭素材料との複合体(例えば造粒体)の表面が、更に炭素材料で被覆されてなるものも、好ましく用いることができる。前記造粒体内部でSiOと炭素材料とが分散した状態であると、より良好な導電ネットワークを形成できるため、SiOを負極活物質として含有する負極を有するリチウムイオン二次電池において、重負荷放電特性などの電池特性を更に向上させることができる。
 SiOとの複合体の形成に用い得る前記炭素材料としては、例えば、低結晶性炭素、カーボンナノチューブ、気相成長炭素繊維などの炭素材料が好ましいものとして挙げられる。
 前記炭素材料の詳細としては、繊維状またはコイル状の炭素材料、カーボンブラック(アセチレンブラック、ケッチェンブラックを含む)、人造黒鉛、易黒鉛化炭素および難黒鉛化炭素よりなる群から選ばれる少なくとも1種の材料が好ましい。繊維状またはコイル状の炭素材料は、導電ネットワークを形成し易く、かつ表面積の大きい点において好ましい。カーボンブラック(アセチレンブラック,ケッチェンブラックを含む)、易黒鉛化炭素および難黒鉛化炭素は、高い電気伝導性、高い保液性を有しており、さらに、SiO粒子が膨張収縮しても、その粒子との接触を保持し易い性質を有している点において好ましい。
 負極活物質には、後述するように黒鉛も使用することが好ましいが、この黒鉛を、SiOと炭素材料との複合体に係る炭素材料として使用することもできる。黒鉛も、カーボンブラックなどと同様に、高い電気伝導性、高い保液性を有しており、更に、SiO粒子が膨張収縮しても、その粒子との接触を保持し易い性質を有しているため、SiOとの複合体形成に好ましく使用することができる。
 前記例示の炭素材料の中でも、SiOとの複合体が造粒体である場合に用いるものとしては、繊維状の炭素材料が特に好ましい。繊維状の炭素材料は、その形状が細い糸状であり柔軟性が高いために電池の充放電に伴うSiOの膨張収縮に追従でき、また、嵩密度が大きいために、SiO粒子と多くの接合点を持つことができるからである。繊維状の炭素としては、例えば、ポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、カーボンナノチューブなどが挙げられ、これらの何れを用いてもよい。
 なお、繊維状の炭素材料は、例えば、気相法にてSiO粒子の表面に形成することもできる。
 SiOの比抵抗値が、通常、10~10kΩcmであるのに対して、前記例示の炭素材料の比抵抗値は、通常、10-5~10kΩcmである。また、SiOと炭素材料との複合体は、粒子表面の炭素材料被覆層を覆う材料層(難黒鉛化炭素を含む材料層)を更に有していてもよい。
 負極にSiOと炭素材料との複合体を使用する場合、SiOと炭素材料との比率は、炭素材料との複合化による作用を良好に発揮させる観点から、SiO:100質量部に対して、炭素材料が、5質量部以上であることが好ましく、10質量部以上であることがより好ましい。また、前記複合体において、SiOと複合化する炭素材料の比率が多すぎると、負極合剤層中のSiO量の低下に繋がり、高容量化の効果が小さくなる虞があることから、SiO:100質量部に対して、炭素材料は、50質量部以下であることが好ましく、40質量部以下であることがより好ましい。
 前記のSiOと炭素材料との複合体は、例えば下記の方法によって得ることができる。
 まず、SiOを複合化する場合の作製方法について説明する。SiOが分散媒に分散した分散液を用意し、それを噴霧し乾燥して、複数の粒子を含む複合粒子を作製する。分散媒としては、例えば、エタノールなどを用いることができる。分散液の噴霧は、通常、50~300℃の雰囲気内で行うことが適当である。前記の方法以外にも、振動型や遊星型のボールミルやロッドミルなどを用いた機械的な方法による造粒方法においても、同様の複合粒子を作製することができる。
 なお、SiOと、SiOよりも比抵抗値の小さい炭素材料との造粒体を作製する場合には、SiOが分散媒に分散した分散液中に前記炭素材料を添加し、この分散液を用いて、SiOを複合化する場合と同様の手法によって複合粒子(造粒体)とすればよい。また、前記と同様の機械的な方法による造粒方法によっても、SiOと炭素材料との造粒体を作製することができる。
 次に、SiO粒子(SiO複合粒子、またはSiOと炭素材料との造粒体)の表面を炭素材料で被覆して複合体とする場合には、例えば、SiO粒子と炭化水素系ガスとを気相中にて加熱して、炭化水素系ガスの熱分解により生じた炭素を、粒子の表面上に堆積させる。このように、気相成長(CVD)法によれば、炭化水素系ガスが複合粒子の隅々にまで行き渡り、粒子の表面や表面の空孔内に、導電性を有する炭素材料を含む薄くて均一な皮膜(炭素材料被覆層)を形成できることから、少量の炭素材料によってSiO粒子に均一性よく導電性を付与できる。
 炭素材料で被覆されたSiOの製造において、気相成長(CVD)法の処理温度(雰囲気温度)については、炭化水素系ガスの種類によっても異なるが、通常、600~1200℃が適当であり、中でも、700℃以上であることが好ましく、800℃以上であることが更に好ましい。処理温度が高い方が不純物の残存が少なく、かつ導電性の高い炭素を含む被覆層を形成できるからである。
 炭化水素系ガスの液体ソースとしては、トルエン、ベンゼン、キシレン、メシチレンなどを用いることができるが、取り扱い易いトルエンが特に好ましい。これらを気化させる(例えば、窒素ガスでバブリングする)ことにより炭化水素系ガスを得ることができる。また、メタンガスやアセチレンガスなどを用いることもできる。
 また、気相成長(CVD)法にてSiO粒子(SiO複合粒子、またはSiOと炭素材料との造粒体)の表面を炭素材料で覆った後に、石油系ピッチ、石炭系のピッチ、熱硬化性樹脂、およびナフタレンスルホン酸塩とアルデヒド類との縮合物よりなる群から選択される少なくとも1種の有機化合物を、炭素材料を含む被覆層に付着させた後、前記有機化合物が付着した粒子を焼成してもよい。
 具体的には、炭素材料で被覆されたSiO粒子(SiO複合粒子、またはSiOと炭素材料との造粒体)と、前記有機化合物とが分散媒に分散した分散液を用意し、この分散液を噴霧し乾燥して、有機化合物によって被覆された粒子を形成し、その有機化合物によって被覆された粒子を焼成する。
 前記ピッチとしては等方性ピッチを、熱硬化性樹脂としてはフェノール樹脂、フラン樹脂、フルフラール樹脂などを用いることができる。ナフタレンスルホン酸塩とアルデヒド類との縮合物としては、ナフタレンスルホン酸ホルムアルデヒド縮合物を用いることができる。
 炭素材料で被覆されたSiO粒子と前記有機化合物とを分散させるための分散媒としては、例えば、水、アルコール類(エタノールなど)を用いることができる。分散液の噴霧は、通常、50~300℃の雰囲気内で行うことが適当である。焼成温度は、通常、600~1200℃が適当であるが、中でも700℃以上が好ましく、800℃以上であることが更に好ましい。処理温度が高い方が不純物の残存が少なく、かつ導電性の高い良質な炭素材料を含む被覆層を形成できるからである。ただし、処理温度はSiOの融点以下であることを要する。
 負極活物質には、SiO(好ましくはSiOと炭素材料との複合体)と共に、黒鉛を使用することが好ましい。SiOは、リチウムイオン二次電池の負極活物質として汎用されている炭素材料に比べて高容量である一方で、前記の通り、電池の充放電に伴う体積変化量が大きいため、SiOの含有率の高い負極合剤層を有する負極を用いたリチウムイオン二次電池では、充放電を繰り返した際に、前述の非水電解液の伝導度低下による電池特性の低下以外にも、負極(負極合剤層)が大きく体積変化することで劣化して、電池特性が低下する虞がある。
 黒鉛は、リチウムイオン二次電池の負極活物質として汎用されており、比較的容量が大きい一方で、電池の充放電に伴う体積変化量がSiOに比べて小さい。よって、負極活物質にSiOと黒鉛とを併用することで、SiOの使用量の低減に伴って電池の容量向上効果が小さくなることを可及的に抑制しつつ、充放電を繰り返すことによる負極の劣化による電池特性の低下を良好に抑えることができることから、より充放電サイクル特性に優れたリチウムイオン二次電池とすることが可能となる。
 前記のSiOと共に負極活物質として使用する黒鉛としては、例えば、鱗片状黒鉛などの天然黒鉛;熱分解炭素類、メソフェーズカーボンマイクロビーズ(MCMB)、炭素繊維などの易黒鉛化炭素を2800℃以上で黒鉛化処理した人造黒鉛;などが挙げられる。
 負極活物質にSiOと炭素材料との複合体と、黒鉛とを併用する場合、SiOを使用することによる高容量化の効果を良好に確保する観点から、全負極活物質中におけるSiOと炭素材料との複合体の含有率が、0.01質量%以上であることが好ましく、1質量%以上であることがより好ましく、3質量%以上であることがより好ましい。また、充放電に伴うSiOの体積変化による問題をより良好に回避する観点から、全負極活物質中におけるSiOと炭素材料との複合体の含有率が、20質量%以下であることが好ましく、15質量%以下であることがより好ましい。
 負極合剤層中における負極活物質の含有率(全負極活物質の合計含有率)は、80~99質量%であることが好ましい。
 負極合剤層に使用するバインダとしては、例えば、でんぷん、ポリビニルアルコール、ポリアクリル酸、カルボキシメチルセルロース(CMC)、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロースなどの多糖類やそれらの変成体;ポリビニルクロリド、ポリビニルピロリドン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)、ポリエチレン、ポリプロピレン、ポリアミドイミド、ポリアミドなどの熱可塑性樹脂やそれらの変成体;ポリイミド;エチレン-プロピレン-ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、ブタジエンゴム、ポリブタジエン、フッ素ゴム、ポリエチレンオキシドなどのゴム状弾性を有するポリマーやそれらの変成体;などが挙げられ、これらの1種または2種以上を用いることができる。
 負極合剤層中におけるバインダの含有率(全バインダの合計含有率)は、1~20質量%であることが好ましい。
 負極合剤層には、更に導電助剤として導電性材料を添加してもよい。このような導電性材料としては、リチウムイオン二次電池内において化学変化を起こさないものであれば特に限定されず、例えば、カーボンブラック(サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラック、アセチレンブラックなど)、炭素繊維、金属粉(銅、ニッケル、アルミニウム、銀など)、金属繊維、ポリフェニレン誘導体(特開昭59-20971号公報に記載のもの)などの材料を、1種または2種以上用いることができる。これらの中でも、カーボンブラックを用いることが好ましく、ケッチェンブラックやアセチレンブラックがより好ましい。
 導電助剤として使用する炭素材料の粒径は、例えば、前述した平均繊維長の求め方と同様の方法で測定した平均粒子径、または、レーザー散乱粒度分布計(例えば、堀場製作所製「LA-920」)を用い、媒体に、これら微粒子を分散させて測定した平均粒子径(D50%)で、0.01μm以上であることが好ましく、0.02μm以上であることがより好ましく、また、10μm以下であることが好ましく、5μm以下であることがより好ましい。
 負極合剤層に導電助剤として導電性材料を含有させる場合、負極活物質の含有率およびバインダの含有率が前記の好適値を満足する範囲で使用することが好ましい。
 負極は、例えば、前述した負極活物質およびバインダ、更には必要に応じて使用する導電助剤を、N-メチル-2-ピロリドン(NMP)や水などの溶剤に分散させたペースト状やスラリー状の負極合剤含有組成物を調製し(ただし、バインダは溶剤に溶解していてもよい)、これを集電体の片面または両面に塗布し、乾燥した後に、必要に応じてカレンダ処理を施す工程を経て製造される。ただし、負極の製造方法は、前記の方法に制限される訳ではなく、他の製造方法で製造してもよい。負極合剤層の厚みは、例えば、集電体の片面あたり、10~140μmであることが好ましい。
 負極の集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、機械的強度を確保するために下限は5μmであることが望ましい。
 本発明に係る非水電解液は、電解質塩と有機溶媒とを少なくとも含有するものであり、電解質塩が有機溶媒に溶解した溶液である。
 非水電解液に用いる有機溶媒としては、電解質塩を溶解し、電池として使用される電圧範囲で分解などの副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネートなどの環状カーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネートなどの鎖状カーボネート;プロピオン酸メチルなどの鎖状エステル;γ-ブチロラクトンなどの環状エステル;ジメトキシエタン、ジエチルエーテル、1,3-ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル;ジオキサン、テトラヒドロフラン、2-メチルテトラヒドロフランなどの環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル類;エチレングリコールサルファイトなどの亜硫酸エステル類;などが挙げられ、これらは2種以上混合して用いることもできる。なお、より良好な特性の電池とするためには、エチレンカーボネートと鎖状カーボネートの混合溶媒など、高い導電率を得ることができる組み合わせで用いることが望ましい。
 非水電解液に用いる電解質塩としては、溶媒中で解離してリチウムイオンを形成し、電池として使用される電圧範囲で分解などの副反応を起こし難いものであれば特に制限はない。例えば、LiClO、LiPF、LiBF、LiAsF、LiSbFなどの無機リチウム塩;LiCFSO、LiCFCO、Li(SO、LiC(CFSO、LiC2n+1SO(n≧2)、イミド塩〔LiN(CFSO、LiN(CSOなどのリチウムイミド塩;LiN(RfOSO〔ここでRfはフルオロアルキル基〕などの含フッ素リチウムイミド塩;など〕の有機リチウム塩;などを用いることができる。電解質塩は、前記例示のものを1種単独で用いてもよく、2種以上を併用してもよい。これらの電解質塩の中でも、非水電解液の伝導度をより高め得ることから、LiPF、LiBF、イミド塩がより好ましい。
 本発明のリチウムイオン二次電池に係る非水電解液には、電解質塩の濃度が、前記電解質塩とその電解質塩を溶解する有機溶媒とを含む非水電解液における伝導度(電気伝導度)が極大値となる濃度を超えているものを使用する。これにより、SiOを含む負極を使用しつつ、電池の充放電サイクル特性を高めることができる。
 また、リチウムイオン二次電池では、高容量化の一手法として、正極合剤層や負極合剤層を厚くし、電池内に導入する活物質の量を多くすることも知られている。この場合、電極合剤層(正極合剤層および負極合剤層)内のリチウムイオンの濃度勾配が大きくなり、電極合剤層の深層部(集電体の近傍)ではリチウムイオン濃度が低くなって、かかる領域に存在する活物質がリチウムイオンを十分に吸蔵・放出できなくなり、電極合剤層を厚くすることによる高容量化の効果が十分に発現しない虞がある。
 しかしながら、電解質塩の濃度が、前記電解質塩とその電解質塩を溶解する有機溶媒とを含む非水電解液における伝導度が極大値となる濃度を超えている非水電解液を使用した場合には、電極合剤層を厚くしても、その内部でのリチウムイオンの濃度勾配を緩和することができ、電極合剤層の深層部に存在する活物質も電池反応に有効に関与できるようになるため、高容量化の効果がより良好に発現する。
 また、本発明のリチウム二次電池に使用する非水電解液は、伝導度が低すぎると、電池特性の低下を引き起こす虞がある。よって、本発明のリチウム二次電池に使用する非水電解液は、25℃での伝導度が、6.5mS/cm以上であり、8.5mS/cm以上であることが好ましく、また、16mS/cm以下であり、15mS/cm以下であることが好ましい。
 非水電解液の伝導度は、使用する電解質塩や有機溶媒の種類などによって変動するが、リチウムイオン二次電池を組み立てる際に使用する非水電解液の電解質塩の濃度は、その電解質塩とそれを溶解する有機溶媒とを含む非水電解液における伝導度が極大値となる濃度を超えるようにし、かつ、例えば前記の25℃での伝導度を目安として、設定すればよい。具体的な数値でいうと、非水電解液における電解質塩の濃度は、1.0mol/L(リットル)よりも高くすることが好ましく、1.2mol/L以上とすることがより好ましく、また、30mol/Lよりも低くすることが好ましく、5mol/L以下とすることがより好ましい。
 本明細書でいう非水電解液における電解質塩の濃度は、電解質塩を2種以上併用する場合には、各電解質塩の濃度の合計濃度を意味している。すなわち、例えば、電解質塩Aを濃度amol/L、電解質塩Bを濃度bmol/Lで含有する非水電解液の場合、電解質塩の濃度は「(a+b)mol/L」とする。
 また、電解質塩を2種以上併用する場合における「前記電解質塩と、その電解質塩を溶解する有機溶媒とを含む非水電解液における伝導度が極大値となる濃度」および「伝導度が極大値となる濃度を超える濃度」とは、併用する2種以上の電解質塩のモル比率を一定にして、これらの電解質塩の非水電解液中の濃度を変えた場合に、その伝導度が極大値となる濃度、およびその濃度を超える濃度を意味している。
 非水電解液は、ハロゲン置換された環状カーボネートを含有していることが好ましい。 非水電解液中のハロゲン置換された環状カーボネートは、負極活物質の表面におけるSEI皮膜形成に寄与し、SEI皮膜の性状をより良好にする。よって、ハロゲン置換された環状カーボネートを含有する非水電解液を用いた場合には、リチウムイオン二次電池の充放電サイクル特性をより高めることができる。
 ハロゲン置換された環状カーボネートとしては、下記一般式(1)で表される化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000001
 前記一般式(1)中、R、R、RおよびRは、水素、ハロゲン元素または炭素数1~10のアルキル基を表しており、アルキル基の水素の一部または全部がハロゲン元素で置換されていてもよく、R、R、RおよびRのうちの少なくとも1つはハロゲン元素であり、R、R、RおよびRは、それぞれが異なっていてもよく、2つ以上が同一であってもよい。R、R、RおよびRがアルキル基である場合、その炭素数は少ないほど好ましい。前記ハロゲン元素としては、フッ素が特に好ましい。
 ハロゲン元素で置換された環状カーボネートとしては、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)が特に好ましい。
 リチウムイオン二次電池に使用する非水電解液におけるハロゲン置換された環状カーボネートの含有量は、その使用による効果をより良好に確保する観点から、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。ただし、非水電解液中のハロゲン置換された環状カーボネートの含有量が多すぎると、電池の膨れが生じやすくなる虞がある。よって、リチウムイオン二次電池に使用する非水電解液におけるハロゲン置換された環状カーボネートの含有量は、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
 また、非水電解液は、ビニレンカーボネート(VC)を含有していることが好ましい。非水電解液中のVCも、負極活物質の表面におけるSEI皮膜形成に寄与し、SEI皮膜の性状をより良好にするが、特に負極活物質に黒鉛を含有する負極を備えた電池の場合には、その効果がより顕著となる。よって、負極活物質にSiOと共に黒鉛を使用し、かつVCを含有する非水電解液を用いた場合には、リチウムイオン二次電池の充放電サイクル特性をより高めることができる。
 リチウムイオン二次電池に使用する非水電解液におけるVCの含有率は、1質量%以上であることが好ましく、1.5質量%以上であることがより好ましい。ただし、非水電解液中のVCの量が多すぎると、皮膜形成の際に過剰なガスが発生して電池ケースの膨れの原因となる虞がある。よって、リチウムイオン二次電池に使用する非水電解液におけるVCの含有率は、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
 また、これらの非水電解液に安全性や充放電サイクル性、高温貯蔵性といった特性を更に向上させる目的で、トリエチルホスホノアセテート(TEPA)などのホスホノアセテート類、1,3-プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、t-ブチルベンゼンなどの添加剤を適宜加えることもできる。
 本発明のリチウムイオン二次電池は、正極、負極、セパレータおよび非水電解液を備え、負極が前記の負極であり、かつ前記の非水電解液を用いたものであればよく、その他の構成および構造については特に制限はなく、従来から知られているリチウムイオン二次電池で採用されている各種構成および構造を適用することができる。
 正極には、例えば、正極活物質、バインダおよび導電助剤などを含有する正極合剤層を、集電体の片面または両面に有する構造のものを使用できる。
 正極活物質は、例えば、従来から知られているリチウムイオン二次電池で使用されているもの、すなわちLiイオンを吸蔵放出可能な活物質であれば特に制限はない。具体的には、Li1+y(-0.1<y<0.1、M:Co、Ni、Mn、Al、Mgなど)で表される層状構造のリチウム含有遷移金属酸化物、LiMnやその元素の一部を他元素で置換したスピネル構造のリチウムマンガン酸化物、LiMPO(M:Co、Ni、Mn、Feなど)で表されるオリビン型化合物などを用いることが可能である。前記層状構造のリチウム含有遷移金属酸化物の具体例としては、LiCoOやLiNi1-aCoa-bAl(0.1≦a≦0.3、0.01≦b≦0.2)などのほか、少なくともCo、NiおよびMnを含む酸化物(LiMn1/3Ni1/3Co1/3、LiMn5/12Ni5/12Co1/6、LiMn3/5Ni1/5Co1/5など)などを例示することができる。
 正極の導電助剤は、リチウムイオン二次電池内で化学的に安定なものであればよい。例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などの黒鉛;アセチレンブラック、ケッチェンブラック(商品名)、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック;炭素繊維、金属繊維などの導電性繊維;アルミニウム粉などの金属粉末;フッ化炭素;酸化亜鉛;チタン酸カリウムなどからなる導電性ウィスカー;酸化チタンなどの導電性金属酸化物;ポリフェニレン誘導体などの有機導電性材料;などが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。これらの中でも、導電性の高い黒鉛や、吸液性に優れたカーボンブラックが好ましい。また、導電助剤の形態としては、一次粒子に限定されず、二次凝集体や、チェーンストラクチャーなどの集合体の形態のものも用いることができる。このような集合体の方が、取り扱いが容易であり、生産性が良好となる。
 正極のバインダには、負極に使用し得るバインダとして先に例示した各種バインダと同じものを用いることができる。
 正極は、例えば、前述した正極活物質、バインダおよび導電助剤を、NMPなどの溶剤に分散させたペースト状やスラリー状の正極合剤含有組成物を調製し(ただし、バインダは溶剤に溶解していてもよい)、これを集電体の片面または両面に塗布し、乾燥した後に、必要に応じてカレンダ処理を施す工程を経て製造される。ただし、正極の製造方法は、前記の方法に制限される訳ではなく、他の製造方法で製造してもよい。
 正極の集電体には、従来から知られているリチウムイオン二次電池の正極に使用されているものと同様のものが使用でき、例えば、厚みが10~30μmのアルミニウム箔が好ましい。
 正極合剤層の組成としては、例えば、正極活物質を80.0~99.8質量%とし、導電助剤を0.1~10質量%とし、バインダを0.1~10質量%とすることが好ましい。また、正極合剤層の厚みは、集電体の片面あたり、10~120μmであることが好ましい。
 リチウムイオン二次電池に係るセパレータは、80℃以上(より好ましくは100℃以上)170℃以下(より好ましくは150℃以下)において、その孔が閉塞する性質(すなわちシャットダウン機能)を有していることが好ましく、通常のリチウムイオン二次電池などで使用されているセパレータ、例えば、ポリエチレン(PE)やポリプロピレン(PP)などのポリオレフィン製の微多孔膜を用いることができる。セパレータを構成する微多孔膜は、例えば、PEのみを使用したものやPPのみを使用したものであってもよく、また、PE製の微多孔膜とPP製の微多孔膜との積層体であってもよい。セパレータの厚みは、例えば、10~30μmであることが好ましい。
 前記の正極と前記の負極と前記のセパレータとは、正極と負極との間にセパレータを介在させて重ねた積層電極体や、更にこれを渦巻状に巻回した巻回電極体の形態で本発明のリチウムイオン二次電池に使用することができる。
 本発明のリチウムイオン二次電池の形態としては、スチール缶やアルミニウム缶などを外装体として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。
 なお、本発明のリチウムイオン二次電池は、高容量で高出力放電特性が良好であることが好ましく、具体的には、電池の容量(設計容量)を1時間で放電できる電流値をA(mA)とし、正極合剤層と負極合剤層との対向面積をB(cm)としたとき、A/B≧4の関係を満たしていることが好ましい。このようなリチウムイオン二次電池の場合には、例えば、電池容量を1/2時間で放電できる電流値(2C)で放電した場合に、170Wh/kg以上の容量密度を確保できるため、産業機械の電源用途や各種バックアップ電源用途などのような、高容量であり、かつ高出力放電特性が要求される用途へも、好ましく適用できるようになる。
 本発明のリチウムイオン二次電池において、A/B≧4の関係を満たすようにするには、SiOを含む負極と共に、より高容量の正極活物質(例えば、Niを含有するリチウム含有遷移金属酸化物)を含む正極を使用したり、正負極の合剤層の密度を高めたり、正負極の合剤層を厚くしたりして、電池内に導入する活物質量を増やしたりすればよい。
 なお、前記の通り、リチウムイオン二次電池の有する正負極の合剤層を厚くした場合には、合剤層内のリチウムイオンの濃度勾配が大きくなることで、その深層部に存在する活物質が有効に機能し得ない問題が発生しやすいが、本発明のリチウムイオン二次電池では、前記の非水電解液を使用することで、合剤層内でのリチウムイオンの濃度勾配を緩和できるため、電池が本来有している容量を有効に引き出すことができる。
 また、特に前記のような用途(産業機械の電源用途や各種バックアップ電源用途など)に適用されるリチウムイオン二次電池は、放電時にその容量の全てを使い切ることなく再度充電が行われるような方法で使用されることが多い。よって、特にこうした用途に適用されるリチウムイオン二次電池では、SOC(State of charge:電池の充電率)が比較的高い領域での充放電サイクル特性が良好であることも求められるが、本発明のリチウムイオン二次電池では、かかる充放電サイクル特性も優れている。
 以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。
 なお、本実施例で示す非水電解液の25℃の伝導度は、東亜ディーケーケー社製の電気伝導度計「CM-31P」および電気伝導度セル「CT27112B」を用いて測定した値である。
実施例1
<正極の作製>
 正極活物質であるLi1.02Ni0.94Mn0.03Mg0.03:94質量部、導電助剤であるアセチレンブラック:6質量部、およびバインダであるPVDF:2質量部を、NMPを溶剤として均一になるように混合して、正極合剤含有ペーストを調製した。このペーストを集電体となる厚さ15μmのアルミニウム箔の両面に、片面の塗布量が23mg/cm、塗布長が表280mm、裏面210mmになるように間欠塗布し、乾燥した後、カレンダ処理を行って、正極合剤層の厚みが、集電体の片面あたり87μmとなるように調整し、幅43mmになるように切断して正極を作製した。その後、正極におけるアルミニウム箔の露出部にタブ付けを行った。
<負極の作製>
 平均粒子径が8μmであるSiOの表面を炭素材料で被覆した複合体(複合体における炭素材料の量が10質量%。以下、「SiO/炭素材料複合体」という。)と、平均粒子径が16μmである黒鉛とをSiO/炭素材料複合体の量が3.7質量%となる量で混合した負極活物質:98質量部と、PVDF:5質量部とを、水を溶剤として均一になるように混合して負極合剤含有ペーストを調製した。このペーストを銅箔からなる厚さ10μmの集電体の両面に、片面の塗布量が9.8mg/cm、塗布長が表290mm、裏面230mmになるように間欠塗布し、乾燥した後、カレンダ処理を行って、負極合剤層の厚みが、集電体の片面あたり59μmになるように調整し、幅45mmになるように切断して負極を作製した。その後、負極における銅箔の露出部にタブ付けを行った。
<電池の組み立て>
 前記のようにして得た正極と負極とを、正極と負極との間にセパレータ(PE製の微多孔膜とPP製の微多孔膜とを積層したリチウム二次電池用PE-PP製微多孔膜セパレータであり、厚み16μm、空孔率40%、平均孔径0.08μm、PEの融点135℃、PPの融点165℃)を介在させつつ重ね、渦巻状に巻回して巻回電極体を作製した。得られた巻回体電極群を押しつぶして扁平状にし、厚み4mm、高さ50mm、幅34mmのアルミニウム製外装缶に入れ、電解液(ECとDMCジメチルカーボネートを体積比で2対8に混合した溶媒にLiPFを濃度1.8mol/Lで溶解したもの。25℃の伝導度:10.8mS/cm)を注入した後に封止を行って、図1に示す構造を有し、図2に示す外観のリチウムイオン二次電池を作製した。このリチウムイオン二次電池は、電池の容量を1時間で放電できる電流値A(mA)と、正極合剤層と負極合剤層との対向面積B(cm)との関係A/Bが4であった。
 ここで図1および図2に示す電池について説明すると、正極1と負極2は前記のようにセパレータ3を介して渦巻状に巻回した巻回電極体6として、角形の外装缶4に非水電解液とともに収容されている。ただし、図1では、煩雑化を避けるため、正極1や負極2の作製にあたって使用した集電体としての金属箔や非水電解液などは図示していない。
 外装缶4は電池の外装材を構成するものであり、この外装缶4は正極端子を兼ねている。そして、外装缶4の底部にはPEシートからなる絶縁体5が配置され、前記正極1、負極2およびセパレータ3からなる電極体6からは、正極1および負極2のそれぞれ一端に接続された正極集電板7と負極集電板8が引き出されている。また、外装缶4の開口部を封口するアルミニウム合金製の蓋板9にはPP製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板13が取り付けられている。
 そして、この蓋板9は前記外装缶4の開口部に挿入され、両者の接合部を溶接することによって、外装缶4の開口部が封口され、電池内部が密閉されている。
 なお、蓋板9には注液孔が設けられており(図中、14)、電池組み立ての際には、この注液孔から電池内に非水電解液が注入され、その後、注液孔は封止される。また、蓋板9には、防爆用の安全弁15が設けられている。
 この実施例1の電池では、正極集電板7を蓋板9に直接溶接することによって外装缶4と蓋板9とが正極端子として機能し、負極集電板8をリード板13に溶接し、そのリード板13を介して負極集電板8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、外装缶4の材質などによっては、その正負が逆になる場合もある。
 図2は前記図1に示す電池の外観を模式的に示す斜視図であり、この図2は前記電池が角形電池であることを示すことを目的として図示されたものであって、この図2では電池を概略的に示しており、電池の構成部材のうち特定のものしか図示していない。また、図1においても、電極体の内周側の部分は断面にしていない。
実施例2
 LiPFの濃度を1.6mol/Lに変更した以外は実施例1と同様にして非水電解液を調製し、この非水電解液を用いた以外は実施例1と同様にしてリチウムイオン二次電池を作製した。この非水電解液の25℃の伝導度は、11.8mS/cmであった。
実施例3
 LiPFの濃度を1.4mol/Lに変更した以外は実施例1と同様にして非水電解液を調製し、この非水電解液を用いた以外は実施例1と同様にしてリチウムイオン二次電池を作製した。この非水電解液の25℃の伝導度は、12.2mS/cmであった。
実施例4
 DMCに代えてDECを用いた以外は実施例1と同様にして非水電解液を調製し、この非水電解液を用いた以外は実施例1と同様にしてリチウムイオン二次電池を作製した。この非水電解液の25℃の伝導度は、6.9mS/cmであった。
実施例5
 電解質塩にLiPFとLiBFとをモル比で3:1で併用し、これらの合計濃度を1.6mol/L(LiPFの濃度:1.2mol/L、LiBFの濃度:0.4mol/L)とした以外は、実施例1と同様にして非水電解液を調製し、この非水電解液を用いた以外は実施例1と同様にしてリチウムイオン二次電池を作製した。この非水電解液の25℃の伝導度は、6.5mS/cmであった。
実施例6
 電解質塩にLiPFとLiN(CFSOとをモル比で3:1で併用し、これらの合計濃度を1.6mol/L〔LiPFの濃度:1.2mol/L、LiN(CFSOの濃度:0.4mol/L〕とした以外は、実施例1と同様にして非水電解液を調製し、この非水電解液を用いた以外は実施例1と同様にしてリチウムイオン二次電池を作製した。この非水電解液の25℃の伝導度は、7.6mS/cmであった。
実施例7
 正極合剤含有ペーストの塗布量を、集電体の片面あたり15mg/cmに変更した以外は、実施例1と同様にして正極を作製した。また、負極合剤含有ペーストの塗布量を、集電体の片面あたり9.5mg/cmに変更した以外は、実施例1と同様にして負極を作製した。そして、これらの正極および負極を用いた以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。このリチウムイオン二次電池は、電池の容量を1時間で放電できる電流値A(mA)と、正極合剤層と負極合剤層との対向面積B(cm)との関係A/Bが2.6であった。
比較例1
 LiPFの濃度を1.0mol/Lに変更した以外は実施例1と同様にして非水電解液を調製し、この非水電解液を用いた以外は実施例1と同様にしてリチウムイオン二次電池を作製した。この非水電解液の25℃の伝導度は、11.8mS/cmであった。
比較例2
 PCのみを溶媒とし、これにLiPFを1.0mol/Lの濃度で溶解させて非水電解液を調製した。そして、この非水電解液を用いた以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。この非水電解液の25℃の伝導度は、5.8mS/cmであった。
 なお、実施例および比較例の各リチウムイオン二次電池に使用した非水電解液の、伝導度が極大となる電解質塩の濃度は、以下の通りである。
 [実施例1~3、7および比較例1](電解質塩:LiPF、有機溶媒:ECとDMCとの体積比2:8の混合溶媒):1.2mol/L、
 [実施例4](電解質塩:LiPF、有機溶媒:ECとDECとの体積比2:8の混合溶媒):1.0mol/L、
 [実施例5](電解質塩:LiPFとLiBFとをモル比で3:1で併用、有機溶媒:ECとDMCとの体積比2:8の混合溶媒):1.2mol/L、
 [実施例6](電解質塩:LiPFとLiN(CFSOとをモル比で3:1で併用、有機溶媒:ECとDMCとの体積比2:8の混合溶媒):1.2mol/L、
 [比較例2](電解質塩:LiPF、有機溶媒:PC):0.8mol/L。
 また、実施例1~3、7および比較例1のリチウムイオン二次電池に使用した各非水電解液の電解質塩濃度と伝導度との関係を表すグラフを図3に示す。
 実施例および比較例のリチウムイオン二次電池について、以下の各評価を行った。これらの評価結果を表1に示す。
<充放電テスト>
 実施例および比較例のリチウムイオン二次電池について、1Cの電流値で4.2Vまで定電流充電し、続いて4.2Vでの定電圧充電を電流値が0.1Cになるまで行い、その後1Cの電流値で2.5Vになるまで定電流放電し、得られた放電容量から、電池の質量あたりの容量密度(Wh/kg)を求めた。
 また、前記の各電池について、1Cの電流値で4.2Vまで定電流し、続いて4.2Vの定電圧で充電容量が電池容量(電池の質量あたりの容量密度を求めた際に測定した放電容量、すなわち初期容量)の70%になるか、初期容量の70%までの充電ができない場合には、1Cで4.2Vまでの定電流に続いて、4.2Vの定電圧で電流値が0.1Cに低下するまで充電を行い、その後1Cの電流値で初期容量の50%分を放電し切るまで定電流放電を行う(ただし、電圧が2.5Vを切った場合は放電を停止する)一連の操作を1サイクルとして、これを繰り返し、初期容量の40%分の放電が可能であったサイクル数を求めた。
<貯蔵試験>
 実施例および比較例のリチウムイオン二次電池(前記の充放電テストを実施したものとは別の電池)について、1Cの電流値で4.2Vまで定電流充電し、続いて4.2Vでの定電圧充電を電流値が0.1Cになるまで行った。充電後の各電池を60℃とした恒温槽中で30日間貯蔵した。そして、恒温槽から取り出した各電池について、1Cの電流値で2.5Vになるまで放電を行って放電容量(維持容量)を求めた。更に、維持容量を求めた各電池について、充放電テストにおける容量密度を測定した際と同じ条件で定電流-定電圧充電および定電流放電を行って、放電容量(回復容量)を求めた。前記の維持容量および回復容量は、充放電テストにおける容量密度を測定した際に求めた放電容量を100%としたときの相対値(%)で表した。
Figure JPOXMLDOC01-appb-T000002
 表1の「初期容量の40%分の放電が可能であったサイクル数」の欄における「>5000」とは、5000サイクルの充放電を繰り返した際にも、放電容量が初期容量の80%を上回っていたことを意味している。
 表1に示す通り、非水電解液に、その電解質塩の濃度が、伝導度の極大値となる濃度を超えているものを使用した実施例1~7のリチウムイオン二次電池は、伝導度の極大値となる濃度よりも低い電解質塩濃度の非水電解液を用いた比較例1の電池や、伝導度が低すぎる非水電解液を用いた比較例2の電池に比べて、初期容量の40%分の放電が可能であったサイクル数が多く、SiOを含む負極を備えつつ、高い充放電サイクル特性を確保できている。
 特に、実施例1~6のリチウムイオン二次電池では、前記A/B値を4に設定することで高容量化を図ったものであるが、これらの電池では、前記A/B値を2.6に設定した実施例7のリチウムイオン二次電池に比べて大きな容量密度が確保できており、正負極の合剤層を厚くしても、深層部に存在する活物質を良好に利用できていると考えられる。
 また、実施例1~7のリチウムイオン二次電池は、貯蔵試験後の維持容量および回復容量も高く、貯蔵特性も優れている。
 本発明は、その趣旨を逸脱しない範囲で、前記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、本発明は、これらの実施形態には限定されない。本発明の範囲は、前記の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれる。
 本発明のリチウムイオン二次電池は、産業機械の電源用途や各種バックアップ電源用途などの用途をはじめとして、従来から知られているリチウムイオン二次電池が適用されている各種用途と同じ用途に好ましく用いることができる。
 1  正極
 2  負極
 3  セパレータ

Claims (6)

  1.  正極合剤層を有する正極、負極、セパレータ、および電解質塩と有機溶媒とを少なくとも含有する非水電解液を有するリチウムイオン二次電池であって、
     前記負極は、SiとOとを構成元素に含む材料(ただし、Siに対するOの原子比xは、0.5≦x≦1.5である)を負極活物質として含有する負極合剤層を有しており、
     前記非水電解液に、電解質塩の濃度が、前記電解質塩と前記有機溶媒とを含有する非水電解液における伝導度が極大値となる濃度を超えており、かつ25℃の伝導度が6.5~16mS/cmのものを使用したことを特徴とするリチウムイオン二次電池。
  2.  電解質塩の濃度が1.0mol/Lよりも高く30mol/Lよりも低い非水電解液を使用した請求項1に記載のリチウムイオン二次電池。
  3.  非水電解液の電解質塩が、LiPF、LiBFまたはイミド塩である請求項1または2に記載のリチウムイオン二次電池。
  4.  負極活物質として、SiとOとを構成元素に含む材料と炭素材料との複合体を含有している請求項1~3のいずれかに記載のリチウムイオン二次電池。
  5.  負極活物質として、更に黒鉛を含有している請求項1~4のいずれかに記載のリチウムイオン二次電池。
  6.  リチウムイオン二次電池の容量を1時間で放電できる電流値をA(mA)とし、正極合剤層と負極合剤層との対向面積をB(cm)としたとき、A/B≧4の関係を満たしている請求項1~5のいずれかに記載のリチウムイオン二次電池。
PCT/JP2012/054867 2012-02-28 2012-02-28 リチウムイオン二次電池 WO2013128559A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127031168A KR101498222B1 (ko) 2012-02-28 2012-02-28 리튬 이온 이차 전지
CN201280001515.2A CN103403943B (zh) 2012-02-28 2012-02-28 锂离子二次电池
JP2012524006A JP5121035B1 (ja) 2012-02-28 2012-02-28 リチウムイオン二次電池
US13/701,118 US9673446B2 (en) 2012-02-28 2012-02-28 Lithium ion secondary battery containing a negative electrode material layer containing Si and O as constituent elements
PCT/JP2012/054867 WO2013128559A1 (ja) 2012-02-28 2012-02-28 リチウムイオン二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/054867 WO2013128559A1 (ja) 2012-02-28 2012-02-28 リチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2013128559A1 true WO2013128559A1 (ja) 2013-09-06

Family

ID=47692857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054867 WO2013128559A1 (ja) 2012-02-28 2012-02-28 リチウムイオン二次電池

Country Status (5)

Country Link
US (1) US9673446B2 (ja)
JP (1) JP5121035B1 (ja)
KR (1) KR101498222B1 (ja)
CN (1) CN103403943B (ja)
WO (1) WO2013128559A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170101161A (ko) * 2016-02-26 2017-09-05 주식회사 엘지화학 리튬 이차전지
WO2017179681A1 (ja) * 2016-04-15 2017-10-19 国立大学法人東京大学 リチウムイオン二次電池
WO2018029907A1 (ja) * 2016-08-08 2018-02-15 株式会社豊田自動織機 リチウムイオン二次電池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102141903B1 (ko) 2013-02-18 2020-08-06 가부시기가이샤 닛뽕쇼꾸바이 전해액 및 이것을 구비한 리튬이온 이차전지
CN103618110B (zh) * 2013-12-12 2015-12-02 宁德新能源科技有限公司 锂离子二次电池及其电解液
DE102014210570A1 (de) * 2014-06-04 2015-12-17 Mahle International Gmbh Temperiervorrichtung zum Temperieren einer Batterie
JP6268049B2 (ja) * 2014-06-23 2018-01-24 信越化学工業株式会社 非水電解質二次電池用負極材及び非水電解質二次電池並びに負極活物質粒子の製造方法
JP6278014B2 (ja) * 2015-09-08 2018-02-14 トヨタ自動車株式会社 非水電解液二次電池の製造方法
TW201826607A (zh) * 2016-09-08 2018-07-16 日商麥克賽爾控股股份有限公司 鋰離子二次電池及其製造方法
CN115483433B (zh) * 2022-10-08 2024-01-26 厦门海辰储能科技股份有限公司 电解液、电池、用电设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173821A (ja) * 2001-09-28 2003-06-20 Tdk Corp 非水電解質電池
JP2003317717A (ja) * 2002-04-19 2003-11-07 Shin Etsu Chem Co Ltd 非水電解質二次電池負極材の製造方法
JP2006253081A (ja) * 2005-03-14 2006-09-21 Toshiba Corp 非水電解質電池
JP2007184261A (ja) * 2005-12-06 2007-07-19 Matsushita Battery Industrial Co Ltd リチウムイオン二次電池
JP2008166013A (ja) * 2006-12-27 2008-07-17 Matsushita Electric Ind Co Ltd 複合活物質およびそれを用いた電気化学素子
JP2009076372A (ja) * 2007-09-21 2009-04-09 Shin Etsu Chem Co Ltd 非水系二次電池
JP2010263058A (ja) * 2009-05-07 2010-11-18 Panasonic Corp 蓄電デバイス

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086746A1 (fr) * 2000-05-08 2001-11-15 Bridgestone Corporation Batterie d'accumulateurs a electrolyte non aqueux
JP2002025606A (ja) 2000-07-10 2002-01-25 Toyota Central Res & Dev Lab Inc リチウム二次電池
EP1357628A4 (en) * 2001-01-04 2008-03-12 Mitsubishi Chem Corp WATER-FREE ELECTROLYTIC LIQUIDS AND LITHIUM SECONDARY BATTERIES THEREWITH
US7651815B2 (en) 2001-09-21 2010-01-26 Tdk Corporation Lithium secondary battery
JP4042034B2 (ja) * 2002-02-01 2008-02-06 株式会社ジーエス・ユアサコーポレーション 非水電解質電池
JP2003243029A (ja) 2002-02-18 2003-08-29 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
US20050123835A1 (en) * 2003-12-09 2005-06-09 Luying Sun Non-aqueous electrolytes having an extended temperature range for battery applications
KR100684733B1 (ko) * 2005-07-07 2007-02-20 삼성에스디아이 주식회사 리튬 이차 전지
JP4213687B2 (ja) * 2005-07-07 2009-01-21 株式会社東芝 非水電解質電池及び電池パック
JP4625733B2 (ja) * 2005-07-26 2011-02-02 株式会社東芝 非水電解質二次電池及び電池パック
JP2007207699A (ja) 2006-02-06 2007-08-16 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP5110818B2 (ja) * 2006-03-17 2012-12-26 三洋電機株式会社 非水電解質電池
WO2008065984A1 (fr) 2006-11-27 2008-06-05 Mitsui Mining & Smelting Co., Ltd. Batterie secondaire à électrolyte non aqueux
CN1976111A (zh) * 2006-12-08 2007-06-06 中国科学院上海微系统与信息技术研究所 一种锂离子电池电解液及组成的锂离子电池
JP2008198524A (ja) * 2007-02-14 2008-08-28 Matsushita Electric Ind Co Ltd 非水電解質二次電池
EP2320512B1 (en) 2007-03-27 2012-09-12 Hitachi Vehicle Energy, Ltd. Lithium secondary battery
EP2151005A4 (en) * 2007-05-31 2011-08-24 A123 Systems Inc SEPARATOR COMPRISING AN ELECTROACTIVE MATERIAL FOR PROTECTION AGAINST OVERLOAD
JP5234000B2 (ja) * 2007-09-12 2013-07-10 ダイキン工業株式会社 電解液
JP2009272243A (ja) * 2008-05-09 2009-11-19 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池
US20110159379A1 (en) * 2008-09-11 2011-06-30 Nec Corporation Secondary battery
CN101383432B (zh) * 2008-10-17 2010-11-03 汕头市金光高科有限公司 一种用于锂离子电池的非水电解液
WO2010050507A1 (ja) * 2008-10-31 2010-05-06 日立マクセル株式会社 非水二次電池
JP2011113863A (ja) 2009-11-27 2011-06-09 Hitachi Maxell Ltd 非水二次電池
WO2011067898A1 (ja) * 2009-12-01 2011-06-09 パナソニック株式会社 非水電解質二次電池用正極活物質およびその製造法
JP2011192561A (ja) 2010-03-16 2011-09-29 Sanyo Electric Co Ltd 非水電解液二次電池の製造方法
CN101807722A (zh) * 2010-04-09 2010-08-18 中国科学技术大学 一种安全锂离子电池电解液
JP2011243558A (ja) * 2010-04-22 2011-12-01 Hitachi Maxell Energy Ltd リチウム二次電池用正極およびリチウム二次電池
CN102255105B (zh) * 2011-06-10 2016-03-02 东莞新能源科技有限公司 二次注液的锂离子电池
CN102324558A (zh) * 2011-09-21 2012-01-18 浙江谷神能源科技股份有限公司 一种低温型锂离子电池电解液

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173821A (ja) * 2001-09-28 2003-06-20 Tdk Corp 非水電解質電池
JP2003317717A (ja) * 2002-04-19 2003-11-07 Shin Etsu Chem Co Ltd 非水電解質二次電池負極材の製造方法
JP2006253081A (ja) * 2005-03-14 2006-09-21 Toshiba Corp 非水電解質電池
JP2007184261A (ja) * 2005-12-06 2007-07-19 Matsushita Battery Industrial Co Ltd リチウムイオン二次電池
JP2008166013A (ja) * 2006-12-27 2008-07-17 Matsushita Electric Ind Co Ltd 複合活物質およびそれを用いた電気化学素子
JP2009076372A (ja) * 2007-09-21 2009-04-09 Shin Etsu Chem Co Ltd 非水系二次電池
JP2010263058A (ja) * 2009-05-07 2010-11-18 Panasonic Corp 蓄電デバイス

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170101161A (ko) * 2016-02-26 2017-09-05 주식회사 엘지화학 리튬 이차전지
KR102155332B1 (ko) * 2016-02-26 2020-09-11 주식회사 엘지화학 리튬 이차전지
US10818960B2 (en) 2016-02-26 2020-10-27 Lg Chem, Ltd. Lithium secondary battery
WO2017179681A1 (ja) * 2016-04-15 2017-10-19 国立大学法人東京大学 リチウムイオン二次電池
JPWO2017179681A1 (ja) * 2016-04-15 2019-02-28 国立大学法人 東京大学 リチウムイオン二次電池
US11271242B2 (en) 2016-04-15 2022-03-08 Kabushiki Kaisha Toyota Jidoshokki Lithium ion secondary battery
WO2018029907A1 (ja) * 2016-08-08 2018-02-15 株式会社豊田自動織機 リチウムイオン二次電池

Also Published As

Publication number Publication date
US9673446B2 (en) 2017-06-06
JPWO2013128559A1 (ja) 2015-07-30
CN103403943B (zh) 2016-05-25
CN103403943A (zh) 2013-11-20
JP5121035B1 (ja) 2013-01-16
KR20130129819A (ko) 2013-11-29
KR101498222B1 (ko) 2015-03-05
US20130224575A1 (en) 2013-08-29

Similar Documents

Publication Publication Date Title
JP5121035B1 (ja) リチウムイオン二次電池
JP4868556B2 (ja) リチウム二次電池
JP6279233B2 (ja) リチウム二次電池
JP6253411B2 (ja) リチウム二次電池
JP5489353B2 (ja) 非水電解液二次電池
JP6654793B2 (ja) 非水電解質二次電池用正極、非水電解質二次電池およびそのシステム
JP5872055B2 (ja) リチウム二次電池パック、並びにそれを用いた電子機器、充電システム及び充電方法
WO2013099263A1 (ja) 非水電解質二次電池
JP5031065B2 (ja) リチウムイオン二次電池
JP2013145669A (ja) 非水電解液二次電池
JP2013178913A (ja) 非水電解液二次電池
JP2014007010A (ja) リチウム二次電池
JP2017103024A (ja) 非水電解質二次電池およびその製造方法
JP5523506B2 (ja) リチウムイオン二次電池の製造方法
JP6177042B2 (ja) リチウム二次電池
JP6063705B2 (ja) 非水電解質二次電池
JP2017152223A (ja) 非水電解質二次電池およびその製造方法
JP5978024B2 (ja) 非水二次電池
JP2013118068A (ja) リチウム二次電池
JP5658122B2 (ja) リチウム二次電池
JP5785653B2 (ja) リチウム二次電池
WO2016125726A1 (ja) リチウム二次電池
JP2014229393A (ja) 非水二次電池の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012524006

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20127031168

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13701118

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870246

Country of ref document: EP

Kind code of ref document: A1