WO2016125726A1 - リチウム二次電池 - Google Patents

リチウム二次電池 Download PDF

Info

Publication number
WO2016125726A1
WO2016125726A1 PCT/JP2016/052874 JP2016052874W WO2016125726A1 WO 2016125726 A1 WO2016125726 A1 WO 2016125726A1 JP 2016052874 W JP2016052874 W JP 2016052874W WO 2016125726 A1 WO2016125726 A1 WO 2016125726A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium secondary
secondary battery
lithium
general formula
Prior art date
Application number
PCT/JP2016/052874
Other languages
English (en)
French (fr)
Inventor
貴子 西田
祐介 中村
龍太 韓
春樹 上剃
阿部 敏浩
三木 健
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to JP2016573343A priority Critical patent/JPWO2016125726A1/ja
Publication of WO2016125726A1 publication Critical patent/WO2016125726A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/469Separators, membranes or diaphragms characterised by their shape tubular or cylindrical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium secondary battery having good charge / discharge cycle characteristics, storage characteristics, and continuous charge characteristics.
  • the electrode expands and contracts in the process of charging / discharging the battery, which causes a shift in the opposed state of the positive electrode and the negative electrode, which in turn causes charge / discharge cycle characteristics and This will affect battery swelling during storage.
  • Patent Documents 1 and 2 Patent Documents 1 and 2.
  • lithium secondary batteries mounted on such devices are required to have improved battery characteristics at high temperatures, and the maximum charging voltage has been increased to 4.4 V or higher in order to increase the battery capacity.
  • a high-quality lithium secondary battery even under conditions that are more severe than those in the past, such as improvement in battery characteristics at times.
  • the present invention provides a lithium secondary battery that can exhibit excellent charge / discharge cycle characteristics even when the charge upper limit voltage is set to 4.4 V or higher, and that has good storage characteristics and continuous charge characteristics.
  • the present invention is a lithium secondary battery having a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, wherein the non-aqueous electrolyte includes a compound represented by the following general formula (1) and a lithium salt containing fluorine. And a positive electrode containing a lithium-containing metal oxide represented by the following general formula (2) as a positive electrode active material. .
  • M is Al, Mg, Zr, Ti, Ni, Mn, Na, Bi, Ca, F, P, Sr, W, Ba, Si, Fe, Mo, V, Sn, Sb. , Ta, Nb, Ge, Cr, K, S, Cu, Er, and Zn, at least one element selected from the group consisting of 0.9 ⁇ a ⁇ 1.10 and 0.01 ⁇ b ⁇ 0 .12.
  • the present invention is a lithium secondary battery having a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte, wherein the non-aqueous electrolyte is a crosslinked product derived from the compound represented by the general formula (1),
  • a lithium secondary battery having good charge / discharge cycle characteristics, storage characteristics, and continuous charge characteristics can be provided.
  • FIG. 2 is a perspective view of FIG. 1.
  • a nonaqueous electrolytic solution containing a compound represented by the following general formula (1) is used.
  • the non-aqueous electrolyte of the lithium secondary battery contains a lithium salt containing fluorine
  • the positive electrode active material is a lithium-containing metal oxide containing Co
  • moisture inevitably brought into the battery and The lithium salt containing fluorine reacts to generate hydrogen fluoride (HF), and this HF elutes Co contained in the positive electrode active material, thereby deteriorating the positive electrode active material and reducing the discharge capacity.
  • HF hydrogen fluoride
  • the non-aqueous electrolyte and the positive electrode active material react to generate gas.
  • the compound represented by the general formula (1) contained in the non-aqueous electrolyte crosslinks while consuming HF generated in the battery.
  • the amount decreases.
  • the compound represented by the general formula (1) has the property of reacting with a Lewis acid such as HF to crosslink. Therefore, at the time when the injection is performed in the manufacturing process of the lithium secondary battery, it is poured into the battery in the state of the non-aqueous electrolyte having a low viscosity containing the compound represented by the general formula (1) before the formation of the crosslinked product. The liquid can be performed. Thereafter, when the first charge / discharge is performed, the compound represented by the general formula (1) reacts with HF for the first time to be cross-linked, so that the non-aqueous electrolyte becomes a high viscosity state, that is, a gel.
  • a Lewis acid such as HF
  • a non-aqueous electrolyte having a low viscosity is injected, so that the liquid injection property to the exterior body is maintained.
  • the non-aqueous electrolyte after the gel is difficult to leak, leading to an improvement in safety.
  • the electrode and the separator are in close contact with each other and are not easily distorted. Therefore, a lithium secondary battery that does not swell even when stored at high temperatures can be obtained. Furthermore, since the opposing state of the positive electrode and the negative electrode is maintained even when the battery is repeatedly charged and discharged, the charge / discharge cycle characteristics are improved. Furthermore, when the electrode and the separator are in close contact with each other, shrinkage of the separator due to heat can be suppressed.
  • wound body type in which the long positive electrode and negative electrode are wound with the separator facing each other, so-called wound body type, the wound body is distorted even if the battery is repeatedly charged and discharged. Can be suppressed.
  • the compound represented by the general formula (1) forms a crosslinked product by the action of HF generated in the battery, it can also be referred to as a crosslinking precursor, and the non-aqueous electrolyte is gelled. Therefore, it can also be referred to as a gelling agent.
  • the nonaqueous electrolyte which the lithium secondary battery which passed through the first charging / discharging has contains the crosslinked material derived from the compound represented by General formula (1), and is a gel form.
  • the “gel” of the non-aqueous electrolyte referred to in the present specification includes the same state as an electrolyte called a “gel electrolyte” in the battery industry (strictly, in addition to a normal “gel”). Even if the gel is not a simple meaning, the liquid has little fluidity or the liquid has stopped flowing).
  • the content of the compound represented by the general formula (1) in the non-aqueous electrolyte used in the battery is preferably 0.5% by mass or more, More preferably, it is 1.0% by mass or more, preferably 10.0% by mass or less, more preferably 8.0% by mass or less, and 5.0% by mass or less. Further preferred.
  • a positive electrode active material having a specific composition and having a positive electrode potential with respect to Li metal that is less likely to be broken even when the positive electrode potential exceeds 4.45 V is used. Combined with the action of the non-aqueous electrolyte containing the compound represented by 1), a further effect of improving battery characteristics can be ensured.
  • the positive electrode active material having a specific composition used in the lithium secondary battery of the present invention is less likely to crack the particles even after repeated charge and discharge, and can suppress consumption of the non-aqueous electrolyte, Combined with the non-aqueous electrolyte containing the compound represented by the general formula (1), it is possible to suppress the distortion of the electrode sheet and the generation of HF, so the charge / discharge cycle characteristics of the battery are synergistically improved. To do.
  • the nonaqueous electrolytic solution contains a lithium salt containing fluorine.
  • the fluorine-containing lithium salt causes HF to be generated in the battery.
  • the occurrence of problems due to fluorine-containing lithium salt-derived HF is suppressed. Charge / discharge cycle characteristics, storage characteristics, and continuous charge characteristics can be enhanced.
  • lithium salt containing fluorine examples include LiPF 6 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO3 (n ⁇ 2) and the like.
  • the nonaqueous electrolytic solution may contain only one of the above-described exemplified lithium salts containing fluorine, or may contain two or more of them.
  • these lithium salts containing fluorine it is more preferable to use LiPF 6 because it is a lithium salt having a high degree of dissociation and a high lithium ion transport rate and the most versatile lithium salt.
  • the nonaqueous electrolytic solution may contain other lithium salt (LiClO 4 or the like) together with the lithium salt containing fluorine to the extent that the effects of the present invention are not impaired.
  • the concentration of the total lithium salt in the non-aqueous electrolyte is preferably 0.6 to 1.8 mol / l, and more preferably 0.9 to 1.6 mol / l.
  • the concentration of the lithium salt containing fluorine in the non-aqueous electrolyte is preferably 0.6 mol / l or more, and more preferably 0.9 mol / l or more. Therefore, in the case where a lithium salt containing fluorine and another lithium salt are used in combination in a non-aqueous electrolyte, the concentration of the lithium salt containing fluorine satisfies the above preferred value, and It is preferable to use these lithium salts as long as the concentration (total concentration) satisfies the above preferred value.
  • nonaqueous electrolytic solution of the present invention for example, a solution (nonaqueous electrolytic solution) prepared by dissolving the compound represented by the general formula (1) in the following nonaqueous solvent is used.
  • the solvent examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), ⁇ -butyrolactone ( ⁇ -BL ), 1,2-dimethoxyethane (DME), tetrahydrofuran (THF), 2-methyltetrahydrofuran, dimethyl sulfoxide (DMSO), 1,3-dioxolane, formamide, dimethylformamide (DMF), dioxolane, acetonitrile, nitromethane, Methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, die Aprotic organic solvents such as tilether can be used singly or as a mixed solvent in which two
  • Non-aqueous electrolytes used for lithium secondary batteries include 1,3-dioxane, vinylene carbonate (for the purpose of further improving charge / discharge cycle characteristics and improving safety such as high-temperature storage and prevention of overcharge. VC), vinyl ethylene carbonate, fluorinated carbonates such as 4-fluoro-1,3-dioxolan-2-one (FEC), anhydrides, sulfonate esters, diphenyl disulfide, cyclohexylbenzene, biphenyl, fluorobenzene, t-butyl Additives such as benzene (including these derivatives) can also be added as appropriate.
  • 1,3-dioxane vinylene carbonate (for the purpose of further improving charge / discharge cycle characteristics and improving safety such as high-temperature storage and prevention of overcharge.
  • VC vinyl ethylene carbonate
  • fluorinated carbonates such as 4-fluoro-1,3-dioxolan-2-one (FEC)
  • non-aqueous electrolyte containing VC or FEC When a non-aqueous electrolyte containing VC or FEC is used, the charge / discharge cycle characteristics of the battery can be further improved.
  • the contents in these non-aqueous electrolytes are preferably VC: 0.1 to 5.0% by mass and FEC: 0.05 to 5.0% by mass, respectively.
  • the positive electrode according to the lithium secondary battery of the present invention includes at least a positive electrode active material.
  • a positive electrode mixture layer containing a positive electrode active material is formed on one side or both sides of a current collector.
  • the positive electrode mixture layer contains a binder and, if necessary, a conductive additive, and includes, for example, a positive electrode active material and a binder (and further a conductive additive). Applying a suitable solvent to the mixture (positive electrode mixture) and thoroughly kneading the resulting mixture (slurry, etc.) on the surface of the current collector, followed by drying to obtain a desired thickness Can be formed.
  • the positive electrode after the formation of the positive electrode mixture layer is usually subjected to press treatment to adjust the thickness and density of the positive electrode mixture layer.
  • a lithium-containing metal oxide represented by the following general formula (2) is used as the positive electrode active material.
  • M is Al, Mg, Zr, Ti, Ni, Mn, Na, Bi, Ca, F, P, Sr, W, Ba, Si, Fe, Mo, V, Sn, Sb, It is at least one element selected from the group consisting of Ta, Nb, Ge, Cr, K, S, Cu, Er and Zn, and 0.9 ⁇ a ⁇ 1.10, 0.01 ⁇ b ⁇ 0. 12.
  • the positive electrode mixture layer is generally subjected to a press treatment as described above, but at that time, the positive electrode active material may not be able to withstand the press pressure and may crack. Since the surface area of the active material increases when cracks occur in the active material, it reacts with the non-aqueous electrolyte and the non-aqueous electrolyte is consumed, and as the charge and discharge progresses, the electrolyte becomes dry. This leads to deterioration of the charge / discharge cycle characteristics of the battery. In particular, since this reaction becomes remarkable at high temperatures, the charge / discharge cycle characteristics of the battery tend to be worse at higher temperatures than at normal temperatures.
  • lithium cobaltate which is widely used as a positive electrode active material for lithium secondary batteries, has a difficulty in maintaining its crystal structure, which is why the battery charge / discharge cycle characteristics, storage characteristics, Degradation of continuous charge characteristics may occur.
  • the lithium-containing metal oxide represented by the general formula (2) when used as the positive electrode active material, it is possible to prevent the generation of cracks in the positive electrode active material when the press treatment is performed during the production of the positive electrode.
  • the crystal structure of the lithium-containing metal oxide can be prevented from being broken even under a high voltage, the charge / discharge cycle characteristics, storage characteristics, and continuous charge characteristics of the battery can be improved.
  • those represented by M are Al, Mg, Zr, Ti, Ni, Mn, Na, Bi, Ca, F, P, Sr, W, Ba, Si, Fe, Mo, V , Sn, Sb, Ta, Nb, Ge, Cr, K, S, Cu, Er, and Zn, which are at least one element selected from the group consisting of lithium during pressing during positive electrode manufacturing
  • the metal oxide prevents cracks from occurring and contributes to the stability of the crystal structure of the lithium-containing metal oxide under a high voltage, and among these, Al and Mg are preferable.
  • the surface of the lithium-containing metal oxide is covered with a compound containing Al (for example, aluminum oxide), so that the lithium-containing metal oxide and the nonaqueous electrolytic solution are covered. Excessive reaction with can be prevented.
  • a compound containing Al for example, aluminum oxide
  • Examples of the method for covering the lithium-containing metal oxide with a compound containing Al include known methods described in JP-A-2005-276454.
  • lithium-containing metal oxide represented by the general formula (2) contains Mg, an effect of improving the continuous charge characteristics and the storage characteristics can be obtained.
  • B in the general formula (2) is 0.01 ⁇ b ⁇ 0.12. In order to secure the above-described effect better, it is preferable that 0.015 ⁇ b. On the other hand, if b is too much, it may lead to a decrease in capacity, so it is more preferable that b ⁇ 0.1.
  • lithium-containing metal oxide represented by the general formula (2) when at least Al and Mg are selected as the element M, it can be represented by the following general formula (3).
  • M 1 is Zr, Ti, Ni, Mn, Na, Bi, Ca, F, P, Sr, W, Ba, Si, Fe, Mo, V, Sn, Sb, Ta, Nb, It is at least one element selected from the group consisting of Ge, Cr, K, S, Cu, Er and Zn, and 0.9 ⁇ a ⁇ 1.10, 0.01 ⁇ x + y + z ⁇ 0.12, 003 ⁇ x ⁇ 0.05, 0.007 ⁇ y ⁇ 0.03, and 0 ⁇ z ⁇ 0.11.
  • the positive electrode active material only the lithium-containing metal oxide represented by the above general formula (2) can be used, but it can be used in combination with other positive electrode active materials.
  • Examples of other positive electrode active materials that can be used in combination with the lithium-containing metal oxide represented by the general formula (2) include lithium nickel oxides such as LiNiO 2 ; spinels such as Li 4/3 Ti 5/3 O 4 Examples include lithium-containing composite oxides having a structure; lithium-containing metal oxides having an olivine structure such as LiFePO 4 ; oxides obtained by substituting the above-described oxides with various elements.
  • the general formula (2) in the total amount of the positive electrode active material contained in the positive electrode mixture layer It is preferable that content of the lithium containing metal oxide represented by this is 50 mass% or more.
  • the content of the positive electrode active material in the positive electrode mixture layer is preferably 94 to 98% by mass.
  • Examples of the conductive auxiliary agent for the positive electrode include graphites such as natural graphite (flaky graphite, etc.) and artificial graphite; carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black. Carbon materials such as carbon fibers; conductive fibers such as metal fibers; carbon fluoride; metal powders such as aluminum; zinc oxide; conductive whiskers such as potassium titanate; Conductive metal oxides such as titanium oxide; organic conductive materials such as polyphenylene derivatives; and the like can also be used.
  • the content of the conductive additive in the positive electrode mixture layer is preferably 1 to 5% by mass.
  • binder for the positive electrode examples include acrylonitrile, acrylic esters (methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, etc.) and methacrylic esters (methyl methacrylate, ethyl methacrylate, butyl methacrylate).
  • the binder content in the positive electrode mixture layer is preferably 0.4 to 3.5% by mass.
  • a positive electrode mixture containing a positive electrode active material, a conductive additive, a binder, and the like is dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) or water to form a paste-like or slurry-like positive electrode mixture.
  • NMP N-methyl-2-pyrrolidone
  • Prepare an agent-containing composition (however, the binder may be dissolved in a solvent), apply it to one or both sides of the current collector, dry it, and then apply a press treatment such as calendering if necessary. It can manufacture through the process to give.
  • the positive electrode is not limited to those manufactured by the above method, and may be manufactured by other methods.
  • the positive electrode current collector aluminum foil, punching metal, net, expanded metal, or the like can be used, but aluminum foil is usually used.
  • the thickness of the positive electrode current collector is preferably 10 to 30 ⁇ m.
  • the thickness of the positive electrode mixture layer is preferably 40 to 90 ⁇ m per side of the current collector.
  • a lead body for electrical connection with other members in the lithium secondary battery may be formed on the positive electrode according to a conventional method, if necessary.
  • the lithium secondary battery of the present invention has a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, as long as the aforementioned ones are used for the non-aqueous electrolyte and the positive electrode.
  • a positive electrode a negative electrode
  • a non-aqueous electrolyte a separator
  • adopted with the lithium secondary battery conventionally known are applicable.
  • the negative electrode related to the lithium secondary battery has, for example, a negative electrode active material, a binder, and, if necessary, a negative electrode mixture layer including a negative electrode mixture containing a conductive auxiliary agent on one side or both sides of the current collector.
  • a structure can be used.
  • Examples of the negative electrode active material include graphite, pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads, carbon fibers, activated carbon, and metals that can be alloyed with lithium (Si , Sn, etc.) or alloys thereof, oxides, etc., and one or more of these can be used.
  • the negative electrode active materials in order to increase the capacity of the battery, in particular, a material containing Si and O as constituent elements (provided that the atomic ratio x of O to Si is 0.5 ⁇ x ⁇ 1.5
  • the material is preferably referred to as “SiO x ”.
  • the SiO x may contain Si microcrystal or amorphous phase.
  • the atomic ratio of Si and O is a ratio including Si microcrystal or amorphous phase Si. That is, SiO x includes a structure in which Si (for example, microcrystalline Si) is dispersed in an amorphous SiO 2 matrix, and this amorphous SiO 2 is dispersed in the SiO 2 matrix. It is sufficient that the atomic ratio x satisfies 0.5 ⁇ x ⁇ 1.5 in combination with Si.
  • x 1, so that the structural formula is represented by SiO.
  • a material having such a structure for example, in X-ray diffraction analysis, a peak due to the presence of Si (microcrystalline Si) may not be observed, but when observed with a transmission electron microscope, the presence of fine Si Can be confirmed.
  • SiO x is preferably a complex complexed with carbon materials, for example, it is desirable that the surface of the SiO x is coated with a carbon material.
  • a conductive material conductive aid
  • SiO x in the negative electrode is used. It is necessary to form an excellent conductive network by mixing and dispersing the material and the conductive material well. If complexes complexed with carbon material SiO x, for example, simply than with a material obtained by mixing a conductive material such as SiO x and the carbon material, good conductive network in the negative electrode Formed.
  • the composite in which the surface of SiO x is coated with a carbon material is further combined with a conductive material (carbon material or the like), a better conductive network can be formed in the negative electrode. Therefore, it is possible to realize a lithium secondary battery with higher capacity and more excellent battery characteristics (for example, charge / discharge cycle characteristics).
  • the complex of the SiO x and the carbon material coated with a carbon material for example, like granules the mixture was further granulated with SiO x and the carbon material coated with a carbon material.
  • SiO x whose surface is coated with a carbon material the surface of a composite (for example, a granulated body) of SiO x and a carbon material having a smaller specific resistance value is further coated with a carbon material.
  • a composite for example, a granulated body
  • a carbon material having a smaller specific resistance value is further coated with a carbon material.
  • Those can also be preferably used.
  • a better conductive network can be formed. Therefore, in a lithium secondary battery having a negative electrode containing SiO x as a negative electrode active material, a heavy load Battery characteristics such as discharge characteristics can be further improved.
  • Preferred examples of the carbon material that can be used to form a composite with SiO x include carbon materials such as low crystalline carbon, carbon nanotubes, and vapor grown carbon fibers.
  • the details of the carbon material include at least one selected from the group consisting of fibrous or coiled carbon materials, carbon black (including acetylene black and ketjen black), artificial graphite, graphitizable carbon, and non-graphitizable carbon.
  • a seed material is preferred.
  • Fibrous or coil-like carbon materials are preferable in that they easily form a conductive network and have a large surface area.
  • Carbon black (including acetylene black and ketjen black), graphitizable carbon, and non-graphitizable carbon have high electrical conductivity and high liquid retention, and even if SiO x particles expand and contract, This is preferable in that it has a property of easily maintaining contact with the particles.
  • SiO x when SiO x is used as the negative electrode active material, it is preferable to use graphite together, but this graphite is used as a carbon material related to a composite of SiO x and a carbon material. You can also Graphite, like carbon black, has high electrical conductivity and high liquid retention, and also has the property of easily maintaining contact with the SiO x particles even when they expand and contract. Therefore, it can be preferably used for forming a complex with SiO x .
  • a fibrous carbon material is particularly preferable for use when the composite with SiO x is a granulated body.
  • Fibrous carbon material can follow the expansion and contraction of SiO x with the charging and discharging of the battery due to the high shape is thin threadlike flexibility, also because bulk density is large, many and SiO x particles It is because it can have a junction.
  • fibrous carbon include polyacrylonitrile (PAN) -based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, and carbon nanotube, and any of these may be used.
  • the fibrous carbon material can also be formed on the surface of the SiO x particles by, for example, a vapor phase method.
  • the specific resistance value of SiO x is usually 10 3 to 10 7 k ⁇ cm, whereas the specific resistance value of the above-described carbon material is usually 10 ⁇ 5 to 10 k ⁇ cm.
  • the composite of SiO x and the carbon material may further have a material layer (a material layer containing non-graphitizable carbon) that covers the carbon material coating layer on the particle surface.
  • the ratio of SiO x and the carbon material is based on SiO x : 100 parts by mass from the viewpoint of satisfactorily exerting the effect of the composite with the carbon material.
  • the carbon material is preferably 5 parts by mass or more, and more preferably 10 parts by mass or more. Further, in the composite, if the ratio of the carbon material to be combined with SiO x is too large, it may lead to a decrease in the amount of SiO x in the negative electrode mixture layer, and the effect of increasing the capacity may be reduced.
  • SiO x relative to 100 parts by weight, the carbon material, and more preferably preferably not more than 50 parts by weight, more than 40 parts by weight.
  • the composite of the SiO x and the carbon material can be obtained, for example, by the following method.
  • a dispersion liquid in which SiO x is dispersed in a dispersion medium is prepared, and sprayed and dried to produce composite particles including a plurality of particles.
  • a dispersion medium for example, ethanol or the like can be used as the dispersion medium. It is appropriate to spray the dispersion liquid in an atmosphere of 50 to 300 ° C.
  • similar composite particles can be produced also by a granulation method by a mechanical method using a vibration type or planetary type ball mill or rod mill.
  • the SiO x in the case of manufacturing a granulated body with small carbon material resistivity value than SiO x is adding the carbon material in the dispersion liquid of SiO x are dispersed in a dispersion medium, the dispersion by using a liquid, by a similar method to the case of composite of SiO x may be a composite particle (granule). Further, by granulation process according to the similar mechanical method, it is possible to produce a granular material of the SiO x and the carbon material.
  • SiO x particles SiO x composite particles or a granulated body of SiO x and a carbon material
  • a carbon material for example, the SiO x particles and the hydrocarbon-based material
  • the gas is heated in the gas phase, and carbon generated by pyrolysis of the hydrocarbon-based gas is deposited on the surface of the particles.
  • the hydrocarbon-based gas spreads to every corner of the composite particle, and the surface of the particle and the pores in the surface are thin and contain a conductive carbon material. Since a uniform film (carbon material coating layer) can be formed, the SiO x particles can be imparted with good conductivity with a small amount of carbon material.
  • the processing temperature (atmosphere temperature) of the vapor deposition (CVD) method varies depending on the type of hydrocarbon gas, but usually 600 to 1200 ° C. is appropriate. Among these, the temperature is preferably 700 ° C. or higher, and more preferably 800 ° C. or higher. This is because the higher the treatment temperature, the less the remaining impurities, and the formation of a coating layer containing carbon having high conductivity.
  • toluene As the liquid source of the hydrocarbon-based gas, toluene, benzene, xylene, mesitylene and the like can be used, but toluene that is easy to handle is particularly preferable.
  • a hydrocarbon-based gas can be obtained by vaporizing them (for example, bubbling with nitrogen gas).
  • methane gas, acetylene gas, etc. can also be used.
  • SiO x particles SiO x composite particles or a granulated body of SiO x and a carbon material
  • a carbon material by a vapor deposition (CVD) method
  • a petroleum-based pitch or a coal-based pitch is used.
  • At least one organic compound selected from the group consisting of a thermosetting resin and a condensate of naphthalene sulfonate and aldehydes is attached to a coating layer containing a carbon material, and then the organic compound is attached.
  • the obtained particles may be fired.
  • a dispersion liquid in which a SiO x particle (SiO x composite particle or a granulated body of SiO x and a carbon material) coated with a carbon material and the organic compound are dispersed in a dispersion medium is prepared, The dispersion is sprayed and dried to form particles coated with the organic compound, and the particles coated with the organic compound are fired.
  • Isotropic pitch can be used as the pitch, and phenol resin, furan resin, furfural resin, or the like can be used as the thermosetting resin.
  • phenol resin, furan resin, furfural resin, or the like can be used as the thermosetting resin.
  • condensate of naphthalene sulfonate and aldehydes naphthalene sulfonic acid formaldehyde condensate can be used.
  • a dispersion medium for dispersing the SiO x particles coated with the carbon material and the organic compound for example, water or alcohols (ethanol or the like) can be used. It is appropriate to spray the dispersion liquid in an atmosphere of 50 to 300 ° C.
  • the firing temperature is usually 600 to 1200 ° C., preferably 700 ° C. or higher, and more preferably 800 ° C. or higher. This is because the higher the processing temperature, the less the remaining impurities, and the formation of a coating layer containing a high-quality carbon material with high conductivity. However, the processing temperature needs to be lower than the melting point of SiO x .
  • the negative electrode active material When SiO x is used as the negative electrode active material for a lithium secondary battery, it is preferable to use graphite as the negative electrode active material.
  • graphite By reducing the ratio of SiO x in the negative electrode active material using graphite, the negative electrode (negative electrode mixture) associated with charging / discharging of the battery is suppressed as much as possible while suppressing the decrease in the capacity-enhancing effect due to the reduction of SiO x. It is possible to suppress a change in volume of the layer) and to suppress a decrease in battery characteristics that may be caused by the volume change.
  • Examples of graphite used as the negative electrode active material together with SiO x include natural graphite such as flaky graphite; graphitizable carbon such as pyrolytic carbons, mesophase carbon microbeads (MCMB), and carbon fibers at 2800 ° C. or more. Artificial graphite subjected to chemical treatment; and the like.
  • the content of SiO x in the anode active material is preferably at least 0.01 wt%, It is more preferable that it is 3 mass% or more.
  • the content of SiO x in the negative electrode active material is 70% by mass or less from the viewpoint of better avoiding the problem caused by the volume change of the negative electrode due to charge / discharge. It is preferable that it is, and it is more preferable that it is 30 mass% or less.
  • SiO x When SiO x is used as the negative electrode active material, volume change occurs during charge / discharge, but when a non-aqueous electrolyte containing a compound represented by the general formula (1) is used, the non-aqueous electrolyte is gelled. It functions as a buffer material, and suppresses deviation from the positive electrode and separator due to expansion and contraction of the negative electrode, cracks in SiO x , and the like, so that the charge / discharge cycle characteristics of the battery are improved.
  • the same negative electrode binder and conductive additive as those exemplified above as those that can be used for the positive electrode can be used.
  • a negative electrode active material, a binder, and a conductive auxiliary agent used as necessary are prepared in a paste-like or slurry-like negative electrode mixture-containing composition in which a solvent such as NMP or water is dispersed.
  • a solvent such as NMP or water
  • the binder may be dissolved in a solvent
  • the negative electrode is not limited to those manufactured by the above manufacturing method, and may be manufactured by other methods.
  • a lead body for electrical connection with other members in the lithium secondary battery may be formed on the negative electrode according to a conventional method, if necessary.
  • the thickness of the negative electrode mixture layer is preferably, for example, 10 to 100 ⁇ m per one side of the current collector.
  • the content of the negative electrode active material is preferably 80.0 to 99.8% by mass, and the content of the binder is 0.1 to 10% by mass. Is preferred.
  • the content of the conductive additive in the negative electrode mixture layer is preferably 0.1 to 10% by mass.
  • the negative electrode current collector a copper or nickel foil, a punching metal, a net, an expanded metal, or the like can be used, but a copper foil is usually used.
  • the upper limit of the thickness is preferably 30 ⁇ m, and the lower limit is 5 ⁇ m in order to ensure mechanical strength. Is desirable.
  • the separator according to the lithium secondary battery has a property that the pores are closed at 80 ° C. or higher (more preferably 100 ° C. or higher) and 170 ° C. or lower (more preferably 150 ° C. or lower) (that is, a shutdown function).
  • a separator used in a normal lithium secondary battery for example, a microporous membrane made of polyolefin such as polyethylene (PE) or polypropylene (PP) can be used.
  • the microporous film constituting the separator may be, for example, one using only PE or one using PP, or a laminate of a PE microporous film and a PP microporous film. There may be.
  • the thickness of the separator is, for example, 10 to 30 ⁇ m, and preferably 20 ⁇ m or less.
  • the non-aqueous electrolyte containing the compound represented by the general formula (1), the general formula (1 ) A non-aqueous electrolyte is gelled. Since the electrode and the separator are in close contact with each other due to the anchor effect or intermolecular force of the gel-like non-aqueous electrolyte, the shrinkage of the separator can be suppressed even when the temperature in the battery rises. Therefore, it is possible to use a thin separator having a thickness of 14 ⁇ m or less, further 10 ⁇ m or less. Moreover, since the load characteristics are improved when such a thin separator is used, the charge / discharge characteristics of the battery at a temperature below room temperature are also improved.
  • a laminated separator in which a heat-resistant porous layer containing a heat-resistant inorganic filler is formed on the surface of the microporous film may be used.
  • a stacked separator When such a stacked separator is used, the shrinkage of the separator is suppressed even when the temperature in the battery rises, and a short circuit due to contact between the positive electrode and the negative electrode can be suppressed.
  • a high lithium secondary battery can be obtained.
  • the inorganic filler to be contained in the heat-resistant porous layer boehmite, alumina, silica and the like are preferable, and one or more of them can be used.
  • the heat-resistant porous layer preferably contains a binder for binding the inorganic fillers or bonding the heat-resistant porous layer and the microporous film.
  • the binder includes an ethylene-vinyl acetate copolymer (EVA, having a structural unit derived from vinyl acetate of 20 to 35 mol%), an ethylene-acrylic acid copolymer such as an ethylene-ethyl acrylate copolymer, and a fluorine-based rubber.
  • Styrene butadiene rubber SBR
  • CMC carboxymethyl cellulose
  • HEC hydroxyethyl cellulose
  • PVA polyvinyl alcohol
  • PVB polyvinyl butyral
  • PVP polyvinyl pyrrolidone
  • cross-linked acrylic resin polyurethane, epoxy resin, etc.
  • the thickness of the separator (a separator made of a microporous membrane made of polyolefin or the laminated separator) is preferably 10 to 30 ⁇ m, for example.
  • the thickness of the heat-resistant porous layer is preferably 3 to 8 ⁇ m, for example.
  • the conventional film separator For example, the adhesion with the electrode is improved more than when a polyethylene microporous membrane separator is used, and the distortion of the electrode body (electrode body formed by interposing a separator between the positive electrode and the negative electrode) can be suppressed. . This is presumably because the heat-resistant porous layer containing the inorganic filler tends to have a high porosity, and thus plays a role like an anchor after the non-aqueous electrolyte is gelled.
  • the positive electrode, the negative electrode, and the separator are formed in the form of a laminated electrode body in which a separator is interposed between the positive electrode and the negative electrode, or a wound electrode body in which the separator is wound in a spiral shape. It can be used for the lithium secondary battery of the invention.
  • a rectangular outer can such as a steel can or an aluminum can can be cited.
  • the lithium secondary battery of the present invention can be used with a charging upper limit voltage of about 4.2 V as in the case of the conventional lithium secondary battery, but the charging upper limit voltage is set to 4.4 V or higher, which is higher than this. It is also possible to set and use it, and this makes it possible to stably exhibit excellent characteristics even when repeatedly used over a long period of time while increasing the capacity. In addition, it is preferable that the upper limit voltage of charge of a lithium secondary battery is 4.7V or less.
  • Example 1 ⁇ Synthesis of lithium-containing metal oxide> Li 2 CO 3 , Co 3 O 4 , Al (OH) 3 and Mg (OH) 2 were mixed at a molar ratio of 1: 0.651: 0.028: 0.01, and the mixture was mixed. It heat-processed in air
  • composition analysis of the lithium-containing metal oxide using the ICP method revealed that the composition was represented by Li 1.0 Co 0.981 Al 0.014 Mg 0.005 O 2 . .
  • ⁇ Production of negative electrode> A composite in which the surface of SiO having an average particle diameter D50% of 8 ⁇ m, which is a negative electrode active material, is coated with a carbon material (the amount of the carbon material in the composite is 10% by mass), and graphite having an average particle diameter D50% of 16 ⁇ m
  • the strip-shaped positive electrode is stacked on the strip-shaped negative electrode through a microporous polyethylene separator (porosity: 41%) having a thickness of 12 ⁇ m, wound in a spiral shape, and then pressed so as to be flat.
  • a wound electrode body having a flat wound structure was formed, and the wound electrode body was fixed with an insulating tape made of polypropylene.
  • the wound electrode body is inserted into a prismatic battery case made of aluminum alloy having an outer dimension of thickness 5.0 mm, width 57 mm, and height 60 mm, the lead body is welded, and an aluminum alloy lid The plate was welded to the open end of the battery case.
  • the non-aqueous electrolyte was injected from an inlet provided on the cover plate, and allowed to stand for 1 to 3 hours, and then the inlet was sealed. And it charged until it became 0.02C after charging to 4.4V at 0.2C, and it heat-processed at 60 degreeC after that for 10 hours by the thermostat. After the heat treatment, the battery was discharged at 0.2 C to 2.75 V, and a lithium secondary battery having the structure shown in FIG. 1 and the appearance shown in FIG. 2 was produced.
  • FIG. 1 is a partial cross-sectional view.
  • the positive electrode 1 and the negative electrode 2 are spirally wound via a separator 3.
  • the flat wound electrode body 6 is pressurized so as to be flat, and is accommodated in a rectangular (square tube) battery case 4 together with a non-aqueous electrolyte.
  • a metal foil, a non-aqueous electrolyte, or the like as a current collector used for manufacturing the positive electrode 1 and the negative electrode 2 is not illustrated.
  • the battery case 4 is made of an aluminum alloy and constitutes a battery outer body.
  • the battery case 4 also serves as a positive electrode terminal.
  • the insulator 5 which consists of PE sheets is arrange
  • the positive electrode lead body 7 and the negative electrode lead body 8 thus drawn are drawn out.
  • a stainless steel terminal 11 is attached to a sealing lid plate 9 made of aluminum alloy for sealing the opening of the battery case 4 via a polypropylene insulating packing 10, and an insulator 12 is attached to the terminal 11.
  • a stainless steel lead plate 13 is attached.
  • the cover plate 9 is inserted into the opening of the battery case 4, and the joint of the two is welded, whereby the opening of the battery case 4 is sealed and the inside of the battery is sealed. Further, in the battery of FIG. 1, a non-aqueous electrolyte inlet 14 is provided in the cover plate 9, and a sealing member is inserted into the non-aqueous electrolyte inlet 14, for example, laser welding or the like. As a result, the battery is sealed by welding. Further, the lid plate 9 is provided with a cleavage vent 15 as a mechanism for discharging the internal gas to the outside when the temperature of the battery rises.
  • the battery case 4 and the cover plate 9 function as positive terminals by directly welding the positive electrode lead body 7 to the cover plate 9, and the negative electrode lead body 8 is welded to the lead plate 13,
  • the terminal 11 functions as a negative electrode terminal by conducting the negative electrode lead body 8 and the terminal 11 through the lead plate 13, but depending on the material of the battery case 4, the sign may be reversed. There is also.
  • FIG. 2 is a perspective view schematically showing the external appearance of the battery shown in FIG. 1.
  • FIG. 2 is shown for the purpose of showing that the battery is a square battery.
  • FIG. 1 schematically shows a battery, and only specific members of the battery are shown. Also in FIG. 1, the inner peripheral portion of the electrode body is not cross-sectional.
  • Example 2 A lithium secondary battery was produced in the same manner as in Example 1 except that a microporous polyethylene separator (porosity: 41%) having a thickness of 16 ⁇ m was used.
  • Example 3 A lithium secondary battery was produced in the same manner as in Example 1 except that a microporous polyethylene separator (porosity: 41%) having a thickness of 8 ⁇ m was used.
  • Example 4 A lithium secondary battery was produced in the same manner as in Example 1 except that a microporous polyethylene separator (porosity: 41%) having a thickness of 20 ⁇ m was used.
  • composition analysis of the lithium-containing metal oxide using the ICP method revealed that the composition was represented by Li 1.0 Co 0.9 Al 0.095 Mg 0.005 O 2 . .
  • a positive electrode was produced in the same manner as in Example 1 except that this lithium-containing metal oxide was used as a positive electrode active material, and a lithium secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.
  • composition analysis of the lithium-containing metal oxide using the ICP method revealed that the composition was represented by Li 1.0 Co 0.9 Al 0.005 Mg 0.095 O 2 . .
  • a positive electrode was produced in the same manner as in Example 1 except that this lithium-containing metal oxide was used as a positive electrode active material, and a lithium secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.
  • Example 7 ⁇ Synthesis of positive electrode active material> Li 2 CO 3 , Co 3 O 4 , Mg (OH) 2 and TiOSO 4 .H 2 O were mixed at a molar ratio of 1: 0.640: 0.028: 0.01, and this mixture was mixed. It heat-processed in air
  • the lithium-containing metal oxide was subjected to composition analysis using an ICP method and found to have a composition represented by Li 1.0 Co 0.981 Mg 0.014 Ti 0.005 O 2 . .
  • a positive electrode was produced in the same manner as in Example 1 except that this lithium-containing metal oxide was used as a positive electrode active material, and a lithium secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.
  • Example 8 ⁇ Synthesis of positive electrode active material> Li 2 CO 3 , Co 3 O 4 , Al (OH) 3 , and TiOSO 4 .H 2 O were mixed at a molar ratio of 1: 0.640: 0.021: 0.01, and this mixture was heat-treated at 950 ° C. for 12 hours in the atmosphere (oxygen concentration of about 20 vol%), and then pulverized in a mortar to obtain a powder.
  • the lithium-containing metal oxide after pulverization was stored in a desiccator.
  • composition analysis of the lithium-containing metal oxide using the ICP method revealed that the composition was represented by Li 1.0 Co 0.981 Al 0.014 Ti 0.005 O 2 . .
  • a positive electrode was produced in the same manner as in Example 1 except that this lithium-containing metal oxide was used as a positive electrode active material, and a lithium secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.
  • Example 1 A positive electrode was produced in the same manner as in Example 1 except that the positive electrode active material was changed to LiCoO 2 , and a lithium secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.
  • a lithium secondary battery was produced in the same manner as in Comparative Example 1 except that this non-aqueous electrolyte was used.
  • Example 3 A lithium secondary battery was produced in the same manner as in Example 1 except that the same non-aqueous electrolyte as that prepared in Comparative Example 2 was used.
  • Comparative Example 4 A lithium secondary battery was produced in the same manner as in Comparative Example 1 except that a microporous polyethylene separator (porosity: 41%) having a thickness of 8 ⁇ m was used.
  • Comparative Example 5 A lithium secondary battery was produced in the same manner as in Comparative Example 1 except that a microporous polyethylene separator (porosity: 41%) having a thickness of 20 ⁇ m was used.
  • ⁇ Leakage current start time (continuous charging characteristics evaluation)> About each lithium secondary battery of an Example and a comparative example, after carrying out the constant current charge to 4.4V with the electric current value of 1.0C in the environment of 60 degreeC, the constant voltage charge was performed with the voltage of 4.4V. The time until the current value increased (leakage current generation start time) was measured while continuing constant voltage charging. Specifically, after the current value in the constant voltage charging region was minimized, it was determined that the current value increased when the current value increased by 1.5 mA or more. It can be said that the longer the leakage current generation start time, the better the continuous charge characteristic of the battery.
  • a series of operations for discharging to a value of 3.0 V was taken as one cycle, and this was repeated many times.
  • Each battery was subjected to 500 cycles, and a constant current-constant voltage charge and a constant current discharge were performed under the same conditions as in the initial discharge capacity measurement, to obtain a discharge capacity.
  • a value obtained by dividing these discharge capacities by the initial discharge capacities was expressed as a percentage to calculate a 45 ° C. capacity retention rate.
  • the 23 ° C. capacity retention rate was calculated in the same manner as the 45 ° C. capacity maintenance rate except that the temperature condition was changed from 45 ° C. to 23 ° C.
  • Each battery was placed in a thermostat kept at 85 ° C. and stored for 24 hours. Then, each battery was taken out from the thermostat and discharged to 2.75 V at 0.2 C after 2 hours. Thereafter, the battery was charged to 4.4 V at 0.5 C, and then discharged to 2.75 V at 0.2 C to obtain a recovery capacity.
  • the storage capacity retention rate was obtained by dividing the recovery capacity after storage by the initial discharge capacity (discharge capacity before storage) and expressed as a percentage.
  • the outer package thickness of each battery was measured using a micrometer. The difference between the thickness of the outer package before storage and the thickness of the outer package after storage was divided by the thickness of the outer package before storage and expressed as a percentage.
  • Embodiments of the lithium secondary batteries of Examples and Comparative Examples are shown in Table 1, and the evaluation results are shown in Table 2.
  • the lithium secondary battery of the present invention can be applied to the same applications as conventionally known lithium secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 充電上限電圧が4.4V以上に設定された場合でも優れた充放電サイクル特性を発揮でき、かつ貯蔵特性および連続充電特性が良好なリチウム二次電池を提供する。 本発明のリチウム二次電池は、HFと反応して架橋する化合物を含む非水電解液を使用し、正極活物質として下記一般式(2)で表されるものを含有していることを特徴とするリチウム二次電池。 LiCo1-b (2) 〔前記一般式(2)中、Mは、Al、Mg、Zr、Ti、Ni、Mn、Na、Bi、Ca、F、P、Sr、W、Ba、Si、Fe、Mo、V、Sn、Sb、Ta、Nb、Ge、Cr、K、S、Cu、ErおよびZnよりなる群から選択される少なくとも1種の元素であり、0.9≦a≦1.10、0.01≦b≦0.12である。〕

Description

リチウム二次電池
 本発明は、充放電サイクル特性、貯蔵特性および連続充電特性が良好なリチウム二次電池に関するものである。
 近年、携帯電話、ノート型パソコンなどのポータブル電子機器の発達や、電気自動車の実用化などに伴い、小型軽量で、かつ高容量のリチウム二次電池が必要とされるようになってきた。
 ところが、このようなリチウム二次電池においては、電池の充放電の過程で電極が膨張収縮し、それが正極と負極との対向状態にずれを生じさせる原因となり、ひいてはそれが充放電サイクル特性や貯蔵時の電池膨れなどに影響を与えてしまう。
 そこで、電解質としてゲル電解質を用いることにより、リチウム二次電池の機械的強度の向上や充放電サイクル特性、安全性を高める技術が開発されてきた(特許文献1、2)。
 ところで、上述した通り、リチウム二次電池を搭載する電子機器の発達により、機器が複雑な計算を行うようになっているが、それに伴って機器そのものが高温になりやすい。そのため、このような機器に搭載されるリチウム二次電池には、高温下での電池特性の向上が求められたり、電池の高容量化を図るために充電上限電圧を4.4V以上まで上げた時の電池特性の向上が求められたりするなど、従来と比較してより苛酷な状況下においても高品質なリチウム二次電池が望まれている。
特開2005-310445号公報 国際公開第2011/004483号
 本発明は、充電上限電圧が4.4V以上に設定された場合でも優れた充放電サイクル特性を発揮でき、かつ貯蔵特性および連続充電特性が良好なリチウム二次電池を提供する。
 本発明は、正極、負極、セパレータおよび非水電解液を有するリチウム二次電池であって、前記非水電解液として、下記一般式(1)で表される化合物とフッ素を含有するリチウム塩とを含むものを使用し、前記正極は、下記一般式(2)で表されるリチウム含有金属酸化物を正極活物質として含有していることを特徴とするリチウム二次電池を提供するものである。
Figure JPOXMLDOC01-appb-C000003
 前記一般式(1)中、1800<n<3000であり、350<m<600である。
 LiCo1-b   (2)
 前記一般式(2)中、Mは、Al、Mg、Zr、Ti、Ni、Mn、Na、Bi、Ca、F、P、Sr、W、Ba、Si、Fe、Mo、V、Sn、Sb、Ta、Nb、Ge、Cr、K、S、Cu、ErおよびZnよりなる群から選択される少なくとも1種の元素であり、0.9≦a≦1.10、0.01≦b≦0.12である。
 また、本発明は、正極、負極、セパレータおよび非水電解液を有するリチウム二次電池であって、前記非水電解液は、前記一般式(1)で表される化合物由来の架橋物と、フッ素を含有するリチウム塩とを含んでおり、前記正極は、前記一般式(2)で表されるリチウム含有金属酸化物を正極活物質として含有していることを特徴とするリチウム二次電池を提供するものである。
 本発明によれば、充放電サイクル特性、貯蔵特性および連続充電特性が良好なリチウム二次電池を提供することができる。
本発明のリチウム二次電池の一例を模式的に表す部分縦断面図である。 図1の斜視図である。
 本発明のリチウム二次電池では、下記一般式(1)で表される化合物を含む非水電解液を用いる。
Figure JPOXMLDOC01-appb-C000004
 一般式(1)中、1800<n<3000であり、mは350<m<600である。
 リチウム二次電池において、特に高温下での電池特性が低下する原因として以下の事が考えられる。リチウム二次電池の非水電解液が、フッ素を含有するリチウム塩を含んでおり、かつ正極活物質がCoを含有するリチウム含有金属酸化物である場合、電池内に不可避的に持ち込まれる水分とフッ素を含有するリチウム塩とが反応してフッ化水素(HF)が発生し、このHFが正極活物質中に含まれるCoを溶出させることで正極活物質が劣化して放電容量が低下し、更にこの時に非水電解液と正極活物質とが反応してガス発生が起こる。
 ところが、本発明のリチウム二次電池においては、非水電解液に含まれる一般式(1)で表される化合物が、電池内で生じたHFを消費しつつ架橋するため、電池内のHFの量が減少する。これにより、本発明のリチウム二次電池では、HFの生成による正極活物質の劣化を防止できることから、充放電サイクル特性、貯蔵特性および連続充電特性が向上する。
 上述の通り、一般式(1)で表される化合物は、HFといったルイス酸と反応して架橋する性質がある。よって、リチウム二次電池の製造過程で注液を行う時点では、架橋物形成前の一般式(1)で表される化合物を含有した粘度の低い非水電解液の状態で、電池内へ注液を行うことができる。その後、初回の充放電がなされれば、一般式(1)で表される化合物が初めてHFと反応することで架橋して非水電解液が粘度の高い状態、つまりゲル状になる。よって、例えば注液孔が小さな角型電池のようなリチウム二次電池であっても、粘度の低い状態の非水電解液を注液することになるので、外装体への注液性も保ちつつ、ゲル状になった後の非水電解液は漏液しにくくなるので安全性の向上につながる。
 そして、初回の充放電がなされて非水電解液がゲル状になることで電極とセパレータが密着して歪み難くなるため、高温貯蔵を行っても膨れにくいリチウム二次電池とすることができる。更に、電池の充放電を繰り返しても正極・負極の対向状態が保たれるため、充放電サイクル特性の向上につながる。更に、電極とセパレータが密着することで、熱によるセパレータの収縮を抑制することもできる。特に、長尺状の正極・負極がセパレータを介して対向した状態で巻回するような電極体、いわゆる巻回体タイプの場合には、電池の充放電を繰り返しても巻回体の歪みが抑えることができる。
 すなわち、一般式(1)で表される化合物は、電池内で生成するHFの作用によって架橋物を形成することから、架橋前駆体ともいうことができ、また、非水電解液をゲル状にする作用を有していることから、ゲル化剤ともいうことができる。そして、初回の充放電を経たリチウム二次電池が有する非水電解液は、一般式(1)で表される化合物由来の架橋物を含有することとなり、ゲル状となっている。
 なお、本明細書でいう非水電解液の「ゲル状」には、通常の「ゲル」の他にも、電池業界において、いわゆる「ゲル状電解質」と称される電解質と同様の状態(厳密な意味でのゲルでなくても、液の流動性が殆どないか、または液が流動しなくなった状態)が含まれる。
 上述のような効果を良好に確保する観点からは、電池に使用する非水電解液における一般式(1)で表される化合物の含有量は、0.5質量%以上であることが好ましく、1.0質量%以上であることがより好ましく、また、10.0質量%以下であることが好ましく、8.0質量%以下であることがより好ましく、5.0質量%以下であることが更に好ましい。
 また、本発明のリチウム二次電池では、特定の組成の、Li金属に対する正極電位が4.45Vを超えても結晶構造が壊れにくい正極活物質を用いており、これによる作用と、一般式(1)で表される化合物を含有する非水電解液による作用とが相俟って、更なる電池特性向上効果を確保することができる。
 詳細は後述するが、本発明のリチウム二次電池で使用する特定の組成を持つ正極活物質は、充放電を繰り返しても粒子にクラックが生じにくく非水電解液の消費を抑えることができ、一般式(1)で表される化合物を含有する非水電解液と組み合わせることで、電極シートの歪みやHFの発生も抑制することもできるため、電池の充放電サイクル特性等が相乗的に向上する。
 非水電解液は、フッ素を含有するリチウム塩を含んでいる。フッ素を含有するリチウム塩は、上述の通り、電池内でHFを生成させる要因となるが、本発明のリチウム二次電池では、フッ素を含有するリチウム塩由来のHFによる問題の発生を抑えて、充放電サイクル特性、貯蔵特性および連続充電特性を高めることができる。
 フッ素を含有するリチウム塩としては、LiPF、LiBF、LiSbF、LiCFSO、LiCFCO、Li(SO、LiC(CFSO、LiC2n+1SO3(n≧2)などが挙げられる。非水電解液は、前記例示のフッ素を含有するリチウム塩のうちの1種のみを含んでいてもよく、2種以上を含んでいてもよい。これらのフッ素を含有するリチウム塩の中でも、解離度が大きくてLiイオンの輸送率が高く、また、最も汎用性の高いリチウム塩であることから、LiPFを使用することがより好ましい。更に、非水電解液は、フッ素を含有するリチウム塩と共に、他のリチウム塩(LiClOなど)を本発明の効果を阻害しない程度に含んでいても良い。
 非水電解液中の全リチウム塩の濃度としては、0.6~1.8mol/lとすることが好ましく、0.9~1.6mol/lとすることがより好ましい。なお、フッ素を含有するリチウム塩の、非水電解液中の濃度は、0.6mol/l以上であることが好ましく、0.9mol/l以上であることがより好ましい。よって、非水電解液において、フッ素を含有するリチウム塩と、他のリチウム塩とを併用する場合には、これらのフッ素を含有するリチウム塩の濃度が前記好適値を満たしつつ、全リチウム塩の濃度(合計濃度)が前記好適値を満たす範囲で、これらのリチウム塩を使用することが好ましい。
 本発明の非水電解液としては、例えば、下記の非水系溶媒中に、前記一般式(1)で表される化合物を溶解させることで調製した溶液(非水電解液)を使用する。
 溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、γ-ブチロラクトン(γ-BL)、1,2-ジメトキシエタン(DME)、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン、ジメチルスルフォキシド(DMSO)、1,3-ジオキソラン、ホルムアミド、ジメチルホルムアミド(DMF)、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、燐酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテルなどの非プロトン性有機溶媒を1種単独で、または2種以上を混合した混合溶媒として用いることができる。
 リチウム二次電池に使用する非水電解液には、充放電サイクル特性の更なる改善や、高温貯蔵性や過充電防止などの安全性を向上させる目的で、1,3-ジオキサン、ビニレンカーボネート(VC)、ビニルエチレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)等のフッ素化カーボネート、無水酸、スルホン酸エステル、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、t-ブチルベンゼンなどの添加剤(これらの誘導体も含む)を適宜加えることもできる。
 VCやFECを含有する非水電解液を使用すると、電池の充放電サイクル特性を更に向上させることができる。これらの非水電解液中の含有量は、それぞれ、VC:0.1~5.0質量%、FEC:0.05~5.0質量%であることが好ましい。
 本発明のリチウム二次電池に係る正極としては、少なくとも正極活物質を含むが、例えば、正極活物質を含有する正極合剤層を、集電体の片面または両面に形成したものが挙げられる。正極合剤層は、正極活物質の他に、結着剤や、必要に応じて導電助剤を含有しており、例えば、正極活物質および結着剤(更には導電助剤)などを含む混合物(正極合剤)に、適当な溶剤を加えて十分に混練して得られる正極合剤含有組成物(スラリーなど)を、集電体表面に塗布し乾燥することで、所望の厚みとしつつ形成することができる。また、正極合剤層形成後の正極には、通常、プレス処理を施して、正極合剤層の厚みや密度を調節する。
 本発明では正極活物質として、以下の一般式(2)に表されるリチウム含有金属酸化物を用いる。
 LiCo1-b  (2)
 一般式(2)中、Mは、Al、Mg、Zr、Ti、Ni、Mn、Na、Bi、Ca、F、P、Sr、W、Ba、Si、Fe、Mo、V、Sn、Sb、Ta、Nb、Ge、Cr、K、S、Cu、ErおよびZnよりなる群から選択される少なくとも1種の元素であり、0.9≦a≦1.10、0.01≦b≦0.12である。
 正極合剤層は上述した通り一般にプレス処理を施すが、その際にプレス圧に耐えられずに正極活物質にクラックが生じることがある。活物質にクラックが生じると活物質の表面積が増えるので、その分非水電解液と反応して非水電解液が消費され、充放電が進むと電解液が液枯れの状態になることから、電池の充放電サイクル特性の悪化につながる。特に高温下においてはこの反応が顕著となるため、電池の充放電サイクル特性は、常温下よりも高温下において、より悪化しやすい傾向にある。
 また、電池の高容量化のために充電上限電圧を引き上げることは一般的であるが、例えば電池電圧を4.4Vにすると、Liに対する正極電位は4.45V以上となる。このような高電位下では、リチウム二次電池の正極活物質として汎用されているコバルト酸リチウムは結晶構造を保つのが困難であるため、これが原因で電池の充放電サイクル特性や、貯蔵特性、連続充電特性の劣化が起こる場合がある。
 しかしながら、一般式(2)で表されるリチウム含有金属酸化物を正極活物質として用いた場合には、正極の製造時においてプレス処理を行った際の正極活物質のクラック発生を防止することができ、また、高電圧下においてもリチウム含有金属酸化物の結晶構造の崩壊を防止することができるので、電池の充放電サイクル特性、貯蔵特性、および連続充電特性を向上させることができる。
 一般式(2)中、Mで表されるものは、Al、Mg、Zr、Ti、Ni、Mn、Na、Bi、Ca、F、P、Sr、W、Ba、Si、Fe、Mo、V、Sn、Sb、Ta、Nb、Ge、Cr、K、S、Cu、ErおよびZnよりなる群から選択される少なくとも1種の元素であるが、これらは正極製造時のプレスの際にリチウム含有金属酸化物にクラックが発生するのを防ぎ、かつ上述した通り高電圧下でのリチウム含有金属酸化物の結晶構造の安定にも寄与するものであり、中でもAl、Mgが好ましい。
 Alは活物質中に固溶させてもその効果を発揮するが、リチウム含有金属酸化物の表面を、Alを含む化合物(例えば酸化アルミニウム)で覆うことでリチウム含有金属酸化物と非水電解液との過剰な反応を防ぐことができる。Alを含む化合物でリチウム含有金属酸化物を覆う方法としては、特開2005-276454号公報等に記載の公知の方法が挙げられる。
 また、一般式(2)で表されるリチウム含有金属酸化物がMgを含有することで、連続充電特性や貯蔵特性の改善効果を得ることができる。
 一般式(2)中のbは、0.01≦b≦0.12である。上述の効果をより良好に確保するには、0.015<bであることが好ましい。一方で、bが多すぎると、容量低下につながることがあるので、b<0.1であることが更に好ましい。
 また、一般式(2)で表されるリチウム含有金属酸化物の更に好ましい形態として、元素Mに少なくともAlとMgとを選択した場合、以下の一般式(3)のように表すことができる。
 LiCo1-x-y-zAlMg   (3)
 一般式(3)中、MはZr、Ti、Ni、Mn、Na、Bi、Ca、F、P、Sr、W、Ba、Si、Fe、Mo、V、Sn、Sb、Ta、Nb、Ge、Cr、K、S、Cu、ErおよびZnよりなる群から選択される少なくとも1種の元素であり、0.9≦a≦1.10、0.01≦x+y+z≦0.12、0.003≦x≦0.05、0.007≦y≦0.03、0≦z≦0.11である。
 正極活物質には、上記のような一般式(2)で表されるリチウム含有金属酸化物のみを使用することができるが、他の正極活物質と併用することもできる。
 一般式(2)で表されるリチウム含有金属酸化物と併用し得る他の正極活物質としては、例えば、LiNiOなどのリチウムニッケル酸化物;Li4/3Ti5/3などのスピネル構造のリチウム含有複合酸化物;LiFePOなどのオリビン構造のリチウム含有金属酸化物;前記の酸化物を基本組成とし各種元素で置換した酸化物;などが挙げられる。
 ただし、一般式(2)で表されるリチウム含有金属酸化物の使用による前記の効果をより良好に確保する観点からは、正極合剤層が含有する正極活物質全量中の、一般式(2)で表されるリチウム含有金属酸化物の含有量は、50質量%以上であることが好ましい。
 正極合剤層における正極活物質の含有量は、94~98質量%であることが好ましい。
 正極の導電助剤には、例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト類;アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカ-ボンブラック類;炭素繊維;などの炭素材料を用いることが好ましく、また、金属繊維などの導電性繊維類;フッ化カーボン;アルミニウムなどの金属粉末類;酸化亜鉛;チタン酸カリウムなどの導電性ウィスカー類;酸化チタンなどの導電性金属酸化物;ポリフェニレン誘導体などの有機導電性材料;などを用いることもできる。正極合剤層における導電助剤の含有量は、1~5質量%であることが好ましい。
 正極の結着剤としては、例えば、アクリロニトリル、アクリル酸エステル(アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2エチルヘキシルなど)およびメタクリル酸エステル(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチルなど)よりなる群から選択される少なくとも1種のモノマーを含む2種以上のモノマーにより形成されるコポリマー;水素化ニトリルゴム;PVDF;フッ化ビニリデン-テトラフルオロエチレンコポリマー(VDF-TFE);フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレンコポリマー(VDF-HFP-TFE);フッ化ビニリデン-クロロトリフルオロエチレンコポリマー(VDF-CTFE);などが挙げられ、これらのうちの1種のみを使用してもよく、2種以上を併用してもよい。正極合剤層におけるバインダの含有量は、0.4~3.5質量%であることが好ましい。
 正極は、例えば、正極活物質、導電助剤およびバインダなどを含有する正極合剤を、N-メチル-2-ピロリドン(NMP)や水などの溶剤に分散させてペースト状やスラリー状の正極合剤含有組成物を調製し(ただし、バインダは溶剤に溶解していてもよい)、これを集電体の片面または両面に塗布し、乾燥した後に、必要に応じてカレンダー処理などのプレス処理を施す工程を経て製造することができる。ただし、正極は、前記の方法で製造されたものに限定される訳ではなく、他の方法で製造したものであってもよい。
 正極集電体には、アルミニウム製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、アルミニウム箔が用いられる。正極集電体の厚みは、10~30μmであることが好ましい。正極合剤層の厚みは、集電体の片面あたり、40~90μmであることが好ましい。
 また、正極には、必要に応じて、リチウム二次電池内の他の部材と電気的に接続するためのリード体を、常法に従って形成してもよい。
 本発明のリチウム二次電池は、正極、負極、非水電解液およびセパレータを有しており、非水電解液および正極について前記のものを使用していればよく、その他の構成および構造については特に制限はなく、従来から知られているリチウム二次電池で採用されている各種構成および構造を適用することができる。
 リチウム二次電池に係る負極には、例えば、負極活物質およびバインダ、更には必要に応じて導電助剤を含有する負極合剤からなる負極合剤層を、集電体の片面または両面に有する構造のものが使用できる。
 負極活物質としては、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭、リチウムと合金化可能な金属(Si、Snなど)またはその合金、酸化物などが挙げられ、これらのうちの1種または2種以上を用いることができる。
 前記の負極活物質の中でも、特に電池の高容量化を図るには、SiとOとを構成元素に含む材料(ただし、Siに対するOの原子比xは、0.5≦x≦1.5である。以下、当該材料を「SiO」という)を用いることが好ましい。
 SiOは、Siの微結晶または非晶質相を含んでいてもよく、この場合、SiとOの原子比は、Siの微結晶または非晶質相のSiを含めた比率となる。すなわち、SiOには、非晶質のSiOマトリックス中に、Si(例えば、微結晶Si)が分散した構造のものが含まれ、この非晶質のSiOと、その中に分散しているSiを合わせて、前記の原子比xが0.5≦x≦1.5を満足していればよい。例えば、非晶質のSiOマトリックス中に、Siが分散した構造で、SiOとSiのモル比が1:1の材料の場合、x=1であるので、構造式としてはSiOで表記される。このような構造の材料の場合、例えば、X線回折分析では、Si(微結晶Si)の存在に起因するピークが観察されない場合もあるが、透過型電子顕微鏡で観察すると、微細なSiの存在が確認できる。
 そして、SiOは、炭素材料と複合化した複合体であることが好ましく、例えば、SiOの表面が炭素材料で被覆されていることが望ましい。前記の通り、SiOは導電性が乏しいため、これを負極活物質として用いる際には、良好な電池特性確保の観点から、導電性材料(導電助剤)を使用し、負極内におけるSiOと導電性材料との混合・分散を良好にして、優れた導電ネットワークを形成する必要がある。SiOを炭素材料と複合化した複合体であれば、例えば、単にSiOと炭素材料などの導電性材料とを混合して得られた材料を用いた場合よりも、負極における導電ネットワークが良好に形成される。
 SiOと炭素材料との複合体としては、前記のように、SiOの表面を炭素材料で被覆したものの他、SiOと炭素材料との造粒体などが挙げられる。
 また、前記の、SiOの表面を炭素材料で被覆した複合体を、更に導電性材料(炭素材料など)と複合化して用いることで、負極において更に良好な導電ネットワークの形成が可能となるため、より高容量で、より電池特性(例えば、充放電サイクル特性)に優れたリチウム二次電池の実現が可能となる。炭素材料で被覆されたSiOと炭素材料との複合体としては、例えば、炭素材料で被覆されたSiOと炭素材料との混合物を更に造粒した造粒体などが挙げられる。
 また、表面が炭素材料で被覆されたSiOとしては、SiOとそれよりも比抵抗値が小さい炭素材料との複合体(例えば造粒体)の表面が、更に炭素材料で被覆されてなるものも、好ましく用いることができる。前記造粒体内部でSiOと炭素材料とが分散した状態であると、より良好な導電ネットワークを形成できるため、SiOを負極活物質として含有する負極を有するリチウム二次電池において、重負荷放電特性などの電池特性を更に向上させることができる。
 SiOとの複合体の形成に用い得る前記炭素材料としては、例えば、低結晶性炭素、カーボンナノチューブ、気相成長炭素繊維などの炭素材料が好ましいものとして挙げられる。
 前記炭素材料の詳細としては、繊維状またはコイル状の炭素材料、カーボンブラック(アセチレンブラック、ケッチェンブラックを含む)、人造黒鉛、易黒鉛化炭素および難黒鉛化炭素よりなる群から選ばれる少なくとも1種の材料が好ましい。繊維状またはコイル状の炭素材料は、導電ネットワークを形成し易く、かつ表面積の大きい点において好ましい。カーボンブラック(アセチレンブラック,ケッチェンブラックを含む)、易黒鉛化炭素および難黒鉛化炭素は、高い電気伝導性、高い保液性を有しており、さらにSiO粒子が膨張収縮しても、その粒子との接触を保持し易い性質を有している点において好ましい。
 また、詳しくは後述するように、負極活物質にSiOを使用する場合には、黒鉛も併用することが好ましいが、この黒鉛をSiOと炭素材料との複合体に係る炭素材料として使用することもできる。黒鉛も、カーボンブラックなどと同様に、高い電気伝導性、高い保液性を有しており、さらに、SiO粒子が膨張収縮しても、その粒子との接触を保持し易い性質を有しているため、SiOとの複合体形成に好ましく使用することができる。
 前記例示の炭素材料の中でも、SiOとの複合体が造粒体である場合に用いるものとしては、繊維状の炭素材料が特に好ましい。繊維状の炭素材料は、その形状が細い糸状であり柔軟性が高いために電池の充放電に伴うSiOの膨張収縮に追従でき、また、嵩密度が大きいために、SiO粒子と多くの接合点を持つことができるからである。繊維状の炭素としては、例えば、ポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、カーボンナノチューブなどが挙げられ、これらのいずれを用いてもよい。
 なお、繊維状の炭素材料は、例えば、気相法にてSiO粒子の表面に形成することもできる。
 SiOの比抵抗値が、通常、10~10kΩcmであるのに対して、前記例示の炭素材料の比抵抗値は、通常、10-5~10kΩcmである。
 また、SiOと炭素材料との複合体は、粒子表面の炭素材料被覆層を覆う材料層(難黒鉛化炭素を含む材料層)を更に有していてもよい。
 負極にSiOと炭素材料との複合体を使用する場合、SiOと炭素材料との比率は、炭素材料との複合化による作用を良好に発揮させる観点から、SiO:100質量部に対して、炭素材料が、5質量部以上であることが好ましく、10質量部以上であることがより好ましい。また、前記複合体において、SiOと複合化する炭素材料の比率が多すぎると、負極合剤層中のSiO量の低下に繋がり、高容量化の効果が小さくなる虞があることから、SiO:100質量部に対して、炭素材料は、50質量部以下であることが好ましく、40質量部以下であることがより好ましい。
 前記のSiOと炭素材料との複合体は、例えば下記の方法によって得ることができる。
 まず、SiOを複合化する場合の作製方法について説明する。SiOが分散媒に分散した分散液を用意し、それを噴霧し乾燥して、複数の粒子を含む複合粒子を作製する。分散媒としては、例えば、エタノールなどを用いることができる。分散液の噴霧は、通常、50~300℃の雰囲気内で行うことが適当である。前記の方法以外にも、振動型や遊星型のボールミルやロッドミルなどを用いた機械的な方法による造粒方法においても、同様の複合粒子を作製することができる。
 なお、SiOと、SiOよりも比抵抗値の小さい炭素材料との造粒体を作製する場合には、SiOが分散媒に分散した分散液中に前記炭素材料を添加し、この分散液を用いて、SiOを複合化する場合と同様の手法によって複合粒子(造粒体)とすればよい。また、前記と同様の機械的な方法による造粒方法によっても、SiOと炭素材料との造粒体を作製することができる。
 次に、SiO粒子(SiO複合粒子、またはSiOと炭素材料との造粒体)の表面を炭素材料で被覆して複合体とする場合には、例えば、SiO粒子と炭化水素系ガスとを気相中にて加熱して、炭化水素系ガスの熱分解により生じた炭素を、粒子の表面上に堆積させる。このように、気相成長(CVD)法によれば、炭化水素系ガスが複合粒子の隅々にまで行き渡り、粒子の表面や表面の空孔内に、導電性を有する炭素材料を含む薄くて均一な皮膜(炭素材料被覆層)を形成できることから、少量の炭素材料によってSiO粒子に均一性よく導電性を付与できる。
 炭素材料で被覆されたSiOの製造において、気相成長(CVD)法の処理温度(雰囲気温度)については、炭化水素系ガスの種類によっても異なるが、通常、600~1200℃が適当であり、中でも、700℃以上であることが好ましく、800℃以上であることが更に好ましい。処理温度が高い方が不純物の残存が少なく、かつ導電性の高い炭素を含む被覆層を形成できるからである。
 炭化水素系ガスの液体ソースとしては、トルエン、ベンゼン、キシレン、メシチレンなどを用いることができるが、取り扱い易いトルエンが特に好ましい。これらを気化させる(例えば、窒素ガスでバブリングする)ことにより炭化水素系ガスを得ることができる。また、メタンガスやアセチレンガスなどを用いることもできる。
 また、気相成長(CVD)法にてSiO粒子(SiO複合粒子、またはSiOと炭素材料との造粒体)の表面を炭素材料で覆った後に、石油系ピッチ、石炭系のピッチ、熱硬化性樹脂、およびナフタレンスルホン酸塩とアルデヒド類との縮合物よりなる群から選択される少なくとも1種の有機化合物を、炭素材料を含む被覆層に付着させた後、前記有機化合物が付着した粒子を焼成してもよい。
 具体的には、炭素材料で被覆されたSiO粒子(SiO複合粒子、またはSiOと炭素材料との造粒体)と、前記有機化合物とが分散媒に分散した分散液を用意し、この分散液を噴霧し乾燥して、有機化合物によって被覆された粒子を形成し、その有機化合物によって被覆された粒子を焼成する。
 前記ピッチとしては等方性ピッチを、熱硬化性樹脂としてはフェノール樹脂、フラン樹脂、フルフラール樹脂などを用いることができる。ナフタレンスルホン酸塩とアルデヒド類との縮合物としては、ナフタレンスルホン酸ホルムアルデヒド縮合物を用いることができる。
 炭素材料で被覆されたSiO粒子と前記有機化合物とを分散させるための分散媒としては、例えば、水、アルコール類(エタノールなど)を用いることができる。分散液の噴霧は、通常、50~300℃の雰囲気内で行うことが適当である。焼成温度は、通常、600~1200℃が適当であるが、中でも700℃以上が好ましく、800℃以上であることが更に好ましい。処理温度が高い方が不純物の残存が少なく、かつ導電性の高い良質な炭素材料を含む被覆層を形成できるからである。ただし、処理温度はSiOの融点以下であることを要する。
 リチウム二次電池に係る負極活物質にSiOを使用する場合には、更に黒鉛も負極活物質として使用することが好ましい。黒鉛を使用して負極活物質中のSiOの比率を下げることで、SiOの減量による高容量化効果の低下を可及的に抑制しつつ、電池の充放電に伴う負極(負極合剤層)の体積変化を抑えて、かかる体積変化によって生じ得る電池特性の低下を抑制することが可能となる。
 SiOと共に負極活物質として使用する黒鉛としては、例えば、鱗片状黒鉛などの天然黒鉛;熱分解炭素類、メソフェーズカーボンマイクロビーズ(MCMB)、炭素繊維などの易黒鉛化炭素を2800℃以上で黒鉛化処理した人造黒鉛;などが挙げられる。
 なお、負極においては、SiOを使用することによる高容量化の効果を良好に確保する観点から、負極活物質中におけるSiOの含有量は、0.01質量%以上であることが好ましく、3質量%以上であることがより好ましい。また、SiOを単独で用いることも可能であるが、充放電に伴う負極の体積変化による問題をより良好に回避する観点から、負極活物質中におけるSiOの含有量は、70質量%以下であることが好ましく、30質量%以下であることがより好ましい。
 負極活物質にSiOを使用する場合は充放電における体積変化が起こるが、一般式(1)で表される化合物を含む非水電解液を使用すると、非水電解液がゲル化することで緩衝材として働き、負極の膨張収縮による正極やセパレータとのずれ、SiOにクラックが生じることなどを抑制するため、電池の充放電サイクル特性が向上する。
 また、負極のバインダおよび導電助剤には、正極に使用し得るものとして先に例示したものと同じものが使用できる。
 負極は、例えば、負極活物質およびバインダ、更には必要に応じて使用される導電助剤を、NMPや水などの溶剤に分散させたペースト状やスラリー状の負極合剤含有組成物を調製し(ただし、バインダは溶剤に溶解していてもよい)、これを集電体の片面または両面に塗布し、乾燥した後に、必要に応じてカレンダー処理などのプレス処理を施す工程を経て製造される。ただし、負極は、前記の製造方法で製造されたものに限定される訳ではなく、他の方法で製造されたものであってもよい。
 また、負極には、必要に応じて、リチウム二次電池内の他の部材と電気的に接続するためのリード体を、常法に従って形成してもよい。
 負極合剤層の厚みは、例えば、集電体の片面あたり10~100μmであることが好ましい。また、負極合剤層の組成としては、例えば、負極活物質の含有量が80.0~99.8質量%であることが好ましく、バインダの含有量が0.1~10質量%であることが好ましい。更に、負極合剤層に導電助剤を含有させる場合には、負極合剤層における導電助剤の含有量は0.1~10質量%であることが好ましい。
 負極の集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、機械的強度を確保するために下限は5μmであることが望ましい。
 リチウム二次電池に係るセパレータには、80℃以上(より好ましくは100℃以上)170℃以下(より好ましくは150℃以下)において、その孔が閉塞する性質(すなわちシャットダウン機能)を有していることが好ましく、通常のリチウム二次電池などで使用されているセパレータ、例えば、ポリエチレン(PE)やポリプロピレン(PP)などのポリオレフィン製の微多孔膜を用いることができる。セパレータを構成する微多孔膜は、例えば、PEのみを使用したものやPPのみを使用したものであってもよく、また、PE製の微多孔膜とPP製の微多孔膜との積層体であってもよい。セパレータの厚みは、例えば、10~30μmであり、20μm以下が好ましい。
 本発明のリチウム二次電池では、上述の通り、一般式(1)で表される化合物を含む非水電解液を用いることで、初回の充放電で、非水電解液内において一般式(1)で表される化合物由来の架橋物が形成されて非水電解液がゲル化する。電極とセパレータとは、ゲル状の非水電解液によるアンカー効果や分子間力によって密着しているため、電池内の温度が上昇してもセパレータの収縮を抑制することができる。従って、厚みが14μm以下、更には10μm以下といった薄いセパレータを用いることも可能である。また、このように薄いセパレータを用いたときに負荷特性が向上するため、常温以下の温度での電池の充放電特性も向上する。
 また、前記の微多孔膜の表面に、耐熱性の無機フィラーを含有する耐熱性の多孔質層を形成した積層型のセパレータを用いてもよい。このような積層型のセパレータを用いた場合には、電池内の温度が上昇してもセパレータの収縮が抑制されて、正極と負極との接触による短絡を抑えることができるため、より安全性の高いリチウム二次電池とすることができる。耐熱性の多孔質層に含有させる無機フィラーとしては、ベーマイト、アルミナ、シリカなどが好ましく、これらのうちの1種または2種以上を使用することができる。
 また、耐熱性の多孔質層には、前記の無機フィラー同士を結着したり、耐熱性の多孔質層と微多孔膜とを接着したりするためのバインダを含有させることが好ましい。バインダには、エチレン-酢酸ビニル共重合体(EVA、酢酸ビニル由来の構造単位が20~35モル%のもの)、エチレン-エチルアクリレート共重合体などのエチレン-アクリル酸共重合体、フッ素系ゴム、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂などを用いることが好ましく、これらのうちの1種または2種以上を使用することができる。
 セパレータ(ポリオレフィン製の微多孔膜からなるセパレータや、前記積層型のセパレータ)の厚みは、例えば、10~30μmであることが好ましい。また、前記積層型のセパレータの場合、耐熱性の多孔質層の厚みは、例えば、3~8μmであることが好ましい。
 この無機フィラーを含む多孔質層の空孔に、一般式(1)で表される化合物を含有した非水電解液を浸透させた後に非水電解液をゲル化させると、従来のフィルムセパレータ、例えばポリエチレン製の微多孔膜セパレータを用いた時よりも電極との密着性が向上し、電極体(正極と負極との間にセパレータを介在させて形成した電極体)の歪みを抑えることができる。これは、無機フィラーを含有する耐熱性の多孔質層は空孔率が高くなる傾向にあるため、非水電解液のゲル化後にアンカーのような役割を果たすと考えられる。
 前記の正極と前記の負極と前記のセパレータとは、正極と負極との間にセパレータを介在させて重ねた積層電極体や、更にこれを渦巻状に巻回した巻回電極体の形態で本発明のリチウム二次電池に使用することができる。
 本発明のリチウム二次電池の形態としては、スチール缶やアルミニウム缶などを角型の外装缶が挙げられる。
 本発明のリチウム二次電池は、従来のリチウム二次電池と同様に充電の上限電圧を4.2V程度として使用することもできるが、充電の上限電圧を、これよりも高い4.4V以上に設定して使用することも可能であり、これにより高容量化を図りつつ、長期にわたって繰り返し使用しても、安定して優れた特性を発揮することが可能である。なお、リチウム二次電池の充電の上限電圧は、4.7V以下であることが好ましい。
 以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。
(実施例1)
<リチウム含有金属酸化物の合成>
 LiCO、Co、Al(OH)およびMg(OH)、を、モル比で1:0.651:0.028:0.01になるように混合し、この混合物を大気中(酸素濃度が約20vol%)、950℃で12時間熱処理し、その後乳鉢で粉砕して粉体とした。粉砕後のリチウム含有金属酸化物は、デシケーター中で保存した。
 前記リチウム含有金属酸化物について、ICP法を用いてその組成分析を行ったところ、Li1.0Co0.981Al0.014Mg0.005で表される組成であることが判明した。
<正極の作製>
 正極活物質である前記リチウム含有金属酸化物100質量部と、バインダであるPVDFを10質量%の濃度で含むNMP溶液20質量部と、導電助剤である人造黒鉛1質量部およびケッチェンブラック1質量部とを、二軸混練機を用いて混練し、更にNMPを加えて粘度を調節して、正極合剤含有ペーストを調製した。
 前記正極合剤含有ペーストを、厚みが15μmのアルミニウム箔(正極集電体)の両面に塗布した後、120℃で12時間の真空乾燥を行って、アルミニウム箔の両面に正極合剤層を形成した。その後、プレス処理を行って、正極合剤層の厚さおよび密度を調節し、アルミニウム箔の露出部にニッケル製のリード体を溶接して、長さ375mm、幅43mmの帯状の正極を作製した。得られた正極における正極合剤層は、片面あたりの厚みが55μmであった。
<負極の作製>
 負極活物質である平均粒子径D50%が8μmであるSiO表面を炭素材料で被覆した複合体(複合体における炭素材料の量が10質量%)と、平均粒子径D50%が16μmである黒鉛とを、SiO表面を炭素材料で被覆した複合体の量が3.75質量%となる量で混合した混合物:97.5質量部と、バインダであるSBR:1.5質量部と、増粘剤であるCMC:1質量部とに、水を加えて混合し、負極合剤含有ペーストを調製した。
 前記負極合剤含有ペーストを、厚みが8μmの銅箔(負極集電体)の両面に塗布した後、120℃で12時間の真空乾燥を行って、銅箔の両面に負極合剤層を形成した。その後、プレス処理を行って、負極合剤層の厚さおよび密度を調節し、銅箔の露出部にニッケル製のリード体を溶接して、長さ380mm、幅44mmの帯状の負極を作製した。得られた負極における負極合剤層は、片面あたりの厚みが65μmであった。
<非水電解液の調製>
 エチレンカーボネートとジエチルカーボネートの体積比3:7の混合溶媒に、LiPFを1.1mol/lの濃度で溶解させ、前記一般式(1)で表され、そのnおよびmが、n=2620、m=420である化合物を2.0質量%となる量で、VCを2.0質量%となる量で、およびFECを2.0質量%となる量で、それぞれ添加して非水電解液を調製した。
<電池の組み立て>
 前記帯状の正極を、厚みが12μmの微孔性ポリエチレンセパレータ(空孔率:41%)を介して前記帯状の負極に重ね、渦巻状に巻回した後、扁平状になるように加圧して扁平状巻回構造の巻回電極体とし、この巻回電極体をポリプロピレン製の絶縁テープで固定した。次に、外寸が厚さ5.0mm、幅57mm、高さ60mmのアルミニウム合金製の角形の電池ケースに前記巻回電極体を挿入し、リード体の溶接を行うとともに、アルミニウム合金製の蓋板を電池ケースの開口端部に溶接した。その後、蓋板に設けた注入口から前記非水電解液を注入し、1~3時間静置した後注入口を封止した。そして、0.2Cで4.4Vまで充電した後に0.02Cになるまで充電を続け、その後恒温槽で60℃10時間熱処理を行った。熱処理後、0.2Cで2.75Vまで放電を行い、図1に示す構造で、図2に示す外観のリチウム二次電池を作製した。
 ここで図1および図2に示す電池について説明すると、図1は部分断面図であって、この図1に示すように、正極1と負極2とはセパレータ3を介して渦巻状に巻回した後、扁平状になるように加圧して扁平状の巻回電極体6として、角形(角筒形)の電池ケース4に非水電解液と共に収容されている。ただし、図1では、煩雑化を避けるため、正極1や負極2の作製にあたって使用した集電体としての金属箔や非水電解液などは図示していない。
 電池ケース4はアルミニウム合金製で電池の外装体を構成するものであり、この電池ケース4は正極端子を兼ねている。そして、電池ケース4の底部にはPEシートからなる絶縁体5が配置され、正極1、負極2およびセパレータ3からなる扁平状巻回電極体6からは、正極1および負極2のそれぞれ一端に接続された正極リード体7と負極リード体8が引き出されている。また、電池ケース4の開口部を封口するアルミニウム合金製の封口用蓋板9にはポリプロピレン製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板13が取り付けられている。
 そして、この蓋板9は電池ケース4の開口部に挿入され、両者の接合部を溶接することによって、電池ケース4の開口部が封口され、電池内部が密閉されている。また、図1の電池では、蓋板9に非水電解液注入口14が設けられており、この非水電解液注入口14には、封止部材が挿入された状態で、例えばレーザー溶接などにより溶接封止されて、電池の密閉性が確保されている。更に、蓋板9には、電池の温度が上昇した際に内部のガスを外部に排出する機構として、開裂ベント15が設けられている。
 この実施例1の電池では、正極リード体7を蓋板9に直接溶接することによって電池ケース4と蓋板9とが正極端子として機能し、負極リード体8をリード板13に溶接し、そのリード板13を介して負極リード体8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、電池ケース4の材質などによっては、その正負が逆になる場合もある。
 図2は前記図1に示す電池の外観を模式的に示す斜視図であり、この図2は前記電池が角形電池であることを示すことを目的として図示されたものであって、この図2では電池を概略的に示しており、電池の構成部材のうち特定のものしか図示していない。また、図1においても、電極体の内周側の部分は断面にしていない。
(実施例2)
 厚みが16μmの微孔性ポリエチレンセパレータ(空孔率:41%)を用いた以外は実施例1と同様にしてリチウム二次電池を作製した。
(実施例3)
 厚みが8μmの微孔性ポリエチレンセパレータ(空孔率:41%)を用いた以外は実施例1と同様にしてリチウム二次電池を作製した。
(実施例4)
 厚みが20μmの微孔性ポリエチレンセパレータ(空孔率:41%)を用いた以外は実施例1と同様にしてリチウム二次電池を作製した。
(実施例5)
<正極活物質の合成>
 LiCO、Co、Al(OH)、およびMg(OH)を、モル比で1:0.6:0.19:0.19になるように混合し、この混合物を大気中(酸素濃度が約20vol%)、950℃で12時間熱処理し、その後乳鉢で粉砕して粉体とした。粉砕後のリチウム含有金属酸化物は、デシケーター中で保存した。
 前記リチウム含有金属酸化物について、ICP法を用いてその組成分析を行ったところ、Li1.0Co0.9Al0.095Mg0.005で表される組成であることが判明した。
 このリチウム含有金属酸化物を正極活物質として用いた以外は実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にしてリチウム二次電池を作製した。
(実施例6)
<正極活物質の合成>
 LiCO、Co、Al(OH)、およびMg(OH)を、モル比で1:0.651:0.028:0.028になるように混合し、この混合物を大気中(酸素濃度が約20vol%)、950℃で12時間熱処理し、その後乳鉢で粉砕して粉体とした。粉砕後のリチウム含有金属酸化物は、デシケーター中で保存した。
 前記リチウム含有金属酸化物について、ICP法を用いてその組成分析を行ったところ、Li1.0Co0.9Al0.005Mg0.095で表される組成であることが判明した。
 このリチウム含有金属酸化物を正極活物質として用いた以外は実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にしてリチウム二次電池を作製した。
(実施例7)
<正極活物質の合成>
 LiCO、Co、Mg(OH)およびTiOSO・HOを、モル比で1:0.640:0.028:0.01になるように混合し、この混合物を大気中(酸素濃度が約20vol%)、950℃で12時間熱処理し、その後乳鉢で粉砕して粉体とした。粉砕後のリチウム含有金属酸化物は、デシケーター中で保存した。
 前記リチウム含有金属酸化物について、ICP法を用いてその組成分析を行ったところ、Li1.0Co0.981Mg0.014Ti0.005で表される組成であることが判明した。
 このリチウム含有金属酸化物を正極活物質として用いた以外は実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にしてリチウム二次電池を作製した。
(実施例8)
<正極活物質の合成>
 LiCO、Co、Al(OH)、およびTiOSO・HOを、モル比で1:0.640:0.021:0.01になるように混合し、この混合物を大気中(酸素濃度が約20vol%)、950℃で12時間熱処理し、その後乳鉢で粉砕して粉体とした。粉砕後のリチウム含有金属酸化物は、デシケーター中で保存した。
 前記リチウム含有金属酸化物について、ICP法を用いてその組成分析を行ったところ、Li1.0Co0.981Al0.014Ti0.005で表される組成であることが判明した。
 このリチウム含有金属酸化物を正極活物質として用いた以外は実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にしてリチウム二次電池を作製した。
(比較例1)
 正極活物質をLiCoOに変更した以外は実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にしてリチウム二次電池を作成した。
(比較例2)
<非水電解液の調製>
 エチレンカーボネートとジエチルカーボネートの体積比3:7の混合溶媒に、LiPFを1.1mol/lの濃度で溶解させ、VCを2.0質量%となる量で、およびFECを2.0質量%となる量で、それぞれ添加して非水電解液を調製した。
 この非水電解液を用いた以外は、比較例1と同様にしてリチウム二次電池を作製した。
(比較例3)
 比較例2で調製したものと同じ非水電解液を用いた以外は、実施例1と同様にしてリチウム二次電池を作製した。
(比較例4)
 厚みが8μmの微孔性ポリエチレンセパレータ(空孔率:41%)を用いた以外は比較例1と同様にしてリチウム二次電池を作製した。
(比較例5)
 厚みが20μmの微孔性ポリエチレンセパレータ(空孔率:41%)を用いた以外は比較例1と同様にしてリチウム二次電池を作製した。
 実施例および比較例の各リチウム二次電池について、下記の電池特性評価を行った。
<リーク電流発生開始時間(連続充電特性評価)>
 実施例および比較例の各リチウム二次電池について、60℃の環境下で、1.0Cの電流値で4.4Vまで定電流充電を行った後、4.4Vの電圧で定電圧充電を行い、定電圧充電を継続させながら、電流値の上昇が生じるまでの時間(リーク電流発生開始時間)を測定した。具体的には、定電圧充電領域での電流値が最小になった後、1.5mA以上増加した時点で「電流値が上昇した」と判断した。このリーク電流発生開始時間が長いほど、電池の連続充電特性が優れているといえる。
<充放電サイクル特性評価>
 実施例および比較例のリチウム二次電池を45℃の恒温槽内に5時間静置し、その後、各電池について、0.5Cの電流値で4.4Vまで定電流充電し、引き続いて4.4Vで定電圧充電し(定電流充電と定電圧充電との総充電時間が2.5時間)、その後に0.2Cの定電流で2.75Vで放電を行って、初回放電容量を求めた。次に、各電池について、45℃で、1Cの電流値で4.4Vまで定電流充電し、引き続いて4.4Vの定電圧で電流値が0.1Cになるまで充電した後に、1Cの電流値で3.0Vまで放電する一連の操作を1サイクルとして、これを多数繰り返した。そして、各電池について、500サイクル行い、前記の初回放電容量測定時と同じ条件で定電流-定電圧充電および定電流放電を行って、放電容量を求めた。そして、これらの放電容量を初回放電容量で除した値を百分率で表して、45℃容量維持率を算出した。
 また、温度条件を45℃から23℃に変更した以外は45℃容量維持率を算出した方法と同様にして、23℃容量維持率を算出した。
<貯蔵試験>
 実施例および比較例の各リチウム二次電池について、0.5Cの電流値で4.4Vまで定電流充電し、引き続いて4.4Vで定電圧充電した(定電流充電と定電圧充電との総充電時間が2.5時間)。その後、各電池の外装体の中央部分の厚みを、マイクロメーターを用いて測定した。
 各電池を85℃に保った恒温槽内に入れ、24時間貯蔵した。その後各電池を恒温槽から取り出し、2時間経過後に0.2Cで2.75Vまで放電した。その後0.5Cで4.4Vまで充電した後、0.2Cで2.75Vまで放電しこれを回復容量とした。貯蔵後の回復容量を初回放電容量(貯蔵前の放電容量)で除して百分率で表わしたものを貯蔵容量維持率とした。
 そして、貯蔵前と同様に、各電池の外装体厚みを、マイクロメーターを用いて測定した。貯蔵前の外装体厚みと、貯蔵後の外装体厚みの差を貯蔵前の外装体厚みで除して百分率で表わしたものを、膨れ率とした。
 実施例および比較例の各リチウム二次電池の態様を表1に示し、上記の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 本発明は、その趣旨を逸脱しない範囲で、前記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、本発明は、これらの実施形態には限定されない。本発明の範囲は、前記の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれる。
 本発明のリチウム二次電池は、従来から知られているリチウム二次電池と同様の用途に適用することができる。
 1 正極
 2 負極
 3 セパレータ
 

Claims (5)

  1.  正極、負極、セパレータおよび非水電解液を有するリチウム二次電池であって、
     前記非水電解液として、下記一般式(1)で表される化合物とフッ素を含有するリチウム塩とを含むものを使用し、
    Figure JPOXMLDOC01-appb-C000001
    〔前記一般式(1)中、1800<n<3000、350<m<600である。〕
     前記正極は、下記一般式(2)で表されるリチウム含有金属酸化物を正極活物質として含有していることを特徴とするリチウム二次電池。
      LiCo1-b   (2)
    〔前記一般式(2)中、Mは、Al、Mg、Zr、Ti、Ni、Mn、Na、Bi、Ca、F、P、Sr、W、Ba、Si、Fe、Mo、V、Sn、Sb、Ta、Nb、Ge、Cr、K、S、Cu、ErおよびZnよりなる群から選択される少なくとも1種の元素であり、0.9≦a≦1.10、0.01≦b≦0.12である。〕
  2.  正極、負極、セパレータおよび非水電解液を有するリチウム二次電池であって、
     前記非水電解液は、下記一般式(1)で表される化合物由来の架橋物と、フッ素を含有するリチウム塩とを含んでおり、
    Figure JPOXMLDOC01-appb-C000002
    〔前記一般式(1)中、1800<n<3000、350<m<600である。〕
     前記正極は、下記一般式(2)で表されるリチウム含有金属酸化物を正極活物質として含有していることを特徴とするリチウム二次電池。
      LiCo1-b   (2)
    〔前記一般式(2)中、Mは、Al、Mg、Zr、Ti、Ni、Mn、Na、Bi、Ca、F、P、Sr、W、Ba、Si、Fe、Mo、V、Sn、Sb、Ta、Nb、Ge、Cr、K、S、Cu、ErおよびZnよりなる群から選択される少なくとも1種の元素であり、0.9≦a≦1.10、0.01≦b≦0.12である。〕
  3.  前記非水電解液は、前記フッ素を含有するリチウム塩としてLiPFを含んでいる請求項1または2に記載のリチウム二次電池。
  4.  前記非水電解液として、前記一般式(1)で表される化合物の、前記非水電解液全量に対する含有量が0.5~10.0質量%のものを使用した請求項1~3のいずれかに記載のリチウム二次電池。
  5.  前記セパレータの厚みが14μm以下である請求項1~4のいずれかに記載のリチウム二次電池。
PCT/JP2016/052874 2015-02-05 2016-02-01 リチウム二次電池 WO2016125726A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016573343A JPWO2016125726A1 (ja) 2015-02-05 2016-02-01 リチウム二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-021049 2015-02-05
JP2015021049 2015-02-05

Publications (1)

Publication Number Publication Date
WO2016125726A1 true WO2016125726A1 (ja) 2016-08-11

Family

ID=56564071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052874 WO2016125726A1 (ja) 2015-02-05 2016-02-01 リチウム二次電池

Country Status (2)

Country Link
JP (1) JPWO2016125726A1 (ja)
WO (1) WO2016125726A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231246A (ja) * 2000-11-29 2002-08-16 Toda Kogyo Corp 非水電解質二次電池用正極活物質及びその製造法
JP2006294597A (ja) * 2005-03-17 2006-10-26 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2007234350A (ja) * 2006-02-28 2007-09-13 Sanyo Electric Co Ltd 非水電解質二次電池
JP2008293788A (ja) * 2007-05-24 2008-12-04 Nichia Corp 非水電解質二次電池用正極活物質とそれを用いた非水電解質二次電池
WO2011004483A1 (ja) * 2009-07-09 2011-01-13 Necエナジーデバイス株式会社 ポリマーゲル電解質及びそれを用いたポリマー二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231246A (ja) * 2000-11-29 2002-08-16 Toda Kogyo Corp 非水電解質二次電池用正極活物質及びその製造法
JP2006294597A (ja) * 2005-03-17 2006-10-26 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2007234350A (ja) * 2006-02-28 2007-09-13 Sanyo Electric Co Ltd 非水電解質二次電池
JP2008293788A (ja) * 2007-05-24 2008-12-04 Nichia Corp 非水電解質二次電池用正極活物質とそれを用いた非水電解質二次電池
WO2011004483A1 (ja) * 2009-07-09 2011-01-13 Necエナジーデバイス株式会社 ポリマーゲル電解質及びそれを用いたポリマー二次電池

Also Published As

Publication number Publication date
JPWO2016125726A1 (ja) 2017-11-16

Similar Documents

Publication Publication Date Title
KR102301470B1 (ko) 비수 전해질 이차 전지
JP6253411B2 (ja) リチウム二次電池
JP6279233B2 (ja) リチウム二次電池
JP5046302B2 (ja) 非水二次電池
KR102419885B1 (ko) 비수 전해질 이차 전지용 정극, 비수 전해질 이차 전지 및 그 시스템
CN105576279B (zh) 锂二次电池
JP5872055B2 (ja) リチウム二次電池パック、並びにそれを用いた電子機器、充電システム及び充電方法
US9673446B2 (en) Lithium ion secondary battery containing a negative electrode material layer containing Si and O as constituent elements
JP5945197B2 (ja) 非水電解液二次電池
WO2013038939A1 (ja) リチウム二次電池パック、並びにそれを用いた電子機器、充電システム及び充電方法
JP2013145669A (ja) 非水電解液二次電池
JP2013178913A (ja) 非水電解液二次電池
JP2014007010A (ja) リチウム二次電池
WO2017188021A1 (ja) 電気化学素子用電極およびリチウムイオン二次電池
WO2014109366A1 (ja) 非水電解液二次電池
WO2014141932A1 (ja) リチウム二次電池
JP6063705B2 (ja) 非水電解質二次電池
JP5978024B2 (ja) 非水二次電池
JP5625848B2 (ja) リチウムイオン二次電池及びその製造方法
WO2017094526A1 (ja) 電気化学素子用電極およびリチウムイオン二次電池
WO2016125726A1 (ja) リチウム二次電池
JP2013118068A (ja) リチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573343

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746557

Country of ref document: EP

Kind code of ref document: A1