WO2010030008A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2010030008A1
WO2010030008A1 PCT/JP2009/065958 JP2009065958W WO2010030008A1 WO 2010030008 A1 WO2010030008 A1 WO 2010030008A1 JP 2009065958 W JP2009065958 W JP 2009065958W WO 2010030008 A1 WO2010030008 A1 WO 2010030008A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
mol
battery according
electrolyte
group
Prior art date
Application number
PCT/JP2009/065958
Other languages
English (en)
French (fr)
Inventor
和明 松本
中原 謙太郎
岩佐 繁之
中野 嘉一郎
宇津木 功二
石川 仁志
金子 志奈子
Original Assignee
日本電気株式会社
Necトーキン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社, Necトーキン株式会社 filed Critical 日本電気株式会社
Priority to US13/062,655 priority Critical patent/US20110159379A1/en
Priority to CN200980135761.5A priority patent/CN102150315B/zh
Priority to EP09813154.3A priority patent/EP2330675B1/en
Priority to JP2010528769A priority patent/JP5557337B2/ja
Priority to KR1020117006095A priority patent/KR101351671B1/ko
Publication of WO2010030008A1 publication Critical patent/WO2010030008A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a highly safe secondary battery.
  • a lithium secondary battery having a high energy density includes a positive electrode, a negative electrode, and an electrolyte (electrolytic solution) as constituent elements.
  • a lithium-containing transition metal oxide is used as a positive electrode active material, and a lithium metal, a lithium alloy, or a material that absorbs and releases lithium ions is used as a negative electrode active material.
  • an organic solvent in which a lithium salt such as lithium tetrafluoroborate (LiBF 4 ) or lithium hexafluorophosphate (LiPF 6 ) is dissolved is used.
  • aprotic organic solvents such as ethylene carbonate and propylene carbonate are used.
  • LiTFSI salt having excellent characteristics such as high thermal stability, high solubility, and high ionic conductivity is also conceivable as an electrolyte.
  • the salt causes a corrosion reaction with an aluminum current collector, it is used for a lithium ion secondary battery. It could not be used as an electrolyte (Non-Patent Document 1).
  • aprotic organic solvents such as ethylene carbonate and propylene carbonate are used. These organic solvents are generally volatile and flammable. Therefore, when the lithium secondary battery is overcharged or abused, the thermal runaway reaction of the positive electrode may occur and lead to ignition. In order to prevent this, the battery incorporates a so-called separator shutdown mechanism that prevents subsequent Joule heat generation due to clogging of the separator before the thermal runaway start temperature. Furthermore, lithium nickel oxide (LiNiO 2 ) or lithium manganate (LiMn 2 O 4 ), which has a higher thermal runaway reaction temperature than lithium cobalt oxide (LiCoO 2 ), is used as a positive electrode, thereby improving the safety of the lithium secondary battery.
  • LiNiO 2 lithium nickel oxide
  • LiMn 2 O 4 lithium manganate
  • LiCoO 2 lithium cobalt oxide
  • Patent Documents 1 and 2 a phosphoric acid ester, which is known as an organic solvent having a high incombustibility effect, as an electrolyte for lithium secondary batteries has been studied.
  • Non-patent Document 2 In order to mix with a carbonate-based organic solvent and make the electrolyte incombustible, it is necessary to mix 20% or more phosphate ester. However, when 20% or more of phosphoric acid ester is mixed, the discharge capacity is extremely reduced, and it is difficult to expect nonflammability while maintaining battery characteristics (Non-patent Document 2).
  • Non-patent Document 3 there is a report example in which a film additive such as VC (vinylene carbonate) or VEC (vinyl ethylene carbonate) is added and a phosphate ester is used at a high concentration.
  • VC vinyl carbonate
  • VEC vinyl ethylene carbonate
  • a phosphate ester used at a high concentration
  • the theoretical capacity cannot be obtained when the addition amount is 10% or less, and 12% is used in combination of VC, VEC, and CH.
  • 15% of an additive is added to improve the cycle characteristics. If the amount added is 10% or more, the amount is extremely large, and the nonflammable effect is lowered accordingly, and an unexpected side reaction may occur.
  • Patent Document 4 there has been an idea of containing a high concentration of electrolyte.
  • this patent document is an invention focusing only on a phosphate ester derivative in which the phosphate ester is substituted with a halogen atom.
  • the examples only describe the case where the mixing volume of the phosphoric acid ester derivative is 20% or less, and there is a report example in which the battery is operated by mixing a high concentration phosphoric acid ester of 20% or more. do not do.
  • concentration of electrolyte is 1.0 mol / L, and there is no example which mixes lithium salt more than that.
  • the first invention includes a positive electrode including an oxide that absorbs and releases lithium ions, a negative electrode including a material that absorbs and releases lithium ions, and an electrolytic solution.
  • the electrolytic solution is a secondary battery including 1.5 mol / L or more of a lithium salt.
  • 2nd invention has a positive electrode containing the oxide which occludes and discharge
  • the said electrolyte solution is 1.0 mol /
  • a secondary battery comprising a lithium salt of L or more and a phosphate ester derivative of 20% by volume or more.
  • the third invention is a charging / discharging method using the secondary battery according to either the first invention or the second invention.
  • a fourth invention is an electrolyte solution for a secondary battery characterized by containing 1.5 mol / L or more of lithium tetrafluorosulfonylimide (LiTFSI) as a lithium salt.
  • LiTFSI lithium tetrafluorosulfonylimide
  • 5th invention is the electrolyte solution for secondary batteries characterized by including 1.5 mol / L or more lithium salt and 25 volume% or more phosphoric acid ester derivative.
  • LiTFSI lithium tetrafluoro sulfonylimide
  • the seventh invention is a method for producing an electrolyte solution for a secondary battery, comprising 1.5 mol / L or more of a lithium salt and 25% by volume or more of a phosphate ester derivative.
  • An eighth invention provides a method for producing a secondary battery, comprising preparing a positive electrode and a negative electrode, and injecting an electrolyte containing 1.5 mol / L or more of a lithium salt between the positive electrode and the negative electrode. is there.
  • 9th invention prepares a positive electrode and a negative electrode, and inject
  • FIG. 1 is a schematic diagram showing a secondary battery 101.
  • FIG. 2 is an exploded view of a coin-type secondary battery 201.
  • FIG. It is a figure which shows the evaluation result of the rate characteristic test with respect to the samples of Examples 6 to 9, 24 and Comparative Examples 9, 10, and 12. It is a figure which shows the evaluation result of the ionic conductivity of the electrolyte solution of Examples 1-12 and Comparative Examples 1-6. It is a figure which shows the LV (Linear
  • FIG. It is a figure which shows the LV (Linear
  • the basic configuration of the secondary battery 101 of the present invention includes at least a positive electrode 102, a negative electrode 103, and an electrolytic solution 104 as constituent elements.
  • the positive electrode of the lithium ion secondary battery is formed of an oxide made of a material that occludes and releases lithium
  • the negative electrode is made of a carbon material that occludes and releases lithium.
  • the electrolytic solution contains a lithium salt having a concentration of 1.5 mol / L or more, or contains a phosphorus compound and a high concentration lithium salt simultaneously.
  • the high concentration lithium salt in the present invention refers to a lithium salt having a concentration of 1.0 mol / L or more.
  • the inventors of the present invention operate as a battery using 100% phosphate ester electrolyte without adding an additive by adding a high concentration lithium salt to the electrolyte 104. I found out.
  • the electrolyte solution can be made nonflammable by mixing 20% by volume or more of the phosphate ester derivative.
  • the electrolytic solution 104 contains a lithium salt having a concentration of 1.0 mol / L or more, or a lithium salt having a concentration of 1.5 mol / L or more.
  • a material used for a lithium ion secondary battery and a method for creating a constituent member will be described.
  • the present invention is not limited to these.
  • a phosphorus compound, a carbonate-based organic solvent, a film forming additive, an electrolytic solution, a positive electrode, a negative electrode, a separator, and a battery shape will be described as materials used for the lithium ion secondary battery.
  • phosphate ester derivative in the present invention examples include compounds represented by the following chemical formulas 1 and 2.
  • R 1 , R 2 , and R 3 in Chemical Formulas 1 and 2 are alkyl groups having 7 or less carbon atoms, or halogenated alkyl groups, alkenyl groups, cyano groups, phenyl groups, amino groups, nitro groups, alkoxy groups, cycloalkyls.
  • Specific examples include trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tributyl phosphate, tripentyl phosphate, trioctyl phosphate, triphenyl phosphate, dimethylethyl phosphate, dimethylpropyl phosphate, dimethylbutyl phosphate, Diethyl methyl phosphate, dipropyl methyl phosphate, dibutyl methyl phosphate, methyl ethyl propyl phosphate, methyl ethyl butyl phosphate, methyl propyl butyl phosphate, dimethyl methyl phosphate (DMMP), dimethyl ethyl phosphate, diethyl phosphate And methyl.
  • methylethylene phosphate having a cyclic structure ethylethylene phosphate (EEP), ethylbutylene phosphate, etc.
  • Tris (trifluoromethyl) phosphate substituted with a halogenated alkyl group Tris (pentafluoroethyl) phosphate Tris (2,2 , 2-trifluoroethyl) phosphate, Tris (2,2,3,3-tetrafluoropropyl) phosphate, Tris (3,3,3-trifluoropropyl) phosphate, Tris (2,2,3,3,3-pentafluoropropyl) phosphate, etc.
  • Tris (2,2,3,3,3-pentafluoropropyl) phosphate Tris (2,2,3,3,3-pentafluoropropyl) phosphate, etc.
  • trimethyl phosphate, triethyl phosphate, trioctyl phosphate, and triphenyl phosphate are preferred because of their high stability.
  • Examples of the phosphoric acid ester derivative include compounds represented by the above general chemical formulas 3, 4, 5, and 6.
  • R 1 and R 2 in Chemical Formulas 3, 4, 5, and 6 may be the same or different, and are an alkyl group having 7 or less carbon atoms, a halogenated alkyl group, an alkenyl group, a cyano group, a phenyl group, an amino group, It represents a nitro group, an alkoxy group, or a cycloalkyl group, and includes a cyclic structure formed by a bond of R 1 and R 2 .
  • X 1 and X 2 are halogen atoms, which may be the same or different.
  • methyl fluorophosphate trifluoroethyl
  • ethyl fluorophosphate trifluoroethyl
  • propyl fluorophosphate trifluoroethyl
  • allyl fluorophosphate trifluoroethyl
  • fluorophosphoric acid Butyl trifluoroethyl
  • phenyl fluorophosphate trifluoroethyl
  • bis (trifluoroethyl) fluorophosphate methyl fluorophosphate (tetrafluoropropyl), ethyl fluorophosphate (tetrafluoropropyl), fluorophosphoric acid Tetrafluoropropyl (trifluoroethyl), phenyl fluorophosphate (tetrafluoropropyl), bis (tetrafluoropropyl) fluorophosphate, methyl fluorophosphate (fluorophenyl), ethyl fluor
  • fluoroethylene fluorophosphate bis (trifluoroethyl) fluorophosphate, fluoroethyl difluorophosphate, trifluoroethyl difluorophosphate, propyl difluorophosphate, and phenyl difluorophosphate are preferable, and low viscosity, flame retardancy
  • fluoroethyl difluorophosphate, tetrafluoropropyl difluorophosphate, and fluorophenyl difluorophosphate are more preferred.
  • the purpose is to make these phosphate ester derivatives incombustible by mixing them in an electrolyte solution.
  • concentration of the phosphate ester derivative the more non-flammable effect can be obtained.
  • These phosphate ester derivatives may be used alone or in combination of two or more.
  • Carbonate organic solvent It is desirable to mix the following carbonate type organic solvent simultaneously with the electrolytic solution in the present invention.
  • the carbonate organic solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), fluoroethylene carbonate (FEC), chloroethylene carbonate, diethyl carbonate (DEC).
  • DME Dimethoxyethane
  • DEE diethoxyethane
  • diethyl ether diethyl ether
  • phenylmethyl ether tetrahydrofuran
  • THF tetrahydropyran
  • DIOX 1,4-dioxane
  • DOL 1,3-dioxolane
  • ethylene carbonate, diethyl carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate ⁇ -butyrolactone, and ⁇ -valerolactone are particularly preferable, but are not limited thereto.
  • concentration of these carbonate-based organic solvents is preferably 5% by volume or more, and more preferably 10% by volume or more in order to obtain a sufficient capacity improvement effect.
  • the electrolyte solution becomes combustible. Therefore, it is preferably less than 75% by volume, and more preferably less than 60% by volume.
  • a carbonate type organic solvent may be used independently and may use 2 or more types together.
  • the film additive in the present invention is an electrochemical film on the negative electrode surface.
  • Specific examples include vinylene carbonate (VC), vinyl ethylene carbonate (VEC), ethylene sulfite (ES), propane sultone (PS), butane sultone (BS), dioxathiolane-2,2-dioxide (DD), sulfolene, Examples include 3-methylsulfolene, sulfolane (SL), succinic anhydride (SUCAH), propionic anhydride, acetic anhydride, maleic anhydride, diallyl carbonate (DAC), diphenyl disulfide (DPS), and the like. It is not limited.
  • the electrolytic solution transports charge carriers between both the negative electrode and the positive electrode.
  • an organic solvent in which a lithium salt is dissolved can be used.
  • the lithium salt include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , LiB (C 2 O 4 ) 2 , LiCF 3 SO 3 , LiCl, LiBr, LiI Among them, LiBF 3 (CF 3 ), LiBF 3 (C 2 F 5 ), LiBF 3 (C 3 F 7 ), LiBF 2 in which at least one fluorine atom of LiBF 4 is substituted with a fluorinated alkyl group.
  • LiPF 5 (CF 3 ) 2 LiBF 2 (CF 3 ) (C 2 F 5 ), LiPF 5 (CF 3 ) or LiPF 5 (C 2 F 5 ) in which at least one fluorine atom of LiPF 6 is substituted with a fluorinated alkyl group.
  • LiPF 5 (C 3 F 7), LiPF 4 (CF 3) 2, LiPF 4 (CF 3) (C 2 F 5), L PF 3 (CF 3) 3 or the like may be used.
  • examples of the lithium salt include a salt made of a compound containing the chemical structural formula represented by Chemical Formula 7.
  • R 1 and R 2 in Chemical Formula 7 are selected from the group consisting of halogen and alkyl fluoride.
  • R 1 and R 2 may be different or may be cyclic. Specific examples include LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), or five And a member cyclic compound CTFSI-Li.
  • examples of the lithium salt include a salt made of a compound containing the chemical structural formula represented by Chemical Formula 8.
  • R 1 , R 2 and R 3 in Chemical Formula 8 are selected from the group consisting of halogen and alkyl fluoride.
  • R 1 , R 2 and R 3 may be different. Specific examples include LiC (CF 3 SO 2 ) 3 and LiC (C 2 F 5 SO 2 ) 3 .
  • These lithium salts may be used alone or in combination of two or more.
  • LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2 ) having high thermal stability, LiN (FSO 2 ) 2 and LiPF 6 having high ionic conductivity are particularly desirable.
  • the oxide positive electrode material in the present invention LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , LiFePO 4, LixV 2 O 5 (0 ⁇ x ⁇ 2) or a transition metal of these compounds is partially substituted with another metal. Lithium-containing transition metal oxides such as those can be used.
  • the positive electrode in the present invention can be formed on a positive electrode current collector, and as the positive electrode current collector, a foil or metal made of nickel, aluminum, copper, gold, silver, an aluminum alloy, stainless steel, carbon or the like What was formed on the flat plate etc. can be used.
  • ⁇ Negative electrode> As the material for inserting and extracting lithium in the present invention, silicon, tin, aluminum, silver, indium, antimony, bismuth, and the like can be used. However, the material is not limited to these, and any material that can store and release lithium can be used. No problem.
  • As the carbon negative electrode material pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, organic polymer compound fired bodies (phenol resin, furan resin, etc.) are suitable. Carbon materials such as carbon fiber, activated carbon, graphite, etc. can be used. In order to strengthen the connection between the constituent materials of the negative electrode, a binder can also be used.
  • Such binders include polytetrafluoroethylene, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene / butadiene copolymer rubber, polypropylene, polyethylene , Polyimide, partially carboxylated cellulose, various polyurethanes, polyacrylonitrile and the like.
  • the negative electrode in the present invention can be formed on a negative electrode current collector, and examples of the negative electrode current collector include foils made of nickel, aluminum, copper, gold, silver, aluminum alloy, stainless steel, carbon, and metal flat plates. What was formed on top of can be used.
  • the film is generally referred to as SEI (Solid Electrolyte Interphase), and is a film that is formed on the negative electrode in the process of charging and discharging a lithium ion battery and does not allow electrolyte to pass through but allows ions to pass through.
  • SEI Solid Electrolyte Interphase
  • the manufacturing method is to manufacture a battery comprising an electrode made of a carbon material and an electrode made of a material that releases lithium ions across the separator, and at least once charge / discharge is repeated to form a film on the negative electrode. Generate.
  • a carbonate-based electrolytic solution in which a lithium salt is dissolved can be used.
  • an electrode made of a carbon material can be taken out and used as the negative electrode of the present invention.
  • a separator such as a porous film made of polyethylene, polypropylene, or the like, a cellulose film, or a nonwoven fabric may be used so that the positive electrode and the negative electrode are not in contact with each other.
  • These separators may be used alone or in combination of two or more.
  • the shape of the secondary battery is not particularly limited, and a conventionally known battery can be used.
  • the battery shape include a cylindrical shape, a square shape, a coin shape, and a sheet shape.
  • the above-described positive electrode, negative electrode, electrolyte, separator, etc. are sealed with an electrode laminate or a wound body by a metal case, a resin case, or a laminate film composed of a metal foil such as an aluminum foil and a synthetic resin film. It is made by stopping.
  • the present invention is not limited to these.
  • LiTFSI lithium tetrafluorosulfonylimide
  • ⁇ Positive electrode fabrication method> As a positive electrode active material, lithium manganese composite oxide (LiMn 2 O 4 ) -based material is mixed with VGCF (manufactured by Showa Denko KK) as a conductive agent and dispersed in N-methylpyrrolidone (NMP) to form a slurry. Then, it was applied to an aluminum foil as a positive electrode current collector and dried. Thereafter, a positive electrode having a diameter of 12 mm ⁇ was produced.
  • VGCF manufactured by Showa Denko KK
  • NMP N-methylpyrrolidone
  • ⁇ Negative electrode fabrication method> As a negative electrode active material, a graphite-based material was dispersed in N-methylpyrrolidone (NMP) to form a slurry, which was then applied to a copper foil as a negative electrode current collector and dried. Thereafter, an electrode having a diameter of 12 mm ⁇ was produced.
  • NMP N-methylpyrrolidone
  • the negative electrode used in the present invention also shows a case where an electrode (hereinafter referred to as SEI-attached negative electrode) characterized in that a film is formed on the negative electrode surface in advance is used.
  • SEI-attached negative electrode an electrode characterized in that a film is formed on the negative electrode surface in advance.
  • a method for producing the electrode a coin cell made of lithium metal and an electrolyte solution is produced with a separator sandwiched between the electrode, and 10 cycles are repeated in the order of discharge and charge at a rate of 1/10 C. A film was formed on the negative electrode surface.
  • the electrolytic solution used at this time was obtained by dissolving lithium hexafluorophosphate (hereinafter abbreviated as LiPF 6 : molecular weight: 151.9) in an amount of 1 mol / L (1M) in a carbonate-based organic solvent. The adjusted one was used.
  • a carbonate-based organic solvent a mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 30:70 (hereinafter abbreviated as EC / DEC or EC / DEC (3: 7)) is used.
  • the cut-off potential was set to 0 V during discharging and 1.5 V during charging.
  • the coin cell was disassembled and an electrode made of graphite (negative electrode with SEI) was taken out and used as the negative electrode of the present invention.
  • the positive electrode 5 obtained by the above method is placed on a positive electrode current collector 6 also serving as a coin cell receiving shape made of stainless steel, and a negative electrode 3 made of graphite and an overlapping electrode with a separator 4 made of a porous polyethylene film sandwiched therebetween.
  • a laminate was obtained.
  • the obtained electrode laminate was injected with the electrolytic solution obtained by the above method and vacuum impregnated. After sufficiently impregnating and filling the gap between the electrode and the separator with the electrolyte, the insulating packing 2 and the negative electrode current collector that also serves as a coin cell receiving type are overlapped, and the outside is covered with the stainless steel exterior 1 with a dedicated caulking machine.
  • a coin-type secondary battery was produced by integrating them.
  • Figure 2 shows an exploded view of the coin-type secondary battery that was created.
  • lithium ion secondary batteries in which the phosphorus compound, carbonate-based organic solvent and composition ratio, additives, and lithium salt described in the embodiment were changed were prepared.
  • Comparative Examples 1 to 8 were prepared, and flammability test evaluation and discharge capacity measurement were performed in the same manner.
  • Combustibility test evaluation was performed as follows. 50 ⁇ l of the electrolyte was immersed in a glass fiber filter having a width of 3 mm, a length of 30 mm, and a thickness of 0.7 mm. One side of the filter paper was held with tweezers, and the other side was brought close to a flame of a gas burner having a height of 2 cm. After approaching the flame for 2 seconds, the filter paper was moved away from the flame, and the presence or absence of the flame was visually confirmed. When no flame was observed, the flame was brought closer to the flame for 3 seconds and then moved away from the flame to visually confirm the presence or absence of the flame. The case where no flame was confirmed in both cases was judged as “incombustible”, and the case where a flame was confirmed in either case was judged as “flammable”.
  • the discharge capacity was measured using a coin-type lithium secondary battery produced by the method described above.
  • the discharge capacity of the coin-type lithium secondary battery was evaluated according to the following procedure. First, constant current charging with an upper limit voltage of 4.2 V was performed at 0.025 C, and discharging was performed with a current of 0.025 C and a 3.0 V cutoff. The discharge capacity observed at that time was defined as the initial discharge capacity.
  • the discharge capacity in this example is a value per weight of the positive electrode active material.
  • the rate characteristic was measured by the following procedure using the battery after measuring the discharge capacity. First, constant current charging at an upper limit voltage of 4.2 V was performed at 0.2 C, and then discharging was performed at a constant current in the order of 1.0 C, 0.5 C, 0.2 C, and 0.1 C. The lower limit voltage was 3.0V. The discharge capacity obtained at each rate and the total of the discharge capacity obtained so far were defined as the discharge capacity obtained at that rate.
  • the ion conductivity was evaluated under the condition of 20 ° C. using a bootable conductivity meter manufactured by Mettler-Toledo.
  • LV Linear Sweep Voltammetry
  • Example 1 An amount of LiTFSI having a concentration of 2.5 mol / L (2.5 M) was dissolved in trimethyl phosphate (hereinafter abbreviated as TMP), which is a phosphate ester derivative, and this was used as an electrolyte for a combustion test. .
  • TMP trimethyl phosphate
  • the discharge capacity test was performed using a positive electrode made of a LiMn 2 O 4 -based active material and a negative electrode made of graphite. The results are shown in Table 1.
  • LiBETI molecular weight 387.1
  • LiPF6 molecular weight 151.9
  • LiTFSI and LiPF 6 60:40
  • the discharge capacity test was the same as in Example 1 for the positive electrode and negative electrode excluding the electrolyte. The results are shown in Table 1.
  • the discharge capacity test was the same as in Example 1 for the positive electrode and negative electrode excluding the electrolyte. The results are shown in Table 1.
  • TMP / ⁇ BL 40/60
  • ⁇ BL ⁇ -butyrolactone
  • the amount of LiTFSI was dissolved and used as the electrolyte for the combustion test.
  • the discharge capacity test was the same as in Example 1 for the positive electrode and negative electrode excluding the electrolyte. The results are shown in Table 1.
  • Example 26 An amount of LiTFSI having a concentration of 1.5 mol / L (1.5 M) was dissolved in EC / DEC (3: 7), which is a carbonate-based organic solvent, and this was used as an electrolyte for a combustion test.
  • the discharge capacity test was the same as in Example 1 for the positive electrode and negative electrode excluding the electrolyte. The results are shown in Table 1.
  • Example 27 An amount of LiTFSI having a concentration of 2.0 mol / L (2.0 M) was dissolved in EC / DEC (3: 7), which is a carbonate-based organic solvent, and this was used as an electrolyte for a combustion test.
  • the discharge capacity test was the same as in Example 1 for the positive electrode and negative electrode excluding the electrolyte. The results are shown in Table 1.
  • TfMP Tris (trifluoromethyl) phosphate
  • EC / DEC EC / DEC (3: 7)
  • the discharge capacity test was the same as in Example 1 for the positive electrode and negative electrode excluding the electrolyte. The results are shown in Table 1.
  • the discharge capacity test was the same as in Example 1 for the positive electrode and negative electrode excluding the electrolyte. The results are shown in Table 1.
  • Table 1 shows the electrolyte combustion test for the samples of Examples 1 to 27 and Comparative Examples 1 to 14 and the evaluation results of the discharge capacity of the coin-type secondary battery.
  • the results of the combustion test of the electrolyte are shown as non-combustible and combustible in the flammability column of Table 1.
  • the discharge capacity evaluation result of the coin-type secondary battery indicates a capacity value as the initial discharge capacity.
  • Table 1 shows the results of determination based on whether or not the flame can be confirmed when the glass fiber filter paper soaked with the electrolyte is brought close to the flame and then the glass fiber is moved away from the flame. Combustibility was confirmed in an electrolytic solution in which the phosphate ester content was only mixed by 15% by volume or an electrolytic solution in which only 1.0 M of lithium salt was dissolved (Comparative Examples 3 and 4). On the other hand, it was found that non-flammability was exhibited when a phosphoric acid ester derivative was mixed in an amount of 20% by volume or more and a lithium salt of 1.5M or more was contained (Example 1-25). As a result, the mixing amount of the phosphate ester derivative is desirably 20% by volume or more.
  • the initial discharge capacity was higher than that of the negative electrode not formed (Examples 6-7 and 18-19). This is presumably because the irreversible capacity due to SEI formation observed at the first charge / discharge is reduced by forming a film on the negative electrode surface in advance. And by substituting the substituent of the phosphate ester with alkyl halide, halogen radicals are generated at the time of combustion, and it is considered that the effect of suppressing combustion works and the non-combustion effect is increased. However, the capacity does not decrease compared to the case where the replacement is not performed, and a capacity equal to or higher than that can be obtained (Examples 12, 24, 28, and 29).
  • FIG. 4 shows that the ion conductivity decreases when the lithium salt concentration is high (Example 1-12, Comparative Example 1-6). For this reason, when considering the movement of lithium ions, it is generally desirable that the concentration of lithium ions in the electrolyte be lower. However, when the content of the phosphate ester derivative is large, the battery does not operate at a lithium salt concentration of 1.0 M (Comparative Examples 1 and 5).
  • the optimum lithium salt concentration depends on the content of the phosphoric acid ester derivative to be mixed, but is generally larger than 1.5M and not more than 3.5M. More preferably, it is desirable to be larger than 1.8M. Further, in order to improve the rate characteristics, it is more preferable that it is 2.0M or more.
  • the initial discharge capacity can be obtained by dissolving 1.5 M or more of LiTFSI salt (Examples 26-27, Comparative Examples 6 and 13).
  • the LiTFSI salt concentration does not work at 1.0M, and the reason why the battery operates by setting the concentration to 1.5M or 2.0M is unknown.
  • 2.0M In the LiTFSI salt-containing electrolyte, no current peak due to the corrosion reaction of the aluminum current collector was confirmed (FIG. 5). From this, it is considered that one of the factors for improving the capacity is to suppress the corrosion reaction with the aluminum current collector by increasing the lithium salt concentration.
  • the electrolytic solution of Example 12 in which 2.5 M LiPF 6 is dissolved does not cause a corrosion reaction even when it is higher than 5.0 V (Li / Li +) with aluminum. From this, it can be said that the electrolytic solution in which a high concentration of lithium salt is dissolved is an electrolytic solution having improved oxidation resistance.
  • the secondary battery of the present invention can make the electrolyte incombustible, and a secondary battery having a larger discharge capacity can be obtained.
  • the secondary battery of the present invention includes at least a positive electrode, a negative electrode, and an electrolytic solution.
  • the positive electrode is made of an oxide that occludes and releases lithium ions
  • the negative electrode is made of a material that occludes and releases lithium ions.
  • the electrolytic solution is characterized by containing a high concentration lithium salt in the phosphate ester derivative at the same time. By combining both in an appropriate amount, the electrolyte solution can be made nonflammable, and a secondary battery having higher discharge capacity and rate characteristics can be obtained.
  • any lithium salt may be used, but it is desirable to select LiTFSI or LiPF 6 salt having higher ionic conductivity and higher discharge capacity than LiBETI (Example 7). 11, 12). Moreover, you may make it the lithium salt used as electrolyte solution contain two different types of lithium salts simultaneously (Example 16, 17).
  • the mixing ratio of the phosphate ester derivative is too high, it is necessary to increase the lithium salt concentration. Therefore, it is preferably 90% by volume or less, and more preferably 80% by volume or less.
  • the feature of the present invention is that the concentration of the lithium salt in the electrolytic solution is increased to improve the battery characteristics. Since the solubility of the lithium salt is increased by increasing the content of the phosphate ester derivative, it is better to increase the content of the phosphate ester derivative in order to improve battery characteristics. Therefore, when coexistence with battery characteristics is considered, it is good to mix the mixing ratio of phosphoric acid ester 30 volume% or more. More optimally, it is 40% by volume or more.
  • an additive when added to the electrolytic solution containing a high concentration lithium salt, the amount added needs to be less than 10% so as not to deteriorate the rate characteristics.
  • effective additives in smaller amounts include PS and succinic anhydride that do not contain carbon-carbon double bonds in the molecule.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明の課題は、電解液を不燃化した、より安全性の高い二次電池を提供することにある。本発明の二次電池は、リチウムイオンを吸蔵、放出する酸化物を含む正極と、リチウムイオンを吸蔵、放出する炭素材料を含む負極と、電解液とを有しており、電解液は、リチウム塩を1.5mol/L以上含んでいるか、もしくは1.0mol/L以上のリチウム塩と、20体積%以上のリン酸エステル誘導体を含んでいる。

Description

二次電池
 本発明は、安全性の高い二次電池に関するものである。
 繰り返し充放電できる二次電池として、高いエネルギー密度を有していることからリチウム系二次電池が主流となっている。高いエネルギー密度を有しているリチウム系二次電池は、正極と、負極と、電解質(電解液)とを構成要素としている。一般に正極活物質としてリチウム含有遷移金属酸化物を用い、負極活物質としてリチウム金属、リチウム合金、リチウムイオンを吸蔵、放出する材料を用いている。
 電解質としては四フッ化ホウ酸リチウム(LiBF)や六フッ化リン酸リチウム(LiPF)等のリチウム塩を溶解した有機溶媒を用いている。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート等の非プロトン性有機溶媒が用いられている。
 また、電解質として、高い熱安定性、高い溶解性、高イオン伝導度といった優れた特徴を有するLiTFSI塩も考えられるが、当該塩はアルミニウム集電体と腐食反応を引き起こすためリチウムイオン二次電池用電解質として用いることはできなかった(非特許文献1)。
 有機溶媒としては、エチレンカーボネート、プロピレンカーボネート等の非プロトン性有機溶媒が用いられている。これらの有機溶媒は、一般に揮発しやすく、可燃性である。そのため、リチウム系二次電池を過充電させたり乱用的な使用を行ったりした場合には、正極の熱暴走反応が起こり発火に至る可能性がある。これを防止するため、電池には熱暴走開始温度前にセパレータの目詰まりにより、その後のジュール熱発生を防ぐ、いわゆるセパレータのシャットダウン機構を取り入れている。さらに、コバルト酸リチウム(LiCoO)より熱暴走反応開始温度が高いニッケル酸リチウム(LiNiO)やマンガン酸リチウム(LiMn)を正極として用いることによって、リチウム系二次電池の安全性を高める取り組みが行われてきた。最近では、更なる安全性を求め、高い不燃効果を有する有機溶媒として知られるリン酸エステルをリチウム系二次電池の電解液に用いることが検討されている(特許文献1、2)。
 一方、リン酸エステルは単体では耐還元性が悪いため(1.0V Li/Li+)、リチウム系二次電池用電解液として用いても、正常に動作しない。そのため、既存のカーボネート系有機溶媒と混合させる方法や添加剤を用いる試みが行われてきた。
 カーボネート系有機溶媒と混合させ、電解液を不燃にするためには、20%以上のリン酸エステルを混合させる必要がある。しかし、20%以上リン酸エステルを混合させると放電容量が極端に減少するため、電池特性を維持させつつ不燃を期待することは難しかった(非特許文献2)。
 また、VC(ビニレンカーボネート)やVEC(ビニルエチレンカーボネート)といった皮膜添加剤を加え、リン酸エステルを高い濃度で用いた報告例も存在する(非特許文献3)。しかし、当該非特許文献においては、添加量が10%以下では理論容量が得られず、VCやVEC、CHをあわせて12%用いている。さらに、サイクル特性を向上させるためには、15%の添加剤を加えている。添加量として10%以上は非常に多く、その分だけ不燃効果が低くなり、また予期せぬ副反応が起きる可能性がある。そして、グラファイト電極とLi電極からなる電池において、グラファイトの理論容量と同等の容量が得られることを報告しているが、Li電極の代わりにコバルト酸リチウムやマンガン酸リチウム等の遷移金属酸化物を用いたリチウムイオン電池の場合、電池が正常に動作するかは別問題である。なぜなら、添加剤は正極と反応することも考えられ、例えば、ビニレンカーボネートは充電状態の正極と反応しやすいことが報告されている(特許文献3)。また、電池を作製する場合、電解液と正極活物質の反応のみならず、正極集電体との反応も考慮しなければならない。実際に、一般に集電体として広く用いられているアルミニウムと電解液は、4.0V(Li/Li+)付近にて反応する。このことは、皮膜形成添加剤を加えても、アルミニウムとの腐食反応電位はあまり変わらない(後述する比較例8、14)。また、添加剤を10%も加えると、レート特性が悪くなるという問題点も存在した(後述する比較例9、10、12参照)。
 上述のように、これまで皮膜形成添加剤を加えることなしに、リン酸エステルを高濃度に用いてリチウム系二次電池を動作せるための方法は存在しなかった。また、皮膜添加剤を加えることでレート特性が悪くなるため、更なる改良が望まれていた。
 一方、これまでも、高い濃度の電解質を含有させるアイデアは存在する(特許文献4)。
 しかし、当該特許文献は、リン酸エステルをハロゲン原子に置換したリン酸エステル誘導体にのみ着眼した発明である。さらに、実施例にもリン酸エステル誘導体の混合体積は20%以下の場合のみしか記載されておらず、20%以上の高濃度のリン酸エステルを混合させて電池を動作させた報告例は存在しない。また、当該特許文献に記されている実施例では、電解質の濃度は1.0mol/Lが最高であり、それ以上のリチウム塩を混合する例は存在しない。
 以上をまとめると、電池の安全性を高めるため、リン酸エステル誘導体を20体積%以上含有した電解液では優れた電池特性を見出すことはできず、また、電解質にLiTFSIといった高い熱安定性を有する塩を用いることもできなかった。
特開平4-18480号公報 特開平8-22839号公報 特開2005-228721号公報 特開平8-88023号公報
Larry J. Krause, William Lamanna, John Summerfield, Mark Engle, Gary Korba, Robert Loch, Radoslav Atanasoski, "Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells"Journal of Power Sources 68, 1997, p.A320-325 Xianming Wang, Eiki Yasukawa, and Shigeaki kasuya, "Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries"Journal of The Electrochemical Society 148(10), 2001, p.A1058-A1065 Xianming Wang,Chisa Yasuda, Hitoshi Naito, Go Sagami, and Koichi Kibe, "High-Concentration Trimethyl Phosphate-Based Nonflammable Electrolytes with Improved Charge-Discharge Performance of a Graphite Anode for lithium-Ion Cells"Journal of The Electrochemical Society 153(1), 2006, p.A135-A139
 上述のように、電解液を不燃にする技術として、既存のカーボネート系有機溶媒にリン酸エステルを混合させる技術では、リン酸エステルを20%以上用いることが難しいという問題があった。そのため、グラファイト等の炭素材料からなる負極を用いたリチウム系二次電池において、良好なレート特性やサイクル特性を有し、完全な不燃性電解液は現在のところ見つかっていない。
 また、電解質として、熱安定性の高いLiTFSI塩を用いることも難しかった。本発明は上記理由に鑑みてなされたものであり、その目的は、電解液を不燃化した、より安全性の高い二次電池を提供することにある。
 前述した目的を達成するために、第1の発明は、リチウムイオンを吸蔵、放出する酸化物を含む正極と、リチウムイオンを吸蔵、放出する材料を含む負極と、電解液と、を有し、前記電解液は、1.5mol/L以上のリチウム塩を含むことを特徴とする二次電池である。
 第2の発明は、リチウムイオンを吸蔵、放出する酸化物を含む正極と、リチウムイオンを吸蔵、放出する材料を含む負極と、電解液と、を有し、前記電解液は、1.0mol/L以上のリチウム塩と、20体積%以上のリン酸エステル誘導体を含むことを特徴とする二次電池である。
 第3の発明は、第1の発明または第2の発明のいずれかに記載の二次電池を用いた充放電方法である。
 第4の発明は、リチウム塩として、1.5mol/L以上のリチウムテトラフルオロスルホニルイミド(LiTFSI)を含むことを特徴とする二次電池用電解液である。
 第5の発明は、1.5mol/L以上のリチウム塩と、25体積%以上のリン酸エステル誘導体を含むことを特徴とする二次電池用電解液である。
 第6の発明は、リチウム塩として、1.5mol/L以上のリチウムテトラフルオロスルホニルイミド(LiTFSI)を含有させることを特徴とする二次電池用電解液の製造方法である。
 第7の発明は、1.5mol/L以上のリチウム塩と、25体積%以上のリン酸エステル誘導体を含有させることを特徴とする二次電池用電解液の製造方法である。
 第8の発明は、正極と負極を用意し、前記正極と前記負極の間に、1.5mol/L以上のリチウム塩を含む電解液を注入することを特徴とする二次電池の製造方法である。
 第9の発明は、正極と負極を用意し、前記正極と前記負極の間に、1.0mol/L以上のリチウム塩と、20体積%以上のリン酸エステル誘導体を含む電解液を注入することを特徴とする二次電池の製造方法である。
 本発明によれば、電解液を不燃化した、より安全性の高い二次電池を提供することができる。
二次電池101を示す模式図である。 コイン型二次電池201の分解図である。 実施例6~9、24、比較例9、10、12のサンプルに対するレート特性試験の評価結果を示す図である。 実施例1~12、比較例1~6の電解液のイオン伝導度の評価結果を示す図である。 実施例27、比較例6、13の電解液のLV(Linear Sweep Voltammetry)測定結果を示す図である。 実施例12、比較例8、14の電解液のLV(Linear Sweep Voltammetry)測定結果を示す図である。
 1…………ステンレス外装
 2…………絶縁パッキン
 3…………負極
 4…………セパレータ
 5…………正極
 6…………正極集電体
 101……二次電池
 102……正極
 103……負極
 104……電解液
 201……コイン型二次電池
 以下、本発明の好ましい実施の形態について、図面に基づいて詳細に説明する。本発明の二次電池101の基本構成は、図1に示すように、少なくとも正極102と、負極103と、電解液104とを構成要素としている。リチウムイオン二次電池の正極はリチウムを吸蔵、放出する材料からなる酸化物から形成され、負極はリチウムを吸蔵、放出する炭素材料から形成される。さらに、電解液は1.5mol/L以上の濃度のリチウム塩を含むもの、あるいはリン化合物と高濃度のリチウム塩を同時に含むものである。
 なお、本発明における高濃度のリチウム塩とは、1.0mol/L以上の濃度のリチウム塩を示すものとする。
 上記構成に関し、本発明者らは鋭意検討の結果、電解液104に高濃度のリチウム塩を含有させることによって、添加剤を加えず、リン酸エステル100%の電解液を用いて電池として動作することを見出した。
 さらに、カーボネート系電解液と混合させることで高い放電容量が得られることを見出した。
 また、不燃性であるリチウム塩を高濃度含有させることで、不燃効果も更に高まることが確認された。
 その結果、リン酸エステル誘導体を20体積%以上混合することで電解液を不燃にすることが可能であることが分かった。
 すなわち、電解液104は1.0mol/L以上の濃度のリチウム塩、もしくは1.5mol/L以上の濃度のリチウム塩を含有している。
 以下、本発明の実施形態として、リチウムイオン二次電池に使用される材料や、構成部材の作成方法について説明する。しかし本発明においては、これらに限定されるものではない。最初にリチウムイオン二次電池に使用される材料としてリン化合物、カーボネート系有機溶媒、皮膜形成添加剤、電解液、正極、負極、セパレータ、および電池形状について説明する。
<リン化合物>
 本発明におけるリン酸エステル誘導体としては、下記化学式1,2で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 ここで化学式1,2におけるR、R、Rは炭素数7以下のアルキル基、またはハロゲン化アルキル基、アルケニル基、シアノ基、フェニル基、アミノ基、ニトロ基、アルコキシ基、シクロアルキル基、シリル基を表し、R、R、Rのいずれか、または全てが結合した環状構造も含む。具体例としては、リン酸トリメチル、リン酸トリエチル、リン酸トリプロピル、リン酸トリブチル、リン酸トリペンチル、リン酸トリオクチル、リン酸トリフェニル、リン酸ジメチルエチル、リン酸ジメチルプロピル、リン酸ジメチルブチル、リン酸ジエチルメチル、リン酸ジプロピルメチル、リン酸ジブチルメチル、リン酸メチルエチルプロピル、リン酸メチルエチルブチル、リン酸メチルプロピルブチル、リン酸ジメチルメチル(DMMP)、リン酸ジメチルエチル、リン酸ジエチルメチル等が挙げられる。また、環状構造を有するリン酸メチルエチレン、リン酸エチルエチレン(EEP)、リン酸エチルブチレン等や、ハロゲン化アルキル基にて置換したTris(trifluoromethyl)phosphate、Tris(pentafluoroethyl)phosphate Tris(2,2,2-trifluoroethyl)phosphate、Tris (2,2,3,3-tetrafluoropropyl)phosphate、Tris (3,3,3-trifluoropropyl)phosphate、Tris (2,2,3,3,3-pentafluoropropyl)phosphate等も挙げられる。さらに亜リン酸トリメチル、亜リン酸トリエチル、リン酸トリブチル、亜リン酸トリフェニル、亜リン酸ジメチルエチル、亜リン酸ジメチルプロピル、亜リン酸ジメチルブチル、亜リン酸ジエチルメチル、亜リン酸ジプロピルメチル、亜リン酸ジブチルメチル、亜リン酸メチルエチルプロピル、亜リン酸メチルエチルブチル、亜リン酸メチルプロピルブチル、亜リン酸ジメチルトリメチルシリル等が挙げられる。安定性が高いことから、特にリン酸トリメチル、リン酸トリエチル、リン酸トリオクチル、リン酸トリフェニルであることが好ましい。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 また、リン酸エステル誘導体として、上記一般化学式3、4、5、6で表される化合物が挙げられる。化学式3、4、5、6におけるR、Rは同一でも、異なっていてもよく、炭素数7以下のアルキル基、またはハロゲン化アルキル基、アルケニル基、シアノ基、フェニル基、アミノ基、ニトロ基、アルコキシ基、シクロアルキル基を表し、R、Rの結合による環状構造も含む。また、X、Xはハロゲン原子であり、同一でも異なっていてもよい。
 これらの具体例としては、フルオロリン酸メチル(トリフルオロエチル)、フルオロリン酸エチル(トリフルオロエチル)、フルオロリン酸プロピル(トリフルオロエチル)、フルオロリン酸アリル(トリフルオロエチル)、フルオロリン酸ブチル(トリフルオロエチル)、フルオロリン酸フェニル(トリフルオロエチル)、フルオロリン酸ビス(トリフルオロエチル)、フルオロリン酸メチル(テトラフルオロプロピル)、フルオロリン酸エチル(テトラフルオロプロピル)、フルオロリン酸テトラフルオロプロピル(トリフルオロエチル)、フルオロリン酸フェニル(テトラフルオロプロピル)、フルオロリン酸ビス(テトラフルオロプロピル)、フルオロリン酸メチル(フルオロフェニル)、フルオロリン酸エチル(フルオロフェニル)、フルオロリン酸フルオロフェニル(トリフルオロエチル)、フルオロリン酸ジフルオロフェニル、フルオロリン酸フルオロフェニル(テトラフルオロプロピル)、フルオロリン酸メチル(ジフルオロフェニル)、フルオロリン酸エチル(ジフルオロフェニル)、フルオロリン酸ジフルオロフェニル(トリフルオロエチル)、フルオロリン酸ビス(ジフルオロフェニル)、フルオロリン酸ジフルオロフェニル(テトラフルオロプロピル)、フルオロリン酸フルオロエチレン、フルオロリン酸ジフルオロエチレン、フルオロリン酸フルオロプロピレン、フルオロリン酸ジフルオロプロピレン、フルオロリン酸トリフルオロプロピレン、ジフルオロリン酸フルオロエチル、ジフルオロリン酸ジフルオロエチル、ジフルオロリン酸フルオロプロピル、ジフルオロリン酸ジフルオロプロピル、ジフルオロリン酸トリフルオロプロピル、ジフルオロリン酸テトラフルオロプロピル、ジフルオロリン酸ペンタフルオロプロピル、ジフルオロリン酸フルオロイソプロピル、ジフルオロリン酸ジフルオロイソプロピル、ジフルオロリン酸トリフルオロイソプロピル、ジフルオロリン酸テトラフルオロイソプロピル、ジフルオロリン酸ペンタフルオロイソプロピル、ジフルオロリン酸ヘキサフルオロイソプロピル、ジフルオロリン酸ヘプタフルオロブチル、ジフルオロリン酸ヘキサフルオロブチル、ジフルオロリン酸オクタフルオロブチル、ジフルオロリン酸パーフルオロ-t-ブチル、ジフルオロリン酸へキサフルオロイソブチル、ジフルオロリン酸フルオロフェニル、ジフルオロリン酸ジフルオロフェニル、ジフルオロリン酸2-フルオロ-4-メチルフェニル、ジフルオロリン酸トリフルオロフェニル、ジフルオロリン酸テトラフルオロフェニル、ジフルオロリン酸ペンタフルオロフェニル、ジフルオロリン酸2-フルオロメチルフェニル、ジフルオロリン酸4-フルオロメチルフェニル、ジフルオロリン酸2-ジフルオロメチルフェニル、ジフルオロリン酸3-ジフルオロメチルフェニル、ジフルオロリン酸4-ジフルオロメチルフェニル、ジフルオロリン酸2-トリフルオロメチルフェニル、ジフルオロリン酸3-トリフルオロメチルフェニル、ジフルオロリン酸4-トリフルオロメチルフェニル、ジフルオロリン酸2-フルオロ-4-メトキシフェニル、さらに、亜リン酸トリフルオロメチル、亜リン酸トリフルオロエチルなどの亜リン酸エステルも挙げられる。これらの中でも、フルオロリン酸フルオロエチレン、フルオロリン酸ビス(トリフルオロエチル)、ジフルオロリン酸フルオロエチル、ジフルオロリン酸トリフルオロエチル、ジフルオロリン酸プロピル、ジフルオロリン酸フェニルが好ましく、低粘度、難燃性の点でジフルオロリン酸フルオロエチル、ジフルオロリン酸テトラフルオロプロピル、ジフルオロリン酸フルオロフェニルがより好ましい。
 本発明のある種の形態では、これらのリン酸エステル誘導体を、電解液に混合して不燃化させることを目的としている。リン酸エステル誘導体の濃度は高いほど不燃効果が得られる。これらリン酸エステル誘導体は、1種単独で用いても、2種以上を混合して用いてもよい。
<カーボネート系有機溶媒>
 本発明における電解液には、以下に示すカーボネート系有機溶媒を同時に混合するのが望ましい。カーボネート系有機溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、フルオロエチレンカーボネート(FEC)、クロロエチレンカーボネート、ジエチルカーボネート(DEC)、ジメトキシエタン(DME)、ジエトキシエタン(DEE)、ジエチルエーテル、フェニルメチルエーテル、テトラヒドロフラン(THF)、テトラヒドロピラン(THP)、1,4-ジオキサン(DIOX)、1,3-ジオキソラン(DOL)、アセトニトリル、プロピオンニトリル、γ-ブチロラクトン、γ-バレロラクトン等が挙げられる。安定性の観点から、特にエチレンカーボネート、ジエチルカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートγ-ブチロラクトン、γ-バレロラクトンが好ましいが、これらに限られる訳ではない。これらカーボネート系有機溶媒の濃度は、十分な容量向上効果を得るため5体積%以上であることが好ましく、さらに10体積%以上であることがより好ましい。しかし混合比率が高すぎると電解液が可燃化してしまうため、75体積%未満であることが好ましく、さらに60体積%未満であることがより好ましい。カーボネート系有機溶媒は、単独で使用してもよく、2種以上を併用してもよい。
<皮膜形成添加剤>
 本発明における皮膜添加剤とは、電気化学的に負極表面を皮膜するもののことである。具体例としては、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、エチレンサルファイト(ES)、プロパンサルトン(PS)、ブタンスルトン(BS)、Dioxathiolane-2,2-dioxide(DD)、スルホレン、3-メチルスルホレン、スルホラン(SL)、無水コハク酸(SUCAH)、無水プロピオン酸、無水酢酸、無水マレイン酸、ジアリルカーボネート(DAC)、ジフェニルジサルファイド(DPS)等が挙げられるが、特にこれらに限定されない。添加量を多くすると電池特性に悪影響を与えてしまうため、10質量%未満であることが望ましい。特に、環状構造を有するPSやBS、DD、無水コハク酸等が望ましい。さらに、分子内に炭素原子同士の二重結合を有する添加剤は、リン酸エステルの分解を防ぐのに、より多くの添加量を必要とするため、分子内に、炭素原子同士の二重結合を有さない添加剤が望ましい。そのため、添加剤としては、PS、DDが特に望ましく、それらにSL等を混合させて使うとなおよい。リチウム塩にLiPF6を用いた場合には、添加剤にPSを用いることが望ましい。
<電解液>
 電解液とは、負極と正極の両極間の荷電担体輸送を行うものであり、例えばリチウム塩を溶解した有機溶媒を利用することができる。リチウム塩として、例えばLiPF、LiBF、LiAsF、LiClO、Li10Cl10、Li12Cl12、LiB(C、LiCFSO、LiCl、LiBr、LiIなどがあげられ、そのうち、LiBFの少なくとも一つのフッ素原子をフッ化アルキル基で置換したLiBF(CF)、LiBF(C)、LiBF(C)、LiBF(CF、LiBF(CF)(C)や、LiPFの少なくとも一つのフッ素原子をフッ化アルキル基で置換したLiPF(CF)、LiPF(C)、LiPF(C)、LiPF(CF、LiPF(CF)(C)、LiPF(CF等を用いてもよい。
Figure JPOXMLDOC01-appb-C000011
 また、リチウム塩として、化学式7で示される化学構造式を含む化合物からなる塩も挙げられる。化学式7におけるR、Rはハロゲン、フッ化アルキルからなる群から選ばれる。また、R、Rは異なったものでもよく、環状であってもよい。具体例としては、LiN(FSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、あるいは五員環状化合物CTFSI-Liがあげられる。
 また、リチウム塩として、化学式8で示される化学構造式を含む化合物からなる塩も挙げられる。化学式8におけるR、R、Rはハロゲン、フッ化アルキルからなる群から選ばれる。また、R、R、Rは異なったものでもよい。具体例としては、LiC(CFSO、LiC(CSOが挙げられる。これらリチウム塩を1種単独で用いても、2種以上を混合して用いてもよい。これらの塩の中でも、熱安定性の高いLiN(CFSOやLiN(CSO)、イオン伝導度の高いLiN(FSO、LiPFが特に望ましい。
<正極>
 本発明における酸化物正極材料としては、LiMn、LiCoO、LiNiO、LiFePOあるいはLixV(0<x<2)あるいはこれら化合物の遷移金属を別の金属で一部置換したもの等のリチウム含有遷移金属酸化物を用いることができる。また、本発明における正極は、正極集電体の上に形成することができ、正極集電体としては、ニッケルやアルミニウム、銅、金、銀、アルミニウム合金、ステンレス、炭素等からなる箔、金属平板などの上に形成されたものを用いることができる。
<負極>
 本発明におけるリチウムを吸蔵、放出する材料としては、シリコンやスズ、アルミニウム、銀、インジウム、アンチモン、ビスマス等を用いることができるがこれらに限定する必要はなく、リチウムを吸蔵、放出する材料であれば問題ない。そして、炭素負極材料としては、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス等)、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂等を適当な温度で焼成し、炭素化したもの)、炭素繊維、活性炭、黒鉛などの炭素材料を用いることができる。負極の各構成材料間の結びつきを強めるために、結着剤を用いることもできる。このような結着剤としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ビニリデンフロライド-ヘキサフルオロプロピレン共重合体、ビニリデンフロライド-テトラフルオロエチレン共重合体、スチレン・ブタジエン共重合ゴム、ポリプロピレン、ポリエチレン、ポリイミド、部分カルボキシ化セルロース、各種ポリウレタン、ポリアクリロニトリル等が挙げられる。本発明における負極は、負極集電体の上に形成することができ、負極集電体としては、ニッケルやアルミニウム、銅、金、銀、アルミニウム合金、ステンレス、炭素等からなる箔、金属平板などの上に形成されたものを用いることができる。
 本発明に用いる炭素材料を用いた負極のうち、あらかじめ皮膜が形成されているものを用いることも可能である。当該皮膜とは、一般にSEI(Solid Electrolyte Interphase)と呼ばれるものであり、リチウムイオン電池を充放電する過程で負極上に生成し、電解液を通さないが、イオンを通す膜のことである。皮膜を作製する方法は、蒸着、化学装飾等いろいろあるが、電気化学的に皮膜を作製させることが望ましい。当該作製方法は、炭素材料からなる電極とセパレータをはさんで対極にリチウムイオンを放出する材料からなる電極から構成される電池を作製し、少なくとも1回充放電を繰り返すことによって負極上に皮膜を生成させる。このとき用いる電解液としては、リチウム塩を溶解させたカーボネート系電解液を用いることができる。充放電後、炭素材料からなる電極を取り出し、本発明の負極として用いることができる。また、最後に放電で終わり、炭素材料の層内にリチウムイオンが挿入されている状態からなる電極を用いてもよい。
<セパレータ>
 本発明におけるリチウムイオン二次電池には、正極、および負極が接触しないようにポリエチレン、ポリプロピレン等からなる多孔質フィルム、セルロース膜、不織布などのセパレータを用いることもできる。これらセパレータを単独で使用してもよく、2種以上を併用してもよい。
<電池形状>
 本発明において、二次電池の形状は特に限定されるものではなく、従来公知のものを用いることができる。電池形状としては、円筒型、角型、コイン型、およびシート型等が挙げられる。このような電池は、上述した正極、負極、電解質、セパレータなどを、電極積層体あるいは巻回体を金属ケース、樹脂ケース、あるいはアルミニウム箔などの金属箔と合成樹脂フィルムからなるラミネートフィルム等によって封止することによって作製される。しかしながら、本発明はこれらに限定されるものではない。
 次に、上記した材料を使って本発明における電解液、正極、負極およびコイン型二次電池の作成方法について説明する。
<電解液の作製方法>
 ドライルーム中でリン化合物に、ある濃度含有させたリチウムテトラフルオロスルホニルイミド(以下、LiTFSIと略記する:分子量287.1)を溶解させ電解液を作製した。
<正極作製方法>
 正極活物質として、リチウムマンガン複合酸化物(LiMn)系材料に、導電剤としてVGCF(昭和電工(株)製)を混合し、これをN-メチルピロリドン(NMP)に分散させてスラリーとした後、正極集電体としてのアルミニウム箔に塗布し、乾燥させた。その後直径12mmφの正極を作製した。
<負極作製方法>
 負極活物質として、黒鉛系材料をN-メチルピロリドン(NMP)に分散させてスラリーとした後、負極集電体としての銅箔に塗布し、乾燥させた。その後、直径12mmφの電極を作製した。
 本発明に用いる負極は、あらかじめ負極表面上に皮膜を形成させてあるものを特徴とした電極(以後、SEI付負極と呼ぶ)を用いた場合についても示す。当該電極の作製方法として、当該電極にセパレータをはさんで対極にリチウム金属、電解液からなるコインセルを作製し、1/10Cのレートで放電、充電の順に10サイクル繰り返し行うことで、電気化学的に負極表面上に皮膜を形成させた。
 このとき用いた電解液は、カーボネート系有機溶媒に、濃度が1mol/L(1M)となる量のヘキサフルオロリン酸リチウム(以下、LiPFと略記する:分子量:151.9)を溶解して調整したものを用いた。このカーボネート系有機溶媒としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比30:70とした混合液(以下、EC/DEC又はEC/DEC(3:7)と略記する)を用いた。このときカットオフ電位は放電の際0V、充電の際は1.5Vとした。10回目の充電後、コインセルを分解し、黒鉛からなる電極(SEI付負極)を取り出し、本発明の負極として用いた。
<コイン型二次電池の作製方法>
 上記の方法で得られた正極5を、ステンレスからなるコインセル受形を兼ねた正極集電体6上に置き、多孔質のポリエチレンフィルムからなるセパレータ4を挟んで黒鉛からなる負極3と重ね合わせ電極積層体を得た。得られた電極積層体に、上記の方法で得られた電解液を注入し、真空含浸させた。十分に含浸させて電極及びセパレータの空隙を電解液で埋めた後、絶縁パッキン2とコインセル受型を兼ねた負極集電体とを重ね合わせ、専用のかしめ機で外側をステンレス外装1で覆って一体化させて、コイン型二次電池を作製した。
 作成したコイン型二次電池の分解図を図2に示す。
 以下、本発明を実施例により具体的に説明する。実施例1~26として、実施形態で説明したリン化合物、カーボネート系有機溶媒及びその組成比や、添加剤及びリチウム塩を変更したリチウムイオン二次電池を作成した。また比較のために、比較例1~8を作成し、同様に燃焼性試験評価と放電容量の測定を行った。
 燃焼性試験評価は、次のように行った。幅3mm、長さ30mm、厚さ0.7mmのガラス繊維濾紙に、電解液を50μl浸した。ピンセットで当該濾紙の片側をもち、反対側を高さ2cmのガスバーナーの炎に近づけた。炎に2秒間近づけた後、炎から当該濾紙を遠ざけ炎の有無を目視により確認した。炎が観測されない場合、さらに3秒間炎に近づけ、その後炎から遠ざけ目視により炎の有無を確認した。2回とも炎が確認されない場合を「不燃」、どちらかで炎が確認された場合を「可燃」と判断した。
 放電容量の測定としては、上述記載の方法により作製したコイン型のリチウム二次電池を用いて、放電容量を測定した。当該コイン型のリチウム二次電池の放電容量の評価は以下の手順で行った。最初に、0.025Cで上限電圧4.2Vの定電流充電を行い、放電は同じく0.025Cの電流で3.0Vカットオフとした。そのとき観測された放電容量を初回放電容量とした。なお、本実施例における放電容量とは、正極活物質重量あたりの値である。
 レート特性の測定としては、放電容量の測定後、その電池を用いて以下の手順で行った。最初に0.2Cで上限電圧4.2Vの定電流充電を行い、次に定電流にて放電を1.0C、0.5C、0.2C、0.1Cの順番で行った。下限電圧は3.0Vとした。それぞれのレートで得られた放電容量と、それまでに得られた放電容量の合計をそのレートで得られた放電容量とした。
 イオン伝導度の評価は、Mettler Toledo社製のボータブル導電率計を用い、20℃の条件の下評価を行った。
 Linear Sweep Voltammetry(以下、LVと略記する)測定は、評価電解液、作用極にアルミニウム電極、参照極にLi、対極にLiからなる三極セルを用い、1.5~5V(vs Li)にて電位をスイープさせて評価した。
<実施例1>
 リン酸エステル誘導体であるリン酸トリメチル(以下、TMPと略記する)に、濃度が2.5mol/L(2.5M)となる量のLiTFSIを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、LiMn系活物質からなる正極、及び黒鉛からなる負極を用いて行った。その結果を表1に示す。
<実施例2>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で60:40の割合で混合させた溶液(TMP/EC/DEC=60/12/28)に、濃度が2.0mol/L(2.0M)となる量のLiTFSIを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<実施例3>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で60:40の割合で混合させた溶液(TMP/EC/DEC=60/12/28)に、濃度が2.5mol/L(2.5M)となる量のLiTFSIを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<実施例4>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で60:40の割合で混合させた溶液(TMP/EC/DEC=60/12/28)に、濃度が3.0mol/L(3.0M)となる量のLiTFSIを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<実施例5>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で60:40の割合で混合させた溶液(TMP/EC/DEC=60/12/28)に、濃度が3.5mol/L(3.5M)となる量のLiTFSIを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<実施例6>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で40:60の割合で混合させた溶液(TMP/EC/DEC=40/18/42)に、濃度が2.0mol/L(2.0M)となる量のLiTFSIを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<実施例7>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で40:60の割合で混合させた溶液(TMP/EC/DEC=40/18/42)に、濃度が2.5mol/L(2.5M)となる量のLiTFSIを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<実施例8>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で40:60の割合で混合させた溶液(TMP/EC/DEC=40/18/42)に、濃度が3.0mol/L(3.0M)となる量のLiTFSIを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<実施例9>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で40:60の割合で混合させた溶液(TMP/EC/DEC=40/18/42)に、濃度が3.5mol/L(3.5M)となる量のLiTFSIを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<実施例10>
 リン酸エステル誘導体であるフルオロリン酸ジエチル(以下、FDEPと略記する)と、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で40:60の割合で混合させた溶液(FDEP/EC/DEC=40/18/42)に、濃度が3.0mol/L(3.0M)となる量のLiTFSIを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<実施例11>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で40:60の割合で混合させた溶液(TMP/EC/DEC=40/18/42)に、濃度が2.5mol/L(2.5M)となる量のリチウムビスペンタフルオロエチルスルホニルイミド(以下、LiBETIと略記する:分子量387.1)を溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<実施例12>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で40:60の割合で混合させた溶液(TMP/EC/DEC=40/18/42)に、濃度が2.5mol/L(2.5M)となる量のリチウムヘキサフルオロホスフェート(以下、LiPF6と略記する:分子量151.9)を溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<実施例13>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で30:70の割合で混合させた溶液(TMP/EC/DEC=30/21/49)に、濃度が1.8mol/L(1.8M)となる量のLiTFSIを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<実施例14>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で25:75の割合で混合させた溶液(TMP/EC/DEC=25/23/52)に、濃度が1.5mol/L(1.5M)となる量のLiTFSIを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<実施例15>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で20:80の割合で混合させた溶液(TMP/EC/DEC=20/24/56)に、濃度が1.5mol/L(1.5M)となる量のLiTFSIを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<実施例16>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で40:60の割合で混合させた溶液(TMP/EC/DEC=40/18/42)に、濃度が合計して2.5mol/L(2.5M)となる量のLiTFSIとLiPF(60:40)を溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<実施例17>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で40:60の割合で混合させた溶液(TMP/EC/DEC=40/18/42)に、濃度が合計して2.0mol/L(2.0M)となる量のLiTFSIとLiPF(25:75)を溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<実施例18>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で40:60の割合で混合させた溶液(TMP/EC/DEC=40/18/42)に、濃度が2.0mol/L(2.0M)となる量のLiTFSIを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、正極については実施例1と同じものを用いた。負極については、あらかじめ表面上に電気化学的に皮膜が形成されているSEI付負極を用いた。その結果を表1に示す。
<実施例19>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で40:60の割合で混合させた溶液(TMP/EC/DEC=40/18/42)に、濃度が2.5mol/L(2.5M)となる量のLiTFSIを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、正極については実施例1と同じものを用いた。負極については、あらかじめ表面上に電気化学的に皮膜が形成されているSEI付負極を用いた。その結果を表1に示す。
<実施例20>
 TMPと、γ-ブチロラクトン(以下、γBLと略記する)を体積比で40:60の割合で混合させた溶液(TMP/γBL=40/60)に、濃度が2.5mol/L(2.5M)となる量のLiTFSIを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<実施例21>
 TMPと、ジメトキシエタン(以下、DMEと略記する)を体積比で40:60の割で混合させた溶液(TMP/DME=40/60)に、濃度が2.5mol/L(2.5M)となる量のLiPFを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<実施例22>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で40:60の割合で混合させた溶液(TMP/EC/DEC=40/18/42)に、濃度が2.0mol/L(2.0M)となる量のLiPF6を溶解し、3重量%のdioxathiolane-2,2-dioxide(以下、DDと略記する) を溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<実施例23>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で40:60の割合で混合させた溶液(TMP/EC/DEC=40/18/42)に、濃度が2.0mol/L(2.0M)となる量のLiPF6を溶解し、1重量%の無水コハク酸を溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<実施例24>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で40:60の割合で混合させた溶液(TMP/EC/DEC=40/18/42)に、濃度が2.0mol/L(2.0M)となる量のLiPFを溶解し、3重量%の1,3-Propane sultone(以下、PSと略記する) を溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<実施例25>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で40:60の割合で混合させた溶液(TMP/EC/DEC=40/18/42)に、濃度が2.0mol/L(2.0M)となる量のLiPFを溶解し、3重量%の1,3-Propane sultone(以下PSと略す)と2重量%のSulfolane(以下、SLと略す) を溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<実施例26>
 カーボネート系有機溶媒であるEC/DEC(3:7)に、濃度が1.5mol/L(1.5M)となる量のLiTFSIを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<実施例27>
 カーボネート系有機溶媒であるEC/DEC(3:7)に、濃度が2.0mol/L(2.0M)となる量のLiTFSIを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<実施例28>
 TMPをハロゲン化アルキル基にて置換したTris(trifluoromethyl)phosphate(以下、TfMPと略記する)と、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で40:60の割合で混合させた溶液(TfMP/EC/DEC=40/18/42)に、濃度が2.5mol/L(2.5M)となる量のLiPF6を溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<実施例29>
 TfMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で40:60の割合で混合させた溶液(TfMP/EC/DEC=40/18/42)に、濃度が2.0mol/L(2.0M)となる量のLiPF6を溶解し、3重量%のPSを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<比較例1>
 TMPに、濃度が1.0mol/L(1.0M)となる量のLiTFSIを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<比較例2>
 TMPに、濃度が1.0mol/L(1.0M)となる量のLiBETIを溶解し、2重量%のVCを添加し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<比較例3>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で15:85の割合で混合させた溶液(TMP/EC/DEC=15/25/60)に、濃度が1.0mol/L(1.0M)となる量のLiTFSIを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<比較例4>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で15:85の割合で混合させた溶液(TMP/EC/DEC=15/25/60)に、濃度が1.0mol/L(1.0M)となる量のLiPFを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<比較例5>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で20:80の割合で混合させた溶液(TMP/EC/DEC=20/24/56)に、濃度が1.0mol/L(1.0M)となる量のLiPF6を溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<比較例6>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で40:60の割合で混合させた溶液(TMP/EC/DEC=40/18/42)に、濃度が1.0mol/L(1.0M)となる量のLiTFSIを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<比較例7>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で40:60の割合で混合させた溶液(TMP/EC/DEC=40/18/42)に、濃度が1.0mol/L(1.0M)となる量のLiPFを溶解し、3重量%のPSを添加し、
これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<比較例8>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で40:60の割合で混合させた溶液(TMP/EC/DEC=40/18/42)に、濃度が1.0mol/L(1.0M)となる量のLiPFを溶解し、10重量%のVCを添加し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<比較例9>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で40:60の割合で混合させた溶液(TMP/EC/DEC=40/18/42)に、濃度が1.0mol/L(1.0M)となる量のLiPF6を溶解し、10重量%のPSを添加し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<比較例10>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で40:60の割合で混合させた溶液(TMP/EC/DEC=40/18/42)に、濃度が2.0mol/L(2.0M)となる量のLiBETIを溶解し、10重量%のVCを添加し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<比較例11>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で40:60の割合で混合させた溶液(TMP/EC/DEC=40/18/42)に、濃度が2.0mol/L(2.0M)となる量のLiBETIを溶解し、2重量%のVCを添加し8重量%のVECを添加し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<比較例12>
 TMPと、カーボネート系有機溶媒であるEC/DEC(3:7)を体積比で40:60の割合で混合させた溶液(TMP/EC/DEC=40/18/42)に、濃度が2.0mol/L(2.0M)となる量のLiBETIを溶解し、2重量%のVCを添加し8重量%のVECを添加し、さらに、5重量%のシクロヘキサン(以下、CHと略記する)を添加し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<比較例13>
 カーボネート系有機溶媒であるEC/DEC(3:7)に、濃度が1.0mol/L(1.0M)となる量のLiTFSIを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
<比較例14>
 カーボネート系有機溶媒であるEC/DEC(3:7)に、濃度が1.0mol/L(1.0M)となる量のLiPFを溶解し、これを燃焼試験の電解液として用いた。放電容量の試験は、電解液を除く正極、負極については実施例1と同じものを用いた。その結果を表1に示す。
 実施例1~27、比較例1~14のサンプルに対する電解液の燃焼試験、及びコイン型二次電池の放電容量の評価結果を表1に示す。電解液の燃焼試験結果は、表1の燃焼性の欄に不燃、可燃として示している。コイン型二次電池の放電容量評価結果は、初回放電容量として容量値を示す。
 また、実施例6~9、24、比較例9、10、12のサンプルに対するレート特性試験の評価結果を図3に示す。
 また、実施例1~12、比較例1~6の電解液に対するイオン伝導度の評価結果を図4に示す。
 また、実施例27、比較例6、13の電解液に対するLV測定の評価結果を図5に、実施例12、比較例8、14の電解液に対するLV測定の評価結果を図6に示す。
Figure JPOXMLDOC01-appb-T000013
<燃焼試験の評価結果>
 電解液を染み込ませたガラス繊維濾紙を炎に近づけ、その後、当該ガラス繊維を炎から遠ざけた場合に、炎が確認できるか否かを基準に判断を行った結果を表1に示す。リン酸エステルの含有量が15体積%しか混合されていない電解液や、リチウム塩が1.0Mしか溶解されていない電解液では燃焼性が確認された(比較例3、4)。一方で、リン酸エステル誘導体を20体積%以上混合し、1.5M以上のリチウム塩を含有することで不燃性を示すことが分かった(実施例1-25)。この結果、リン酸エステル誘導体の混合量は20体積%以上であることが望ましい。
<コイン型二次電池の評価結果>
 上述のように作製したコイン型二次電池を0.073mAの電流で充放電させ、初回の放電容量を表1に示す。リン酸エステル単体や20~40%リン酸エステル混合電解液の場合、リチウム塩の濃度が1.0Mの場合には放電容量が確認できなかった(比較例1、5、6)。しかし、リン酸エステル単体では2.5Mのリチウム塩を混合させることで放電容量を確認できることが分かった(実施例1)。また、40%リン酸エステル混合電解液の場合、皮膜形成添加剤を加えることなく、2.0M以上のリチウム塩を混合することで、1.0Mでは確認できなかった放電容量を確認できることが分かった(実施例2-9)。上述のようにリン酸エステル誘導体は耐還元性の悪い液体である。高濃度のリチウム塩を含有させることで放電容量が得られるようになる原因は不明であるが、高濃度のリチウム塩を含有させることで、なんらかの作用によりリン酸エステル誘導体の分解反応が抑制されていると考えられる。また、あらかじめ負極表面上に電気化学的に皮膜を形成させた負極を用いることで、形成させていない負極にくらべ初回放電容量が高くなった(実施例6-7、18―19)。これは、あらかじめ負極表面上に皮膜を形成させておくことで、初回充放電時に観測されるSEI形成による不可逆容量が減少するためと考えられる。そして、リン酸エステルの置換基をハロゲン化アルキルに置換することで、燃焼時にハロゲンラジカルが発生し、燃焼を抑制する効果が働き、不燃効果が高まると考えられ、さらにハロゲン化アルキルに置換しても、置換しない場合と比べ容量の減少はなく、同等以上の容量を得ることができる(実施例12,24、28、29)。
 また、皮膜形成添加剤を加えることにより、1.0Mのリチウム塩濃度においても若干の容量を確認することができるようになる(比較例2、7)。そして、添加剤として10%以上加えることで、容量が向上するが、満足できる容量は得られない(比較例8-12)。この原因として、多量の添加剤を加えることにより、添加剤の分解による不可逆容量が大きくなるためであると考えられる。この結果より、皮膜形成添加剤の量は10%以下であることが望ましい。また、添加剤として、無水コハク酸や、PS、DDのほうを選択することで、放電容量が高く添加量も5重量%以下と少なくてすむため、望ましい(実施例22-25、比較例8-12)。
 さらに、図3の結果より、リチウム塩の濃度を増やすことで、レート特性が向上することを見出した(実施例6-9)。一方、10%以上の添加剤を加えた電解液では、レート特性が悪くなった(比較例9,10,12)。つまり、リチウム塩濃度を2.0Mより大きくすることで、添加剤を加えた電解液よりもレート特性が向上することが分かった。これは、VC等を10%以上も添加することで、負極表面上に高抵抗な皮膜が形成されるためであると考えられる。VC添加によるレート特性の低下を防ぐため、高濃度リチウム塩を溶かす技術で当該問題を解決できることを見出した。添加剤を10%以上添加することで、リン酸エステルの分解を抑制し、初回の放電容量がある程度得られるようになるが、レート特性は極端に下がる。一方で、リチウム塩高濃度電解液は、高いレート特性を維持し、10%以下の添加量であれば、レート特性に影響はない(実施例24)。PS、DD、無水コハク酸等の添加剤は、添加量が少なくても初回放電容量が高く(実施例22-25、比較例10-12)、レート特性の落ちがほとんどないため、添加剤としてより望ましい。
 図4より、リチウム塩の濃度が高いとイオン伝導度が低くなる(実施例1-12、比較例1-6)。このため、リチウムイオンの動きを考えた場合、一般的には電解液中のリチウムイオンの濃度はより低いほうが望ましい。しかし、リン酸エステル誘導体の含有量が多い場合、リチウム塩の濃度が1.0Mでは電池が動作しない(比較例1、5)。
 最適なリチウム塩濃度は、混合させるリン酸エステル誘導体の含有量に依存するが、一般的に1.5Mより大きく3.5M以下がよい。より好ましくは、1.8Mより大きいほうが望ましい。また、レート特性を向上させるためには、より好ましくは2.0M以上であることが望ましい。
 また、LiTFSI塩を1.5M以上溶解することで、初回放電容量を得ることが可能になることが見出された(実施例26-27、比較例6、13)。LiTFSI塩の濃度が1.0Mでは動作せず、1.5Mや2.0Mにすることで電池が動作する原因は不明であるが、アルミニウムを作用極に用いたLV測定結果では、2.0MのLiTFSI塩含有電解液では、アルミニウム集電体の腐食反応による電流ピークが確認されなくなった(図5)。このことから、リチウム塩を高濃度にすることで、アルミニウム集電体との腐食反応を抑えたことが容量向上の一つの要因であると考えられる。以上のことより、リチウム塩の濃度を1.5M以上溶解することで、二次電池用電解質であるリチウム塩の選択の幅を広げることが可能になる。このとき、放電容量を高くするには、2.0M以上溶解することが望ましい。
 また、図6より、EC:DECに1.0MのLiPF6を溶解した電解液では、4.0V(Li/Li+)付近で、アルミニウムの腐食電流に由来すると考えられる電流を観測することができ、TMPと添加剤を加えた比較例9に記載の電解液も4.3V(Li/Li+)付近に電流を観測することができる。このように、4.0V(Li/Li+)付近でアルミニウムと反応するのであれば、将来の高電圧電位(5.0V以上)を有する電池に用いることは難しい。一方で、2.5MのLiPFを溶解させた実施例12の電解液は、アルミニウムと5.0V(Li/Li+)以上にしても腐食反応を引き起こさない。このことから、高濃度のリチウム塩を溶解させた電解液は、耐酸化性を向上させた電解液であるといえる。
 上述したように、本発明の二次電池は電解液を不燃にすることができ、さらに大きな放電容量を有する二次電池が得られる。本発明の二次電池は、少なくとも正極と、負極と、電解液とを備える。正極はリチウムイオンを吸蔵、放出する酸化物から形成され、負極はリチウムイオンを吸蔵、放出する材料から形成される。電解液はリン酸エステル誘導体に高濃度のリチウム塩を同時に含むことを特徴とする。両者を適量に組み合わせることによって、電解液を不燃にすることができ、さらに高い放電容量とレート特性を有する二次電池が得られる。
 本発明の二次電池においては、どのようなリチウム塩を用いてもよいが、LiBETIよりは、イオン伝導度が高く、放電容量が高いLiTFSIやLiPF塩を選択することが望ましい(実施例7、11、12)。また、電解液として用いるリチウム塩は異なる2種のリチウム塩を同時に含むようにしてもよい(実施例16、17)。
 リン酸エステル誘導体は、混合比率が高すぎるとリチウム塩濃度を上げる必要があるため、90体積%以下であることが好ましく、80体積%以下であることがより望ましい。
 また、リン酸エステル誘導体を20体積%以上混合させることで不燃性になるが、より高い不燃効果を得るためには、できるだけリン酸エステル誘導体の混合比率を高くすることが望ましく、20体積%より多く混合させる方がよい。より最適には25体積%以上であることが望ましい。
 本発明の特徴は電解液中のリチウム塩の濃度を高くし、電池特性を向上させることを特徴とする。リン酸エステル誘導体の含有量を高くすることで、リチウム塩の溶解度が高くなるため、電池特性を向上させるためにはリン酸エステル誘導体の含有量を高くするとよりよい。そのため、電池特性との両立を考えた場合には、リン酸エステルの混合比率を30体積%以上混合させるとよい。より最適には40体積%以上である。
 また、高濃度リチウム塩含有電解液に添加剤を添加する際には、レート特性が悪くならないように、添加量を10%未満にする必要がある。より少量で効果的な添加剤が、分子内に炭素と炭素の二重結合を含まないPSや無水コハク酸等が挙げられる。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記の実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。

Claims (36)

  1.  リチウムイオンを吸蔵、放出する酸化物を含む正極と、リチウムイオンを吸蔵、放出する材料を含む負極と、電解液と、を有し、前記電解液は、1.5mol/L以上のリチウム塩を含むことを特徴とする二次電池。
  2.  前記電解液は、25体積%以上、60体積%未満のリン酸エステル誘導体を含むことを特徴とする請求項1記載の二次電池。
  3.  前記リチウム塩はリチウムテトラフルオロスルホニルイミド(LiTFSI)であることを特徴とする請求項1または2のいずれか一項に記載の二次電池。
  4.  リチウムイオンを吸蔵、放出する酸化物を含む正極と、リチウムイオンを吸蔵、放出する材料を含む負極と、電解液と、を有し、前記電解液は、1.0mol/L以上のリチウム塩と、20体積%以上のリン酸エステル誘導体を含むことを特徴とする二次電池。
  5.  前記リチウム塩の濃度が2.0mol/L以上であることを特徴とする請求項1乃至4のいずれか一項に記載の二次電池。
  6.  前記リチウム塩の濃度が2.0mol/L以上、3.5mol/L以下であることを特徴とする請求項1乃至5のいずれか一項記載の二次電池。
  7.  前記電解液は、カーボネート系有機溶媒を含むことを特徴とする請求項1乃至6のいずれか一項に記載の二次電池。
  8.  前記リン酸エステル誘導体は、リン酸トリメチルであること、あるいは、下記化学式(A)に示す化合物であることを特徴とする請求項2または4のいずれか一項に記載の二次電池。
    Figure JPOXMLDOC01-appb-C000001
    (R、R、Rは同一でも異なっていてもよく、炭素数10以下のアルキル基、またはハロゲン化アルキル基、アルケニル基、シアノ基、フェニル基、アミノ基、ニトロ基、アルコキシ基、シクロアルキル基、シリル基のいずれかである)
  9.  前記負極は、表面に電気化学的に皮膜が形成されていることを特徴とする請求項1乃至8のいずれか一項に記載の二次電池。
  10.  前記電解液は、
     少なくとも2種類以上の異なるリチウム塩を含むことを特徴とする請求項1乃至9のいずれか一項に記載の二次電池。
  11.  前記電解液は、皮膜形成添加剤を10wt%未満含むことを特徴とする請求項1乃至10のいずれか一項に記載の二次電池。
  12.  請求項1乃至11のいずれか一項に記載の二次電池を用いた充放電方法。
  13.  リチウム塩として、1.5mol/L以上のリチウムテトラフルオロスルホニルイミド(LiTFSI)を含むことを特徴とする二次電池用電解液。
  14.  1.5mol/L以上のリチウム塩と、25体積%以上のリン酸エステル誘導体を含むことを特徴とする二次電池用電解液。
  15.  前記リチウム塩の濃度が2.0mol/L以上、3.5mol/L以下であることを特徴とする請求項13乃至14のいずれか一項に記載の二次電池用電解液。
  16.  カーボネート系有機溶媒を含むことを特徴とする請求項13乃至15のいずれか一項に記載の二次電池用電解液。
  17.  前記リン酸エステル誘導体は、リン酸トリメチルであること、あるいは、下記化学式(A)に示す化合物であることを特徴とする請求項14に記載の二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000002
    (R、R、Rは同一でも異なっていてもよく、炭素数10以下のアルキル基、またはハロゲン化アルキル基、アルケニル基、シアノ基、フェニル基、アミノ基、ニトロ基、アルコキシ基、シクロアルキル基、シリル基のいずれかである)
  18.  少なくとも2種類以上の異なるリチウム塩を含むことを特徴とする請求項13乃至17のいずれか一項に記載の二次電池用電解液。
  19.  前記電解液は、皮膜形成添加剤が10wt%未満含むことを特徴とする請求項13乃至18のいずれか一項に記載の二次電池用電解液。
  20.  リチウム塩として、1.5mol/L以上のリチウムテトラフルオロスルホニルイミド(LiTFSI)を含有させることを特徴とする二次電池用電解液の製造方法。
  21.  1.5mol/L以上のリチウム塩と、25体積%以上のリン酸エステル誘導体を含有させることを特徴とする二次電池用電解液の製造方法。
  22.  前記リチウム塩の濃度が2.0mol/L以上、3.5mol/L以下であることを特徴とする請求項20乃至21のいずれか一項に記載の二次電池用電解液の製造方法。
  23.  カーボネート系有機溶媒を含有させることを特徴とする請求項20乃至22のいずれか一項に記載の二次電池用電解液の製造方法。
  24.  前記リン酸エステル誘導体は、リン酸トリメチルであること、あるいは、下記化学式(A)に示す化合物であることを特徴とする請求項21に記載の二次電池用電解液の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (R、R、Rは同一でも異なっていてもよく、炭素数10以下のアルキル基、またはハロゲン化アルキル基、アルケニル基、シアノ基、フェニル基、アミノ基、ニトロ基、アルコキシ基、シクロアルキル基、シリル基のいずれかである)
  25.  少なくとも2種類以上の異なるリチウム塩を含有させることを特徴とする請求項20乃至24のいずれか一項に記載の二次電池用電解液の製造方法。
  26.  皮膜形成添加剤を含有させることを特徴とする請求項20乃至25のいずれか一項に記載の二次電池用電解液の製造方法。
  27.  正極と負極を用意し、前記正極と前記負極の間に、1.5mol/L以上のリチウム塩を含む電解液を注入することを特徴とする二次電池の製造方法。
  28.  前記リチウム塩はリチウムテトラフルオロスルホニルイミド(LiTFSI)であることを特徴とする請求項27記載の二次電池の製造方法。
  29.  前記電解液は、25体積%以上、60体積%未満のリン酸エステル誘導体を含むことを特徴とする請求項27または28のいずれか一項に記載の二次電池の製造方法。
  30.  正極と負極を用意し、前記正極と前記負極の間に、1.0mol/L以上のリチウム塩と、20体積%以上のリン酸エステル誘導体を含む電解液を注入することを特徴とする二次電池の製造方法。
  31.  前記リチウム塩の濃度が2.0mol/L以上であることを特徴とする請求項27乃至30のいずれか一項に記載の二次電池の製造方法。
  32.  前記リチウム塩の濃度が2.0mol/L以上、3.5mol/L以下であることを特徴とする請求項27乃至31のいずれか一項に記載の二次電池の製造方法。
  33.  カーボネート系有機溶媒を含む電解液を注入することを特徴とする請求項27乃至32のいずれか一項に記載の二次電池の製造方法。
  34.  前記リン酸エステル誘導体は、リン酸トリメチルであること、あるいは、下記化学式(A)に示す化合物であることを特徴とする請求項29または30のいずれか一項に記載の二次電池の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (R、R、Rは同一でも異なっていてもよく、炭素数10以下のアルキル基、またはハロゲン化アルキル基、アルケニル基、シアノ基、フェニル基、アミノ基、ニトロ基、アルコキシ基、シクロアルキル基、シリル基のいずれかである)
  35.  少なくとも2種類以上の異なるリチウム塩を含む電解液を注入することを特徴とする請求項27乃至34のいずれか一項に記載の二次電池の製造方法。
  36.  皮膜形成添加剤を含む電解液を注入することを特徴とする請求項27乃至35のいずれか一項に記載の二次電池の製造方法。
PCT/JP2009/065958 2008-09-11 2009-09-11 二次電池 WO2010030008A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/062,655 US20110159379A1 (en) 2008-09-11 2009-09-11 Secondary battery
CN200980135761.5A CN102150315B (zh) 2008-09-11 2009-09-11 二次电池
EP09813154.3A EP2330675B1 (en) 2008-09-11 2009-09-11 Secondary battery
JP2010528769A JP5557337B2 (ja) 2008-09-11 2009-09-11 二次電池
KR1020117006095A KR101351671B1 (ko) 2008-09-11 2009-09-11 이차 전지

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008233452 2008-09-11
JP2008-233452 2008-09-11
JP2009134601 2009-06-04
JP2009-134601 2009-06-04

Publications (1)

Publication Number Publication Date
WO2010030008A1 true WO2010030008A1 (ja) 2010-03-18

Family

ID=42005258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065958 WO2010030008A1 (ja) 2008-09-11 2009-09-11 二次電池

Country Status (6)

Country Link
US (1) US20110159379A1 (ja)
EP (1) EP2330675B1 (ja)
JP (1) JP5557337B2 (ja)
KR (1) KR101351671B1 (ja)
CN (1) CN102150315B (ja)
WO (1) WO2010030008A1 (ja)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867065A (zh) * 2010-06-21 2010-10-20 张家港市国泰华荣化工新材料有限公司 一种阻燃型电解质溶液及其应用
JP2010282906A (ja) * 2009-06-08 2010-12-16 Asahi Kasei E-Materials Corp リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
JP2011096462A (ja) * 2009-10-28 2011-05-12 Mitsubishi Chemicals Corp 非水系電解液、それを用いた電池及びリン酸エステル化合物
WO2011081113A1 (ja) * 2009-12-29 2011-07-07 ソニー株式会社 非水電解質および非水電解質電池
JP2011216480A (ja) * 2010-03-19 2011-10-27 Semiconductor Energy Lab Co Ltd 非水電解液、およびリチウムイオン二次電池
JP2012004121A (ja) * 2010-06-21 2012-01-05 Samsung Sdi Co Ltd リチウム電池及び該リチウム電池の製造方法
JP2012164441A (ja) * 2011-02-03 2012-08-30 Gs Yuasa Corp 非水電解質二次電池
JP2014007052A (ja) * 2012-06-25 2014-01-16 Nippon Shokubai Co Ltd 非水電解液
WO2014091606A1 (ja) * 2012-12-13 2014-06-19 エリーパワー株式会社 非水電解液二次電池及び非水電解液二次電池の製造方法
WO2014092121A1 (ja) * 2012-12-13 2014-06-19 エリーパワー株式会社 非水電解質二次電池の製造方法
JP2015056241A (ja) * 2013-09-11 2015-03-23 日立マクセル株式会社 非水二次電池
WO2015111612A1 (ja) * 2014-01-24 2015-07-30 三洋化成工業株式会社 二次電池用添加剤、それを用いた電極及び電解液、リチウムイオン電池並びにリチウムイオンキャパシタ
JP2015185401A (ja) * 2014-03-25 2015-10-22 株式会社豊田自動織機 非水二次電池
JP2015216131A (ja) * 2013-09-25 2015-12-03 国立大学法人 東京大学 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液
JP2016006791A (ja) * 2013-09-25 2016-01-14 国立大学法人 東京大学 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液群
JP2016006790A (ja) * 2013-09-25 2016-01-14 国立大学法人 東京大学 非水系二次電池
JP2016503571A (ja) * 2013-10-31 2016-02-04 エルジー・ケム・リミテッド リチウム二次電池用電解液添加剤、前記電解液添加剤を含む非水性電解液及びリチウム二次電池
JP2016058384A (ja) * 2013-09-25 2016-04-21 国立大学法人 東京大学 非水系二次電池
JP2016103468A (ja) * 2014-11-17 2016-06-02 株式会社Gsユアサ 非水電解質二次電池
EP2613396A4 (en) * 2010-09-02 2016-08-31 Nec Corp SECONDARY BATTERY AND SECONDARY BATTERY ELECTROLYTE USED IN SAID BATTERY
WO2016143295A1 (ja) * 2015-03-10 2016-09-15 国立大学法人東京大学 リチウムイオン二次電池
WO2016143293A1 (ja) * 2015-03-10 2016-09-15 国立大学法人東京大学 電解液
JP2017027923A (ja) * 2015-07-17 2017-02-02 株式会社豊田中央研究所 非水電解液電池
JP2017050148A (ja) * 2015-09-02 2017-03-09 国立大学法人 東京大学 二次電池用難燃性電解液、及び当該電解液を含む二次電池
US9660295B2 (en) 2014-08-22 2017-05-23 Samsung Sdi Co., Ltd. Electrolyte and rechargeable lithium battery including the same
JP2018120848A (ja) * 2017-01-26 2018-08-02 本田技研工業株式会社 リチウムイオン二次電池
WO2018179883A1 (ja) * 2017-03-29 2018-10-04 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2019031598A1 (ja) 2017-08-10 2019-02-14 株式会社Gsユアサ 非水電解質及び非水電解質蓄電素子
JP2019067663A (ja) * 2017-10-03 2019-04-25 トヨタ自動車株式会社 全固体リチウムイオン二次電池用の負極合材
JP2019096561A (ja) * 2017-11-27 2019-06-20 株式会社豊田自動織機 リチウムイオン二次電池
JP2019185857A (ja) * 2018-04-02 2019-10-24 株式会社豊田中央研究所 リチウム二次電池
JP2019537814A (ja) * 2016-11-25 2019-12-26 シェンズェン カプチェム テクノロジー カンパニー リミテッドShenzhen Capchem Technology Co., Ltd. リチウムイオン電池用非水電解液及びリチウムイオン電池
WO2022196753A1 (ja) * 2021-03-19 2022-09-22 国立研究開発法人産業技術総合研究所 非水二次電池用電解液及びそれを用いた非水二次電池

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219542A (zh) * 2012-01-19 2013-07-24 中国科学院物理研究所 一种高盐浓度非水电解质及其用途
CN103403943B (zh) * 2012-02-28 2016-05-25 日立麦克赛尔株式会社 锂离子二次电池
JP5459448B1 (ja) * 2012-03-02 2014-04-02 日本電気株式会社 二次電池
CN103531839A (zh) * 2012-07-04 2014-01-22 中国科学院物理研究所 一种防止产生锂枝晶的可充金属锂二次电池
CN103151559A (zh) * 2013-02-05 2013-06-12 深圳新宙邦科技股份有限公司 一种锂离子电池用非水电解液及其相应的锂离子电池
KR101754608B1 (ko) * 2013-02-27 2017-07-07 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
JP5965445B2 (ja) * 2013-09-25 2016-08-03 国立大学法人 東京大学 非水電解質二次電池
CN105580184B (zh) * 2013-09-25 2019-03-12 国立大学法人东京大学 非水电解质二次电池
US20160240858A1 (en) * 2013-09-25 2016-08-18 The University Of Tokyo Nonaqueous electrolyte secondary battery
CN105594053B (zh) * 2013-09-25 2019-03-12 国立大学法人东京大学 非水系二次电池
CN103730683B (zh) * 2013-12-27 2015-08-19 惠州亿纬锂能股份有限公司 一种锂电池及其制备方法
US10109885B2 (en) * 2014-05-07 2018-10-23 Sila Nanotechnologies, Inc. Complex electrolytes and other compositions for metal-ion batteries
WO2015195595A1 (en) 2014-06-17 2015-12-23 Medtronic, Inc. Semi-solid electrolytes for batteries
US10381686B2 (en) * 2014-07-18 2019-08-13 Nec Corporation Electrolyte solution and secondary battery using same
US10333173B2 (en) 2014-11-14 2019-06-25 Medtronic, Inc. Composite separator and electrolyte for solid state batteries
US20160285126A1 (en) * 2015-03-27 2016-09-29 Wildcat Discovery Technologies, Inc. Electrolyte formulations for gas suppression and methods of use
US10707526B2 (en) 2015-03-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN105428715B (zh) 2015-11-04 2018-06-08 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN110247114A (zh) 2015-12-18 2019-09-17 深圳新宙邦科技股份有限公司 一种锂离子电池用电解液及锂离子电池
WO2017172919A1 (en) * 2016-03-30 2017-10-05 Wildcat Discovery Technologies, Inc. Liquid electrolyte formulations with high salt content
JP7012660B2 (ja) 2016-04-01 2022-02-14 ノームズ テクノロジーズ インコーポレイテッド リン含有修飾イオン性液体
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
WO2018097575A1 (ko) * 2016-11-24 2018-05-31 주식회사 엘지화학 비수성 전해액 및 이를 포함하는 리튬 이차 전지
CN108110311B (zh) 2016-11-25 2021-05-14 深圳新宙邦科技股份有限公司 一种锂离子电池
KR102101396B1 (ko) * 2016-12-09 2020-04-16 주식회사 엘지화학 비수성 전해질 및 이를 포함하는 리튬 이차 전지
CN106848381A (zh) * 2017-01-16 2017-06-13 广州天赐高新材料股份有限公司 一种电解液及含有该电解液的锂二次电池
CN108365256A (zh) * 2017-01-26 2018-08-03 本田技研工业株式会社 锂离子二次电池
KR102553591B1 (ko) * 2017-06-12 2023-07-11 삼성전자주식회사 포스페이트계 첨가제를 포함하는 리튬이차전지
EP4087005A1 (en) 2017-07-17 2022-11-09 Nohms Technologies, Inc. Phosphorus-containing electrolytes
CN109216763A (zh) * 2018-09-12 2019-01-15 山东大学 一种非水系高安全性高浓度金属盐磷酸酯基电解液
PL3793005T3 (pl) 2018-09-12 2023-03-20 Lg Energy Solution, Ltd. Sposób wytwarzania elektrody ujemnej dla akumulatora litowego i akumulator litowy
CN109860710A (zh) * 2019-02-26 2019-06-07 中国科学院长春应用化学研究所 一种高浓度阻燃型电解液及在石墨负极中的应用
CN112164825A (zh) * 2019-12-26 2021-01-01 华南师范大学 一种高压磷酸酯电解液添加剂及含该添加剂的锂离子电池电解液
CN112366361A (zh) * 2020-09-25 2021-02-12 河南新太行电源股份有限公司 一种准固态锂离子电池的制备方法及电池
CN112290086A (zh) * 2020-10-29 2021-01-29 华中科技大学 一种锂电池电解液、锂电池及锂电池的制备方法
WO2022241559A1 (en) * 2021-05-20 2022-11-24 Uti Limited Partnership Battery and electrolytes therefor
CN113764739A (zh) * 2021-09-06 2021-12-07 中国科学院青岛生物能源与过程研究所 一种宽温区高浓度双盐阻燃电解液及其在高镍锂离子电池的应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023973A (ja) * 1983-07-15 1985-02-06 Hitachi Maxell Ltd 有機電解質電池
JPH0418480A (ja) 1990-05-11 1992-01-22 Toyo Ink Mfg Co Ltd 接着剤組成物
JPH0822839A (ja) 1994-07-07 1996-01-23 Mitsui Petrochem Ind Ltd 非水電解液及び非水電解液電池
JPH0888023A (ja) 1994-09-16 1996-04-02 Mitsui Petrochem Ind Ltd 非水電解液および非水電解液電池
JPH08111238A (ja) * 1994-03-19 1996-04-30 Hitachi Maxell Ltd 有機電解液二次電池
JPH11176470A (ja) * 1997-10-07 1999-07-02 Hitachi Maxell Ltd 有機電解液二次電池
JP2000348764A (ja) * 1999-06-08 2000-12-15 Sanyo Chem Ind Ltd 難燃性非水電解液およびそれを用いた二次電池
JP2001160414A (ja) * 1999-12-01 2001-06-12 Mitsubishi Chemicals Corp リチウム二次電池用電解液及びそれを用いたリチウム二次電池
JP2005228721A (ja) 2004-01-14 2005-08-25 Mitsubishi Chemicals Corp リチウムイオン二次電池用非水系電解液及びリチウムイオン二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3168520B2 (ja) * 1993-06-15 2001-05-21 日立マクセル株式会社 テープカートリッジ
DE69531901T2 (de) * 1994-07-07 2004-08-05 Mitsui Chemicals, Inc. Nichtwässrige Elektrolytlösungen und diese Elektrolytlösungen enthaltende Zellen
JP4463333B2 (ja) * 1998-03-11 2010-05-19 三井化学株式会社 非水電解液及び非水電解液二次電池
JP2001283908A (ja) * 2000-04-04 2001-10-12 Matsushita Electric Ind Co Ltd 非水電解質電池および非水電解液
US7651815B2 (en) * 2001-09-21 2010-01-26 Tdk Corporation Lithium secondary battery
US7709157B2 (en) * 2002-10-23 2010-05-04 Panasonic Corporation Non-aqueous electrolyte secondary battery and electrolyte for the same
CN1306645C (zh) * 2004-02-10 2007-03-21 中国科学院上海微系统与信息技术研究所 含有机磷化合物的锂离子电池电解液及组成的电池
CN100438198C (zh) * 2004-12-31 2008-11-26 比亚迪股份有限公司 一种混合添加剂以及含该添加剂的电解液和锂离子二次电池
CN101087035B (zh) * 2006-06-06 2010-10-06 比亚迪股份有限公司 一种二次锂电池用电解液及含有该电解液的二次锂电池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023973A (ja) * 1983-07-15 1985-02-06 Hitachi Maxell Ltd 有機電解質電池
JPH0418480A (ja) 1990-05-11 1992-01-22 Toyo Ink Mfg Co Ltd 接着剤組成物
JPH08111238A (ja) * 1994-03-19 1996-04-30 Hitachi Maxell Ltd 有機電解液二次電池
JPH0822839A (ja) 1994-07-07 1996-01-23 Mitsui Petrochem Ind Ltd 非水電解液及び非水電解液電池
JPH0888023A (ja) 1994-09-16 1996-04-02 Mitsui Petrochem Ind Ltd 非水電解液および非水電解液電池
JPH11176470A (ja) * 1997-10-07 1999-07-02 Hitachi Maxell Ltd 有機電解液二次電池
JP2000348764A (ja) * 1999-06-08 2000-12-15 Sanyo Chem Ind Ltd 難燃性非水電解液およびそれを用いた二次電池
JP2001160414A (ja) * 1999-12-01 2001-06-12 Mitsubishi Chemicals Corp リチウム二次電池用電解液及びそれを用いたリチウム二次電池
JP2005228721A (ja) 2004-01-14 2005-08-25 Mitsubishi Chemicals Corp リチウムイオン二次電池用非水系電解液及びリチウムイオン二次電池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LARRY J. KRAUSE; WILLIAM LAMANNA; JOHN SUMMERFIELD; MARK ENGLE; GARY KORBA; ROBERT LOCH; RADOSLAV ATANASOSKI: "Corrosion of aluminum at high voltages in non-aqueous electrolytes comprising perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells", JOURNAL OF POWER SOURCES, vol. 68, 1997, pages A320 - 325
XIANMING WANG; CHISA YASUDA; HITOSHI NAITO; GO SAGAMI; KOICHI KIBE: "High-Concentration Trimethyl Phosphate-Based Nonflammable Electrolytes with Improved Charge-Discharge Performance of a Graphite Anode for Lithium-Ion Cells", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 153, no. 1, 2006, pages A135 - A139
XIANMING WANG; EIKI YASUKAWA; SHIGEAKI KASUYA: "Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 148, no. 10, 2001, pages A1058 - A1065, XP055279845, DOI: doi:10.1149/1.1397773

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010282906A (ja) * 2009-06-08 2010-12-16 Asahi Kasei E-Materials Corp リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
JP2011096462A (ja) * 2009-10-28 2011-05-12 Mitsubishi Chemicals Corp 非水系電解液、それを用いた電池及びリン酸エステル化合物
WO2011081113A1 (ja) * 2009-12-29 2011-07-07 ソニー株式会社 非水電解質および非水電解質電池
JP2011216480A (ja) * 2010-03-19 2011-10-27 Semiconductor Energy Lab Co Ltd 非水電解液、およびリチウムイオン二次電池
CN101867065A (zh) * 2010-06-21 2010-10-20 张家港市国泰华荣化工新材料有限公司 一种阻燃型电解质溶液及其应用
JP2012004121A (ja) * 2010-06-21 2012-01-05 Samsung Sdi Co Ltd リチウム電池及び該リチウム電池の製造方法
EP2613396A4 (en) * 2010-09-02 2016-08-31 Nec Corp SECONDARY BATTERY AND SECONDARY BATTERY ELECTROLYTE USED IN SAID BATTERY
JP2012164441A (ja) * 2011-02-03 2012-08-30 Gs Yuasa Corp 非水電解質二次電池
JP2014007052A (ja) * 2012-06-25 2014-01-16 Nippon Shokubai Co Ltd 非水電解液
WO2014091606A1 (ja) * 2012-12-13 2014-06-19 エリーパワー株式会社 非水電解液二次電池及び非水電解液二次電池の製造方法
WO2014092121A1 (ja) * 2012-12-13 2014-06-19 エリーパワー株式会社 非水電解質二次電池の製造方法
US10147977B2 (en) 2012-12-13 2018-12-04 Eliiy Power Co., Ltd. Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JPWO2014092121A1 (ja) * 2012-12-13 2017-01-12 エリーパワー株式会社 非水電解質二次電池の製造方法
US9991503B2 (en) 2012-12-13 2018-06-05 Eliiy Power Co., Ltd. Method for producing non-aqueous electrolyte secondary battery
JPWO2014091606A1 (ja) * 2012-12-13 2017-01-05 エリーパワー株式会社 非水電解液二次電池及び非水電解液二次電池の製造方法
JP2015056241A (ja) * 2013-09-11 2015-03-23 日立マクセル株式会社 非水二次電池
JP2016006791A (ja) * 2013-09-25 2016-01-14 国立大学法人 東京大学 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液群
JP2016006790A (ja) * 2013-09-25 2016-01-14 国立大学法人 東京大学 非水系二次電池
JP2016058384A (ja) * 2013-09-25 2016-04-21 国立大学法人 東京大学 非水系二次電池
JP2015216131A (ja) * 2013-09-25 2015-12-03 国立大学法人 東京大学 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液
US9614253B2 (en) 2013-10-31 2017-04-04 Lg Chem, Ltd. Electrolyte solution additive for lithium secondary battery, and non-aqueous electrolyte solution and lithium secondary battery including the additive
JP2016503571A (ja) * 2013-10-31 2016-02-04 エルジー・ケム・リミテッド リチウム二次電池用電解液添加剤、前記電解液添加剤を含む非水性電解液及びリチウム二次電池
WO2015111612A1 (ja) * 2014-01-24 2015-07-30 三洋化成工業株式会社 二次電池用添加剤、それを用いた電極及び電解液、リチウムイオン電池並びにリチウムイオンキャパシタ
JP2015185401A (ja) * 2014-03-25 2015-10-22 株式会社豊田自動織機 非水二次電池
US9660295B2 (en) 2014-08-22 2017-05-23 Samsung Sdi Co., Ltd. Electrolyte and rechargeable lithium battery including the same
JP7091574B2 (ja) 2014-11-17 2022-06-28 株式会社Gsユアサ 非水電解質二次電池
JP2016103468A (ja) * 2014-11-17 2016-06-02 株式会社Gsユアサ 非水電解質二次電池
WO2016143293A1 (ja) * 2015-03-10 2016-09-15 国立大学法人東京大学 電解液
WO2016143295A1 (ja) * 2015-03-10 2016-09-15 国立大学法人東京大学 リチウムイオン二次電池
JPWO2016143295A1 (ja) * 2015-03-10 2017-12-21 国立大学法人 東京大学 リチウムイオン二次電池
JP2017027923A (ja) * 2015-07-17 2017-02-02 株式会社豊田中央研究所 非水電解液電池
CN108028429B (zh) * 2015-09-02 2021-06-08 国立大学法人东京大学 二次电池用阻燃性电解液以及包含该电解液的二次电池
JP2017050148A (ja) * 2015-09-02 2017-03-09 国立大学法人 東京大学 二次電池用難燃性電解液、及び当該電解液を含む二次電池
CN108028429A (zh) * 2015-09-02 2018-05-11 国立大学法人东京大学 二次电池用阻燃性电解液以及包含该电解液的二次电池
WO2017038755A1 (ja) * 2015-09-02 2017-03-09 国立大学法人 東京大学 二次電池用難燃性電解液、及び当該電解液を含む二次電池
JP2022009163A (ja) * 2016-11-25 2022-01-14 シェンズェン カプチェム テクノロジー カンパニー リミテッド リチウムイオン電池用非水電解液
JP2019537814A (ja) * 2016-11-25 2019-12-26 シェンズェン カプチェム テクノロジー カンパニー リミテッドShenzhen Capchem Technology Co., Ltd. リチウムイオン電池用非水電解液及びリチウムイオン電池
JP7208330B2 (ja) 2016-11-25 2023-01-18 シェンズェン カプチェム テクノロジー カンパニー リミテッド リチウムイオン電池用非水電解液
JP2020191301A (ja) * 2016-11-25 2020-11-26 シェンズェン カプチェム テクノロジー カンパニー リミテッドShenzhen Capchem Technology Co., Ltd. リチウムイオン電池用非水電解液
JP2018120848A (ja) * 2017-01-26 2018-08-02 本田技研工業株式会社 リチウムイオン二次電池
JPWO2018179883A1 (ja) * 2017-03-29 2020-02-06 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2018179883A1 (ja) * 2017-03-29 2018-10-04 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2019031598A1 (ja) 2017-08-10 2019-02-14 株式会社Gsユアサ 非水電解質及び非水電解質蓄電素子
JP2019067663A (ja) * 2017-10-03 2019-04-25 トヨタ自動車株式会社 全固体リチウムイオン二次電池用の負極合材
JP2019096561A (ja) * 2017-11-27 2019-06-20 株式会社豊田自動織機 リチウムイオン二次電池
JP2019185857A (ja) * 2018-04-02 2019-10-24 株式会社豊田中央研究所 リチウム二次電池
JP7073859B2 (ja) 2018-04-02 2022-05-24 株式会社豊田中央研究所 リチウム二次電池及びリチウム二次電池の製造方法
WO2022196753A1 (ja) * 2021-03-19 2022-09-22 国立研究開発法人産業技術総合研究所 非水二次電池用電解液及びそれを用いた非水二次電池
JP7498535B2 (ja) 2021-03-19 2024-06-12 国立研究開発法人産業技術総合研究所 非水二次電池用電解液及びそれを用いた非水二次電池

Also Published As

Publication number Publication date
CN102150315A (zh) 2011-08-10
EP2330675A1 (en) 2011-06-08
US20110159379A1 (en) 2011-06-30
JP5557337B2 (ja) 2014-07-23
EP2330675B1 (en) 2018-08-22
KR20110053456A (ko) 2011-05-23
CN102150315B (zh) 2015-07-29
JPWO2010030008A1 (ja) 2012-02-02
KR101351671B1 (ko) 2014-01-14
EP2330675A4 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP5557337B2 (ja) 二次電池
JP5716667B2 (ja) 二次電池
KR102469213B1 (ko) 비수 전해액 전지용 전해액 및 그것을 이용한 비수 전해액 전지
JP5645260B2 (ja) 二次電池
EP2270917B1 (en) Non-aqueous electrolyte for secondary cell and secondary cell comprising the same
KR101233829B1 (ko) 리튬 이차 전지용 난연성 전해액 및 이를 포함하는 리튬 이차 전지
EP2469633B1 (en) A mixed solvent for an electrolyte for a lithium secondary battery and lithium secondary battery comprising the same
US20180342758A1 (en) Secondary battery and preparation method therefor
KR20190004232A (ko) 전해질 첨가제 및 이를 포함하는 리튬 이차전지용 비수전해액
JP7168851B2 (ja) 非水電解液電池用電解液及びそれを用いた非水電解液電池
KR20080026522A (ko) 비수 전해액 첨가제 및 이를 이용한 이차 전지
JP5811361B2 (ja) 二次電池
CN114975873B (zh) 一种正极片及锂离子电池
JP2022530431A (ja) リチウム二次電池用電解質及びこれを含むリチウム二次電池
CN110635166B (zh) 电解液、含有该电解液的电池和电动车辆
CN117954689A (zh) 非水电解液电池用电解液和使用其的非水电解液电池
KR20220132467A (ko) 화합물, 이를 포함하는 비수 전해액 및 리튬 이차전지
CN113939938A (zh) 非水电解液
KR20200070802A (ko) 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980135761.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09813154

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010528769

Country of ref document: JP

Ref document number: 2009813154

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117006095

Country of ref document: KR

Kind code of ref document: A