WO2018179883A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2018179883A1
WO2018179883A1 PCT/JP2018/004359 JP2018004359W WO2018179883A1 WO 2018179883 A1 WO2018179883 A1 WO 2018179883A1 JP 2018004359 W JP2018004359 W JP 2018004359W WO 2018179883 A1 WO2018179883 A1 WO 2018179883A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
electrolyte secondary
nonaqueous electrolyte
lithium
positive electrode
Prior art date
Application number
PCT/JP2018/004359
Other languages
English (en)
French (fr)
Inventor
泰子 平山
直也 森澤
貴信 千賀
飯田 一博
福井 厚史
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880016995.7A priority Critical patent/CN110392952A/zh
Priority to JP2019508693A priority patent/JP6948600B2/ja
Publication of WO2018179883A1 publication Critical patent/WO2018179883A1/ja
Priority to US16/580,212 priority patent/US20200020986A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to the technology of non-aqueous electrolyte secondary batteries.
  • a nonaqueous electrolyte secondary battery that includes a positive electrode, a negative electrode, and a nonaqueous electrolyte, and performs charge / discharge by moving lithium ions between the positive electrode and the negative electrode Is widely used.
  • Patent Documents 1 and 2 disclose a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte containing 4-fluoroethylene carbonate and lithium bis (fluorosulfonyl) imide.
  • Patent Document 3 discloses a nonaqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a nonaqueous electrolyte containing 4-fluoroethylene carbonate, a fluorinated carboxylic acid ester, and lithium bis (fluorosulfonyl) imide. It is disclosed.
  • JP 2010-129449 A International Publication No. 2014/126256 US Patent Application Publication No. 2014/0248529
  • the non-aqueous electrolyte secondary battery using the conventional non-aqueous electrolyte has a problem that the capacity recovery rate after high-temperature storage decreases.
  • the capacity recovery rate after high-temperature storage is the non-aqueous electrolyte secondary in a charged state with respect to the battery capacity (initial capacity) of the non-aqueous electrolyte secondary battery when charged and discharged at room temperature (for example, 25 ° C.).
  • This is the ratio of the battery capacity (capacity after storage) of the non-aqueous electrolyte secondary battery when the battery is stored for a predetermined number of days at a high temperature (eg, 60 ° C. or higher) and then charged and discharged again at room temperature (eg, 25 ° C.). It is expressed by a formula.
  • Capacity recovery rate after storage at high temperature capacity after storage / initial capacity ⁇ 100 Then, this indication aims at providing the nonaqueous electrolyte secondary battery which can suppress the fall of the capacity
  • a nonaqueous electrolyte secondary battery includes a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a nonaqueous electrolyte, and the nonaqueous electrolyte is represented by the following general formula:
  • a non-aqueous solvent containing a fluorinated chain carboxylic acid ester represented, and a sulfonylimide salt wherein the content of the fluorinated chain carboxylic acid ester in the non-aqueous solvent is 80% by volume or more, The content of the sulfonylimide salt is 2.4 mol or more with respect to 1 L of the non-aqueous solvent.
  • R 1, R 2 is H, F, CH 3-x F x (x is 1, 2, 3) is any one of, good .R 3 also being the same or different (It is an alkyl group having 1 to 3 carbon atoms and may contain F.) According to one aspect of the present disclosure, it is possible to suppress a decrease in capacity recovery rate after high-temperature storage.
  • a non-aqueous electrolyte secondary battery it is known that a part of the non-aqueous electrolyte is decomposed at the time of initial charge, and a coating (SEI coating) made of the decomposition product is formed on the electrode surface of the negative electrode or the positive electrode. By forming this coating film, further decomposition of the nonaqueous electrolyte on the electrode is suppressed.
  • a conventional film formed of a non-aqueous electrolyte lacks thermal stability, the film is easily broken under a high temperature environment. Therefore, when a non-aqueous electrolyte secondary battery using a conventional non-aqueous electrolyte is stored at a high temperature (for example, 60 ° C.
  • the coating film is destroyed, and decomposition of the non-aqueous electrolyte may proceed in subsequent charge / discharge. is there.
  • the capacity of the non-aqueous electrolyte secondary battery after high temperature storage is reduced, and the capacity recovery rate after high temperature storage described above may be reduced.
  • R 1, R 2 is H, F, CH 3-x F x (x is 1, 2, 3) is any one of, good .R 3 also being the same or different (It is an alkyl group having 1 to 3 carbon atoms and may contain F.)
  • fluorine is obtained by decomposing the above two substances on the electrode during charge and discharge. It is considered that a composite film containing a large amount of the imide ester compound is formed.
  • the composite film is considered to be a dense film having high thermal stability. As a result, even if the nonaqueous electrolyte secondary battery is stored at a high temperature, destruction of the composite coating can be suppressed, so that it is considered that decomposition of the nonaqueous electrolyte is suppressed in subsequent charge and discharge. In addition, by increasing the number of fluorinated chain carboxylates that contribute to solvation and stabilization, excessive decomposition of the fluorinated chain carboxylates during high-temperature storage is suppressed, and a complex containing a large amount of fluorinated imidoester compounds. A coating is properly formed.
  • the composite film is a film having high ion conductivity, it is considered that an increase in the resistance value of the electrode can be suppressed even if the composite film is formed on the electrode. From these things, it is guessed that the fall of the capacity
  • non-aqueous electrolyte secondary battery including the non-aqueous electrolyte according to one aspect of the present disclosure will be described.
  • the embodiment described below is an example, and the present disclosure is not limited thereto.
  • a nonaqueous electrolyte secondary battery which is an example of an embodiment includes a positive electrode, a negative electrode, a separator, a nonaqueous electrolyte, and a battery case. Specifically, it has a structure in which a wound electrode body in which a positive electrode and a negative electrode are wound via a separator, and a nonaqueous electrolyte are housed in a battery case.
  • the electrode body is not limited to a wound electrode body, and other forms of electrode bodies such as a stacked electrode body in which a positive electrode and a negative electrode are stacked via a separator may be applied.
  • the form of the nonaqueous electrolyte secondary battery is not particularly limited, and examples thereof include a cylindrical shape, a square shape, a coin shape, a button shape, and a laminate shape.
  • nonaqueous electrolyte a positive electrode, a negative electrode, and a separator used in a nonaqueous electrolyte secondary battery as an example of the embodiment will be described in detail.
  • the non-aqueous electrolyte includes a non-aqueous solvent containing a fluorinated chain carboxylic acid ester represented by the above general formula and a sulfonylimide salt.
  • the nonaqueous electrolyte is not limited to a liquid electrolyte (nonaqueous electrolyte solution), and may be a solid electrolyte using a gel polymer or the like.
  • the fluorinated chain carboxylic acid ester contained in the nonaqueous solvent is not particularly limited as long as it is a substance represented by the above general formula.
  • methyl 3,3,3-trifluoropropionate (FMP) is preferred.
  • the content of the fluorinated chain carboxylic acid ester in the non-aqueous solvent is not particularly limited as long as it is 80% by volume or more, but the capacity recovery rate after high-temperature storage of the non-aqueous electrolyte secondary battery is reduced. It is preferable that it is 90 volume% or more at the point which can be suppressed more, and it is more preferable that it is 95 volume% or more.
  • the upper limit of the content of the fluorinated chain carboxylic acid ester is not particularly limited, and may be 100% by volume.
  • the nonaqueous solvent preferably further contains fluoroethylene carbonate (FEC).
  • FEC fluoroethylene carbonate
  • the content of fluoroethylene carbonate in the non-aqueous solvent is preferably 0.01% by volume or more and 20% by volume or less, and more preferably 0.1% by volume or more and 5% by volume or less.
  • the non-aqueous electrolyte secondary battery can be suppressed more than when it does not contain a decrease in capacity recovery rate after high-temperature storage.
  • content of fluoroethylene carbonate exceeds 20 volume%, the viscosity of a nonaqueous electrolyte will rise and the output characteristic of a nonaqueous electrolyte secondary battery may fall, for example.
  • the non-aqueous solvent preferably further contains 2,2,2-trifluoroethyl acetate (FEA).
  • the content of 2,2,2-trifluoroethyl acetate in the nonaqueous solvent is preferably 0.01% by volume to 50% by volume, more preferably 0.1% by volume to 5% by volume. .
  • the non-aqueous solvent may contain other non-aqueous solvents in addition to the fluorinated chain carboxylic acid ester, fluoroethylene carbonate and 2,2,2-trifluoroethyl acetate.
  • Other non-aqueous solvents include, for example, ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), methyl ethyl carbonate (EMC), diethyl carbonate (DEC), methyl acetate, ethyl acetate, propyl acetate, propion
  • esters such as methyl acid (MP), ethers such as 1,3-dioxolane, nitriles such as acetonitrile, amides such as dimethylformamide, and a mixed solvent of two or more thereof.
  • the sulfonylimide salt contained in the nonaqueous electrolyte is not particularly limited, but can improve the conductivity of the nonaqueous electrolyte and the lithium ion conductivity of the composite film formed on the electrode.
  • lithium sulfonylimide is preferable.
  • Lithium sulfonylimide is represented by the following general formula, for example.
  • lithium sulfonylimide represented by the above general formula include lithium bis (fluorosulfonyl) imide (LiFSI), lithium bis (trifluoromethanesulfonyl) imide, lithium bis (nonafluorobutanesulfonyl) imide, and lithium bis (pentafluoroethane).
  • LiFSI lithium bis (fluorosulfonyl) imide
  • trifluoromethanesulfonyl) imide lithium bis (nonafluorobutanesulfonyl) imide
  • lithium bis (pentafluoroethane) lithium bis (pentafluoroethane).
  • Sulfonyl) imide LIBETI
  • lithium bis (fluorosulfonyl) imide LiFSI
  • lithium bis (pentafluoroethane) lithium bis (pentafluoroethane) and the like are capable of further suppressing a decrease in capacity recovery rate after high-temperature storage of a nonaqueous electrolyte secondary battery.
  • Sulfonyl) imide LIBETI
  • the content of the sulfonylimide salt is not particularly limited as long as it is 2.4 mol or more with respect to 1 L of the nonaqueous solvent, but further suppresses the decrease in the capacity recovery rate after high temperature storage of the nonaqueous electrolyte secondary battery.
  • the amount is preferably 2.8 mol or more, and more preferably 3.2 mol or more.
  • the upper limit of content of a sulfonylimide salt is not restrict
  • the non-aqueous electrolyte preferably contains a carboxylic acid anhydride.
  • a carboxylic acid anhydride By including a carboxylic acid anhydride, a composite film containing a large amount of a fluorinated imide ester compound is formed on the negative electrode, and this can be suppressed as compared with the case where a decrease in capacity recovery rate after high-temperature storage is not included.
  • the carboxylic anhydride is not particularly limited, and examples thereof include succinic anhydride, glutaric anhydride, diglycolic anhydride, thiodiglycolic anhydride, and the like. These may be used alone or in combination of two or more.
  • succinic anhydride is preferable in that the battery capacity of the nonaqueous electrolyte secondary battery can be improved.
  • the content of the carboxylic acid anhydride in the nonaqueous electrolyte is not particularly limited, but is preferably 0.1% by mass or more and 5% by mass or less, for example.
  • the non-aqueous electrolyte may contain additives such as vinylene carbonate (VC), ethylene sulfite (ES), lithium bis (oxalato) borate (LiBOB), cyclohexylbenzene (CHB), and orthoterphenyl (OTP). Good.
  • vinylene carbonate (VC) is preferable in that the battery capacity of the nonaqueous electrolyte secondary battery can be improved.
  • the content of the additive in the nonaqueous electrolyte is not particularly limited, but is preferably 0.1% by mass or more and 5% by mass or less, for example.
  • the non-aqueous electrolyte may include a supporting salt generally used in a conventional non-aqueous electrolyte secondary battery.
  • Common supporting salts include, for example, LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li [B (C 2 O 4 ) 2 ], Li [B (C 2 O 4 ) F 2 ], Li [P (C 2 O 4) F 4], Li [P (C 2 O 4) 2 F 2] , and the like.
  • These general supporting salts may be used singly or in combination of two or more.
  • the positive electrode includes a positive electrode current collector such as a metal foil and a positive electrode active material layer formed on the positive electrode current collector.
  • a positive electrode current collector such as a metal foil and a positive electrode active material layer formed on the positive electrode current collector.
  • a metal foil that is stable in the potential range of the positive electrode such as aluminum, a film in which the metal is disposed on the surface layer, or the like can be used.
  • the positive electrode active material layer includes, for example, a positive electrode active material, a binder, a conductive material, and the like.
  • the positive electrode is formed by applying and drying a positive electrode mixture slurry containing a positive electrode active material, a binder, a conductive material, and the like on the positive electrode current collector, thereby forming a positive electrode active material layer on the positive electrode current collector, It is obtained by rolling the positive electrode active material layer.
  • Examples of the positive electrode active material include lithium transition metal composite oxides. Specifically, lithium cobalt composite oxide, lithium manganese composite oxide, lithium nickel composite oxide, lithium nickel manganese composite oxide, lithium nickel cobalt composite. An oxide etc. are mentioned. These may be used alone or in combination of two or more.
  • the lithium-nickel composite oxide can increase the capacity of the non-aqueous electrolyte secondary battery, but tends to cause a decrease in the capacity recovery rate of the non-aqueous electrolyte secondary battery after high-temperature storage.
  • the capacity recovery rate after high-temperature storage is significantly reduced.
  • a combination of a nonaqueous electrolyte and a lithium nickel composite oxide containing a predetermined amount of the fluorinated chain carboxylic acid ester and a predetermined amount of the sulfonylimide salt in particular, the total of the metal elements excluding the nonaqueous electrolyte and lithium.
  • the combination of the lithium nickel composite oxide in which the ratio of nickel to the number of moles is 30 mol% or more makes it possible to achieve both higher capacity of the nonaqueous electrolyte secondary battery and lowering of the capacity recovery rate after high-temperature storage. .
  • the lithium nickel composite oxide has the general formula Li x Ni y M (1-y) O 2 ⁇ 0.1 ⁇ x ⁇ 1.2, 0.3 ⁇ y ⁇ 1, M is at least one metal element ⁇ .
  • the lithium nickel composite oxide represented is preferable.
  • the metal element M include Co, Mn, Mg, Zr, Al, Cr, V, Ce, Ti, Fe, K, Ga, and In.
  • the ratio of nickel to the total number of moles of metal elements excluding lithium is preferably 30 mol% or more, more preferably 50 mol% or more, and 80 mol% or more. It is more preferable that By combining a lithium nickel composite oxide having a nickel content ratio of 30 mol% or more, a predetermined amount of the fluorinated chain carboxylic acid ester, and a predetermined amount of the sulfonylimide salt, a nonaqueous electrolyte It becomes possible to simultaneously increase the capacity of the secondary battery and suppress the decrease in the capacity recovery rate after high-temperature storage.
  • the content of the lithium nickel composite oxide in the positive electrode active material is, for example, preferably 50% by mass or more, and more preferably 80% by mass or more.
  • the content of the lithium nickel composite oxide in the positive electrode active material is less than 50% by mass, the capacity of the nonaqueous electrolyte secondary battery may be reduced as compared with the case where the above range is satisfied.
  • the upper limit of the content of the lithium nickel composite oxide is not particularly limited, but may be 100% by mass, for example.
  • Examples of the conductive agent include carbon powder such as carbon black, acetylene black, ketjen black, and graphite. These may be used singly or in combination of two or more.
  • binder examples include fluorine-based polymers and rubber-based polymers.
  • fluorine-based polymer examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and modified products thereof.
  • PVdF polyvinylidene fluoride
  • rubber-based polymer examples include ethylene-propylene-isoprene copolymer. Examples thereof include ethylene, propylene-butadiene copolymer, and the like. These may be used alone or in combination of two or more.
  • the positive electrode active material layer preferably contains a lithium salt in addition to the positive electrode active material. It is considered that the lithium salt is contained in the positive electrode active material layer, so that decomposition of the fluorinated chain carboxylic acid ester at the positive electrode during the storage at high temperature is suppressed, and lithium is added to the positive electrode active material layer or the negative electrode active material layer. Compared with the case where no salt is contained, the decrease in the capacity recovery rate after high-temperature storage of the nonaqueous electrolyte secondary battery is further suppressed.
  • lithium salt contained in the positive electrode active material layer examples include lithium sulfate, lithium phosphate (Li 3 PO 4 ), and lithium borate. Among these, lithium phosphate is preferable.
  • the content of the lithium salt in the positive electrode active material is, for example, 0.1% by mass or more and 5% by mass or less in terms of suppressing a decrease in the capacity recovery rate after high temperature storage of the nonaqueous electrolyte secondary battery. It is preferable.
  • the average particle size D ( ⁇ m) of the lithium salt is preferably less than 150 ⁇ m. By doing so, the formability of the pole material can be maintained.
  • the average particle diameter D ( ⁇ m) is, for example, a median diameter (D50) measured by a laser diffraction particle size distribution measuring device.
  • the negative electrode includes, for example, a negative electrode current collector such as a metal foil and a negative electrode active material layer formed on the negative electrode current collector.
  • a negative electrode current collector such as a metal foil and a negative electrode active material layer formed on the negative electrode current collector.
  • a metal foil that is stable in the potential range of a negative electrode such as copper, a film in which the metal is disposed on the surface layer, or the like can be used.
  • the negative electrode active material layer includes, for example, a negative electrode active material, a binder, a thickener, and the like.
  • the negative electrode is formed by applying and drying a negative electrode mixture slurry containing a negative electrode active material, a thickener, and a binder on the negative electrode current collector, thereby forming a negative electrode active material layer on the negative electrode current collector, It is obtained by rolling the negative electrode active material layer.
  • the negative electrode active material is not particularly limited as long as it is a material capable of occluding and releasing lithium ions.
  • metallic lithium lithium-aluminum alloy, lithium-lead alloy, lithium-silicon alloy, lithium- Examples thereof include lithium alloys such as tin alloys, carbon materials such as graphite, coke, and organic fired bodies, and metal oxides such as SnO 2 , SnO, and TiO 2 . These may be used alone or in combination of two or more.
  • a fluorine-based polymer, a rubber-based polymer or the like can be used as in the case of the positive electrode, but a styrene-butadiene copolymer (SBR) or a modified product thereof may be used. .
  • SBR styrene-butadiene copolymer
  • thickener examples include carboxymethyl cellulose (CMC) and polyethylene oxide (PEO). These may be used alone or in combination of two or more.
  • CMC carboxymethyl cellulose
  • PEO polyethylene oxide
  • the negative electrode active material layer preferably contains a lithium salt in addition to the negative electrode active material.
  • a lithium salt in the negative electrode active material layer, excessive decomposition of the chain carboxylic acid ester in the negative electrode is suppressed, and an appropriate amount of film (a composite film containing a large amount of a fluorinated imide ester compound) is formed on the negative electrode. ), The capacity recovery rate after storage at high temperature of the non-aqueous electrolyte secondary battery is lower than when the positive electrode active material layer or the negative electrode active material layer does not contain lithium salt. It is suppressed.
  • lithium salt contained in the negative electrode active material layer examples include lithium sulfate (Li 2 SO 4 ), lithium phosphate, and lithium borate. Among these, lithium sulfate is preferable.
  • the content of the lithium salt in the negative electrode active material is, for example, 0.1% by mass or more and 5% by mass or less in terms of suppressing a decrease in capacity recovery rate after high-temperature storage of the nonaqueous electrolyte secondary battery. It is preferable.
  • the average particle size D ( ⁇ m) of the lithium salt is preferably less than 150 ⁇ m. By doing so, the formability of the pole material can be maintained.
  • the average particle diameter D ( ⁇ m) is, for example, a median diameter (D50) measured by a laser diffraction particle size distribution measuring device.
  • a composite film containing a large amount of sulfonyl ions derived from a decomposition product of a fluorinated carboxylate and a sulfonylimide salt is formed on the surface of the negative electrode.
  • the presence of a composite film containing a large amount of sulfonyl ions formed by decomposition of the fluorinated carboxylate and sulfonylimide salt on the negative electrode surface was confirmed by the XPS spectrum obtained by XPS measurement on the negative electrode surface. can do.
  • a porous sheet having ion permeability and insulation is used.
  • the porous sheet include a microporous thin film, a woven fabric, and a nonwoven fabric.
  • olefinic resins such as polyethylene and polypropylene, cellulose and the like are suitable.
  • the separator may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin.
  • the multilayer separator containing a polyethylene layer and a polypropylene layer may be sufficient, and what applied materials, such as an aramid resin and a ceramic, to the surface of a separator may be used.
  • a lithium nickel composite oxide represented by LiNi 0.82 Co 0.15 Al 0.03 O 2 (NCA) was used as the positive electrode active material.
  • a positive electrode active material (NCA), acetylene black, and polyvinylidene fluoride were mixed at a mass ratio of 100: 1: 0.9, and then an appropriate amount of N-methyl-2-pyrrolidone (NMP) was added.
  • NMP N-methyl-2-pyrrolidone
  • a material slurry was prepared. Next, this positive electrode mixture slurry was applied to both surfaces of a positive electrode current collector made of an aluminum foil. After drying the coating film, the positive electrode in which the positive electrode active material layer was formed on both surfaces of the positive electrode current collector was produced by rolling using a rolling roller.
  • Lithium bis (fluorosulfonyl) imide LiFSI is dissolved in 1 L of non-aqueous solvent of methyl 3,3,3-trifluoropropionate (FMP) at a content of 2.8 mol, and 1% by weight of vinylene carbonate (VC) was dissolved to prepare a non-aqueous electrolyte.
  • FMP methyl 3,3,3-trifluoropropionate
  • Electrode body was prepared so that the positive electrode and the negative electrode faced each other with a separator interposed therebetween, and the electrode body was sealed in an aluminum laminate outer package together with the non-aqueous electrolyte. This was designated as the nonaqueous electrolyte secondary battery of Example 1.
  • Example 2 In the preparation of the nonaqueous electrolyte, except that lithium bis (fluorosulfonyl) imide was dissolved in 1 L of nonaqueous solvent of methyl 3,3,3-trifluoropropionate (FMP) at a content of 4.7 mol, A nonaqueous electrolyte was prepared in the same manner as in Example 1. Using this as the nonaqueous electrolyte of Example 2, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.
  • FMP methyl 3,3,3-trifluoropropionate
  • Example 3 In the preparation of the nonaqueous electrolyte, a mixed solvent in which methyl 3,3,3-trifluoropropionate (FMP) and fluoroethylene carbonate (FEC) were mixed at a volume ratio of 95: 5 was used as the nonaqueous solvent. A nonaqueous electrolyte was prepared in the same manner as in Example 1 except that. Using this as the non-aqueous electrolyte of Example 3, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1.
  • FMP methyl 3,3,3-trifluoropropionate
  • FEC fluoroethylene carbonate
  • Example 4 In the preparation of the non-aqueous electrolyte, methyl 3,3,3-trifluoropropionate (FMP), 2,2,2-trifluoroethyl acetate (FEA), and fluoroethylene carbonate (FEC) were mixed with 90: 5 A nonaqueous electrolyte was prepared in the same manner as in Example 1 except that a mixed solvent mixed at a volume ratio of 5 was used as the nonaqueous solvent. Using this as the nonaqueous electrolyte of Example 4, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.
  • FMP 3,3,3-trifluoropropionate
  • FEA 2,2,2-trifluoroethyl acetate
  • FEC fluoroethylene carbonate
  • Example 5 In the preparation of the nonaqueous electrolyte, a mixed solvent in which methyl 3,3,3-trifluoropropionate (FMP) and fluoroethylene carbonate (FEC) were mixed at a volume ratio of 80:20 was used as the nonaqueous solvent. A nonaqueous electrolyte was prepared in the same manner as in Example 1 except that. Using this as the nonaqueous electrolyte of Example 5, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.
  • FMP methyl 3,3,3-trifluoropropionate
  • FEC fluoroethylene carbonate
  • Example 6 In the preparation of the nonaqueous electrolyte, lithium bis (fluorosulfonyl) imide (LiFSI) was dissolved in 1 L of nonaqueous solvent of methyl 3,3,3-trifluoropropionate (FMP) at a content of 2.4 mol, and 0 A nonaqueous electrolyte was prepared in the same manner as in Example 1 except that 3 mol of LiPF 6 was dissolved. Using this as the nonaqueous electrolyte of Example 6, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.
  • LiFSI lithium bis (fluorosulfonyl) imide
  • FMP methyl 3,3,3-trifluoropropionate
  • nonaqueous electrolyte was prepared in the same manner as in Example 1 except that 0.5% by mass of succinic acid was dissolved in a nonaqueous solvent of methyl 3,3,3-trifluoropropionate (FMP).
  • FMP methyl 3,3,3-trifluoropropionate
  • a water electrolyte was prepared. Using this as the nonaqueous electrolyte of Example 7, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.
  • Example 8 In the production of the negative electrode, artificial graphite as the negative electrode active material, sodium salt of carboxymethyl cellulose (CMC-Na) as the thickener, styrene-butadiene copolymer (SBR) as the binder, lithium sulfate, Were mixed at a mass ratio of 100: 1: 1: 0.5, and a negative electrode was produced in the same manner as in Example 1 except that an appropriate amount of water was added to prepare a negative electrode mixture slurry. Using this as the negative electrode of Example 8, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.
  • CMC-Na carboxymethyl cellulose
  • SBR styrene-butadiene copolymer
  • Example 9 In the production of the positive electrode, after mixing the positive electrode active material (NCA), acetylene black, polyvinylidene fluoride, and lithium phosphate at a mass ratio of 100: 1: 0.9: 0.5, N-methyl A positive electrode was produced in the same manner as in Example 1 except that an appropriate amount of -2-pyrrolidone (NMP) was added to prepare a positive electrode mixture slurry. Using this as the positive electrode of Example 9, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.
  • NMP -2-pyrrolidone
  • Example 10 Using the negative electrode of Example 8 and the positive electrode of Example 9, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.
  • Example 11 In the preparation of the non-aqueous electrolyte, lithium bis (pentafluoroethanesulfonyl) imide (LIBETI) was dissolved in 1 L of non-aqueous solvent of methyl 3,3,3-trifluoropropionate (FMP) at a content of 2.8 mol. A nonaqueous electrolyte was prepared in the same manner as in Example 1 except that. Using this as the nonaqueous electrolyte of Example 11, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.
  • LIBETI lithium bis (pentafluoroethanesulfonyl) imide
  • FMP methyl 3,3,3-trifluoropropionate
  • Example 1 Except that LiPF 6 was dissolved at a content of 2.8 mol in 1 L of non-aqueous solvent of methyl 3,3,3-trifluoropropionate (FMP) in the preparation of the non-aqueous electrolyte, the same as Example 1. A non-aqueous electrolyte was prepared. Using this as the nonaqueous electrolyte of Comparative Example 1, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.
  • FMP methyl 3,3,3-trifluoropropionate
  • ⁇ Comparative Example 5> In the preparation of the nonaqueous electrolyte, a mixed solvent in which methyl 3,3,3-trifluoropropionate (FMP) and fluoroethylene carbonate (FEC) were mixed at a volume ratio of 70:30 was used as the nonaqueous solvent. A nonaqueous electrolyte was prepared in the same manner as in Example 1 except that. Using this as the non-aqueous electrolyte of Comparative Example 5, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1.
  • FMP methyl 3,3,3-trifluoropropionate
  • FEC fluoroethylene carbonate
  • Capacity recovery rate after storage at high temperature (%) Capacity after storage / initial capacity ⁇ 100
  • Table 1 shows the positive electrode, negative electrode, and nonaqueous electrolyte composition used in each example, and the results of capacity recovery after high temperature storage of the nonaqueous electrolyte secondary battery of each example.
  • Table 2 shows the composition of the positive electrode, the negative electrode, and the nonaqueous electrolyte used in each comparative example, and the results of the capacity recovery rate after high temperature storage of the nonaqueous electrolyte secondary battery of each comparative example.
  • the nonaqueous electrolyte secondary batteries of Examples 1 to 11 showed a higher capacity recovery rate after high temperature storage than the nonaqueous electrolyte secondary batteries of Comparative Examples 1 to 5. From these, the nonaqueous solvent containing the fluorinated chain carboxylic acid ester represented by the above general formula, and the sulfonylimide salt, the inclusion of the fluorinated chain carboxylic acid ester in the nonaqueous solvent
  • the non-aqueous electrolyte secondary battery after high-temperature storage It can be said that the decrease in the capacity recovery rate can be suppressed.
  • Example 1 in which the content of the sulfonylimide salt (LiFSI) is 4.7 mol with respect to 1 L of the non-aqueous solvent, Examples 3 to 5 including a predetermined amount of FEC and a predetermined amount of FEA. Examples 8 to 10 in which lithium salt was added to the positive electrode and negative electrode and Example 11 in which LiBETI was used as the sulfonylimide salt showed a capacity recovery rate after high temperature storage exceeding 90%.
  • LiFSI sulfonylimide salt

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本開示の一態様に係る非水電解質二次電池は、正極活物質層を有する正極と、負極活物質層を有する負極と、非水電解質とを備え、前記非水電解質は、下記一般式で表されるフッ素化鎖状カルボン酸エステルを含む非水溶媒と、スルホニルイミド塩と、を含み、前記非水溶媒中の前記フッ素化鎖状カルボン酸エステルの含有量は80体積%以上であり、前記スルホニルイミド塩の含有量は、前記非水溶媒1Lに対して2.4mol以上である。 (式中、R1、R2はH、F、CH3-xFx(xは1、2、3)のいずれかであり、互いに同一であっても異なっていてもよい。R3は炭素数1~3のアルキル基であり、Fを含んでいてもよい。)

Description

非水電解質二次電池
 本開示は、非水電解質二次電池の技術に関する。
 近年、高出力、高エネルギー密度の二次電池として、正極と、負極と、非水電解質とを備え、正極と負極との間でリチウムイオンを移動させて充放電を行う非水電解質二次電池が広く利用されている。
 例えば、特許文献1及び2には、正極と、負極と、4-フルオロエチレンカーボネート及びリチウムビス(フルオロスルホニル)イミドを含む非水電解質とを備える非水電解質二次電池が開示されている。
 また、例えば、特許文献3には、正極と、負極と、4-フルオロエチレンカーボネート、フッ素化カルボン酸エステル及びリチウムビス(フルオロスルホニル)イミドを含む非水電解質とを備える非水電解質二次電池が開示されている。
特開2010-129449号公報 国際公開第2014/126256号 米国特許出願公開第2014/0248529号明細書
 しかし、従来の非水電解質を用いた非水電解質二次電池は、高温保存後の容量回復率が低下するという問題がある。ここで、高温保存後の容量回復率とは、室温(例えば25℃)で充放電した時の非水電解質二次電池の電池容量(初期容量)に対して、充電状態の非水電解質二次電池を高温(例えば60℃以上)で所定日数保存した後に、室温(例えば25℃)で再度充放電した時の非水電解質二次電池の電池容量(保存後容量)の割合であり、以下の式で表される。
 高温保存後の容量回復率=保存後容量/初期容量×100
 そこで、本開示は、高温保存後の容量回復率の低下を抑制することが可能な非水電解質二次電池を提供することを目的とする。
 本開示の一態様に係る非水電解質二次電池は、正極活物質層を有する正極と、負極活物質層を有する負極と、非水電解質とを備え、前記非水電解質は、下記一般式で表されるフッ素化鎖状カルボン酸エステルを含む非水溶媒と、スルホニルイミド塩と、を含み、前記非水溶媒中の前記フッ素化鎖状カルボン酸エステルの含有量は80体積%以上であり、前記スルホニルイミド塩の含有量は、前記非水溶媒1Lに対して2.4mol以上である。
Figure JPOXMLDOC01-appb-C000002
(式中、R、RはH、F、CH3-x(xは1、2、3)のいずれかであり、互いに同一であっても異なっていてもよい。Rは炭素数1~3のアルキル基であり、Fを含んでいてもよい。)
 本開示の一態様によれば、高温保存後の容量回復率の低下を抑制することが可能となる。
 非水電解質二次電池では、初回充電時に非水電解質の一部が分解されて、負極や正極の電極表面にその分解物からなる被膜(SEI被膜)が形成されることが知られている。この被膜の形成により、電極上での非水電解質の更なる分解が抑制される。しかし、従来の非水電解質により形成される被膜は熱的安定性に欠けるため、高温環境下において、当該被膜は破壊され易い。したがって、従来の非水電解質を用いた非水電解質二次電池を高温(例えば60℃以上)で保存すると、上記被膜が破壊され、その後の充放電において、非水電解質の分解が進行する場合がある。その結果、高温保存後の非水電解質二次電池の容量が低下し、前述した高温保存後の容量回復率の低下が引き起こされる場合がある。そこで、本発明者らが鋭意検討した結果、下記一般式で表されるフッ素化鎖状カルボン酸エステルを含む非水溶媒と、スルホニルイミド塩と、を含む非水電解質において、前記非水溶媒中の前記フッ素化鎖状カルボン酸エステルの含有量を80体積%以上とし、前記スルホニルイミド塩の含有量を前記非水溶媒1Lに対して2.4mol以上とすることで、非水電解質二次電池の高温保存後の容量回復率の低下が抑制されることを見出した。
Figure JPOXMLDOC01-appb-C000003
(式中、R、RはH、F、CH3-x(xは1、2、3)のいずれかであり、互いに同一であっても異なっていてもよい。Rは炭素数1~3のアルキル基であり、Fを含んでいてもよい。)
 このメカニズムは、十分に明らかでないが、以下のことが推察される。上記のような組成のフッ素化鎖状カルボン酸エステル及びスルホニルイミド塩を含む非水電解質を用いた非水電解質二次電池では、充放電時に、電極上に、上記2種の物質が分解したフッ素化イミドエステル化合物を多く含む複合被膜が形成されると考えられる。当該複合被膜は、緻密で熱的安定性の高い膜であると考えられる。その結果、非水電解質二次電池を高温で保存しても、当該複合被膜の破壊が抑えられるため、その後の充放電において、非水電解質の分解が抑制されると考えられる。また、溶媒和に寄与するフッ素化鎖状カルボン酸エステルが増え安定化することで、高温保存中におけるフッ素化鎖状カルボン酸エステルの過剰な分解を抑制し、フッ素化イミドエステル化合物を多く含む複合被膜が適切に形成される。当該複合被膜は、イオン伝導性が高い膜であるため、電極上に当該複合被膜が形成されても、電極の抵抗値の上昇が抑えられると考えられる。これらのことから、非水電解質二次電池の高温保存後の容量回復率の低下が抑制されるものと推察される。
 以下に、本開示の一態様にかかる非水電解質を備える非水電解質二次電池の実施形態について説明する。以下で説明する実施形態は一例であって、本開示はこれに限定されるものではない。
 実施形態の一例である非水電解質二次電池は、正極と、負極と、セパレータと、非水電解質と、電池ケースとを備える。具体的には、正極及び負極がセパレータを介して巻回されてなる巻回型の電極体と、非水電解質とが電池ケースに収容された構造を有する。電極体は、巻回型の電極体に限定されず、正極及び負極がセパレータを介して積層されてなる積層型の電極体など、他の形態の電極体が適用されてもよい。また、非水電解質二次電池の形態としては、特に限定されず、円筒型、角型、コイン型、ボタン型、ラミネート型などが例示できる。
 以下、実施形態の一例である非水電解質二次電池に用いられる非水電解質、正極、負極、セパレータについて詳述する。
 [非水電解質]
 非水電解質は、上記一般式で表されるフッ素化鎖状カルボン酸エステルを含む非水溶媒と、スルホニルイミド塩とを含む。非水電解質は、液体電解質(非水電解液)に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。
 非水溶媒に含まれるフッ素化鎖状カルボン酸エステルは、上記一般式で表される物質であれば特に限定されるものではないが、例えば、3,3,3-トリフルオロプロピオン酸メチル、2,3,3,3-テトラフルオロプロピオン酸メチル、2,3,3-トリフルオロプロピオン酸メチル、等が挙げられる。これらは1種単独でも、2種以上を組み合わせてもよい。上記例示した物質の中では、3,3,3-トリフルオロプロピオン酸メチル(FMP)が好ましい。α位がフッ素化されていない3,3,3-トリフルオロプロピオン酸メチル(FMP)を用いることで、他のフッ素化鎖状カルボン酸エステルと比較して、スルホニルイミド塩との反応性を高くすることができ、フッ素化イミドエステル化合物を多く含む複合膜の形成が可能となる。
 非水溶媒中のフッ素化鎖状カルボン酸エステルの含有量は、80体積%以上であれば特に制限されるものではないが、非水電解質二次電池の高温保存後の容量回復率の低下をより抑制することができる点で、90体積%以上であることが好ましく、95体積%以上であることがより好ましい。フッ素化鎖状カルボン酸エステルの含有量の上限は特に制限されるものではなく、100体積%であってもよい。
 非水溶媒は、さらにフルオロエチレンカーボネート(FEC)を含有することが好ましい。非水溶媒中のフルオロエチレンカーボネートの含有量は0.01体積%以上20体積%以下であることが好ましく、0.1体積%以上5体積%以下であることがより好ましい。上記含有量のフルオロエチレンカーボネートとフッ素化鎖状カルボン酸エステルとを共存させることで、電極における鎖状カルボン酸エステルの過剰な分解が抑制され、電極上に適切な量の被膜(フッ素化イミドエステル化合物を多く含む複合膜)が形成されると考えられる。その結果、非水電解質二次電池の高温保存後の容量回復率の低下を含有しない場合よりも抑制することが可能となる。なお、フルオロエチレンカーボネートの含有量が20体積%を超えると、非水電解質の粘度が上昇し、例えば非水電解質二次電池の出力特性が低下する場合がある。
 非水溶媒は、さらに2,2,2-トリフルオロエチルアセテート(FEA)を含有することが好ましい。非水溶媒中の2,2,2-トリフルオロエチルアセテートの含有量は0.01体積%以上50体積%以下であることが好ましく0.1体積%以上5体積%以下であることがより好ましい。上記含有量の2,2,2-トリフルオロエチルアセテートとフッ素化鎖状カルボン酸エステルとを共存させることで、電極における鎖状カルボン酸エステルが過剰に分解されることが抑制され、電極上に適切な量の被膜(フッ素化イミドエステル化合物を多く含む複合膜)が形成されると考えられる。その結果、非水電解質二次電池の高温保存後の容量回復率の低下を含有しない場合よりも抑制することが可能となる。
 なお、2,2,2-トリフルオロエチルアセテートの含有量が50体積%を超えると、被膜が疎となり熱的安定性が低下し、フッ素化鎖状カルボン酸が分解し、例えば非水電解質二次電池の出力特性が低下する場合がある。
 非水溶媒は、上記フッ素化鎖状カルボン酸エステル、フルオロエチレンカーボネート及び2,2,2-トリフルオロエチルアセテートの他に、他の非水溶媒を含んでいてもよい。他の非水溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(EMC)、ジエチルカーボネート(DEC)、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)等のエステル類、1,3-ジオキソラン等のエーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等が挙げられる。
 非水電解質中に含まれるスルホニルイミド塩は、特に制限されるものではないが、非水電解質の導電率および電極上に形成される上記複合膜のリチウムイオン伝導性を向上させることができる等の点で、リチウムスルホニルイミドが好ましい。
 リチウムスルホニルイミドは、例えば、下記一般式で表される。
Figure JPOXMLDOC01-appb-C000004
(式中、X~Xが独立して、フッ素基、又はフルオロアルキル基である。)
 上記一般式で表されるリチウムスルホニルイミドは、例えば、リチウムビス(フルオロスルホニル)イミド(LiFSI)、リチウムビス(トリフルオロメタンスルホニル)イミド、リチウムビス(ノナフルオロブタンスルホニル)イミド、リチウムビス(ペンタフルオロエタンスルホニル)イミド(LIBETI)等が挙げられる。これらは1種単独でも、2種以上を組み合わせてもよい。これらの中では、非水電解質二次電池の高温保存後の容量回復率の低下をより抑制することができる等の点で、リチウムビス(フルオロスルホニル)イミド(LiFSI)、リチウムビス(ペンタフルオロエタンスルホニル)イミド(LIBETI)等が好ましい。
 スルホニルイミド塩の含有量は、非水溶媒1Lに対して2.4mol以上であれば特に制限されるものではないが、非水電解質二次電池の高温保存後の容量回復率の低下をより抑制することができる等の点で、例えば2.8mol以上であることが好ましく、3.2mol以上であることがより好ましい。なお、スルホニルイミド塩の含有量の上限は特に制限されるものではないが、例えば、5.3mol以下の含有量で用いることが好ましい。これより含有量が高くなると、非水電解質の粘度が高くなり、非水電解質二次電池の作製に支障をきたす場合がある。
 非水電解質は、カルボン酸無水物を含むことが好ましい。カルボン酸無水物を含むことで、負極にフッ素化イミドエステル化合物を多く含む複合被膜が形成され、高温保存後の容量回復率の低下を含まない場合よりも抑制できる。カルボン酸無水物は、特に制限されるものではないが、例えば、コハク酸無水物、グルタル酸無水物、ジグリコール酸無水物、チオジグリコール酸無水物等が挙げられる。これらは1種単独でも、2種以上を組み合わせてもよい。これらの中では、非水電解質二次電池の電池容量を向上させることができる等の点で、コハク酸無水物が好ましい。非水電解質中のカルボン酸無水物の含有量は、特に制限されるものではないが、例えば、0.1質量%以上5質量%以下であることが好ましい。
 非水電解質は、ビニレンカーボネート(VC)、エチレンサルファイト(ES)、リチウムビス(オキサラト)ボレート(LiBOB)、シクロヘキシルベンゼン(CHB)、オルトターフェニル(OTP)等の添加剤を含有していてもよい。これらの中では、非水電解質二次電池の電池容量を向上させることができる等の点で、ビニレンカーボネート(VC)が好ましい。非水電解質中の添加剤の含有量は、特に制限されるものではないが、例えば、0.1質量%以上5質量%以下であることが好ましい。
 非水電解質は、従来の非水電解質二次電池において一般に使用されている支持塩を含んでもよい。一般的な支持塩としては、例えば、LiPF、LiBF、LiAsF、LiClO、LiCFSO、Li[B(C)]、Li[B(C)F]、Li[P(C)F]、Li[P(C)]等が挙げられる。これらの一般的な支持塩は、1種単独でも、2種以上を組み合わせてもよい。
 [正極]
 正極は、例えば金属箔等の正極集電体と、正極集電体上に形成された正極活物質層とで構成される。正極集電体には、アルミニウムなどの正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極活物質層は、例えば、正極活物質、結着材、導電材等を含む。
 正極は、例えば、正極活物質、結着材、導電材等を含む正極合材スラリーを正極集電体上に塗布・乾燥することによって、正極集電体上に正極活物質層を形成し、当該正極活物質層を圧延することにより得られる。
 正極活物質は、例えばリチウム遷移金属複合酸化物等が挙げられ、具体的にはリチウムコバルト複合酸化物、リチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチウムニッケルマンガン複合酸化物、リチウムニッケルコバルト複合酸化物等が挙げられる。これらは、1種単独でもよいし、2種以上を組み合わせて使用してもよい。
 リチウムニッケル複合酸化物は、非水電解質二次電池の高容量化を図ることができる一方で、非水電解質二次電池の高温保存後の容量回復率の低下が引き起こされ易い。特に、リチウムを除く金属元素の総モル数に対するニッケルの割合が30モル%以上であるリチウムニッケル複合酸化物は、高温保存後の容量回復率の低下が顕著となる。しかし、所定量の上記フッ素化鎖状カルボン酸エステルと、所定量の上記スルホニルイミド塩とを含む非水電解質及びリチウムニッケル複合酸化物の組み合わせ、特に上記非水電解質及びリチウムを除く金属元素の総モル数に対するニッケルの割合が30モル%以上であるリチウムニッケル複合酸化物の組み合わせにより、非水電解質二次電池の高容量化、及び高温保存後の容量回復率の低下抑制の両立が可能となる。
 リチウムニッケル複合酸化物は、一般式LixNiy(1―y)2{0.1≦x≦1.2、0.3≦y≦1、Mは少なくとも1種の金属元素}で表されるリチウムニッケル複合酸化物が好ましい。金属元素Mとしては、例えば、Co、Mn、Mg、Zr、Al、Cr、V、Ce、Ti、Fe、K、Ga、In等が挙げられる。これらの中では、非水電解質二次電池の高容量化の観点等から、コバルト(Co)、マンガン(Mn)、アルミニウム(Al)のうち少なくとも1つを含むことが好ましく、Co及びAlを含むことがより好ましい。
 また、上記リチウムニッケル複合酸化物は、リチウムを除く金属元素の総モル数に対するニッケルの割合が、30モル%以上であることが好ましく、50モル%以上であることがより好ましく、80モル%以上であることがより好ましい。ニッケル含有比率が30モル%以上のリチウムニッケル複合酸化物と所定量の上記フッ素化鎖状カルボン酸エステルと、所定量の上記スルホニルイミド塩とを含む非水電解質との組み合わせにより、非水電解質二次電池の高容量化、及び高温保存後の容量回復率の低下抑制の両立が可能となる。
 正極活物質中のリチウムニッケル複合酸化物の含有量は、例えば、50質量%以上であることが好ましく、80質量%以上であることがより好ましい。正極活物質中のリチウムニッケル複合酸化物の含有量が50質量%未満であると、上記範囲を満たす場合と比較して、非水電解質二次電池の容量が低下する場合がある。リチウムニッケル複合酸化物の含有量の上限は特に制限はないが、例えば100質量%でもよい。
 導電剤としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素粉末等が挙げられる。これらは、1種単独でもよいし、2種以上を組み合わせて用いてもよい。
 結着剤としては、例えば、フッ素系高分子、ゴム系高分子等が挙げられる。フッ素系高分子としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、またはこれらの変性体等が挙げられ、ゴム系高分子としては、例えば、エチレン-プロピレン-イソプレン共重合体、エチレン-プロピレン-ブタジエン共重合体等が挙げられる。これらは、1種単独でもよいし、2種以上を組み合わせて使用してもよい。
 正極活物質層は、上記正極活物質等の他に、リチウム塩を含むことが好ましい。正極活物質層にリチウム塩が含まれることで、高温保存中、正極においてフッ素化鎖状カルボン酸エステルが分解されることが抑制されると考えられ、正極活物質層又は負極活物質層にリチウム塩が含まれていない場合と比較して、非水電解質二次電池の高温保存後の容量回復率の低下がより抑制される。
 正極活物質層に含まれるリチウム塩は、例えば、硫酸リチウム、リン酸リチウム(LiPO)、ホウ酸リチウム等が挙げられ、これらの中ではリン酸リチウムが好ましい。
 正極活物質中のリチウム塩の含有量は、非水電解質二次電池の高温保存後の容量回復率の低下を抑制する等の点で、例えば、0.1質量%以上5質量%以下であることが好ましい。
 リチウム塩の平均粒径D(μm)は150μm未満であることが好ましい。そうすることで極材の成形性を保持できる。平均粒径D(μm)は、例えば、レーザ回折式粒子径分布測定装置によって測定されるメジアン径(D50)である。
 [負極]
 負極は、例えば金属箔等の負極集電体と、負極集電体上に形成された負極活物質層とを備える。負極集電体には、銅などの負極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極活物質層は、例えば、負極活物質、結着材、増粘剤等を含む。
 負極は、例えば、負極活物質、増粘剤、結着剤を含む負極合材スラリーを負極集電体上に塗布・乾燥することによって、負極集電体上に負極活物質層を形成し、当該負極活物質層を圧延することにより得られる。
 負極活物質は、リチウムイオンを吸蔵・放出することが可能な材料であれば特に制限されるものではなく、例えば、金属リチウム、リチウム-アルミニウム合金、リチウム-鉛合金、リチウム-シリコン合金、リチウム-スズ合金等のリチウム合金、黒鉛、コークス、有機物焼成体等の炭素材料、SnO、SnO、TiO等の金属酸化物等が挙げられる。これらは、1種単独でもよいし、2種以上を組み合わせて使用してもよい。
 結着剤としては、例えば、正極の場合と同様にフッ素系高分子、ゴム系高分子等を用いることもできるが、スチレン-ブタジエン共重合体(SBR)又はこの変性体等を用いてもよい。
 増粘剤としては、例えば、カルボキシメチルセルロース(CMC)、ポリエチレンオキシド(PEO)等が挙げられる。これらは、1種単独でもよし、2種以上を組み合わせて用いてもよい。
 負極活物質層は、上記負極活物質等の他に、リチウム塩を含むことが好ましい。負極活物質層にリチウム塩が含まれることで、負極において鎖状カルボン酸エステルが過剰に分解されることが抑制され、負極上に適切な量の被膜(フッ素化イミドエステル化合物を多く含む複合膜)が形成されると考えられ、正極活物質層又は負極活物質層にリチウム塩が含まれていない場合と比較して、非水電解質二次電池の高温保存後の容量回復率の低下がより抑制される。
 負極活物質層に含まれるリチウム塩は、例えば、硫酸リチウム(LiSO)、リン酸リチウム、ホウ酸リチウム等が挙げられ、これらの中では硫酸リチウムが好ましい。負極活物質中のリチウム塩の含有量は、非水電解質二次電池の高温保存後の容量回復率の低下を抑制する等の点で、例えば、0.1質量%以上5質量%以下であることが好ましい。
 リチウム塩の平均粒径D(μm)は150μm未満であることが好ましい。そうすることで極材の成形性を保持できる。平均粒径D(μm)は、例えば、レーザ回折式粒子径分布測定装置によって測定されるメジアン径(D50)である。
 前記負極の表面には、フッ素化カルボン酸エステル及びスルホニルイミド塩の分解物由来のスルホニルイオンを多く含む複合膜が形成されていると考えられる。例えば電池の初期充放電時に、フッ素化カルボン酸エステル及びスルホニルイミド塩が負極表面で分解して形成されるスルホニルイオンを多く含む複合膜の存在は、負極表面のXPS測定で得られるXPSスペクトルにより確認することができる。例えばスルホニルイミド塩としてリチウムビス(フルオロスルホニル)イミドを用いた場合の負極の表面には、スルホニルイオンに由来するS元素を含むLi2S、S-S結合等のピークが確認できる。さらに複合膜の主構成元素であるLi、S、C、N、O、Fの総量を100原子%として算出した場合、S原子が1%以上の割合(S原子%=S/[Li+S+C+N+O+F])で含まれる。
 [セパレータ]
 セパレータには、例えば、イオン透過性及び絶縁性を有する多孔性シート等が用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、セルロースなどが好適である。セパレータは、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよい。また、ポリエチレン層及びポリプロピレン層を含む多層セパレータであってもよく、セパレータの表面にアラミド系樹脂、セラミック等の材料が塗布されたものを用いてもよい。
 以下、実施例により本開示をさらに説明するが、本開示は以下の実施例に限定されるものではない。
 <実施例1>
 [正極の作製]
 正極活物質には、LiNi0.82Co0.15Al0.03(NCA)で表されるリチウムニッケル複合酸化物を用いた。正極活物質(NCA)と、アセチレンブラックと、ポリフッ化ビニリデンとを、100:1:0.9の質量比で混合した後、N-メチル-2-ピロリドン(NMP)を適量加えて、正極合材スラリーを調製した。次に、この正極合材スラリーを、アルミニウム箔からなる正極集電体の両面に塗布した。塗膜を乾燥した後、圧延ローラを用いて圧延することにより、正極集電体の両面に正極活物質層が形成された正極を作製した。
 [負極の作製]
 負極活物質としての人造黒鉛、増粘剤としてのカルボキシメチルセルロースのナトリウム塩(CMC-Na)と、結着剤としてのスチレンブタジエン共重合体(SBR)とを、100:1:1の質量比で水溶液中において混合し、負極合材スラリーを調製した。次に、この負極合材スラリーを銅箔からなる負極集電体の両面に均一に塗布した。塗膜を乾燥させた後、圧延ローラを用いて圧延することにより、負極集電体の両面に負極合材層が形成された負極を作製した。
 [非水電解質の調製]
 3,3,3-トリフルオロプロピオン酸メチル(FMP)の非水溶媒1Lに、2.8molの含有量でリチウムビス(フルオロスルホニル)イミド(LiFSI)を溶解させ、また、1質量%のビニレンカーボネート(VC)を溶解させ、非水電解質を調製した。
 [非水電解質二次電池の作製]
 上記正極及び負極にそれぞれリード端子を取り付けた。次に、正極及び負極とがセパレータを介して対向するように電極体を作製し、当該電極体を上記非水電解液と共に、アルミニウムのラミネート外装体に封入した。これを実施例1の非水電解質二次電池とした。
 <実施例2>
 非水電解質の調製において、3,3,3-トリフルオロプロピオン酸メチル(FMP)の非水溶媒1Lに、4.7molの含有量でリチウムビス(フルオロスルホニル)イミドを溶解させたこと以外は、実施例1と同様に非水電解質を調製した。これを実施例2の非水電解質として、実施例1と同様にして非水電解質二次電池を作製した。
 <実施例3>
 非水電解質の調製において、3,3,3-トリフルオロプロピオン酸メチル(FMP)と、フルオロエチレンカーボネート(FEC)とを、95:5の体積比で混合した混合溶媒を非水溶媒として用いたこと以外は、実施例1と同様に非水電解質を調製した。これを実施例3の非水電解質として、実施例1と同様にして非水電解質二次電池を作製した。
 <実施例4>
 非水電解質の調製において、3,3,3-トリフルオロプロピオン酸メチル(FMP)と、2,2,2-トリフルオロエチルアセテート(FEA)と、フルオロエチレンカーボネート(FEC)とを、90:5:5の体積比で混合した混合溶媒を非水溶媒として用いたこと以外は、実施例1と同様に非水電解質を調製した。これを実施例4の非水電解質として、実施例1と同様にして非水電解質二次電池を作製した。
 <実施例5>
 非水電解質の調製において、3,3,3-トリフルオロプロピオン酸メチル(FMP)と、フルオロエチレンカーボネート(FEC)とを、80:20の体積比で混合した混合溶媒を非水溶媒として用いたこと以外は、実施例1と同様に非水電解質を調製した。これを実施例5の非水電解質として、実施例1と同様にして非水電解質二次電池を作製した。
 <実施例6>
 非水電解質の調製において、3,3,3-トリフルオロプロピオン酸メチル(FMP)の非水溶媒1Lに、2.4molの含有量でリチウムビス(フルオロスルホニル)イミド(LiFSI)を溶解させ、0.3molのLiPFを溶解させたこと以外は、実施例1と同様に非水電解質を調製した。これを実施例6の非水電解質として、実施例1と同様にして非水電解質二次電池を作製した。
 <実施例7>
 非水電解質の調製において、3,3,3-トリフルオロプロピオン酸メチル(FMP)の非水溶媒に、0.5質量%のコハク酸を溶解させたこと以外は、実施例1と同様に非水電解質を調製した。これを実施例7の非水電解質として、実施例1と同様にして非水電解質二次電池を作製した。
 <実施例8>
 負極の作製において、負極活物質としての人造黒鉛と、増粘剤としてのカルボキシメチルセルロースのナトリウム塩(CMC-Na)と、結着剤としてのスチレン-ブタジエン共重合体(SBR)と、硫酸リチウムとを、100:1:1:0.5の質量比で混合し、水を適量加えて、負極合材スラリーを調製したこと以外は、実施例1と同様に負極を作製した。これを実施例8の負極として、実施例1と同様にして非水電解質二次電池を作製した。
 <実施例9>
 正極の作製において、正極活物質(NCA)と、アセチレンブラックと、ポリフッ化ビニリデンと、リン酸リチウムとを、100:1:0.9:0.5の質量比で混合した後、N-メチル-2-ピロリドン(NMP)を適量加えて、正極合材スラリーを調製したこと以外は、実施例1と同様に正極を作製した。これを実施例9の正極として、実施例1と同様にして非水電解質二次電池を作製した。
 <実施例10>
 実施例8の負極と実施例9の正極とを用い、実施例1と同様にして非水電解質二次電池を作製した。
 <実施例11>
 非水電解質の調製において、3,3,3-トリフルオロプロピオン酸メチル(FMP)の非水溶媒1Lに、2.8molの含有量でリチウムビス(ペンタフルオロエタンスルホニル)イミド(LIBETI)を溶解させたこと以外は、実施例1と同様に非水電解質を調製した。これを実施例11の非水電解質として、実施例1と同様にして非水電解質二次電池を作製した。
 <比較例1>
 非水電解質の調製において、3,3,3-トリフルオロプロピオン酸メチル(FMP)の非水溶媒1Lに、2.8molの含有量でLiPFを溶解させたこと以外は、実施例1と同様に非水電解質を調製した。これを比較例1の非水電解質として、実施例1と同様にして非水電解質二次電池を作製した。
 <比較例2>
 非水電解質の調製において、3,3,3-トリフルオロプロピオン酸メチル(FMP)の非水溶媒1Lに、1.3molの含有量でリチウムビス(フルオロスルホニル)イミドを溶解させたこと以外は、実施例1と同様に非水電解質を調製した。これを比較例2の非水電解質として、実施例1と同様にして非水電解質二次電池を作製した。
 <比較例3>
 非水電解質の調製において、3,3,3-トリフルオロプロピオン酸メチル(FMP)の非水溶媒1Lに、2.1molの含有量でリチウムビス(フルオロスルホニル)イミドを溶解させたこと以外は、実施例1と同様に非水電解質を調製した。これを比較例3の非水電解質として、実施例1と同様にして非水電解質二次電池を作製した。
 <比較例4>
 非水電解質の調製において、3,3,3-トリフルオロプロピオン酸メチル(FMP)の非水溶媒1Lに、1.26molの含有量でリチウムビス(フルオロスルホニル)イミドを溶解させ、1.21molの濃含有量でLiPF6を溶解させたこと以外は、実施例1と同様に非水電解質を調製した。これを比較例4の非水電解質として、実施例1と同様にして非水電解質二次電池を作製した。
 <比較例5>
 非水電解質の調製において、3,3,3-トリフルオロプロピオン酸メチル(FMP)と、フルオロエチレンカーボネート(FEC)とを、70:30の体積比で混合した混合溶媒を非水溶媒として用いたこと以外は、実施例1と同様に非水電解質を調製した。これを比較例5の非水電解質として、実施例1と同様にして非水電解質二次電池を作製した。
 [高温保存後の容量回復率の測定]
 実施例及び比較例の非水電解質二次電池について、下記条件で高温保存後の容量回復率の測定を行った。環境温度25℃の下、0.2Cの定電流で電圧が4.2Vになるまで充電した後、電流値が0.05Cになるまで4.2Vで定電圧充電して充電を完了した(当該充電を充電Aと称する)。20分休止後、0.2Cの定電流で電圧が2.5Vになるまで定電流放電し(当該放電を放電Aと称する)、20分休止後、再び充電Aを実施し、20分休止後、放電Aを実施し、電池を安定化させた。さらに20分休止後、充電Aを実施し、20分後、放電Aを実施し、その際の放電容量を初期容量とした。20分休止後、上記充電Aのみを実施した後、環境温度60℃で5日間保存した。保存後、室温まで降温した後、上記の放電Aのみを行った。20分休止後、上記充電Aを実施し、20分休止後、上記放電Aを行い、その際の放電容量を保存後容量とした。そして、以下の式より、高温保存後の容量回復率を求めた。
 高温保存後の容量回復率(%)=保存後容量/初期容量×100
 表1に、各実施例で用いた正極、負極、非水電解質の組成、及び各実施例の非水電解質二次電池の高温保存後の容量回復率の結果を示す。また、表2に、各比較例で用いた正極、負極、非水電解質の組成、及び各比較例の非水電解質二次電池の高温保存後の容量回復率の結果を示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 実施例1~11の非水電解質二次電池は、比較例1~5の非水電解質二次電池と比べて、高温保存後の容量回復率が高い値を示した。これらのことから、上記一般式で表されるフッ素化鎖状カルボン酸エステルを含む非水溶媒と、スルホニルイミド塩と、を含み、前記非水溶媒中の前記フッ素化鎖状カルボン酸エステルの含有量が80体積%以上であり、前記スルホニルイミド塩の含有量が前記非水溶媒1Lに対して2.4mol以上である非水電解質を用いることで、非水電解質二次電池の高温保存後の容量回復率の低下を抑制することができると言える。
 実施例1~11の中では、スルホニルイミド塩(LiFSI)の含有量が非水溶媒1Lに対し4.7molである実施例2、所定量のFECや所定量のFEAを含む実施例3~5、正極や負極にリチウム塩を添加した実施例8~10、スルホニルイミド塩としてLiBETIを用いた実施例11は、90%を超える高温保存後の容量回復率を示した。

Claims (9)

  1.  正極活物質層を有する正極と、負極活物質層を有する負極と、非水電解質とを備える非水電解質二次電池であって、
     前記非水電解質は、下記一般式で表されるフッ素化鎖状カルボン酸エステルを含む非水溶媒と、スルホニルイミド塩と、を含み、
     前記非水溶媒中の前記フッ素化鎖状カルボン酸エステルの含有量は80体積%以上であり、
     前記スルホニルイミド塩の含有量は、前記非水溶媒1Lに対して2.4mol以上である、非水電解質二次電池。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R、RはH、F、CH3-x(xは1、2、3)のいずれかであり、互いに同一であっても異なっていてもよい。Rは炭素数1~3のアルキル基であり、Fを含んでいてもよい。)
  2.  前記フッ素化鎖状カルボン酸エステルは、3,3,3-トリフルオロプロピオン酸メチルを含む、請求項1に記載の非水電解質二次電池。
  3.  前記スルホニルイミド塩は、リチウムビス(フルオロスルホニル)イミドを含む、請求項1又は2に記載の非水電解質二次電池。
  4.  前記非水溶媒は、フルオロエチレンカーボネート(FEC)を含み、前記非水溶媒中の前記フルオロエチレンカーボネートの含有量は、0.1体積%以上5体積%以下である、請求項1~3のいずれか1項に記載の非水電解質二次電池。
  5.  前記非水溶媒は、2,2,2-トリフルオロエチルアセテート(FEA)を含み、前記非水溶媒中の前記2,2,2-トリフルオロエチルアセテートの含有量は、0.1体積%以上5体積%以下である、請求項1~4のいずれか1項に記載の非水電解質二次電池。
  6.  前記非水電解質は、カルボン酸無水物を含む、請求項1~5のいずれか1項に記載の非水電解質二次電池。
  7.  前記正極活物質層は、リチウム塩を含む、請求項1~6のいずれか1項に記載の非水電解質二次電池。
  8.  前記負極活物質層は、リチウム塩を含む、請求項1~7のいずれか1項に記載の非水電解質二次電池。
  9.  前記正極活物質層は、リチウムニッケル複合酸化物を含み、前記リチウムニッケル複合酸化物のニッケルの割合は、リチウムを除く金属元素の総モル数に対して30モル%以上である、請求項1~8のいずれか1項に記載の非水電解質二次電池。
PCT/JP2018/004359 2017-03-29 2018-02-08 非水電解質二次電池 WO2018179883A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880016995.7A CN110392952A (zh) 2017-03-29 2018-02-08 非水电解质二次电池
JP2019508693A JP6948600B2 (ja) 2017-03-29 2018-02-08 非水電解質二次電池
US16/580,212 US20200020986A1 (en) 2017-03-29 2019-09-24 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017065804 2017-03-29
JP2017-065804 2017-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/580,212 Continuation US20200020986A1 (en) 2017-03-29 2019-09-24 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2018179883A1 true WO2018179883A1 (ja) 2018-10-04

Family

ID=63675076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004359 WO2018179883A1 (ja) 2017-03-29 2018-02-08 非水電解質二次電池

Country Status (4)

Country Link
US (1) US20200020986A1 (ja)
JP (1) JP6948600B2 (ja)
CN (1) CN110392952A (ja)
WO (1) WO2018179883A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021128203A1 (zh) * 2019-12-26 2021-07-01 宁德新能源科技有限公司 一种电解液及电化学装置
WO2024162104A1 (ja) * 2023-01-31 2024-08-08 パナソニックIpマネジメント株式会社 電池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010030008A1 (ja) * 2008-09-11 2010-03-18 日本電気株式会社 二次電池
JP2010086914A (ja) * 2008-10-02 2010-04-15 Daikin Ind Ltd 非水電解液
JP2015069704A (ja) * 2013-09-26 2015-04-13 旭硝子株式会社 二次電池用非水電解液およびリチウムイオン二次電池
JP2015111549A (ja) * 2013-10-29 2015-06-18 パナソニック株式会社 非水電解質二次電池
JP2015128044A (ja) * 2013-11-28 2015-07-09 パナソニックIpマネジメント株式会社 非水電解質二次電池
JP2015133312A (ja) * 2013-09-25 2015-07-23 国立大学法人 東京大学 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む高粘度電解液
JP2016167408A (ja) * 2015-03-10 2016-09-15 国立大学法人 東京大学 電解液

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4033074B2 (ja) * 2002-08-29 2008-01-16 日本電気株式会社 二次電池用電解液およびそれを用いた二次電池
WO2015147000A1 (ja) * 2014-03-27 2015-10-01 ダイキン工業株式会社 電解液及び電気化学デバイス
CN105186032A (zh) * 2015-10-19 2015-12-23 东莞市凯欣电池材料有限公司 一种高电压锂离子电池电解液及使用该电解液的锂离子电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010030008A1 (ja) * 2008-09-11 2010-03-18 日本電気株式会社 二次電池
JP2010086914A (ja) * 2008-10-02 2010-04-15 Daikin Ind Ltd 非水電解液
JP2015133312A (ja) * 2013-09-25 2015-07-23 国立大学法人 東京大学 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む高粘度電解液
JP2015069704A (ja) * 2013-09-26 2015-04-13 旭硝子株式会社 二次電池用非水電解液およびリチウムイオン二次電池
JP2015111549A (ja) * 2013-10-29 2015-06-18 パナソニック株式会社 非水電解質二次電池
JP2015128044A (ja) * 2013-11-28 2015-07-09 パナソニックIpマネジメント株式会社 非水電解質二次電池
JP2016167408A (ja) * 2015-03-10 2016-09-15 国立大学法人 東京大学 電解液

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021128203A1 (zh) * 2019-12-26 2021-07-01 宁德新能源科技有限公司 一种电解液及电化学装置
US11830981B2 (en) 2019-12-26 2023-11-28 Ningde Amperex Technology Limited Electrolyte and electrochemical device
WO2024162104A1 (ja) * 2023-01-31 2024-08-08 パナソニックIpマネジメント株式会社 電池

Also Published As

Publication number Publication date
JPWO2018179883A1 (ja) 2020-02-06
CN110392952A (zh) 2019-10-29
US20200020986A1 (en) 2020-01-16
JP6948600B2 (ja) 2021-10-13

Similar Documents

Publication Publication Date Title
JP7247263B2 (ja) 非水性電解質組成物
EP3349290B1 (en) Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution, and electricity storage device
JP6846652B2 (ja) 非水電解液及び非水電解液二次電池
JP6398985B2 (ja) リチウムイオン二次電池
JP5582587B2 (ja) リチウムイオン二次電池
CN109792086B (zh) 用于锂二次电池的非水电解液和包含该非水电解液的锂二次电池
JP4697382B2 (ja) 非水電解質二次電池
JP6380376B2 (ja) 非水電解液二次電池
JP5310711B2 (ja) 非水電解質二次電池
JP6380377B2 (ja) リチウムイオン二次電池
JP6865400B2 (ja) 非水電解質二次電池
JP2017152262A (ja) リチウムイオン二次電池
JP2017532740A (ja) 非水性電解液及びこれを含むリチウム二次電池
KR20160037102A (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
JP6341195B2 (ja) 二次電池用電解液およびそれを用いた二次電池
JP6948600B2 (ja) 非水電解質二次電池
KR20180057301A (ko) 리튬이차전지용 전해질 및 이를 포함하는 리튬이차전지
JP6319092B2 (ja) 二次電池
JP5410441B2 (ja) 高温特性を改善する為の添加剤を含むリチウム二次電池
JP4203755B2 (ja) 非水電解液二次電池
WO2014133161A1 (ja) 非水電解液二次電池
JP2007207483A (ja) 非水電解質組成物及び非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775034

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019508693

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775034

Country of ref document: EP

Kind code of ref document: A1