WO2013069454A1 - 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池 - Google Patents

非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池 Download PDF

Info

Publication number
WO2013069454A1
WO2013069454A1 PCT/JP2012/077409 JP2012077409W WO2013069454A1 WO 2013069454 A1 WO2013069454 A1 WO 2013069454A1 JP 2012077409 W JP2012077409 W JP 2012077409W WO 2013069454 A1 WO2013069454 A1 WO 2013069454A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
lithium
electrolyte secondary
active material
secondary battery
Prior art date
Application number
PCT/JP2012/077409
Other languages
English (en)
French (fr)
Inventor
遠藤 大輔
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2013542916A priority Critical patent/JP5861992B2/ja
Priority to CN201280040018.3A priority patent/CN103748711B/zh
Priority to EP12847868.2A priority patent/EP2779285B1/en
Priority to KR1020147001260A priority patent/KR20140090591A/ko
Priority to US14/352,183 priority patent/US20140308584A1/en
Publication of WO2013069454A1 publication Critical patent/WO2013069454A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an active material for a non-aqueous electrolyte secondary battery, a method for producing the active material, and a non-aqueous electrolyte secondary battery using the active material.
  • LiCoO 2 is mainly used as a positive electrode active material in a non-aqueous electrolyte secondary battery.
  • the discharge capacity was about 120 to 130 mAh / g.
  • LiCoO 2 and other compounds As a positive electrode active material for nonaqueous electrolyte secondary batteries, a solid solution of LiCoO 2 and other compounds is known.
  • Li [Co 1-2x Ni x Mn x ] O 2 (0 ⁇ x ⁇ 1/2), which has an ⁇ -NaFeO 2 type crystal structure and is a solid solution of three components of LiCoO 2 , LiNiO 2 and LiMnO 2 ” Was announced in 2001.
  • LiNi 1/2 Mn 1/2 O 2 and LiCo 1/3 Ni 1/3 Mn 1/3 O 2 which are examples of the solid solution, have a discharge capacity of 150 to 180 mAh / g, and are charged / discharged. Excellent cycle performance.
  • the composition ratio Li / Me of lithium (Li) with respect to the ratio of transition metal (Me) is larger than 1, for example, Li / Me is 1.25 to 1.6.
  • so-called “lithium-rich” active materials are known. Such a material can be expressed as Li 1 + ⁇ Me 1- ⁇ O 2 ( ⁇ > 0).
  • Patent Document 1 discloses a kind of active material such as Li [Li 1/3 Mn 2/3 ] O 2 , LiNi 1/2 Mn 1/2 O 2 and LiCoO 2 as a solid solution. An active material that can be represented is described.
  • a charging method in which the maximum potential of the positive electrode at the time of charging is 4.3 V (vs. Li / Li + ) or less is adopted by providing a manufacturing process that performs charging at least in a relatively flat region.
  • a battery capable of obtaining a discharge capacity of 177 mAh / g or more can be manufactured.
  • Patent Document 2 states that “a method for producing a lithium-containing transition metal oxide containing nickel and manganese and having a close-packed structure of oxygen, wherein a raw material containing nickel and manganese is heated at a temperature of 500 ° C. to 700 ° C. , Calcining to obtain a precursor oxide containing nickel and manganese, mixing the precursor oxide and the lithium source, and calcining the resulting mixture to obtain a lithium-containing transition metal oxide.
  • a process comprising the steps of: obtaining an atom of a lithium number m Li and a transition metal number m T contained in the mixture of the precursor oxide and the lithium source.
  • Patent Document 2 states that “the active material of the present invention may contain at least one different element selected from the group consisting of cobalt, iron, zinc, aluminum, magnesium, strontium, yttrium and ytterbium.
  • the amount of the different element is preferably such that it is doped in or on the primary or secondary particles of the lithium-containing transition metal oxide ”(paragraph [0042]),“ the active material of the present invention.
  • a small amount of a different element can be added, and various effects can be exhibited by adding a different element.For example, the effect of improving load characteristics can be obtained by adding cobalt. ”(Paragraph [0165] ]).
  • Patent Document 2 states that “the average particle diameter of primary particles constituting the lithium-containing transition metal oxide is 1 ⁇ m or less, and at least a part of the primary particles are triangular or hexagonal on the surface thereof.
  • the primary particles of the lithium-containing transition metal oxide can be clearly confirmed.
  • the average particle size of the primary particles is 1 ⁇ m or less, and the primary particles are close to a triangle or hexagon.
  • FIG. 36A and FIG. 36B show typical ones of the obtained active materials.
  • 36 shows an SEM image (magnified 30000 times) of the secondary particles, as is apparent from Fig. 36. It can be seen that the shape of the particles is columnar, particularly hexagonal, and the size of the primary particles is around 1 ⁇ m.
  • lithium hydroxide was sometimes used excessively, it was considered that lithium hydroxide worked as a flux and developed active material crystals.Therefore, in order to obtain columnar particles, an excessive lithium source was used, It is preferred that the source function as a flux to promote crystal growth "(paragraph [0163]).
  • Patent Document 3 "the general formula: in Li 1 + x Mn 2-y M y O 4 (wherein, 1 M is selected Al, Mg, Si, Ca, Ti, Cu, Ba, and W and Pb It is an element of more than species, and is represented by ⁇ 0.1 ⁇ x ⁇ 0.2, 0.06 ⁇ y ⁇ 0.3.) And the cumulative volume in the particle size distribution is 10%, 50% and 90%.
  • d10 is 2 ⁇ m or more and 5 ⁇ m or less
  • d50 is 6 ⁇ m or more and 9 ⁇ m or less
  • d90 is 12 ⁇ m or more and 15 ⁇ m or less
  • the BET specific surface area exceeds 1.0 m 2 / g to 2.0 m. 2 / g or less and a tap density of 0.5 g / cm 3 or more and less than 1.0 g / cm 3 for spinel type lithium manganese composite oxide for lithium ion batteries.
  • d10 is 2 ⁇ m or more and 5 ⁇ m or less
  • d50 is 6 ⁇ m or more and 9 ⁇ m or less
  • d90 is 12 ⁇ m or more and 15 ⁇ m or less.
  • the reason why d10 is 2 ⁇ m or more and less than 5 ⁇ m is that when the slurry is prepared, deficiency tends to occur when the slurry is prepared, and when it exceeds 5 ⁇ m, irregularities are easily formed on the electrode film after coating.
  • the high temperature characteristics tend to be deteriorated when the average particle diameter is less than 6 ⁇ m.
  • a conductive material is mixed to prepare a slurry, and unevenness is likely to occur on the electrode film after being applied to the current collector, d90 being 12 ⁇ m or more.
  • the reason why the thickness is 15 ⁇ m or less is that, similarly to the limitation of the range of d10, if it is less than 12 ⁇ m, poor mixing is likely to occur during slurry preparation, and if it exceeds 15 ⁇ m, unevenness is likely to occur in the electrode film after application. If the film has irregularities, the smoothness of the electrode surface after pressing is lost, which is not preferable ”(paragraph [0028]).
  • Patent Document 3 discloses that a lithium-manganese composite oxide according to the present invention is obtained by subjecting the obtained raw material mixture to an oxidation treatment (firing in an oxidizing atmosphere, etc.) under appropriate conditions. It is important to adjust the temperature in the furnace in two stages using a continuous furnace because the oxidation process has a large variation in product quality and is industrially disadvantageous.
  • the first stage is an oxidation treatment at a predetermined temperature between 350 to 700 ° C. and a treatment time of 3 to 9 hours
  • the second stage is a predetermined temperature between 800 to 1000 ° C.
  • the first stage is an oxidation treatment at a predetermined temperature between 400 to 600 ° C. for a treatment time of 4 to 8 hours
  • the second stage is Processing time 2 at a predetermined temperature between 850 and 950 ° C It is more preferable to perform the oxidation treatment for 4 hours ....
  • the first stage treatment is performed for the purpose of oxidizing the carbonate which is the raw material mixture into an oxide
  • the second stage treatment is performed in the first stage. This is an oxidation to convert the obtained oxide into a desired different element-substituted lithium manganese oxide, leaving no unreacted substances at each processing temperature and producing no other by-products.
  • the temperature of the first stage is lower than 350 ° C. because the oxidation of the carbonate which is the raw material mixture becomes insufficient, and it is not preferable that the temperature of the first stage exceeds 700 ° C. Part is changed to a spinel oxide and becomes a by-product, which is not preferable, and if the temperature of the second stage is less than 800 ° C., conversion to lithium manganese oxide is insufficient, and if it exceeds 1000 ° C., oxygen Defects tend to occur, which is undesirable "It is described as (paragraph [0040]).
  • Patent Documents 4 to 6 describe that a precursor of a transition metal oxide containing Co, Ni, and Mn is temporarily fired, then mixed with a lithium compound, and fired.
  • Patent Document 7 provides “a positive electrode active material for a non-aqueous electrolyte secondary battery that can provide a secondary battery with low internal resistance and excellent output characteristics and life characteristics, and for the non-aqueous electrolyte secondary battery.
  • the positive electrode active material for the purpose of providing a process for producing stable "(paragraph [0026]),” Li z Ni 1-w M w O 2 (where, M is Co, Al, Mg, Mn, Ti And at least one metal element selected from the group consisting of Fe, Cu, Zn, and Ga, satisfying 0 ⁇ w ⁇ 0.25 and 1.0 ⁇ z ⁇ 1.1.
  • Lithium metal composite oxide powder which is composed of primary particles of the lithium metal composite oxide powder and secondary particles formed by aggregating a plurality of primary particles, and the shape of the secondary particles is spherical or It is elliptical and 95% or more of the secondary particles are 20 ⁇ m or less.
  • a non-aqueous electrolyte secondary battery having a particle size, an average particle size of the secondary particles of 7 to 13 ⁇ m, and a tap density of the powder of 2.2 g / cm 3 or more.
  • the positive electrode active material for the present invention ”(Claim 1) is described, and a method for producing the positive electrode active material is described as“ heating from room temperature to 450 to 550 ° C.
  • First stage baking is performed at the ultimate temperature for 1 to 10 hours, and then the temperature is further increased to 650 to 800 ° C. at a rate of temperature increase of 1 to 5 ° C./min, and the ultimate temperature is 0.6 to 30 hours.
  • the second stage firing was carried out by holding "(Claim 6), and it is also shown that the particle diameter of the primary particles is 1 ⁇ m or less.
  • Patent Document 8 for the purpose of providing “a lithium nickel manganese cobalt composite oxide for a lithium secondary battery positive electrode active material capable of imparting excellent cycle characteristics and load characteristics” (paragraph [0009]), "following general formula (1): Li x Ni 1 -y-z Mn y Co z O 2 (1) (wherein, x is 0.9 ⁇ x ⁇ 1.3, y is 0 ⁇ y ⁇ 1.0 , Z represents 0 ⁇ z ⁇ 1.0, where y + z ⁇ 1)), an average particle diameter of 5 to 40 ⁇ m, a BET specific surface area of 5 to 25 m 2 / g and a tap density of 1.70 g / ml or more, a lithium nickel manganese cobalt composite oxide for a lithium secondary battery positive electrode active material ”(Claim 1),“ Lithium compound and , Nickel atom, ma Cancer atom and cobalt atom in a molar ratio of 1: 0.5-2.0: comprises in the range of 0.5-2.0, and
  • Patent Document 9 describes “a positive electrode active material for a non-aqueous electrolyte secondary battery having a high packing efficiency and a high packing density that can effectively improve load characteristics and increase capacity” (paragraph [0004]).
  • compound oxide particles comprising Li and at least one transition element selected from the group consisting of Co, Ni, Mn and Fe, the composite oxide particles having a longest diameter.
  • a non-aqueous electrolyte secondary battery comprising 90% or more of spherical and / or elliptic spherical particles having D1 / D2 in the range of 1.0 to 2.0 when D1 is the shortest diameter D2.
  • Positive electrode active material for use (Claim 1),“ Composite oxide particles are mainly composed of particles having a particle size of 2 to 100 ⁇ m and an average particle size of 5 to 80 ⁇ m.
  • the positive electrode active material according to claim 1, (Co 4), “Co, Ni, At least one transition element compound particle selected from the group consisting of Mn and Fe is mixed with a raw material containing a lithium compound, and the resulting mixture is maintained at a temperature equal to or higher than the melting point of the lithium compound as a calcining step.
  • the invention has been described.
  • Patent Document 1 In a so-called “lithium-excess type” positive electrode active material as described in Patent Document 1, by performing a relatively high potential exceeding 4.3 V, particularly a potential of 4.4 V or more, at least in the first charge, There is a feature that a high discharge capacity can be obtained. However, the initial efficiency in this case is not sufficiently high, and there is a problem that it is inferior in terms of high rate discharge performance.
  • Patent Documents 2 to 9 describe that the particle diameter of a lithium-containing transition metal oxide used as an active material is specified, and that provisional firing is employed when producing an active material.
  • An object of the present invention is to provide an active material for a non-aqueous electrolyte secondary battery having a large discharge capacity and excellent high-rate discharge performance, a method for producing the active material, and a non-aqueous electrolyte secondary battery using the active material There is to do.
  • D10 is 6 to 9 ⁇ m
  • D50 is 13 to 16 ⁇ m
  • D90 is 18 to 32 ⁇ m
  • D10, D50, and D90 are the particle sizes at which the cumulative volume in the particle size distribution of the secondary particles is 10%, 50%, and 90%, respectively.
  • An active material for a nonaqueous electrolyte secondary battery wherein the primary particles have a particle size of 1 ⁇ m or less.
  • a method for manufacturing an active material for a non-aqueous electrolyte secondary battery containing an oxide, wherein a compound of a transition metal element Me containing Co, Ni, and Mn is coprecipitated in a solution to coprecipitate a transition metal oxide A step of calcining the coprecipitation precursor at 300 to 500 ° C., a step of calcining the coprecipitation precursor and the lithium compound, and adding Li to the transition metal element Me of the lithium transition metal composite oxide.
  • a process for producing an active material for a non-aqueous electrolyte secondary battery comprising the steps of mixing and firing so that the molar ratio Li / Me of the mixture is 1.2 to 1.4.
  • a method for producing an active material for a non-aqueous electrolyte secondary battery containing an oxide wherein a compound of a transition metal element Me containing Co, Ni and Mn is co-precipitated in a solution to co-precipitate a transition metal carbonate Mixing the coprecipitation precursor and the lithium compound so that the molar ratio Li / Me of Li to the transition metal element Me of the lithium transition metal composite oxide is 1.2 to 1.4.
  • a method for producing an active material for a non-aqueous electrolyte secondary battery comprising: pre-baking powder at 250 to 750 ° C .; and re-mixing and baking the pre-fired mixed powder .
  • the lithium transition metal composite oxide has a particle size of 10%, 50% and 90% in the particle size distribution of the secondary particles as D10, D50 and D90, respectively.
  • D50 is 13 to 16 ⁇ m
  • D90 is 18 to 32 ⁇ m
  • the particle diameter of the primary particles is 1 ⁇ m or less.
  • the lithium transition metal composite oxide has a BET specific surface area of 3.5 to 6.5 m 2 / g.
  • a method for producing an active material for a secondary battery (12)
  • a method for producing an active material for a secondary battery (13) A non-aqueous electrolyte secondary battery electrode comprising the non-aqueous electrolyte secondary battery active material according to any one of (1) to (6). (14) A nonaqueous electrolyte secondary battery comprising the electrode for a nonaqueous electrolyte secondary battery according to (13).
  • the present invention (1) to (14), it is possible to provide an active material for a non-aqueous electrolyte secondary battery having a large discharge capacity and excellent high rate discharge performance.
  • the active material for nonaqueous electrolyte secondary batteries excellent in initial efficiency can be provided.
  • the composition of the lithium transition metal composite oxide contained in the active material for a nonaqueous electrolyte secondary battery according to the present invention is a transition metal element containing Co, Ni and Mn from the viewpoint of obtaining a high discharge capacity and excellent initial efficiency,
  • the molar ratio Li / Me of Li to the transition metal element Me is 1.2 to 1.4.
  • the molar ratio Co / Me of Co to the transition metal element Me is preferably 0.02 to 0.23 in that a nonaqueous electrolyte secondary battery having a large discharge capacity and excellent initial efficiency can be obtained. 0.04 to 0.21 is more preferable, and 0.06 to 0.17 is most preferable.
  • the molar ratio Mn / Me of the transition metal element Me is preferably 0.63 to 0.72 in that a nonaqueous electrolyte secondary battery having a large discharge capacity and excellent initial efficiency can be obtained. 0.65 to 0.71 is more preferable.
  • the lithium transition metal composite oxide according to the present invention is essentially a composite oxide containing Li, Co, Ni, and Mn as metal elements, but a small amount of Na, Ca within a range not impairing the effects of the present invention. It does not exclude inclusion of other metals such as alkali metals such as alkali metals, alkaline earth metals, and transition metals represented by 3d transition metals such as Fe and Zn.
  • the lithium transition metal composite oxide according to the present invention has an ⁇ -NaFeO 2 structure.
  • the space group can be assigned to P3 1 12 or R3-m.
  • P3 1 12 is a crystal structure model in which the atomic positions of the 3a, 3b, and 6c sites in R3-m are subdivided, and when ordering is recognized in the atomic arrangement in R3-m, the P3 1 12 model Is adopted. Note that “R3-m” should be represented by adding a bar “-” on “3” of “R3m”.
  • the lithium transition metal composite oxide according to the present invention is obtained by mixing a calcined transition metal oxide precursor and a lithium compound and firing the mixture.
  • the present inventor compared the transition metal oxide precursor, which was calcined at 300 to 500 ° C., mixed with a lithium compound, and the calcined lithium transition metal composite oxide was used as an active material, compared with the case where it was not calcined.
  • the inventors have found that the discharge capacity of the non-aqueous electrolyte battery is increased and the high rate discharge performance is remarkably improved, and the present invention has been achieved.
  • the transition metal carbonate precursor and the lithium compound have a Li molar ratio of Li / Me to the transition metal element Me of the lithium transition metal composite oxide of 1.2 / 1.2.
  • the mixed powder mixed so as to have a value of ⁇ 1.4 is preliminarily fired at 250-750 ° C, then remixed and fired.
  • the present inventor pre-fires as described above before the main calcination to raise the temperature to about 900 ° C., and once demixed and degassed, the active containing the fired lithium transition metal composite oxide is obtained.
  • the inventors arrived at the present invention by discovering that various characteristics (particularly, high rate discharge performance and initial efficiency) of the non-aqueous electrolyte secondary battery using the substance are improved as compared with the case where the pre-firing is not performed.
  • FIGS. 1 shows an example (Example 1) in which temporary firing is performed as in the former, and FIG. 2 is an example (Example 2) in which temporary firing is performed as in the latter.
  • Example 1 the transition metal oxide precursor was calcined at 300 to 500 ° C., mixed with a lithium compound so that Li / Me was 1.2 to 1.4, and calcined.
  • the transition metal composite oxide has a D10 of 6 to 9 ⁇ m, a D50 of 13 to 16 ⁇ m, a D90 of 18 to 32 ⁇ m, and a ratio D90 / D10 of D90 / D10 of 2.9 (2.3 or more) to 4.4.
  • the particle diameter of the primary particles is 1 ⁇ m or less. In the lithium transition metal composite oxide that is not pre-fired, D90 / D10 is less than 2.9 (2.1 or less), and the particle diameter of the primary particles exceeds 1 ⁇ m.
  • D90 / D10 exceeds 4.4.
  • Li / Me exceeds 1.4
  • D50 may exceed 16 ⁇ m when pre-baked at 300 ° C. or higher, and the particle diameter of primary particles exceeds 1 ⁇ m.
  • the pre-fired one tends to spread slightly compared to the non-pre-fired one, but the pre-firing temperature is too low. There is no effect, and there is no significant difference between the pre-baked and non-pre-baked ones, and D10 is included in the range of 7-9 ⁇ m, D50 is 13-16 ⁇ m, and D90 is included in the range of 18-32 ⁇ m.
  • FIG. 3 shows an electron micrograph (photograph taken at a magnification of 2000, taken by SEM) of a lithium transition metal composite oxide of a representative example (Example 2-4) that has been temporarily fired
  • FIG. An electron micrograph of a lithium transition metal composite oxide of a representative comparative example (Comparative Example 2-1) without firing is shown (photo taken at 3500 times magnification taken by SEM). As shown in FIG.
  • the secondary particles of the example are clean spherical and cannot be confirmed to be a lump of primary particles, but the secondary particles of the comparative example are as shown in FIG. 4.
  • the spherical shape collapses, and it can be confirmed that most of the particles are lumps of primary particles exceeding 1 ⁇ m.
  • a 1.5 lithium transition metal composite oxide (Comparative Example 2-8) having a molar ratio Li / Me of more than 1.4 is shown in the electron micrograph of FIG. 5 (magnification of 2000 times taken by SEM). As shown, even when pre-baked, the particles whose primary particles exceed 1 ⁇ m are included.
  • the pre-fired product has a D90 / D10 of 2.3 to 4.1.
  • the molar ratio Li / Me of Li to the transition metal element Me is 1.2 to 1.4, and the cumulative volume in the particle size distribution of the secondary particles is 10%, 50%, and 90%.
  • the non-aqueous electrolyte secondary battery active material containing this has a large discharge capacity and a significant improvement in high-rate discharge performance. In addition, in the latter case, the initial efficiency is remarkably improved.
  • the lithium transition metal composite oxide is pulverized as shown in Comparative Examples to be described later to obtain D10, D50.
  • D90 is smaller than the above range, a non-aqueous electrolyte secondary battery active material having a large discharge capacity, excellent high-rate discharge performance, and excellent initial efficiency cannot be obtained.
  • the preliminarily fired one increases in comparison with the non-preliminary one, and is in the range of 3.5 to 6.5 m 2 / g.
  • the BET specific surface area decreases.
  • the BET specific surface area is It is less than 3.5 m 2 / g.
  • the tap density of the lithium transition metal composite oxide is slightly increased in the temporarily fired one compared with the non-presintered one in the range of 1.65 to 1.96 g / cm 3 .
  • the transition metal oxide precursor when temporarily fired at 300 ° C. or higher, the shape of the spherical particles of the lithium transition metal composite oxide collapses, and the tap density decreases to 1.88 g / cm 3 or less.
  • the pre-baking temperature exceeds 500 ° C., it becomes less than 1.65 g / cm 3 . Therefore, the tap density is preferably 1.65 to 1.88 g / cm 3 .
  • the active material for a non-aqueous electrolyte secondary battery according to the present invention basically includes a metal element (Li, Mn, Co, Ni) constituting the active material and a target active material (lithium transition metal composite oxide). It can be obtained by adjusting the raw material so that it is contained according to the composition, and finally firing this raw material. However, with respect to the amount of the Li raw material, it is preferable to add an excess of about 1 to 5% in view of the disappearance of a part of the Li raw material during firing.
  • a so-called “solid phase method” in which each salt of Li, Co, Ni, and Mn is mixed and fired, or Co, Ni, and Mn in advance is used.
  • a “coprecipitation method” in which a coprecipitation precursor in which particles are present in one particle is prepared, and a Li salt is mixed and fired therein.
  • Mn is particularly difficult to uniformly dissolve in Co and Ni. For this reason, it is difficult to obtain a sample in which each element is uniformly distributed in one particle.
  • the active material for a non-aqueous electrolyte secondary battery it is not limited which of the “solid phase method” and the “coprecipitation method” is selected.
  • the “solid phase method” it is extremely difficult to produce the positive electrode active material according to the present invention.
  • the “coprecipitation method” is preferred because it is easy to obtain an active material with a more uniform element distribution.
  • Mn is easily oxidized among Co, Ni and Mn, and it is not easy to prepare a coprecipitation precursor in which Co, Ni and Mn are uniformly distributed in a divalent state. Uniform mixing at the atomic level of Co, Ni and Mn tends to be insufficient. In particular, in the composition range of the examples described later, since the Mn ratio is higher than the Co and Ni ratios, it is important to remove dissolved oxygen in the aqueous solution. Examples of the method for removing dissolved oxygen include a method of bubbling a gas not containing oxygen.
  • the gas not containing oxygen is not limited, but nitrogen gas, argon gas, carbon dioxide (CO 2 ), or the like can be used.
  • coprecipitation precursor of transition metal carbonate hereinafter referred to as “coprecipitate carbonate precursor”
  • carbon dioxide when used as a gas not containing oxygen, This is preferable because it provides an environment in which carbonates are more easily generated.
  • the pH in the step of producing a precursor by co-precipitation of a compound containing Co, Ni and Mn in a solution is not limited, an attempt is made to prepare the co-precipitation precursor as a co-precipitation carbonate precursor. In this case, it can be set to 7.5 to 11. In order to increase the tap density, it is preferable to control the pH. By setting the pH to 9.4 or less, the tap density can be set to 1.65 g / cm 3 or more, and high-rate discharge performance can be improved. Furthermore, since the particle growth rate can be accelerated by setting the pH to 8.0 or less, the stirring continuation time after completion of dropping of the raw material aqueous solution can be shortened.
  • the production of the coprecipitation precursor is preferably a compound in which Mn, Ni and Co are uniformly mixed.
  • the coprecipitation precursor in order to obtain an active material for a non-aqueous electrolyte secondary battery having a large discharge capacity and excellent initial efficiency, is preferably a carbonate.
  • a precursor having a larger bulk density can be produced by using a crystallization reaction using a complexing agent. At that time, a higher density active material can be obtained by mixing and firing with a Li source, so that the energy density per electrode area can be improved.
  • the raw materials for the coprecipitation precursor include manganese oxide, manganese carbonate, manganese sulfate, manganese nitrate, manganese acetate, etc. as the Mn compound, and nickel hydroxide, nickel carbonate, nickel sulfate, nickel nitrate, nickel acetate as the Ni compound.
  • the Co compound cobalt sulfate, cobalt nitrate, cobalt acetate, and the like can be given as examples.
  • any form can be used as long as it forms a precipitation reaction with an alkaline aqueous solution, but a metal salt having high solubility is preferably used. .
  • Example 1 a coprecipitation precursor of a transition metal oxide was prepared by coprecipitation of a compound of a transition metal element Me containing Co, Ni, and Mn in a solution. Pre-baking at °C. By calcining at 300 to 500 ° C., the discharge capacity is increased and the high rate discharge performance is remarkably improved as compared with the case of not calcining. When the calcination temperature is less than 300 ° C. or exceeds 500 ° C., the discharge capacity (0.1 C capacity) is about the same, but the high-rate discharge performance gradually decreases.
  • the active material for a non-aqueous electrolyte secondary battery in Example 1 is prepared by mixing the pre-fired coprecipitation precursor and the Li compound and then firing the mixture.
  • a Li compound it can manufacture suitably by using lithium hydroxide, lithium carbonate, lithium nitrate, lithium acetate, etc.
  • Example 2 a coprecipitation precursor of a transition metal carbonate was prepared by coprecipitation of a compound of a transition metal element Me containing Co, Ni, and Mn in a solution, and then the coprecipitation precursor, the lithium compound, Are mixed to obtain a mixed powder, and this mixed powder is temporarily fired.
  • the lithium compound lithium hydroxide, lithium carbonate, lithium nitrate, lithium acetate and the like can be used, and lithium carbonate is preferable.
  • the pre-baking temperature is preferably 250 to 750 ° C.
  • the transition metal carbonate When pre-baked, the transition metal carbonate is changed to a transition metal oxide and reacts with a lithium compound to produce a precursor of a lithium transition metal composite oxide. Since carbon dioxide gas is generated in this pre-baking step, after cooling, the product is taken out, remixed, and degassed. At this time, it is preferable to pulverize lightly to such an extent that the secondary particles are aggregated to have a uniform particle size.
  • the main baking is performed after the temporary baking.
  • the firing temperature affects the reversible capacity of the active material.
  • the firing temperature is preferably less than the temperature at which the oxygen release reaction of the active material affects.
  • the oxygen release temperature of the active material is approximately 1000 ° C. or higher in the composition range according to the present invention. However, there is a slight difference in the oxygen release temperature depending on the composition of the active material. It is preferable to keep it. In particular, it is confirmed that the oxygen release temperature of the precursor shifts to the lower temperature side as the amount of Co contained in the sample increases.
  • a mixture of a coprecipitation precursor and a lithium compound may be subjected to thermogravimetric analysis (DTA-TG measurement) in order to simulate the firing reaction process.
  • DTA-TG measurement thermogravimetric analysis
  • the platinum used in the sample chamber of the measuring instrument may be corroded by the Li component volatilized, and the instrument may be damaged. Therefore, a composition in which crystallization is advanced to some extent by adopting a firing temperature of about 500 ° C. in advance. Goods should be subjected to thermogravimetric analysis.
  • the firing temperature is preferably at least 700 ° C. or higher.
  • the firing temperature is preferably at least 800 ° C. or higher.
  • the optimum firing temperature tends to be lower as the amount of Co contained in the precursor is larger.
  • the present inventors analyzed the half width of the diffraction peak of the active material of the present invention in detail, and in the case where the precursor is a coprecipitated hydroxide, in the sample synthesized at a temperature of less than 650 ° C. Strain remains in the lattice and can be remarkably removed by synthesizing at a temperature of 650 ° C. or higher, and when the precursor is a coprecipitated carbonate, the firing temperature is 750. In the sample synthesized at a temperature of less than 0 ° C., strain remained in the lattice, and it was confirmed that the strain could be remarkably removed by synthesis at a temperature of 750 ° C. or higher.
  • the crystallite size was increased in proportion to the increase in the synthesis temperature. Therefore, even in the composition of the active material of the present invention, a favorable discharge capacity can be obtained by aiming at a particle having almost no lattice distortion in the system and having a sufficiently grown crystallite size. Specifically, it is preferable to employ a synthesis temperature (firing temperature) and a Li / Me ratio composition in which the strain amount affecting the lattice constant is 2% or less and the crystallite size is grown to 50 nm or more. all right. Although changes due to expansion and contraction are observed by charging and discharging by molding these as electrodes, it is preferable as an effect that the crystallite size is maintained at 30 nm or more in the charging and discharging process.
  • the calcination temperature is related to the oxygen release temperature of the active material, but crystallization is caused by large growth of primary particles at 900 ° C. or higher without reaching the calcination temperature at which oxygen is released from the active material.
  • the phenomenon is seen. This can be confirmed by observing the fired active material with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the active material synthesized through a synthesis temperature exceeding 900 ° C. has primary particles growing to 0.5 ⁇ m or more, which is disadvantageous for Li + movement in the active material during the charge / discharge reaction, and charge / discharge cycle performance. , High rate discharge performance is reduced.
  • the size of the primary particles is preferably less than 0.5 ⁇ m, and more preferably 0.3 ⁇ m or less.
  • the firing temperature is set to 800 to 1000 ° C. in order to improve the discharge capacity, charge / discharge cycle performance, and high rate discharge performance.
  • the temperature is preferably about 800 to 900 ° C.
  • the nonaqueous electrolyte used in the nonaqueous electrolyte secondary battery according to the present invention is not limited, and those generally proposed for use in lithium batteries and the like can be used.
  • the nonaqueous solvent used for the nonaqueous electrolyte include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, and vinylene carbonate; cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone; dimethyl carbonate, Chain carbonates such as diethyl carbonate and ethyl methyl carbonate; chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxy Ethers such as ethane, 1,4-dibutoxyethane and methyldiglyme; Nitriles such as acetonit
  • electrolyte salt used for the nonaqueous electrolyte examples include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, NaBr.
  • LiCF 3 SO 3 LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , (CH 3 ) 4 NBF 4 , ( CH 3 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 NBr, (n-C 4 H 9 ) 4 NClO 4 , (n-C 4 H 9) 4 NI, ( C 2 H 5) 4 N-mal ate, (C 2 H 5) 4 N-benzoate, (C 2 H 5) 4 N-phtalate, lithium stearyl sulfon
  • the viscosity of the electrolyte can be further reduced.
  • the low temperature characteristics can be further improved, and self-discharge can be suppressed, which is more desirable.
  • a room temperature molten salt or ionic liquid may be used as the non-aqueous electrolyte.
  • the concentration of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol / l to 5 mol / l, more preferably 0.5 mol / l to 2 in order to reliably obtain a non-aqueous electrolyte battery having high battery characteristics. .5 mol / l.
  • the negative electrode material is not limited, and any negative electrode material that can deposit or occlude lithium ions may be selected.
  • titanium-based materials such as lithium titanate having a spinel crystal structure represented by Li [Li 1/3 Ti 5/3 ] O 4
  • alloy-based materials such as Si, Sb, and Sn-based lithium metal
  • lithium alloys Lithium metal-containing alloys such as lithium-silicon, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloys
  • lithium composite oxide lithium-titanium
  • silicon oxide silicon oxide
  • an alloy capable of inserting and extracting lithium a carbon material (for example, graphite, hard carbon, low-temperature fired carbon, amorphous carbon, etc.) can be used.
  • the positive electrode active material powder and the negative electrode material powder have an average particle size of 100 ⁇ m or less.
  • the positive electrode active material powder is desirably 10 ⁇ m or less for the purpose of improving the high output characteristics of the non-aqueous electrolyte battery.
  • a pulverizer or a classifier is used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill or a sieve is used.
  • wet pulverization in the presence of water or an organic solvent such as hexane may be used.
  • an organic solvent such as hexane
  • the positive electrode active material and the negative electrode material which are the main components of the positive electrode and the negative electrode, have been described in detail above.
  • the positive electrode and the negative electrode include a conductive agent, a binder, a thickener, and a filler. Etc. may be contained as other constituents.
  • the conductive agent is not limited as long as it is an electron conductive material that does not adversely affect the battery performance.
  • natural graphite such as scaly graphite, scaly graphite, earthy graphite
  • artificial graphite carbon black, acetylene black
  • Conductive materials such as ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, metal fiber, and conductive ceramic material can be included as one kind or a mixture thereof. .
  • acetylene black is desirable from the viewpoints of electron conductivity and coatability.
  • the addition amount of the conductive agent is preferably 0.1% by weight to 50% by weight, and particularly preferably 0.5% by weight to 30% by weight with respect to the total weight of the positive electrode or the negative electrode.
  • These mixing methods are physical mixing, and the ideal is uniform mixing. Therefore, powder mixers such as V-type mixers, S-type mixers, crackers, ball mills, and planetary ball mills can be mixed dry or wet.
  • the binder is usually a thermoplastic resin such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • EPDM ethylene-propylene-diene terpolymer
  • SBR rubber
  • the amount of the binder added is preferably 1 to 50% by weight, particularly 2 to 30% by weight, based on the total weight of the positive electrode or the negative electrode.
  • any material that does not adversely affect battery performance may be used.
  • olefin polymers such as polypropylene and polyethylene, amorphous silica, alumina, zeolite, glass, carbon and the like are used.
  • the addition amount of the filler is preferably 30% by weight or less with respect to the total weight of the positive electrode or the negative electrode.
  • the main components positive electrode active material for the positive electrode, negative electrode material for the negative electrode
  • an organic solvent such as N-methylpyrrolidone or toluene or water.
  • the obtained liquid mixture is applied on a current collector described in detail below, or is pressed and heat-treated at a temperature of about 50 ° C. to 250 ° C. for about 2 hours.
  • roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, etc. It is not limited.
  • the separator it is preferable to use a porous film or a non-woven fabric exhibiting excellent high rate discharge performance alone or in combination.
  • the material constituting the separator for non-aqueous electrolyte batteries include polyolefin resins typified by polyethylene, polypropylene, etc., polyester resins typified by polyethylene terephthalate, polybutylene terephthalate, etc., polyvinylidene fluoride, vinylidene fluoride-hexa.
  • Fluoropropylene copolymer vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, fluorine Vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride - tetrafluoroethylene - hexafluoropropylene copolymer, vinylidene fluoride - ethylene - can be mentioned tetrafluoroethylene copolymer.
  • the porosity of the separator is preferably 98% by volume or less from the viewpoint of strength. Further, the porosity is preferably 20% by volume or more from the viewpoint of charge / discharge characteristics.
  • the separator may be a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, polyvinylidene fluoride, and an electrolyte.
  • a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, polyvinylidene fluoride, and an electrolyte.
  • the separator is used in combination with the above-described porous film, nonwoven fabric or the like and a polymer gel because the liquid retention of the electrolyte is improved. That is, by forming a film in which the surface of the polyethylene microporous membrane and the microporous wall are coated with a solvophilic polymer having a thickness of several ⁇ m or less, and holding the electrolyte in the micropores of the film, Gels.
  • solvophilic polymer examples include polyvinylidene fluoride, an acrylate monomer having an ethylene oxide group or an ester group, an epoxy monomer, a polymer having a monomer having an isocyanate group, and the like crosslinked.
  • the monomer can be subjected to a crosslinking reaction using a radical initiator in combination with heating or ultraviolet rays (UV), or using an actinic ray such as an electron beam (EB).
  • UV ultraviolet rays
  • EB electron beam
  • the configuration of the nonaqueous electrolyte secondary battery is not particularly limited, and examples thereof include a cylindrical battery having a positive electrode, a negative electrode, and a roll separator, a square battery, a flat battery, and the like.
  • Both the conventional positive electrode active material and the active material of the present invention can be charged / discharged when the positive electrode potential reaches around 4.5 V (vs. Li / Li + ).
  • the positive electrode potential during charging is too high, the nonaqueous electrolyte may be oxidized and decomposed, resulting in a decrease in battery performance. Therefore, even when a charging method is employed such that the maximum potential of the positive electrode during charging is 4.3 V (vs. Li / Li + ) or lower during use, a sufficient discharge capacity can be obtained. Secondary batteries may be required.
  • the active material of the present invention for example, 4.4 V (vs.
  • Li / Li such that the maximum potential of the positive electrode during charging is lower than 4.5 V (vs. Li / Li + ) during use. + ) Or less and 4.3 V (vs. Li / Li + ) or less, even if a charging method is adopted, it is possible to take out a discharge electric quantity exceeding the capacity of the conventional positive electrode active material of about 200 mAh / g or more. Is possible.
  • the transition metal element constituting the lithium transition metal composite oxide is present in a portion other than the transition metal site of the layered rock salt type crystal structure. It is preferable that the ratio is small. This is because the transition metal elements such as Co, Ni, and Mn are sufficiently uniformly distributed in the precursor to be subjected to the firing process, and the conditions of an appropriate firing process for promoting the crystallization of the active material sample. You can achieve it by choosing. When the distribution of the transition metal in the precursor to be subjected to the firing step is not uniform, a sufficient discharge capacity cannot be obtained.
  • the obtained lithium transition metal composite oxide is a portion other than the transition metal site of the layered rock salt type crystal structure, That is, the present inventors speculate that it is derived from the so-called cation mixing in which a part of the transition metal element is present at the lithium site. The same inference can be applied to the crystallization process in the firing step. If the crystallization of the active material sample is insufficient, cation mixing in the layered rock salt type crystal structure is likely to occur.
  • the intensity ratio of the diffraction peaks of the (003) plane and the (104) plane when the X-ray diffraction measurement result belongs to the space group R3-m is large.
  • the intensity ratio of the diffraction peaks of the (003) plane and the (104) plane as measured by X-ray diffraction measurement is preferably I (003) / I (104) ⁇ 1.20. Further, it is preferable that I (003) / I (104) > 1 in the state after the discharge after charging and discharging. If the precursor synthesis conditions and procedure are inadequate, the peak intensity ratio will be smaller and often less than 1.
  • a high-performance positive electrode active material as described above can be obtained.
  • the charge upper limit potential is set lower than 4.5 V (vs. Li / Li + ), for example, 4.4 V (vs. Li / Li + ) or 4.3 V (vs. Li / Li + )
  • a positive electrode active material for a non-aqueous electrolyte secondary battery capable of obtaining a high discharge capacity can be obtained.
  • Example 1-1 (Synthesis of active material) Cobalt sulfate heptahydrate, nickel sulfate hexahydrate and manganese sulfate pentahydrate were weighed so that the molar ratio of Co, Ni and Mn was 12.5: 19.94: 67.56, and ion-exchanged water. A 2M aqueous solution of sulfate was prepared by dissolving in the solution. On the other hand, a 15 L reactor was prepared. The reaction layer is provided with a discharge port so that the solution is discharged from the discharge port when the liquid level inside the reaction tank exceeds a certain height.
  • a stirring blade is provided in the reaction tank, and a cylindrical convection plate for fixing vertical convection during stirring is fixed.
  • 7 L of ion exchange water was put into the reaction vessel, and CO 2 gas was bubbled for 30 minutes to sufficiently dissolve the CO 2 gas in the ion exchange water. The CO 2 gas bubbling was continued until the sulfate aqueous solution was dropped.
  • the reaction layer was set to 50 ° C., and the stirring blade was operated at a rotation speed of 1000 rpm.
  • a 2 L aqueous sulfate solution was gradually added dropwise into the reaction vessel. The stirring was continued during the dropwise addition.
  • the pH in the reaction vessel was constantly monitored, and an aqueous solution in which 2 M sodium carbonate and 0.2 M ammonia were dissolved was added so that the pH was in the range of 8.6 ⁇ 0.2.
  • a part of the solution containing the reaction product is discharged from the discharge port to the outside of the reaction tank, but the discharged solution until the entire amount of 2 L sulfate aqueous solution has been dropped is It was discarded without returning to the reaction vessel.
  • the coprecipitation product was separated from the solution containing the reaction product by suction filtration, and washed with ion-exchanged water in order to remove the attached sodium ions.
  • the coprecipitated carbonate precursor was subjected to a preliminary firing step.
  • 30 g of the coprecipitated carbonate precursor is weighed into an empty mortar (internal volume 80 mm ⁇ 80 mm ⁇ 44 mm) whose mass has been measured in advance, and is placed in a box-type electric furnace.
  • the temperature was raised to 300 ° C. at a rate of 100 ° C./hr and held at 300 ° C. for 5 hr. Thereafter, it was confirmed that the temperature became 50 ° C. or less after about 5 hours in natural furnace cooling, and the mortar was taken out of the electric furnace and the mass was measured again.
  • Example 1-1 a lithium transition metal composite oxide according to Example 1-1 was produced.
  • the lithium transition metal composite oxide was confirmed to have a composition represented by Li [Li 1.13 Co 0.11 Ni 0.17 Mn 0.59 ] O 2 .
  • Example 1-2 A lithium transition metal composite oxide according to Example 1-2 was produced in the same manner as in Example 1-1, except that the pre-calcining temperature of the coprecipitated carbonate precursor was changed to 400 ° C.
  • Example 1-3 A lithium transition metal composite oxide according to Example 1-3 was produced in the same manner as in Example 1-1 except that the pre-calcining temperature of the coprecipitated carbonate precursor was changed to 500 ° C.
  • Comparative Example 1-1 A lithium transition metal composite oxide according to Comparative Example 1-1 was produced in the same manner as in Example 1-1, except that the precalcining temperature of the coprecipitated carbonate precursor was changed to 600 ° C.
  • Comparative Example 1-2 A lithium transition metal composite oxide according to Comparative Example 1-2 was produced in the same manner as in Example 1-1, except that the precalcining temperature of the coprecipitated carbonate precursor was changed to 700 ° C.
  • Comparative Example 1-3 Except for weighing 9.699 g of lithium carbonate and 22.78 g of the coprecipitated carbonate precursor not pre-fired so that the Li / Me ratio was 1.3, the same procedure as in Example 1-1 was performed. Then, a lithium transition metal composite oxide according to Comparative Example 1-3 was produced. In addition, when trying to make the Li / Me ratio the same, the coprecipitated carbonate precursor that has not been pre-fired is equivalent to the amount that has not been decarboxylated than the coprecipitated carbonate precursor that has been pre-fired at 300 ° C. or higher. It is necessary to add a large amount. The same applies to the following comparative examples.
  • Example 1-4 Example 1 except that the Li / Me ratio was changed to 1.2 (weighed 9.389 g of lithium carbonate and 19.54 g of the coprecipitated carbonate precursor after the 300 ° C. calcination step). In the same manner as in Example 1, a lithium transition metal composite oxide according to Example 1-4 was produced.
  • Comparative Example 1-4 Comparative Example 1-3, except that the Li / Me ratio was changed to 1.2 (weighed 9.389 g of lithium carbonate and 23.39 g of the coprecipitated carbonate precursor not pre-fired). Similarly, a lithium transition metal composite oxide according to Comparative Example 1-4 was produced.
  • Example 1 Example 1 except that the Li / Me ratio was changed to 1.25 (9.548 g of lithium carbonate and 19.28 g of the coprecipitated carbonate precursor after the 300 ° C. calcination step were weighed). In the same manner as in Example 1, a lithium transition metal composite oxide according to Example 1-5 was produced.
  • Example 1-6 Example 1 except that the Li / Me ratio was changed to 1.325 (weighed 9.772 g of lithium carbonate and 18.92 g of the coprecipitated carbonate precursor after the 300 ° C. calcination step). In the same manner as in Example 1, a lithium transition metal composite oxide according to Example 1-6 was produced.
  • Comparative Example 1-6 Except for changing the Li / Me ratio to 1.325 (weighing 9.772 g of lithium carbonate and 22.64 g of the coprecipitated carbonate precursor not pre-fired), Comparative Example 1-3 and Similarly, a lithium transition metal composite oxide according to Comparative Example 1-6 was produced.
  • Example 1--7 Except that the Li / Me ratio was changed to 1.35 (weighed 9.844 g of lithium carbonate and 18.80 g of the coprecipitated carbonate precursor after the 300 ° C. calcination step), Example 1- In the same manner as in Example 1, a lithium transition metal composite oxide according to Example 1-7 was produced.
  • Comparative Example 1--7 Except for changing the Li / Me ratio to 1.35 (weighing 9.844 g of lithium carbonate and 22.50 g of the coprecipitated carbonate precursor not pre-fired), Comparative Example 1-3 and Similarly, a lithium transition metal composite oxide according to Comparative Example 1-7 was produced.
  • Example 1 Example 1 except that the Li / Me ratio was changed to 1.375 (weighed 9.914 g of lithium carbonate and 18.69 g of the coprecipitated carbonate precursor after the 300 ° C. calcination step). In the same manner as in Example 1, a lithium transition metal composite oxide according to Example 1-8 was produced.
  • Comparative Example 1-8 Except for changing the Li / Me ratio to 1.375 (weighing 9.914 g of lithium carbonate and 22.36 g of the coprecipitated carbonate precursor not pre-fired), Comparative Example 1-3 and Similarly, a lithium transition metal composite oxide according to Comparative Example 1-8 was produced.
  • Example 1 Example 1 except that the Li / Me ratio was changed to 1.4 (weighed 9.982 g of lithium carbonate and 18.58 g of the coprecipitated carbonate precursor after the 300 ° C. calcination step). In the same manner as in Example 1, a lithium transition metal composite oxide according to Example 1-9 was produced.
  • Comparative Example 1-9 Comparative Example 1-3, except that the Li / Me ratio was changed to 1.4 (weighed 9.982 g of lithium carbonate and 22.23 g of the coprecipitated carbonate precursor that was not pre-fired) Similarly, a lithium transition metal composite oxide according to Comparative Example 1-9 was produced.
  • Example 1 (Comparative Example 1-10) Example 1 except that the Li / Me ratio was changed to 1.5 (10.24 g of lithium carbonate and 18.15 g of the coprecipitated carbonate precursor after the 300 ° C. calcination step) were measured. In the same manner as in Example 1, a lithium transition metal composite oxide according to Comparative Example 1-10 was produced.
  • Comparative Example 1-11 Comparative Example 1-3, except that the Li / Me ratio was changed to 1.5 (10.24 g of lithium carbonate and 21.72 g of the coprecipitated carbonate precursor not pre-fired were weighed). Similarly, a lithium transition metal composite oxide according to Comparative Example 1-11 was produced.
  • Example 2-1 (Synthesis of active material) Cobalt sulfate heptahydrate (14.08 g), nickel sulfate hexahydrate (21.00 g) and manganese sulfate pentahydrate (65.27 g) were weighed, and all of these were dissolved in 200 ml of ion-exchanged water, and Co: Ni: Mn A 2.00 M aqueous sulfate solution having a molar ratio of 12.5: 19.94: 67.56 was prepared. On the other hand, 750 ml of ion exchange water was poured into a 2 L reaction tank, and CO 2 gas was bubbled for 30 minutes to dissolve CO 2 in the ion exchange water.
  • the temperature of the reaction vessel was set to 50 ° C. ( ⁇ 2 ° C.), and the aqueous sulfate solution was stirred at a rate of 3 ml / min while stirring the inside of the reaction vessel at a rotational speed of 700 rpm using a paddle blade equipped with a stirring motor. It was dripped.
  • an aqueous solution containing 2.00 M sodium carbonate and 0.4 M ammonia is appropriately dropped, so that the pH in the reaction tank is always 7.9 ( ⁇ 0.05 ) Was controlled.
  • stirring in the reaction vessel was continued for 3 hours. After the stirring was stopped, the mixture was allowed to stand for 12 hours or more.
  • the coprecipitated carbonate particles produced in the reaction vessel are separated, and sodium ions adhering to the particles are washed away using ion-exchanged water, and an electric furnace is used. And dried at 100 ° C. under normal pressure in an air atmosphere. Then, in order to arrange
  • the box-type electric furnace has internal dimensions of 10 cm in length, 20 cm in width, and 30 cm in depth, and heating wires are inserted at intervals of 20 cm in the width direction.
  • the heater was turned off, and the alumina boat was left in the furnace and allowed to cool naturally.
  • the temperature of the furnace is 100 ° C. or less, remove the mortar from the electric furnace, transfer the entire contents of the mortar to the mortar, and dissolve the secondary particles. Lightly pulverized for several minutes to make the particle size uniform.
  • this mixed powder was again transferred to a sagger, placed in the box-type electric furnace, heated from ambient temperature to 900 ° C. over 4 hours in an air atmosphere, and baked at 900 ° C. for 10 hours. After firing, the heater was turned off and allowed to cool naturally with the mortar placed in the furnace. After a day and night, after confirming that the furnace temperature is 100 ° C or less, remove the mortar from the electric furnace and lighten it in the mortar for a few minutes until the secondary particles are agglomerated and the particle size is adjusted. Crushed. In this manner, a lithium transition metal composite oxide according to Example 2-1 was produced.
  • Example 2-1 a lithium transition metal composite oxide according to Example 2-1 was produced.
  • the lithium transition metal complex oxide was confirmed to have a composition represented by Li 1.13 Co 0.11 Ni 0.17 Mn 0.59 O 2 .
  • Example 2-2 A lithium transition metal composite oxide according to Example 2 was produced in the same manner as in Example 2-1, except that the temporary firing temperature of the mixed powder was changed to 350 ° C.
  • Example 2-3 A lithium transition metal composite oxide according to Example 3 was produced in the same manner as in Example 2-1, except that the temporary firing temperature of the mixed powder was changed to 450 ° C.
  • Example 2-4 A lithium transition metal composite oxide according to Example 2-4 was produced in the same manner as in Example 2-1, except that the calcining temperature of the mixed powder was changed to 550 ° C.
  • Example 2-5 A lithium transition metal composite oxide according to Example 2-5 was produced in the same manner as in Example 2-1, except that the calcining temperature of the mixed powder was changed to 650 ° C.
  • Example 2-6 A lithium transition metal composite oxide according to Example 2-6 was produced in the same manner as in Example 2-1, except that the calcining temperature of the mixed powder was changed to 750 ° C.
  • Comparative Example 2-1 A lithium transition metal composite oxide according to Comparative Example 2-1 was produced in the same manner as in Example 2-1, except that the mixed powder was not pre-fired.
  • Example 2--7 Except that the Li / Me ratio was changed to 1.2 (addition of lithium carbonate 9.159 g to the coprecipitated carbonate precursor 23.30 g), the same procedure as in Example 2-4 was conducted. A lithium transition metal composite oxide according to 2-7 was produced.
  • Comparative Example 2-1 was performed in the same manner as Comparative Example 2-1, except that the Li / Me ratio was changed to 1.2 (23.30 g of the coprecipitated carbonate precursor was added with 9.159 g of lithium carbonate). A lithium transition metal composite oxide according to 2-2 was prepared.
  • Example 2-8 Except for changing the Li / Me ratio to 1.25 (adding 9.432 g of lithium carbonate to 23.04 g of the coprecipitated carbonate precursor), the same procedure as in Example 2-4 was conducted. A lithium transition metal composite oxide according to 2-8 was produced.
  • Comparative Example 2-3 A comparative example was carried out in the same manner as in Comparative Example 2-1, except that the Li / Me ratio was changed to 1.25 (9.432 g of lithium carbonate was added to 23.04 g of the coprecipitated carbonate precursor). A lithium transition metal composite oxide according to 2-3 was produced.
  • Example 2-9 Except that the Li / Me ratio was changed to 1.325 (added 9.830 g of lithium carbonate to 22.65 g of the coprecipitated carbonate precursor), the same procedure as in Example 2-4 was conducted. A lithium transition metal composite oxide according to 2-9 was produced.
  • Comparative Example 2-1 was performed in the same manner as Comparative Example 2-1, except that the Li / Me ratio was changed to 1.325 (22.65 g of the coprecipitated carbonate precursor was added with 9.830 g of lithium carbonate). A lithium transition metal composite oxide according to 2-4 was produced.
  • Example 2 Example 2 was carried out in the same manner as Example 2-4 except that the Li / Me ratio was changed to 1.35 (coprecipitate carbonate precursor 22.53 g and lithium carbonate 9.960 g were added). A lithium transition metal composite oxide according to ⁇ 10 was produced.
  • Comparative Example 2-5 Comparative Example 2 was performed in the same manner as Comparative Example 2-1, except that the Li / Me ratio was changed to 1.35 (coprecipitate carbonate precursor 22.53 g and lithium carbonate 9.960 g were added). A lithium transition metal composite oxide according to ⁇ 5 was produced.
  • Example 2-11 Example 2 was carried out in the same manner as Example 2-4 except that the Li / Me ratio was changed to 1.375 (22.40 g of a coprecipitated carbonate precursor and 10.09 g of lithium carbonate were added). A lithium transition metal composite oxide according to -11 was produced.
  • Comparative Example 2-6 Comparative Example 2 was carried out in the same manner as Comparative Example 2-1, except that the Li / Me ratio was changed to 1.375 (22.40 g of coprecipitated carbonate precursor and 10.09 g of lithium carbonate were added). A lithium transition metal composite oxide according to ⁇ 6 was produced.
  • Example 2-12 Example 2 was carried out in the same manner as Example 2-4, except that the Li / Me ratio was changed to 1.4 (22.28 g of coprecipitated carbonate precursor and 10.22 g of lithium carbonate were added). A lithium transition metal composite oxide according to -12 was produced.
  • Comparative Example 2--7 Comparative Example 2 was performed in the same manner as Comparative Example 2-1, except that the Li / Me ratio was changed to 1.4 (22.28 g of coprecipitated carbonate precursor and 10.22 g of lithium carbonate were added). A lithium transition metal composite oxide according to -7 was produced.
  • Comparative Example 2 Comparative Example 2 was carried out in the same manner as in Example 2-4 except that the Li / Me ratio was changed to 1.5 (21.80 g of coprecipitated carbonate precursor and 10.71 g of lithium carbonate were added). A lithium transition metal composite oxide according to ⁇ 8 was produced.
  • Comparative Example 2 Comparative Example 2 was performed in the same manner as Comparative Example 2-1, except that the Li / Me ratio was changed to 1.5 (21.80 g of coprecipitated carbonate precursor and 10.71 g of lithium carbonate were added). A lithium transition metal composite oxide according to -9 was produced.
  • Comparative Example 2-10 3 g of the lithium transition metal composite oxide according to Example 2-4 was weighed and transferred to an alumina container attached to a planetary ball mill (purverize 6 manufactured by FRITSCH). Further, an attached alumina ball (10 mm ⁇ ) was thrown in, and pulverization was performed for 1 hour at a rotation speed of 200 rpm using the apparatus. In this way, a lithium transition metal composite oxide according to Comparative Example 2-10 was produced.
  • the lithium transition metal composite oxides according to Examples 1-1 to 1-9, Comparative Examples 1-1 to 1-11, Examples 2-1 to 2-12, and Comparative Examples 2-1 to 2-10 are as follows.
  • the particle size distribution was measured according to the conditions and procedures.
  • Microtrac (model number: MT3000) manufactured by Nikkiso Co., Ltd. was used as a measuring device.
  • the measuring apparatus is composed of a computer equipped with an optical bench, a sample supply unit, and control software, and a wet cell equipped with a laser light transmission window is installed on the optical bench.
  • the measurement principle is a method in which a wet cell in which a dispersion liquid in which a sample to be measured is dispersed in a dispersion solvent circulates is irradiated with laser light, and the scattered light distribution from the measurement sample is converted into a particle size distribution.
  • the dispersion is stored in a sample supply unit and circulated and supplied to a wet cell by a pump.
  • the sample supply unit is always subjected to ultrasonic vibration. Water was used as a dispersion solvent.
  • Microtrac DHS for Win98 (MT3000) was used as measurement control software.
  • ⁇ substance information '' For the ⁇ substance information '' set and input to the measuring device, set 1.33 as the ⁇ refractive index '' of the solvent, select ⁇ TRANSPARENT '' as the ⁇ transparency '', and set ⁇ non-spherical '' as the ⁇ spherical particle '' Selected. Prior to sample measurement, perform “Set Zero” operation.
  • the “Set Zero” operation is an operation to subtract the influence of disturbance elements other than the scattered light from the particles (glass, dirt on the glass wall surface, glass irregularities, etc.) on the subsequent measurement. Only a certain amount of water is put in, a background measurement is performed in a state where only the water as the dispersion solvent is circulating in the wet cell, and the background data is stored in the computer.
  • sample LD Sample Loading
  • the Sample LD operation is an operation for optimizing the sample concentration in the dispersion that is circulated and supplied to the wet cell during measurement, and manually reaches the optimum amount of the sample to be measured in the sample supply unit according to the instructions of the measurement control software It is an operation to throw up.
  • the measurement operation is performed by pressing the “Measure” button.
  • the measurement operation is repeated twice, and the measurement result is output from the control computer as the average value.
  • the measurement results are as a particle size distribution histogram and values of D10, D50 and D90 (D10, D50 and D90 are particle sizes at which the cumulative volume in the particle size distribution of the secondary particles is 10%, 50% and 90%, respectively) To be acquired.
  • Examples 1-1 to 1-9, Comparative Examples 1-1 to 1-11, and Examples 2-1 to 2 were made by a one-point method using a specific surface area measuring device (trade name: MONOSORB) manufactured by Yuasa Ionics.
  • the nitrogen adsorption amount [m 2 ] for the lithium transition metal composite oxides according to ⁇ 12 and Comparative Examples 2-1 to 2-10 was determined.
  • a value obtained by dividing the obtained adsorption amount (m 2 ) by the mass (g) of each lithium transition metal composite oxide was defined as a BET specific surface area.
  • gas adsorption by cooling with liquid nitrogen was performed.
  • preheating at 120 ° C. for 15 minutes was performed before cooling.
  • the input amount of the measurement sample was 0.5 g ⁇ 0.01 g.
  • Nonaqueous electrolyte secondary battery Each of the lithium transition metal composite oxides of Examples 1-1 to 1-9, Comparative Examples 1-1 to 1-11, Examples 2-1 to 2-12, and Comparative Examples 2-1 to 2-10 Using it as a positive electrode active material for a water electrolyte secondary battery, a non-aqueous electrolyte secondary battery was prepared by the following procedure, and the battery characteristics were evaluated.
  • the positive electrode active material, acetylene black (AB), and polyvinylidene fluoride (PVdF) were mixed at a mass ratio of 85: 8: 7. This mixture was kneaded and dispersed by adding N-methylpyrrolidone as a dispersion medium to prepare a coating solution. In addition, about PVdF, it converted into solid mass by using the liquid by which solid content was melt
  • the coating solution was applied to an aluminum foil current collector having a thickness of 20 ⁇ m to produce a positive electrode plate.
  • lithium metal was used in order to observe the single behavior of the positive electrode. This lithium metal was adhered to a nickel foil current collector. However, preparation was performed such that the capacity of the nonaqueous electrolyte secondary battery was sufficiently positive electrode regulated.
  • the electrolytic solution a solution obtained by dissolving LiPF 6 in a mixed solvent having a volume ratio of EC / EMC / DMC of 6: 7: 7 so that its concentration becomes 1 mol / l was used.
  • a microporous membrane made of polypropylene whose electrolyte retention was improved by surface modification with polyacrylate, was used.
  • what adhered lithium metal foil to the nickel plate was used as a reference electrode.
  • a metal resin composite film made of polyethylene terephthalate (15 ⁇ m) / aluminum foil (50 ⁇ m) / metal-adhesive polypropylene film (50 ⁇ m) was used for the outer package.
  • the electrode was accommodated in this exterior body so that the open ends of the positive electrode terminal, the negative electrode terminal, and the reference electrode terminal were exposed to the outside.
  • the fusion allowance in which the inner surfaces of the metal resin composite film face each other was hermetically sealed except for the portion to be the injection hole.
  • the non-aqueous electrolyte secondary battery produced as described above was subjected to an initial charge / discharge process of 2 cycles at 25 ° C. All voltage control was performed on the positive electrode potential.
  • the charging was constant current constant voltage charging with a current of 0.1 CmA and a voltage of 4.6V.
  • the charge termination condition was the time when the current value attenuated to 0.02 CmA.
  • the discharge was a constant current discharge with a current of 0.1 CmA and a final voltage of 2.0 V. In all cycles, a 30 minute rest period was set after charging and after discharging.
  • the completed nonaqueous electrolyte secondary battery was charged and discharged for 3 cycles. All voltage control was performed on the positive electrode potential.
  • the conditions for this charge / discharge cycle are the same as the conditions for the initial charge / discharge step, except that the charge voltage was 4.3 V (vs. Li / Li + ).
  • a 30 minute rest period was set after charging and after discharging.
  • the discharge capacity at this time was recorded as “0.1 C capacity (mAh / g)”.
  • Tables 1 and 2 show the values of D10, D50, and D90, the primary particle diameter, the BET specific surface area, and the tap density measurement results, initial efficiency, 0.1 C capacity, and 1 C capacity (high rate discharge capacity). .
  • Examples 1-1 to 1-9 in which the temperature of the preliminary calcination of the transition metal oxide precursor is 300 to 500 ° C. and the Li / Me ratio is 1.2 to 1.4, D10 Is obtained, a lithium transition metal composite oxide having a particle diameter of 6 to 9 ⁇ m, D50 of 13 to 16 ⁇ m, D90 of 18 to 32 ⁇ m, D90 / D10 of 2.9 to 4.4, and primary particle size of 1 ⁇ m or less.
  • the BET specific surface area was 3.7 to 6.2 m 2 / g, and the tap density was 1.65 to 1.88 g / cm 3 .
  • D90 / D10 is 10 or more, the BET specific surface area is gradually reduced, the tap density is greatly reduced to about 1.6 g / cm 3 , 1C capacity is gradually reduced, and the high rate discharge performance is not sufficiently improved. It was.
  • Comparative Examples 1-10 and 1-11 having a Li / Me ratio of 1.5 D10 is 9 ⁇ m or more, D50 is 16 ⁇ m or more, the particle diameter of the primary particles exceeds 1 ⁇ m, and the precursor is calcined. Even if not, both 0.1 C capacity and 1 C capacity are low, and the discharge performance is inferior.
  • a mixed powder of a transition metal carbonate coprecipitate precursor and a lithium compound was calcined at 250 to 750 ° C. to set the Li / Me ratio to 1.2 to 1.4. 2-12, a lithium transition metal composite oxide in which D10 is 7 to 9 ⁇ m, D50 is 13 to 16 ⁇ m, D90 is 18 to 32 ⁇ m, and the primary particle diameter is 1 ⁇ m or less is obtained.
  • the non-aqueous electrolyte secondary battery using the contained active material has a large discharge capacity (0.1 C capacity) of 200 mAh / g or more, and is compared with an active material containing a lithium transition metal composite oxide that is not pre-fired.
  • the 1C capacity is large and the high rate discharge performance is improved. Furthermore, it can be seen that the initial efficiency is 91% or more, which is excellent.
  • the BET specific surface area was 3.5 to 6.5 m 2 / g, and the tap density was 1.75 to 1.96 g / cm 3 .
  • the primary particle diameter was 1 ⁇ m. More than the lithium transition metal composite oxide is obtained, the active material containing this is inferior to the active material containing the calcined lithium transition metal composite oxide, high rate discharge performance, the initial efficiency is less than 90% Initial efficiency is inferior.
  • Comparative Example 1-8 having a Li / Me ratio of 1.5, even when the mixed powder was calcined, the primary particle diameter exceeded 1 ⁇ m, and both the 0.1 C capacity and the 1 C capacity were low. In addition, the discharge performance is inferior and the initial efficiency is about 85%, which is not significantly improved as compared with Comparative Example 1-9 which is not pre-fired. Further, as in Comparative Example 1-10, even when the particle diameter of the primary particles was 1 ⁇ m or less, the lithium transition metal composite oxide was pulverized and “D10 was 6 to 9 ⁇ m, D50 was 13 to 16 ⁇ m, and D90 was When “18 to 32 ⁇ m” was not satisfied, the discharge capacity was small, the high rate discharge performance was inferior, and the initial efficiency was low.
  • the positive electrode active material contained in the positive electrode be sufficiently discharged.
  • a cell is formed between the positive electrode and a negative electrode capable of releasing a sufficient amount of lithium ions to sufficiently discharge the positive electrode, and the positive electrode is discharged.
  • metallic lithium may be used.
  • the cell may be a two-terminal cell, but it is preferable to control and monitor the positive electrode potential with respect to the reference electrode using a three-terminal cell provided with a reference electrode. It is preferable that the electrolytic solution used in the cell has the same composition as that of the nonaqueous electrolyte used in the nonaqueous electrolyte secondary battery as much as possible.
  • Examples of the operation of discharging the positive electrode using the cell include a method of performing continuous discharge or intermittent discharge with a current of 0.1 CmA or less and a discharge end potential of 2.0 V (vs. Li / Li + ). After performing the discharge operation, a sufficient rest time is provided to confirm that the open circuit potential is 3.0 V (vs. Li / Li + ) or less. When the open circuit potential after the discharge operation is greater than 3.0V (vs.Li/Li +) until the open circuit potential is equal to or less than 3.0V (vs.Li/Li +), smaller discharge current It is required to repeat the above operation using the value of.
  • the positive electrode that has undergone such an operation is removed from the cell after removing it from the cell. This is because when the electrolytic solution adheres, the lithium salt dissolved in the electrolytic solution affects the analysis result of the Li / Me value.
  • washing with a volatile solvent is exemplified.
  • the volatile solvent is preferably one that easily dissolves the lithium salt. Specifically, dimethyl carbonate is exemplified.
  • the volatile solvent it is required to use a volatile solvent whose water content is reduced to a lithium battery grade. This is because when the amount of water is large, Li in the positive electrode active material is eluted, and the value of Li / Me may not be obtained accurately.
  • the positive electrode current collector is removed from the positive electrode, and a positive electrode mixture containing the positive electrode active material is collected.
  • the positive electrode mixture includes a conductive material and a binder in addition to the positive electrode active material.
  • the method for removing the binder from the positive electrode mixture containing the binder include a method using a solvent capable of dissolving the binder. Specifically, for example, when it is estimated that the binder is polyvinylidene fluoride, the positive electrode mixture is immersed in a sufficient amount of N-methylpyrrolidone, refluxed at 150 ° C. for several hours, and then filtered. The method of separating into the powder containing a positive electrode active material and the solvent containing a binder by the above etc.
  • the conductive material is estimated to be a carbonaceous material such as acetylene black
  • a method of oxidatively decomposing and removing the carbonaceous material by heat treatment As the conditions for the heat treatment, in an atmosphere containing oxygen, it is required to be equal to or higher than the temperature at which the conductive material is thermally decomposed, but if the heat treatment temperature is too high, the physical properties of the positive electrode active material may change. It is desirable to set the temperature so as not to affect the physical properties of the positive electrode active material as much as possible. For example, in the positive electrode active material of the present invention, the temperature is set to 700 ° C. in air.
  • a positive electrode active material is collected from a non-aqueous electrolyte secondary battery using a general lithium transition metal composite oxide as a positive electrode active material through the above operation procedure.
  • a general lithium transition metal composite oxide as a positive electrode active material
  • the active material of the present invention is for non-aqueous electrolyte secondary batteries having a large discharge capacity, high rate discharge performance, and excellent initial efficiency, the power source for electric vehicles, the power source for electronic devices, and the power storage It can be effectively used for non-aqueous electrolyte secondary batteries such as power supplies.

Abstract

【課題】放電容量が大きく、高率放電性能が優れた非水電解質二次電池用活物質を提供する。 【解決手段】α-NaFeO型結晶構造を有し、組成式Li1+αMe1-α(MeはCo、Ni及びMnを含む遷移金属元素、α>0)で表されるリチウム遷移金属複合酸化物を含有する非水電解質二次電池用活物質及びその製造方法であって、前記リチウム遷移金属複合酸化物は、前記遷移金属元素Meに対するLiのモル比Li/Meが1.2~1.4であり、2次粒子の粒度分布における累積体積が10%、50%及び90%となる粒度をそれぞれD10、D50及びD90とするとき、D10が6~9μm、D50が13~16μm、D90が18~32μmであり、1次粒子の粒子径が1μm以下であることを特徴とする。

Description

非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
 本発明は、非水電解質二次電池用活物質、その活物質の製造方法、及びその活物質を用いた非水電解質二次電池に関する。
 従来、非水電解質二次電池には、正極活物質として主にLiCoOが用いられている。しかし、放電容量は120~130mAh/g程度であった。
 非水電解質二次電池用正極活物質材料として、LiCoOと他の化合物との固溶体が知られている。α-NaFeO型結晶構造を有し、LiCoO、LiNiO及びLiMnOの3つの成分の固溶体であるLi[Co1-2xNiMn]O(0<x≦1/2)」が、2001年に発表された。前記固溶体の一例である、LiNi1/2Mn1/2やLiCo1/3Ni1/3Mn1/3は、150~180mAh/gの放電容量を有しており、充放電サイクル性能の点でも優れる。
 上記のようないわゆる「LiMeO型」活物質に対し、遷移金属(Me)の比率に対するリチウム(Li)の組成比率Li/Meが1より大きく、例えばLi/Meが1.25~1.6であるいわゆる「リチウム過剰型」活物質が知られている。このような材料は、Li1+αMe1-α(α>0)と表記することができる。ここで、遷移金属(Me)の比率に対するリチウム(Li)の組成比率Li/Meをβとすると、β=(1+α)/(1-α)であるから、例えば、Li/Meが1.5のとき、α=0.2である。
 特許文献1には、このような活物質の一種であり、Li[Li1/3Mn2/3]O、LiNi1/2Mn1/2及びLiCoOの3つの成分の固溶体として表すことのできる活物質が記載されている。また、前記活物質を用いた電池の製造方法として、4.3V(vs.Li/Li)を超え4.8V以下(vs.Li/Li)の正極電位範囲に出現する、電位変化が比較的平坦な領域に少なくとも至る充電を行う製造工程を設けることにより、充電時の正極の最大到達電位が4.3V(vs.Li/Li)以下である充電方法が採用された場合であっても、177mAh/g以上の放電容量が得られる電池を製造できることが記載されている。
 一方、リチウム含有遷移金属酸化物の粒子径を規定した発明、活物質を製造する場合に仮焼成を採用した発明がある(特許文献2~9)。
 特許文献2には、「ニッケルおよびマンガンを含み、酸素の最密充填構造を有するリチウム含有遷移金属酸化物の製造法であって、ニッケルおよびマンガンを含む原料を、500℃から700℃の温度で、仮焼成して、ニッケルおよびマンガンを含む前駆体酸化物を得る工程と、前駆体酸化物とリチウム源とを混合し、得られた混合物を、本焼成して、リチウム含有遷移金属酸化物を得る工程、を含む製造法。」(請求項17)が記載され、前記前駆体酸化物とリチウム源との混合物に含まれるリチウムのモル数mLiと、遷移金属のモル数mTとの原子比:mLi/mTを1.2より大きくする発明が記載され(請求項25及び26)、また、「原子比:MLi/MTを0.8~1.5まで変化させた」(段落[0131])場合、「原子比:MLi/MT(Li/Me)が大きくなり、リチウム過剰になることで、充放電容量およびサイクル特性は良好な結果となる。ただし、原子比が1.5の活物質は、放電末期のカーブがなだらかになるため、用途は限定される可能性がある。」(段落[0132])と記載されている。
 また、特許文献2には、「本発明の活物質は、コバルト、鉄、亜鉛、アルミニウム、マグネシウム、ストロンチウム、イットリウムおよびイッテルビウムよりなる群から選択される少なくとも1種の異種元素を含んでもよい。ただし、異種元素の量は、リチウム含有遷移金属酸化物の一次粒子または二次粒子の内部または表面にドープされる程度であることが好ましい。」(段落[0042])、「本発明の活物質には少量の異種元素を添加することができる。異種元素を加えることにより、種々の効果を発揮させることができる。例えば、コバルトの添加により、負荷特性の向上効果が得られる。」(段落[0165])と記載されている。
 さらに、特許文献2には、「前記リチウム含有遷移金属酸化物を構成する一次粒子の平均粒径が、1μm以下であり、前記一次粒子の少なくとも一部が、その表面に3角形または6角形の平面を有する、請求項1~5のいずれかに記載の非水電解質二次電池用活物質。」(請求項6)が記載され、「原子比:MLi/MTの値が1.1または1.2のSEM像では、リチウム含有遷移金属酸化物の一次粒子を明確に確認することができる。一次粒子の平均粒径は、1μm以下であり、一次粒子が3角形または6角形に近い形状の平面を有することがわかる。これらの一次粒子は、互いの表面の一部で融着または焼結することにより、二次粒子を形成している。」(段落[0130])、「図36Aおよび図36Bに、得られた活物質の典型的な一次粒子のSEM像(30000倍)を示す。図36から明らかなように、粒子の形状は柱状、特に6角柱状であることがわかる。一次粒子の大きさは1μm前後であった。本焼成時に水酸化リチウムを過剰に用いたため、水酸化リチウムがフラックスとして働き、活物質の結晶を発達させたものと考えられる。よって、柱状の粒子を得るためには、リチウム源を過剰に用い、リチウム源をフラックスとして機能させ、結晶成長を促進することが好ましい。」(段落[0163])と記載されている。
 特許文献3には、「一般式:Li1+xMn2-yy4(式中、MはAl、Mg、Si、Ca、Ti、Cu、Ba、W及びPbから選択される1種以上の元素であり、-0.1≦x≦0.2、0.06≦y≦0.3。)で表され、粒度分布における累積体積が10%、50%及び90%となる粒度をそれぞれd10、d50及びd90とするとき、d10が2μm以上5μm以下、d50が6μm以上9μm以下、d90が12μm以上15μm以下であり、BET比表面積が1.0m2/gを超えて2.0m2/g以下であり、タップ密度が0.5g/cm3以上1.0g/cm3未満であるリチウムイオン電池用スピネル型リチウムマンガン複合酸化物。」(請求項1)の発明が記載され、「本発明に係るリチウムマンガン複合酸化物は粒度分布において、累積体積が10%、50%及び90%に達する地点での粒度をそれぞれd10、d50及びd90とする場合、d10が2μm以上5μm以下、d50が6μm以上9μm以下、d90が12μm以上15μm以下のすべてを満足する。d10を2μm以上5μm以下としたのは2μm未満ではスラリーを作製する時に混合不良を生じやすく、また、5μmを越えると塗布後の電極膜に凹凸を生じやすいためである。平均粒径を指すd50を6μm以上9μm以下としたのは6μm未満では高温特性(高温サイクル特性、高温保存特性)の劣化が進む傾向にあり、また、9μmを超えると該複合酸化物にバインダー及び導電材を混合してスラリーを作製し、集電体に塗布した後の電極膜に凹凸を生じやすいためである。d90を12μm以上15μm以下としたのはd10の範囲限定と同様に、12μm未満ではスラリー作製時に混合不良を生じやすく、また、15μmを越えると塗布後の電極膜に凹凸を生じやすいためである。塗布後の電極膜に凹凸が生じると、プレス後の電極面の平滑性が失われるため、好ましくない。」(段落[0028])と記載されている。
 また、特許文献3には、「得られた原料混合物を適正条件下で酸化処理(酸化雰囲気中での焼成等)することにより本発明に係るリチウムマンガン複合酸化物が得られ、これをリチウム二次電池の正極活物質とする。酸化処理は連続炉を使用して、炉内を二段階に温度調整することが重要である。静置炉では製品における品質のばらつきが大きく、工業的に不利だからである。二段階の温度調整は第一段目を350~700℃の間の所定の温度で処理時間3~9時間の酸化処理とし、第二段目を800~1000℃の間の所定の温度で処理時間1~5時間の酸化処理とするのが望ましく、第一段目を400~600℃の間の所定の温度で処理時間4~8時間の酸化処理としとし、第二段目を850~950℃の間の所定の温度で処理時間2~4時間の酸化処理とするのがより望ましい。・・・第一段目の処理は原料混合物である炭酸塩を酸化物に酸化する目的で行い、第二段目の処理は第一段目で得られた酸化物を所望の異種元素置換リチウムマンガン酸化物にするための酸化である。それぞれの処理温度で未反応物を残さず、他の副生成物を生成しないことが特性発現の上でも重要である。従って、第一段目の温度が350℃を下回ると原料混合物である炭酸塩の酸化が不十分になるため好ましくない。また、第一段目の温度が700℃を超えると一部がスピネル酸化物へ変化し、副生成物となるため好ましくない。さらに、二段目の温度が800℃を下回るとリチウムマンガン酸化物への変換が不十分であり、1000℃を超えると酸素欠損が生じやすくなり、好ましくない。」(段落[0040])と記載されている。
 特許文献4~6には、Co、Ni及びMnを含む遷移金属酸化物の前駆体を仮焼成した後、リチウム化合物と混合し、焼成することが記載されている。
 特許文献7には、「内部抵抗が小さく、出力特性、寿命特性に優れた二次電池を得ることができる非水系電解質二次電池用正極活物質を提供するとともに、該非水系電解質二次電池用正極活物質を安定的に製造する方法を提供」(段落[0026])することを目的として、「LizNi1-ww2(但し、MはCo、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaからなる群より選ばれた少なくとも1種以上の金属元素であり、0<w≦0.25、1.0≦z≦1.1を満たす。)で表されるリチウム金属複合酸化物の粉末であり、該リチウム金属複合酸化物の粉末の一次粒子と該一次粒子が複数集合して形成された二次粒子とから構成され、該二次粒子の形状が球状または楕円球状であり、該二次粒子の95%以上が20μm以下の粒子径を有し、該二次粒子の平均粒子径が7~13μmであり、該粉末のタップ密度が2.2g/cm3以上・・・であることを特徴とする非水系電解質二次電池用正極活物質。」(請求項1)の発明が記載され、この正極活物質の製造方法として「室温より昇温速度0.5~15℃/minで450~550℃まで昇温し、その到達温度で1~10時間保持して1段目の焼成を行い、その後さらに昇温速度1~5℃/minで650~800℃まで昇温して、その到達温度で0.6~30時間保持して2段目の焼成を行った」(請求項6)ことが記載され、また、一次粒子の粒子径が1μm以下であることも示されている。
 特許文献8には、「優れたサイクル特性及び負荷特性を付与することができるリチウム二次電池正極活物質用リチウムニッケルマンガンコバルト複合酸化物」(段落[0009])を提供することを目的として、「下記一般式(1):LiNi1-y-zMnCo (1)(式中、xは0.9≦x≦1.3、yは0<y<1.0、zは0<z<1.0を示す。但し、y+z<1である。)で表されるリチウムニッケルマンガンコバルト複合酸化物であり、平均粒径が5~40μm、BET比表面積が5~25m/g、且つ、タップ密度が1.70g/ml以上であることを特徴とするリチウム二次電池正極活物質用リチウムニッケルマンガンコバルト複合酸化物。」(請求項1)、「リチウム化合物と、ニッケル原子、マンガン原子及びコバルト原子をモル比で1:0.5~2.0:0.5~2.0の範囲で含み、且つ、平均粒径が5~40μm、BET比表面積が40m/g以上、タップ密度が1.7g/ml以上である複合炭酸塩と、を混合して、焼成原料混合物を得、次いで、該焼成原料混合物を、650~850℃で焼成して、・・・リチウムニッケルマンガンコバルト複合酸化物を得ることを特徴とするリチウム二次電池正極活物質用リチウムニッケルマンガンコバルト複合酸化物の製造方法。」(請求項4)の各発明が記載され、また、「本発明の製造方法において、焼成は所望により何度行ってもよい。或いは、粉体特性を均一にする目的で、一度焼成したものを粉砕し、次いで再焼成を行ってもよい。」(段落[0039])と記載されている。
 特許文献9には、「負荷特性を有効に改善し、高容量化が可能な、充填効率が高く、充填密度の大きな非水電解液2次電池用正極活物質」(段落[0004])を提供することを目的として、「Liと、Co、Ni、Mn及びFeからなる群より選択される少なくとも一種の遷移元素とを含む複合酸化物粒子からなり、前記複合酸化物粒子が、最長径をD1、最短径をD2とした際のD1/D2が1.0~2.0の範囲にある球状及び/又は楕円球状の粒子を90%以上含むことを特徴とする非水電解液2次電池用正極活物質。」(請求項1)、「複合酸化物粒子が、主として粒径2~100μmの粒子からなり、且つ平均粒径が5~80μmであることを特徴とする請求項1~3のいずれか1項記載の正極活物質。」(請求項4)、「Co、Ni、Mn及びFeからなる群より選択される少なくとも一種の遷移元素の化合物粒子と、リチウム化合物とを含む原材料を混合し、得られた混合物を、仮焼工程として該リチウム化合物の融点以上の温度で保持した後、本焼成工程として該リチウム化合物の分解温度以上で保持することを特徴とする請求項1記載の非水電解液2次電池用正極活物質の製造方法。」(請求項6)の各発明が記載されている。
特開2010-086690号公報 特開2008-258160号公報 特許第4221448号公報 特開2008-251191号公報 特開2010-192424号公報 特開2011-116580号公報 特開2007-257985号公報 特開2009-205893号公報 特開2003-17050号公報
 特許文献1に記載されているような、いわゆる「リチウム過剰型」正極活物質では、少なくとも最初の充電において4.3Vを超える比較的高い電位、特に4.4V以上の電位に至って行うことにより、高い放電容量が得られるという特徴がある。しかしながら、この場合の初期効率は、十分に高いものではなく、また、高率放電性能の点で劣るという問題点があった。
 特許文献2~9には、活物質として用いるリチウム含有遷移金属酸化物の粒子径を規定することや、活物質を製造する場合に仮焼成を採用することが記載されているが、これらの手段により、高率放電性能を向上させること、初期効率を向上させることについては開示がなく、また、これらの手段をCo、Ni及びMnを含む遷移金属元素Meに対するLiのモル比Li/Meが1.2~1.4となるようなリチウム含有遷移金属酸化物を含有する活物質に適用することも示されていない。
 本発明の課題は、放電容量が大きく、高率放電性能が優れた非水電解質二次電池用活物質、その活物質の製造方法、及びその活物質を用いた非水電解質二次電池を提供することにある。
 本発明の構成及び作用効果について、技術思想を交えて説明する。但し、作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。なお、本発明は、その精神又は主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、後述の実施の形態若しくは実験例は、あらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。
 本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)α-NaFeO型結晶構造を有し、組成式Li1+αMe1-α(MeはCo、Ni及びMnを含む遷移金属元素、α>0)で表されるリチウム遷移金属複合酸化物を含有する非水電解質二次電池用活物質であって、前記リチウム遷移金属複合酸化物は、前記遷移金属元素Meに対するLiのモル比Li/Meが1.2~1.4であり、2次粒子の粒度分布における累積体積が10%、50%及び90%となる粒度をそれぞれD10、D50及びD90とするとき、D10が6~9μm、D50が13~16μm、D90が18~32μmであり、1次粒子の粒子径が1μm以下であることを特徴とする非水電解質二次電池用活物質。
(2)D90とD10との比D90/D10が2.3~4.4であることを特徴とする前記(1)の非水電解質二次電池用活物質。
(3)BET比表面積が3.5~6.5m2/gであることを特徴とする前記(1)又は(2)の非水電解質二次電池用活物質。
(4)タップ密度が1.65~1.96g/cm3であることを特徴とする前記(1)~(3)のいずれか1項の非水電解質二次電池用活物質。
(5)前記リチウム遷移金属複合酸化物が、仮焼成した遷移金属酸化物の前駆体とリチウム化合物とを混合し、焼成したものであることを特徴とする前記(1)~(4)のいずれか1項の非水電解質二次電池用活物質。
(6)前記リチウム遷移金属複合酸化物が、遷移金属炭酸塩の共沈前駆体とリチウム化合物との混合粉体を仮焼成した後、焼成したものであることを特徴とする前記(1)~(4)のいずれか1項の非水電解質二次電池用活物質。
(7)α-NaFeO型結晶構造を有し、組成式Li1+αMe1-α(MeはCo、Ni及びMnを含む遷移金属元素、α>0)で表されるリチウム遷移金属複合酸化物を含有する非水電解質二次電池用活物質の製造方法であって、溶液中でCo、Ni及びMnを含む遷移金属元素Meの化合物を共沈させて遷移金属酸化物の共沈前駆体を製造する工程、前記共沈前駆体を300~500℃で仮焼成する工程、前記仮焼成した共沈前駆体とリチウム化合物とを、前記リチウム遷移金属複合酸化物の遷移金属元素Meに対するLiのモル比Li/Meが1.2~1.4となるように混合し、焼成する工程を含むことを特徴とする非水電解質二次電池用活物質の製造方法。
(8)α-NaFeO型結晶構造を有し、組成式Li1+αMe1-α(MeはCo、Ni及びMnを含む遷移金属元素、α>0)で表されるリチウム遷移金属複合酸化物を含有する非水電解質二次電池用活物質の製造方法であって、溶液中でCo、Ni及びMnを含む遷移金属元素Meの化合物を共沈させて遷移金属炭酸塩の共沈前駆体を得る工程、前記共沈前駆体とリチウム化合物とを前記リチウム遷移金属複合酸化物の遷移金属元素Meに対するLiのモル比Li/Meが1.2~1.4となるように混合した混合粉体を、250~750℃で仮焼成する工程、及び、前記仮焼成した混合粉体を再混合して焼成する工程を含むことを特徴とする非水電解質二次電池用活物質の製造方法。
(9)前記リチウム化合物が炭酸塩であることを特徴とする前記(7)又は(8)の非水電解質二次電池用活物質の製造方法。
(10)前記リチウム遷移金属複合酸化物は、2次粒子の粒度分布における累積体積が10%、50%及び90%となる粒度をそれぞれD10、D50及びD90とするとき、D10が6~9μm、D50が13~16μm、D90が18~32μmであり、1次粒子の粒子径が1μm以下であることを特徴とする前記(7)~(9)のいずれか1項の非水電解質二次電池用活物質の製造方法。
(11)前記リチウム遷移金属複合酸化物は、BET比表面積が3.5~6.5m2/gであることを特徴とする前記(7)~(10)のいずれか1項の非水電解質二次電池用活物質の製造方法。
(12)前記リチウム遷移金属複合酸化物は、タップ密度が1.65~1.96g/cm3であることを特徴とする前記(7)~(11)のいずれか1項の非水電解質二次電池用活物質の製造方法。
(13)前記(1)~(6)のいずれか1項の非水電解質二次電池用活物質を含有する非水電解質二次電池用電極。
(14)前記(13)の非水電解質二次電池用電極を備えた非水電解質二次電池。
 上記本発明(1)~(14)によれば、放電容量が大きく、高率放電性能が優れた非水電解質二次電池用活物質を提供できる。
 上記本発明(6)及び(8)によれば、上記効果に加えて、初期効率が優れた非水電解質二次電池用活物質を提供できる。
非水電解質二次電池用活物質として使用するリチウム遷移金属複合酸化物の粒度分布の例(実施例1)を示す図である。 非水電解質二次電池用活物質として使用するリチウム遷移金属複合酸化物の粒度分布の例(実施例2)を示す図である。 仮焼成をした代表的な実施例(実施例2-4)のリチウム遷移金属複合酸化物の電子顕微鏡写真を示す図である。 仮焼成をしない代表的な比較例(比較例2-1)のリチウム遷移金属複合酸化物の電子顕微鏡写真を示す図である。 仮焼成をしたLi/Me=1.5のリチウム遷移金属複合酸化物(比較例2-8)の電子顕微鏡写真を示す図である。
 本発明に係る非水電解質二次電池用活物質が含有するリチウム遷移金属複合酸化物の組成は、高い放電容量及び優れた初期効率を得る観点から、Co、Ni及びMnを含む遷移金属元素、並びに、Liを含有し、前記遷移金属元素Meに対するLiのモル比Li/Meを1.2~1.4とする。
 組成式Li1+αMe1-αにおいて(1+α)/(1-α)で表される遷移金属元素Meに対するLiのモル比Li/Meが、1.4を超えると、遷移金属炭酸塩の前駆体とリチウム化合物との混合粉体を仮焼成した後、焼成することによりリチウム遷移金属複合酸化物を製造しても、得られた非水電解質二次電池用活物質の放電容量及び初期効率の向上は十分ではなく、高率放電性能も低下し、また、1.2未満であると、放電容量が小さくなり、高率放電性能も低下するので、Li/Meは1.2~1.4とする。
 放電容量が大きく、初期効率が優れた非水電解質二次電池を得ることができるという点で、遷移金属元素Meに対するCoのモル比Co/Meは、0.02~0.23が好ましく、0.04~0.21がより好ましく、0.06~0.17が最も好ましい。
 また、放電容量が大きく、初期効率が優れた非水電解質二次電池を得ることができるという点で、遷移金属元素Meに対するMnのモル比Mn/Meは0.63~0.72が好ましく、0.65~0.71がより好ましい。
 本発明に係るリチウム遷移金属複合酸化物は、本質的に、金属元素としてLi、Co、Ni及びMnを含む複合酸化物であるが、本発明の効果を損なわない範囲で、少量のNa,Ca等のアルカリ金属やアルカリ土類金属、Fe,Zn等の3d遷移金属に代表される遷移金属など他の金属を含有することを排除するものではない。
 本発明に係るリチウム遷移金属複合酸化物は、α-NaFeO構造を有している。空間群としてはP312又はR3-mに帰属可能である。ここで、P312は、R3-mにおける3a、3b、6cサイトの原子位置を細分化した結晶構造モデルであり、R3-mにおける原子配置に秩序性が認められるときに該P312モデルが採用される。なお、「R3-m」は本来「R3m」の「3」の上にバー「-」を施して表記すべきものである。
 本発明に係るリチウム遷移金属複合酸化物は、仮焼成した遷移金属酸化物の前駆体とリチウム化合物とを混合し、焼成したものである。本発明者は、遷移金属酸化物の前駆体を300~500℃で仮焼成した後、リチウム化合物と混合し、焼成したリチウム遷移金属複合酸化物を活物質にすると、仮焼成しない場合と比較して、非水電解質電池の放電容量が大きくなると共に、高率放電性能が顕著に向上することを知見して、本発明に到達した。
 また、本発明に係るリチウム遷移金属複合酸化物は、遷移金属炭酸塩の前駆体とリチウム化合物とを前記リチウム遷移金属複合酸化物の遷移金属元素Meに対するLiのモル比Li/Meが1.2~1.4となるように混合した混合粉体を、250~750℃で仮焼成した後、再混合して焼成することにより製造したものである。本発明者は、900℃程度まで昇温する本焼成前に、上記のように仮焼成して、一旦再混合してガス抜きを行うと、焼成後のリチウム遷移金属複合酸化物を含有する活物質を使用した非水電解質二次電池の各種特性(特に、高率放電性能、初期効率)が、仮焼成しない場合と比較して向上することを知見して、本発明に到達した。
 そして、上記のように仮焼成を行い、最終的に製造されたリチウム遷移金属複合酸化物について2次粒子の粒度分布を測定すると、2次粒子の粒度分布における累積体積が10%、50%及び90%となる粒度をそれぞれD10、D50及びD90とするとき、D10が6~9μm、D50が13~16μm、D90が18~32μmであった。仮焼成の温度を変化させた場合のリチウム遷移金属複合酸化物の粒度分布の例を図1及び図2に示す。図1は、前者のように仮焼成を行った例(実施例1)、図2は、後者のように仮焼成を行った例(実施例2)である。
 実施例1において、遷移金属酸化物の前駆体を300~500℃で仮焼成した後、Li/Meが1.2~1.4となるようにリチウム化合物と混合し、焼成して得たリチウム遷移金属複合酸化物は、D10が6~9μm、D50が13~16μm、D90が18~32μmであり、D90とD10との比D90/D10が2.9(2.3以上)~4.4であり、1次粒子の粒子径が1μm以下である。仮焼成をしないリチウム遷移金属複合酸化物は、D90/D10が2.9未満(2.1以下)であり、1次粒子の粒子径が1μmを超える。仮焼成の温度が500℃を超えると、D90/D10が4.4を超える。Li/Meが1.4を超えるものは、300℃以上で仮焼成をすると、D50が16μmを超える場合があり、1次粒子の粒子径が1μmを超える。
 実施例2におけるリチウム遷移金属複合酸化物の2次粒子の粒度分布については、仮焼成をしたものは、仮焼成をしないものに比較して、やや広がる傾向が見られるが、仮焼成温度はあまり影響がなく、また、仮焼成をしたものも、仮焼成をしないものも大きな相違はなく、D10が7~9μm、D50が13~16μm、D90が18~32μmの範囲に含まれる。しかし、1次粒子の粒子径については、後述する実施例に示されるように、匣鉢底部から選択的に取り出したリチウム遷移金属複合酸化物を走査型電子顕微鏡写真(SEM)で観察すると、仮焼成をしたものは1μm以下であるのに対し、仮焼成をしないものは、1μmを超える点で大きく相違する。図3に、仮焼成をした代表的な実施例(実施例2-4)のリチウム遷移金属複合酸化物の電子顕微鏡写真(SEMで撮影した倍率2000倍の写真)を示し、図4に、仮焼成をしない代表的な比較例(比較例2-1)のリチウム遷移金属複合酸化物の電子顕微鏡写真(SEMで撮影した倍率3500倍の写真)を示す。実施例の2次粒子は、図3に示されるように、きれいな球状であり、1次粒子の塊であることは確認できないが、比較例の2次粒子は、図4に示されるように、球状が崩れて、大部分が1μmを超える1次粒子の塊であることが確認できる。また、モル比Li/Meが1.4を超える1.5のリチウム遷移金属複合酸化物(比較例2-8)は、図5の電子顕微鏡写真(SEMで撮影した倍率2000倍の写真)に示されるように、仮焼成をした場合でも、1次粒子が1μmを超えるものが含まれる。なお、仮焼成したものは、D90/D10が2.3~4.1である。
 以上のとおり、本発明において、遷移金属元素Meに対するLiのモル比Li/Meが1.2~1.4であり、2次粒子の粒度分布における累積体積が10%、50%及び90%となる粒度をそれぞれD10、D50及びD90とするとき、D10が6~9μm、D50が13~16μm、D90が18~32μmであり、1次粒子の粒子径が1μm以下であるリチウム遷移金属複合酸化物は、遷移金属酸化物の前駆体を300~500℃で仮焼成した後、、Li/Meが1.2~1.4となるようにリチウム化合物と混合し、焼成すること、又は、遷移金属炭酸塩の共沈前駆体とリチウム化合物とを前記リチウム遷移金属複合酸化物の遷移金属元素Meに対するLiのモル比Li/Meが1.2~1.4となるように混合した混合粉体を、250~750℃で仮焼成した後、再混合して焼成することによって得られ、これを含有する非水電解質二次電池用活物質は、放電容量が大きくなり、高率放電性能が顕著に向上し、これに加えて、後者の場合は、初期効率が顕著に向上する。
 しかし、上記のような混合粉体を仮焼成した後、再混合して焼成した場合でも、後述する比較例に示されているように、リチウム遷移金属複合酸化物を粉砕して、D10、D50、D90が上記の範囲より小さくなった場合には、放電容量が大きく、高率放電性能がすぐれ、かつ、初期効率が優れた非水電解質二次電池用活物質は得られない。
 リチウム遷移金属複合酸化物のBET比表面積については、仮焼成したものは、仮焼成しないものと比較して増加し、3.5~6.5m2/gの範囲である。モル比Li/Meが大きくなるほど、BET比表面積は小さくなり、後述する比較例に示されるように、モル比Li/Meが1.5の場合には、仮焼成しても、BET比表面積は3.5m2/g未満である。
 リチウム遷移金属複合酸化物のタップ密度については、仮焼成したものは、仮焼成しないものと比較してわずかに増加し、1.65~1.96g/cm3の範囲である。
 実施例1の場合、遷移金属酸化物の前駆体を300℃以上で仮焼成すると、リチウム遷移金属複合酸化物の球状粒子の形状が崩れ、タップ密度が減少し、1.88g/cm3以下となり、仮焼成の温度が500℃を超えると、1.65g/cm3未満となる。したがって、タップ密度は、1.65~1.88g/cm3が好ましい。
 次に、本発明の非水電解質二次電池用活物質を製造する方法について説明する。
 本発明の非水電解質二次電池用活物質は、基本的に、活物質を構成する金属元素(Li,Mn,Co,Ni)を、目的とする活物質(リチウム遷移金属複合酸化物)の組成通りに含有するように原料を調整し、最終的にこの原料を焼成すること、によって得ることができる。但し、Li原料の量については、焼成中にLi原料の一部が消失することを見込んで、1~5%程度過剰に仕込むことが好ましい。
 目的とする組成を有するリチウム遷移金属複合酸化物を作製するための方法として、Li,Co,Ni,Mnのそれぞれの塩を混合・焼成するいわゆる「固相法」や、あらかじめCo,Ni,Mnを一粒子中に存在させた共沈前駆体を作製しておき、これにLi塩を混合・焼成する「共沈法」が知られている。「固相法」による合成過程では、特にMnはCo,Niに対して均一に固溶しにくい。このため、各元素が一粒子中に均一に分布した試料を得ることは困難である。本発明に係る非水電解質二次電池用活物質を製造するにあたり、前記「固相法」と前記「共沈法」のいずれを選択するかについては限定されるものではない。しかしながら、「固相法」を選択した場合には、本発明に係る正極活物質を製造することは極めて困難である。「共沈法」を選択する方が元素分布がより均一な活物質を得ることが容易である点で好ましい。
 共沈前駆体を作製するにあたって、Co,Ni,MnのうちMnは酸化されやすく、Co,Ni,Mnが2価の状態で均一に分布した共沈前駆体を作製することが容易ではないため、Co,Ni,Mnの原子レベルでの均一な混合は不十分なものとなりやすい。特に後述する実施例の組成範囲においては、Mn比率がCo,Ni比率に比べて高いので、水溶液中の溶存酸素を除去することが重要である。溶存酸素を除去する方法としては、酸素を含まないガスをバブリングする方法が挙げられる。酸素を含まないガスとしては、限定されるものではないが、窒素ガス、アルゴンガス、二酸化炭素(CO)等を用いることができる。なかでも、実施例のように、遷移金属炭酸塩の共沈前駆体(以下、「共沈炭酸塩前駆体」という)を作製する場合には、酸素を含まないガスとして二酸化炭素を採用すると、炭酸塩がより生成しやすい環境が与えられるため、好ましい。
 溶液中でCo、Ni及びMnを含有する化合物を共沈させて前駆体を製造する工程におけるpHは限定されるものではないが、前記共沈前駆体を共沈炭酸塩前駆体として作製しようとする場合には、7.5~11とすることができる。タップ密度を大きくするためには、pHを制御することが好ましい。pHを9.4以下とすることにより、タップ密度を1.65g/cm以上とすることができ、高率放電性能を向上させることができる。さらに、pHを8.0以下とすることにより、粒子成長速度を促進できるので、原料水溶液滴下終了後の撹拌継続時間を短縮できる。
 前記共沈前駆体の作製は、MnとNiとCoとが均一に混合された化合物であることが好ましい。本発明においては、放電容量が大きく、初期効率が優れた非水電解質二次電池用活物質を得るために、共沈前駆体を炭酸塩とすることが好ましい。また、錯化剤を用いた晶析反応等を用いることによって、より嵩密度の大きな前駆体を作製することもできる。その際、Li源と混合・焼成することでより高密度の活物質を得ることができるので電極面積あたりのエネルギー密度を向上させることができる。
 前記共沈前駆体の原料は、Mn化合物としては酸化マンガン、炭酸マンガン、硫酸マンガン、硝酸マンガン、酢酸マンガン等を、Ni化合物としては、水酸化ニッケル、炭酸ニッケル、硫酸ニッケル、硝酸ニッケル、酢酸ニッケル等を、Co化合物としては、硫酸コバルト、硝酸コバルト、酢酸コバルト等を一例として挙げることができる。
 前記共沈前駆体の作製に用いる原料としては、アルカリ水溶液と沈殿反応を形成するものであればどのような形態のものでも使用することができるが、好ましくは溶解度の高い金属塩を用いるとよい。
 実施例1においては、溶液中でCo、Ni及びMnを含む遷移金属元素Meの化合物を共沈させて遷移金属酸化物の共沈前駆体を製造した後、前記共沈前駆体を300~500℃で仮焼成する。300~500℃で仮焼成することにより、仮焼成しない場合と比較して、放電容量が大きくなり、高率放電性能が顕著に向上する。仮焼成の温度が300℃未満の場合や500℃を超える場合、放電容量(0.1C容量)は同程度であるが、高率放電性能が次第に低下する。
 実施例1における非水電解質二次電池用活物質は前記仮焼成した共沈前駆体とLi化合物とを混合した後、焼成することで作製する。Li化合物としては、水酸化リチウム、炭酸リチウム、硝酸リチウム、酢酸リチウム等を用いることで好適に製造することができる。
 実施例2においては、溶液中でCo、Ni及びMnを含む遷移金属元素Meの化合物を共沈させて遷移金属炭酸塩の共沈前駆体を製造した後、前記共沈前駆体とリチウム化合物とを混合して混合粉体とし、この混合粉体を仮焼成する。リチウム化合物としては、水酸化リチウム、炭酸リチウム、硝酸リチウム、酢酸リチウム等を用いることができるが、炭酸リチウムが好ましい。仮焼成の温度は、250~750℃が好ましい。
 仮焼成することにより、遷移金属炭酸塩は遷移金属酸化物に変化し、リチウム化合物と反応して、リチウム遷移金属複合酸化物の前駆体が生成する。この仮焼成工程において炭酸ガスが発生するから、冷却後、この生成物を取り出し、再混合してガス抜きを行う。このとき、2次粒子同士の凝集を解き粒径を揃える程度に軽く粉砕することが好ましい。実施例2においては、仮焼成をした後、本焼成を行う。
 焼成温度は、活物質の可逆容量に影響を与える。
 焼成温度が高すぎると、得られた活物質が酸素放出反応を伴って崩壊すると共に、主相の六方晶に加えて単斜晶のLi[Li1/3Mn2/3]O型に規定される相が、固溶相としてではなく、分相して観察される傾向がある。このような分相が多く含まれすぎると、活物質の可逆容量の減少を導くので好ましくない。このような材料では、X線回折図上35°付近及び45°付近に不純物ピークが観察される。従って、焼成温度は、活物質の酸素放出反応の影響する温度未満とすることが好ましい。活物質の酸素放出温度は、本発明に係る組成範囲においては、概ね1000℃以上であるが、活物質の組成によって酸素放出温度に若干の差があるので、あらかじめ活物質の酸素放出温度を確認しておくことが好ましい。特に試料に含まれるCo量が多いほど前駆体の酸素放出温度は低温側にシフトすることが確認されているので注意が必要である。活物質の酸素放出温度を確認する方法としては、焼成反応過程をシミュレートするために、共沈前駆体とリチウム化合物を混合したものを熱重量分析(DTA-TG測定)に供してもよいが、この方法では測定機器の試料室に用いている白金が揮発したLi成分により腐食されて機器を痛めるおそれがあるので、あらかじめ500℃程度の焼成温度を採用してある程度結晶化を進行させた組成物を熱重量分析に供するのが良い。
 一方、焼成温度が低すぎると、結晶化が十分に進まず、電極特性が低下する傾向がある。本発明において、共沈水酸化物を前駆体として用いたときには焼成温度は少なくとも700℃以上とすることが好ましい。また、共沈炭酸塩を前駆体として用いたときには焼成温度は少なくとも800℃以上とすることが好ましい。特に、前駆体が共沈炭酸塩である場合の最適な焼成温度は、前駆体に含まれるCo量が多いほど、より低い温度となる傾向がある。このように1次粒子を構成する結晶子を十分に結晶化させることにより、結晶粒界の抵抗を軽減し、円滑なリチウムイオン輸送を促すことができる。
 本発明者らは、本発明活物質の回折ピークの半値幅を詳細に解析することにより、前駆体が共沈水酸化物である場合においては、焼成温度が650℃未満の温度で合成した試料においては格子内にひずみが残存しており、650℃以上の温度で合成することで顕著にひずみを除去することができること、及び、前駆体が共沈炭酸塩である場合においては、焼成温度が750℃未満の温度で合成した試料においては格子内にひずみが残存しており、750℃以上の温度で合成することで顕著にひずみを除去することができることを確認した。また、結晶子のサイズは合成温度が上昇するに比例して大きくなるものであった。よって、本発明活物質の組成においても、系内に格子のひずみがほとんどなく、かつ結晶子サイズが十分成長した粒子を志向することで良好な放電容量を得られるものであった。具体的には、格子定数に及ぼすひずみ量が2%以下、かつ結晶子サイズが50nm以上に成長しているような合成温度(焼成温度)及びLi/Me比組成を採用することが好ましいことがわかった。これらを電極として成型して充放電をおこなうことで膨張収縮による変化も見られるが、充放電過程においても結晶子サイズは30nm以上を保っていることが得られる効果として好ましい。
 上記のように、焼成温度は、活物質の酸素放出温度に関係するが、活物質から酸素が放出される焼成温度に至らずとも、900℃以上において1次粒子が大きく成長することによる結晶化現象が見られる。これは、焼成後の活物質を走査型電子顕微鏡(SEM)で観察することにより確認できる。900℃を超えた合成温度を経て合成した活物質は1次粒子が0.5μm以上に成長しており、充放電反応中における活物質中のLi移動に不利な状態となり、充放電サイクル性能、高率放電性能が低下する。1次粒子の大きさは0.5μm未満であることが好ましく、0.3μm以下であることがより好ましい。
 したがって、本発明においては、組成比率Li/Meが1.2~1.4である場合に、放電容量、充放電サイクル性能、高率放電性能を向上させるために、焼成温度を800~1000℃とすることが好ましく、800~900℃付近がより好ましい。
 本発明に係る非水電解質二次電池に用いる非水電解質は、限定されるものではなく、一般にリチウム電池等への使用が提案されているものが使用可能である。非水電解質に用いる非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3-ジオキサン、1,4-ジオキサン、1,2-ジメトキシエタン、1,4-ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。
 非水電解質に用いる電解質塩としては、例えば、LiClO4,LiBF4,LiAsF6,LiPF6,LiSCN,LiBr,LiI,Li2SO4,Li210Cl10,NaClO4,NaI,NaSCN,NaBr,KClO4,KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCF3SO3,LiN(CF3SO22,LiN(C25SO22,LiN(CF3SO2)(C49SO2),LiC(CF3SO23,LiC(C25SO23,(CH34NBF4,(CH34NBr,(C254NClO4,(C254NI,(C374NBr,(n-C494NClO4,(n-C494NI,(C254N-maleate,(C254N-benzoate,(C254N-phtalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。
 さらに、LiPF6又はLiBF4と、LiN(C25SO22のようなパーフルオロアルキル基を有するリチウム塩とを混合して用いることにより、さらに電解質の粘度を下げることができるので、低温特性をさらに高めることができ、また、自己放電を抑制することができ、より望ましい。
 また、非水電解質として常温溶融塩やイオン液体を用いてもよい。
 非水電解質における電解質塩の濃度としては、高い電池特性を有する非水電解質電池を確実に得るために、0.1mol/l~5mol/lが好ましく、さらに好ましくは、0.5mol/l~2.5mol/lである。
 負極材料としては、限定されるものではなく、リチウムイオンを析出あるいは吸蔵することのできる形態のものであればどれを選択してもよい。例えば、Li[Li1/3Ti5/3]Oに代表されるスピネル型結晶構造を有するチタン酸リチウム等のチタン系材料、SiやSb,Sn系などの合金系材料リチウム金属、リチウム合金(リチウム-シリコン、リチウム-アルミニウム,リチウム-鉛,リチウム-スズ,リチウム-アルミニウム-スズ,リチウム-ガリウム,及びウッド合金等のリチウム金属含有合金)、リチウム複合酸化物(リチウム-チタン)、酸化珪素の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えばグラファイト、ハードカーボン、低温焼成炭素、非晶質カーボン等)等が挙げられる。
 正極活物質の粉体および負極材料の粉体は、平均粒子サイズ100μm以下であることが望ましい。特に、正極活物質の粉体は、非水電解質電池の高出力特性を向上する目的で10μm以下であることが望ましい。粉体を所定の形状で得るためには粉砕機や分級機が用いられる。例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩等が用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが、乾式、湿式ともに必要に応じて用いられる。
 以上、正極及び負極の主要構成成分である正極活物質及び負極材料について詳述したが、前記正極及び負極には、前記主要構成成分の他に、導電剤、結着剤、増粘剤、フィラー等が、他の構成成分として含有されてもよい。
 導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅,ニッケル,アルミニウム,銀,金等)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。
 これらの中で、導電剤としては、電子伝導性及び塗工性の観点よりアセチレンブラックが望ましい。導電剤の添加量は、正極または負極の総重量に対して0.1重量%~50重量%が好ましく、特に0.5重量%~30重量%が好ましい。特にアセチレンブラックを0.1~0.5μmの超微粒子に粉砕して用いると必要炭素量を削減できるため望ましい。これらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を乾式、あるいは湿式で混合することが可能である。
 前記結着剤としては、通常、ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン(PVDF),ポリエチレン,ポリプロピレン等の熱可塑性樹脂、エチレン-プロピレン-ジエンターポリマー(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーを1種または2種以上の混合物として用いることができる。結着剤の添加量は、正極または負極の総重量に対して1~50重量%が好ましく、特に2~30重量%が好ましい。
 フィラーとしては、電池性能に悪影響を及ぼさない材料であれば何でも良い。通常、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は、正極または負極の総重量に対して添加量は30重量%以下が好ましい。
 正極及び負極は、前記主要構成成分(正極においては正極活物質、負極においては負極材料)、およびその他の材料を混練し合剤とし、N-メチルピロリドン,トルエン等の有機溶媒又は水に混合させた後、得られた混合液を下記に詳述する集電体の上に塗布し、または圧着して50℃~250℃程度の温度で、2時間程度加熱処理することにより好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さ及び任意の形状に塗布することが望ましいが、これらに限定されるものではない。
 セパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。非水電解質電池用セパレータを構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-パーフルオロビニルエーテル共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-フルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロアセトン共重合体、フッ化ビニリデン-エチレン共重合体、フッ化ビニリデン-プロピレン共重合体、フッ化ビニリデン-トリフルオロプロピレン共重合体、フッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-エチレン-テトラフルオロエチレン共重合体等を挙げることができる。
 セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。
 また、セパレータは、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデン等のポリマーと電解質とで構成されるポリマーゲルを用いてもよい。非水電解質を上記のようにゲル状態で用いると、漏液を防止する効果がある点で好ましい。
 さらに、セパレータは、上述したような多孔膜や不織布等とポリマーゲルを併用して用いると、電解質の保液性が向上するため望ましい。即ち、ポリエチレン微孔膜の表面及び微孔壁面に厚さ数μm以下の親溶媒性ポリマーを被覆したフィルムを形成し、前記フィルムの微孔内に電解質を保持させることで、前記親溶媒性ポリマーがゲル化する。
 前記親溶媒性ポリマーとしては、ポリフッ化ビニリデンの他、エチレンオキシド基やエステル基等を有するアクリレートモノマー、エポキシモノマー、イソシアナート基を有するモノマー等が架橋したポリマー等が挙げられる。該モノマーは、ラジカル開始剤を併用して加熱や紫外線(UV)を用いたり、電子線(EB)等の活性光線等を用いて架橋反応を行わせることが可能である。
 非水電解質二次電池の構成については特に限定されるものではなく、正極、負極及びロール状のセパレータを有する円筒型電池、角型電池、扁平型電池等が一例として挙げられる。
 従来の正極活物質も、本発明の活物質も、正極電位が4.5V(vs.Li/Li)付近に至って充放電が可能である。しかしながら、使用する非水電解質の種類によっては、充電時の正極電位が高すぎると、非水電解質が酸化分解され電池性能の低下を引き起こす虞がある。したがって、使用時において、充電時の正極の最大到達電位が4.3V(vs.Li/Li)以下となるような充電方法を採用しても、充分な放電容量が得られる非水電解質二次電池が求められる場合がある。本発明の活物質を用いると、使用時において、充電時の正極の最大到達電位が4.5V(vs.Li/Li)より低くなるような、例えば、4.4V(vs.Li/Li)以下や4.3V(vs.Li/Li)以下となるような充電方法を採用しても、約200mAh/g以上という従来の正極活物質の容量を超える放電電気量を取り出すことが可能である。
 本発明に係る正極活物質が、高い放電容量を備えたものとするためには、リチウム遷移金属複合酸化物を構成する遷移金属元素が層状岩塩型結晶構造の遷移金属サイト以外の部分に存在する割合が小さいものであることが好ましい。これは、焼成工程に供する前駆体において、Co,Ni,Mnといった遷移金属元素が十分に均一に分布していること、及び、活物質試料の結晶化を促すための適切な焼成工程の条件を選択することによって達成できる。焼成工程に供する前駆体中の遷移金属の分布が均一でない場合、十分な放電容量が得られないものとなる。この理由については必ずしも明らかではないが、焼成工程に供する前駆体中の遷移金属の分布が均一でない場合、得られるリチウム遷移金属複合酸化物は、層状岩塩型結晶構造の遷移金属サイト以外の部分、即ちリチウムサイトに遷移金属元素の一部が存在するものとなる、いわゆるカチオンミキシングが起こることに由来するものと本発明者らは推察している。同様の推察は焼成工程における結晶化過程においても適用でき、活物質試料の結晶化が不十分であると層状岩塩型結晶構造におけるカチオンミキシングが起こりやすくなる。前記遷移金属元素の分布の均一性が高いものは、X線回折測定結果を空間群R3-mに帰属した場合の(003)面と(104)面の回折ピークの強度比が大きいものとなる傾向がある。本発明において、X線回折測定による前記(003)面と(104)面の回折ピークの強度比は、I(003)/I(104)≧1.20であることが好ましい。また、充放電を経た放電末の状態においてI(003)/I(104)>1であることが好ましい。前駆体の合成条件や合成手順が不適切である場合、前記ピーク強度比はより小さい値となり、しばしば1未満の値となる。
 本願明細書に記載した合成条件及び合成手順を採用することにより、上記のような高性能の正極活物質を得ることができる。とりわけ、充電上限電位を4.5V(vs.Li/Li)より低く設定した場合、例えば4.4V(vs.Li/Li)や4.3V(vs.Li/Li)といった充電上限電位を設定した場合でも高い放電容量を得ることができる非水電解質二次電池用正極活物質とすることができる。
(実施例1-1)
〔活物質の合成〕
 硫酸コバルト7水和物、硫酸ニッケル6水和物及び硫酸マンガン5水和物をCo、Ni及びMnのモル比が12.5:19.94:67.56となるよう秤量し、イオン交換水に溶解させることで2Mの硫酸塩水溶液を作製した。一方、15Lの反応槽を用意した。この反応層には、反応槽内部の液面が一定の高さを超えるとその排出口から溶液が排出されるように排出口が設けられている。また、反応槽内には、撹拌羽が備えられていると共に、攪拌時に上下方向の対流を生じさせるための円筒型の対流板が固定されている。前記反応槽に7Lのイオン交換水を入れ、COガスを30minバブリングさせることにより、前記イオン交換水中に前記COガスを十分溶解させた。なお、COガスバブリングは、硫酸塩水溶液を滴下し終わるまで継続した。次に、前記反応層を50℃に設定し、前記撹拌羽を1000rpmの回転速度で作動させた。前記反応槽中に2Lの硫酸塩水溶液を徐々に滴下した。滴下中、前記攪拌を継続した。また、反応槽中のpHを常時監視し、pHが8.6±0.2の範囲となるように、2Mの炭酸ナトリウム及び0.2Mのアンモニアが溶解している水溶液を加えた。前記硫酸塩水溶液を滴下している間、前記排出口から反応生成物を含む溶液一部が反応槽の外へ排出されるが、2Lの硫酸塩水溶液の全量を滴下し終わるまでの排出溶液は、反応槽内に戻さず、廃棄した。滴下終了後、反応生成物を含む溶液をから、吸引ろ過により共沈生成物を濾別し、付着したナトリウムイオンを除去するために、イオン交換水を用いて洗浄した。次に、大気雰囲気中、常圧下、オーブンで100℃にて乾燥させた。乾燥後、二次粒子同士の凝集を解き粒径を揃える程度に、乳鉢で数分間軽く粉砕した。このようにして、共沈炭酸塩前駆体の粉末を得た。
 次に、前記共沈炭酸塩前駆体を仮焼成工程に供した。あらかじめ質量を測定しておいた空の匣鉢(内容積80mm×80mm×44mm)に前記共沈炭酸塩前駆体30gを量り取り、箱型の電気炉内に設置し、大気中、仮焼成温度である300℃まで100℃/hrの昇温速度で昇温し、300℃で5hr保持した。その後、自然炉冷にて約5hr後に50℃以下になったことを確認し、前記匣鉢を電気炉から取り出し、再び質量を測定した。仮焼成前後の質量測定の結果から、仮焼成前において30gであった共沈炭酸塩前駆体は、仮焼成後において25.1gとなっていることがわかった。この仮焼成前後の質量測定の結果から求められた質量変化率に基づき、仮焼成工程後の共沈炭酸塩前駆体中に占めるCo,Ni及びMnの質量比を算出し、次の焼成工程においてLi塩と混合する場合の混合比率を決定する根拠とした。
 Li/Me(Co+Ni+Mn)比率が1.3となるように、炭酸リチウム9.699gと、前記仮焼成工程後の共沈炭酸塩前駆体19.04gを量り取り、ボールミルを用いて1次粒子が破砕されない条件下で均一になるまで混合した。この混合物のほぼ全量を匣鉢(内容積54mm×54mm×34mm)へ移し、室温から焼成温度である900℃まで4hかけて昇温し、900℃で10h保持した。その後、自然炉冷にて約12h後に50℃以下になったことを確認し、前記匣鉢を電気炉から取り出した。得られた焼成物は、2次粒子同士の凝集を解き粒径を揃える程度に、乳鉢で数分間軽く粉砕した。
 このようにして、実施例1-1に係るリチウム遷移金属複合酸化物を作製した。該リチウム遷移金属複合酸化物は、Li[Li1.13Co0.11Ni0.17Mn0.59]Oで表される組成であることを確認した。
 (実施例1-2)
 共沈炭酸塩前駆体の仮焼成温度を400℃に変更した以外は、実施例1-1と同様にして、実施例1-2に係るリチウム遷移金属複合酸化物を作製した。
 (実施例1-3)
 共沈炭酸塩前駆体の仮焼成温度を500℃に変更した以外は、実施例1-1と同様にして、実施例1-3に係るリチウム遷移金属複合酸化物を作製した。
 (比較例1-1)
 共沈炭酸塩前駆体の仮焼成温度を600℃に変更した以外は、実施例1-1と同様にして、比較例1-1に係るリチウム遷移金属複合酸化物を作製した。
 (比較例1-2)
 共沈炭酸塩前駆体の仮焼成温度を700℃に変更した以外は、実施例1-1と同様にして、比較例1-2に係るリチウム遷移金属複合酸化物を作製した。
 (比較例1-3)
 Li/Me比率が1.3となるように、炭酸リチウム9.699gと、仮焼成していない共沈炭酸塩前駆体22.78gを量り取った以外は、実施例1-1と同様にして、比較例1-3に係るリチウム遷移金属複合酸化物を作製した。
 なお、Li/Me比率を同一にしようとする場合、仮焼成していない共沈炭酸塩前駆体は、300℃以上で仮焼成した共沈炭酸塩前駆体よりも、脱炭酸されていない分だけ量を多く加える必要がある。以下の比較例においても同様である。
 (実施例1-4)
 Li/Me比率を1.2となるように変更した(炭酸リチウム9.389gと、300℃仮焼成工程後の共沈炭酸塩前駆体19.54gを量り取った)以外は、実施例1-1と同様にして、実施例1-4に係るリチウム遷移金属複合酸化物を作製した。
 (比較例1-4)
 Li/Me比率を1.2となるように変更した(炭酸リチウム9.389gと、仮焼成していない共沈炭酸塩前駆体23.39gを量り取った)以外は、比較例1-3と同様にして、比較例1-4に係るリチウム遷移金属複合酸化物を作製した。
 (実施例1-5)
 Li/Me比率を1.25となるように変更した(炭酸リチウム9.548gと、300℃仮焼成工程後の共沈炭酸塩前駆体19.28gを量り取った)以外は、実施例1-1と同様にして、実施例1-5に係るリチウム遷移金属複合酸化物を作製した。
 (比較例1-5)
 Li/Me比率を1.25となるように変更した(炭酸リチウム9.548gと、仮焼成していない共沈炭酸塩前駆体23.08gを量り取った)以外は、比較例1-3と同様にして、比較例1-5に係るリチウム遷移金属複合酸化物を作製した。
 (実施例1-6)
 Li/Me比率を1.325となるように変更した(炭酸リチウム9.772gと、300℃仮焼成工程後の共沈炭酸塩前駆体18.92gを量り取った)以外は、実施例1-1と同様にして、実施例1-6に係るリチウム遷移金属複合酸化物を作製した。
 (比較例1-6)
 Li/Me比率を1.325となるように変更した(炭酸リチウム9.772gと、仮焼成していない共沈炭酸塩前駆体22.64gを量り取った)以外は、比較例1-3と同様にして、比較例1-6に係るリチウム遷移金属複合酸化物を作製した。
 (実施例1-7)
 Li/Me比率を1.35となるように変更した(炭酸リチウム9.844gと、300℃仮焼成工程後の共沈炭酸塩前駆体18.80gを量り取った)以外は、実施例1-1と同様にして、実施例1-7に係るリチウム遷移金属複合酸化物を作製した。
 (比較例1-7)
 Li/Me比率を1.35となるように変更した(炭酸リチウム9.844gと、仮焼成していない共沈炭酸塩前駆体22.50gを量り取った)以外は、比較例1-3と同様にして、比較例1-7に係るリチウム遷移金属複合酸化物を作製した。
 (実施例1-8)
 Li/Me比率を1.375となるように変更した(炭酸リチウム9.914gと、300℃仮焼成工程後の共沈炭酸塩前駆体18.69gを量り取った)以外は、実施例1-1と同様にして、実施例1-8に係るリチウム遷移金属複合酸化物を作製した。
 (比較例1-8)
 Li/Me比率を1.375となるように変更した(炭酸リチウム9.914gと、仮焼成していない共沈炭酸塩前駆体22.36gを量り取った)以外は、比較例1-3と同様にして、比較例1-8に係るリチウム遷移金属複合酸化物を作製した。
 (実施例1-9)
 Li/Me比率を1.4となるように変更した(炭酸リチウム9.982gと、300℃仮焼成工程後の共沈炭酸塩前駆体18.58gを量り取った)以外は、実施例1-1と同様にして、実施例1-9に係るリチウム遷移金属複合酸化物を作製した。
 (比較例1-9)
 Li/Me比率を1.4となるように変更した(炭酸リチウム9.982gと、仮焼成していない共沈炭酸塩前駆体22.23gを量り取った)以外は、比較例1-3と同様にして、比較例1-9に係るリチウム遷移金属複合酸化物を作製した。
 (比較例1-10)
 Li/Me比率を1.5となるように変更した(炭酸リチウム10.24gと、300℃仮焼成工程後の共沈炭酸塩前駆体18.15gを量り取った)以外は、実施例1-1と同様にして、比較例1-10に係るリチウム遷移金属複合酸化物を作製した。
 (比較例1-11)
 Li/Me比率を1.5となるように変更した(炭酸リチウム10.24gと、仮焼成していない共沈炭酸塩前駆体21.72gを量り取った)以外は、比較例1-3と同様にして、比較例1-11に係るリチウム遷移金属複合酸化物を作製した。
(実施例2-1)
〔活物質の合成〕
 硫酸コバルト7水和物14.08g、硫酸ニッケル6水和物21.00g及び硫酸マンガン5水和物65.27gを秤量し、これらの全量をイオン交換水200mlに溶解させ、Co:Ni:Mnのモル比が12.5:19.94:67.56となる2.00Mの硫酸塩水溶液を作製した。一方、2Lの反応槽に750mlのイオン交換水を注ぎ、COガスを30minバブリングさせることにより、イオン交換水中にCOを溶解させた。反応槽の温度を50℃(±2℃)に設定し、攪拌モーターを備えたパドル翼を用いて反応槽内を700rpmの回転速度で攪拌しながら、前記硫酸塩水溶液を3ml/minの速度で滴下した。ここで、滴下の開始から終了までの間、2.00Mの炭酸ナトリウム及び0.4Mのアンモニアを含有する水溶液を適宜滴下することにより、反応槽中のpHが常に7.9(±0.05)を保つように制御した。滴下終了後、反応槽内の攪拌をさらに3h継続した。攪拌の停止後、12h以上静置した。
 次に、吸引ろ過装置を用いて、反応槽内に生成した共沈炭酸塩の粒子を分離し、さらにイオン交換水を用いて粒子に付着しているナトリウムイオンを洗浄除去し、電気炉を用いて、空気雰囲気中、常圧下、100℃にて乾燥させた。その後、粒径を揃えるために、乳鉢で数分間粉砕した。このようにして、共沈炭酸塩前駆体を作製した。
 前記共沈炭酸塩前駆体22.78gに、炭酸リチウム9.699gを加え、ボールミルを用いて1次粒子が破砕されない条件下で均一になるまで混合し、Li:(Co,Ni,Mn)のモル比が130:100である混合粉体を調製した。
 この混合粉体のほぼ全量を匣鉢(内容積54mm×54mm×34mm)へ移し、箱型電気炉(型番:AMF20)に設置し、空気雰囲気中、常圧下、常温から250℃まで2.5時間かけて昇温し、250℃で10h仮焼成した。前記箱型電気炉の内部寸法は、縦10cm、幅20cm、奥行き30cmであり、幅方向20cm間隔に電熱線が入っている。仮焼成後、ヒーターのスイッチを切り、アルミナ製ボートを炉内に置いたまま自然放冷した。一昼夜経過後、炉の温度が100℃以下となっていることを確認してから、前記匣鉢を電気炉から取り出し、匣鉢の内容物を全量乳鉢へ移し、2次粒子同士の凝集を解き粒径を揃える程度に数分間軽く粉砕した。
 次に、この混合粉体を再び匣鉢へ移し、前記箱型電気炉に設置し、空気雰囲気中、常圧下、常温から900℃まで4時間かけて昇温し、900℃で10h焼成した。焼成後、ヒーターのスイッチを切り、匣鉢を炉内に置いたまま自然放冷した。一昼夜経過後、炉の温度が100℃以下となっていることを確認してから、匣鉢を電気炉から取り出し、2次粒子同士の凝集を解き粒径を揃える程度に、乳鉢で数分間軽く粉砕した。このようにして、実施例2-1に係るリチウム遷移金属複合酸化物を作製した。
 このようにして、実施例2-1に係るリチウム遷移金属複合酸化物を作製した。該リチウム遷移金属複合酸化物は、Li1.13Co0.11Ni0.17Mn0.59で表される組成であることを確認した。
 (実施例2-2)
 前記混合粉体の仮焼成温度を350℃に変更した以外は、実施例2-1と同様にして、実施例2に係るリチウム遷移金属複合酸化物を作製した。
 (実施例2-3)
 前記混合粉体の仮焼成温度を450℃に変更した以外は、実施例2-1と同様にして、実施例3に係るリチウム遷移金属複合酸化物を作製した。
 (実施例2-4)
 前記混合粉体の仮焼成温度を550℃に変更した以外は、実施例2-1と同様にして、実施例2-4に係るリチウム遷移金属複合酸化物を作製した。
 (実施例2-5)
 前記混合粉体の仮焼成温度を650℃に変更した以外は、実施例2-1と同様にして、実施例2-5に係るリチウム遷移金属複合酸化物を作製した。
 (実施例2-6)
 前記混合粉体の仮焼成温度を750℃に変更した以外は、実施例2-1と同様にして、実施例2-6に係るリチウム遷移金属複合酸化物を作製した。
 (比較例2-1)
 前記混合粉体を仮焼成しない以外は、実施例2-1と同様にして、比較例2-1に係るリチウム遷移金属複合酸化物を作製した。
 (実施例2-7)
 Li/Me比率を1.2となるように変更した(共沈炭酸塩前駆体23.30gに、炭酸リチウム9.159gを加えた)以外は、実施例2-4と同様にして、実施例2-7に係るリチウム遷移金属複合酸化物を作製した。
 (比較例2-2)
 Li/Me比率を1.2となるように変更した(共沈炭酸塩前駆体23.30gに、炭酸リチウム9.159gを加えた)以外は、比較例2-1と同様にして、比較例2-2に係るリチウム遷移金属複合酸化物を作製した。
 (実施例2-8)
 Li/Me比率を1.25となるように変更した(共沈炭酸塩前駆体23.04gに、炭酸リチウム9.432gを加えた)以外は、実施例2-4と同様にして、実施例2-8に係るリチウム遷移金属複合酸化物を作製した。
 (比較例2-3)
 Li/Me比率を1.25となるように変更した(共沈炭酸塩前駆体23.04gに、炭酸リチウム9.432gを加えた)以外は、比較例2-1と同様にして、比較例2-3に係るリチウム遷移金属複合酸化物を作製した。
 (実施例2-9)
 Li/Me比率を1.325となるように変更した(共沈炭酸塩前駆体22.65gに、炭酸リチウム9.830gを加えた)以外は、実施例2-4と同様にして、実施例2-9に係るリチウム遷移金属複合酸化物を作製した。
 (比較例2-4)
 Li/Me比率を1.325となるように変更した(共沈炭酸塩前駆体22.65gに、炭酸リチウム9.830gを加えた)以外は、比較例2-1と同様にして、比較例2-4に係るリチウム遷移金属複合酸化物を作製した。
 (実施例2-10)
 Li/Me比率を1.35となるように変更した(共沈炭酸塩前駆体22.53g、炭酸リチウム9.960gを加えた)以外は、実施例2-4と同様にして、実施例2-10に係るリチウム遷移金属複合酸化物を作製した。
 (比較例2-5)
 Li/Me比率を1.35となるように変更した(共沈炭酸塩前駆体22.53g、炭酸リチウム9.960gを加えた)以外は、比較例2-1と同様にして、比較例2-5に係るリチウム遷移金属複合酸化物を作製した。
 (実施例2-11)
 Li/Me比率を1.375となるように変更した(共沈炭酸塩前駆体22.40g、炭酸リチウム10.09gを加えた)以外は、実施例2-4と同様にして、実施例2-11に係るリチウム遷移金属複合酸化物を作製した。
 (比較例2-6)
 Li/Me比率を1.375となるように変更した(共沈炭酸塩前駆体22.40g、炭酸リチウム10.09gを加えた)以外は、比較例2-1と同様にして、比較例2-6に係るリチウム遷移金属複合酸化物を作製した。
 (実施例2―12)
 Li/Me比率を1.4となるように変更した(共沈炭酸塩前駆体22.28g、炭酸リチウム10.22gを加えた)以外は、実施例2-4と同様にして、実施例2-12に係るリチウム遷移金属複合酸化物を作製した。
 (比較例2-7)
 Li/Me比率を1.4となるように変更した(共沈炭酸塩前駆体22.28g、炭酸リチウム10.22gを加えた)以外は、比較例2-1と同様にして、比較例2-7に係るリチウム遷移金属複合酸化物を作製した。
 (比較例2-8)
 Li/Me比率を1.5となるように変更した(共沈炭酸塩前駆体21.80g、炭酸リチウム10.71gを加えた)以外は、実施例2-4と同様にして、比較例2-8に係るリチウム遷移金属複合酸化物を作製した。
 (比較例2―9)
 Li/Me比率を1.5となるように変更した(共沈炭酸塩前駆体21.80g、炭酸リチウム10.71gを加えた)以外は、比較例2-1と同様にして、比較例2-9に係るリチウム遷移金属複合酸化物を作製した。
 (比較例2-10)
 実施例2-4に係るリチウム遷移金属複合酸化物を3g量り取り、遊星型ボールミル(FRITSCH製 purverize6)装置に付属のアルミナ製容器に移した。さらに、付属のアルミナ製のボール(10mmφ)を投入して、前記装置を用いて200rpmの回転速度にて1時間粉砕処理をおこなった。このようにして、比較例2-10に係るリチウム遷移金属複合酸化物を作製した。
 〔粒度分布の測定〕
 実施例1-1~1-9、比較例1-1~1-11、実施例2-1~2-12及び比較例2-1~2-10に係るリチウム遷移金属複合酸化物は、次の条件及び手順に沿って粒度分布測定を行った。測定装置には日機装社製Microtrac(型番:MT3000)を用いた。前記測定装置は、光学台、試料供給部及び制御ソフトを搭載したコンピュータからなり、光学台にはレーザー光透過窓を備えた湿式セルが設置される。測定原理は、測定対象試料が分散溶媒中に分散している分散液が循環している湿式セルにレーザー光を照射し、測定試料からの散乱光分布を粒度分布に変換する方式である。前記分散液は試料供給部に蓄えられ、ポンプによって湿式セルに循環供給される。前記試料供給部は、常に超音波振動が加えられている。分散溶媒として水を用いた。測定制御ソフトにはMicrotrac DHS for Win98(MT3000)を用いた。前記測定装置に設定入力する「物質情報」については、溶媒の「屈折率」として1.33を設定し、「透明度」として「透過(TRANSPARENT)」を選択し、「球形粒子」として「非球形」を選択した。試料の測定に先立ち、「Set Zero」操作を行う。「Set Zero」操作は、粒子からの散乱光以外の外乱要素(ガラス、ガラス壁面の汚れ、ガラス凸凹など)が後の測定に与える影響を差し引くための操作であり、試料供給部に分散溶媒である水のみを入れ、湿式セルに分散溶媒である水のみが循環している状態でバックグラウンド測定を行い、バックグラウンドデータをコンピュータに記憶させる。続いて「Sample LD(Sample Loading)」操作を行う。Sample LD操作は、測定時に湿式セルに循環供給される分散液中の試料濃度を最適化するための操作であり、測定制御ソフトの指示に従って試料供給部に測定対象試料を手動で最適量に達するまで投入する操作である。続いて、「測定」ボタンを押すことで測定操作が行われる。前記測定操作を2回繰り返し、その平均値として測定結果が制御コンピュータから出力される。測定結果は、粒度分布ヒストグラム、並びに、D10、D50及びD90の各値(D10、D50及びD90は、2次粒子の粒度分布における累積体積がそれぞれ10%、50%及び90%となる粒度)として取得される。
 〔1次粒子の粒子径の測定〕
 実施例1-1~1-9、比較例1-1~1-11、実施例2-1~2-12及び比較例2-1~2-10に係るリチウム遷移金属複合酸化物について、焼成工程後、それぞれの匣鉢底部におけるリチウム遷移金属複合酸化物を、薬さじを用いて取り出した。
 取り出したリチウム遷移金属複合酸化物をカーボンテープに付着させ、走査型電子顕微鏡(SEM)観察に供するため、Ptスパッタリング処理を行った。
 SEM観察により2次粒子を十分拡大させた状態で、2次粒子を構成する1次粒子の大きさについて1μm以下か1μmを超えるか表示スケールから判断した。
 〔比表面積の測定〕
 ユアサアイオニクス社製比表面積測定装置(商品名:MONOSORB)を用いて、一点法により、実施例1-1~1-9、比較例1-1~1-11、実施例2-1~2-12及び比較例2-1~2-10に係るリチウム遷移金属複合酸化物に対する窒素吸着量[m]を求めた。得られた吸着量(m)を各リチウム遷移金属複合酸化物質量(g)で除した値をBET比表面積とした。測定に当たって、液体窒素を用いた冷却によるガス吸着を行った。また、冷却前に120℃15minの予備加熱を行った。また、測定試料の投入量は、0.5g±0.01gとした。
 〔タップ密度の測定〕
 REI ELECTRIC CO.LTD.社製のタッピング装置(1968年製)を用いて、300回カウント後の実施例1-1~1-9、比較例1-1~1-11、実施例2-1~2-12及び比較例2-1~2-10に係るリチウム遷移金属複合酸化物の体積を質量で除した値をタップ密度とした。測定においては、10-2dmのメスシリンダーに各リチウム遷移金属複合酸化物を2g±0.2g投入することで行った。
 〔非水電解質二次電池の作製及び評価〕
 実施例1-1~1-9、比較例1-1~1-11、実施例2-1~2-12及び比較例2-1~2-10のそれぞれのリチウム遷移金属複合酸化物を非水電解質二次電池用正極活物質として用いて、以下の手順で非水電解質二次電池を作製し、電池特性を評価した。
 正極活物質、アセチレンブラック(AB)及びポリフッ化ビニリデン(PVdF)を、質量比85:8:7の割合で混合した。この混合物を、分散媒としてN-メチルピロリドンを加えて混練分散し、塗布液を調製した。なお、PVdFについては、固形分が溶解分散された液を用いることによって、固形質量換算した。該塗布液を厚さ20μmのアルミニウム箔集電体に塗布し、正極板を作製した。
 対極(負極)には、正極の単独挙動を観察するため、リチウム金属を用いた。このリチウム金属は、ニッケル箔集電体に密着させた。ただし、非水電解質二次電池の容量が十分に正極規制となるような調製が実施された。
 電解液としては、EC/EMC/DMCの体積比が6:7:7である混合溶媒に、LiPFを、その濃度が1mol/lとなるように溶解させたものを用いた。セパレータとしては、ポリアクリレートを用いて表面改質することによって電解質の保持性を向上させた、ポリプロピレン製の微孔膜を用いた。また、ニッケル板にリチウム金属箔をはりつけたものを、参照極として用いた。外装体には、ポリエチレンテレフタレート(15μm)/アルミニウム箔(50μm)/金属接着性ポリプロピレンフィルム(50μm)からなる金属樹脂複合フィルムを用いた。この外装体に、正極端子、負極端子および参照極端子の開放端部が、外部に露出するように電極を収納した。前記金属樹脂複合フィルムの内面同士が向かい合った融着代を、注液孔となる部分を除いて、気密封止した。
 上記のようにして作製された非水電解質二次電池に対して、25℃の下、2サイクルの初期充放電工程を実施した。電圧制御は、全て、正極電位に対して行った。充電は、電流0.1CmA、電圧4.6Vの定電流定電圧充電とした。充電終止条件については、電流値が0.02CmAに減衰した時点とした。放電は、電流0.1CmA、終止電圧2.0Vの定電流放電とした。全てのサイクルにおいて、充電後及び放電後に、30分の休止時間を設定した。このようにして、実施例1-1~1-9、比較例1-1~1-11、実施例2-1~2-12及び比較例2-1~2-10に係る非水電解質二次電池を完成した。ここで、実施例2-1~2-12及び比較例2-1~2-10に係る非水電解質二次電池については、前記初期充放電工程の1サイクル目における充電電気量に対する放電電気量の割合の百分率を「初期効率(%)」として記録した。
 完成した非水電解質二次電池について、3サイクルの充放電を行った。電圧制御は、全て、正極電位に対して行った。この充放電サイクルの条件は、充電電圧を4.3V(vs.Li/Li)としたことを除いては、前記初期充放電工程の条件と同一である。全てのサイクルにおいて、充電後及び放電後に、30分の休止時間を設定した。このときの放電容量を「0.1C容量(mAh/g)」として記録した。
 次に、次の手順にて高率放電試験を行った。まず、電流0.1CmA、電圧4.3Vの定電流定電圧充電を行った。30分の休止後、電流1CmA、終止電圧2.0Vの定電流放電を行い、このときの放電容量を「1C容量(mAh/g)」として記録した。
 以上のD10、D50及びD90の各値、1次粒子径、BET比表面積、タップ密度の測定結果、初期効率、0.1C容量、1C容量(高率放電容量)を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1より、遷移金属酸化物の前駆体の仮焼成の温度を300~500℃とし、Li/Me比を1.2~1.4とした実施例1-1~1-9においては、D10が6~9μm、D50が13~16μm、D90が18~32μm、D90/D10が2.9~4.4、1次粒子の粒子径が1μm以下のリチウム遷移金属複合酸化物が得られ、これを含有する活物質は、放電容量(0.1C容量)が215mAh/g以上と大きいものであり、さらに、1C容量が175mAh/g以上となり、高率放電性能が向上することがわかる(実施例1-4は、比較例1-3より1C容量が低いが、Li/Me比が同じ比較例1-4と比較して高率放電性能が向上している)。また、BET比表面積は3.7~6.2m2/gであり、タップ密度は1.65~1.88g/cm3であった。
 これに対して、前駆体を仮焼成しないで、Li/Me比を1.2~1.4とした比較例1-3~1-9においては、D90が18μm以下、D90/D10が2.1以下、1次粒子の粒子径が1μmを超えるリチウム遷移金属複合酸化物が得られ、これを含有する活物質は、1C容量が179mAh/g以下であり、高率放電性能が劣る。
 また、前駆体の仮焼成の温度が500℃を超える比較例1-1及び1-2においては、球状粒子が大きく崩壊し、600℃以上で、D10が3.4以下、D90が34.3以上、D90/D10が10以上となり、BET比表面積が次第に減少し、タップ密度が1.6g/cm3程度と大きく減少し、1C容量が次第に低下し、高率放電性能の向上が十分ではなかった。
 Li/Me比が1.5の比較例1-10及び1-11においては、D10が9μm以上、D50が16μm以上であり、1次粒子の粒子径が1μmを超え、前駆体を仮焼成してもしなくても0.1C容量、1C容量が共に低く、放電性能が劣る。
 表2より、遷移金属炭酸塩の共沈前駆体とリチウム化合物との混合粉体を250~750℃で仮焼成し、Li/Me比を1.2~1.4とした実施例2-1~2-12においては、D10が7~9μm、D50が13~16μm、D90が18~32μmであり、1次粒子の粒子径が1μm以下であるリチウム遷移金属複合酸化物が得られ、これを含有する活物質を用いた非水電解質二次電池は、放電容量(0.1C容量)が200mAh/g以上と大きく、また、仮焼成しないリチウム遷移金属複合酸化物を含有する活物質と比較して、1C容量が大きく、高率放電性能が向上することがわかる。さらに、初期効率が91%以上であり優れたものであることがわかる。また、実施例1~12において、BET比表面積は3.5~6.5m2/gであり、タップ密度は1.75~1.96g/cm3であった。
 これに対して、前記混合粉体を仮焼成しないで、Li/Me比を1.2~1.4とした比較例2-1~2-7においては、1次粒子の粒子径が1μmを超えるリチウム遷移金属複合酸化物が得られ、これを含有する活物質は、仮焼成したリチウム遷移金属複合酸化物を含有する活物質より、高率放電性能が劣り、初期効率が90%未満であり、初期効率が劣る。
 また、Li/Me比が1.5の比較例1-8においては、前記混合粉体を仮焼成しても1次粒子の粒子径が1μmを超え、0.1C容量、1C容量が共に低く、放電性能が劣り、初期効率は85%程度であり、仮焼成しない比較例1-9と比較して顕著には向上しない。
 さらに、比較例1-10のように、1次粒子の粒子径が1μm以下であっても、リチウム遷移金属複合酸化物が粉砕されて「D10が6~9μm、D50が13~16μm、D90が18~32μm」を満たしていない場合には、放電容量は小さく、高率放電性能が劣り、初期効率が低くなった。
 上記の実施例では、リチウム遷移金属複合酸化物の、遷移金属元素Meに対するLiのモル比Li/Meの値について、焼成工程に供した共沈炭酸塩前駆体と炭酸リチウムの混合比率に基づいて記載した。また、リチウム遷移金属複合酸化物の、2次粒子の粒度分布におけるD10、D50及びD90の値について、電極を作製する前のリチウム遷移金属複合酸化物について粒度分布の測定を行った結果に基づいて記載した。しかしながら、充放電の履歴を有する非水電解質二次電池については、次に述べる手順に沿って処理を行って、正極活物質を採取することにより、上記Li/Meの値、並びに、上記D10、D50及びD90の値を求めることができる。
 まず、正極が含有している正極活物質を十分に放電末の状態にすることが必要である。その方法としては、前記正極と、前記正極を十分に放電末状態にするために必要な量のリチウムイオンを放出しうる負極との間でセルを構成し、正極を放電させる操作を行うことが好ましい。前記負極として、金属リチウムを用いてもよい。セルは、2端子セルであってもよいが、参照極を設けた3端子セルを用いて、参照極に対して正極電位の制御及び監視を行うことが好ましい。セルに用いる電解液は、可能な限り、非水電解質二次電池に用いられていた非水電解質の組成と同一であることが好ましい。上記セルを用いて正極を放電させる操作としては、0.1CmA以下の電流で放電終止電位を2.0V(vs.Li/Li)として連続放電又は間欠放電を行う方法が挙げられる。上記放電操作を行った後、十分な休止時間を設けて、開回路電位が3.0V(vs.Li/Li)以下となっていることを確認する。上記放電操作後の開回路電位が3.0V(vs.Li/Li)を上回る場合には、開回路電位が3.0V(vs.Li/Li)以下となるまで、さらに小さい放電電流の値を採用して上記操作を繰り返すことが求められる。
 このような操作を経た正極は、セルから取り出した後、付着している電解液を除去することが望ましい。電解液が付着していると、電解液に溶解しているリチウム塩が、Li/Meの値の分析結果に影響を与えるためである。電解液を除去する方法としては、揮発性溶剤による洗浄が挙げられる。前記揮発性溶剤は、リチウム塩を溶解しやすいものが好ましい。具体的にはジメチルカーボネートが例示される。前記揮発性溶剤は、水分量をリチウム電池グレードに低下させたものを用いることが求められる。水分量が多いと、正極活物質中のLiが溶出し、Li/Meの値が正確に求められない虞があるからである。
 次に、正極から正極集電体を取り除き、正極活物質を含む正極合剤を採取する。正極合剤は、多くの場合、正極活物質の他に導電材及び結着剤を含んでいる。結着剤を含む正極合剤から結着剤を除去するための方法としては、結着剤を溶解可能な溶媒を用いる方法が挙げられる。具体的には、例えば結着剤がポリフッ化ビニリデンであることが推定される場合、十分な量のN-メチルピロリドン中に正極合剤を浸漬し、150℃で数時間還流させた後、濾過等により、正極活物質を含む粉体と結着剤を含む溶媒に分離する方法が挙げられる。このようにして結着剤を分離・除去した正極活物質を含む粉体から、導電材を除去するための方法としては、例えば導電材がアセチレンブラック等の炭素質材料であると推定される場合、熱処理によって前記炭素質材料を酸化分解除去する方法が挙げられる。前記熱処理の条件としては、酸素を含む雰囲気中、導電材が熱分解する温度以上とすることが求められるが、熱処理温度が高すぎると、正極活物質の物性が変化する虞があることから、正極活物質の物性に影響を極力与えない温度とすることが望ましい。例えば、本発明の正極活物質であれば、空気中700℃とすることが挙げられる。
 発明者が属する研究機関において、一般的なリチウム遷移金属複合酸化物を正極活物質として用いた非水電解質二次電池から、以上の操作手順を経て正極活物質を採取し、上記Li/Meの値及び上記D10、D50及びD90の値を測定したところ、電極作成前の正極活物質についての値がほぼそのまま維持されているものであったことが、確認されている。
 本発明の活物質は、放電容量が大きく、かつ、高率放電性能、初期効率が優れた非水電解質二次電池用のものであるから、電気自動車用電源、電子機器用電源、電力貯蔵用電源等の非水電解質二次電池に有効に利用できる。

Claims (14)

  1.  α-NaFeO型結晶構造を有し、組成式Li1+αMe1-α(MeはCo、Ni及びMnを含む遷移金属元素、α>0)で表されるリチウム遷移金属複合酸化物を含有する非水電解質二次電池用活物質であって、前記リチウム遷移金属複合酸化物は、前記遷移金属元素Meに対するLiのモル比Li/Meが1.2~1.4であり、2次粒子の粒度分布における累積体積が10%、50%及び90%となる粒度をそれぞれD10、D50及びD90とするとき、D10が6~9μm、D50が13~16μm、D90が18~32μmであり、1次粒子の粒子径が1μm以下であることを特徴とする非水電解質二次電池用活物質。
  2.  D90とD10との比D90/D10が2.3~4.4であることを特徴とする請求項1に記載の非水電解質二次電池用活物質。
  3.  BET比表面積が3.5~6.5m2/gであることを特徴とする請求項1又は2に記載の非水電解質二次電池用活物質。
  4.  タップ密度が1.65~1.96g/cm3であることを特徴とする請求項1~3のいずれか1項に記載の非水電解質二次電池用活物質。
  5.  前記リチウム遷移金属複合酸化物が、仮焼成した遷移金属酸化物の前駆体とリチウム化合物とを混合し、焼成したものであることを特徴とする請求項1~4のいずれか1項に記載の非水電解質二次電池用活物質。
  6.  前記リチウム遷移金属複合酸化物が、遷移金属炭酸塩の共沈前駆体とリチウム化合物との混合粉体を仮焼成した後、焼成したものであることを特徴とする請求項1~4のいずれか1項に記載の非水電解質二次電池用活物質。
  7.  α-NaFeO型結晶構造を有し、組成式Li1+αMe1-α(MeはCo、Ni及びMnを含む遷移金属元素、α>0)で表されるリチウム遷移金属複合酸化物を含有する非水電解質二次電池用活物質の製造方法であって、溶液中でCo、Ni及びMnを含む遷移金属元素Meの化合物を共沈させて遷移金属酸化物の共沈前駆体を製造する工程、前記共沈前駆体を300~500℃で仮焼成する工程、前記仮焼成した共沈前駆体とリチウム化合物とを、前記リチウム遷移金属複合酸化物の遷移金属元素Meに対するLiのモル比Li/Meが1.25~1.4となるように混合し、焼成する工程を含むことを特徴とする非水電解質二次電池用活物質の製造方法。
  8.  α-NaFeO型結晶構造を有し、組成式Li1+αMe1-α(MeはCo、Ni及びMnを含む遷移金属元素、α>0)で表されるリチウム遷移金属複合酸化物を含有する非水電解質二次電池用活物質の製造方法であって、溶液中でCo、Ni及びMnを含む遷移金属元素Meの化合物を共沈させて遷移金属炭酸塩の共沈前駆体を得る工程、前記共沈前駆体とリチウム化合物とを前記リチウム遷移金属複合酸化物の遷移金属元素Meに対するLiのモル比Li/Meが1.2~1.4となるように混合した混合粉体を、250~750℃で仮焼成する工程、及び、前記仮焼成した混合粉体を再混合して焼成する工程を含むことを特徴とする非水電解質二次電池用活物質の製造方法。
  9.  前記リチウム化合物が炭酸塩であることを特徴とする請求項7又は8に記載の非水電解質二次電池用活物質の製造方法。
  10.  前記リチウム遷移金属複合酸化物は、2次粒子の粒度分布における累積体積が10%、50%及び90%となる粒度をそれぞれD10、D50及びD90とするとき、D10が6~9μm、D50が13~16μm、D90が18~32μmであり、1次粒子の粒子径が1μm以下であることを特徴とする請求項7~9のいずれか1項に記載の非水電解質二次電池用活物質の製造方法。
  11.  前記リチウム遷移金属複合酸化物は、BET比表面積が3.5~6.5m2/gであることを特徴とする請求項7~10のいずれか1項に記載の非水電解質二次電池用活物質の製造方法。
  12.  前記リチウム遷移金属複合酸化物は、タップ密度が1.65~1.96g/cm3であることを特徴とする請求項7~11のいずれか1項に記載の非水電解質二次電池用活物質の製造方法。
  13.  請求項1~6のいずれか1項に記載の非水電解質二次電池用活物質を含有する非水電解質二次電池用電極。
  14.  請求項13に記載の非水電解質二次電池用電極を備えた非水電解質二次電池。
PCT/JP2012/077409 2011-11-09 2012-10-24 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池 WO2013069454A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013542916A JP5861992B2 (ja) 2011-11-09 2012-10-24 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
CN201280040018.3A CN103748711B (zh) 2011-11-09 2012-10-24 非水电解质二次电池用活性物质、该活性物质的制造方法、非水电解质二次电池用电极以及非水电解质二次电池
EP12847868.2A EP2779285B1 (en) 2011-11-09 2012-10-24 Active substance for nonaqueous electrolyte secondary cell, method for producing active substance, electrode for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
KR1020147001260A KR20140090591A (ko) 2011-11-09 2012-10-24 비수 전해질 2차 전지용 활물질, 그 활물질의 제조 방법, 비수 전해질 2차 전지용 전극 및 비수 전해질 2차 전지
US14/352,183 US20140308584A1 (en) 2011-11-09 2012-10-24 Active material for nonaqueous electrolyte secondary battery, method for manufacturing active material, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011245093 2011-11-09
JP2011-245093 2011-11-09
JP2011275583 2011-12-16
JP2011-275583 2011-12-16

Publications (1)

Publication Number Publication Date
WO2013069454A1 true WO2013069454A1 (ja) 2013-05-16

Family

ID=48289837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077409 WO2013069454A1 (ja) 2011-11-09 2012-10-24 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池

Country Status (6)

Country Link
US (1) US20140308584A1 (ja)
EP (1) EP2779285B1 (ja)
JP (2) JP5861992B2 (ja)
KR (1) KR20140090591A (ja)
CN (1) CN103748711B (ja)
WO (1) WO2013069454A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037737A1 (ja) * 2013-09-13 2015-03-19 三井金属鉱業株式会社 リチウムイオン電池用正極材料
WO2015049862A1 (ja) * 2013-10-03 2015-04-09 株式会社Gsユアサ リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池及び蓄電装置
JP2015135800A (ja) * 2013-12-16 2015-07-27 旭硝子株式会社 リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極、およびリチウムイオン二次電池
US20150340683A1 (en) * 2012-12-21 2015-11-26 Jfe Mineral Company, Ltd. Positive electrode material for lithium secondary battery
WO2015182665A1 (ja) * 2014-05-29 2015-12-03 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2016069209A (ja) * 2014-09-29 2016-05-09 住友金属鉱山株式会社 ニッケルコバルトマンガン化合物及びその製造方法
KR20160055189A (ko) * 2013-09-05 2016-05-17 우미코르 고 리튬 및 망간 함유 캐소드 재료의 카보네이트 전구체
JP2017536654A (ja) * 2014-10-08 2017-12-07 ユミコア 好ましい形態を有する不純物含有カソード材料及び不純物含有金属炭酸塩から調製するための方法
JP2017538649A (ja) * 2014-11-07 2017-12-28 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se リチウムイオン電池用混合遷移金属酸化物
US10115967B2 (en) 2016-03-31 2018-10-30 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
JPWO2017150055A1 (ja) * 2016-03-04 2019-01-10 パナソニックIpマネジメント株式会社 非水電解質二次電池
JP2019021423A (ja) * 2017-07-12 2019-02-07 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
US10224547B2 (en) 2016-03-31 2019-03-05 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
JP2019507488A (ja) * 2016-08-30 2019-03-14 山▲東▼玉皇新能源科技有限公司Shandong Yuhuang New Energy Technology Co., Ltd. 高品質のリチウムリッチマンガン系リチウムイオン電池正極材料およびその合成方法
JP2020510971A (ja) * 2017-03-03 2020-04-09 ユミコア 充電式リチウムイオン電池用のNi系カソード材料を調製するための前駆体及び方法
US10622629B2 (en) 2016-03-31 2020-04-14 Honda Motor Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery
JP2020532076A (ja) * 2017-11-20 2020-11-05 中国科学院▲寧▼波材料技▲術▼▲与▼工程研究所Ningbo Institute Of Materials Technology & Engineering,Chinese Academy Of Sciences リチウムリッチ酸化物正極材料およびその製造方法、ならびにリチウムイオン電池
WO2021145438A1 (ja) * 2020-01-17 2021-07-22 住友化学株式会社 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池
JP2022008817A (ja) * 2014-05-27 2022-01-14 ダウ グローバル テクノロジーズ エルエルシー 改善されたリチウム金属酸化物カソード材料及びそれらの作製方法
US11233238B2 (en) 2016-03-31 2022-01-25 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
US11239464B2 (en) 2016-03-31 2022-02-01 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
US11804600B2 (en) 2016-03-31 2023-10-31 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9219275B2 (en) * 2012-02-16 2015-12-22 Gs Yuasa International Ltd. Active material for nonaqueous electrolyte secondary battery, method for manufacturing active material, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN112678877B (zh) * 2016-01-06 2023-05-12 住友金属矿山株式会社 非水类电解质二次电池用正极活性物质
US20190288284A1 (en) * 2016-07-22 2019-09-19 Umicore Lithium metal composite oxide powder
JP6737153B2 (ja) * 2016-11-30 2020-08-05 住友金属鉱山株式会社 ニッケルコバルトマンガン複合水酸化物、ニッケルコバルトマンガン複合水酸化物の製造方法、リチウム金属複合酸化物粒子
JP6853950B2 (ja) * 2016-12-16 2021-04-07 株式会社Gsユアサ リチウムイオン二次電池
CN110120497B (zh) * 2018-02-07 2021-06-04 宁德新能源科技有限公司 一种活性材料和锂离子电池
KR102568566B1 (ko) * 2019-02-01 2023-08-22 주식회사 엘지에너지솔루션 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
JP7444542B2 (ja) * 2019-03-07 2024-03-06 株式会社コロプラ ゲームプログラム、方法、および情報処理装置
WO2021059857A1 (ja) * 2019-09-27 2021-04-01 パナソニック株式会社 非水電解質二次電池
CN115321564B (zh) * 2022-08-31 2024-01-30 天齐创锂科技(深圳)有限公司 长棒状碳酸锂及其制备方法
CN116199278B (zh) * 2023-05-05 2023-08-04 四川新能源汽车创新中心有限公司 锂电池三元正极材料制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1072219A (ja) * 1996-08-30 1998-03-17 Nippon Chem Ind Co Ltd リチウム複合酸化物、その製造方法およびリチウム二次電池用正極活物質
JP2001076724A (ja) * 1999-09-02 2001-03-23 Sumitomo Metal Ind Ltd リチウム電池用正極材料とその製造方法
JP2003017050A (ja) 2001-06-27 2003-01-17 Santoku Corp 非水電解液2次電池用正極活物質、その製造方法、非水電解液2次電池、並びに正極の製造方法
JP2004193115A (ja) * 2002-11-27 2004-07-08 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2007257985A (ja) 2006-03-23 2007-10-04 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法とそれを用いた非水系電解質二次電池
JP2008147068A (ja) * 2006-12-12 2008-06-26 Ise Chemicals Corp 非水電解液二次電池用リチウム複合酸化物
JP2008251191A (ja) 2007-03-29 2008-10-16 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池
JP2008258160A (ja) 2007-03-30 2008-10-23 Matsushita Electric Ind Co Ltd 非水電解質二次電池用活物質およびその製造法
JP4221448B1 (ja) 2007-07-19 2009-02-12 日鉱金属株式会社 リチウムイオン電池用リチウムマンガン複合酸化物及びその製造方法
JP2009205974A (ja) * 2008-02-28 2009-09-10 Agc Seimi Chemical Co Ltd リチウムイオン二次電池正極活物質用リチウムコバルト複合酸化物の製造方法
JP2009205893A (ja) 2008-02-27 2009-09-10 Nippon Chem Ind Co Ltd リチウム二次電池正極活物質用リチウムニッケルマンガンコバルト複合酸化物、その製造方法及びリチウム二次電池
JP2010086690A (ja) 2008-09-30 2010-04-15 Gs Yuasa Corporation リチウム二次電池用活物質、リチウム二次電池及びその製造方法
JP2010192424A (ja) 2008-09-10 2010-09-02 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法、ならびにこれを用いた非水系電解質二次電池
JP2011116580A (ja) 2009-12-02 2011-06-16 Sumitomo Metal Mining Co Ltd ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3687106B2 (ja) * 1994-04-06 2005-08-24 住友化学株式会社 リチウム遷移金属複合酸化物粉末とその製造方法およびリチウム二次電池正極とリチウム二次電池
US7393476B2 (en) * 2001-11-22 2008-07-01 Gs Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
JP4359744B2 (ja) * 2002-02-05 2009-11-04 戸田工業株式会社 二次電池の正極用活物質およびその製造方法
JP3856015B2 (ja) * 2003-06-09 2006-12-13 日亜化学工業株式会社 非水電解液二次電池用正極副活物質、非水電解液二次電池用正極活物質および非水電解液二次電池
JP2005141983A (ja) * 2003-11-05 2005-06-02 Mitsubishi Chemicals Corp リチウム二次電池正極材料用層状リチウムニッケル系複合酸化物粉体及びその製造方法、リチウム二次電池用正極並びにリチウム二次電池
KR100822012B1 (ko) * 2006-03-30 2008-04-14 한양대학교 산학협력단 리튬 전지용 양극 활물질, 그 제조 방법 및 그를 포함하는리튬 이차 전지
KR101574958B1 (ko) * 2007-11-12 2015-12-07 가부시키가이샤 지에스 유아사 리튬 이차전지용 활물질, 리튬 이차전지 및 그 제조방법
JPWO2009098835A1 (ja) * 2008-02-04 2011-05-26 パナソニック株式会社 リチウム含有遷移金属酸化物の製造方法
US8277683B2 (en) * 2008-05-30 2012-10-02 Uchicago Argonne, Llc Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries
JP5673990B2 (ja) * 2009-07-24 2015-02-18 日産自動車株式会社 リチウムイオン電池用正極材料およびこれを用いたリチウムイオン電池
US8808584B2 (en) * 2009-08-21 2014-08-19 Gs Yuasa International Ltd. Active material for lithium secondary battery, electrode for lithium secondary battery, lithium secondary battery, and method for producing the same
KR20120099375A (ko) * 2009-08-27 2012-09-10 엔비아 시스템즈 인코포레이티드 금속 산화물이 코팅된 리튬 기반 배터리용 양극 물질
JP2011216472A (ja) * 2010-03-18 2011-10-27 Sumitomo Chemical Co Ltd 正極用粉末

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1072219A (ja) * 1996-08-30 1998-03-17 Nippon Chem Ind Co Ltd リチウム複合酸化物、その製造方法およびリチウム二次電池用正極活物質
JP2001076724A (ja) * 1999-09-02 2001-03-23 Sumitomo Metal Ind Ltd リチウム電池用正極材料とその製造方法
JP2003017050A (ja) 2001-06-27 2003-01-17 Santoku Corp 非水電解液2次電池用正極活物質、その製造方法、非水電解液2次電池、並びに正極の製造方法
JP2004193115A (ja) * 2002-11-27 2004-07-08 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2007257985A (ja) 2006-03-23 2007-10-04 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法とそれを用いた非水系電解質二次電池
JP2008147068A (ja) * 2006-12-12 2008-06-26 Ise Chemicals Corp 非水電解液二次電池用リチウム複合酸化物
JP2008251191A (ja) 2007-03-29 2008-10-16 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池
JP2008258160A (ja) 2007-03-30 2008-10-23 Matsushita Electric Ind Co Ltd 非水電解質二次電池用活物質およびその製造法
JP4221448B1 (ja) 2007-07-19 2009-02-12 日鉱金属株式会社 リチウムイオン電池用リチウムマンガン複合酸化物及びその製造方法
JP2009205893A (ja) 2008-02-27 2009-09-10 Nippon Chem Ind Co Ltd リチウム二次電池正極活物質用リチウムニッケルマンガンコバルト複合酸化物、その製造方法及びリチウム二次電池
JP2009205974A (ja) * 2008-02-28 2009-09-10 Agc Seimi Chemical Co Ltd リチウムイオン二次電池正極活物質用リチウムコバルト複合酸化物の製造方法
JP2010192424A (ja) 2008-09-10 2010-09-02 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法、ならびにこれを用いた非水系電解質二次電池
JP2010086690A (ja) 2008-09-30 2010-04-15 Gs Yuasa Corporation リチウム二次電池用活物質、リチウム二次電池及びその製造方法
JP2011116580A (ja) 2009-12-02 2011-06-16 Sumitomo Metal Mining Co Ltd ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2779285A4

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150340683A1 (en) * 2012-12-21 2015-11-26 Jfe Mineral Company, Ltd. Positive electrode material for lithium secondary battery
KR20160055189A (ko) * 2013-09-05 2016-05-17 우미코르 고 리튬 및 망간 함유 캐소드 재료의 카보네이트 전구체
KR101864970B1 (ko) 2013-09-05 2018-06-05 유미코아 고 리튬 및 망간 함유 캐소드 재료의 카보네이트 전구체
US9972843B2 (en) 2013-09-05 2018-05-15 Umicore Carbonate precursors for high lithium and manganese containing cathode materials
JP2016533018A (ja) * 2013-09-05 2016-10-20 ユミコア 高リチウム及びマンガン含有カソード材料用の炭酸塩前駆体
CN105594030A (zh) * 2013-09-05 2016-05-18 尤米科尔公司 用于含高锂和锰的阴极材料的碳酸盐前体
JPWO2015037737A1 (ja) * 2013-09-13 2017-03-02 三井金属鉱業株式会社 リチウムイオン電池用正極材料
KR20160055138A (ko) * 2013-09-13 2016-05-17 미쓰이금속광업주식회사 리튬 이온 전지용 양극 재료
KR102170482B1 (ko) * 2013-09-13 2020-10-28 미쓰이금속광업주식회사 리튬 이온 전지용 양극 재료
JP5883999B2 (ja) * 2013-09-13 2016-03-15 三井金属鉱業株式会社 リチウムイオン電池用正極材料
GB2533720A (en) * 2013-09-13 2016-06-29 Mitsui Mining & Smelting Co Positive electrode material for lithium-ion cell
WO2015037737A1 (ja) * 2013-09-13 2015-03-19 三井金属鉱業株式会社 リチウムイオン電池用正極材料
US10319998B2 (en) 2013-10-03 2019-06-11 Gs Yuasa International Positive active material for lithium secondary battery, method for producing the same, electrode for lithium secondary battery, lithium secondary battery and energy storage apparatus
JPWO2015049862A1 (ja) * 2013-10-03 2017-03-09 株式会社Gsユアサ リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池及び蓄電装置
WO2015049862A1 (ja) * 2013-10-03 2015-04-09 株式会社Gsユアサ リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池及び蓄電装置
JP2015135800A (ja) * 2013-12-16 2015-07-27 旭硝子株式会社 リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極、およびリチウムイオン二次電池
JP2022008817A (ja) * 2014-05-27 2022-01-14 ダウ グローバル テクノロジーズ エルエルシー 改善されたリチウム金属酸化物カソード材料及びそれらの作製方法
JPWO2015182665A1 (ja) * 2014-05-29 2017-04-20 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
US10938019B2 (en) 2014-05-29 2021-03-02 Sumitomo Chemical Company, Limited Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2015182665A1 (ja) * 2014-05-29 2015-12-03 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2016069209A (ja) * 2014-09-29 2016-05-09 住友金属鉱山株式会社 ニッケルコバルトマンガン化合物及びその製造方法
JP2017536654A (ja) * 2014-10-08 2017-12-07 ユミコア 好ましい形態を有する不純物含有カソード材料及び不純物含有金属炭酸塩から調製するための方法
US11462735B2 (en) 2014-10-08 2022-10-04 Umicore Impurity containing cathode material with preferred morphology and method to prepare from impurity containing metal carbonate
US10411258B2 (en) 2014-10-08 2019-09-10 Umicore Impurity containing cathode material with preferred morphology and method to prepare from impurity containing metal carbonate
JP2017538649A (ja) * 2014-11-07 2017-12-28 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se リチウムイオン電池用混合遷移金属酸化物
JPWO2017150055A1 (ja) * 2016-03-04 2019-01-10 パナソニックIpマネジメント株式会社 非水電解質二次電池
JP7022940B2 (ja) 2016-03-04 2022-02-21 パナソニックIpマネジメント株式会社 非水電解質二次電池
US10224547B2 (en) 2016-03-31 2019-03-05 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
US11380892B2 (en) 2016-03-31 2022-07-05 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery
US11804600B2 (en) 2016-03-31 2023-10-31 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery
US10622629B2 (en) 2016-03-31 2020-04-14 Honda Motor Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery
US10700353B2 (en) 2016-03-31 2020-06-30 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
US10326132B2 (en) 2016-03-31 2019-06-18 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
US11728481B2 (en) 2016-03-31 2023-08-15 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
US11728483B2 (en) 2016-03-31 2023-08-15 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
US10115967B2 (en) 2016-03-31 2018-10-30 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
US10529986B2 (en) 2016-03-31 2020-01-07 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
US11233238B2 (en) 2016-03-31 2022-01-25 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
US11239464B2 (en) 2016-03-31 2022-02-01 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
JP2019507488A (ja) * 2016-08-30 2019-03-14 山▲東▼玉皇新能源科技有限公司Shandong Yuhuang New Energy Technology Co., Ltd. 高品質のリチウムリッチマンガン系リチウムイオン電池正極材料およびその合成方法
US20190115595A1 (en) * 2016-08-30 2019-04-18 Shandong Yuhuang New Energy Technology Co., Ltd. High-quality, lithium-rich and manganese-based positive electrode material for lithium ion battery, and method for synthesizing same
JP2020510971A (ja) * 2017-03-03 2020-04-09 ユミコア 充電式リチウムイオン電池用のNi系カソード材料を調製するための前駆体及び方法
JP2019021423A (ja) * 2017-07-12 2019-02-07 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
JP7224754B2 (ja) 2017-07-12 2023-02-20 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
JP2020532076A (ja) * 2017-11-20 2020-11-05 中国科学院▲寧▼波材料技▲術▼▲与▼工程研究所Ningbo Institute Of Materials Technology & Engineering,Chinese Academy Of Sciences リチウムリッチ酸化物正極材料およびその製造方法、ならびにリチウムイオン電池
WO2021145438A1 (ja) * 2020-01-17 2021-07-22 住友化学株式会社 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池

Also Published As

Publication number Publication date
US20140308584A1 (en) 2014-10-16
EP2779285A1 (en) 2014-09-17
KR20140090591A (ko) 2014-07-17
JP6217945B2 (ja) 2017-10-25
CN103748711B (zh) 2016-07-06
JP2016096150A (ja) 2016-05-26
JP5861992B2 (ja) 2016-02-16
JPWO2013069454A1 (ja) 2015-04-02
CN103748711A (zh) 2014-04-23
EP2779285A4 (en) 2015-08-26
EP2779285B1 (en) 2017-01-04

Similar Documents

Publication Publication Date Title
JP6217945B2 (ja) 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
JP6197939B2 (ja) 非水電解質二次電池用活物質、非水電解質二次電池用活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
JP6094797B2 (ja) リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池
KR102006008B1 (ko) 비수 전해질 2차 전지용 활물질, 그 활물질의 제조 방법, 비수 전해질 2차 전지용 전극 및 비수 전해질 2차 전지
JP6044809B2 (ja) 非水電解質二次電池用活物質、非水電解質二次電池用電極及び非水電解質二次電池
JP5871186B2 (ja) 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
JP6090662B2 (ja) リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池
JP5757138B2 (ja) 非水電解質二次電池用正極活物質、リチウム遷移金属複合酸化物、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
JP5871187B2 (ja) 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
JP5946011B2 (ja) 非水電解質二次電池用活物質、非水電解質二次電池用電極及び非水電解質二次電池
JP5846446B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用電極、リチウム二次電池
JP5757139B2 (ja) 非水電解質二次電池用正極活物質、リチウム遷移金属複合酸化物、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
JP2014063708A (ja) リチウム二次電池用正極活物質、その正極活物質の製造方法、リチウム二次電池用電極、及びリチウム二次電池
JP6069632B2 (ja) 正極ペースト、並びに、これを用いた非水電解質電池用正極及び非水電解質電池の製造方法
JP6131760B2 (ja) リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池
JP5757140B2 (ja) 非水電解質二次電池用正極活物質、リチウム遷移金属複合酸化物、その正極活物質等の製造方法、及び非水電解質二次電池
JP6195010B2 (ja) 正極ペースト、並びに、これを用いた非水電解質電池用正極及び非水電解質電池の製造方法
JP5787079B2 (ja) 非水電解質二次電池用活物質、非水電解質二次電池用電極及び非水電解質二次電池
JP6024869B2 (ja) 非水電解質二次電池用正極活物質及びこれを用いた非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847868

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147001260

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013542916

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012847868

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012847868

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14352183

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE